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1. Introduction 

 

1.1. Anatomy and function of the uterus 

 

The uterus is a major female hormone-responsive reproductive sex organ of most 

mammals, including humans. The human uterus is composed of 2 basic parts, the 

fundus and the cervix. The fundus is composed of myometrium, and the endometrium. 

The myometrium predominantly consists of smooth muscle cells, and supporting 

stromal and vascular tissue. The cervix (or neck of the uterus) is the lower, narrow 

portion of the uterus where it joins with the top end of the vagina. 

The uterus has a spontaneous contractile activity, however, during pregnancy the 

progesterone secreted from the placenta suppresses the activity of the uterus, keeping 

the foetus within the uterus. At this time, the cervix remains firm and non-compliant. 

This physical integrity is critical so that the developing foetus can remain in the uterus 

until the appropriate time of the delivery. At term, however, the uterine contractions 

become more frequent and regular, while the cervix dilates, softens and becomes more 

distensible, a process called cervical ripening. These alterations facilitate a timely 

passage of the foetus at parturition. Under the effect of myometrial contractions, the 

cervix passively dilates and is pulled over the presenting foetal part. The exact process 

of these changes is not clear. The complex mechanism is controlled by a heterogeneous 

regulation, involving physiological factors such as oxytocin, the adrenergic system, 

prostaglandins, connexin and sex hormones (Fu et al., 1996; Roberts et al., 1989; 

Miyoshi et al., 1996). An understanding of these processes, at the molecular and cellular 

level, is essential to developing novel therapeutic strategies for management of 

associated clinical problems such as preterm labour that accounts for 70% of neonatal 

mortality and 75% of neonatal morbidity (Challis et al., 2001). 

 

1.2 The role of the adrenergic system in the uterine function 

 

It has been clearly established that the adrenergic system plays a major role in the 

uterine function. Thus, a number of attempts have been made to employ drugs that 

affect the adrenergic system in the treatment of myometrial contractility and cervical 
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resistance disorders, with special attention to premature labour. Compounds that 

decrease the myometrial contractions and increase the cervical resistance can be 

beneficial in the prevention of premature complications, but the number of such 

compounds is quite limited.  

 

1.2.1. The role of the ββββ-adrenoceptors in the uterine function 

 

Currently, β2-adrenergic-receptor (β2-AR) agonists are still one of the most frequently 

used tocolytics in Europe (they are not routinely used in the US), although their 

therapeutic significance in premature labour is constantly questioned, especially when 

they are administered in prolonged therapies (Lampert et al., 1993; Katz and Farmer, 

1999). They may have several maternal and foetal side-effects, mainly in consequence 

with their high therapeutic doses used for uterus-relaxing action. Up to 25 fatal cases 

have been described following pulmonary oedema. The availability of at least as 

effective other tocolytics with less side effects have resulted in the suggestion to omit 

the β-agonists (King et al., 2004; Anotayanonth et al., 2004).  

The β-ARs were initially divided into β1- and β2-ARs defined in terms of agonist 

potencies. Further experimentation using β-antagonists exposed another receptor 

subtype which appeared to be insensitive to typical β-adrenoceptor antagonists, this was 

classified as β3-adrenoceptor (Gauthier et al., 1996). Pharmacological evidence is 

emerging in support of a further receptor subtype β4-AR (Sarsero et al., 1998), although 

as yet there are no selective compounds for this particular subtype. Both β1- and β2-ARs 

coexist in the myometrium with a higher proportion of the β2-subtype (approximately 

85% of the total β-AR population). All the β-AR couples via Gs to myometrial adenylyl 

cyclase, increases intracellular levels of cyclic adenosine monophosphate (cAMP) and 

activates cAMP-dependent protein kinases. This leads to myometrial relaxation through 

effects on intracellular Ca2+ concentration and myosin light chain kinase.  

Besides the expansive side-effects of the β2-agonists, the potential effectiveness of β2-

AR agonists has been the subject of intensive debate in the literature. Some articles 

claim that most β2-mimetics can put off labour for 48-72 h (Katz et al. 1999), while 

others conclude that their duration of action is only 24-48 h (Higby et al. 1993). 

Nevertheless, it has been stated that β2-agonist treatment does not influence the preterm 
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delivery rate and the perinatal outcome (Sciscione et al. 1998). Some earlier findings 

suggest that pregnancy itself may alter the myometrial action of adrenergic drugs. It is 

known that the myometrial responsiveness of the β2-agonists decreases at the end of 

pregnancy in the mouse (Cruz et al., 1990). Gáspár et al. (2005) demonstrated that the 

uterus-relaxing effect of terbutaline spontaneously decreased on electrical field-

stimulated samples towards the end of the pregnancy in the rat. In addition, the 

terbutaline decreased the amount of activated myometrial G-protein in [35S]GTPγS 

binding assay on last day of pregnancy. The authors presumed that the effects of β2-

adrenergic receptor agonists in tocolytic therapy may possibly be potentiated with 

progesterone. 

As regards the role of the β2-ARs in the control of cervical resistance, it has been 

proved that the terbutaline at 10-6 M enhances the cervical resistance of the late-

pregnant samples on the β2-ARs in vitro from day 18 to day 22, but did not alter the 

resistance of the non-pregnant samples. This cervical resistance-increasing effect was 

concentration dependent and antagonized with propranolol on day 21. Based on 

[35S]GTPγS studies, they presumed that the cervical resistance-increasing effect of 

terbutaline is a consequence of its G-protein activation-decreasing property via β2-ARs, 

which finally leads to an increased muscle resistance against mechanical stretching 

(Gáspár et al., 2005). 

 

1.2.2. The role of the αααα-adrenoceptors in the uterine function 

 

In the rat, besides the β2-ARs, the α1-adrenergic receptors (α1-ARs) have been found to 

have a great impact on myometrial contractility (Legrand et al., 1986; Zupkó et al., 

1997) and the cervical resistance (Kolarovszki-Sipiczki et al., 2007). 

The α-ARs have been subdivided into α1 and α2 subtypes. All α-ARs are the members 

of the G-protein coupled receptor superfamily. α1-ARs are coupled through the Gp/Gq 

mechanism. The α1-AR agonists elicit contractions in the smooth muscles via the 

increase in the intracellular inositol phosphate and Ca2+ levels (Michelotti et al., 2000). 

It has been proved that α1-AR antagonists induce a significant decrease in the uterine 

activity of the rat, both in vitro and in vivo (Gáspár et al., 1998; Zupkó et al., 1997), 

similar to the effects of β2-AR agonists. Ducza et al. (2002) proved that α1A- and α1D-
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ARs are involved in the regulation of the pregnant uterine contractility, but the α1A-AR 

seems to play the major role in late-pregnant myometrial contraction. The resistance-

increasing effect of α1-AR inverse agonists on the different days of gestation in the rat 

has also been clarified (Kolarovszki-Sipiczki et al., 2007).  

As concerns the α2-ARs, Kovacs and Falkay (1993) demonstrated the existence of 

functionally distinct α2-ARs in the human cervix, similarly as in pregnant rabbits, which 

suggests the importance of α2-ARs in the cervical contractility; however, we have no 

scientific data as concerns the role of the α2-ARs in the control of myometrial 

contractions and cervical resistance.   

 

1.2.3. The αααα2-adrenoceptors 

 

The results of functional, structural and radioligand-binding studies have led to the α2- 

being subdivided into α2A, α2B and α2C subtypes (Bylund et al., 1994). The α2-ARs 

were initially identified as presynaptic receptors inhibiting the release of 

neurotransmitters in isolated tissues in vitro (Starke et al., 1975). The term 

"autoreceptors" has been introduced for those receptors that are "sensitive to the 

neuron's own transmitter." In contrast to autoreceptors, non-adrenergic α2-ARs 

(heteroreceptors) are modulated by neurotransmitters derived from neighbouring 

neurons (Bylund et al., 1994).  

For the α2-ARs, mouse models with targeted deletions of the individual subtypes have 

greatly advanced the understanding of the physiological role and the therapeutic 

potential of these receptors (Gilsbach and Hein, 2008). Several studies claimed that the 

differences in the receptor subtypes and their various localizations are thought to be 

responsible for their different roles. Activation of α2A-ARs could be linked with 

bradycardia and hypotension (MacMillan et al., 1996), sedation (Lakhlani et al., 1997), 

and consolidation of working memory (Wang et al., 2007). In contrast, α2B-ARs 

counteracted the hypotensive effect of α2A-ARs (Link et al., 1996) and were essential 

for placenta vascular development (Philipp et al., 2002). α2-ARs were identified as 

feedback regulators of adrenal catecholamine release (Brede et al., 2003), an essential 

pathway to limit the progression of cardiac hypertrophy and failure in experimental 

models (Lymperopoulos et al., 2007) and in humans with congestive heart failure 
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(Small et al., 2002). The α2-ARs can mediate a variety of cell functions, including 

inhibitory effects, such as the suppression of neurotransmitter and hormone release, and 

stimulatory effects, such as the aggregation of platelets and the contraction of smooth 

muscles, e.g. the myometrium (Taneike et al., 1995).  

The cellular mechanisms underlying the action of α2-AR activation are not well 

understood. The α2-ARs are coupled to a class of the PTX sensitive Gi protein (Karim et 

al., 2000; Pohjanoksa et al., 1997), whose activation leads to the inhibition of the 

adenylate cyclase enzyme, the reduction of the intracellular cAMP concentration, the 

inhibition of voltage-gated Ca2+ channels (VGCCs) (Boehm 1999 and Leão and von 

Gersdorff 2002), and the activation of inwardly rectifying K+ channels (Bylund 1992, Li 

et al. 2005). and finally, the physiological answer. (Ruffolo et al., 1991). However, 

some articles claimed that the α2-ARs can also couple not only the Gi-protein α-subunit, 

but under certain circumstances to Gs-proteins leading to activation of adenylyl cyclase 

(Eason et al. 1992, Offermanns, 2003). Studies on recombinant α2-ARs expressed in 

different cell lines have demonstrated that each receptor is capable of coupling to 

several signal transduction systems (Regan et al., 1992). It has also been shown that all 

three subtypes have the potential to couple physically and functionally not only to Gi but 

also to Gs in membranes from CHO (Chinese Hamster Ovary) cells (Eason et al., 1992). 

 The role of α2-ARs is not fully clear from the aspect of myometrial contractility 

and cervical resistance. Three α2-AR subtypes (α2A-AR, α2B-AR and α2C-AR) have 

been identified in the human myometrium, while only α2A-AR and α2B-AR were found 

in the rat uterus (Bouet-Alard et al., 1997). To date there has been no investigation of 

the roles of the different α2-AR subtypes in the control of uterine function. The 

existence of α2-AR subtype-selective compounds offers a good possibility for 

determination of the functions of the given subtypes.  
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2. Aims 

 

 

1. The first aim of the study was to identify the myometrial and the cervical α2-AR 

subtype mRNA and protein expressions by using RT-PCR and Western-blot 

techniques, respectively. 

 

2. By isolated organ methods our aim was to investigate the role of the α2-AR 

subtypes in the noradrenaline evoked myometrial contractions (day 22 of 

pregnancy) and the cervical resistance (gestation days 18, 20, 21 and 22) by 

subtype-specific antagonists in vitro. Additionally, while the changes in the 

intracellular cAMP is crucial in the control of smooth muscle contractions and 

relaxations, our aim was to measure the cAMP release after receptor stimulation by 

noradrenaline in the presence of the subtype-specific α2-AR antagonists.  

 

3. Moreover, to investigate the effect of the drugs on overstimulated myometrial 

samples by using induced labour model.  
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3. Methods 

 

3.1. Housing and handling of the animals 

The animals were treated in accordance with the European Communities Council 

Directives (86/609/ECC) and the Hungarian Act for the Protection of Animals in 

Research (XXVIII.tv.32.§). All experiments involving animal subjects were carried out 

with the approval of the Hungarian Ethical Committee for Animal Research 

(registration numbers: IV/1813-1/2002), which is in harmony with the control of the 

European Union. Sprague-Dawley rats (Charles-River Laboratories, Hungary) were 

kept at 22 ± 3 °C; the relative humidity was 30-70% and the light/dark cycle was 12/12 

h. The animals were maintained on a standard rodent pellet diet (Charles-River 

Laboratories, Hungary) with tap water available ad libitum. They were sacrificed by 

CO2 inhalation.  

 

3.2. Mating of the animals 

Mature female (180-200 g) and male (240-260 g) Sprague-Dawley rats were mated in a 

special mating cage. A metal door, which was movable by a small electric engine, 

separated the rooms for the male and female animals. A timer controlled the function of 

the engine. Since rats are usually active at night, the separating door was opened before 

dawn. Within 4-5 h after the possibility of mating, vaginal smears were taken from the 

female rats, and a sperm search was performed under a microscope at a magnification of 

1200 times. If the search proved positive, or if smear taking was impossible because of 

an existing vaginal sperm plug, the female rats were separated and were regarded as 

first-day pregnant animals. 

 

3.3. Organ samples 

The contractility was investigated in vitro in non-pregnant, last day pregnant (day 22 of 

pregnancy) and labour-induced 20-day-pregnant rat myometrial samples. The cervical 

resistance experiments were carried out on rat cervical samples from the 18-, 20-, 21- 

and 22-days of pregnancy.  
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3.4. RT-PCR studies 

Tissue isolation. Uterine tissues from non-pregnant and 22-day-pregnant animals, 

cervical tissues from 18-, 20-, 21- and 22-day-pregnant animals were rapidly removed 

and the embryonic tissues were separated. The samples were frozen in liquid nitrogen 

and then stored at -70 ºC until total RNA extraction. 

Total RNA preparation. Total cellular RNA was isolated by extraction with acid 

guanidinium thiocyanate-phenol-chloroform by the procedure of Chomczynski and 

Sacchi (1987). After precipitation with isopropanol, the RNA was washed 3 times with 

ice-cold 75% ethanol and then dried. The pellet was resuspended in 100 µl DNase- and 

RNase-free distilled water. The RNA concentrations of the samples were determined 

from their absorbances at 260 nm. 

RT-PCR. The RNA (0.5 µg) was denatured at 70 ºC for 5 min in a reaction mixture 

containing 20 µM oligo(dT) (Hybaid Corp., UK), 20 U RNase inhibitor (Hybaid Corp., 

UK), 200 µM dNTP (Sigma-Aldrich, Hungary) in 50 mM Tris-HCl, pH 8.3, 75 mM 

KCl and 5 mM MgCl2 in a final reaction volume of 20 µl. After the mixture had been 

cooled to 4 ºC, 20 U MMLV reverse transcriptase (GIBCO, UK) and Ribonuclease 

Inhibitor (Sigma-Aldrich, Hungary) were added, and the mixture was incubated at 37 ºC 

for 60 min. 

The PCR was carried out with 5 µl cDNA, 25 µl ReadyMix REDTaq PCR reaction mix 

(Sigma-Aldrich, Hungary), 2 µl 50 pM sense and antisense primers of the α2-AR 

subtypes (GeneBank accession no. NM012739 for  α2A; NM138505 for  α2B; 

NM138506 for  α2C) and 16 µl DNase- and RNase-free distilled water. The coupling 

temperatures and numbers of cycles for the different α2-AR subtypes were as follows: 

57 ºC, 32 cycles for α2A; 56 ºC, 32 cycles for α2B; and 59 ºC, 36 cycles for α2C-ARs. 

The PCR was performed with a PCR Sprint thermal cycler (Hybaid Corp., UK). After 

the initial denaturation at 95 ºC for 5 min, the reactions were taken through the 

previously determined number of cycles for each α2-AR subtype: 60 s at 95 ºC, 60 s at 

the appropriate coupling temperature, and 60 s at 72 °C, followed by lowering of the 

temperature to 4 ºC. This PCR protocol furnished optimized conditions and linear phase 

amplification for each of the primer sets employed. The optimum number of cycles for 

each set of primers was determined by performing kinetic analyses.  

The RT-PCR products were separated on 2% agarose gels, stained with ethidium 

bromide and photographed under a UV transilluminator. Semiquantitative analysis was 
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performed by densitometric scanning of the gel with Kodak EDAS290 (Csertex Ltd., 

Hungary). 

 

3.5. Western blotting studies 

20 µg of protein per well was subjected to electrophoresis on 10% sodium 

dodecylsulfate polyacrylamide gels in Series Standard Dual Cooled Units (BioRad, 

Hungary). Proteins were transferred from gels to nitrocellulose membranes (Scheicher 

and Schuell, Germany), using a semidry blotting technique (BioRad, Hungary). The 

membranes were blocked overnight at 4 oC with 5% non-fat dry milk in Tris saline 

buffer (50 mM Tris, pH 7.4, 200 mM NaCl) containing 0.1% Tween. After washing, the 

blots were incubated for 1 h at room temperature on a shaker, with α2A-, α2B-, and α2C-

AR and β-actin polyclonal antibody (Santa Cruz Biotechnology, California, USA, 

1:200) in the blocking buffer. Immunoreactive bands were visualized with the 

WesternBreeze Chromogenic Western blot immune detection kit (Invitrogen, Hungary) 

and quantified. Protein bands were identified via the MagicMark Western Protein 

Standard (Invitrogen, Hungary). 

 

3.6. Isolated organ studies 

3.6.1. Measurement of myometrial contractility  

Myometrial tissue samples were removed from non-pregnant (180-200 g), 22-day-

pregnant (270-350 g), and labour-induced 20-day-pregnant rats (240-300 g). Muscle 

rings 5 mm long were sliced from the uterine horns and mounted in an organ bath (8 

parallels) containing 10 ml de Jongh solution (in mM: 137 NaCl, 3 KCl, 1 CaCl2, 1 

MgCl2, 12 NaHCO3, 4 NaH2PO4, 6 glucose, pH: 7.4). The organ bath was maintained at 

37 °C, and carbogen (95% O2 + 5% CO2) was bubbled through it. After mounting, the 

rings were equilibrated for about 1 h before experiments were undertaken, with a 

solution change every 15 min. The initial tension was set to about 1.25 g, which was 

relaxed to about 0.5 g at the end of equilibration. The tension of the myometrial rings 

was measured and recorded with a gauge transducer and an S.P.E.L. Advanced ISOSYS 

Data Acquisition System (Experimetria Ltd, Hungary), respectively. Contractions were 

elicited with noradrenaline (10-8–3x10-5 M) and cumulative concentration-response 
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curves were constructed in each experiment in the presence of propranolol (10-5 M) and 

doxazosin (10-7 M) in order to avoid β- and α1-adrenergic actions. α2-AR antagonists 

(BRL 44408 for α2A, ARC 239 for α2B/C and spiroxatrine for α2C) (each 10-7 M) were 

left to incubate for 20 min before the administration of contracting agents. Following 

the addition of each concentration of noradrenaline, recording was performed for 300 s. 

Concentration - response curves were fitted and areas under curves (AUCs) were 

evaluated and analysed statistically with the Prism 4.0 (GraphPad Software, USA) 

computer program. From the AUC values, Emax and EC50 values were calculated (Emax: 

The maximum contracting effect of noradrenaline alone or in the presence of an α2-AR 

antagonist; EC50: the concentration of noradrenaline alone or in the presence of an α2-

AR antagonist which elicits half of the maximum contracting effect of noradrenaline.).  

 

3.6.2. Measurement of cervical resistance 

Cervical tissues were removed from late-pregnant (gestational day 18, 20, 21 or 22) 

rats. The cervix was defined as the least vascular tissue with two parallel lumina 

between the uterine horns and the vagina. The two cervical rings were separated and 

mounted with their longitudinal axis vertically by hooks in an organ bath containing 10 

ml de Jongh buffer  The lower sides of the cervices were fixed to the bottom of the 

tissue holders in the organ chambers, while the upper parts were hooked to gauge 

transducers (SG-02, Experimetria Ltd, Hungary). The initial tension was set to about 

1.00 g.  

After incubation, the cervical resistance was investigated by gradual increase of the 

tension in the tissues, as described previously (Gáspár et al., 2005; Kolarovszki-Sipiczki 

et al., 2007). The cervices were stretched in incremental steps and allowed to relax for 5 

min. After every 5 min the next initial tension was set, in 1-g steps between 1 and 12 g. 

The tension was increased manually via the control screw of the gauge transducer. The 

precise initial tension and the relaxation of the cervices were followed with an online 

computer, using the S.P.E.L. Advanced Isosys Data Acquisition System (Experimetria 

Ltd, Hungary). The resultant stress-strain curve had a saw-tooth shape (Fig 1).  
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Figure 1. Representative stress-strain curve of a 22-day-pregnant rat cervix in vitro 

The cervices were stretched in incremental steps and allowed to relax for 5 min. After every 5 min, the 
next initial tension value was adjusted. The series of stretching and relaxation resulted in a saw-tooth 
shape. The initial tensions were plotted against the tensions recorded after 5 min to create regression lines 
 

In the evaluation of the cervical resistance, the initial tension of the cervix was plotted 

versus the stretch after 5 min. Straight lines were fitted by linear regression and the 

slopes of the lines were used to express the degree of resistance. A steeper slope 

reflected higher resistance.  

When the effects of the α2-AR subtypes were investigated, the samples were incubated 

for 10 min with 10-6 M of the subtype-selective α2-AR antagonist in the presence of 

propranolol (10-5 M) and doxazosine (10-6 M). Control values were registered in the 

presence of or without noradrenaline. Noradrenaline (10-5 M) was added to the organ 

bath and the contents were left to incubate for 5 min before stretching.  

When the effect of noradrenaline was investigated on 18-day-pregnant cervices, 

cumulative concentration-response curves of noradrenaline (10-8 - 10-4 M) were 

constructed in the presence of or without the antagonists (BRL 44408 or spiroxatrine). 

When the effect of the Gi-protein inhibitor pertussis toxin (PTX) was investigated on 

18- and 20-day-pregnant cervices, the samples were pretreated with PTX (400 ng/ml) 

for 2 hours (Hansen et al., 2003) before stretching. Control values were registered in the 
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presence of or without noradrenaline. The data were analysed with the Prism 4.00 

(GraphPad Software, U.S.A) computer program. 

 

3.6.3. Induction of premature labour in pregnant rat 

The experimental premature labour procedure was carried out according to the model of 

Rechberger et al. (1996). Briefly, 19-day-pregnant rats were treated with s.c. 

antiprogesterone (mifepristone) at 3 mg/animal at 9.00 a.m. At 4.00 p.m., prostaglandin 

E2 (0.5 mg/animal) was administered intravaginally. Our preliminary results had 

revealed that, after this treatment, the pregnant animals delivered between 9.00 and 

10.00 a.m. on day 20 of pregnancy. Accordingly, the animals were sacrificed and 

uterine tissues were removed at 9.00 a.m., ensuring that the pregnant myometrium was 

very close to, but not after delivery.  

 

3.7. cAMP studies 

3.7.1. Preparation and treatment of myometrial and cervical samples  

Tissue samples from non-pregnant and 22-day-pregnant rats were incubated in an organ 

bath (10 ml) containing de Jongh solution (see above) at 37 °C, perfused with a mixture 

of 95% oxygen and 5% CO2. Isobutylmethylxanthine (10-3 M), doxazosin, propranolol 

and the investigated subtype-selective α2-AR antagonists  were incubated with the 

tissues for 20 min, and noradrenaline was then added for 10 min to stimulate cAMP 

generation.. At the end of the noradrenaline incubation period, forskolin (10-5 M) was 

added for another 10 min, as described by Roberts et al. (1998). The non-specific 

phosphodiesterase inhibitor 3-isobutyl-1-methylxantine (IBMX) was used to block the 

degradation of the generated intracellular cAMP (Schlageter et al., 1980), while 

forskolin was added to enhance the activity of adenylyl cyclase (Seamon and Daly, 

1986).  

 

When the effect of the Gi-protein inhibitor PTX on the cAMP accumulation was 

investigated, the samples were pretreated with PTX (400 ng/ml) for 2 h (Hansen et al., 

2003) before the IBMX incubation. Control values were registered in the presence of or 

without noradrenaline. After stimulation, the samples were immediately frozen and 
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stored in liquid nitrogen until the extraction of cAMP. After this, the samples were 

immediately frozen and stored in liquid nitrogen until cAMP extraction. 

The samples were next ground under liquid nitrogen weighed, homogenized in 10 

volumes of ice-cold 5% trichloroacetic acid and centrifuged at 600 g for 10 min. The 

supernatant was extracted with 3 volumes of water-saturated diethyl ether. After drying, 

the extracts were stored at -70 °C until the cAMP assay.  

 

3.7.2. Detection of cAMP Enzyme Immunoassay Kit 

Myometrial and cervical cAMP accumulation was measured with a commercial cAMP 

Enzyme Immunoassay (EIA) Kit (Sigma-Aldrich, Hungary). Briefly, the kit uses a 

polyclonal antibody to cAMP to bind, in a competitive manner, the cAMP in the sample 

or an alkaline phosphatase molecule that has cAMP covalently attached to it. On a 

secondary antibody-coated microwell plate, the cAMP-antibody and the alkaline 

phosphatase-antibody complexes are conjugated. Following the addition of p-

nitrophenyl phosphate, a substrate of alkaline phosphatase, the p-nitrophenol generated 

can be determined via its yellow colour at 405 nm. The more intense the colour, the 

lower the amount of intracellular cAMP.  

 

3.8. Materials 

Noradrenaline, 3-isobutyl-1-methylxanthine (IBMX), forskolin and spiroxatrine (8-

[(2,3-dihydro-1,4-benzodioxin-2-yl)methyl]-1-phenyl-1,3,8-triazaspiro[4,5]decan-4-

one) were purchased from Sigma–Aldrich, Hungary; BRL 44408 (2-[2H-(1-methyl-1,3-

dihydroisoindole)methyl]-4,5-dihydroimidazole) and ARC 239 (2-[2,4-(O-

methoxyphenyl)piperazin]-1-yl dihydrochloride from Tocris, UK; and PTX from Izinta 

Ltd., Hungary. Doxazosin was donated by Pfizer Hungary Ltd. 

Noradrenaline, BRL 44408, ARC 239 and spiroxatrine were dissolved in distilled water 

to give a 10 mM stock solutions, which were stored at –18 °C and freshly diluted in 

distilled water before the beginning of the experiment. PTX was dissolved in a sodium 

phosphate buffer containing (in mM) 100 Na2HPO4, 50 NaCl, pH 7.0. IBMX and 

forskolin were freshly dissolved in ethanol. The final organ bath concentration of 

ethanol (which had no quantifiable effects) did not exceed 0.05%. 
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3.9. Statistical analyses 

All experiments were carried out on at least 6 animals. Statistical analyses were 

performed with ANOVA, followed by the Neuman-Keuls test, except the myometrial 

contractility studies, when data were analysed by two-tailed unpaired t tests.  
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4. Results 

 

4.1. RT-PCR studies 

RT-PCR studies revealed the mRNAs of all three α2-AR subtypes in both the non-

pregnant and the 22-day-pregnant rat myometrium. In the non-pregnant animals, there 

was a slight predominance of α2A-AR mRNA (Fig. 2a, b), while in the pregnant 

myometrium a strong α2B-AR mRNA predominance was found (Fig. 2c, d). 

In case of the cervix, all the three α2-AR subtype mRNAs were expressed each day in 

the cervical samples; however, differences were detected between the levels of 

expression on the different days. The mRNA expressions of each subtype were found to 

be elevated on days 20 and 21. On day 22, however, the α2A- and α2B-AR mRNA levels 

remained unchanged, while the expression of α2C-AR mRNA was lower (Fig. 3a-f).  

 

4.2. Western blotting studies 

The Western blotting analysis gave a result for the non-pregnant myometrium similar to 

that from the RT-PCR studies. In the pregnant myometrium, the predominant α2-AR 

subtype protein was the α2B-AR (Fig 4a, b), while the optical density of the α2A-AR 

protein was significantly lower than that of the α2C-AR (Fig 4c, d). 

In case of the cervical samples the analysis revealed the presence of the proteins of all 

three α2-AR subtypes on each investigated day. The protein expressions of the α2-AR 

subtypes were significantly increased on day 21, whereas decreases were observed on 

day 22 (Fig. 5a-f). 
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Figure 2. The Changes in mRNA levels of the αααα2-AR subtypes in non-pregnant and 22-day-

pregnant rat myometrium (n = 6). 

 
α2-AR reverse transcription-polymerase chain reaction and GAPDH products from the total myometrial 
RNA of a non-pregnant (a) animal and a 22-day-pregnant animal (c). The result was expressed in the 
ratio of the optical densities of α2-AR/GAPDH mRNA (b and d). The levels of significance by ANOVA 
followed by the Neuman–Keuls test: α2A-AR vs. α2B-AR, p < 0.01; α2A-AR vs. α2C-AR, p < 0.01; α2B-AR 
vs. α2C-AR in the non-pregnant and α2B-AR vs. α2A-AR, p < 0.05; α2B-AR vs. α2C-AR, p < 0.001; α2A-
AR vs. α2C-AR, p < 0.01 in the 22-day-pregnant myometrium. 
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Figure 3. Changes in mRNA levels of the αααα2-AR subtypes in 18-, 20-, 21- and 22-day-pregnant rat 

cervices (n = 6). 

 
α2-AR reverse transcription-polymerase chain reaction and GAPDH products from the total myometrial 
RNA of a pregnant animal on days 18, 20, 21 and 22 of pregnancy (a for α2A, c for α2B and e for α2C). 
The result was expressed in the ratio of the optical densities of α2-AR/GAPDH mRNA (b for α2A, d for 
α2B and f for α2C). The level of significance for ANOVA followed by the Neuman–Keuls test relates to 
the comparison with the previous investigated day. ns: not significant, *p < 0.05; ** p < 0.01; *** p 
<0.001.  
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Figure 3. Changes in the protein levels of the αααα2-AR subtypes in non-pregnant and 22-day-pregnant 

rat myometrium (n = 6). 

 

Figure 4. Changes in protein levels the αααα2-AR subtypes in non-pregnant and 22-day-pregnant rat 

myometrium (n = 6). 

The α2-AR and β-actin Western blotting products from non-pregnant and 22-day-pregnant rat myometrial 
samples (a for non-pregnant and c for 22-day-pregnant). The antibody binding was detected with an 
enhanced chemiluminescence detection system, and expressed as optical density (semiquantitative) data 
(b for non-pregnant and d for 22-day-pregnant). The level of significance for ANOVA followed by the 
Neuman–Keuls test: α2A-AR vs. α2B-AR, p > 0.05; α2A-AR vs. α2C-AR, p > 0.05; α2B-AR vs. α2C-AR, p 
> 0.05  in the non-pregnant and α2B-AR vs. α2A-AR, p < 0.001; α2B-AR vs. α2C-AR, p < 0.01; α2A-AR vs. 
α2C-AR, p < 0.001 in the 22-day-pregnant myometrium. 
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Figure 5. Changes in protein levels the αααα2-AR subtypes in 18-, 20-, 21- and 22-day-pregnant rat 

cervices (n=6). 

The α2-AR and β-actin Western blotting products from 18-, 20-, 21- and 22-day-pregnant rat cervices (a 
for α2A, c for α2B and e for α2C). The antibody binding was detected with an enhanced chromogenic 
detection system, and expressed as optical density (semiquantitative) data (b for α2A, d for α2B and f for 
α2C). The level of significance for ANOVA followed by the Neuman–Keuls test relates to the comparison 
with the previous investigated day. ns: not significant, **p < 0.01; *** p < 0.001. 
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4.3. Isolated organ studies 

 

4.3.1. Effects of αααα2-AR subtype antagonists on the non-pregnant and 22-day-

pregnant myometrial contractions 

Noradrenaline in the concentration range 10-8 - 10-4.5 M did not exert a contractile effect 

on the non-pregnant uterine rings, whereas vivid contractions were elicited by 25 mM 

KCl (data not shown). In the 22-day-pregnant myometrium, noradrenaline 

concentration-dependently increased the contractions, and these were slightly increased 

by the α2A-AR antagonist BRL 44408 (Fig 6). The α2B/C-AR antagonist ARC 239 

significantly decreased the maximum effect of noradrenaline (Fig 7), while the α2C-AR 

antagonist spiroxatrine enhanced the noradrenaline-induced contractions (Fig 8). The 

combination BRL 44408 + spiroxatrine also caused an increase in the maximum 

myometrium-contracting effect of noradrenaline (Fig 9). The EC50 and Emax values of 

the curves are listed in Table 1 (see Chapter 10). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Effect of the subtype-selective α2A-AR antagonist BRL 44408 on the noradrenaline-evoked 

contractions (control) in the 22-day-pregnant rat myometrium in an isolated organ bath (n = 8). 

The studies were carried out in the presence of the β-AR antagonist propranolol (10−5 M) and the α1-AR 
antagonist doxazosin (10−7 M). The change in contraction was calculated via the area under the curves 
and expressed in % ± S.E.M. The statistical analyses were carried out with the two-tailed unpaired t-test. 
*p < 0.05.  
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Figure 7. Effect of the subtype-selective α2B/C-AR antagonist ARC 239 on the noradrenaline-evoked 

contractions (control) in the 22-day-pregnant rat myometrium in an isolated organ bath (n = 8).  

The studies were carried out in the presence of the β-AR antagonist propranolol (10−5 M) and the α1-AR 
antagonist doxazosin (10−7 M). The change in contraction was calculated via the area under the curves 
and expressed in % ± S.E.M. The statistical analyses were carried out with the two-tailed unpaired t-test. 
*p < 0.05; **p < 0.01.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Effect of the subtype-selective α2C-AR antagonist spiroxatrine on the noradrenaline-

evoked contractions (control) in the 22-day-pregnant rat myometrium in an isolated organ bath (n 

= 8). 

 The studies were carried out in the presence of the β-AR antagonist propranolol (10−5 M) and the α1-AR 
antagonist doxazosin (10−5 M). The change in contraction was calculated via the area under the curves 
and expressed in % ± S.E.M. The statistical analyses were carried out with the two-tailed unpaired t-test. 
*p < 0.05.  
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Figure 9. Effects of the subtype-selective α2A-AR antagonist BRL 44408 and α2C-AR antagonist 

spiroxatrine on the noradrenaline-evoked contractions (control) in the 22-day-pregnant rat 

myometrium in an isolated organ bath (n = 8). 

 
The studies were carried out in the presence of the β-AR antagonist propranolol (10−5 M) and the α1-AR 
antagonist doxazosin (10−7 M). The change in contraction was calculated via the area under the curves 
and expressed in % ± S.E.M. The statistical analyses were carried out with the two-tailed unpaired t-test. 
*p < 0.05; **p < 0.01.  
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4.3.2. Isolated organ studies with myometrium from hormonally-induced preterm 

birth  

Noradrenaline (10-8.5-10-5 M) enhanced the contractions of labour-induced uterine rings, 

although its effect was less than that in the 22-day-pregnant animals. ARC 239 blocked 

the noradrenaline-evoked contractions (Fig 10). The EC50 and Emax values of the curves 

are presented in Table 2 (see Chapter 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Effect of the subtype-selective αααα2B/C-AR antagonist ARC 239 on the noradrenaline-

evoked contractions (control) in the labour-induced rat myometrium in an isolated organ bath (n = 

8). 

The studies were carried out in the presence of the β-AR antagonist propranolol (10−5 M) and the α1-AR 
antagonist doxazosin (10−7 M). The change in contraction was calculated via the area under the curves 
and expressed in % ± S.E.M. The statistical analyses were carried out with the two-tailed unpaired t-test. 
*p < 0.05.  
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4.3.3. Effects of αααα2-AR subtype antagonists on the cervical resistance  

We found that on day 18 noradrenaline enhanced the cervical resistance, both alone 

(stimulation of all α2-AR subtypes) and also in the presence of ARC 239 (α2A-AR 

stimulation), while BRL 44408, spiroxatrine and their combination blocked the effect of 

noradrenaline (Fig. 11a). On day 20, however, noradrenaline, both alone and in the 

presence of ARC 239 decreased the cervical tone, while similarly as on day 18, BRL 

44408, spiroxatrine and their combination again blocked the effect of noradrenaline 

(Fig. 11b). On day 21, the resistance-increasing action of noradrenaline was maintained 

only in the presence of spiroxatrine (α2A/B-AR stimulation) (Fig. 11c). Noradrenaline, 

however, did not alter the cervical resistance in the presence of or without the 

antagonists on day 22 (Fig. 11d). 

 

4.3.4. Effects of BRL 44408 and spiroxatrine on the cervical resistance-increasing 

dose-response curve of noradrenaline  

The cervical resistance-increasing effect of noradrenaline was concentration-dependent 

in the range 10-8-10-4 M on day 18. In the presence of 10-6 M BRL 44408 the effect of 

the noradrenaline was decreased.  In the presence of 10-6 M spiroxatrine the effect of 

noradrenaline was also antagonized; its cervical resistance-increasing effect was totally 

blocked, even at high doses (Fig. 12). 

 

4.3.5. Effects of αααα2-AR subtype antagonists on cervical resistance in the presence of 

PTX 

PTX significantly decreased the cervical tone as compared with the control level 

without PTX on day 18. PTX also decreased the resistance-increasing effect of 

noradrenaline, both alone and in the presence of ARC 239 (Fig. 13a). On day 20, PTX 

did not alter the basal cervical resistance or the effects of noradrenaline and 

noradrenaline + ARC 239 on the cervical tone (Fig. 13b).  
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Figure 11. Effects of αααα2-AR subtype antagonists on the resistance of 18-, 20-, 21- and 22-day-

pregnant rat cervices in vitro (n=8) (a, b, c and d). 

The resistance is expressed as the slope of the regression line fitted to the stress–strain curves. The y axis 
is segmented into two in order to present a higher magnification of the changes in slopes. White bars 
show the slopes from the control without noradrenaline, grey bars those from the control with 
noradrenaline, and striped bars those from the subtype-selective α2-antagonist-treated cervical samples in 
vitro. On each day, the level of significance relates to the comparison with the control sample. * P<0.05; 
** P<0.01 
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Figure 12. Effects of BRL 44408 and spiroxatrine on the cervical resistance-increasing action of 

noradrenaline in 18-day-pregnant cervices (n=8). 

The presence of BRL 44408 significantly shifted the noradrenaline curve to the right. The EC50 values 
BRL 44408 1.8 x 10-5 M and 9.8 x 10-5 M without and in the presence of BRL 44408, respectively. In the 
presence of spiroxatrine, the effect of noradrenaline was totally blocked in the investigated concentration 
range. 
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Figure 13. Effects of αααα2-AR subtype antagonists on the resistance of 18- (a) and 20- (b) day-

pregnant rat cervices in the presence or in the absence of pertussis toxin in vitro (n=8). 

The resistance is expressed as the slope of the regression line fitted to the stress–strain curves. The Y axis 
is segmented into two in order to present a higher magnification of the changes in slopes. Checked bars 
show the slopes from the samples without noradrenaline, grey bars those from the samples with 
noradrenaline, and white bars those from the subtype-selective α2B/C-antagonist ARC 239-treated cervical 
samples in vitro. On each day, the level of significance relates to the comparison with the control (c) 
sample without pertussis toxin (c, c NA and c ARC 239). * P<0.05; ** P<0.01. 
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4.4. cAMP studies 

4.4.1. Effects of subtype-selective αααα2-AR antagonists on myometrial cAMP level 

In the non-pregnant uterine tissue, BRL 44408, ARC 239, spiroxatrine, and the 

combination BRL 44408 + spiroxatrine did not influence the amount of cAMP 

produced in the presence of 3x10-6 M noradrenaline (data not shown). In the pregnant 

uteri, ARC 239 was able to increase the cAMP level produced by noradrenaline, while 

BRL 44408, spiroxatrine and the combination BRL 44408 + spiroxatrine caused 

significant decreases in the amount of myometrial cAMP (Fig 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Effects of the subtype-selective α2-AR antagonists on the myometrial cAMP level 

(pmol/mg tissue ± S.E.M.) stimulated by noradrenaline in the presence of isobutylmethylxanthine 

and forskolin (control) in the 22-day-pregnant rat (n = 6). 

The studies were carried out in the presence of the β-AR antagonist propranolol (10−5 M) and the α1-AR 
antagonist doxazosin (10−7 M). cAMP production was increased by IBMX (10−3 M) and forskolin (10−5 
M). The antagonist concentrations were 10−7 M in each case. The statistical analyses were carried out 
with ANOVA followed by the Neuman–Keuls test. *p < 0.05; **p < 0.01.  
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4.4.2. Effects of subtype-selective αααα2-AR antagonists on cervical cAMP level  

In the cAMP enzyme immunoassay studies, noradrenaline treatment significantly 

decreased the intracellular cAMP production on day 18, and the same effect was found 

in the presence of ARC 239 (α2A-AR stimulation) (Fig. 15a). An elevated cAMP 

accumulation was seen on day 20 both by noradrenaline alone and in the presence of  

ARC 239 (Fig. 16a). On day 21, noradrenaline decreased the level of intracellular 

cAMP, and an analogous effect was displayed in the presence of spiroxatrine (α2A/B-AR 

stimulation) (Fig. 17a). Nevertheless, the antagonists did not influence the amount of 

cAMP in the presence of noradrenaline on day 22. 

 

4.4.3. Effects of subtype-selective αααα2-AR antagonists on cervical cAMP level in the 

presence of PTX 

The cAMP accumulation studies with PTX pretreatment were carried out in those cases 

when noradrenaline and the subtype-selective antagonists significantly altered both the 

cervical resistance and the cAMP level. PTX pretreatment substantially enhanced the 

intracellular cAMP accumulation (Figs. 15b, 16b and 17b). Besides the increased 

cAMP values, on days 18 and 21, all of the effects of noradrenaline alone and in the 

presence of ARC 239 (Fig. 15b) and spiroxatrine (Fig. 17b) were eliminated. However, 

on day 20, PTX treatment did not alter the effects of noradrenaline alone or together 

with ARC 239 (Fig. 16b). 
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Figure 15. Effects of the subtype-selective αααα2-AR antagonists on the cervical cAMP level (pmol/mg 

tissue ± S.E.M.) in the presence (a) or in the absence of pertussis toxin (b) on day 18 of gestation. 

The studies were carried out in the presence of the β-AR antagonist propranolol (10-5 M) and the α1-AR 
antagonist doxazosin (10-6 M). cAMP production was increased by IBMX (10-3 M) and forskolin (10-5 
M). White bars show the values from the control without noradrenaline, grey bars those from the control 
with noradrenaline, and striped bars those from the subtype-selective α2-antagonist-treated cervical 
samples in vitro. The statistical analyses were carried out with the unpaired t-test or ANOVA, followed 
by the Neuman–Keuls test.  ** P< 0.01. 
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Figure 16. Effects of the subtype-selective αααα2-AR antagonists on the cervical cAMP level (pmol/mg 

tissue ± S.E.M.) in the presence (a) or in the absence of pertussis toxin (b) on day 20 of gestation. 

The statistical analyses were carried out with the unpaired t-test or ANOVA, followed by the Neuman–
Keuls test.  * P< 0.05, ** P< 0.01. 
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Figure 17. Effects of the subtype-selective αααα2-AR antagonists on the cervical cAMP level (pmol/mg 

tissue ± S.E.M.) in the presence (a) or in the absence of pertussis toxin (b) on day 21 of gestation. 

The statistical analyses were carried out with the unpaired t-test or ANOVA, followed by the Neuman–
Keuls test.  * P< 0.05, ** P< 0.01. 
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5. Discussion  

 

The exact mechanism(s) of the initiation of labour are still poorly understood. So far 

numerous extensive experiments have been carried out to investigate the roles of the α1- 

and β2-ARs in the control of the uterine function, however, no study has been performed 

related to the effect of the α2-AR subtypes in the labour. The main focus of our study 

was to clarify the role of these subtypes in the control of myometrial contractions and 

cervical resistance in the late pregnant rat, in vitro. 

We proved the presence of all three α2-AR subtypes in both the non-pregnant and the 

22-day-pregnant rat myometrium and in the cervical samples during the final period of 

pregnancy (days 18, 20, 21 and 22). An earlier study did not detect α2C-AR in the rat 

myometrium, though in that work (Bouet-Alard et al., 1997) a radioligand-binding 

technique was used, which has a lower specificity as compared with our RT-PCR and 

Western blotting techniques, using α2-AR subtype-specific primers and polyclonal 

antibodies, respectively.  

To determine which of the three known α2-AR subtypes is involved in the regulation of 

myometrial contractions and cervical resistance, subtype-selective antagonists were 

used alone or in combination. The three subtype-selective compounds offered a 

possibility to investigate the results of the stimulation of only one or two α2-AR 

subtypes. BRL 44408, ARC 239 and spiroxatrine were revealed earlier to exhibit 

selectivity for α 2A-, α 2B/C- and α2C-ARs, respectively (Corboz et al., 2003; Uhlen et al., 

1994). Each of these compounds displays various affinities for the 5-HT1A receptors 

(Foong and Bronstein., 2009) and spiroxatrine also exerts effects in the dopaminergic 

system (Chu et al. 1999.), but these effects are likely to have only a low impact on the 

uterine contractions and the cervical resistance. Although molecules with higher 

subtype selectivity would be desired to make more precise investigations, these three 

compounds (in appropriate concentrations) currently offer the best possibility to 

investigate the results of the stimulation of the individual α2-AR subtypes by 

noradrenaline with passable precision (Corboz et al., 2005; Gáspár et al., 2007; 

Wikberg-Mattson and Simonsen, 2001).  

The functional consequences of the stimulation of the different α2-AR subtypes were 

detected (isolated organ bath studies) in parallel with the generation of intracellular 
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cAMP, while the changes in the tissue cAMP level are crucial in the control of the 

smooth muscle contraction and relaxation (Pierce et al., 2002). In the presence of the 

subtype-selective antagonists, we found that the changes brought about in the 

myometrial contractions and the cervical resistance by noradrenaline were in complete 

accordance with the alterations in the intracellular cAMP levels. 

5.1. Myometrial contractions 

The roles of α2-AR subtypes in myometrial contractions were investigated via the 

effects of subtype-selective antagonists on the noradrenaline-stimulated contractions. 

Noradrenaline was ineffective on the non-pregnant uteri, whereas KCl enhanced the 

contractions. These results suggest no coupling between the α2-ARs and adenylyl 

cyclase, which was supported by cAMP studies, where the presence of the antagonist 

did not alter the tissue cAMP production. This finding reaffirmed the earlier report on 

the lack of connection between α2-ARs and contractions in the non-pregnant rat 

myometrium (Kyozuka et al., 1988).  

Noradrenaline elicited contractions in the late-pregnant uteri, which were mediated via 

the α2-ARs because of the presence of α1- and β-AR blockers (doxazosin and 

propranolol). BRL 44408 blocked the α2A-ARs, and hence noradrenaline could 

stimulate only the α2B- and α2C-ARs. The simultaneous stimulation of these two 

receptors mildly increased the contractions and decreased the intracellular cAMP level. 

In the presence of ARC 239, only the α2A-ARs remained free; the stimulation of this 

subtype decreased the effect of noradrenaline, with a rise in the myometrial cAMP 

level. Spiroxatrine blocked the α2C-ARs, and thus the α2A- and α2B-ARs were 

stimulated by the agonist, and an increase in contraction and a decrease in the cAMP 

level were found. The combination BRL 4408 + spiroxatrine blocked the α2A- and α2C-

ARs; the stimulation of the free α2B-ARs also increased the uterine contractions and 

decreased the amount of tissue cAMP. The presence of the antagonists did not alter the 

EC50 values of the contracting dose - response curves of noradrenaline, indicating that 

the compound had the same affinity for each of the α2-ARs. 

These results suggest that in the late-pregnant myometrium α2A-ARs mediate only weak 

contractions, which can be regarded as relaxation as they are compared with the effect 

of noradrenaline on all the three receptor subtypes. The α2B-ARs are responsible for 

strong contractions. The α2C-ARs also seem to decrease the contractions, because the 
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contracting effect mediated through the  α2B-ARs was significantly increased when α2C-

ARs were blocked by spiroxatrine. The extent of the increase in contraction was lower 

on the simultaneous stimulation of the α2B- and α2C-ARs than in the case of the α2B- 

and α2A-ARs, which can be explained by the higher density of the α2C-ARs as compared 

with the α2A-ARs. 

The α2-ARs are classically described as coupling to the PTX-sensitive Gi-protein α-

subunit (Karim and Roerig, 2000; Pohjanoksa et al., 1997), but under certain 

circumstances α2-ARs can also couple to Gs-proteins, leadings to activation of adenylyl 

cyclase (Eason et al., 1992; Offermanns, 2003). On the other hand, it has been proved 

that pregnancy is able to induce a change in the Gi/Gs-activating property of  α2-AR in 

rats, resulting in a differential regulation of myometrial adenylyl cyclase activity at mid-

pregnancy versus term (Mhaouty et al., 1995). The different functions of the 

postsynaptic α2-AR subtypes inside the same tissue seem to be unique in the pregnant 

uterus. Although there are some other tissues in which stimulation of the  α2-AR 

subtypes results in opposite effects, e.g. in the vasculature, the stimulation of  α2A-ARs 

and  α2C-ARs causes relaxation and contraction, respectively, but in this case the  α2A-

ARs are localized presynaptically, while the α2B-ARs are located on the postsynaptic 

surface (Phillip et al., 2002). 

Another question is why the effect of BRL 44408 + spiroxatrine did not exceed the 

contraction-increasing effect of spiroxatrine alone. Although an increasing tendency in 

the maximal contractions and a very slight decrease in the tissue cAMP level were 

observed when the combination was used, these changes were not significant as 

compared with the effect of spiroxatrine. It is known that  the α2-ARs are also prone to 

be involved in the processes of homo- and heterodimerization. It has additionally been 

proved that, when both  α2A- and  α2C-ARs are expressed, there is a greater likelihood 

that the two receptors will form heterodimers than homodimers. The α2C-ARs alter α2A-

AR signalling by forming oligomers (Hein, 2006; Small et al., 2006). This means that 

these two receptor subtypes probably function together, although the details of their 

cooperation are not well known. If the α2C-AR is also able to alter the function of the 

α2A-ARs in the uterine smooth muscle, this cooperation might give a partial explanation 

for the similar maximum effects and changes in tissue cAMP levels. Thus, if α2C-AR is 

blocked, the function of α2A-AR might be modified independently from its blockade. 
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The uterus-contracting effect of noradrenaline can be explained as a resultant effect 

mediated by the AR subtypes. Because of the  α2B-AR predominance at the end of 

pregnancy, the contraction is the main resultant effect, which is altered by the other two 

subtypes, mediating a decrease in the intensity of noradrenaline-induced contractions. 

ARC 239 had a marked relaxing effect on the noradrenaline-stimulated uterine 

contractions; it was therefore tested on the myometrium from the induced labour model. 

This test was designed to investigate the effects of this compound on overstimulated 

uterine tissue which is very close to delivery (within 1 h). Its effect on the 

noradrenaline-evoked contractions was also convincing; it can be promising in the 

therapy of premature labour. The increased sensitivity of labour-induced uteri to 

noradrenaline (where the EC50 value was 10 times lower than in normal pregnancy) may 

mean a further advantage for α2-AR blockers in the inhibition of premature 

contractions. 

5.2. Cervical resistance 

As concerns the roles of the α2-AR subtypes on the cervical resistance, on day 18, in the 

presence of ARC 239 only the α2A-ARs remained free; the stimulation of this subtype 

by noradrenaline increased the resistance with a reduction in the cervical cAMP level, 

while stimulation of the same on day 20 resulted in the opposite effect. The roles of the 

α2A-ARs were supported by the fact that the α2A-AR antagonist BRL 44408 was able to 

block the cervical effects of noradrenaline. On the other hand, in the presence of 

spiroxatrine (an α2C-AR inhibitor) the cervical-increasing effect of noradrenaline 

disappeared. Since we are not able to produce clear α2C-AR stimulation with the 

available antagonists, we can only presume that, similarly to the pregnant myometrium, 

the α2C-ARs are also involved in the control of the cervical resistance evoked by 

noradrenaline. This theory is supported by the fact that the dual blockade of the α2A- 

and α2C-ARs (BRL 44408 + spiroxatrine) inhibited the cervical effect of noradrenaline. 

The different effects mediated through the α2A-ARs (and probably the α2C-ARs) on the 

different days of pregnancy were surprising; however, based on our previous 

experiences, we may suggest that the α2A-ARs (and possibly α2C-ARs) can couple to 

both Gi- and Gs-proteins not only in the pregnant myometrium but also in the pregnant 

cervical samples. In order to clarify the different G-protein activation, we repeated the 

investigations in the presence of pertussis toxin. PTX is a well-known inhibitor of Gi-
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proteins.  On day 18, in the presence of PTX, the basic cAMP production and the 

cervical resistance were enhanced and decreased, respectively. The effects of 

noradrenaline alone (non-selective α2-AR stimulation) and in the presence of the α2B/C-

AR blocker ARC 239 (selective α2A-AR stimulation) were eliminated by PTX. This 

indicates the predominance of Gi-coupling of α2A-ARs (and possibly α2C-ARs) on this 

day of pregnancy.  

On day 20, the PTX pre-treatment did not alter the basic cervical tone, the cAMP level 

or the effects of noradrenaline alone and in the presence of ARC 239. These results 

suggest that on this day there is a Gs-protein predominance in the coupling of α2A- (and 

α2C-) ARs. However, similarly as on day 18, there was no effect of noradrenaline in the 

presence of spiroxatrine or the combination of BRL 44408 + spiroxatrine, indicating the 

possible involvement of α2C-ARs too. Our results have shown that the effects mediated 

through these α2A- and  α2C-AR subtypes are consequently the same; hence, we 

presume the previously mentioned dimerization of these subtypes in the pregnant rat 

cervix. 

On day 21, we detected a cervical resistance-increasing effect of noradrenaline. 

Surprisingly, this effect could be maintained in the presence of spiroxatrine alone. This 

means that the effect of noradrenaline is probably mediated through the α2A- and  α2B-

ARs, while the α2C-ARs are not involved in the cervical resistance-increasing effect. 

After PTX treatment, the effects of noradrenaline either alone or in the presence of 

spiroxatrine (α2A/B-AR stimulation) disappeared. Accordingly, on day 21, the agonist 

action may be mediated predominantly by coupling to Gi-proteins. 

On 22 day of gestation, however, noradrenaline had no effect on the cervical resistance 

in the presence of the antagonists. Although we have found a decrease in the α2-AR 

subtypes relative to day 21, these changes alone do not give a satisfactory answer as 

concerns the lost receptor function alone. The cAMP studies give us good reason to 

suppose that the α2-ARs are uncoupled from the G-proteins on this day as opposed to 

the pregnant myometrium, when strong noradrenaline action was found on that day. 

Interestingly, we have also proved that the block of predominant α2-AR subtypes (α2A-

ARs by BRL 44408 and α2C-ARs by spiroxatrine on day 18) resulted in a strong 

decrease in the noradrenaline dose - response curve, especially in the case of 

spiroxatrine. This furnished further evidence of real subtype-selective antagonism 

between the agonist and the antagonist. 
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6. Conclusions     

 

 

Based on these facts, we can conclude that the α2-AR subtypes play different roles in 

the contractility of the rat uterus. In non-pregnant animals, they are not involved in the 

control of myometrial contractions. In last-day-pregnant animals, the α2B-ARs 

predominate and mediate contraction, while the α2A- and α2C-ARs decrease the 

contractile response to noradrenaline. 

 

 Contractile response 

 αααα2A    αααα2B    αααα2C    

day 22 
   

 

 In the cervix the α2A- and α2C-ARs were responsible for the developing action on day 

18 and 20, while the α2A- and α2B-ARs were found to be responsible for the action on 

day 21. There was no significant effect of noradrenaline alone and in the presence of the 

subtype selective antagonists on day 22. Our results lead us to presume a parallel Gi/Gs-

coupling of α2A- and α2C-ARs in the pregnant rat cervix, which functions in an alternate 

way depending on the day of pregnancy. The α2-AR subtypes may possibly cooperate 

with the other subtypes (heterodimerization) for the appropriate control of cervical 

resistance near term.  
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If preterm labour results from myometrial and cervical incompetence, it seems to make 

sense to block the myometrial contractions and to increase the mechanical strength of 

the cervix to arrest cervical opening and to prevent preterm delivery. In the light of our 

experiences it seems very probably that the blockade of the α2-AR subtypes will not be 

sufficient to stop the whole preterm labour process, but their combination with more 



 44 

potent inhibitor drugs may have clinical benefits. Further attempts need to identify the 

factor(s) underlying the molecular mechanisms leading to the differential regulation of 

adenylyl cyclase activity at late pregnancy.  Understanding these processes may bring 

closer the revealing of the reasons of premature labour. 
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10. Appendix 

 

 
Table 1. Changes in the 22-day pregnant uterus-contracting effect of 

noradrenaline (EC50 and Emax values) in the presence of subtype-selective α2-AR 

antagonists (10
−7

 M) 

 

 

 
  

Stimulated α2-ARs EC50 ± S.E.M. (M) Emax ± S.E.M. (%) 

Noradrenaline (control) α2A-, α2B- and α2C-ARs 2.6 × 10
−6

 ± 0.8 ×10
−6

 295.1 ± 30.3 

Noradrenaline + BRL 
44408 

α2B- and α2C-ARs 1.8 × 10
−6

 ± 0.9 × 10
−6

 377.0 ± 51.8 

Noradrenaline + ARC 239 α2A-ARs 1.2 × 10
−6

 ± 1.3 × 10
−6

 154.4 ± 34.5 

Noradrenaline + 
spiroxatrine 

α2A- and α2B-ARs 1.8 × 10
−6

 ± 1.1 × 10
−6

 408.0 ± 41.5 

Noradrenaline + BRL 
44408 + spiroxatrine 

α2B-ARs 2.7 × 10
−6

 ± 1.0 ×10
−6

 446.8 ± 34.8 

 
 
 
EC50: the concentration of noradrenaline alone or in the presence of an α2-AR antagonist which elicits 

half the maximum contracting effect of noradrenaline.  

Emax: maximum contracting effect of noradrenaline alone or in the presence of the α2-AR antagonists. 

 
 
 

 

Table 2.  Changes in the labour-induced uterus-contracting effect of noradrenaline 

(EC50 and Emax values) in the presence of α2BC-AR antagonist ARC 239 (10
−7

 M) 

 

 

  
Stimulated α2-ARs EC50 ± S.E.M. (M) Emax ± S.E.M. (%) 

Noradrenaline (control) α2A-, α2B- and α2C-ARs 3.4 × 10
−7

 ± 1.6 ×10
−7

 100.3 ± 10.4 

Noradrenaline + ARC 239 α2A-ARs 3.1 × 10
−7 

± 1.2 × 10
−7

 58.6 ± 8.7 

 
 
EC50: the concentration of noradrenaline alone or in the presence of ARC 239 which elicits half the 

maximum contracting effect of noradrenaline. 

Emax: maximum contracting effect of noradrenaline alone or in the presence of ARC 239. 
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