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1. INTRODUCTION 

 Pharmaceutical granulation is a critical unit operation that is frequently utilized to 

modulate attributes of powder mixtures to aid in further processing. The granulation processes 

must be designed to impart a high degree of control on many important physical attributes, such 

as granule size distribution, shape, content uniformity, moisture content and distribution, 

porosity, density, tensile strength, and surface morphology. These physical attributes are often 

critical to process-ability of granulations and for final product quality and performance. An 

optimally designed granulation unit operation can be an excellent tool for minimizing 

variability and thereby reducing the risk of poor quality. 

 Implementing the PAT framework and having a greater understanding of the 

manufacturing process has obvious advantages to the pharmaceutical industry, the regulators, 

and the public health. The PAT Initiative provides a regulatory environment that encourages 

and facilitates pharmaceutical companies to innovate and employ the tools necessary to achieve 

an in-depth understanding of the manufacturing process. The true goal is to understand the 

fundamental governing phenomena at work during the process and incorporate this 

understanding during product development. Doing so will reduce the degree of empiricism that 

is necessary. 

 Granulation modelling is an area of growing importance. It is dominated by the 

population balance approach for developing mechanistic models. However, it requires an 

improved understanding of the key factors involved in particle growth and breakage. The 

growing importance of particulate flow patterns is being addressed through approaches such as 

DEM, which will hopefully provide a microscale view of particle motions in the granulation 

device. The challenge is in addressing the multiscale nature of granulation modelling that spans 

from particle interactions up to the plant level. The development of empirically based models 

has provided a simple means of addressing quickly a number of control-related applications. 

Application of models to design, advanced control, and diagnosis will require mechanistic 

models that continue to incorporate the latest understanding of the underlying mechanisms. 

Much work is currently underway in these areas and the incorporation into existing models of 

new knowledge will help extend the applicability of process models for granulation (Mašić et 

al., Drug Dev. Ind. Pharm. 2014, Zhai et al., Chem. Eng. J. 2010). 
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2. AIMS 

Real time data acquisition and probe versatility makes monitoring and control of processes 

possible, but the numerous apparatus, process and product variables has led to fluidized bed 

granulation not fulfilling its full potential in pharmaceutical production.   

For this purpose, a study was conducted where both wet and melt fluid bed granulation 

processes were controlled by the use of thermal sensors and computational tools to enable the 

acquisition of temperature maps for the quantification of the volume of the thermal zones inside 

the bed chamber under different material attributes and process parameters. The goal is the 

determination of the safe interval of granulation volume fraction for optimum granule size and 

size distribution by adjusting operating conditions during both FBMG processes.  

The main steps in the experiments were as follows: 

I. Use of conventional wet and innovative, solvent free melt granulation processes to 

ascertain their limitations and recognize the common individual variables to propose a 

novel way for process control. 

II. Development of an in-line temperature acquisition tool for in-sight into the conditions 

governing during granules growth mechanisms by mapping the operating space and 

depicting the established thermal zones. 

III. Investigation of the predictive capacity of ANN models for designing the optimal 

conditions for the desired quality attributes of products and estimation of the relative 

importance of variables controlling the granulation process. 

IV. Demonstration of the correlation between granule size distribution and heat transfer 

zones and wetting volume inside the fluid bed for optimal control space.   

V. Demonstration of the qualitative and quantitative use of thermal analysis in 

characterizing the structure, growth and properties of the final granules as a validation 

tool. 

VI. Proposal of a real time data assessment for a developed and optimized process control 

system for industrial use. 
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3. MATERIALS 

3.1. Wet granulation 

In this study, α-lactose monohydrate (Biopharm Industry, Algeria) was used as a model filler. 

An aqueous solution of 5% w/w of Povidone K30 (Prochima Sigma, Algeria) was used as a 

binder to granulate the dry lactose powder. 

3.2. Melt granulation 

Alpha-lactose monohydrate (Ph. Eur. Biopharm, Algeria) was used as a model filler. 

Polyethylene glycol 2000 and 6000 (Fluka, Switzerland) were used as meltable binders. 

Paracetamol was used as a model drug (Biopharm, Algeria).  

4. METHODS 

4.1. Fluidized bed equipment 

Experiments were performed in two different pieces of equipment. A conical fluidized bed built 

for this study (U.S.T.H.B., Algeria) labelled FBA and a Strea-1 conical fluidized bed (Niro 

Aeromatic, Bubendorf, Switzerland) labelled FBH. The procedures for both wet and melt 

granulations are summarized in Table 1. 

Table 1: Equipment used and samples prepared for wet and melt granulation processes. 

Process Wet granulation 
Melt granulation 

Spray-on In-situ 

Sample Placebo With API Placebo With API 

Equipment FBA FBA FBH FBH 

4.1.1. Wet granulation – Description of operating procedures 

The granulation process of wet technique is demonstrated in Figure 1. 

 

 

 

 

 

Figure 1: Flow chart of wet granulation - placebo granules. 

 

α-Lactose monohydrate (100g) Fluid bed (FBA)  

Uf = 2.5 m/s, t = 5 min 

 

I. Mixing 

Sieving 

II. Granulation 

PVP K30 solution (5% W/W)  

P = 2 bars, Ql = 5-10-15-20 ml/min 
Fluid bed (FBA) 

 Tf = 45-55-65°C, t = 5 min 

III. Drying 
Fluid bed (FBA)  

Tf = 55°C, t=10 min 

 

Spraying 
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4.1.2. Melt granulation – Description of operating procedures 

4.1.2.1. Spray-on FBMG 

The granulation process of spray-on and in-situ techniques is demonstrated in Figure 2, 3, 4. 

 

 

 

 

 

Figure 2: Flow chart of in-situ melt granulation – Granules with API. 

4.1.2.2. In-situ FBMG – Placebo granules 

 

 

 

 

 

 
 

Figure 3: Flow chart of in-situ melt granulation – Placebo granules.  

4.1.2.3. In-situ FBMG – Granules with API 

 

 

 

 

 

 
 

Figure 4: Flow chart of in-situ melt granulation – Granules with API.  
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4.2. Data acquisition and processing 

The temperatures inside the fluid bed chamber were measured using thermocouples connected 

to data acquisition hardware (Pico technology, Germany). Temperatures were analysed in-line 

every 1s. Measurements were performed for both wet and melt granulation techniques in order 

to evaluate their differences and characteristics and the potential of each technique. 

4.3. Modelling Using artificial neural networks 

The ANNs toolbox on MATLAB® (R2015b, MathWorks®) was used in this study to design the 

architecture of the models for the wet and melt granulation. The ANN model also provides 

values of input strengths (weights), which indicate the significance of the effect of each input 

on the output and predicts the evolution of temperature profiles (Table 2). 

Table 2: Selected inputs and outputs for wet and melt granulation. 

Process Inputs Outputs 

Wet granulation 

Fluidizing temeprature 

Binder spraying rate 

X position 

Y position 

Temperature inside the fluid bed 

chamber 

Melt granulation 

(In-situ FBH) 

Binder content 

Binder particle size 

Binder viscosity grade  

Granule yield  

Granule mean diameter 

Coefficient of variation 

Hardness  

Aspect ratio 

4.4. Wetting volume size measurement  

Temperature mapping determines the isotherms inside the fluid bed chamber. The smallest 

distance between two adjacent isotherms limits two distinct thermal zones. The wetting volume 

is determined from two wetting surfaces. The total volume of the wetting zone is measured as 

the ratio of the volume of the wetting zone divided by the volume of the conical bed chamber. 

4.5. Scanning electron microscopy 

The morphology of the agglomerate was investigated by Scanning Electron Microscopy (SEM) 

(Hitachi 4700, Hitachi Ltd., Tokyo, Japan). 
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4.6. Granule strength measurement and yield 

The breaking hardness was tested for all granules with a special hardness testing apparatus 

(University of Szeged). Ten parallel measurements were performed. The yield of the process 

(Y %) is defined as the ratio of the mass of granules above 125 µm and the batch mass. 

4.7. Flowability properties and moisture content 

The Carr and Hausner index were determined using a volumenometer (Erweka). Moisture 

content was measured by loss-on-drying at 105°C using a Precisa XM60 moisture analyzer. 

4.8. Particle size analysis 

The particle size distributions of the granules were determined by laser scattering (Malvern 

Mastersizer Scirocco 2000, Worcestershire, UK). The particle size distribution was 

characterized by the D (0.5) values and the specific surface area. 

4.9. Thermal investigation 

Samples were measured with a DSC 821e (Mettler-Toledo GmbH, Switzerland) from 25 to 

500°C, with a heating rate of 10°C.min-1 in a non-hermetically sealed 40 µl aluminum pan in 

Argon atmosphere. TGA was carried out with a Mettler-Toledo TGA/DSC1 instrument 

(Mettler-Toledo GmbH, Switzerland) coupled to a mass spectrometer (maximum 300 amu) in 

nitrogen atmosphere (70 cm3 min−1) and aluminium pans (100 μl) with a heating rate of 

10°C·min-1, from 25 to 500°C.  

4.10. Dissolution and compression studies 

Granules were compressed using an eccentric tablet machine (Deltalab). The tablet weight was 

500 mg. The hardness of granules was measured using a durometer (Erweka). The dissolution 

trials were performed in a paddle apparatus (Erweka, Germany) at 50 rpm using 900 ml of 

phosphate buffer pH 6.8 as a dissolution medium. Samples were analyzed by an UV 

spectrometer (Shimadzu, Japan) at 243 nm. 
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5. RESULTS AND DISCUSSION 

5.1. Wet granulation 

5.1.1. Characterisation and architecture of the ANN 

The ANN model in this research was generated from 70% of the temperature data. The input 

data points were combined with random weights as in a linear regression model (Ʃ) and were 

then transformed through the non-linear function, which enables the non-linear modelling of an 

ANN model.  

 

Figure 5: Schematic representation of the used ANN architecture. 

The network with two hidden layers and twelve neurons in each hidden layer (Figure 5) 

presented the smallest validation mean square error (VMSE) of 1.4·10−3. The R2 is 0.995. The 

result of the testing phase shows that the ANN model is capable of generalizing between input 

and output variables with good predictions. 

5.1.2. Shapes of predicted temperature profiles and particles patterns  

Temperature gradients correspond to the transition where the heat and mass transfer occurs due 

to the collision between the warm entering air and the cold spraying liquid. The developed ANN 

model allowed the identification and determination of thermal zones. The first is near the 

spraying nozzle where dry solid particles get sprayed and wet by the binder liquid 
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corresponding to the wetting zone, the second zone extends toward the bed's walls where the 

sprayed particles are dried and solidify to form liquid bridges and corresponds to the isothermal 

zone. The third zone is located near the air distribution plate where an important contact zone 

between the two hot and cold fluids is set corresponding to the heat transfer zone. 

 

Figure 6: Temperature mapping a) Bell shaped, b) Funnel shaped. 

The profiles obtained revealed that the outline of the low temperature zones is represented with 

a clear yellow band. They follow two main shapes. The outline of the low temperature zone 

formed a “bell” shape (Figure 6a). It was observed for high liquid spraying rates and low inlet 

air temperature. The second shape is called “funnel” shape (Figure 6b). It was observed for the 

lower liquid flow rate (5 ml/min) and both high and low inlet air temperatures. In this case, the 

risk of insufficiently dried particles is very high and may cause them to stick to the walls, 

making it hard to control the agglomeration. 

5.1.3. Particle growth and temperature profiles 

Particles can agglomerate when penetrating the wetting zone. The size of this zone and the 

transfer rate of particles to this portion of the fluidized bed are therefore very important factors 

for particle growth as they influence their final properties. For low inlet temperatures, the 

predicted volume of the wetting zone was large compared to the high inlet temperature 

conditions (65 °C). These predictions are in accordance with the properties of granules as they 

show for low inlet air temperature higher mean particle size and moisture content. A high liquid 

feed rate increased the median particle size and the size of the wetting zone. 

The Carr index and Hausner ratio values are under 0.21 and 1.25, respectively, corresponding 

to the powder’s good ability for compaction and flowability. This results in defining particle 

size and moisture content as the critical quality attributes of the final granules, demonstrating 

the link between the characteristics of temperature profiles and critical quality attributes. 

(a) (b) 
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5.2. Melt Granulation 

5.2.1. In-situ FBMG – Placebo granules 

5.2.1.1. Model architecture and simulation 

The database used for the training of the ANN model is the result of the quality attributes of the 

granule samples obtained from the size and size distribution, hardness and shape measurements. 

The selected optimal, one hidden layer with 5-neuron architecture (Figure 7) showed the lowest 

MSE of 0.01562.   

 

Figure 7: a) Schematic diagram of the ANN model architecture, b) Parity plot with the 95% 

CI of the five predicted outputs versus the measured experimental data. 

(b) 

(a) 
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Almost all data points are within the interval of confidence, which indicates the model’s 

efficiency in predicting granule properties. The binder particle size was the most significant 

factor affecting the granulation growth mechanism, followed by the binder viscosity grade and 

content. 

5.2.1.2. Agglomerate growth mechanism and morphology 

For low particle size binder, granules are low in diameter (Figure 8a) with irregular morphology 

indicating agglomerates of smaller sub-granules. The recrystallization of melted PEG after 

cooling can be seen on the surface of lactose and on the solid bridges that coalesce nuclei 

together (Fig. 8b). The trapped binder particle will be squeezed to the surface due to 

densification and spreads around the lactose particles (Figure 8c). Low binder viscosity grade 

results in high sphericity for low binding strength of agglomerates and collision during 

fluidization. However, using high binder viscosity grade (Figure 8d) will result in irregularly 

shaped granules with a hollow core (Figure 8e). 

 

Figure 8: SEM pictures of granules with different binder particle size, viscosity grade and 

content. 

5.2.1.3. Thermoanalytical investigations 

The most predominant observation using DSC was the presence of an endothermic peak 

between the melting of α-lactose monohydrate and its decomposition (Figure 9). After the 

dehydration of lactose monohydrate and the melting of anhydrous α-lactose, recrystallization 

into -lactose occurred, followed by the melting of anhydrous -lactose. -lactose is a low 
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hygroscopic material with high storage stability and appropriate for water sensitive drugs 

formulations, which is one of the key points of FBMG. 

With low viscosity polymer, the increase in content proportionally increased the intensity of 

the peak. The binder particle size had an inversely proportional effect on this endotherm peak. 

With high viscosity polymer 6000 and a high particle size of binder, the peak height for the 

melting of lactose is relatively close to the pure filler. Also, the enthalpy of melting -lactose 

is less pronounced. 

 

Figure 9: DSC curves of granules with PEG 6000 for different particle sizes. 

When using a low binder particle size, the porosity and friability of the granules are increased, 

making the lactose particles subject to hot fluidizing air and hence to dehydration. Indeed, there 

was a small reduction in mass between 80 and 131°C indicating that the raw material α-lactose 

monohydrate contained more surface water than granules.  

The mass loss slightly increased with the increase in binder content as it helped shield the 

lactose particle from the hot fluidizing air. Low-viscosity grade binder combined with a low 

binder content and particle size showed a poor mass loss as lactose particles were submitted to 

high temperature during granulation. From the MS curves water is given out at 125, 250 and 

315°C, which is consistent with the mass loss observed from the TG curves (Figure 10). 
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Figure 10: TG, DSC, DTG and MS curves of granules with PEG 2000. 

Dehydration takes place in the minor step at around 125°C, which is attributed to the 

dehydration of lactose monohydrate. The comparison of the granules has shown that their 

thermal decomposition is determined by different factors, such as their structure and 

composition, and the increase in concentration in the MS curves corresponds precisely to the 

mass loss in the TG curves. 

5.2.2. In-situ FBMG – Granules with API  

5.2.2.1. Temperature mapping and volume of the wetting zone 

During in-situ FBMG, two distinct thermal zones were detected (Figure 11). The wetting zone 

starting from the bottom of the bed to the upper part is represented by yellow colour in the 

maps.  
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Figure 11: Temperature maps as a function of binder content for binder particle size between 

[125-350 µm], a) PEG 2000, b) PEG 6000. 

The volume of the wetting zone increase is proportional to the binder content and inversely 

proportional to the binder particle size and viscosity grade.  The air temperatures measured in 

the wetting zone were near the melting temperature of the binders due to the thermal energy 

transferred from the hot fluidizing air to the solid binder particles to change their physical state 

from solid to molten, resulting in constant temperatures in the wetting zones. Therefore, heat 

transfer zones and hence wetting zones are determined only by the difference between two 

adjacent isotherms. 

5.2.2.2. Granule size distribution and the volume of the wetting zone 

The increase in binder viscosity grade widened the size distribution of the granules, especially 

at high binder particle size, as the immersion mechanism will trap the binder particle inside 

layers of paracetamol and lactose, resulting in dense granules with particle sizes approximating 

the initial size of the binder particles. Lower volumes of wetting zone were recorded for PEG 

2000 than 6000 (27 and 25%, respectively, for 20% content and a binder size of [300-610 µm]). 

The effect on the distribution of the granules was an increase in the mean diameter with a 

decrease in distribution uniformity (Figure 12).  



14 
 

 

Figure 12: Variations of the size distribution of the granules as a function of binder 

particle/droplet size and content with PEG 6000 binder. 

In the immersion mechanism, content uniformity is harder to achieve because adhesion will be 

favoured for the lower dry particle sizes (paracetamol). The final batch will then have a higher 

content of drug in the granules with a higher amount of ungranulated lactose. Hence, the use of 

temperature maps for in-situ granulation showed that the small volume of the wetting zones 

resulted in growth by immersion. Too small volumes resulted in over-wetting and collapsing of 

the fluid bed.  

5.2.2.3. Tablet hardness and dissolution testing 

Tablets resulted in high hardness when using high binder particle size and low binder particle 

resulted in lower hardness (Figure 15). The in-situ FBMG showed a slower drug release 

attributed to the denser granules formed and hence a tighter tablet. The greatest influencing 

factor was found to be the binder content in the drug, therefore the binder distribution during 

the FBMG was of high importance.  

5.2.3. Spray-on FBMG – Granules with API 

5.2.3.1. Temperature Mapping and volume of the wetting zone 

The results showed that a wetting volume below 16% resulted in a large fraction of 

ungranulated material, with a mean diameter not higher than 130 µm. This condition implies 

that particle growth was made mainly by layering. However, for wetting volumes above 28%, 

massing of the powder bed and wet quenching occurred (Figure 13). 
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15%

10.7%

5.8%

68.5%

63.2%

57%

68%

79.2%
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20% 65-125µm

15% 125-350µm

10% 65-125µm

10% 125-350µm

10% 350-600µm

Big blocks>2mm 150µm>Granules<2mm Fine powder<150µm
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Figure 13: Temperature distribution and isotherm maps for spray-on with binder PEG 2000, 

a) 8.26 ml/min, 2 bars, b) 6.19 ml/min, 1 bar. 

5.2.3.2. Granule size distribution and the volume of the wetting zone 

A high binder spraying rate (8.26 ml/min) promoted higher mean diameters and high spraying 

air pressures (3 bars) resulted in lower granule diameters since lower binder droplets were 

formed (Figure 14). The hydrophilic property of both paracetamol and α-lactose monohydrate 

made their different size the only factor influencing successful adhesion to the binder. 

 

Figure 14: Variation of the granule size distribution with PEG 6000 binder. 
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Low binder spraying rates (4.13 ml/min) lowered the wetting volume to 19% and gave rise to 

small granule mean diameter with a uniform size distribution. However, too small binder 

droplets resulted in inefficient wetting as the volume of the wetting zone was 14%, giving rise 

to a Gaussian leaning towards the right side of the distribution with a low mean diameter of the 

granules. The latter result was observed with PEG 2000 but not with PEG 6000, where a broad 

droplet size distribution resulted in a slight bimodal with a higher amount of low granule sizes. 

Low droplet sizes will trap paracetamol particles and spread on the surface of lactose particles 

if enough binding liquid is available, favouring formation of paracetamol nuclei. As a result, 

the optimal wetting volume interval for a controlled granulation for both spray-on and in-situ 

techniques in the design space of our study is given in Table 3. It will be helpful for the 

optimization of the size of the bed during scale-up, for example. 

Table 3: Optimized volume of the melting zone interval for spay-on and in-situ FMBG.  

FBMG Technique Minimum wetting volume % Maximum wetting volume % 

Spray-on 16 26 

In-situ 16 27 

5.2.3.3. Tablet hardness and dissolution testing 

Spray air pressure had the most significant influence on drug release time, but the binder feed 

rate was also found to be a significant factor (Figure 15). Drug release was slower from tablets 

compressed from granules obtained at higher spray air pressure and higher binder feed rate. 

When granules were compressed into tablets, a binder matrix was formed and kept the drug 

particles more tightly. After the gradual eroding and dissolving of the tablet matrix, a more 

uniform binder distribution led to a slower drug release. 

 

Figure 15: a) Variation of the hardness of tablets with different granule compositions, b) In 

vitro dissolution profiles of tablets prepared by spray-on and in-situ FBMG. 

(a) (b) 
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6. CONCLUSIONS AND PRACTICAL USEFULNESS 

The in-line control of pharmaceutical granulation processes was investigated as a possible tool 

for the evaluation and follow-up of granule formation. In this study, a novel approach to the 

evaluation of conditions established in a conical fluid bed granulator during the wet and melt 

fluid bed granulation processes was developed. The two techniques were explored in order to 

distinguish their linking factors enabling optimal modelling processes.  

I. First, the possibility to control the granulation process with predicted temperature 

distribution profiles was demonstrated. An experimental set-up for the acquisition of 

temperatures under the PAT in a conical fluidized bed was used for the wet granulation 

trials and served as a database for a developed artificial neural network model. 

II. The hidden layers with a twelve-neuron architecture of the ANN model showed a very 

good predicting ability of R2 = 0.994 and allowed the prediction of temperature 

mappings and the establishment of temperature profiles. 

III. These profiles provide information about the hydrodynamic and thermodynamic 

conditions inside the bed which directly influence particle behavior during granulation 

as two shapes were identified: bell and funnel shape.  

IV. The properties of the final granules are in concordance with the predicted profiles, 

indicating a distinct connection between the established temperature profiles and the 

quality attributes of the final particles. 

Melt granulation was used as a non-conventional, solvent free and energy friendly technique 

and the applied process control tool and model brought a new insight into the thermal conditions 

established during spray-on and in-situ techniques. 

V. The Garson equation enabled the determination of the relative importance of each 

independent input variable and it predicted the particle size of the binder as having the 

highest impact on the properties of the final granules, followed by binder viscosity grade 

and binder content. These predictions were in perfect agreement with the experimental 

results and enabled a very good correlation with R=0.99 for the simulation and 

prediction of the formation behavior of the granules. 

VI. SEM was used as a complementary tool with particle size analysis to evaluate the effect 

of the material properties on the quality attributes of the final granules to and provide 

further insight into the growth mechanisms. 
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VII. DSC showed that the binder particle size was responsible for the transition from the 

distribution to the immersion mechanism. This transition was identified by the 

conversion from α-lactose into -lactose monohydrate caused by the dehydration of 

lactose during the FHMG process. 

VIII. MS has detected and monitored thermally evolved H2O
+ (m/z = 18), CO2 (m/z = 44) 

and polyethylene glycol (m/z = 31, 33). The temperature of the dehydroxylation of the 

granules is influenced by the free volume depending on the content and the particle size 

of the polymer. 

IX. Regarding granule growth, the distribution mechanism occurred when using a low 

binder particle size and viscosity. The lactose particles lose a fraction of the adsorbed 

water during the heating phase of granulation. When a high binder particle size is used, 

the lactose particles will be trapped and immersed in the PEG particles, causing the 

adsorbed water to be trapped inside the granules. 

X. The optimal melting zone volume for the in-situ and spray-on granulation was between 

16 and 27% and 16 and 26% respectively. 

 

Practical relevance and new approaches of this research work are the following: 

1. Wet and melt fluid bed granulation processes can be monitored and controlled using the 

novel in-line temperature acquisition enabling the thermal characterization of the 

fluidized bed volume. 

2. The correlation between the shape and volume of the wetting zones and the particle size 

distribution of granules can be used as means for further quality control factor. 

3. Thermal analysis proved to be a promising technique for granulation growth control by 

giving a qualitative and quantitative insight into FBMG. 

4. ANN is a potential and useful PAT tool in modelling and developing robust 

agglomeration processes. 
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