Enzymatic kinetic resolution of β-amino acid derivatives

Mónika Fitz

University of Szeged
Albert Szent-Györgyi Medical- and Pharmaceutical Centre
Institute of Pharmaceutical Chemistry
Szeged

2009
Pharmaceutical Sciences Doctoral School
Advisor: Prof. Ferenc Fülöp
A. Introduction and aims

In a consequence of their unique chemical and biological properties, aliphatic and alicyclic β-amino acids and their derivatives are important subjects of research. The most obvious examples are the naturally occurring cispentacin [(1R,2S)-2-aminocyclopentane-1-carboxylic acid] and its synthetic derivatives which is a potent antifungal antibiotics. β-Amino acids are important intermediates of β-lactams and heterocycles, and are constituents of many biologically active compounds, as antitumour taxoids. The incorporation of β-amino acids in α-peptides may modify the structure and the biological effect, and make the peptide resistant against proteolytic degradation. The secondary structure and folding properties of β-peptides have been studied deeply. β-Amino nitriles, -carboxamides and β-amino esters are intermediates of the corresponding β-amino acids.

The basic aim of this PhD work was to perform the enzymatic kinetic resolution of alicyclic cis and trans-β-aminocyclopentane- and -cyclo-hexanecarbonitriles (1-4) and the corresponding amino carboxamides (5-8; Figure 1). Besides the development of a suitable method for the preparation of enantiomerically pure β-amino acid derivatives, we planned to follow up the stereochemical preference of lipases in organic solvents. A further aim was to compare our results with those to be found in the literature for the enzymatic resolution of corresponding β-amino esters. It was also planned to develop an enzymatic method for the resolution of ethyl 3-amino-2-ethylpropanoate 9 and methyl 3-amino-2-isopropylpropanoate 10 through lipase-catalysed N-acylation (Figure 1).
We set out to study the effects of the used enzyme, acyl donor and solvent on the reaction rate and enantioselectivity (E) in the frame of preliminary experiments, to summarize these results, and then to perform the gram-scale resolutions of the model compounds under the optimized conditions.

B. Results and discussion

For the enantioselective N-acylation of alicyclic β-amino nitriles 1-4 (Scheme 1), lipase PS, CAL-A and CAL-B preparations were tested: the lipase PS preparations allowed the resolution of 1-4 in TBME with 2 equivalents of 2,2,2-trifluoroethyl butanoate ($E > 200$).

We monitored the benefit of the activated ester (2,2,2-trifluoroethyl butanoate) in contrast with other acylating agents (e.g. ethyl butanoate) on the lipase PS-catalysed N-acylation of 2. We decreased the rate of retardation of the enzymatic acylation to close to 50% conversion by using an increased amount of
lipase PS, which permitted the resolution of 2 in a reasonable time. The CAL-B-catalysed N-acylation of 2 in TBME and ionic liquids was not successful. We improved the solubility of trans compounds in TBME by the addition of TAA as co-solvent (for 3) or by performing the reactions at elevated temperature (for 4).

The gram-scale resolutions of 1-4 under the optimized conditions afforded the N-acylated (1S,2R)-11, (1S,2R)-12, (1R,2R)-13 and (1R,2R)-14 and the unreacted enantiomers with high enantiopurity (ee ≥ 98%), which were separated by column chromatography. We demonstrated that, through reduction by LAH, (1R,2S)-2 and (1S,2S)-4 can be transformed to the corresponding diamines (1S,2S)-15 and (1S,2R)-16 with only a slight drop in ee, and these results proved the R selectivity of the enzymatic acylation (Scheme 2).

The high polarity of alicyclic β-amino carboxamides 5-8 required the addition of co-solvents to TBME and elevated temperature (48 °C). CAL-B (50 mg/mL) proved to be a powerful catalyst for the enantioselective acylation of these compounds with 2 equivalents of 2,2,2-trifluoroethyl butanoate (Scheme 3).
The effects of co-solvents were analysed, and it was found that TAA ensured the best results. Our experiments established that the reaction rate decreased with the elevation of the ratio of TAA. The N-acylations of 5, 7 and 8 were highly selective ($E > 200$) in TBME-TAA (1:1); whereas for 6 a mixture of TBME-TAA (4:1) proved to be the optimum reaction medium ($E = 40$) and the resolution was performed in two stages.

The unreacted amino carboxamides ($1R,2S$)-5, ($1R,2S$)-6, ($1S,2S$)-7 and ($1S,2S$)-8 and the opposite enantiomers as butyramides were obtained with ee $\geq 95\%$, after separation on silica. The reduction of ($1R,2S$)-6 by LAH resulted in ($1S,2S$)-15, verifying the R selectivity of CAL-B (Scheme 4).

![Scheme 4.](image)

On the basis of the results obtained for the CAL-A (50 mg/mL)-catalysed N-acylation of 9 (Scheme 5) with 2 equivalents of VA in DIPE at 25 °C ($E = 4$), further optimizations were developed; the use of lower temperature (4 °C), a reduced amount of CAL-A (25 mg/mL) and ethyl butanoate (0.55 equiv) as acyl donor led to a slightly better result ($E = 6.7$). Solvent screening revealed the influence of the solvent on the enzymatic acylation: in polar solvents (MeCN and TAA), the reactions were slow (26% and 40% conversion after 25 days, respectively) and highly enantioselective ($E > 200$). In order to resolve 9 in a reasonable time, the effects of temperature and the enzyme concentration were examined, and it was found that an elevated amount of CAL-A (50 mg/mL) in TAA at 4 °C offers a faster reaction with good selectivity (46% conversion after 15 days; $E = 63$).
When the optimal resolution conditions for 9 with a reduced enzyme amount (25 mg/mL) were applied to 10, a low reaction rate (49% conversion after 35 days) and low selectivity ($E = 9$) were obtained; the enantiomers of 10 were therefore prepared in two consecutive steps (Scheme 5).

After the gram-scale resolution reactions were stopped, the unreacted (R)-9 and (R)-10 were transformed to their Boc-protected forms (R)-23 (ee = 95%) and (R)-24 (ee = 78%), and separated from the butyramides (S)-21 (ee = 85%) and (S)-22 (ee = 76%) by column chromatography (Scheme 5). The S-enantiopreference of the enzyme was proved by the hydrolysis of (R)-23 with LiOH·H$_2$O to the N-Boc-protected amino acid R-25 (Scheme 5).

The 20 enantiomers prepared (19 among them new) were characterized by ee values, optical rotations, melting points and 1H-NMR. 13C-NMR and elemental analysis results were also established for β-amino nitrile and β-amino carboxamide enantiomers.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL-A</td>
<td>Candida antarctica lipase A</td>
</tr>
<tr>
<td>CAL-B</td>
<td>Candida antarctica lipase B</td>
</tr>
<tr>
<td>DIPE</td>
<td>diisopropyl ether</td>
</tr>
<tr>
<td>LAH</td>
<td>lithium aluminium hydride</td>
</tr>
<tr>
<td>lipase PS</td>
<td>Burkholderia cepacia lipase</td>
</tr>
<tr>
<td>TAA</td>
<td>tert-amyl alcohol</td>
</tr>
<tr>
<td>TBME</td>
<td>tert-butyl methyl ether</td>
</tr>
</tbody>
</table>
C. Papers related to the thesis*

I. Fitz, M.; Lundell, K.; Lindroos, M.; Fülöp, F.; Kanerva L. T.
An effective approach to the enantiomers of alicyclic β-amino nitriles by using lipase catalysis
i.f.: 2.468

II. Fitz, M.; Lundell, K.; Fülöp, F.; Kanerva, L. T.
Lipase-catalysed kinetic resolution of 2-aminocyclopentane- and 2-aminocyclohexanecarboxamides
i.f.: 2.468

III. Fitz, M.; Forró, E.; Vigóczki, E.; Lázár, L.; Fülöp, F.
Lipase-catalysed N-acylation of β²-amino esters
i.f.: 2.468

* Impact factors from the year 2006 are shown.
D. Conference lectures related to the thesis

IV. Fitz, M.
A cisz- és transz-2-amino-ciklopendánt és -ciklohexánkarboxamidok enzim-katalizált kinetikus rezolválása

V. Fitz, M.
A cisz- és transz-2-amino-ciklopendánt és -ciklohexánkarboxamidok enzim-katalizált kinetikus rezolválása

VI. Fitz, M.; Lundell, K.; Kanerva, L. T.; Fülöp, F.
Enzyme catalysed kinetic resolution of cyclic β-amino amides and β-amino nitriles
7th International Symposium on Biocatalysis and Biotransformations,

VII. Fitz M.; Lundell, K.; Kanerva, L. T.; Fülöp F.
Ciklusos β-amino nitrilek és β-aminosavamidok enzim-katalizált kinetikus rezolválása
Vegyészkonferencia, Hajdúszoboszló, 2005.