Syntheses and applications of novel β-amino acids

Szilvia Gyónfalvi

Institute of Pharmaceutical Chemistry
University of Szeged
2008
Introduction and aims

Interest in β-amino acids has increased during the past several years, due to their importance in multiple lines of research (combinatorial chemistry, medicinal chemistry, molecular design, proteomics, etc.). My research work covered three topics connected with β-amino acids: enantioselective syntheses of chiral auxiliaries and building blocks based on natural monoterpenes; hydroxy group functionalization of alicyclic β-amino acids; and the application of combinatorial chemistry in aqueous medium to make β-lactam libraries.

My primary aim was to prepare β-amino acid derivatives which may be utilized as chiral auxiliaries and catalysts in enantioselective syntheses, or chiral building blocks in the asymmetric syntheses of potential pharmacons, β-amino acid oligomers and modified analogues of natural peptides. I set out to achieve the syntheses and transformations (e.g. cyclization) of β-amino acid derivatives prepared from (+)-3-carene, a commercially available monoterpenic source.

My second aim was to study the iodocyclization of unsaturated β-amino acid derivatives in order to obtain saturated analogues of oryzoxymycin, the first alicyclic hydroxy-β-amino acid.

My third aim was to investigate the effect of water as solvent in the Ugi four-centre three-component reaction (U-4C-3CR) and compare with the use of organic solvents. With alicyclic β-amino acids as building blocks, bi- and tricyclic β-lactam libraries were generated in aqueous medium.

Results and Discussion

1. Syntheses and transformations of novel β-amino acid derivatives of enantiomeric monoterpenes

The regio- and stereoselective cycloaddition of chlorosulfonyl isocyanate (CSI) to (+)-3-carene furnished the optically pure β-lactam. Since the strongly constrained carene ring system was broken down during the conventional β-lactam ring-opening process, activation of the carboxamide bond seemed necessary. The nucleophilic ring opening of N-Boc-protected
azetidinone 3 was carried out with different amines (e.g. \(\text{NH}_3 \) or benzylamine) and deprotection of the intermediate \(N\text{-Boc} \) amides, which resulted in amides 4 and 5. Further ring opening of 3 under mild conditions gave the corresponding \(N\text{-Boc} \)-protected derivative and, after deprotection, amino ester 7, which was converted to the desired amino acid 8 (Scheme 1).

![Scheme 1](image-url)

\(N\text{-Boc} \) amino ester 9 was reduced to \(N\text{-methyl} \) amino alcohol 10 with \(\text{LiAlH}_4 \), and its deprotected analogue 7 to the corresponding amino alcohol 15. When amino ester 7 was reacted with phenyl isothiocyanate or phenyl isocyanate, thiourea 11 and urea intermediate 13 were obtained, which were transformed to 2-thioxo-4-pyrimidinone 12 and 2,4-pyrimidinedione 14 by base-catalysed ring closure.

With phenyl isothiocyanate, amino alcohol 15 furnished thiourea adduct 16, which was converted to 2-phenylimino-1,3-oxazine 17. Preparation of the corresponding thiazine 18 failed: only the decomposition of 18 was observed (Scheme 2).

The synthetized \(\beta \)-amino acid derivatives may serve as chiral building blocks in the asymmetric syntheses of potential pharmacons, \(\beta \)-amino acid oligomers and modified analogues of natural peptides. They can also be used as chiral auxiliaries and catalysts in enantioselective syntheses.
II. Synthesis of 3- and 4-hydroxy-substituted amino acids

β-Lactam 19 was synethetized from 1,3-cyclohexadiene by CSI addition, a well-known literature method. Ring opening of 19, followed by acylation of amino ester 20, led to amide 21, which was reacted with I$_2$ and NaI to afford a 30:70 mixture of iodooxazine 22 and iodooxazoline 23. When compound 22 was dehalogenated, bicyclic oxazine 27 was obtained. The hydrolysis of 27 resulted in 2-amino-4-hydroxycyclohexanecarboxylic acid 28.

When the deiodination of 23 was attempted, the oxazoline proved to be unstable and only the ring-opened N-acetylamino ester 24 could be isolated. Hydrolysis of 24 under acidic conditions furnished a mixture of 3-hydroxy-substituted amino acid 26 and amino lactone 25 (Scheme 3).
The synthesis of the 3-hydroxy-substituted \(\beta\)-amino acid was also carried out from \(N\)-Boc-amino acid 29, which was prepared by \(N\)-Boc protection of \(\beta\)-lactam 19. Iodolactonization achieved under the same conditions as applied above afforded iodolactone 30. After dehalogenation, lactone 31 was transformed to \(N\)-Boc-hydroxyamino acid 32. Deprotection of 32 with \(\text{Me}_3\text{SiBr}\) resulted in 2-amino-3-hydroxycyclohexanecarboxylic acid 34.

When ring opening of \(N\)-Boc-lactone 31 was performed with different acidic reagents, a variable mixture of hydroxyamino acid 26 or 34 and deprotected amino lactone 25 or 33 was observed. These results suggested that the first step should be the hydrolysis of the lactone ring, followed by deprotection; otherwise, a very stable amino lactone 25 or 33 was formed.

When this method was extended to chiral compounds, the chiral 3-hydroxy-substituted \(\beta\)-amino acids (+)- and (-)-29 were obtained.
III. Application of the aqueous U-4C-3CR to synthetize β-lactams

The traditional Ugi four-component condensation (U-4CC) incorporates a carboxylic acid, an amine, a carbonyl compound and an isocyanide in a one-pot condensation. In the modified U-4C-3CR, the cyclic β-amino acid supplies the carboxylic acid and the amino function. In our Institute, preliminary experiments have recently focused on the synthesis of an Ugi library generated by bifunctional β-amino acids, various aldehydes and isocyanide building blocks in MeOH; the conversion was complete in 3 days at room temperature. The aim was to compare the efficiency of an aqueous medium with that of MeOH as solvent during the preparation of the analogue library.

In the first step, the reaction of the β-amino acid (I-VIII) with the aldehyde (A-D) resulted in protonated Schiff’s base 35; this way followed by addition of the isocyanide (a, b) to afford β-lactam 37 via intramolecular cyclization (36) and rearrangement.
We used 8 different alicyclic amino acids (I-VIII), aliphatic and aromatic aldehydes (A-D) and cyclohexyl or tert-butyl isocyanide (a, b) (Figure 1).
For this protocol, different quantities of water were used to find the critical concentration of the corresponding intermediate Schiff bases. During these experiments, the concentration was the factor determining whether the precipitation process occurred. Precipitation could be generated when less water-soluble β-amino acids and an appropriate amount of water were applied. In this way, the reactions were complete in higher yields in 1 day at room temperature instead of in 3 days in MeOH.

In all cases, a new stereogenic centre was formed at position C-2 of the acetamido group of the generated β-lactam 37 resulting in diastereoselective reactions. Most of the condensations were carried out with a good diastereomeric ratio, which in some cases, attained 100%. When we used sterically less hindered aliphatic aldehydes, the precipitated product obtained could be isolated easily with good purity and yield by simple filtration. Without precipitation, the products were separated by extraction in an organic solvent.

As exemplified in these experiments, the unique solvating properties of water have been shown to have beneficial effects on the Ugi reaction in terms of both rate and diastereoselectivity and a shorter reaction time.
Publications related to the Ph.D. thesis

I. Szilvia Gyónfalvi, Zsolt Szakonyi, Ferenc Fülöp

Synthesis and transformation of novel cyclic β-amino acid derivatives from (+)-3-carene

II. Zsolt Szakonyi, Szilvia Gyónfalvi, Enik Forró, Anasztázia Hetényi, Norbert De Kimpe, Ferenc Fülöp

Synthesis of 3- and 4-hydroxy-2-aminocyclohexanecarboxylic acids by iodocyclization

III. Iván Kanizsai, Szilvia Gyónfalvi, Zsolt Szakonyi, Reijo Sillanpää, Ferenc Fülöp

Synthesis of bi- and tricyclic β-lactam libraries in aqueous medium

Green Chem. **2007**, **9**, 357-360. if. 4.836

Total if. 10.384

Lectures related to the Ph.D. thesis

IV. Gyónfalvi Szilvia

Egy új királis β-aminosav el állítása és átalakításai

V. Gyónfalvi Szilvia

β-Aminosavak és aminoalkoholok szilárd hordozón történ alkalmazása

“A szegedi ifjú kémikusok támogatásáért” alapítvány ülése, 2003. jan. 16., Szeged

VI. Gyónfalvi Szilvia

Egy új királis β-aminosav el állítása (+)-3-karénb 1

XXV. _Kémiai El adói Napok_, 2003. okt. 28-30., Szeged

VII. Zsolt Szakonyi, Szilvia Gyónfalvi, Ferenc Fülöp

Synthesis and transformations of novel β-amino acid derivatives of enantiomeric monoterpnes

Workshop, 19 September 2003, Ghent, Belgium
VIII. Gyónfalvi Szilvia, Szakonyi Zsolt, Fülöp Ferenc
Telített heterociklusok előállítása egy új monoterpénvázás királis β-aminosavból

IX. Gyónfalvi Szilvia, Szakonyi Zsolt, Fülöp Ferenc
Telített 1,3-heterociklusok előállítása (+)-3-karénból

X. Gyónfalvi Szilvia
Oryzoxymycin-analóg hidroxi-aminosav sztereoszelektív előállítása jódlaktonizációval

XI. Szilvia Gyónfalvi, Zsolt Szakonyi, Enikő Forró, Anasztázia Hetényi, Ferenc Fülöp
Synthesis of hydroxyamino acids via iodooxazine and iodolactone intermediates
12th FECHEM Conference on Heterocycles in Bioorganic Chemistry, 20-24 June 2004,
Siena, Italy

XII. Ferenc Fülöp, Márta Palkó, Szilvia Gyónfalvi, Zsolt Szakonyi, Norbert De Kimpe
Synthesis of hydroxylated alicyclic β-amino acids
10th Belgian Organic Synthesis Symposium, 12-16 July 2004, Louvain-La-Neuve,
Belgium

XIII. Szakonyi Zsolt, Gyónfalvi Szilvia, Forró Enikő, Hetényi Anasztázia, Fülöp Ferenc
Hidroxilezett ciklusos β-aminosavak szintézise jódlakton és jódoxazin intermediereken keresztül
MTA Alkaloidkémiai Munkabizottság el adóülése, 2005. május 9-10., Balatonfüred

XIV. Szakonyi Zsolt, Gyónfalvi Szilvia, Forró Enikő, Hetényi Anasztázia, Fülöp Ferenc
Hidroxi-szubsztituált β-aminosavak szintézise jódlakton és jódoxazin intermediereken keresztül
Vegyészkonferencia, 2005. június 28-30., Hajdúszoboszló (Abstr.: P-86)
XV. Kanizsai Iván, Gyónfalvi Szilvia, Szakonyi Zsolt, Fülöp Ferenc:

Bi- és triciklusos β-laktámok előállítása metanolos és vizes közegben

Heterociklusos Munkabizottsági Ülés, 2006. június 7-9., Balatonszemes

XVI. Iván Kanizsai, Szilvia Gyónfalvi, Zsolt Szakonyi, Ferenc Fülöp:

Synthesis of bi- and tricyclic β-lactams via Ugi-4C-3C reactions in water and organic media

Bilateral Scientific and Technological Cooperation Workshop (BWTS), 10 July 2006, Ghent, Belgium (pp. 13-15)