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ii

1. Preliminaries

In the Bolyai Secondary Grammar School and Dormitory for Gifted Students in Senta I
have worked as a geometry teacher since the beginning of the school’s existence in 2003.
My method, teaching geometry using visualizations on the computer has been applied
since 2004. We use ”Euklides” DGS ( Dynamic Geometry System) to help pupils in
understanding the difficult problems and constructing the figure with given properties.
The DGS on the computer draws figures with special accuracy and one can move basic
elements on the figure and follow changes of the figure. This way one can find new con-
nections and proof of a given problem. This increases the students’ motivation. They
like lessons much more in the computer laboratory classroom; they ask for and wait for
it. I expect growth of achievement on the graduation exam. During the first six years
of teaching geometry using computers my experience shows that our pupils at the end
of their secondary education receive the kind of tools and knowledge which help them
solve problems in their own way using special skills, and find new solutions to technical
problems as engineering experts. They learn to apply computers and visualizations to
their own problems far from the field of geometry and mathematics in every special case
of life and their mind is open to new discoveries in the world.

Introduction

Teaching mathematics in a secondary school is a very difficult task.Its most interesting
area is axiomatically built geometry. [21]

Helping students to understand and learn new theorems in geometry is an exciting task
from a teachers point of view. Some psychological and didactical surveys show that the
acquisition and learning of geometry in secondary school is a very difficult task. This could
be due to a lack of problem-solving skills or to the decreasing creativity of the students.
Consequently, few schoolchildren get to know the amazing world of science of the Ancient
Greek geometers’. The incompleteness and imperfectness of representations on paper and
limited time available hinder the learning of axiomatically-based theoretical geometry.
A great number of geometrical figures, their symmetries, perfectness and variety remain
unknown for some students who have finished secondary school.

One of the most important tools for children in the 21st Century is their companion, the
computer. Children born after 2000 are called Digital Natives by Marc Prensky, while
we, the others born in the 20th Century are Digital Immigrants with methodical think-
ing. Applying the computer in the teaching and learning processes plays an important
role. It is important how we introduce the computer during the course of teaching and
learning from the aspect of the achievement of the cognitive processes. The appearance
and rapid development of dynamic geometry systems( DGS ) has brought rapid progress
in the teaching of geometry.

The criteria to measure creative mathematical potential based on the Balka’s formulation
in my translation are the following:
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• Learning the use of computer visualization in GeoGebra or Euklides helps to for-
mulate mathematical hypothesis about cause and effect in mathematical situation.

• The use of computers is an effective method to help students determine patterns
and to break from established mind sets to obtain solutions in mathematical (and
geometrical) situations.

• Introducing the different systems of geometry axioms-theorems helps to consider
and evaluate unusual mathematical (and geometrical) ideas, to think through the
possible consequences for mathematical situation.

• Verification of errors aids students to sense what is missing from a given mathe-
matical situation and to ask questions that will enable one to fill in the missing
mathematical information.

• The software Mathematica develops the ability to split general mathematical prob-
lems into specific subproblems.

2. Research aim and methods

My research aim is to map out in which proportions it is necessary and sufficient to apply
DGS, since visualization on the computer is not the only teaching-device we have at our
disposal to use during geometry lessons. Besides understanding the theorems, our stu-
dents should find good proofs and it is necessary to practice the elementary geometrical
constructions using compass and rulers. It is important to find an optimal qualitative
and quantitative balance during lessons of time spent on visualizations and theoretical
proofing of constructions. My task is to follow the development of these students for four
years and to test their learning of Euler’s line in the fourth-grade, because I think that
concepts learned from different methods will give the expected results.

Using a computer in complicated calculations helps to reach the main purpose, aim:
theorems had been proven synthetically by elementary methods of axiomatically built
Euclidian geometry, then they were proven in trigonometry and after in general form by
analytical geometry. The principle of spirality to deepen the students’ geometrical knowl-
edge is observable here.

The three steps of spirality are:
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3. Main results

Geometry I, Planimetry

In Geometry I there is a problem, which we can use to follow the students’ cognitive de-
velopment in geometrical thinking using computer visualizations and elementary proofs.
The given problem is Euler’s line. The students’ preliminary knowledge contained the
important points of the triangles such as the center of the circumcircle, the orthocenter,
the center of the inscribe circle and the centroid, which were studied during two lessons.
First, the definition was given, and we constructed the Euler’s line on the acute triangle.
The next step was its proof, to show correctly the related theorem and the properties. The
third step was the construction of these important points in special cases of the isosceles,
the equilateral and the right-angle triangle. The homework was classical construction
on paper in the case of the obtuse triangle. The students were asked to construct the
triangle in adequate accuracy. I checked the homework and pointed out incorrect details
and imperfect constructions.

The examination contained three parts (phases):

1. Visualization on the computer;

2. Comprehensive tasks for assessment;

3. Revision after the winter vacation.

Until we got to the proof of the property of the Euler-line OTH, my students knew the
basics of vector algebra such as their addition and multiplication with real numbers, and
we proved the Hamilton-theorem:

−−→
OB +

−→
OC +

−→
OA =

−−→
OH

as well as vector equality: −−→
CH = 2 ·

−−→
OC1

if C1 is the midpoint of the segment AB in the triangle ABC. In these phases the students’
works are introduced, with their evaluation. In the first phase, visualization helped in the
exploration of new concepts, their properties, and to find and understand new theorems.

In the second phase, students recalled to the accurate construction made on the comput-
ers by the dynamic geometry system. Their drawings were as accurate as possible. They
made an effort to prepare as exact construction as possible using graphite pencils on paper.

The third phase took place one month later, after the assimilation period. There was an
emphasis on the theoretical proof. It was enough to remind them of Euler’s line, and they
knew what their task was: from the given triangle, across the important points of the
triangle, how one can get to the line OHT . But not all the solutions were satisfactory
(to my disappointment). The most accurate solutions varied in their use of geometrical
tools, one used isometric transformation, and another used perspective transformation in
the proof, the third student recalled the proof applying vectors.

Every three months there is a 90-minute-long written exam in the school, which contains
tasks that have been taught in the previous three months, problems to solve and to prove.
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The maximum number of points students can get on the second exam is 20. Points and
marks are based on the following classification:

18-20 points excellent (5)

15-17 points very good (4)

12-14 points good (3)

9-11 points sufficient (2)

0-8 points insufficient (1)

Description of researched groups:

Old = the control group who did not do visualizations on computers, in 2003; there were
20 students.
New = the experimental group who had 25 percent of all lessons using computer tech-
niques and visualization, in 2004; there were 14 students.

The results, the dispersion of the points in the tasks of the second exam in the control
and experimental groups are shown in the table below, where tasks are noted vertically
in green color, and the points of each task are noted horizontally in red color:

These results show and prove the advantage of the experimental group using visualization
on computer.

The average grade of the control group is 3.65 and the average grade of the experimental
group is 3.93 on the end of the school year, which is higher than the previous result by
10 percent.
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Geometry II, Trigonometry

In Geometry II Trigonometry is applied and used while proving important theorems of
basic geometry . Theorems of Menelaus’, Ceva’s and Euler’s line are proven. We verify
these statements with the sine and cosine laws and then we apply them in our work the
emphasis here is on experimenting. The aim is to develop the students’ intuition skill
using heuristic methods aided by visualization on the computer.

Experimenting in DGS GeoGebra calculating the value of formula

f =
AF

FB
· BD

DC
· CE

EA

in Ceva’s theorem students can follow how it changes while point F (or point E or point
D) moves on the sides of triangle ABC. The conclusion is:

• if F ̸= G, but point F is on the line AB, then the value of formula f ̸= 1.

• if F = G , point F was moved to the point of intersection of lines CS and AB, then
f = 1.
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Geometry III, Linear algebra and analytical geometry

In Geometry III there is analytical geometry using coordinates of the point in Descartes-
coordinates, and equations of lines, circles, ellipses, hyperbolas and parabolas. Their
visualization on the computer helps student understand the theory and make his/her
own models on graph paper. The useful Dynamic Geometry System is ”GeoGebra”.
It is not unknown to the students of the third grade because they had met it in the
second grade, but without the algebraic forms. Students are familiar with basic geometry
constructions, important theorems of axiomatically built Euclidian and non-Euclidian
geometry. However to prove important theorems in analytical form generally, there is a
possibility to use softwareMathematica 6.2. This software helps calculate very long and
complicated formulas and to simplify them more easier than human brain ever could. The
computer helps in calculating, but the operator has to know what to calculate. Leadership
is in the programmer’s hand. The student has to know the algorithm of the process, the
aim of the work, to lead the process to the end algorithmically. Using the computer made
the work easier, however the main problem was solved in the student’s mind.
After a few practice lessons with and without computers in the computer laboratory the
test for assessment was done without using computers. Students had to draw visualization
on graph paper A4. The coordinates of the given triangle ∆ABC were A(3, 5), B(6, 2)
and C(−2,−1). One of the best works is below, a very nice image, precisely constructed.
Euler’s line is emphasized with a different color, yellow.

At the end they had to prove the vector-theorem of the Euler’s line:

The results show that 40 percent of the class in 2008 of 20 students; and 56 percent of
the class in 2009 of 18 students executed the task perfectly or very well.
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Apollonius’ problems

The Geometry I program was built on the introduction of basic geometrical knowledge.
There are:

1. Isometric transformations: rotation, reflection, symmetry, translation;

2. Dilatation, symbol HO,k, where O is the center of the dilatation, k is the ratio;

3. Inversion, symbol Ψi(O, r), where O is the center and r is the radius of the inversion
circle i.

As the example of using inversion on a circle there are Apollonius’ problems, their con-
structions, discussion, analysis and proof. Those who have some experiences in construc-
tion using chalk on the blackboard with wooden compass and rulers have an idea of how
to show and prove these interesting but difficult problems to their own students. The
emphasis is on convincing instead of proving. A great help in visualization is some DGS.
The most general and difficult case is obviously the case of three circles, which was covered
in Book II of Apollonius’ ”On Tangencies”.

The basic problem is:
Given three objects, each of which may be a point, line, or circle, draw a circle that is
tangent to each.

There are ten cases introduced.
For example the solution of the sixth problem, (The circle across one point A touches two
given circles l,m) has the final image below.

At the end of the school year my students are able to construct these geometry problems
using compass and rulers on paper using technical pencil. Two are from five lessons in
computer laboratories to help students understand, experiment and learn the basics of the
problems. The remaining three lessons are classical constructions to develop the students’
psychomotorical skills. Psychomotorical aims of teaching geometry are in [1]:



ix

• grasping the clear solutions of the tasks;

• smart and clever use of compass and rulers;

• free sketching;

• making mathematical and geometric models of the problem;

• using computers and calculators.

These targets are satisfied during the 144 Geometry I lessons of the year. Students have
to construct the fifth and/or the sixth Apollomius’ problem as homework. Marks are
based on the following classification:

precise construction, nice drawing excellent (5)

one little error very good (4)

two or three inaccuracies good (3)

incorrect drawing sufficient (2)

not worked insufficient (1)

Is there geometry after Euclid?

During the introduction and study of Hilbert’s axioms, we become acquainted with the
fact that there are 21 assumptions which underline the geometry published in Hilbert’s
classic text ”Grundlagen der Geometrie” [11]: the incidence axioms, ordering axioms,
congruence axioms, continuity axioms and the single parallel axiom equivalent to Euclid’s
fifth (parallel) postulate, as we can read in Euclid’s ”Elements” [9]. But it is our mission
- the teacher’s duty - to show the different possibilities of this axiom of parallels. At this
point, the three basic axiom-systems are presented by Playfair’s, Lobachevsky-Bolyai’s
and Riemann’s axiom of parallel lines, but projective geometry is introduced by Desar-
gues’ and Pappus’ theorems.[7].

It is very important to develop the cognitive attitude of the students in Geometry I, to
help their development of thinking skills, spatial perception and awareness, and the ap-
proach to the modern sciences. Fifteen year-old students have undeveloped mathematical
thinking; they do not possess problem solving skills because they do not have experiences
in solving such tasks. Geometry gives many opportunities for an effective development of
such skills.

The spherical laws of the sine and cosine laws are applied on the Lénárd-sphere.

The nice example is with precise calculations, and a good picture of a spherical triangle
is below. He used cosines to the third angle and he could not make mistakes because the
sign of the cosines of the angle showed that the angle was acute or obtuse.
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Summary the assessed/evaluated test ended with good results, students created beautiful
constructions, very impressive works and interesting, amazing mistakes. Their fantasy
produced wonderful ideas.

4. Conclusions

This study examined several factors of the process of teaching and learning geometry
using computers. The following research questions (with subcomponents) formulated the
basis of the research:

1. How did computer-use help each student achieve good results and develop?

2. Which software was used for which exercise?

In the initial exercises in planar geometry it is useful to use the DGS ”Euklides” because,
as professor Szilassi Lajos put it,

”Euklides is a great software for its simplicity”

Later, the DGS ”GeoGebra” is more useful with its geometry window at first and its
algebraic window used later. For long proofs, for accuracy software ”Mathematica” is
very practical.

Teaching geometry using visualizations on the computer prepares the scientist of the future
to try every case of new problems that may arise to find and discover our environment
and life.
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8. Zenta: T-day, 2008. április 4-5, ”Nastava geometrije u gimnaziji Bolyai”
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gimnáziumban , 169-177, Kutató Tanárok Tudományos Közleményei, 2007-2008,
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