
Evaluating and Improving Reverse

Engineering Tools

Lajos Jen® Fülöp

Department of Software Engineering
University of Szeged

Supervisor: Dr. Tibor Gyimóthy

June 2011
Szeged, Hungary

A thesis submitted for the degree of doctor of philosophy

of the University of Szeged

University of Szeged
Ph.D. School in Computer Science

Preface

Developers tend to leave some important steps and actions (e.g. properly designing
the system's architecture, code review and testing) out of the software development
process, and use risky practices (e.g. the copy-paste technique) so that the software can
be released as fast as possible. However, these practices may turn out to be critical from
the viewpoint of maintainability of the software system. In such cases, a cost-e�ective
solution might be to re-engineer the system.

Re-engineering consists of two stages, namely reverse-engineering information from the
current system and, based on this information, forward-engineering the system to a
new form. In this way, successful re-engineering signi�cantly depends on the reverse
engineering phase. Therefore, it is vital to guarantee correctness, and to improve the
results of the reverse engineering step. Otherwise, the re-engineering of the software
system could fail due to the bad results of reverse engineering.

The above issues motivated us to develop a method which extends and improves one of
our reverse engineering tools, and to develop benchmarks and to perform experiments
on evaluating and comparing reverse engineering tools.

Lajos Jen® Fülöp, 2011

iii

�To discover new continents,
you must be willing to lose sight of the shore.�

Brian Tracy

Acknowledgements

This quote above expresses well how a person might feel when he starts his research
work. I have been very lucky during my journey to the �new continent� because several
people helped me with their comments, ideas and suggestions and this improved not just
my work, but also opened my mind and broadened my knowledge. I am really grateful
to all those who helped my journey and I would not be where I am now without you all.

First, I would like to thank my supervisor Dr. Tibor Gyimóthy who helped me in my
work by providing useful ideas, comments and interesting research directions. I would
like to thank my article co-author and mentor, Dr. Rudolf Ferenc, for guiding my
studies and teaching me a lot of indispensable things about research. Without his
valuable advice and hints I would never have acquired the research�oriented attitude
that I have. My many thanks also go to my colleagues and article co-authors, namely
Dr. Árpád Beszédes, Tibor Bakota, Dr. István Siket, Dr. Judit Jász, Péter Siket,
Péter Heged¶s, Dr. Lajos Schrettner, Dr. Tamás Gergely, Dr. László Vidács, György
Heged¶s, Dr. Günter Kniesel, Alexander Binun, Dr. Alexander Chatzigeorgiou, Dr.
Yann-Gaël Guéhéneuc, Dr. Nikolaos Tsantalis, Gabriella Kakuja-Tóth, Hunor Demeter,
Csaba Nagy, Ferenc Fischer, Árpád Ilia, Ádám Zoltán Végh, Róbert Rácz, Lóránt Farkas,
Fedor Szokody, Zoltán Sógor, Gábor Lóki, János Lele, Tamás Gyovai, Tibor Horváth and
János Pánczél. I would also like to thank the anonymous reviewers of my papers for
their useful comments and suggestions. And I would like to express my thanks to David
P. Curley for reviewing and correcting my work from a linguistic point of view. I would
like to thank my mother for her continuous support and encouragement. Last, but not
least, my heartfelt thanks goes to my wife Márti for providing a vital, a�ectionate and
supportative background during the time spent writing this work.

Lajos Jen® Fülöp, 2011

v

Contents

Preface iii

Acknowledgements v

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Summary by chapters . 4

1.2 Summary by results . 6

2 Background 11

2.1 Reverse engineering . 11

2.2 Terminology . 14

2.3 Columbus framework . 16

I A proposed method for improving design pattern mining 19

3 Improvement of an existing design pattern miner tool 21

3.1 The learning process . 22

3.2 Predictors . 23

3.2.1 Adapter object . 24

3.2.2 Strategy . 25

3.3 Machine learning approaches used . 26

3.4 Results . 27

3.4.1 Adapter object candidates investigation 28

3.4.2 Strategy candidates investigation 29

3.4.3 Learning e�ciency . 30

3.5 Summary . 32

vii

viii Contents

II Evaluation of design pattern miner tools 33

4 Performance evaluation of design pattern miner tools 35

4.1 Framework . 35
4.1.1 CrocoPat . 35

4.2 A comparative approach . 36
4.3 Results . 38

4.3.1 Discovered pattern candidates 39
4.3.2 Pattern mining speed . 44
4.3.3 Memory requirements . 47

4.4 Summary . 48

5 Validation of design pattern miner tools 49

5.1 Benchmark . 50
5.1.1 Architecture . 50
5.1.2 Fundamental participants and siblings 52
5.1.3 Upload �le format. 54
5.1.4 Benchmark contents . 55

5.2 Usage scenarios . 56
5.2.1 Browsing the database . 56
5.2.2 Evaluating and comparing tools 61
5.2.3 Adding a new tool . 62

5.3 Experiments performed . 64
5.3.1 Reference implementations . 67
5.3.2 NotePad++ . 69
5.3.3 FormulaManager . 71

5.4 Evaluation of the benchmark . 73
5.5 Summary . 74

6 Common format for design pattern miner tools 75

6.1 Background . 76
6.1.1 Motivation . 76
6.1.2 Requirements . 76
6.1.3 State of the art . 77

6.2 DPDX concepts . 79
6.2.1 Speci�cation . 79
6.2.2 Reproducibility . 80
6.2.3 Justi�cation . 80
6.2.4 Completeness . 80
6.2.5 Identi�cation of role players . 80
6.2.6 Language independence . 82
6.2.7 Identi�cation of candidates . 82

Contents ix

6.2.8 Comparability . 85
6.3 DPDX meta-models . 85

6.3.1 Schema metamodel . 85
6.3.2 Program element metamodel 87
6.3.3 Result metamodel . 88

6.4 DPDX implementation . 89
6.4.1 Implementation details . 90
6.4.2 Integration and visualization . 91

6.5 Summary . 91

III Evaluation of reverse engineering tools 93

7 Validation of reverse engineering tools 95

7.1 Background . 95
7.1.1 Sibling relation . 96

7.2 Use scenarios . 101
7.2.1 Setting up the database . 101
7.2.2 Data evaluation . 105

7.3 Experimental results . 110
7.4 Summary . 112

8 Conclusions 115

Appendices 119

Appendix A Related Work 119

A.1 Design pattern mining . 119
A.2 Improvement of design pattern mining 121
A.3 Evaluation of reverse engineering tools 122

Appendix B DPDX 127

B.1 Output formats of DPD tools . 127
B.2 DPDX attribute values . 131
B.3 DPDX implementation examples . 134

Appendix C Summary 139

C.1 Summary in English . 139
C.2. Summary in Hungarian . 142

Bibliography 145

List of Figures

2.1 The reengineering process. 12
2.2 Concept map of the most frequent terms of the thesis. 14
2.3 The State design pattern. 15
2.4 The Columbus framework . 17

3.1 The learning process . 23
3.2 The Adapter Object design pattern . 24
3.3 The Strategy design pattern . 25

4.1 Common framework . 36
4.2 Factory Method pattern in RML . 37

5.1 Architecture of Trac . 50
5.2 Overview of DEEBEE . 51
5.3 State example . 53
5.4 CSV �le for the T1-2 candidate of the previous example 55
5.5 Functionalities of the benchmark . 57
5.6 Query view of DEEBEE . 57
5.7 Results view of DEEBEE . 58
5.8 Instance view with highlighted source code in DEEBEE 59
5.9 Instance view statistics in DEEBEE . 60
5.10 Statistics view of DEEBEE . 61
5.11 Comparison view of DEEBEE . 63
5.12 Adding the results of a new tool to DEEBEE 64
5.13 Framework for design pattern mining 65
5.14 Reference implementation of Adapter Object 66
5.15 Visitor candidate mined by Maisa from reference implementations 68
5.16 Comparison of candidates in reference implementations 70

6.1 A federation of design pattern detection, visualization and assessment
tools cooperating via the common exchange format. 76

6.2 Named and unnamed elements example 81
6.3 Illustration of candidates . 84

xi

xii List of Figures

6.4 Relation between schemata, diagnostics and instances 85
6.5 Metamodel of design pattern schemata 86
6.6 Sample of design pattern schemata . 86
6.7 Metamodel of program element identi�ers and optional source locations . 87
6.8 Representation of the invocation a.f(d,c) from the code example in Fig-

ure 6.2 . 88
6.9 Metamodel of the design pattern detection results 88
6.10 A decorator instance from the java.io package of the JDK with subclasses

implemented by us (OutputStreamWriter and CharCountBu�erWriter) . . 89
6.11 Sample of the design pattern detection results 89

7.1 Example code for contain and overlap functions 97
7.2 Problem of the non-transitivity feature of the sibling relation 101
7.3 Creating a new domain . 102
7.4 Correctness criteria . 103
7.5 Uploading data into BEFRIEND . 104
7.6 Sibling settings . 105
7.7 Query view . 106
7.8 Results view . 106
7.9 Group instance view . 107
7.10 Bauhaus correctness statistics . 109
7.11 Comparison view . 110

B.1 Output format of SPQR . 127
B.2 Output format of Fujaba . 128
B.3 Output format of Maisa . 128
B.4 Output format of SSA . 128
B.5 Output format of Columbus . 129
B.6 Output format of PINOT . 129
B.7 Output format of Ptidej . 129
B.8 Input format of DEEBEE . 129
B.9 Format of PMART . 130
B.10 Implementation of the schema metamodel 134
B.11 Implementation of the program metamodel - �rst part 135
B.12 Implementation of the program metamodel - second part 136
B.13 Implementation of the result metamodel 137

List of Tables

1.1 The relation between the thesis topics and the corresponding publications. 9

3.1 Pattern candidates . 27
3.2 Some predictor values for Adapter Object 28
3.3 Some predictor values for Strategy . 29
3.4 Average accuracy with standard deviation based on three-fold cross vali-

dation . 31
3.5 Learning statistics . 31

4.1 About the size of each project studied 38
4.2 DC++ candidates . 39
4.3 WinMerge candidates . 40
4.4 Jikes candidates . 41
4.5 Mozilla candidates . 42
4.6 Initialization times . 44
4.7 Initialization time - exporters . 44
4.8 WinMerge times . 45
4.9 Jikes times . 46
4.10 Mozilla times . 46
4.11 Memory requirements in megabytes . 47

5.1 Distribution of uploaded candidates . 56
5.2 Number of design pattern candidates found for Reference Implementations 67
5.3 Number of design pattern candidates found for NotePad++ 71
5.4 Number of design pattern candidates found for FormulaManager 72

6.1 Tools and requirements satis�ed by their output formats 78

7.1 Contain and overlap values for the previous example 99
7.2 Results on NotePad++ . 111
7.3 Results on JUnit . 111

B.1 DP-Miner result . 127
B.2 Attribute values of DPDX . 131

xiii

xiv List of Tables

B.3 Property values . 131
B.4 Program element hierarchy . 133

To my wife,

Márti.

Chapter 1

Introduction

�You can't just ask customers what they want
and then try to give that to them. By the time
you get it built, they'll want something new.�

Steve Jobs

The development of software systems usually includes their speci�cation, design, imple-
mentation, testing, deployment and maintenance. The general tendency is that software
companies tend to leave some of the steps (e.g. requirements analysis, speci�cation,
design and testing) out of the software development process to release the software as
fast as possible due to the tight deadlines. The problem is that these skipped steps
may turn out to be crucial from the viewpoint of deployment and maintainability of the
software system.

For example, a �edgling software company is forced to release its �rst products as soon as
possible to gain some advantage in the market over its competitors. In this way, the �rst
releases are very frequent and fast, and if the company survives the initial di�culties it will
rapidly grow into a medium-sized company. However, by that time the maintenance (e.g.
satisfying new requests, �xing bugs, adapting to new platforms and environments) of
the software becomes very expensive because nobody knows the concrete requirements,
the architecture, and the key components of the system. Furthermore, several bugs may
be reported by customers because there were insu�cient resources to test the software
during the preceding releases. These reported bugs could seriously harm the company's
reputation. The situation is frequently made worse when the original developers leave
the company and then nobody knows how the system was implemented. In this way,
a new software system can become a legacy system after a relatively short period of
time [25]. However, the company has to manage this crisis to survive in the market.

The company has two possibilities to manage the evolved crisis. It can either redevelop
the system from scratch or re-engineer the current legacy system.

Redeveloping a system is a really expensive and risky solution for several reasons. First
of all, the legacy system has to be maintained before the new system is released to the
customers. Maintaining the legacy system will cost as much as the original development
because the customers should not feel any kind of e�ects. In this way, the company gets
into a similar situation as during the implementation of the legacy system. It will have

1

2 Introduction

insu�cient resources to collect the requirements, describe the speci�cation accurately,
design the architecture and plan the test cases of the new system. It means that the
company will get into the same trap as it was in in the case of the legacy system: just
implementing the new system without due care means that the current problems and
crisis will appear two or three years later. However, in certain cases it is better to re-
implement a system from scratch, but this decision should be preceded by an in-depth
evaluation of the current (legacy) system to see whether it has been re-engineered or
not.

Re-engineering a legacy software systems was brie�y summarized by Demeyer et. al. [25]:
�The goal of reengineering is to reduce the complexity of a legacy system su�ciently

that it can continue to be used and adapted at an acceptable cost.� Most of the time,
re-engineering a legacy system is unambiguously a better choice than rewriting it from
scratch for several reasons. First of all, several components of a legacy system are not
critical while others are modi�ed very rarely. Some components of the system are tested
and, typically, most of them are the critical components of the system. Furthermore,
the system is currently being used and functioning. On top of this, Demeyer et. al.
proposed several patterns [25] that provide solutions to re-engineering legacy systems
incrementally and continuously in such a way that the customers of the system do not
notice anything. Therefore, in most cases it is much more cost-e�ective to re-engineer
a legacy system than to rewrite it from scratch.

Re-engineering consists of two stages, namely reverse engineering information from the
current (legacy) system and, based on this information, (forward) engineering the system
into a new form. Reverse engineering applies techniques like analyzing the source code,
interviewing developers, browsing the existing documentation, discovering the design and
architecture, and identifying the problematic and the key parts of the system. However,
most of the time the documentation is completely missing or if it exists it is quite
outdated, and developers either do not know the system because they have only worked
for the company for a short time or they are afraid of providing the necessary information
(e.g. bugs caused by them) about the system. Therefore only the source code of the
legacy system can be regarded as an objective starting point of reverse engineering. In
this thesis, by the term reverse engineering we mean the reverse engineering of just the

source code.

Re-engineering constructs the system in a new form1 based on the results of reverse
engineering. The re-engineered form of the system should have lower maintainability
costs. Successful re-engineering demands a really precise and really reliable reverse
engineering of the legacy system because any kind of decision and activity during the
forward engineering phase is based on this information. Hence it is very important to
ensure correctness, and to improve the results of the reverse engineering step, otherwise

1Refactoring is a well-known technique that applied in the �eld of software engineering.

3

the whole re-engineering project could be unsuccessful due to the false results of reverse
engineering. It motivated us to develop a method which extends and improves one of
our reverse engineering tools, and to develop benchmarks and to perform experiments
on evaluating and comparing reverse engineering tools.

Reverse engineering tools handle (i) source code parsing and extract an abstract model
from it and (ii) perform some exploratory operations on the abstract model. In this
thesis we will focus on the latter type of reverse engineering tools. Namely, we will deal
with design pattern miners, duplicated code detectors and rule violation checkers.

Design pattern mining tools help one to better understand the system and its compo-
nents. By revealing patterns from the source code it is easier to understand how the
corresponding classes and methods interact and to work out why they communicate with
each other and what business logic is implemented by them. Duplicated code detector
tools discover risky copied code fragments. These fragments could carry the same bugs
and make the maintenance of the system di�cult, because all the fragments should be
modi�ed at the same time. Rule violation checkers audit typical programmer errors in
the source code. One such error might be comparing two Java String objects with the
= operator instead of the equals method. These tools provide important information
about the legacy system, but their results may contain false positives.

Up until now, research teams have focused on the improvement and evaluation of the
tools. Petterson et al. [63], for instance, summarized problems during the evaluation
of accuracy in design pattern detection, Bellon et al. [10] performed tests to evaluate
and compare duplicated code detectors and Wagner et al. [88] compared three Java
coding rule checkers. Surprisingly, no author has yet proposed a general framework or
benchmark for comparing and evaluating the results of reverse engineering tools like
design pattern miners, duplicated code detectors and rule violation checkers. In this
thesis, we will focus on these; especially on design pattern mining, how to improve and
how to evaluate design pattern miner tools. In the third part of the thesis we propose
a benchmark for reverse engineering tools like design pattern miners, duplicated code
detectors and rule violation checkers, and show how it can be applied to real-life cases.

4 Introduction

1.1 Summary by chapters

The thesis contains three main parts. The �rst part (Chapter 3) presents a method for
improving design pattern mining and also the results of experiments using our design
pattern miner tool. The second part (Chapters 4, 5 and 6) discusses techniques, formats
and experiments concerning the evaluation and comparison of design pattern miner tools.
After, the third part of the thesis (Chapter 7) describes our general framework, which is
capable of evaluating and comparing reverse engineering tools.

Part I: An improvement method for design pattern mining

In the third chapter we shall brie�y describe our method for improving design pattern
mining. We utilized machine learning methods to further re�ne our pattern miner tool
by marking the pattern candidates returned by the matching algorithm as either true or
false. We de�ned predictors for two selected design patterns namely Adapter Object and
the Strategy. We performed our experiments on StarWriter [80].

Part II: Evaluation of design pattern miner tools

The fourth chapter describes a comparison and performance evaluation of three design
pattern miner tools, namely Columbus, Maisa and Crocopat. Here we provide a com-
parative approach for design pattern miners. The approach examines the performance
indicators (time, memory) and di�erences found between the results. Afterwards, the
three tools are evaluated based on this comparative approach. In this chapter, we do not
focus on the correctness issue of the results, but just systematize the common di�erences
among tools.

Chapter 5 discusses the evaluation and comparison of design pattern miner tools con-
cerning the correctness of the results. Here we elaborate on DEEBEE (DEsign pattern
Evaluation BEnchmark Environment), an online framework for evaluating and compar-
ing results of design patter miner tools. When comparing the results, DEEBEE handles
problems systematized previously in Chapter 3 by relating and grouping similar results of
the tools. We will describe the interface of DEEBEE through meaningful usage scenarios
and afterwards we will present the results of our experiments. Lastly, the benchmark is
evaluated with regard to the requirements proposed by Sim et al. [74].

In the sixth chapter, we present a common output format, DPDX, for design pattern
detector tools. A common output format is vital for a uniform evaluation and comparison
of the results. Here we de�ne requirements for the common output format and evaluate
the current format of design pattern miner tools according to these requirements. Then,
we de�ne metamodels of the format that contains the schema metamodel, program
metamodel and results metamodel. After, we provide an XML-based implementation of
this metamodel.

1.1 Summary by chapters 5

Part III: Evaluation of reverse engineering tools

In the seventh chapter, we present BEFRIEND (BEnchmark For Reverse engInEering
tools workiNg on source coDe), an online framework for evaluating and comparing reverse
engineering tools. BEFRIEND is a generalized version of DEEBEE. Here we provide the
theoretical background needed for handling and grouping the results of di�erent reverse
engineering tools. Then, we apply the BEFRIEND interface in representative usage
scenarios. After, we will present the results of our experiments performed using the
benchmark.

In the last chapter we present conclusions and provide a short summary of the results
obtained. In this chapter we also outline possible directions for future work.

Lastly, we round o� with appendices that contain related works, details of the DPDX
format and a brief summary of the principal results of the thesis in English and Hungar-
ian.

6 Introduction

1.2 Summary by results

The main contributions of this work are summarized as follows. First, we introduce
a new technique for improving design pattern mining. Afterwards, we evaluate design
pattern miners in terms of their speed, memory consumption and the di�erences in their
results. Furthermore, we developed a publicly available online benchmark (DEEBEE)
which supports the evaluation and comparison of design pattern miners by considering
their correctness and completeness. We also propose a common exchange format for
design pattern miner tools that is based on a well-de�ned metamodel. Lastly, we gener-
alize DEEBEE in BEFRIEND, which supports the evaluation and comparison of reverse
engineering tools as well.

We state �ve key results in the thesis and the contributions of the author are clearly
shown in the listed results. As the thesis consists of three parts, the results are also
presented in three parts.

Part I: An improvement method for design pattern mining

The result of the �rst part of the thesis is a machine learning-based method for improving
design pattern mining. This is described in Chapter 3 in detail.

1. Improvement of an existing design pattern miner tool.

Here we enhanced our design pattern miner tool called CAN2Dpm, which is a
component of the Columbus framework [13]. We used machine learning methods
to further re�ne the pattern mining by marking the pattern candidates returned by
the matching algorithm as either true or false. In other words, we further �ltered
the pattern candidates returned via the original matching algorithm by eliminating
false hits. Our approach in a nutshell is to analyze the candidates returned by
the matching algorithm, taking into account various aspects of the candidate
code fragment and its neighbourhood, such as whether a participant class has a
parent or not, or how many new methods a participant class de�nes besides a
participating method. The information associated with these aspects is referred to
as predictors, whose values can be used in a machine learning system for decision
making. We employ a conventional learning approach; that is, we �rst manually
tag the candidates as true or false and calculate the values of the predictors on
the candidates. Then we load these into some learning system (we conducted
our experiments using two methods, namely a decision tree-based approach and
a neural network approach). This in turn provides a model that incorporates
the acquired knowledge, which can later be used for pattern mining in unknown
systems. In the current work we test the models with the cross-validation method.
We performed our experiments on StarWriter [80] as the subject system for pattern
mining and we searched for the Adapter Object and the Strategy design patterns.

1.2 Summary by results 7

The author performed the experiments with the Strategy design pattern and manu-
ally tagged the results of the design pattern mining tool in the case of the Strategy
design pattern.

Part II: Evaluation of design pattern miner tools

The second part of the thesis focuses on our experiences gained and tools developed for
the evaluation of design pattern miners. These are elaborated on in Chapters 4 and 5.
This part also introduces a common exchange format (in Chapter 6) for design pattern
miner tools, which is needed to readily compare, evaluate, fuse and visualize the results
of tools in a standard way.

2. Performance evaluation of design pattern miner tools.

Our aim here was to compare three design pattern miner tools; namely Columbus,
Maisa and CrocoPat. We chose these tools because it was possible to prepare a
common input for them with our front end called Columbus. Earlier work by us
enabled us to provide the input for Maisa [34], while in the case of CrocoPat we
created a new plug-in for Columbus which can generate the right format. Next,
the tools were compared from three aspects: di�erences between the hits, their
speed and memory requirements. We think that these are important aspects for a
design pattern miner tool. We did not examine whether a design pattern hit was
true or false, but just concentrated on structural hits and di�erences.

The author developed the Columbus-CrocoPat exporter and integrated it into the
Columbus framework. He also de�ned several design patterns in the representation
language (RML) of CrocoPat. Furthermore, the author performed the experiments
and obtained the results presented in this thesis. The author also participated in
�nding a concrete de�nition for the comparison-and-evaluation approach.

3. Validation of design pattern miner tools.

Here we present experiments performed on a newly developed benchmark for eval-
uating and comparing design pattern miner tools. The benchmark is quite general
from the viewpoint of the mined software systems, programming languages, up-
loaded design pattern candidates, and design pattern miner tools. With the help
of this benchmark, the accuracy of two design pattern miner tools (Columbus and
Maisa) were evaluated on reference implementations of design patterns and on two
software systems called NotePad++ and FormulaManager. Here, design pattern
instances in NotePad++ were also discovered by hand, so both the precision and
recall scores were calculated by the benchmark automatically. In addition, we de-
veloped a software system called FormulaManager to test the tools on a program
where each design pattern was implemented in a real-life context.

With the help of the benchmark one can evaluate design pattern miner tools, which
will hopefully lead to better quality design pattern miner tools in the future. With

8 Introduction

this benchmark the results of a pattern miner tool should be quicker and easier to
classify.

The author developed the benchmark (except the instance view). He also de�ned
and implemented the uploading format of the benchmark including the sibling
and grouping mechanism. The author performed the experiments with Maisa and
Columbus, and uploaded their results into the benchmark. He also participated in
designing the architecture of the benchmark, in determining the evaluation aspects,
in manually tagging the results of the tools and in designing its use cases.

4. Common exchange format of design pattern miner tools

Here we present DPDX, a common exchange format for design pattern miner tools.
First we de�ne the requirements for the output format of a design pattern miner
tool. Then, we examine the formats of existing tools based on the above-de�ned
requirements. After, taking into account the identi�ed problems of the existing
formats, we analyze the requirements in detail to see how they may be ful�lled
completely by the proposed format. Based on these experiments we propose a
well-de�ned and extendible metamodel that addresses a number of limitations of
current tools. The proposed metamodel is implemented in an XML-based language
that can be easily adapted by existing and future tools, providing a means for
improving accuracy and recall scores when evaluating, comparing and combining
their �ndings.

The author developed the initial versions of the schema metamodel implementation
and described the Maisa tool. He also participated in the substantial improvement
and �nalization of the initial ideas (concepts, metamodel, implementation) in their
eventual form.

Part III: Evaluation of reverse engineering tools

The results of the third part of the thesis include BEFRIEND, a general benchmark for
reverse engineering tools. This is elaborated on in Chapter 7.

5. Validation of reverse engineering tools.

Here we introduce the further development of the DEEBEE system, which has
become more useful since we generalized the evaluation aspects and the type of
the evaluated tools. The new system is called BEFRIEND (BEnchmark For
Reverse engInEering tools workiNg on source coDe). With BEFRIEND, the results
of reverse engineering tools from di�erent domains that recognize arbitrary aspects
of source code can be subjectively evaluated and compared with each other. Such
tools include design pattern miners, duplicated code detectors and coding rule
violation checkers. BEFRIEND greatly di�ers from its predecessor in �ve aspects:

1.2 Summary by results 9

N o. [94] [95] [96] [97] [98] [99] [100] [101] [102]
1. •
2. •
3. • • •
4. • •
5. • •

Table 1.1: The relation between the thesis topics and the corresponding publications.

(1) it permits uploading and evaluating results related to di�erent domains; (2) it
permits adding and deleting the evaluating aspects of the results in an arbitrary
way; (3) it has a new user interface; (4) it generalizes the de�nition of sibling
relationships; and (5) it permits uploading �les in di�erent formats by adding the
appropriate uploading plug-in.

The author adopted and generalized the theory of sibling relations and provided the
corresponding implementation. He also participated in de�ning the terminology,
manually evaluating the candidates using the benchmark and in the presentation
of the benchmark's architecture.

Lastly, Table 1.1 summarizes which publications cover which results of the thesis.

Chapter 2

Background

�An investment in knowledge pays the best interest.�

Benjamin Franklin

In this chapter we will provide the necessary background for chapters 3 to 8. First, in
Section 2.1 we shall brie�y introduce the concept of reverse engineering and then in
Section 2.2 we will clarify the terminology used in the thesis. After, in Section 2.3 we
will present the Columbus framework that will be applied several times later on.

2.1 Reverse engineering

Previously we discussed reverse engineering in the Introduction through a meaningful
example of a company. In this example the importance of reverse engineering was also
demonstrated. In this section we collect and present some formal de�nitions and terms
used in reverse engineering.

Chikofsky and Cross [21] formally de�nes re-engineering in the following way:

�Reengineering is the examination and the alteration of a subject system to
reconstitute it in a new form and the subsequent implementation of the new
form.� [21]

As we said in the Introduction, re-engineering is based on two processes which are also
de�ned by Chikofsky and Cross:

�Reverse engineering is the process of analyzing a subject system to (a)
identify the system's components and their interrelationships and (b) cre-
ate representations of the system in another form or at a higher level of
abstraction.� [21]

�Forward engineering is the traditional process of moving from high-level
abstractions and logical, implementation-independent designs to the physical
implementation of a system.� [21]

11

12 Background

Requirements New requirements

Designs

Code

F
o

rw
a

rd
 e

n
g

in
e

e
rin

g

R
e
ve

rs
e

 e
n

g
in

e
e

ri
n

g

Reengineering

Figure 2.1: The reengineering process.

In [25], Demeyer et al. demonstrated in diagram form how reverse engineering and
forward engineering work together in the re-engineering process (see Figure 2.1). Reverse
engineering constructs a model from the source code. It represents information about
the source code, which, for example, helps us to understand the system (e.g. design
pattern mining) and to discover concrete problems in the system (e.g. rule violation
checkers and duplicated code detectors). Based on the information provided by the
reverse engineering process and on the new requirements of the system, the original
design can de�nitely be improved. For example, a duplicated code detector tool discovers
copied clone fragments that should be �xed. In this case, the problem is �rst �xed at the
design level: the transformed model introduces a new method representing the common
functionality and the originally copied clone fragments are replaced with method calls
to the new common method. Afterwards, the source code is updated based on the
transformed model.

Reverse engineering tools basically deal with two tasks. The �rst task is source code
parsing and extracting an abstract model from the source code, while the second one
is performing some exploratory operations on the abstract model. In this thesis we will
deal with the latter task of reverse engineering. Reverse engineering tools in this thesis
mean these kind of tools. Namely, we will deal with design pattern miners, duplicated
code detectors and rule violation checkers. These three areas will now be described.

Design pattern miners The correct use of design patterns in software development
is a commonly used premise for the good quality of the design in terms of - among other
things - reusability and maintainability. Well-established and documented design patterns
exist in various areas of software development. One of the most commonly recognized
pattern catalogues was compiled by Gamma et al. [39], which describes patterns used

2.1 Reverse engineering 13

in object-oriented analysis and design. Here, we will make use of these patterns. Most
of the systems contain occurrences of design patterns, irrespective of whether they are
introduced by the designer intentionally or unwittingly. Whatever the case, knowing
about the instances of patterns in a software system may be of great help during the
software maintenance phase (for example, to better understand the system's structure
and workings). Unfortunately, in many cases the pattern usage is poorly documented, so
during the reverse engineering process the automatic or semi-automatic procedures used
for discovering design patterns in undocumented software can be a great help if we wish
to re-engineer the software. There are several tools available for discovering patterns in
Java source code like Ptidej [42, 65] and Fujaba [37], and tools also exist for mining
patterns from C++ code like Columbus [8, 32]. However, the automatic recognition of
design patterns is indeterministic because design patterns convey concepts not concrete
solutions. Gamma et al. [39] also proposed concrete solutions, but these solutions may
appear in the source code with another intent as well. Therefore, tools mining design
patterns produce a certain amount of false results which need to be �ltered out.

Duplicated Code Detectors Most developers know about the copy-paste method.
The copy-paste technique means copying a certain code fragment and pasting it into
another part of program code. The problem with this technique is that if the original
code fragment contains bugs (errors) then the copied fragment will contain these bugs
as well, hence the number of bugs immediately increases in the system. In addition,
when the copied fragment has to be modi�ed then the copied fragments also have to be
modi�ed, but it usually not known where the copied fragments are located. However,
developers tend to use this technique frequently because of tight deadlines. They use
it because it seems quick and e�ective at �rst glance, but it carries a potential danger:
every copied code fragment has to be modi�ed consistently in the future. In this way,
this technique is a potential pitfall for the developer and for the company as well. To
address this problem, several duplicated code detector tools have been published (e.g.
Bauhaus [9], CCFinder [19] and Simian [78]). However, detecting duplicated code is not
a trivial task. Copied fragments are frequently modi�ed inconsistently, which will make
detection di�cult and problematic. Thus in practice duplicated code detector tools may
produce some false results and miss some real clones.

Coding Rule Checkers Coding rules describe rules for programming. These rules are
various and some rules relate to the coding style, while others relate to critical coding
mistakes, which can cause runtime errors. For example, Basic Ruleset of PMD [64]
contains the EmptyCatchBlock rule: �Empty Catch Block �nds instances where an

exception is caught, but nothing is done. In most circumstances, this swallows an

exception which should either be acted on or reported.� A coding rule violation occurs
if the programmer does not follow a certain rule and he violates it. Coding rule checker

14 Background

tools discover these violations in the given system. Several rule checkers exist such as
PMD [64], CheckStyle [20], FindBugs [35] and FxCop [38].

The above are just examples of di�erent aspects of areas of reverse engineering. We
will elaborate on these areas, especially that of the evaluation and comparison of design
pattern miner tools.

2.2 Terminology

In this section the terminology that will be used throughout the thesis is clari�ed and
summarized. Based on the corresponding publications the clari�cation of terminology
should be a part of chapters 6 and 7. However, it is much better to gather and present
these terms at the beginning of the thesis to make everything clearer. Figure 2.2 shows
the most frequent terms used in the thesis.

Figure 2.2: Concept map of the most frequent terms of the thesis.

Reverse engineering tools can be classi�ed into domains. A domain groups tools with
the same aim e.g. design pattern miners, duplicated code detectors, or rule violation
checkers.

Each domain contains concepts which describe a concrete problem. For example, in the
case of the design pattern miner domain, one concept is the State design pattern. The
concepts of this pattern were summarized by Gamma et al. [39] in terms of its intent, a
motivation example and its applicability.

2.2 Terminology 15

Every concept has at least one solution. For example, in the case of the design pattern
miner domain, Gamma et al. [39] proposed a structure for the State design pattern (see
Figure 2.3). However, this structure can implemented in several ways, which we refer
to as solutions (e.g. aggregation between Context and State can be implemented with
a simple reference or with a standard container). Moreover, certain implementations
(solutions) can signi�cantly di�er from this implementation (e.g. Context and State are
represented in one common class).

Figure 2.3: The State design pattern.

A solution contains roles. For example, the proposed structure of the State pattern
contains the class level roles Context, State, and ConcreteState.

The tools in a given domain produce di�erent results that refer to one or more positions
in the source code being analyzed. We refer to these positions as result candidates.
A certain tool discovers candidates based on the solution that was the basis of the
discovery process. However, in certain cases a discovered candidate does not correspond
to the original concepts. In such cases we refer to the candidate as a false positive

or false hit. Otherwise, if the candidate corresponds to the original concepts then we
will refer it as a true positive, a true hit or an instance of the original concept. Human
inspection is required to decide whether a candidate matches the concepts and represents
an instance or not. For example, Gamma et al. [39] proposed exactly the same structure
for State and Strategy patterns, which cause these patterns to have the same candidates.
Only human inspection can decide whether a certain candidate is a Strategy or a State
instance. Candidates and instances may be categorized in the following way:

• True Positives (TP): instances found by the tool (correctly).

• False Positives (FP): false candidates reported by the tool (incorrectly).

• True Negatives (TN): false candidates not reported by the tool (correctly).

• False Negatives (FN): instances not found by the tool (incorrectly).

16 Background

Based on these aspects, the following two well-known statistics can calculated. The
precision score is de�ned as TP

TP+FP
× 100, which means the ratio of correctly identi�ed

instances over all found candidates. The recall score is de�ned as TP
TP+FN

× 100, which
means the ratio of correctly identi�ed instances over all existing instances.

The candidates found include other elements which are called as participants. Partici-

pants correspond to the roles of the current solution.

The design pattern miner domain contains several concepts (design patterns), while the
duplicated code detector domain contains just one (duplicated code). Similar to the
design pattern miner domain, the rule violation checker domain also contains several
concepts (empty catch block, broken null check, etc. [64]). However, roles and partici-

pants are only used for the design pattern mining domain.

Design patterns In this thesis we mainly focus on design pattern miner (DPM)1 tools.
This is why we need to introduce additional terms and de�nitions for this area [99],[100].

A design pattern describes a recurring design problem. A design pattern includes at least
four parts: a name, a problem, a structure, and the consequences of applying the pro-
posed structure (see Gamma et al. [39]). The implemented solution of a design pattern
is a design motif (see [44]), which describes a prototypical set of classes and/or ob-
jects collaborating to solve the design problem. A motif typically describes several roles,
which must be ful�lled by program constituents (types, methods, �elds, etc.), their re-
lations (inheritance, subtyping, association, etc.), and/or their collaborations (expressed
in terms of code fragments or UML-like sequence diagrams). Roles can be mandatory or

optional [53].Mandatory roles(e.g. `State' in the `State' motif) represent the essence of
a motif. Optional roles might not be present in some instances (e.g. `Context' may be
missing). An instance of a design pattern P is a set of program constituents playing all
the mandatory roles (and possibly some or all the optional roles) in the motif of P. Pro-
gram constituents playing the mandatory roles are called as fundamental participants. A
candidate of a design motif is a set of program constituents meant to form an instance
of the motif in the program and, generally, reported by a design pattern miner tool,
which typically report candidates that they deem consistent with the design motif P.
Although textbooks typically describe just one motif per design pattern in explicit detail,
there may be several implementation variants for each pattern, thus several design motifs
(solutions) need to be searched for by DPD tools.

2.3 Columbus framework

Some tools (the Columbus design pattern miner component, Maisa, CrocoPat) that will
be evaluated here have been integrated into the Columbus reverse engineering framework.

1The name design pattern detector (DPD) is a synonym for this.

2.3 Columbus framework 17

Moreover, our improvement of the design pattern miner component of the Columbus
framework is also an important part of the thesis. Therefore, it is necessary to introduce
the Columbus framework.

Columbus was developed in cooperation between FrontEndART Ltd., the University of
Szeged and the Software Technology Laboratory of Nokia Research Center. Columbus
is able to analyze large C/C++ projects and to extract facts from them. The main
motivation for developing the Columbus system was to create a general framework for
combining a number of reverse engineering tasks and to provide a common interface
for them. Thus, Columbus is a framework tool which supports project handling, data
extraction, data representation, data storage, �ltering and visualization. All these basic
tasks of the reverse engineering process for the speci�c needs are accomplished by using
the appropriate modules (plug-ins) of the system. Some of these plug-ins are provided
as basic parts of Columbus, while the system can be extended to meet other reverse
engineering requirements as well. This way we have a versatile and readily extendible
tool for reverse engineering tasks.

Figure 2.4 shows the architecture of the Columbus framework with some components.
First, Columbus (CAN) analyzes the source code and builds the corresponding repre-
sentation (Abstract Semantic Graph � ASG) from it. Afterwards, the plugins load this
ASG and they collect the necessary information by traversing the ASG. Lastly, the tools
generate their results.

Figure 2.4: The Columbus framework

One of the Columbus's plug-ins is CAN2Dpm, which discovers design patterns. The
design patterns were described in DPML (Design Pattern Markup Language) �les [8],
which store information about the structures of the design patterns. Here CAN2Dpm
seeks to match this graph to the ASG using our algorithm described in a previous work [8].

Maisa Maisa is a software tool [62] for the analysis of software architectures developed
in a research project at the University of Helsinki. The key idea behind Maisa is to

18 Background

analyze design level UML diagrams and compute architectural metrics for the early
quality assessment of a software system.

Maisa uses constraint satisfaction [56], which is a generic technique that can be applied
in a wide variety of tasks (in our case, to mining patterns from software architectures
or software code). A constraint satisfaction problem (CSP) is represented as a set of
variables and a set of constraints that restrict the values that can be assigned to these
variables. The language of Maisa's design pattern description is Prolog-like.

Maisa has also been integrated into the Columbus framework with the introduction of
the CAN2Maisa plugin [33]. CAN2Maisa generates the appropriate input �le for Maisa.
After, Maisa discovers design pattern candidates from this intermediate �le.

Part I

A proposed method for improving

design pattern mining

19

Chapter 3

Improvement of an existing design

pattern miner tool

�The question of whether computers can think
is like the question of whether submarines can swim.�

Edsger W. Dijkstra

It is clear that recognizing design patterns is a crucial task of the software maintenance
process. In particular, design pattern mining supports the understanding of a software
system by exposing the key participants. Moreover, it can partly make up for the miss-
ing documentation, which is quite a common problem during software development.
However, there is no guarantee that the results produced will be correct.

The problem with the more common approaches to pattern recognition (based on pattern
matching) is that they are inherently too lax in the sense that they produce many false
results, in which some code fragments are identi�ed as pattern candidates that share
only the structure of the pattern description. This is due to the fact that the patterns
themselves are given using conventional object-oriented concepts, such as class diagrams
containing abstract classes and methods, generalization, polymorphism, decoupling con-
crete responsibilities through references to abstract classes, and so on. This leads to
structures that are in many ways quite similar to each other (consider the structures
of, say, Bridge vs. Adapter Object1, Composite vs. Decorator or State vs. Strategy).
Furthermore, such common structures may appear even for code fragments that were
not designed with the intent of representing any speci�c design pattern, but make use of
the above-mentioned techniques simply as good object-oriented solutions to other prob-
lems. The distinction between such true and false results and between di�erent patterns
with the same structures can be made only by applying more sophisticated methods that
involve a deeper investigation of the implementation details and its environment, i. e. to
�nd its real purpose.

In this chapter we propose a machine learning method and experiments on how to im-
prove the results of design pattern miner tools to decide whether they are correct or

1The Adapter design pattern has two variants; namely a class version and an object version, which
di�er in the way the adaptation is achieved; one is by using multiple inheritance, while the other is by
object composition.

21

22 Improvement of an existing design pattern miner tool

not. We applied the design pattern mining approach of our Columbus framework [8],
but each experiment was repeated since both the C++ front end and the pattern min-
ing algorithms have improved quite a lot since then. We carried out experiments on
StarWriter (containing over 6,000 classes), the text editor of the StarO�ce suite [80].
Using the pattern-matching algorithm of Columbus we �rst found several hundred pat-
tern candidates that were further �ltered using machine learning methods to provide
more accurate results.

3.1 The learning process

In the following we will give an overview of the concrete steps of the learning process
we developed. It consists of four consecutive steps, which are the following:

1. Predictor value calculation. In the original pattern mining process [8], Columbus
analyzes the source code and creates an ASG (Abstract Semantic Graph) represen-
tation. Afterwards, the design pattern miner component of Columbus (CAN2Dpm)
�nds design pattern candidates that conform to the actual DPML (Design Pattern
Markup Language) �le, which describes the structure of the pattern looked for.
Each design pattern has features that are not related to its structural description.
We retrieve this kind of information from the source code and use them as input
for the learning system. We call these collected values predictors. In this �rst
step we calculate predictor values from the ASG and then save them to a CSV �le
(predictor table). This �le is basically a table containing the predictor values for
each design pattern candidate.2

2. Manual inspection. Here, we examine the source code manually to decide whether
the design pattern candidates are instances or false candidates. Then we extend
the predictor table �le with a new column containing the results of the manual
inspection.

3. Machine learning. Next, we perform the training of the machine learning systems.
The outputs of these systems are model �les which contain the acquired knowledge.

4. Integration. Lastly, we integrate the results of machine learning (the model �les)
into Columbus to be able to make smarter decisions by �ltering the design pat-
tern candidates. This way, Columbus should report far fewer false positive design
pattern candidates to the user.

Figure 3.1 graphically describes this process. The original elements of the design pattern
mining process of Columbus are denoted by straight lines and empty boxes, while the
new parts introduced by the learning process are denoted by dashed lines and �lled boxes.

2We classify the predictor values according to their magnitude to achieve better learning results. We
divide the values into equal intervals and use the classes corresponding to these intervals as the input
for the learning algorithms.

3.2 Predictors 23

Figure 3.1: The learning process

3.2 Predictors

We chose two design patterns out of 16 patterns handled by the matching algorithm
for the experiments. Our �nal choice was the structural pattern Adapter Object and
the behavioural Strategy pattern since these two occurred most frequently in our exper-
iments. This choice was also appropriate because, after the manual investigation of the
candidates, we found that there were enough true and false examples as well. More-
over, the candidates and their contexts were su�ciently di�erent to train the machine
learning systems successfully. These two patterns are good examples of how general the
structural descriptions of patterns can be in terms of general object-oriented features,
and how useful the deeper information can be for their recognition.

In the following we will outline these two design patterns and the predictors that we
formulated. We also experimented with other predictors, but these proved to be the
most e�ective.

24 Improvement of an existing design pattern miner tool

3.2.1 Adapter object

The aim of the Adapter pattern is to �convert the interface of a class into another

interface that clients expect. Adapter lets classes work together that could not otherwise

because of incompatible interfaces.� [39]

Figure 3.2: The Adapter Object design pattern

The Adapter pattern has four participants (see Figure 3.2). First, the Target class
de�nes the domain-speci�c interface that Client uses. Client in turn represents the class
collaborating with objects that conform to the Target interface. Next, the Adaptee class
describes an existing interface that needs adapting, and lastly Adapter is the class that
adapts the interface of Adaptee to the Target interface.

There are two forms of the Adapter pattern, namely Class and Object. The former uses
multiple inheritance to adapt one interface to another, while the latter uses composition
for the same purpose. We employed Adapter Object in our experiments.

It may be seen that this structure, the delegation of a request through object composition,
is a quite common arrangement used by object-oriented systems and so only a more
detailed analysis may spot the instances of this pattern. Here we identi�ed the following
predictors for the Adapter Object design pattern:

• A1 � PubAdapteeCalls predictor shows how many public methods of the Adapter
candidate class contain a method call to an Adaptee candidate class. Since the
main purpose of the Adapter pattern is to adapt the Adaptee class to the Adapter
class, we reach the Adaptee objects through the Adapter ones. So most public
methods of an Adapter candidate should contain a method call to an Adaptee
candidate.

• A2 � PubAdapteeNotCalls predictor shows how many public methods of the
Adapter candidate class do not contain a method call to an Adaptee candidate
class. We assume that the A1 value is greater than A2, because the Adapter's
intent is to adapt the functionality of Adaptee so the Adapter must have more
public functions that call Adaptee than those that do not.

3.2 Predictors 25

• A3 � NotPubAdapteeNotCalls predictor shows how many non-public methods of
the Adapter candidate class do not contain calls to an Adaptee candidate. We
assume that if A2 is greater than A1, then the private or protected methods are
responsible for calling the Adaptee. Thus, if A2 is larger than A1, then we assume
that A3 will be a low number because the non-public methods should call the
Adaptee.

• A4 � MissingAdapteeParameter predictor shows how many constructors of the
Adapter candidate class do not get an Adaptee candidate as a parameter. The
Adapter is likely to get the Adaptee object that it will manage via its constructors,
so it should be zero or a low value.

• A5 � AdapteeParameterRatio predictor shows the ratio of the constructors of the
Adapter candidate class that get an Adaptee candidate object as a parameter. We
assume that it should be one, or close to one.

• A6 � NewMethods predictor shows how many new methods the Adapter candidate
class de�nes. Client uses Adaptee through the interface of the Target class, so
since the purpose of the Adapter class is to de�ne the methods of Target, no new
methods of its own need to be added.

3.2.2 Strategy

The intent of the Strategy pattern is to �de�ne a family of algorithms, encapsulate each

one, and make them interchangeable. Strategy lets the algorithm vary independently

from clients that use it.� [39]

Figure 3.3: The Strategy design pattern

The Strategy pattern has three participants (see Figure 3.3). The Strategy class declares
an interface common to all supported algorithms. Context uses this interface to call the
algorithm de�ned by a ConcreteStrategy, which implements the algorithm using the

26 Improvement of an existing design pattern miner tool

Strategy interface. The Context class is con�gured with a ConcreteStrategy object and
maintains a reference to a Strategy object.

The fact that the implementation of the algorithm interface is achieved simply by real-
izing the Strategy interface with inheritance and method overriding suggests that this
pattern also requires a more detailed analysis to distinguish its instances from the false
candidates. Here we identi�ed the following predictors for the Strategy design pattern:

• S1 � InheritanceContext predictor shows the number of children of the Context
candidate class. It should be a low value, because otherwise the pattern would be
more similar to the Bridge pattern than to Strategy.

• S2 � IsThereABase predictor shows the number of parents of the Strategy partici-
pant. We assume that Strategy does not have any parents because it provides the
interface to change the strategy.

• S3 � Algorithm predictor investigates the ConcreteStrategy candidate classes. It
represents a value based on the ConcreteStrategy candidates' algorithmical features
like the number of loops and recursions. We suppose the more algorithmic features
it has, the higher the probability of it being a true ConcreteStrategy candidate
(instance).

• S4 � ConcreteStrategy predictor shows the number of ConcreteStrategy candidates
discovered. If this is very low or one then the main advantage of the Strategy
pattern will be lost.

• S5 � ContextParam predictor shows the number of methods of the Context can-
didate which have a Strategy parameter. Usually the Context class forwards the
client's requests to Strategy so that the client can select the Strategy object at
runtime. Thus Context should have at least one method with a Strategy parame-
ter.

• S6 � InheritanceStrategy predictor : shows the number of children3 of the Strategy
candidate class. This value should be close to S4; but in any case it must be
smaller.

3.3 Machine learning approaches used

We employed two machine learning systems for acquiring knowledge from the predictor
sets discussed in the previous section. Both systems produce a model that will be used
for decision making. Besides having the same predictor sets, these two algorithms were
also used in the same way so we were able to test both in the same environment.

3Note that this value is not the same as that for S4 because the ConcreteStrategy-s may be located
deeper in the class hierarchy, and not all children of Strategy are necessarily ConcreteStrategy-s.

3.4 Results 27

The above represent some of the most popular approaches in the area of machine learn-
ing, one being a decision tree and the other a neural network. The system we employed
for the former was C4.5 (which uses an enhanced version of the ID3 algorithm), while
for the latter it was the Backpropagation algorithm.

C4.5 is an enhanced implementation of the ID3 algorithm that was proposed by Quinlan
in 1993 [66]. The C4.5 algorithm makes use of a variant of the rule post-pruning
method to �nd high precision hypotheses to the target concept of the learning problem.
It generates a classi�cation-decision tree for the given data set by recursively partitioning
the data. Training examples are described by attributes (predictor values) whose choice
for a given tree node depends on their information gain at each step during the growth
of the tree.

The Backpropagation algorithm [16] works with neural networks that are the means
for machine learning, whose reasoning concept was borrowed from the workings of the
human brain. This algorithm uses more layers of neurons; it gets the input patterns and
gives them to the input layers. Then it computes the output layer (the output decision)
from the input layer and the hidden (inner) layers. In addition, an error value is also
calculated based on the di�erence between the output layer and the target output pattern
(the learning data). The error value is propagated backwards through the network, and
the values of the connections between the layers are adjusted in such a way that the
next time the output layer is computed the result will be closer to the target output
pattern. This method is repeated until the output layer and target output pattern are
almost equal or up to some iteration limit.

3.4 Results

Here we will present the results of our experiments concerning the accuracy of the
learning methods and their e�ect on design pattern recognition.

The basic pattern matching-based algorithm of Columbus found 84 candidates of Adapter
Object and 42 of the Strategy pattern in StarWriter [80]. Next, we performed a manual
inspection of the source code corresponding to the candidates found and provided a
classi�cation for each candidate; either as a false or true candidate (instance). Table 3.1
lists some statistics about this classi�cation.

Pattern Total candidates False candidates True candidates

Adapter Object 84 59 25
Strategy 42 35 7

Table 3.1: Pattern candidates

28 Improvement of an existing design pattern miner tool

This manually tagged list of candidates was then used as the training set for the learning
systems together with the calculated predictor values for each candidate, as described
in Section 3.1.

In the following we will �rst overview our experiences with the investigation of the
candidates and their relation to the actual predictor values, and then we will present our
results concerning the learning e�ciency.

3.4.1 Adapter object candidates investigation

During our investigation of the Adapter Object candidates we found that they can be
divided into groups that share some common features. We will present two examples of
these groups.

Candidates belonging to the �rst group all have an Adapter class that references another
class through a data member of a pointer type. The referenced class is, however, too
simple to be considered as an Adaptee as it has very few members or too few methods
of it are used by the Adapter. For example, the Adapter contains a String (which is the
Adaptee) that holds the name of the current object, and one of the Adapter's methods
needs the length of the String so it calls the corresponding method of String. Clearly,
these candidates are not real Adapter Object patterns.

Candidates of the second group have an Adapter class that implements some kind of
collection data structure like a set, list or an iterator. These code fragments also have the
structure of an Adapter Object design pattern, but their purpose is obviously di�erent,
so they are not real patterns either.

After we had classi�ed the candidates as true (instance) or false candidates and the
predictor values had been calculated, we investigated whether the actual predictor values
support our assumptions about the predictors given in Section 3.2. Table 3.2 shows the
predictor values for some typical candidates along with their manual classi�cation results.

Candidates C1 C2 C3 C4

A1 - PubAdapteeCalls 5 1 0 2
A2 - PubAdapteeNotCalls 4 0 35 14
A3 - NotPubAdapteeNotCalls 0 2 11 52
A4 - MissingAdapteeParameter 0 0 4 2
A5 - AdapteeParameterRatio 1 1 0.33 0
A6 - NewMethods 7 1 26 9

Classi�cation (True/False) T T F F

Table 3.2: Some predictor values for Adapter Object

Let us look at, say, the C1 candidate, which is a real pattern instance. We can see that
more public methods in Adapter call the Adaptee (A1>A2), while there are no non-public

3.4 Results 29

methods that do not call it (A3=0). The values of A4, A5 and A6 also support our
assumptions (all Adapter constructors take an Adaptee). Let us take the C3 candidate,
which is a false candidate, as another example. It can be seen that the relations between
the values of A1, A2 and A3 are exactly the opposite of the true example, i. e. there
are few calls from Adapter to Adaptee. A5 and A6 support our assumptions as well.
Based on this, we may safely assume that the learning methods probably discovered
these relationships as well.

3.4.2 Strategy candidates investigation

First, we will overview some interesting Strategy candidates. There was a class called
SwModify, which behaved as Context, while SwClient assumed the role of Strategy.
The former had a method called Modify that would call the Modify method of the
latter. Inherited (direct or indirect) classes of SwClient de�ned di�erent Modify methods,
so we classi�ed this candidate as an instance. We also noticed that the number of
ConcreteStrategy-s was quite high.

The above-mentioned Strategy class called SwClient appeared in another candidate too
as the Strategy class, which we eventually treated as a false one for the following
reasons. Context was represented by the class SwClientIter that communicated with
SwClient through the AlgorithmInterface method called IsA. ConcreteStrategy-s de�ned
this method, but since its purpose was only RTTI (runtime type identi�cation) and not
that of a real algorithm, we classi�ed this candidate as false.

There were also some candidates with only one ConcreteStrategy. We decided to classify
these as false candidates because, after investigating all other instances, it was obvious
that a real Strategy pattern instance should have several ConcreteStrategy-s otherwise
its initial purpose is lost.

We investigated the predictor values together with the classi�cations of Strategy in more
depth in order to verify our initial assumptions about the predictors. Table 3.3 shows
four example candidates with the predictor values and the classi�cations.

Candidate C1 C2 C3 C4

S1 - InheritanceContext 0 0 3 1
S2 - IsThereABase 0 1 3 1
S3 - Algorithm 10.15 13.6 0 0
S4 - ConcreteStrategy 65 10 1 2
S5 - ContextParam 2 1 2 6
S6 - InheritanceStrategy 57 9 2 35

Classi�cation (True/False) T T F F

Table 3.3: Some predictor values for Strategy

30 Improvement of an existing design pattern miner tool

The C1 candidate is classi�ed as an instance (true positive). It can be clearly seen that
the S1 and S2 predictors are low, while S3 and S4 are high, as expected. Predictor S5 is
greater than 0 and S6 is smaller than S4, so this appears to be a true positive candidate.

C4 is a false candidate, where the S1 and S2 predictors are not zero. Furthermore S3
and S4 are very low, which suggests that this should be a false candidate according to
our above assumptions. Lastly, S6 is also much higher than S4, which further supports
the belief that this is a false candidate. The manual classi�cation of it was false, so our
assumptions about the predictors were again correct.

In the next section, where we present the actual results of the learning e�ciency, we will
see that the learning methods successfully discovered these features of the predictors
and incorporated them into their models.

3.4.3 Learning e�ciency

To assess the accuracy of the learning process we applied the method of three-fold cross-
validation,4 which means that we divided the predictor table �le into three equal parts
and performed the learning process three times. Each time we chose a di�erent part
for testing and the other two parts for learning. We de�ne the following basic measures
that are required to assess the learning e�ciency5:

• True Positives of Learning (TPL): an instance correctly classi�ed by the machine
learning model as a true candidate (aka instance).

• False Positives of Learning (FPL): a false pattern candidate incorrectly classi�ed

by the machine learning model as a true candidate (aka instance).

• True Negatives of Learning (TNL): a false pattern candidate correctly classi�ed by
the machine learning model as a false pattern candidate.

• False Negatives of Learning (FNL): an instance incorrectly classi�ed by the machine
learning model as a false candidate.

We measured the learning accuracy score in each case as the ratio of the number of
correct decisions of the learning systems (compared to the manual classi�cation) over
the total number of candidates i.e. (TPL+TNL

TPL+TNL+FPL+FNL
)×100. We also calculated the

average and standard deviation (shown in parentheses) using these three testing results
and got the scores shown in Table 3.4.

It can be seen that the two learning methods produced very similar results, but the
accuracy score was worse in the case of Adapter Object. This is probably due to two

4We did not have enough design pattern candidates to perform the usual ten-fold cross-validation
method, so we divided the training set into three parts instead of ten.

5These measures should not be confused with those de�ned in Section 2.2.

3.4 Results 31

Design Pattern Decision Tree Neural network

Adapter Object 66.70% (21.79%) 66.70% (23.22%)
Strategy 90.47% (4.13 %) 95.24% (4.12 %)

Table 3.4: Average accuracy with standard deviation based on three-fold cross validation

reasons. First, one of the three validation tests produced very bad results, which worsened
the overall percentage scores, and second, it seems that we found better predictors for
Strategy than for Adapter Object.

However, the real importance of the learning accuracy scores will be appreciated only
by investigating in more detail how the application of machine learning improves the
accuracy of the design pattern recognition. To do this, we applied the following measures:

• Speci�city (SPC) This measures how the learning model can �lter out false
candidates: TNL

TNL+FPL
× 100

• Negative Predictive Value (NPV) This shows to what extent the prediction
of false candidates was wrong: TNL

TNL+FNL
× 100

• Recall (R) This measures how many of the manually classi�ed true positive
candidates (instances) are correctly classi�ed by the learning method: TPL

TPL+FNL
×

100.

• Precision (P) This shows the degree of correctly classi�ed true positive candi-
dates (instances): TPL

TPL+FPL
× 100

Algorithm Neural Network Decision Tree

Pattern Adapter Object Strategy Adapter Object Strategy

TPL 6 7 5 5
FPL 9 2 8 2
TNL 50 33 51 33
FNL 19 0 20 2

Speci�city 84.75% 94.29% 86.44% 94.29%
Negative Pred. Val. 72.46% 100% 71.83% 94.29%
Recall 24% 100% 20% 71.43%
Precision 40% 77.78% 38.46% 71.43%

Table 3.5: Learning statistics

Table 3.5 shows the results obtained for these measures for each learning method. It may
be concluded from the table that speci�city is really good with both learning methods
and design patterns (85�94%), and that few true candidates (instances) were wrongly
predicted as false ones, so the NPV of �ltering is also quite good.

As for the ability to predict true positive candidates (instances), the results are diverse.
Strategy candidates were fairly well classi�ed, but only one fourth to one �fth of Adapter
Object instances were found by the learning methods with a modest precision score. This
may be accounted for by the fact that the predictors were designed with the intent to
�lter out false pattern candidates (Speci�city).

32 Improvement of an existing design pattern miner tool

3.5 Summary

In this chapter we presented an approach whereby signi�cant improvements in accuracy
can be achieved in design pattern recognition compared to the conventional structure
matching-based methods. The main idea here was to employ machine learning methods
in order to re�ne the results of the structure-based approaches.

Our goal was to �lter out false candidates from the results provided by our structure-
based pattern miner algorithm [8]. In our experiments we achieved learning accuracy
scores of 67�95% and with the model obtained we were able to �lter out 51 of the 59
false candidates of the Adapter Object design pattern (out of a total of 84 candidates)
and 33 of the 35 false candidates of the Strategy pattern (out of a total of 42 candidates).

The method presented here has a critical part. The manual evaluation of design pattern
candidates, which are discovered by a certain tool, is a really time-consuming, dull and
taxing task. The person who carries out the assessment has to look for the appropriate
source �le(s) and locate the appropriate source code fragment(s), and then investigate
the fragments together to get the whole picture. Afterwards, he has to record his opinions
for later use. However, this part is really important in our procedure, so tool-support
for this would be really useful. Among other things and based on this motivation, we
developed DEEBEE, an online framework and benchmark that is capable of evaluating
and comparing design pattern candidates. DEEBEE will be presented later in Chapter 5.

Part II

Evaluation of design pattern miner

tools

33

Chapter 4

Performance evaluation of design

pattern miner tools

�The only source of knowledge is experience.�

Albert Einstein

The purpose of this chapter is to compare three design pattern miner tools, namely
Columbus, Maisa and CrocoPat. We chose these tools because it is possible to prepare
a common input for them with Columbus, our front end. Our study was based on the
same input data, hence ensuring a fair-minded comparison, because any parsing errors
a�ected all three tools in the same way. The tools were compared with three views in
mind: di�erences between the candidates, speed and memory requirements. We did not
analyze whether a design pattern candidate was true or false; we examined these tools
only from the viewpoint of structural candidates and di�erences.

From the results of experiments we found that CrocoPat is generally the fastest, Maisa
needs the least memory and Columbus is the fastest in the case of mining very complex
patterns.

4.1 Framework

Our previous work enabled us to provide the input for Maisa [34], while in the case of
CrocoPat we created a new plug-in for Columbus which is able to prepare the appropriate
input. We illustrate this process in Figure 4.1.

4.1.1 CrocoPat

Beyer et. al. [14, 15] developed a system that is able to work with large graphs e�ectively.
The e�ectiveness of the system is based on binary decision diagrams which represent the
relations compactly. They developed the relation manipulation language (RML) for

35

36 Performance evaluation of design pattern miner tools

Figure 4.1: Common framework

manipulating n-ary relations and a tool implementation called CrocoPat. CrocoPat is
an interpreter, and it executes RML programs. First, CrocoPat reads the input graph in
Rigi Standard Format (RSF) [59] from the standard input. Afterwards, CrocoPat reads
the RML description and creates a BDD representation from it. After, an RSF output
is produced that shows the patterns found in the input graph according to the given
RML description. We extended the Columbus framework with a plugin that generates
the appropriate input graph for CrocoPat based on the information in the ASG1.

The RML (Relational Manipulation Language) is very similar to logic programming lan-
guages like Prolog, but it contains techniques of imperative programming languages too.
Hence, it is very expressive and it can describe design patterns among other structures.
Unfortunately, we have not found any design pattern library in RML, so we created the
descriptions of the patterns in the RML language for 18 design patterns. Figure 4.2 shows
one concrete implementation of these, namely the description of the Factory Method
design pattern in CrocoPat's RML language.

4.2 A comparative approach

Now we will present a comparative approach of the given design pattern mining tools
with the following viewpoints:

• Di�erences between the design pattern candidates found. In a fair comparison
of the tools we have to know and take into consideration why their results are
di�erent. However, the di�erences might be due to several reasons. The di�erent
tools might use di�erent techniques to de�ne a design pattern. Most of the time
the recognition algorithms are di�erent as well. Furthermore, the representation of

1The Columbus framework was introduced in Section 2.3.

4.2 A comparative approach 37

AbstractClass(X) := CLASS(X) & ABSTRACT(X);

Product(X) := AbstractClass(X);

ConcreteProduct(Cpr,Pr) := CLASS(Cpr) & Product(Pr) &

TC(INHERITANCE(Cpr,Pr));

Creator(Cr,Pr) := AbstractClass(Cr) & ASSOCIATION(Cr,Pr) & Product(Pr) &

Cr != Pr;

CreatMethods(Cr,Pr,M) := Creator(Cr,Pr) & HASMETHOD(Cr,M);

CreatorFM(Cr,Pr,FM) := CreatMethods(Cr,Pr,FM) & VIRTUAL(FM) &

PUREVIRTUAL(FM) & RETURNS(FM,Pr);

CreatorAM(Cr,Pr,AM,FM) := CreatMethods(Cr,Pr,AM) &

CreatorFM(Cr,Pr,FM) & CALLS(AM,FM);

ConcreteCreator(Ccr,Pr,Cr,Cpr) := CLASS(Ccr) & ASSOCIATION(Ccr,Pr) &

Product(Pr) & Creator(Cr,Pr) & TC(INHERITANCE(Ccr,Cr)) &

ConcreteProduct(Cpr,Pr) & Ccr != Pr;

CCreatorFM(Ccr,Pr,Cpr,M) := ConcreteCreator(Ccr,Pr,_,Cpr) &

HASMETHOD(Ccr,M) & VIRTUAL(M) & !PUREVIRTUAL(M) &

RETURNS(M,Pr) & CREATES(M,Cpr);

FactoryMethod(Prod,Creat,CProd,CCreat,CreatFM,CreatAM,CcreatFM) :=

Product(Prod) &

Creator(Creat,Prod) &

ConcreteProduct(CProd,Prod) &

ConcreteCreator(CCreat,Prod,Creat,CProd) &

CreatorFM(Creat,Prod,CreatFM) &

CreatorAM(Creat,Prod,CreatAM,CreatFM) &

CCreatorFM(CCreat,Prod,CProd,CcreatFM) &

CProd != CCreat &

Creat != CProd;

Figure 4.2: Factory Method pattern in RML

the results might not be the same. Based on this viewpoint, we will try to discover
the possible reasons for the di�erences, and to test our current assumptions.

• Speed. Design pattern mining can be a very time consuming task, e.g. because
of the cost of a conventional graph matching algorithm. Hence we shall compare
the given tools in terms of speed as well. Speed is measured by the amount of the
time taken by the tool to mine the given design pattern in the given C++ project.

38 Performance evaluation of design pattern miner tools

Section 4.3.2 describes how the speed of the given tools is measured.

• Memory usage. Similar to the previous viewpoint, memory usage could be a
problematic point of a design pattern miner tool. We measured the maximal
memory required for the design pattern mining task. It was not straightforward
because the memory usage of CrocoPat is �xed, and only the Columbus source
code was available. The memory measuring method applied for the given tools is
described in Section 4.3.3.

4.3 Results

We made a comparison on four open source small-to-huge systems, to make the bench-
mark results independent of system characteristics like size, complexity and application
domain. These four real-life, freely available C++ projects are the following.

• DC++ 0.687. An open-source client for the Direct Connect Protocol that allows
one to share �les over the Internet with other users [24].

• WinMerge 2.4.6. An open-source visual text �le di�erentiating and merging tool
for Win32 platforms [93].

• Jikes 1.22-1. A compiler that translates Java source �les (as de�ned in The Java
Language Speci�cation) into the byte-coded instruction set and binary format
de�ned in The Java Virtual Machine Speci�cation [47].

• Mozilla 1.7.12. All-in-one open source Internet application suite [58]. We used a
checkout dated March 12, 2006.

Table 4.1 lists some statistics about the projects we analyzed. The �rst row shows how
many source and header �les were analyzed in the evaluated software systems. The
second row lists the size of these source and header �les in megabytes.

Size info. DC++ WinMerge Jikes Mozilla

No. of �les 338 512 74 11,325
Size (MB) 3 5.3 3 127
LOC 12,727 49,809 52,169 1,288,869
No. of classes 68 174 258 5,467

Table 4.1: About the size of each project studied

The last two rows were calculated via the metric plug-in of Columbus, and gives infor-
mation about the total lines of code (LOC) and the number of classes. By LOC we
mean every line in source code that is not empty and is not a comment line (also known
as �logical lines of code�).

4.3 Results 39

All the tests were run on the same computer, so the measured values were independent
of the hardware and hence the results are comparable. Our test computer had a 3
GHz Intel Xeon processor with 3 GB memory. In the next section we will describe our
benchmark results and then analyze them in detail.

Now we will present our results concerning the di�erences between the design pattern
candidates found, the running-time and the memory requirements. Below we will begin
with the discovered pattern candidates, and then compare the time requirements for the
tools. After, we will list the memory requirements of the design pattern mining tools.

4.3.1 Discovered pattern candidates

In this section we will describe our experiments related to pattern candidates found by
the design pattern miner tools that we compared. Unfortunately, Maisa did not contain
descriptions of the patterns Bridge, Chain of Responsibility, Decorator, State, Strategy
and Template Method (the results for these are marked with dashes in our tables).
We examined the di�erences between the tools manually, checking and comparing the
candidates and the description of design patterns. First, we summarize our results on
DC++ in Table 4.2.

Design Pattern Columbus Maisa CrocoPat

Abstract Factory 0 0 0
Adapter Class 0 2 0
Adapter Object 0 0 0
Bridge 0 - 0
Builder 0 0 0
Chain Of Responsibility 0 - 0
Decorator 0 - 0
Factory Method 0 0 0
Iterator 0 0 0
Mediator 0 0 0
Prototype 0 0 0
Proxy 0 0 0
Singleton 0 0 0
State 14 - 14
Strategy 14 - 14
Template Method 0 - 0
Visitor 0 0 0

Table 4.2: DC++ candidates

This was a small software package, so it did not contain too many design pattern
candidates. Maisa found two Adapter Classes, while CrocoPat and Columbus found
none. This is due to the fact that the de�nition of the Adapter Class in Maisa di�ered

40 Performance evaluation of design pattern miner tools

from those in Columbus and CrocoPat. In Maisa, the Target participant class was not
abstract and the Request method of the Target class was not pure virtual, while in
Columbus and CrocoPat these features were requested. We examined the two Adapter
Class candidates in Maisa, and we found that the Targets were not abstract in these cases
and the Request operations were not pure virtual. Columbus and CrocoPat found 14
State and 14 Strategy design pattern candidates. The reason for the identical number
of candidates is that the State and Strategy patterns have the same static structure, so
their description in the tools were the same as well [8].

Table 4.3 shows the results of using the tools in the case of WinMerge. Maisa found
two more Adapter Objects in WinMerge than Columbus. In the �rst case the di�erence
was due to the fact that the Request method of a participant Adapter Object class was
de�ned virtual in Columbus, while Maisa did not have this precondition. In the second
case the pattern found in Maisa had a Target participant that was not abstract, which
was a requirement in Columbus. When we relaxed the description of this pattern in
Columbus, it found these two candidates too. The best solution would be if an exact
de�nition existed for this pattern in both tools. CrocoPat found six Adapter Object
candidates, while Columbus found only three.

Design Pattern Columbus Maisa CrocoPat

Abstract Factory 0 0 0
Adapter Class 0 0 0
Adapter Object 3 5 6
Bridge 0 - 0
Builder 0 1 0
Chain Of Responsibility 0 - 0
Decorator 0 - 0
Factory Method 0 0 0
Iterator 0 0 0
Mediator 0 0 0
Prototype 0 0 0
Proxy 0 0 0
Singleton 0 0 0
State 3 - 10
Strategy 3 - 10
Template Method 2 - 42
Visitor 0 0 0

Table 4.3: WinMerge candidates

The reason was that when Columbus found pattern candidates with certain participant
classes in common, then Columbus treated them as the same pattern candidate. For
example, if a design pattern (e.g. Strategy) contains a class with child classes (where
these child classes could be of arbitrary number) then every repeated child class (e.g.
ConcreteStrategy-s) and every repeated method (e.g. repeated AlgorithmInterface meth-
ods in each ConcreteStrategy) appears as a new candidate in the case of CrocoPat, while

4.3 Results 41

Columbus grouped these candidates into one big candidate based on the common (e.g.
Strategy) class. This is a very important di�erence between Columbus and CrocoPat,
so we will stress this di�erence several times.

Maisa found a Builder in WinMerge but the two other tools did not, because in Maisa
the Builder pattern representation did not contain the Director participant while the
other two tools contained it. In the case of State, Strategy and Template Method the
di�erences were because Columbus counted pattern candidates participating with certain
classes in common only once, as in the case of Adapter Object.

Next, we will describe our experiments on design pattern candidates found in Jikes (see
Table 4.4). Maisa found an Adapter Class, while Columbus and CrocoPat did not.
The reason was the same as in the case of DC++, namely that in Maisa the Target
participant class was not abstract and the Request method of the Target class was not
pure virtual, but in Columbus and CrocoPat these features were required. In the case of
Adapter Object Maisa failed to �nd a lot of candidates, while Columbus and CrocoPat
discovered a lot of design pattern candidates. It appeared as if CrocoPat found more
candidates because Columbus counted repeated pattern candidates with certain classes
in common only once. In actual fact, these tools found the same pattern candidates.

Design Pattern Columbus Maisa CrocoPat

Abstract Factory 0 0 0
Adapter Class 0 1 0
Adapter Object 78 10 94
Bridge 0 - 0
Builder 0 1 0
Chain Of Responsibility 0 - 0
Decorator 0 - 0
Factory Method 0 0 0
Iterator 0 0 0
Mediator 0 4 0
Prototype 84 0 84
Proxy 53 74 66
Singleton 0 0 0
State 170 - 334
Strategy 170 - 334
Template Method 4 - 4
Visitor 0 23 0

Table 4.4: Jikes candidates

In Maisa, the Builder pattern representation did not contain the Director participant,
so Maisa found an incomplete Builder candidate in Jikes. CrocoPat did not �nd any
Mediator in Jikes, while Maisa found four. This is because Maisa described Mediator in
a very special way, so that it contained a Mediator with two Colleagues, but Concrete
Mediators were overlooked. The description of Mediator in CrocoPat required a Mediator

42 Performance evaluation of design pattern miner tools

abstract class with a child ConcreteMediator class as well. In the case of Proxy, each
tool discovered the same 53 candidates, but CrocoPat also counted repeating patterns
with di�erent methods and classes in 13 cases (66 altogether). Maisa found 21 more
candidates more (74 altogether) because it did not need an abstract Proxy participant
class in the Proxy design pattern. In the case of State and Strategy, it seems that
Columbus found fewer design pattern candidates, but it counted each repeated pattern
with certain classes in common only once. Maisa found 23 Visitor patterns which the
other two did not. This is due to the permissive description of this pattern in Maisa.

Design Pattern Columbus Maisa CrocoPat

Abstract Factory 5 1 9
Adapter Class 0 59 0
Adapter Object 65 57 247
Bridge 880 - 1100
Builder 0 11 0
Factory Method 0 67 0
Mediator 0 2 0
Prototype 83 25 901
Proxy 0 1 0
Singleton 8 0 20
State 722 - 7662
Strategy 722 - 7662
Template Method 279 - 522
Visitor 0 30 0

Table 4.5: Mozilla candidates

Table 4.5 shows the results of our experiments with Mozilla. A lot of design pattern
candidates were found, as in the case of State, where CrocoPat found 7662 and Columbus
discovered 722 candidates. This huge di�erence was due to the fact that the design
pattern candidates found were not grouped by CrocoPat, while Columbus grouped them.
In the case of Adapter Class, the reasons for the di�erences were the same as in Jikes and
in DC++ examined earlier. Columbus did not count repeated candidates in the case
of Adapter Object, so it actually found the same candidates as CrocoPat, but Maisa
missed some because of its di�erent pattern description. CrocoPat and Columbus found
the same candidates of the Bridge pattern, but Columbus counted the candidates with
certain classes in common only once. Maisa found incomplete Builder candidates again,
because the description of this pattern did not contain the Director participant class.
Maisa found Factory Method candidates, while the other two did not. This is because
the other two de�ned Factory Method with an abstract Product and an abstract Creator
participant class, while Maisa did not require these participants to be abstract. CrocoPat
did not �nd any Mediator candidate in Mozilla, but Maisa discovered two candidates.
This is because Maisa described Mediator in a very special way, so it contained a Mediator
with two Colleagues, but Concrete Mediators were missing. In the case of Prototype,

4.3 Results 43

Singleton, State, Strategy and Template Method the di�erences were again due to the
fact that CrocoPat counted each repeated pattern candidate, while Columbus counted
these repeated ones with certain classes in common only once.

We have not explained every discrepancy, but we o�ered some of the more common
reasons for each. In essence, the design pattern candidates found would be the same in
most of the cases if we could disregard the following common causes of the di�erences:

• Di�erent de�nitions of design patterns. We found that there were some speci�c
reasons why the tools discovered di�erent pattern candidates. The main one was
that in some cases a design pattern description overlooked a participant as in the
case of the Builder pattern in Maisa. Here the pattern de�nition did not contain
the director participant, hence the candidates discovered by Maisa were not the
same as those found by the other two. For example, the results of Maisa in
WinMerge for the Builder pattern di�ered from those of CrocoPat and Columbus
for just this reason.

• Precision of pattern descriptions. Another di�erence was how precise and strict
the pattern descriptions were. For example, in the case of Jikes the di�erences in
the numbers of Adapter Class candidates found were due to the fact that CrocoPat
and Columbus de�ned the Target as abstract while Maisa did not.

• Di�erences in algorithms. We found di�erences in the design pattern miner algo-
rithms as well. Columbus and Maisa counted the repeated candidates with certain
classes in common only once, but CrocoPat counted each occurrence.

The di�erences between the tools can be summarized in two points:

• Intentional feature is integrated into the tool to achieve better results. These
features should not be modi�ed in a comparison. For example, in Maisa the missing
participant could be an intentional feature to discover more pattern instances.

• The ad-hoc nature of the tools creates unnecessary and confusing di�erences.
These features should be standardized so as to have a common form or solution
to facilitate a comparison. For example, in Maisa the missing participant might
be ad-hoc as well.

The connection between above-mentioned di�erences and the intentional or ad-hoc fea-
tures is the following. Di�erences caused by di�erent de�nitions of design patterns could
be intentional and ad-hoc as well. In this way, it is hard to determine whether it was
ad-hoc or intentional. Hence it would be di�cult to standardize and to eliminate this
di�erence among the tools. However, based on our experiments it would be useful to
have some kind of common design pattern de�nition repository, which would be worth
studying. Di�erences caused by precision of pattern descriptions are quite similar to the
previous one, and they arise for the same reasons.

44 Performance evaluation of design pattern miner tools

Lastly, certain kinds of di�erences in algorithms could be standardized in a comparison
of design pattern miner tools. For example, Columbus and Maisa counted the repeated
candidates with certain classes in common only once while CrocoPat counted each oc-
currence. This di�erence should be handled and standardized in a fair comparison of
candidate correctness. In chapters 5 and 7 a grouping method will be presented that
can handle this di�erence.

4.3.2 Pattern mining speed

Now we will compare the speed of the three design pattern miner tools. We wanted to
measure just the search time for patterns, hence we divided the running time into two
parts, namely an initialization part and a pattern mining part.

Subject system Columbus Maisa CrocoPat

DC++ 00:00:03 00:00:00 00:00:03
WinMerge 00:00:08 00:00:03 00:00:11
Jikes 00:00:11 00:00:06 00:00:12
Mozilla 00:05:33 00:01:32 00:03:12

Table 4.6: Initialization times

Table 4.6 contains the initialization time of the tools (hh:mm:ss). For Maisa and Croco-
Pat we also measure the time required for exporting from the ASG representation into
the tool-speci�c format (see Table 4.7).

Exporter Name CAN2Maisa CAN2CrocoPat

DC++ 00:00:06 00:00:05
WinMerge 00:01:05 00:00:13
Jikes 00:00:13 00:00:10
Mozilla 00:06:11 00:05:47

Table 4.7: Initialization time - exporters

Tables 4.8, 4.9 and 4.10 only contain the pattern mining times. These times were
measured in the following way:

• Columbus. We extended Columbus to report time statistics for the pattern mining
procedure. We only considered the graph matching time; we did not include the
time taken for ASG to load.

• CrocoPat. For CrocoPat, we made a small tool which executed CrocoPat and
measured its running time. We measured the time needed for each pattern mining
procedure for each subject software system. Next, we also measured the time
for the subject systems with an empty RML program, because this way we could

4.3 Results 45

measure the time necessary to reserve the memory and to prepare the BDD rep-
resentation (initialization time). After, we subtracted the initialization time from
the full running time for each result, and this way obtained the pattern matching
times.

• Maisa. Maisa created statistics for each pattern mining procedure, which contained
information about the time necessary for pattern mining and for the initialization,
so we used these generated statistics.

First, we will list our results for DC++. In this case the required time was very small for
each assessed pattern miner tool (lower than one second), hence they can be treated as
being practically identical. This is due to the small size of the DC++ system, hence the
design pattern candidates were discovered very quickly in this system by all three tools.

Design Pattern Columbus Maisa CrocoPat

Abstract Factory 00:00:00 00:00:02 00:00:07
Adapter Class 00:00:00 00:00:00 00:00:07
Adapter Object 00:00:00 00:00:17 00:00:08
Bridge 00:00:00 - 00:00:08
Builder 00:00:00 00:00:24 00:00:09
Chain Of Responsibility 00:00:00 - 00:00:08
Decorator 00:00:00 - 00:00:09
Factory Method 00:00:00 00:00:02 00:00:01
Iterator 00:00:00 00:00:21 00:00:01
Mediator 00:00:00 00:00:24 00:00:04
Prototype 00:00:00 00:00:02 00:00:08
Proxy 00:00:00 00:00:22 00:00:14
Singleton 00:00:00 00:00:00 00:00:07
State 00:00:03 - 00:00:08
Strategy 00:00:03 - 00:00:08
Template Method 00:00:01 - 00:00:06
Visitor 00:00:00 00:00:00 00:00:05

Table 4.8: WinMerge times

In the case of WinMerge (see Table 4.8), Columbus was the best tool. This is due to
the fact that the Columbus design pattern mining algorithm �lters out several classes at
the beginning of the process and WinMerge has a relatively small number of classes. In
contrast, with Jikes and Mozilla, Columbus could not �lter out as many classes at the
beginning of the process so it achieved worse results than those of the other two.

The time requirements for discovering patterns in Jikes is shown on Table 4.9. Columbus
was very fast in the case of larger patterns (e.g. Abstract Factory, Visitor), because it
could �lter out [8] a lot of class candidates at the beginning of the discovering process.
However, Columbus was slower in the case of smaller patterns (e.g. Template Method)
because here a lot of class candidates remained for the detailed discovery process. The
time requirements for CrocoPat and Maisa were rather similar.

46 Performance evaluation of design pattern miner tools

Design Pattern Columbus Maisa CrocoPat

Abstract Factory 00:00:00 00:00:06 00:00:09
Adapter Class 00:00:00 00:00:04 00:00:07
Adapter Object 00:00:09 00:00:11 00:00:07
Bridge 00:00:00 - 00:00:06
Builder 00:00:08 00:00:59 00:00:07
Chain Of Responsibility 00:00:00 - 00:00:07
Decorator 00:00:00 - 00:00:18
Factory Method 00:00:00 00:00:04 00:00:02
Iterator 00:00:00 00:00:55 00:00:07
Mediator 00:00:00 00:01:05 00:00:12
Prototype 00:04:18 00:00:04 00:00:07
Proxy 00:00:00 00:01:03 00:00:13
Singleton 00:00:00 00:00:00 00:00:11
State 00:04:48 - 00:00:12
Strategy 00:04:48 - 00:00:12
Template Method 00:03:55 - 00:00:06
Visitor 00:00:00 00:00:06 00:00:14

Table 4.9: Jikes times

Design Pattern Columbus Maisa CrocoPat

Abstract Factory 00:02:32 00:18:21 00:13:43
Adapter Class 00:00:06 00:18:34 00:14:34
Adapter Object 00:04:41 03:07:03 00:13:42
Bridge 04:50:29 - 00:17:20
Builder 01:39:09 04:09:22 00:14:02
Chain Of Responsibility 00:00:07 - 00:13:33
Decorator 00:00:18 - 00:27:40
Factory Method 00:03:03 00:15:56 00:00:02
Iterator 00:00:07 03:54:12 00:14:19
Mediator 00:48:03 04:19:07 00:18:10
Prototype 01:24:55 00:14:21 00:25:49
Proxy 00:00:07 04:41:47 00:27:10
Singleton 00:00:02 00:00:00 00:13:17
State 04:09:20 - 00:20:22
Strategy 04:09:20 - 00:20:22
Template Method 00:14:46 - 00:13:27
Visitor 00:00:07 00:06:56 00:20:45

Table 4.10: Mozilla times

Table 4.10 lists our results for Mozilla. In most cases, CrocoPat produced the best
results, but in certain cases Columbus and Maisa were faster. Columbus was slow when
it was only able to �lter out a small number of class candidates at the beginning of the
discovery process. The CSP algorithm of Maisa was also slow here.

Overall, we concluded that the best tool from a speed perspective is CrocoPat, but in

4.3 Results 47

some cases Columbus was faster. Columbus can be applied in the case of small- or
medium-sized systems and in the case of complex design patterns like Visitor. As for
CrocoPat, it can used in the case of a larger system or in the case of a simpler design
pattern like Template Method.

4.3.3 Memory requirements

Now we will compare the memory usage of the three design pattern miner tools. We
measured the memory requirements of each design pattern mining procedure, but we
will summarize our results in one table because we found them to be very similar.

The memory measurement method for the three systems was carried out in the following
way:

• Columbus. We extended the tool at the source code level so that it reported data
about its memory usage automatically.

• Maisa. Maisa did not report its memory usage, so we measured it by simply
monitoring its peak memory usage on the task manager.

• CrocoPat. CrocoPat's memory usage is constant and can be set as a com-
mand line parameter. Therefore, we executed CrocoPat between 1 megabyte to
200 megabytes of reserved memory for each pattern mining process (it is based on
a binary search algorithm). After, we took the smallest case where CrocoPat still
terminated normally.

The results here showed that the memory usage strongly depends on the size of the
projects analyzed and it is independent of the given design patterns. This is true for
each pattern miner tool, as can be seen in Table 4.11.

Subject system Columbus Maisa CrocoPat

DC++ 37 (19) 10-11 2-3
WinMerge 71 (32) 13-14 10-11
Jikes 51 (26) 13-17 10-14
Mozilla 866 (330) 60-71 125-175

Average 256 (102) 24-28 37-51

Table 4.11: Memory requirements in megabytes

In the case of Columbus, the required memory was very large compared to the other
two. This is due to the fact that Columbus is a general reverse engineering framework
and design pattern detection is just one of its many features. For this reason it uses an
ASG representation, which contains all the information about the source code (including
detailed facts about statements and expressions not needed for design pattern detection)

48 Performance evaluation of design pattern miner tools

for all kinds of tasks. Right now, for technical reasons, the design pattern miner plug-
in of Columbus does not work without the ASG (although it does not need it), but we
would like to �x this problem. Hence, we also measured the memory needed by Columbus
without the ASG and listed these values in parentheses in Table 4.11.

Note that with CrocoPat and Maisa the required memory was smaller because their inputs
only contained information about the source code necessary for pattern detection.

After viewing Table 4.11 we may conclude that, in the terms of memory requirements,
Maisa's performance was the best.

4.4 Summary

In this chapter we compared three pattern miner tools, namely Columbus, Maisa and
CrocoPat. We compared them in terms of di�erences of pattern candidates, speed
and memory consumption. We provided a common input for the tools by analyzing
the source code with the front end of Columbus and with plug-ins for generating the
required �les for the tools. This way, as a �side e�ect� of this study, we extended our
Columbus Reverse Engineering Framework with a plug-in for CrocoPat. From the results
of experiments we found that CrocoPat is generally the fastest, Maisa needs the least
memory and Columbus is the fastest in the case of mining very complex patterns.

The �ndings here are three-fold. First of all, we experimentally learned and tested our
preliminary assumptions about the causes of the di�erences between the results of the
tools. These results support the grouping mechanism that will be presented in chapters 5
and 7. Second, it is clear which tool should be used in certain circumstances in terms of
speed or memory consumption. Columbus is the fastest in the case of complex patterns
or in the case of small or medium-sized systems. CrocoPat is the fastest in the case
of simpler patterns or in the case of large sized systems, while Maisa can used if just a
small amount of memory is available.

During this study we addressed the problem of comparing the results of di�erent kinds
of tools. Di�erent result formats have to be processed and the appropriate source code
fragments have to be located and the results of a comparison need to be stored. We
performed this manually, which was a quite dull and time-consuming task. As a solution
to this laborious manual work, we will introduce DEEBEE in the next chapter.

Chapter 5

Validation of design pattern miner

tools

�The art and science of asking the right questions
is the source of all knowledge.�

Thomas Berger

The problem with most approaches of pattern recognition (based on pattern matching)
is that they are insu�ciently strict in the sense that they produce many false results,
in which some code fragments are identi�ed as pattern candidates that have only the
structure of the pattern description. The pattern miner tools usually employ di�erent
de�nitions of patterns, di�erent algorithms for detecting these patterns, and they present
their results in di�erent output formats, as shown in the previous chapters. Another major
problem is that there is no standard measurement system or a test database to evaluate
and compare results produced by design pattern miner tools.

These problems make it di�cult to evaluate and compare design pattern miner tools.
We also observed that there was a desire in conferences and publications for a means
of evaluating patterns easily and e�ectively [63]. Hence, we developed a publicly avail-

able benchmark, DEEBEE (DEsign pattern Evaluation BEnchmark Environment), for
evaluating and comparing design pattern miner tools. Our benchmark is general, being
language, software, tool and pattern independent. With this benchmark the accuracy
(precision and recall) of the tools can be validated by anyone.

In this chapter our benchmark will be introduced and experiments will be described
that evaluated and compared two design pattern miner tools, namely Maisa and Colum-

bus. The tools were evaluated on reference implementations of design patterns, on a
software system called FormulaManager, which contains every design pattern in a real
context, and on an open source software system called NotePad++. The reference
implementations and FormulaManager were implemented by us. In addition, pattern
instances from NotePad++ recovered by professional software developers were added to
the benchmark.

49

50 Validation of design pattern miner tools

5.1 Benchmark

We shall use the well-known issue and bug tracking system called Trac [83] (version
0.9.6) as the basis for the benchmark. Trac was written in Python and it is an easily
extendible and customizable plug-in oriented system.

5.1.1 Architecture

The core of the Trac system contains a documentation subsystem (Wiki), and modules
for source browsing, timeline, roadmap, permission handling, issue tracking and so on.
The goal of the Wiki subsystem is to make text editing easier and to ensure text content
for a project. Timeline lists all Trac events that have occurred in chronological order and
gives a brief description of each event. Permission handling is a customizable permission
method where di�erent permission types can be con�gured. Issue tracking is based on
tickets, where a ticket stores information about an issue or a bug. Roadmap o�ers a
view of the ticket system that helps planning and managing the future development of
a project. Trac has a lot of other functionalities too, but we will not list them here.
Figure 5.1 shows the architecture of the Trac system adapted to our needs.

Figure 5.1: Architecture of Trac

Trac requires some external components, and other optional components can also be
included. The required components are a version control system that hosts the source

5.1 Benchmark 51

code of the project, an SQL database that stores the tickets, a Web server where Trac is
hosted and a template engine that is used to generate dynamic Web pages. We used an
empty Subversion repository as a version control system of Trac, because we did not use
this feature here. We used SQLite as the database component and Apache2 as the Web
server. Because Web pages have to be dynamically generated, Trac employs a template
engine. For this purpose we made use of the ClearSilver template engine. Furthermore,
we integrated the SilverCity component for syntax highlighting, which currently supports
highlighting C++ and Java source code.

Although the Trac system provides many useful services, we still had to customize and
extend it to make a suitable benchmark from it. The two major extensions were the
customization of the graphical user interface and the system's tickets. In the case of
the former we had to inherit and implement some core classes of the Trac system. The
customized graphical interface will be presented through usage scenarios in Section 5.2.
In the case of the tickets, we had to extend them to be able to describe design pattern
candidates (pattern name, information about its participants, evaluation data of the
candidate). In Figure 5.1 the customized components are drawn with thick borders.

Figure 5.2: Overview of DEEBEE

52 Validation of design pattern miner tools

Figure 5.2 shows an overview of the benchmark. First, design pattern miners and devel-
opers discover design patterns from the source code. Afterwards, design pattern miner
tools generate their results in a tool-speci�c format, which have to be converted into
the input format of DEEBEE (which is a CSV �le). Developers manually discover design
pattern candidates and then store their results in the DEEBEE CSV �le format. In the
next step the CSV �le(s) are uploaded into the benchmark and then the candidates can
be evaluated, compared and browsed via the online interface of DEEBEE.

5.1.2 Fundamental participants and siblings

There are some cases when design pattern miner tools report the same design pattern
candidate, but they report them di�erently. As shown in Chapter 4, the results of the
di�erent design pattern miner tools may di�er for several reasons. The main reasons for
this are:

• Di�erent de�nitions of design patterns: for example, when some tools leave out a
participant from the de�nition of the searched design pattern, while the others do
not.

• Precision of pattern descriptions: for instance, when some tools de�ne a participant
as abstract, while the others do not.

• Di�erences in algorithms: for example, when some tools report design patterns
with some kind of grouping, while the others do not.

These points make a sound comparison of the results of di�erent tools quite di�cult. In
the following we propose a method to handle this. We labelled the same but di�erently
reported pattern candidates as siblings. The identi�cation of siblings is based on the
fundamental participants (mandatory roles) of design patterns. For example, in the
case of the State pattern [39] (see Figure 2.3) the fundamental participant plays the
(mandatory) role of the State class, while the other participant classes can be repeated.

In order to demonstrate siblings and fundamental participants, let us consider the fol-
lowing example. Figure 5.3 shows an example for the State design pattern taken from
the book by Gamma et. al. [39]. The background for this example was:

�Consider a class TCPConnection that represents a network connection. A

TCPConnection object can be in one of several di�erent states: Established,

Listening, Closed. When a TCPConnection object receives requests from

other objects, it responds di�erently depending on its current state.� [39]

Suppose that three given design pattern miner tools (T1,T2 and T3) discover this pattern
instance, but they report it di�erently. These tools report their results in the form of
(participant, sourceElement) pairs, where participant denotes a certain participant of the
currently searched design pattern, while sourceElement denotes the appropriate source
code element discovered by the tool. T1 reports three design pattern candidates:

5.1 Benchmark 53

Figure 5.3: State example

• T1-1: (Context, TCPConnection), (State, TCPState), (ConcreteState, TCPEstab-
lished)

• T1-2: (Context, TCPConnection), (State, TCPState), (ConcreteState, TCPLis-
ten)

• T1-3: (Context, TCPConnection), (State, TCPState), (ConcreteState, TCP-
Closed)

In contrast to T1, the other two tools (T2 and T3) report just one pattern instance.
However, the results of T2 and T3 are di�erent as well:

• T2-1: (Context, TCPConnection), (State, TCPState), (ConcreteState, TCPEstab-
lished), (ConcreteState, TCPListen), (ConcreteState, TCPClosed)

• T3-1: (State, TCPState), (ConcreteState, TCPEstablished), (ConcreteState, TC-
PListen), (ConcreteState, TCPClosed)

The di�erence between T1 and the other two is caused by the fact that the latter two
group the pattern instances, while the former does not. The results of T2 and T3
di�er because T3 represents the State pattern without Context. However, for a valid
comparison these results need to handled together in some way.

The key is to �nd some common point in these cases that is su�cient to relate these
di�erently reported cases. In the case of each design pattern there are certain fundamen-

tal participants that typically occur in each case of design pattern candidates because
the design pattern would be meaningless without that participant. For example, with
the current example the State class (TCPState) occurs for each candidate (T1-1, T1-2,
T1-3, T2-1 and T3-1). Based on the common fundamental participant, the di�erently
reported but identical candidates can be related to each other and are referred to as
siblings. In the following we will explain why it is necessary to evaluate and compare the
tools by taking into account the sibling relation and grouping the candidates by their
sibling relations.

Tools T1 and T2 also detect a false candidate that will be denoted by T1-4 and T2-2:

54 Validation of design pattern miner tools

• T1-4: (Context, FalseContext), (State, FalseState), (ConcreteState, FalseCon-
creteState)

• T2-2: (State, FalseState), (ConcreteState, FalseConcreteState)

Hence several true candidates (T1-1, T1-2, T1-3, T2-1 and T3-1) were discovered
by using the tools and some false candidates were also discovered (T1-4 and T2-2).
Evaluating the tools without grouping their �ndings yields the following results:

• T1 originally discovers 4 candidates. The T1-1,T1-2 and T1-3 candidates are true,
while only T4-4 is false. This means that the precision for T1 is 75%.

• T2 discovers one true (T2-1) and one false candidate (T2-2). This means that
the precision for T2 is 50%.

• T3 discovers only one true (T3-1) candidate so its precision score is 100%.

From a precision viewpoint, the best tool is T3 (100%), the second one is T1 (75%) and
the third one is T2 (50%). However, T1 is better than T2 because T1 reports a new
candidate in the case of each ConcreteState participant. In a fair comparison we need
to consider the sibling relations and group the �ndings of T1. Then the T1 precision
score changes to 50% because T1-1, T1-2 and T1-3 are grouped into one candidate. In
this way the precision scores of T1 and T2 become the same.

Furthermore, when comparing the original �ndings of tools T1, T2 and T3, the inter-
section of their results is empty, which is misleading. In contrast, if the grouping is
performed on all candidates by their sibling relations then T1-1, T1-2, T1-3, T2-1 and
T3-1 will be grouped into one common candidate and the intersection of the tools will
be this one common candidate, as it should be. In summary, grouping candidates by
their sibling relations has three use cases:

• The evaluation of a tool requires grouping its candidates, as in the case of T1:
T1-1, T1-2 and T1-3 were grouped in the previous example.

• Comparing the tools requires grouping their candidates like that shown in the
previous example. (T1-1, T1-2, T1-3, T2-1 and T3-1 were grouped).

• Developers who evaluate design pattern candidates �rst have to understand the
current candidate context and connections in depth by examining the appropriate
source code fragments. This is the most time-consuming part of the evaluation.
Evaluating sibling candidates one after the other can save a lot of time because
the context only has to be understood for the �rst candidate.

5.1.3 Upload �le format.

The format of the DEEBEE's CSV �le containing the design pattern candidates must
be the following (see Figure 5.4). Each pattern candidate consists of several lines ter-
minated by a blank line. The �rst line of each candidate is always the pattern name,

5.1 Benchmark 55

without any white space characters. If the name consists of several words, then they
have to be concatenated and each new word should start with an upper case letter
(CamelCase). The subsequent lines represent the participants of the candidate. These
lines contain values separated by commas. The �rst value contains the role that may
be class, operation and attribute. If the participant is fundamental, then a star has
to be given before the role in the �rst value (see the class State in Figure 5.4). The
second value contains the name of the participant as written the source code. Lastly,
the third value contains the relative path of the participant in the source code together
with starting and ending line information separated by colons.

State

class Context,TCPConnection,TCPConnection.h:1:6

operation Request,Open,TCPConnection.cpp:3:15

operation Request,Close,TCPConnection.cpp:15:25

operation Request,Acknowledge,TCPConnection.cpp:25:32

∗class State,TCPState,TCPState.h:1:6
operation Handle,Open,TCPState.cpp:3:15

operation Handle,Close,TCPState.cpp:15:19

operation Handle,Acknowledge,TCPState.cpp:19:23

class ConcreteState,TCPListen,TCPListen.h:1:6

operation Handle,Open,TCPListen.cpp:3:12

operation Handle,Close,TCPListen.cpp:12:18

operation Handle,Acknowledge,TCPListen.cpp:18:23

Figure 5.4: CSV �le for the T1-2 candidate of the previous example

The uploaded pattern candidates are checked to see if they exist in the database. If a
known pattern candidate is found again by the new tool, and the two candidates are
exactly the same, then the tool entry of the candidate is extended by the name of the
new tool, and no new candidate will be created in the database. If only the fundamental
participants are the same, then a new candidate will be created and the candidates will
be related as siblings.

5.1.4 Benchmark contents

The benchmark contains 1,274 design pattern candidates from three C++ software sys-
tems (Mozilla [58] NotePad++ [60] and FormulaManager [81]), three Java software
systems (JHotDraw [46], JRefactory [48] and JUnit [49]) and C++ reference implemen-
tations of design patterns. The uploaded design pattern candidates are recovered by
three design pattern miner tools: Columbus (C++), Maisa (C++) and Design Pattern

56 Validation of design pattern miner tools

Detection Tool (Java) [84] [27]. Table 5.1 shows the distribution of the candidates
among tools and subject systems1.

Subject system Columbus 3.5 Maisa 0.5 DPD3 Human

Mozilla1.8a5 495 - - -
NotePad++3.9 13 27 - 11
ReferenceC++ 15 12 - 24
JHotDraw - - 322 -
JRefactory - - 259 -
JUnit - - 7 -
FormulaManager 56 32 - 40

Table 5.1: Distribution of uploaded candidates

5.2 Usage scenarios

Before describing the usage scenarios, we will provide an overview of the benchmark's
functionalities. The benchmark contains three main menu points, namely evaluation,
upload and register. From the evaluation menu point, three important views can be
accessed. These are the statistics view, comparison view and the instance view. From
the upload menu point, the new language, new software, new tool and new instances

functionalities can be accessed. Figure 5.5 shows a map of the views and functionalities of
the benchmark (e.g. query view can be accessed from evaluation menu, while comparison
view can be accessed from statistics view).

5.2.1 Browsing the database

In this scenario we will present di�erent queries and views with which the content of
the benchmark database can be readily explored. In each case we will �rst give a brief
description of the view or functionality, and afterwards demonstrate it by supplying an
example.

Query view. As the primary aim of our benchmark is to evaluate and classify the
results of design pattern miner tools (the design pattern candidates), the �rst thing one
should do is to decide how the candidates are to be listed, which is controlled by aspects.
There are four aspects in the benchmark, namely software, tool, pattern and language

which can be adjusted in any particular order (it is not necessary to set every aspect).
For each aspect, di�erent parameters can be set which in�uence the result. The number

5.2 Usage scenarios 57

Figure 5.5: Functionalities of the benchmark

Figure 5.6: Query view of DEEBEE

of possible parameter values will increase during the evolution of the benchmark because
new patterns, languages, software packages and tools will be added.

1The tools found same candidates, so summarizing the values in the table will be greater than 1,274

58 Validation of design pattern miner tools

Example: Figure 5.6 shows a screenshot of the query view. This example gives an
ordering where the �rst aspect is the language with the parameter set to C++. The
second aspect is software set to NotePad++. The following two aspects are tool and
pattern with parameters set to all. By pressing the button �Go to results view� , the
results view will be generated.

Results view. After running query, the results table is generated (see Figure 5.7). The
columns (except the last one) correspond to the previously selected aspects. The last
column contains the identi�ers of the design pattern candidates which satisfy the criteria
provided by the aspects. By clicking on one of the candidate identi�ers, the Instance

view will show up, while by clicking on the links in the other columns, the Statistics view
will be accessed.

Figure 5.7: Results view of DEEBEE

Example: Based on the previously selected ordering aspects in the query view, we got a
table where the top left link is C++ (see Figure 5.7). The second column contains a link
to the NotePad++ software in accordance with the query. Because we queried all tools
and patterns (third and fourth aspects), we got all the tools which currently participate
in the benchmark and all pattern candidates found by these tools in NotePad++.

Instance view. The instance view provides the user interface for evaluating design
pattern candidates (see Figure 5.8). The participants of the actual pattern candidate
are shown in the top left corner with their concrete name in the source code. When the
user clicks on a participant name, the source code is shown with the pattern candidate
highlighted on the right hand side of the view. A design pattern candidate (instance)
may be evaluated using two categories:

5.2 Usage scenarios 59

Figure 5.8: Instance view with highlighted source code in DEEBEE

• Completeness means how complete the evaluated pattern candidate is in a struc-
tural sense. More precisely, it means how many pattern participants can be found
in the candidate. In this category, the possible answers are the following:

� The pattern instance is complete in every aspect.

� Some participants are missing from the pattern instance.

� Important participants are missing from the pattern instance.

• Correctness means how correct the evaluated pattern candidate is in a behavioural
sense. More precisely, it means to what degree the pattern candidate matches the
original intent of the design pattern. In this category, the possible answers are the
following:

� I am sure that it is a real pattern instance.

� I think that it is a real pattern instance.

60 Validation of design pattern miner tools

� I think that it is not a real pattern instance.

� I am sure that it is not a real pattern instance.

The evaluation answers, Completeness and Correctness can be applied to the siblings of
the pattern candidate as well (if there are any) by selecting the corresponding checkboxes.
Most of the time sibling candidates are evaluated equally, hence the siblings of the pattern
candidate are also listed in the instance view to help the user in the evaluation.

It can also be queried for statistics about the previous evaluations of the pattern can-
didate. The result will appear on the right hand side of the view (see Figure 5.9).
User comments can be added to the pattern candidate at the bottom of the instance
view. Registration needs to be performed to evaluate a pattern candidate and to add a
comment.

Example: We shall continue with the previous example. After clicking on candidate #32
in the results view (see Figure 5.7), the instance view will show up (see Figure 5.8). If
we select the participant called StaticDialog, then its syntax-highlighted source code will
be automatically loaded into the right hand side of the view, which can be evaluated
immediately inside the benchmark environment. Statistics about past evaluations are
available for completeness and correctness by clicking on the stat links next to the
corresponding questions. In the case of pattern candidate #32, both candidate statistics
results are shown in Figure 5.9.

Figure 5.9: Instance view statistics in DEEBEE

Statistics view. The statistics view gives statistical data about the entity clicked in
the results view (see Figure 5.7) together with all other entities which depend on it. The
view contains two tables - one for correctness and one for completeness, respectively
(see Figure 5.10).

Each line in the upper part of each table contains a statistic for one particular pattern
candidate. A pattern candidate may be evaluated by some people, so the mean, devia-
tion, minimum, maximum and median values are calculated for the candidate. The lower
part of each table contains the same kind of basic statistics, but they are calculated from
the statistics of the candidates (shown in the upper part of each table).

5.2 Usage scenarios 61

Figure 5.10: Statistics view of DEEBEE

Below, the correctness table precision and recall are given2. These values are based
on a human evaluation of the candidates and on a threshold value, which by default
is 50%. This means that a pattern candidate found by a tool is considered to be an
instance (true positive) if the average score of the evaluation of its correctness is at least
50%. The benchmark can be customized to take into account sibling relations or not
when generating statistics. The default option is to handle sibling candidates as only
one common candidate. If the sibling relations are considered, then the least candidate
identi�er will denote the grouped candidates and it is marked in red instead of blue.

Example: Go from the instance view (Figure 5.8) to the results view (Figure 5.7) by
clicking on the �Back to previous view� link. On the results view interface, click on the
C++/NotePad++3.9/Maisa0.5/Proxy link in the table. This takes us to the statistics
view, which is shown in Figure 5.10.

5.2.2 Evaluating and comparing tools

In this scenario we will show how design pattern miner tools can be evaluated and
compared using our benchmark. The example gives the evaluation and comparison of
Columbus 3.5 and Maisa 0.5 on reference implementations of the GOF patterns in C++.

First, the Evaluation menu has to be selected and the following query should be set (see
Figure 5.6):

• 1. aspect: �Software� with parameter set to �ReferenceC++�.

• 2. aspect: �Tool� with parameter �All�.

2The de�nition of precision and of recall are both given in Section 2.2.

62 Validation of design pattern miner tools

• 3. aspect: �None� with parameter �All�.

• 4. aspect: �None� with parameter �All�.

Pressing the �Go to results view� button will generate the results view (which is similar
to Figure 5.7).

In the results view by clicking on the �ReferenceC++� link in the top left corner we
got the statistics view (which is similar to Figure 5.10). Here we can see the statistics
on the results of Columbus and Maisa. In the case of Columbus, the precision score is
100% and the recall score is 58.33%. In the case of Maisa these are 80% and 33.33%,
respectively. Here we used the default threshold value of 50% (see Section 5.2.1).

The benchmark provides another interesting view, called comparison view, for comparing
the capabilities of pattern miner tools. The page can be accessed from the statistics view
by clicking on the Switch to comparison view link. The �rst table in Figure 5.11 shows the
pattern candidates found by Maisa and by Columbus in the reference implementation
of the GOF patterns (rows A and B). This table also shows the di�erences and the
intersection of the candidates found by the tools which were compared (rows A-B, B-A
and A&B). It can be seen in row A-B that Maisa found one pattern candidate (#1152, a
Memento candidate), which was not found by Columbus. Row B-A shows 7 candidates
found by Columbus and not found by Maisa. Row A&B shows those 7 candidates which
are found by both tools.

The comparison view contains two other tables showing the results of a comparison of
Maisa and Columbus with the results of human inspection of the code, respectively.
The instances found by careful human inspection represent the desirable results of a
tool. Therefore, the di�erence between e.g. Human and Columbus represents the false

negatives for Columbus. (This value is used for calculating the recall values.) This
way the false negatives of a tool can be quickly and e�ciently discovered using the
benchmark.

5.2.3 Adding a new tool

In this scenario we will show how the results of a new design pattern miner tool can be
added to the benchmark. Uploading the results of a tool requires the the tool name,
name of the mined software, the software programming language, source location, and
information about the design pattern candidates found in the comma separated value
(CSV) �le format (see Figure 5.12 and Section 5.1.3).

To upload design pattern candidates, public access to the source code of the mined
software has to be given. This is important because the source code is used in the
instance view to show and evaluate pattern participants. There are two possible ways to
provide access to the source code: via http and svn.

5.2 Usage scenarios 63

Figure 5.11: Comparison view of DEEBEE

64 Validation of design pattern miner tools

Figure 5.12: Adding the results of a new tool to DEEBEE

Example: In the example we will add a new tool called Dummy Pattern Miner v0.1 to
the benchmark. The mined software will be the reference implementation of the GOF
patterns in C++. Figure 5.12 lists the completed forms.

5.3 Experiments performed

Here Columbus and Maisa were evaluated and compared using the benchmark. The tools
were evaluated on C++ reference implementations of design patterns, on NotePad++,
and on a program called FormulaManager implemented by us to have a test case where
the use of design patterns is well de�ned and documented. The reference implementa-
tions test the structural matching ability of the tools, while in the case of NotePad++
and FormulaManager the tools were examined in a real-life context where other fac-
tors are also considered, like the goal of the pattern. Columbus provides the common
framework for the experiment (see Figure 5.13).

Reference implementations. To compare di�erent tools, reference implementations
of design patterns based on book by Gamma et. al. [39] were created by us. With these
reference implementations the basic capabilities of C++ pattern miner tools can be
evaluated and compared.

Design pattern mining strongly depends on the analysis of the source code. Hence the
source �les in the reference implementations do not contain any di�cult programming
structures like templates and they do not include any standard headers to avoid parsing
problems.

5.3 Experiments performed 65

Figure 5.13: Framework for design pattern mining

Let us take a concrete reference implementation, the Adapter Object3. The reference
implementation of Adapter Object is shown in Figure 5.14. In reference implementations
each participant class starts with the �Example_� pre�x; similarly, attributes start with
the �example_� pre�x.

NotePad++ is a free source code editor which supports several programming lan-
guages, running in Microsoft Windows environments. It is based on the Scintilla editor
component (a very powerful editor component), written in C++ with pure win32 API
and STL. Calculated by the metric component of Columbus, NotePad++ contains 95
classes, 1,371 methods, 776 attributes and 27,033 useful lines of code.

When evaluating design pattern miner tools on real software systems, it is necessary to
consider not only candidates mined by the tools, but instances recognized by us as well.
If instances mined by programmers are skipped in an evaluation then the recall of the
tools cannot be calculated. Therefore instances from NotePad++ recovered manually
were also added to the benchmark and were examined during the evaluation of Columbus
and Maisa.

FormulaManager. Since the reference implementations contain disjoint implemen-
tations of the design patterns in an unreal context, we developed a program called

3We introduced this pattern earlier in Section 3.2.1

66 Validation of design pattern miner tools

class Example_Target {

public:

virtual void function() = 0;

};

class Example_Adaptee {

public:

virtual void other_function();

};

class Example_AdapterObject : public Example_Target {

public:

virtual void function();

private:

Example_Adaptee* m_adaptee;

};

void Example_Adaptee::other_function() {

}

void Example_AdapterObject::function() {

m_adaptee->other_function();

}

Figure 5.14: Reference implementation of Adapter Object

FormulaManager where each design pattern occurs in a real context at least once. The
goal of FormulaManager is to manage formulas, namely execute operations on formulas
(evaluation, pre�x form, post�x form), export the results to di�erent kinds of represen-
tations (HTML, XML, CSV), display the results in di�erent views (list, table), handle
di�erent numbering systems and validate a formula.

Tables 5.2, 5.3 and 5.4 present the results obtained from using the tools, where the upper
part shows the number of candidates found. In the lower part of the tables a summary is
shown as well, where precision, recall, the correctness mean and the completeness mean
are provided by the benchmark's statistics view (see Section 5.2.1). A dash in the tables
shows that the tool did not search for the given pattern.

5.3 Experiments performed 67

Tool Columbus Maisa Human

Abstract Factory 2 2 1
Adapter Class 1 1 1
Adapter Object 1 1 1
Bridge 1 - 1
Builder 1 1 1
Chain Of Resp. 0 - 1
Command - - 1
Composite - - 1
Decorator 1 - 1
Facade - - 1
Factory Method 1 0 1
Flyweight - 0 1
Interpreter - - 1
Iterator 1 0 1
Mediator - 0 1
Memento - 1 1
Observer - 0 1
Prototype 1 1 1
Proxy 1 1 1
Singleton 0 0 1
State 1 - 1
Strategy 1 - 1
Template Method 1 - 1
Visitor 1 4 1

Precision 100% 80.00% 100%
Recall 58.33% 33.33% 100%
Correctness mean 100% 80.00% 100%
Completeness mean 96.43% 85.00% 100%

Table 5.2: Number of design pattern candidates found for Reference Implementations

5.3.1 Reference implementations

Now we will give a summary of our experiments on evaluating the tools on reference
implementations. The number of pattern candidates found by the tools in reference
implementations are listed in Table 5.2. Pattern instances found by programmers (the
column labelled Human) in the reference implementations are true candidates.

Some design patterns are more di�cult to discover than others. This is due to their
unclear structure even if the aim of such a design pattern is obvious. The purpose of
the unclear speci�cation is to allow �exible implementations of the design pattern. For
example, in the case of Mediator, only an abstract incomplete structural speci�cation
is given; e.g. no methods are speci�ed in the participant classes. Most of the tools
consider just the structural information of the patterns so they encounter problems in
this case. A promising solution is presented by Wendehals [89] for improving design
pattern discovery by exploiting the dynamic information available.

68 Validation of design pattern miner tools

Because the two evaluated tools use only structural information, they do not discover
most of the patterns with unclear speci�cation, e.g. Command, Facade and Interpreter,
as can be seen in Table 5.2. Although Maisa seeks to discover some patterns that have
an unclear speci�cation like Mediator, Memento, Observer and Flyweight, it works only
in the case of Memento (candidate #1152). Because Maisa failed to �nd these patterns,
its recall score is only 33.33%.

If several pattern candidates were discovered in the reference implementations for a given
pattern, then either false positives were found or the pattern instance was recognized

several times. For instance, Maisa discovered four Visitor pattern candidates. We ex-
amined these candidates in the benchmark and realized that two of them were false
positives, while the other two instances were actually the same instance with a common
abstract, but with di�erent concrete participants. The two true instances were related
as siblings (see Section 5.1) to each other and to the single pattern instance found by
Columbus and Human. This way, these instances appear as one common instance in the
benchmark.

Figure 5.15: Visitor candidate mined by Maisa from reference implementations

Figure 5.15 shows the instance view of one of the two false Visitor candidates mined by

5.3 Experiments performed 69

Maisa (candidate #1169). The source of Example_ConcreteElement2 class is loaded
into the right hand side of the view because it was selected previously from the par-
ticipants. It is a false candidate because Example_ConcreteElement2 acts as a class
Element participant, as can be seen in the participants' area (see Figure 5.15). Maisa
discovered another false candidate because it made the same mistake (#1171).

In the case of Abstract Factory, both Maisa and Columbus discovered two pattern can-
didates. These pattern candidates are true, the only problem being that neither tool
can group concrete elements of the Abstract Factory pattern, so they discovered the
same pattern instance twice with di�erent concrete participants. It caused the mean of
Columbus' completeness to be 96.43%. Maisa had a similar problem in the case of the
Visitor pattern so its mean of completeness is 85%.

Comparison. The candidates found by Columbus, Maisa and humans were compared
by the comparison view module of the benchmark (see Figure 5.16). Let us examine
the �rst table in Figure 5.16. This table shows a comparison of all candidates found
by Maisa and Columbus (no threshold was set as it was in case of Figure 5.11). The
di�erence between Maisa and Columbus (row A-B) contains three pattern candidates.
The previously mentioned false positive Visitor candidates (#1169 and #1171) were
only found by Maisa, so these appear in the di�erence. The other di�erence is a true
positive pattern candidate of Memento (#1152), which was found by Maisa but not
by Columbus. Because Columbus found several design patterns that Maisa did not, a
lot of instances appear in the di�erence between Columbus and Maisa (row B-A). But
the tools found some patterns in common, with the same results that appear in the
intersection (row A&B).

5.3.2 NotePad++

After examining the tools on the reference implementations, we performed another test,
but this time on the real project called NotePad++. The results obtained from using
the tools can be seen in Table 5.3, which will be elaborated on below.

Columbus only found a couple of types of patterns (Adapter Object, State and Template
Method), but with better precision than those (Adapter Class, Adapter Object, Builder,
Prototype and Proxy) found by Maisa. It should also be remarked that software devel-
opers tend to �nd those pattern instances which are di�cult to �nd by pattern miner
tools because of their unclear speci�cations. Therefore, we think that instances found by
humans are a good supplement to the use of automatic tools even if software developers
do not �nd all the pattern instances in a particular project.

In Table 5.3 we see that the precision of Human on NotePad++ is not 100%. This is
due to the fact that the results of Human in the benchmark consist of several people

70 Validation of design pattern miner tools

Figure 5.16: Comparison of candidates in reference implementations

5.3 Experiments performed 71

Tool Columbus Maisa Human

Abstract Factory 0 0 0
Adapter Class 0 4 0
Adapter Object 9 4 0
Bridge 0 - 0
Builder 0 1 0
Chain Of Resp. 0 - 0
Command - - 0
Composite - - 1
Decorator 0 - 0
Facade - - 0
Factory Method 0 0 0
Flyweight - 0 0
Interpreter - - 1
Iterator 0 0 1
Mediator - 0 0
Memento - 0 0
Observer - 0 1
Prototype 0 6 1
Proxy 0 11 1
Singleton 0 0 2
State 1 - 0
Strategy 0 - 0
Template Method 3 - 1
Visitor 0 0 0

Precision 62.50% 16.67% 90.91%
Recall 29.41% 11.76% 58.82%
Correctness mean 69.42% 20.63% 77.05%
Completeness mean 100% 92.36% 90.91%

Table 5.3: Number of design pattern candidates found for NotePad++

who may disagree on whether a pattern candidate ful�ls the original intent of the design
pattern. It is one of the great bene�ts of the benchmark that it lets people vote on
whether the uploaded pattern candidates are pattern instances or not. Even though
human analysis resulted in the highest recall (58.82%), it is still far from 100%, which
indicates that the current amount of human analysis e�ort put into the benchmark is
still not enough to �nd all the pattern instances in larger projects.

5.3.3 FormulaManager

Next, we will summarize our experiments on evaluating the tools on FormulaManager.
We note that FormulaManager di�ers from the simple reference implementations because
the design patterns are used in a real-life context and they are interrelated. The number
of pattern candidates found by the tools in FormulaManager is listed in the second, third

72 Validation of design pattern miner tools

Tool Columbus Maisa Human

Abstract Factory 4 0 2
Adapter Class 2 1 1
Adapter Object 4 0 1
Bridge 6 - 2
Builder 1 0 1
Chain Of Resp. 1 - 1
Command - - 1
Composite - - 1
Decorator 1 - 1
Facade - - 1
Factory Method 2 3 4
Flyweight - 1 1
Interpreter - - 1
Iterator 1 0 1
Mediator - 0 1
Memento - 0 1
Observer - 0 1
Prototype 3 2 2
Proxy 2 0 1
Singleton 3 0 3
State 9 - 1
Strategy 2 - 2
Template Method 1 - 1
Visitor 2 3 1

Precision 52.27% 80% 100%
Recall 71.88% 25% 100%
Correctness mean 55.23% 85.95% 100%
Completeness mean 85.98% 48.02% 100%

Table 5.4: Number of design pattern candidates found for FormulaManager

and fourth columns of Table 5.4. Let us examine and compare the scores of Columbus
and Maisa on FormulaManager. It is clear that Maisa has a good precision score (80%),
but its recall score is poor (25%). The poor recall is due to the fact that Maisa failed
to �nd the instances of several design patterns (e.g. Builder, Mediator, Proxy) and it
did not try to discover every kind of pattern (e.g. Command, Decorator). In contrast,
Columbus has a fair recall score (71.88%) and precision score (52.27%). Columbus found
several false positives in the case of State, Bridge and Adapter Object, which resulted in
its lower precision score compared to Maisa. In the case of the other patterns, Columbus
has good precision scores.

5.4 Evaluation of the benchmark 73

5.4 Evaluation of the benchmark

Sim et al. [74] de�ned seven requirements for a benchmark. In this section we will cite
the requirements, and afterwards give an evaluation of the benchmark based on them.

Accessibility. �The benchmark needs to be easy to obtain and easy to use. The test

materials and results need to be publicly available...� The benchmark is easy to obtain,
it is online and accessible from the home page of the Institute of Informatics at the
University of Szeged [26].

A�ordability. �The cost of using the benchmark must be commensurate with the

bene�ts...� The only investment required is to extend the tool to be measured in the
benchmark to produce a CSV �le in a suitable format (see Section 5.2.3) for uploading
its results. If it is measured on a subject system that has already been inspected by
professional software developers, then the results (e.g. precision and recall) will be
immediately available without any extra e�ort required.

Clarity. �The benchmark speci�cation should be clear, self-contained, and as short as

possible...� In the case of design pattern mining, it is clear that the tool has to �nd
instances of patterns in the source code. The most important inconsistency that we
experienced is that many tools tend to �nd the same pattern candidate several times
if there is e.g. a participant in the pattern description which is typically implemented
in several ways (e.g. the ConcreteStrategy participant in the Strategy design pattern).
Our benchmark includes the siblings mechanism to automatically deal with this issue.

Relevance. �The task set out in the benchmark must be representative of ones that

the system is reasonably expected to handle in a natural (meaning not arti�cial) setting

and the performance measure used must be pertinent to the comparisons being made...�

The benchmark contains reference implementations of the GOF design patterns [39]
that test the basic capabilities of the tools. To test the tools on real-life cases, we also
uploaded pattern candidates found in real software by three well-known tools (Maisa,
Columbus and Design Pattern detection Tool). There are also two software systems
in the benchmark that have already been inspected by experienced software developers
concerning design pattern usage (NotePad++ and FormulaManager).

Solvability. �It should be possible to complete the task domain sample and to produce a

good solution...� The benchmark contains subject systems of varying size and complexity,
which makes it easier or harder to mine pattern instances from them. It contains reference
implementations of design patterns expected to be found by all competing tools and real-
life software systems to test their actual capabilities.

Portability. �The benchmark should be speci�ed at a high enough level of abstraction

to ensure that it is portable to di�erent tools or techniques and that it does not bias one

74 Validation of design pattern miner tools

technology in favour of others...� The benchmark is general; it is language, software,
tool and pattern independent. It already contains pattern instances found in subject
systems running on di�erent platforms and written in di�erent programming languages.

Scalability. �The benchmark tasks should scale to work with tools or techniques at

di�erent levels of maturity...� The benchmark contains reference implementations of
design patterns that can be utilized to test research prototypes and it also contains
real-life software systems to test mature tools like commercial products.

5.5 Summary

In this chapter we presented a newly developed benchmark and performed experiments
on it for evaluating and comparing the precision and recall of design pattern miner
tools. The benchmark is general from the viewpoint of the mined software systems,
programming languages, uploaded design pattern candidates, and design pattern miner
tools.

With the help of our benchmark the accuracy of two design pattern miner tools (Colum-
bus and Maisa) were evaluated on reference implementations of design patterns and on
two software systems, NotePad++ and FormulaManager. In this part design pattern
instances used in NotePad++ were also discovered by hand, so both precision and recall
scores can be calculated via the benchmark. Furthermore, we developed a software sys-
tem called FormulaManager to test the tools on a program where each design pattern
is implemented in a real-life context.

Sometimes false candidates were found by the tools because they only examined the
structure of the code, while programmers also take the code's behaviour into account.
This is why instances mined by humans can be used to provide additional results on top
of those obtained by the tools.

With the help of our benchmark it was demonstrated that it is indeed possible to evaluate
design pattern miner tools readily and e�ectively, which will hopefully lead to better
quality tools in the future. This benchmark is freely accessible from the home page of
the Institute of Informatics at the University of Szeged:

http://www.inf.u-szeged.hu/designpatterns/

Chapter 6

Common format for design pattern

miner tools

�Most of the fundamental ideas of science are essentially
simple, and may, as a rule, be expressed

in a language comprehensible to everyone.�

Albert Einstein

The previous chapters and other studies (e.g. fusing the results of tools [54]) highlighted
several limitations of the current outputs of the design pattern detector (DPD) tools in
form and content: some output formats (1) do not report either their own identity or the
name and version of the program that they analyzed; (2) do not report all roles relevant
to a given motif; (3) do not identify reported roles unambiguously; (4) do not identify
detected motif candidates unambiguously; (5) do not report their conceptual schema
of the identi�ed motif; (6) do not justify their results; and (7) use ad hoc (generally
textual) output formats. Point 1 makes it di�cult to reproduce the DPD tool results;
point 2 makes it hard to combine results from di�erent tools; points 3 and 4 make results
ambiguous; point 5 makes a comparison of results di�cult; point 6 leads to problems
when understanding and verifying the results; and, point 7 hinders the automated use
of the results by other tools.

In the previous chapter, we introduced DEEBEE and described what it does. The CSV
uploading format of DEEBEE was designed to represent information that is necessary
only for evaluating and comparing the results of di�erent tools. In this way there is no
guarantee that the CSV format of DEEBEE will satisfy any kind of tool that may work
on the result of a design pattern miner like a visualization tool or a fusion tool.

We propose to address these limitations by introducing a common exchange format for
DPD tools, called DPDX, based on a well-de�ned and extendible metamodel. This
format should aid the comparison [95], fusion [53], visualization [29], and validation [97]
of the outputs of di�erent DPD tools.

Consequently, the contributions of this chapter are twofold. First, we provide a good
foundation for DPD. Second, we propose a common exchange format for DPD tools
that fosters their synergetic use and supports the automated processing of their results.

75

76 Common format for design pattern miner tools

6.1 Background

6.1.1 Motivation

A common exchange format for DPD tools would be bene�cial to achieve a synergy
of many di�erent tools. Our vision is illustrated in Figure 6.1, where a federation of
tools based on the common exchange format interact to produce new values. This
federation and the common format is also an invitation to program comprehension and
maintenance, and for re-engineering research communities to contribute individual tools,
including tools unforeseen in the vision given in Figure 6.1.

DPD result repository DPD result repository

VisualisationDetection Result Fusion
VisualisationDetection Result Fusion

VisualisationDetection Result Fusion

DPDX - Common DPD Result Interchange Format

Figure 6.1: A federation of design pattern detection, visualization and assessment tools
cooperating via the common exchange format.

For example, visualizations of DPD outputs could be built entirely using the common
exchange format, instead of being implemented separately for each DPD tool. Next, it
should be possible to automate the process of collecting, comparing, and evaluating the
outputs of di�erent tools, which is currently a manual, error-prone, and time-consuming
task. Then public repositories of instances of design motifs (P-MARt [61], DEEBEE [97])
should bene�t greatly from a common exchange format. These repositories are important
in DPD research as a reference for assessing the accuracy of tools [63]. Moreover,
a common exchange format would also help in achieving an automated round-trip in
DPD tools (see Albin-Amiot et al. [2]), including pattern detection, collection, fusion,
visualization, validation, storage, and generation.

6.1.2 Requirements

The common exchange format must ful�l the following core requirements to address the
limitations of current DPD tools outputs and serve as the basis for a federation of tools:

1. Speci�cation. The exchange format must be speci�ed formally to allow DPD
tool developers to implement appropriate generators, parsers, and/or converters.

6.1 Background 77

2. Reproducibility. The tool and the program to be analyzed must be explicitly
reported to allow researchers to reproduce the results.

3. Justi�cation. The format must include explanations of results and scores ex-
pressing the con�dence of a tool in its diagnostics to help experts and tool users
digest and apply the reported results.

4. Completeness. The format must be able to represent program constituents at
every level of role granularity described in design pattern literature.

5. Identi�cation of role players. Each program constituent playing a role in a
design motif must be unambiguously identi�ed.

6. Identi�cation of candidates. Each candidate must be unambiguously identi�ed
and reported only once.

7. Comparability. The format must allow one to report the motif de�nitions as-
sumed by a tool and the applied analysis methods to allow other tool users to
compare results.

In addition to the previous core requirements, the following two optional requirements
are also desirable:

1. Language-independence. The common exchange format should abstract lan-
guage speci�c concepts so that it can be used to report candidates identi�ed in
programs written in arbitrary imperative programming languages (including object-
oriented languages).

2. Standard-compliance. The speci�cation should be consistent with existing stan-
dards so that it can be easily adapted, maintained, and evolved.

6.1.3 State of the art

We evaluated the output formats of several existing DPD tools (SPQR [79], DP-Miner
[28], Fujaba [89, 91], Maisa [34, 57], SSA [84], Columbus [8], PINOT [70], Ptidej
[41]) and of two DPD result repositories (DEEBEE [96],[97] and p-MARt [61]) from the
viewpoint of the requirements listed above. The conclusions presented below are based
not just on a thorough literature review, but also on intensive practical evaluations [53],
[96], [100] of all tools except SPQR, which is not publicly available.

Each of the reviewed output formats for describing design pattern candidates contains
some elements that are worth using in a general exchange format. In particular, each
ful�ls the Language Independence requirement, i.e. they contain no language speci�c
information. Despite this, there is no format available that would ful�l all of our require-
ments.

78 Common format for design pattern miner tools

Tool DP-
Miner

Maisa SSA SPQR Colum-
bus

Pinot Ptidej Fujaba DEEBEE P-Mart

Language-

independence

√ √ √ √ √ √ √ √ √
-

Completeness -
√

-
√ √ √

-
√ √

-
Standard

compliance

CSV - XML XML - - - XML CSV XML

Identi�cation

of role players

- - Nested
classes

- Outer
classes

Outer
classes

Outer
classes

Classes
Signa-
tures

Classes
methods
�elds

Classes

Identi�cation

of candidates

- -
√ √ √

-
√

- Unique
IDs

-

Justi�cation - - - - - - Scores
expla-
nations

Scores - -

Comparability - - - - - - - - - -
Reproducibility - - - - - - - - Tool and

repository
info

Repository
info

Speci�cation - - - - - - - - - Role
types

Table 6.1: Tools and requirements satis�ed by their output formats

Table 6.1 shows that four formats (of DP-Miner, SSA, PTidej and P-Mart) do not ful�l
Completeness by not reporting all the relevant roles. Half of the tools analyzed by us use
ad hoc formats, thus they fail to ful�ll Standard Compliance. The formats of DP-Miner
and DEEBEE exchange are based on a quasi standard called CSV, but unfortunately one
that fails unambiguity since even classes are not identi�ed uniquely (only by their name).
However, it is worth noting that the other standard compliant output formats structure
information using XML syntax, which supports nesting and therefore recommends itself
as a good basis for a general exchange format.

All formats (except the output format of SSA) either do not support Identi�cation of

Role Players at all or just for a limited set of program elements, mostly outer classes.
Fujaba is the only one that supports classes and method / �eld signatures. No format
supports the unambiguous identi�cation of elements at �ner grained levels (individual
statements). We noted that line numbers are not a satisfactory identi�cation scheme.

Obviously, all the reviewed output formats are mainly intended to satisfy a human expert.
They assume much implicit knowledge about programming languages and design patterns
that a software engineer typically has, but which an automated tool does not. Typically,
none of the tools provide explicit schemata of the searched design motifs, which would
help other tools to understand their conceptual model of a pattern, and information about
analysis methods employed. Therefore the Comparability requirement is not ful�lled by
any tool.

DP-Miner does not ful�l Identi�cation of Candidates since it can repeat the same can-
didate with the same role assignments. Identi�cation of Candidates is not ful�lled by
Maisa, PINOT and Fujaba because when a candidate has several method/�elds play-
ing the same role, these tools report multiple candidates (one for each method/�eld).

6.2 DPDX concepts 79

SSA does not report multiple candidates in such cases. By reporting only mandatory
class roles, a candidate is identi�ed unambiguously, hence Identi�cation of Candidates

is ful�lled.

Ptidej, DEEBEE, Columbus and SPQR ful�l Identi�cation of Candidates since they
merge di�erent candidates that have the same mandatory role assignments. Repro-

ducibility is ful�lled partly by P-Mart (only repository names and versions are included)
and DEEBEE. We should add that P-Mart reports role kinds for class roles (Class, Ab-
stract Class, etc.). Therefore we could claim that Speci�cation is partly ful�lled (only
by P-Mart). Last, but not least, only two tools (Ptidej and Fujaba) report con�dence
scores and only one tool (Ptidej) provides explanations. Ptidej, which provides explana-
tions about violated and ful�lled constraints, implicitly hints at constraint satisfaction
as the analysis technique employed.

The output formats of the above tools are shown in the Appendix (see Section B.1),
while a detailed evaluation and comparison of the formats were published in our technical
report [100].

6.2 DPDX concepts

Now we shall develop the concepts on which our proposed exchange format, DPDX, is
based. We will show how DPDX addresses each of the requirements stated in Section
6.1.2, overcoming the limitations of existing output formats identi�ed above.

6.2.1 Speci�cation

The common exchange format will be speci�ed by a set of extendible metamodels that
capture the structural properties of the relevant concepts, such as candidates, roles
and their relations. Metamodels that re�ect the decisions explained in this section are
presented in Section 6.3. They signi�cantly extend previous similar proposals, like the
PADL metamodel of Albin-Amiot et al. [3]. The possible kinds of program constituents
and the related abstract syntax tree are not �rst-class elements of the metamodel, but
are captured by a set of prede�ned values for certain attributes in the metamodel. This
ensures easy extendibility since only the set of values must be extended to capture
new relations or language constructs, while the metamodel and the related exchange
format remain stable. The set of de�ned terms can be viewed as a simple ontology.
Ontologies have already been used in the domain of design pattern detection. For
example, Kamp�meyer et al. [51] showed that an ontology can be used to model the
intents of design patterns. Their proposed ontology is useful for automatically relating
design patterns to one another.

80 Common format for design pattern miner tools

6.2.2 Reproducibility

A DPD result �le must contain the diagnostics of a particular DPD tool for a particular
program. To allow reproducibility of the results, it must include the name and version of
the tool employed and the name, version, and the URI of the program being analyzed.
Names and versions may be arbitrary strings. The URI(s) must reference the root
directory(ies) of the program being analyzed. The URI �eld is optional, since the program
being analyzed might not be publicly accessible. The other �elds are mandatory.

6.2.3 Justi�cation

The justi�cation of diagnostics consists of con�dence scores, reported as real values
between 0 and 1, and textual explanations. Justi�cation information can be added at
each level of granularity: i.e. for a complete candidate, individual role assignments and
individual relation assignments.

6.2.4 Completeness

To identify a candidate unambiguously, each program constituent that may play a manda-
tory role must be reported (Identi�cation of Candidates requirement). Therefore, DPDX
allows the reporting of each of the following constituents: nested and top-level types

(interfaces, concrete and abstract classes); �elds and methods; any statements (includ-
ing �eld accesses and method invocations). Reporting role mappings at all possible
granularity levels improves the presentation of the results and aids their veri�cation by
experts and use by other tools. Reporting roles used by statements di�erent from in-
vocations and �eld accesses is important because they are essential for disambiguating
certain motifs.

6.2.5 Identi�cation of role players

The main part of a DPD result �le consists of role mappings, i.e. assignments of program
constituents to the roles that they play in a motif. Given a particular program version
and program constituent description, it should be possible to identify the constituent
precisely and unambiguously in the program. In addition, it would be bene�cial if the
identi�cation scheme were stable, i.e. if it were not a�ected by changes in the source
code that are mere formatting issues or the reordering of elements whose order has no
semantic meaning. For instance, after inserting a blank line or changing the order of
declarations, each program element should still have the same identi�er as before. This
is necessary to compare DPD results across di�erent program versions, when analyzing
the evolution of design pattern implementations over time.

6.2 DPDX concepts 81

Identifying named elements According to Completeness, we must unambiguously
identify program elements down to the granularity level of individual statements.

Stable identi�cation is easy for type and �eld declarations, which are typically labelled.
Chaining names from outer to inner scopes is su�cient for identifying declarations of
classes and �elds. For instance, in the example presented in Figure 6.2, myApp.A iden-
ti�es class A and myApp.B.b identi�es �eld b of class B.

package myApp ;

c l a s s A { pub l i c void f (i n t a , i n t b) { . . . } }

c l a s s B {

i n t b ;

pub l i c void b (B b) { . . . }

pub l i c void b (A a) {

i n t c , d ;

i f (. . .) a . f (c , d) e l s e a . f (d , c) ;

}

}

Figure 6.2: Named and unnamed elements example

Because in many object-oriented languages methods can be overloaded, unique identi�-
cation requires including the types of method arguments in the identi�er of a method.

Identifying unnamed elements Alas, nested naming is unsuitable for �ne-grained
elements (statements and expressions), which may occur several times in the same scope,
e.g. in the same method body or �eld initializer expression. Cases like the two invocations
of method f() within the body of method B.b(myApp.A) in Figure 6.2 can neither be
disambiguated by additionally reporting the static type of invocation arguments (which
is the same in both cases) nor by adding line number information (which anyway fails
the stability requirement).

However, each element can be identi�ed uniquely by a path in an abstract syntax tree
(AST) representation of the respective program. This path consists of names for the
child branches of each AST element and positions within statement sequences. We
call this the model-based identi�cation scheme since it assumes a standardized model
of an abstract syntax tree and standardized names for its parts. For instance, the
if statement in the example presented in Figure 6.2 can be identi�ed by ifPath =
myApp.B.b(myApp.A).body.2. This illustrates how child elements of an already identi-
�ed element are identi�ed either by their unique, standardized name within the enclosing
element (e.g. body as the name of the block representing a method body) or by their

82 Common format for design pattern miner tools

unique position inside the enclosing element (e.g. 2 as the position of the if-statement
within the block). Accordingly, we can denote the invocation of f() in the �rst alterna-
tive by ifPath.then.1.call, distinguishing it from that in the second alternative, denoted
ifPath.else.1.call.

Serving all needs. To satisfy the diverging needs of fusion tools, visualization tools
and humans, precise hierarchical identi�cation information is complemented with infor-
mation about source code positions, where available. Source code positions contain a �le
path in Unix syntax (relative to the base directory indicated by the URI of the program
being analyzed), a start position and an end position in the �le, each indicated by a line
and column number.

In addition, �eld accesses and method invocations may be complemented by information
about the accessed �eld or called method. For instance, the invocation of f() in the then
part could also be reported as � ifpath.then.1.call=myApp.A.f(int,int)�. Since model-
based identi�cation is unambiguous the additional information �=myApp.A.f(int,int)� is
just an optional courtesy to programmers and tools who use the DPD results. It lets
them know which element is referenced by the �eld access or method invocation without
needing to analyze the code of the source program. The class `ReferencingStatement'
in the metamodel (Section 6.3.2) re�ects the option to provide additional referencing
information like this.

DPD tools are required to support at least the hierarchical naming of types, �elds,
methods and argument types in method signatures. The source code position and the
model-based identi�cation of statements is optional, since tools based on byte code
analysis will not always be able to provide it.

6.2.6 Language independence

The standardized model of an abstract syntax tree that underlies the above program
element identi�cation approach is re�ected by the program element identi�er metamodel
described in Section 6.3.2 and a set of standardized element names (see Appendix,
Section B.2) cover the abstract syntax of a wide range of strongly typed imperative and
object-oriented languages with a name-based type system (e.g. Beta, C, C++, Ei�el and
Java) and dynamically typed languages (e.g. Smalltalk). The metamodel abstracts from
details that are not relevant for unique identi�cation. Types are subsumed as named
elements.

6.2.7 Identi�cation of candidates

Several of the tools we reviewed (like PINOT and DP-Miner) report multiple candidates
for the same instance of a motif, whose given roles are played by di�erent program

6.2 DPDX concepts 83

constituents. For example, PINOT outputs a separate Decorator candidate for each
forwarding method if multiple methods play the `Operation' role. Reporting �related�
candidates repeatedly

• can confuse developers and automated tools that might use the results and it
would lead to

• erroneous precision and recall and

• false diagnostics that could be otherwise avoided.

Avoiding the multiple reporting of �related� candidates requires �rst of all a well-de�ned
notion of identity for candidates. Most tools do not explicitly de�ne such a notion.
Some de�ne the conceptual identity of a candidate to be the set of values that it
assigns to mandatory roles (Columbus, Ptidej and DEEBEE). However, this de�nition is
insu�cient, since it implies that two Decorator candidates that only di�er in the player
of the (mandatory) �Operation� role will be treated as di�erent. However, a decorator
instance may have many methods that play the �Operation� role and all the players must
be reported as being part of the same instance (or candidate).

In this context the contribution of this section is a precise de�nition of candidates and
candidate identity and a clari�cation of its implications for DPD tools, the exchange
format and DPD result fusion.

A design pattern schema is a set of named roles and named relationships between these
roles. A role has a name, a set of associated properties, an indication of the kind
of program element that may legally play that role (like a class or method), a set of
contained roles and a speci�cation of the role cardinality, which determines how many
elements that play the role may occur within the enclosing entity. Mandatory roles have
a cardinality greater than zero. A relationship has a name and cardinalities specifying
how many program elements that play a particular role can be linked to either end of
the relationship.

A role mapping maps roles and relations of the schema to elements of a program so that
the target program elements are of the required kind, have the required properties and
relationships and ful�l the cardinality constraints stated in the schema. The essential
task of DPD tools is suggesting role mappings. The set of all role mappings identi�ed
by a DPD tool for a particular schema and program being analyzed de�nes a graph with
nodes being the program elements playing roles and arcs being the relations between
these elements. Each relation between elements re�ects a relation between the roles
that the elements play. We call this graph the projection graph, since it represents the
projection of the schema on the program being analyzed. A candidate is the set of nodes
in a connected component of the projection graph. Each proper subset of a candidate
is called a candidate fragment or simply a fragment.

84 Common format for design pattern miner tools

The identi�ers of any program element that is part of a candidate uniquely identi�es
that candidate since the same element cannot occur in any other (complete) candidate.
However, having possibly di�erent identi�ers for the same candidate is unsatisfactory,
since it makes it hard to compare candidates based on their identi�ers. Therefore,
we require that every pattern schema speci�es exactly one of its mandatory roles as
the identifying role. The identi�er of the element that plays that role in a particular
candidate will identify that candidate.

These notions are illustrated in Figure 6.3. The left-hand side shows a graph that rep-
resents the core structure of the Decorator schema (only the roles and relationships are
shown without their attributes; for a detailed representation, see Section 6.3.1). The
right-hand-side shows a projection graph induced in some hypothetical program by a
possible set of role and relation mappings. It has two connected components, corre-
sponding to two candidates. If we assume that �Component� is the identifying role, then
the two candidates are uniquely identi�ed by the classes A and C. The di�erent colours
in the A candidate represent possible fragments. The multiple candidates erroneously
reported by PINOT and DP-Miner for one instance correspond to such fragments.

Component Decorator

SubtypeOf

Operation Forwarder
calledMethod

ForwardCall
Contains

HasType Component
Reference

Contains

ContainsContains

A B

m() m()aRef.m()

aRef

Decorator Schema Projection Graph

f() f()aRef.f()

C D

h() h()cRef.h()

cRef

accessed Field

Sample role mappings for the „Operation“ role

Figure 6.3: Illustration of candidates

The unambiguous candidate identi�cation requirement is ful�lled if a tool reports (com-
plete) candidates only, not fragments. This requires that the exchange format provide
the means of expressing a mapping of a particular role to multiple players within the
same candidate, like the methods m() and f() playing the �Operation� role in the upper
candidate shown in Figure 6.3. Since XML is well suited to represent hierarchical nesting
and also ful�ls our standard compliance requirement, that DPDX be based on XML.

6.3 DPDX meta-models 85

6.2.8 Comparability

DPDX supports comparability by specifying a precise metamodel of schemata, enabling
tools to report their schemata. In addition, it provides the means to specify analysis
methods employed and speci�es a common vocabulary of analysis methods.

6.3 DPDX meta-models

This section presents the three meta-models that together specify the DPDX format: the
meta-model of design pattern schemata, the meta-model of program element identi�ers
and the meta-model of DPD results. These models re�ect the decisions outlined in the
previous section. Figure 6.4 shows how these models are related.

DPD results of tool T for program P

Metamodel of

DP Schemata

S1 = Schema

of Singleton

Metamodel of

DPD Diagnostics

Sn = Schema

of Decorator

instanceOfinstanceOf

...

Metamodel of

Program Elements

Role mappings and

relation mappings

Diagnostics

of T for P

Schemata

of tool T

instanceOf

Elements of

program P

Figure 6.4: Relation between schemata, diagnostics and instances

Here the results are instances of the result metamodel. Their main part is the mapping
of roles and relations to program elements. Candidates are targets of mappings like
this (see Section 6.2.7). Note that candidates may overlap; that is, program elements
can play a role in di�erent pattern schemata, as illustrated by the overlap of one of the
Singleton candidates with one of the Decorator candidates in Figure 6.4.

6.3.1 Schema metamodel

The metamodel of design pattern schemata is illustrated in Figure 6.5. An instance of
the metamodel that represents the schema of the `Decorator' motif is shown in Figure

86 Common format for design pattern miner tools

Role

PatternSchema

Relation

name : String

kind : String

cardinality : String
source

1

1

target

1

1..*

1
name : String

srcCard: String

targetCard : String

mandatory : Bool

direct: Bool

name : String

v
a
ri

a
n

tO
f

*

roles
Property

name : String

value: String

strict: Bool

*1

1

containedRoles

*

Figure 6.5: Metamodel of design pattern schemata

:Schema
Decorator

Component
class

1

Decorator
class

1

: Role
Operation
method

1..*

: Role
Forwarder

method
1..*

: Role
ForwardCall

call
1

: Role
Parent

field
1

ConcreteDecorator
class

*

:Relation
SubtypeOf

+
1

:Property
abstractness
concrete
true

: Role : Role : Role

:Relation
SubtypeOf

+
1

invokes
1
1

HasType
1
1

:Relation

:Relation

Figure 6.6: Sample of design pattern schemata

6.6. Here, the values of the attributes �mandatory� and �direct� in relation instances,
and the aggregation of relation instances within the schema instance have been omitted
for conciseness.

The metamodel re�ects the de�nition of schemata in Section 6.2.7 and supplements it
with the de�nition of properties as triples consisting of a name, a value and a boolean
that indicates whether the property must be met exactly or might be relaxed. In the
�rst case it represents a core characteristic (e.g. the 'ConcreteDecorator' role must be
played by a class whose `abstractness' property has the value concrete � see Figure 6.6).
Otherwise, it is ignored if it not ful�lled, but it increases the con�dence in the diagnostic
if it ful�lled (e.g. the `Decorator' is typically abstract, but not always). The metamodel
also adds the option to formally state that a schema is a variant of another one, e.g. a
`Push Observer' is a variant of the `Observer' motif.

Note that the representation can accommodate arbitrary languages and the evolution of
existing languages without any change in the metamodel because language level concepts

6.3 DPDX meta-models 87

(e.g. classes, methods, statements) are not �rst class entities of the metamodel, but
just values of the `kind' �eld of the Role class. In order to enable di�erent tools to
understand each other, it is su�cient to agree on a common vocabulary; that is, a set
of `kind' values with a �xed meaning. For instance, the `kind' class generally represents
an object type and the distinction between interfaces, abstract classes and concrete
classes is represented by the property `abstractness' with prede�ned values interface,
abstract and concrete. A suggested common vocabulary is presented in the Appendix
(see Section B.2).

6.3.2 Program element metamodel

The program element metamodel is illustrated in Figure 6.7. The identi�cation scheme
elaborated on in Section 6.2.5 distinguishes

• named elements (�elds, classes, interfaces and primitive or built-in types),

• typed elements (method signatures),

• indexed elements (statements in a block) and

• blocks.

ProgramElement

TypedElementNamedElement

name: String name: String

*

IndexedElement

indexInParent: int

Block

nameInParent: String
1..*

Source

uri: String
line: int
col : int
endline : int
endCol :int

kind ∈ {class,
interface, field,

basicType}

kind ∈
{method}

kind ∈ {block}

kind ∈ {block, ...}

kind: String

ReferencingStatementkind ∈ {get, set, call}

1
0,1

referencedElement

ref

Figure 6.7: Metamodel of program element identi�ers and optional source locations

Each of these elements can be nested inside other elements. This is general enough
to accommodate even exotic languages. Although blocks and named elements look
similar (both contain just a name), there is a signi�cant distinction. The names of
named elements stem from the program being analyzed, whereas those of blocks have
a �xed vocabulary (see Section B.2). Each block is named after its role in the program
element in which it occurs (e.g. ifCondition, then, else, whileCondition, whileBody).
The `kind' �eld corresponds to the one in the schema metamodel and it can have the
same values. Indexed elements whose kind is get, set or call can be optionally treated as

88 Common format for design pattern miner tools

referencing statements, allowing us to add information concerning the referenced element
(see Section 6.2.5).

Figure 6.8 illustrates the object representation of the invocation a.f(d,c) from the code
example given in Section 6.2.5. In the textual notation used there it is denoted by
`myApp.B.b(myApp.A).body.2.else.1.call'.

:Named

myApp.B

:Typed

b

:Indexed

2

:Block

else

:Named

myApp.A

:Indexed

1

:Block

body

:Block

call

Figure 6.8: Representation of the invocation a.f(d,c) from the code example in Figure 6.2

6.3.3 Result metamodel

Figure 6.9 shows the metamodel of DPD results. A DPD result contains a set of
diagnostics produced by a tool for a given program. Each diagnostic contains a set of
role and relation assignments and a reference to the pattern schema whose roles and
relations are mapped. Each role assignment references a mapped role and a mapped
program element that plays the mapped role. A relation assignment references a mapped
relation, a program element that serves as a relation source and a program element that
serves as a relation target. Optional justi�cations can be added to diagnostics and each
of their role and relation assignments. Schemata, roles, relations and program elements
are de�ned according to Figure 6.5 and Figure 6.7.

RoleAssignment

Diagnostic

1..*

patternName : String

1 1

1player

roleAssignments

DPD Result

name: String
version : String

Tool

name: String
version : String
language: String

Program

1..*diagnostics

1 1

source target

explanation : String
score : Real

0,1

0,1
Justification

1..*relationAssignments

Role

Relation

1

1
RelationAssignment

ProgramElement

Figure 6.9: Metamodel of the design pattern detection results

The result metamodel is demonstrated in the common example of a Decorator instance
taken from Java IO, illustrated in Figure 6.10. Mandatory roles are shown with �lled
boxes, while optional roles are shown with empty boxes.

6.4 DPDX implementation 89

Figure 6.10: A decorator instance from the java.io package of the JDK with subclasses
implemented by us (OutputStreamWriter and CharCountBu�erWriter)

Figure 6.11 shows a few role and relation assignments for an instance of the Decora-
tor pattern, consisting of the program elements java.io.Writer, java.io.Bu�eredWriter,
java.io.Writer.write() and java.io.Bu�eredWriter.write().

Component

: Role
Operation

: Role
ForwardCall

: Role
Parent

: Role

invokes

HasType

:Relation

:Relation

:Named

java.io.BufferedWriter.out

:Named

java.io.Writer

:Named

java.io.Writer

:Typed

write

:Named

java.io.BufferedWriter

:Typed

write

:RoleAssignment

:RelationAssignment

:RoleAssignment

:RoleAssignment

:RelationAssignment

ar
gu

m
en

t t
yp

es
ar

gu
m

en
t t

yp
es

:RoleAssignment

target

source
source

target

source

target

Figure 6.11: Sample of the design pattern detection results

6.4 DPDX implementation

The DPDX meta-models are a common framework of reference for developing and imple-
menting the textual output of DPD tools and the parsing / interpretation of this output
by users of DPD results (developers, the fusion tool, benchmarks and visualization tools).
For long-term maintainability, the implementations of the meta-models should rely as

90 Common format for design pattern miner tools

much as possible on emerging or de-facto standards. Therefore we shall base our com-
mon exchange output format on XML. Thus, XSLT can be used to transform results into
a readable format or the proprietary format of individual tools. Furthermore, the rules
of the format can be easily de�ned by XSD. In the appendix, �gures B.10, B.11, B.12
and B.13 present the implementation of DPDX via the previous example of Decorator.
Below, we will describe the implementation details through this example.

6.4.1 Implementation details

The implementation of DPDX consists of the realization of the three meta-models in-
troduced in Section 6.3. The implementation of the Schema meta-model (see Section
6.3.1) allows the tools to report the schema of the patterns they search for; the Program
Element meta-model (see Section 6.3.2) implementation is for identifying the program
elements of the source code playing some role in the pattern instance; and the Result
Meta-model (see Section 6.3.3) implementation describes the detected pattern candi-
dates themselves.

To keep the implementation simple, we have adhered as much as possible to the following
general principles for mapping meta-models to XML:

• classes of the meta-models are mapped to XML tags,

• attributes of the meta-model elements are mapped to attributes of the XML ele-
ments,

• aggregation between the elements of the meta-models is represented by the parent-
children nesting technique of XML,

• an element that can be referred to by another element has an `id' attribute, and
the element that would like to refer to this element has an attribute to refer it. The
referencing attribute is labelled as the meta-model association that it implements.

• an association with target cardinality greater than 1 is represented by a group
element included with individual referencing elements. For instance, the Type-
dElement' nodes contain a `ref' element which collects further `ref' elements to
refer to the types of the parameters of the `TypedElement' (Figure B.11, line
17-21).

To avoid any ambiguities, we require that intentionally missing values be made explicit by
special reserved values (enclosed in % signs) instead of simply providing empty attributes.
In particular,

• the `variantOf' attribute of a `PatternSchema' element must have the value
%NONE% if the respective schema is not a variant of another schema (Figure B.10,
line 1);

6.5 Summary 91

• the `player' attribute of a `Role' element must have the value %MISSING% if no
program element that plays this role could be found (see Figure B.13, line 15).

We chose to slightly deviate from these general principles when we felt it would make
the implementation clearer and easier to understand:

• To avoid cluttering the format with redundant information, the `kind' attribute
of program elements is not set if it is implied by the program element type (for
example, the `Block' node in Figure B.11, line 23).

• The result metamodel de�ned an aggregation between `Justi�cation' - `RoleAs-
signment' and `Justi�cation' - `RelationAssignment' elements. However, in the
implementation we represent `Justi�cation' elements separately and not as the
children of the assignment nodes. `Justi�cation' tags can refer to a `RoleAssign-
ment' or to a `RelationAssignment' with the `for' attribute (Figure B.13, line 26).

6.4.2 Integration and visualization

The implementation of the three metamodels could have been placed into three di�erent
XML �les. However, we chose to fuse them, since it eases processing and visualization.
This means that the `ProgramElements' and the `PatternSchema' tags have been inserted
into DPDX �les as the children of the `DPDResult' tag.

In order to support human readability of the format, an XSLT transformation �le is
also provided. It transforms DPDX �les into nicely formatted HTML tables, whereby
the source code of the pattern candidates can be loaded immediately. The HTML
representation of the example DPDX presented in this section is available online [31].
Furthermore, the exact rules of the XML format are de�ned by an XSD schema �le,
which is also available online [31].

6.5 Summary

Design pattern detection is a signi�cant part of the reverse engineering process that can
aid program comprehension, and to this end several design pattern detection tools have
been developed. However, each tool reports design pattern candidates in its own format,
prohibiting a comparison, validation, fusion and visualization of their results. Apart from
this limitation, each pattern identi�cation approach employs di�erent terms to describe
concepts that underlie the pattern detection process, further inhibiting their synergetic
use.

In this chapter we proposed DPDX, a common exchange format for design pattern
detection tools. The proposed format is based on a well-de�ned and extendible meta-
model that addresses a number of limitations of current tools. The XML-based format

92 Common format for design pattern miner tools

employed is adaptable for existing and future tools, providing the basis for improving
accuracy and recall scores when their �ndings are combined. Moreover, we strove to
clarify central notions in the design pattern detection process by providing a common
format for researchers and tools.

Part III

Evaluation of reverse engineering

tools

93

Chapter 7

Validation of reverse engineering

tools

�All our knowledge has its origins in our perceptions.�

Leonardo da Vinci

This part introduces the further development of the DEEBEE system to help make it
more suitable by generalizing the evaluating aspects and the data to be evaluated and
compared. The new system is called BEFRIEND (BEnchmark For Reverse engInEering
tools workiNg on source coDe). With BEFRIEND, the results of reverse engineering tools
from di�erent domains recognizing the arbitrary characteristics of source code can be
subjectively evaluated and compared with each other. Such tools include design pattern
detectors, duplicated code detectors and coding rule violation checkers. BEFRIEND
largely di�ers from its predecessor (DEEBEE) in �ve aspects:

• it allows the uploading and evaluating of results related to di�erent domains (do-
mains like duplicated code detectors and design pattern miners)

• it allows the adding and deleting of the evaluating aspects of the results in an
arbitrary way, while DEEBEE has �xed evaluation aspects

• it improves and extends the user interface

• it generalizes the de�nition of sibling relationships to tackle the problems of other
domains, not just design pattern mining, e.g. for duplicated code detectors where
fundamental participants cannot be used as a basis for grouping the same results,
unlike DEEBEE (see Section 5.1.2)

• it allows the uploading of �les in di�erent formats by introducing a plug-in oriented
architecture

7.1 Background

As we saw in Section 5.1.2, it may happen that several candidates can be grouped, which
can help speed up their evaluation, improve the statistics and facilitate a comparison of

95

96 Validation of reverse engineering tools

the tools. For example, if two clone detector tools found 500 clone pairs (most clone
detector tools �nd clone pairs), then by grouping them, the number of clone pairs can
be reduced to a fraction of the original candidate number. In another case, if one of
the clone detectors �nds groups of candidates (e.g. 30), and the other one �nds clone
pairs (e.g. 400), the reason why the latter tool �nds more candidates could be that its
output is de�ned di�erently. Because of this, it may be the case that without grouping,
the interpretation of tool results may lead to false conclusions.

However, grouping is a di�cult task since the tools very rarely label the same source
code fragment. There may be several reasons for this, such as:

• The tools use di�erent source code analyzers, which may cause di�erences between
the candidates.

• One tool gives a wider range of candidates than the other. For example, in the
case of code clone searching tools, one tool �nds a whole class as one clone, while
another �nds only two methods in the class.

• One tool labels the opening brackets of a block, while the other does not.

7.1.1 Sibling relation

In order to group candidates, their relation needs to be de�ned. If two candidates are
related to each other, then they will be denoted as siblings. Basically, three things
determine the existence of the sibling relation between two candidates. These are

• the matching of their source code positions

• the minimal number of matching participants

• domain dependent name matching.

By using these three things, candidates can be connected. In the following we will
examine these three cases in detail.

Source code positions Sibling relations are mostly determined by the matching of
the source code positions. We examined the literature and found that the contained,
the overlap and the ok metrics de�ned by Bellon et. al. [10] are a good starting point
for a general sibling relation. We adapted the contained and ok metrics with a little
modi�cation via a contain function. The main reason for the modi�cation was that the
contained and ok metrics work on clone pairs, but we found that some tools report
candidates in groups (e.g. clone groups or grouped design pattern candidates).

7.1 Background 97

Let P and P
′
be participants with the same roles1. The contain and the overlap functions

are de�ned in the following way:

contain(P, P
′
) = max(

|P ∩ P
′|

|P |
,
|P ∩ P

′ |
|P ′|

)

overlap(P, P
′
) =

|P ∩ P
′|

|P ∪ P ′|
where P.role = P

′
.role

In the case of the contain and the overlap functions, the set operations are applied to
the source code lines of P and P

′
. Both contain and overlap functions take values

between 0 and 1. Now, we will describe the contain and overlap functions through the
example presented in Figure 7.1.

Figure 7.1: Example code for contain and overlap functions

The �gure is based on an application of the contained, good and ok metrics published
by Bellon et. al. [10]. In this �gure the vertical line in the middle represents the whole

1If the roles are not the same then, for example, a ConcreteStrategy participant will be incorrectly
connected to a Context participant.

98 Validation of reverse engineering tools

source code linearly. The source code begins at the top of the vertical line and ends at
the bottom of the vertical line. The code fragments of the participants are represented
by the �lled rectangles. Here, there are two clone candidates: C1 on the left hand side
and C2 on the right hand side. C1 has two cloned fragments (participant), C1.F1 and
C1.F2, while C2 has three cloned fragments, C2.F1, C2.F2 and C2.F3. Subsequent
source code lines are separated by dashed lines inside the clone fragments, e.g. C1.F1

contains 5 lines of code. For example, in the case of C1.F1 and C2.F1, the functions
are calculated in the following way:

contain(C1.F1, C2.F1) = max(
|C1.F1 ∩ C2.F1|

|C1.F1|
,
|C1.F1 ∩ C2.F1|

|C2.F1|
)

= max(
4

5
,
4

6
) =

4

5
= 0.8

overlap(C1.F1, C2.F1) =
|C1.F1 ∩ C2.F1|
|C1.F1 ∪ C2.F1|

=
4

7
= 0.57

With matchp, either the contain or the overlap function is represented (exclusive or):

matchp(P, P
′
) = contain(P, P

′
)⊕ overlap(P, P

′
)

The matchpb function describes whether P and P
′
have a matchp above a prede�ned

bound :

matchpb(P, P
′
, bound) ={

1 if matchp(P, P
′
) >= bound

0 otherwise

With the use of the matchpb function, a matchi function can be de�ned between the
candidates. The matchi function denotes how many times matchpb returns one for each
participant of the C and C

′
candidates:

matchi(C,C
′
, bound) =∑

P∈C

∑
P

′∈C′

matchpb(P, P
′
, bound)

7.1 Background 99

Let us see how matchi is calculated in the case of the previous example. The �rst step is
to calculate the selected function of matchp (either overlap or contain) for each possible
combination of participants. Table 7.1 shows these values for C1 and C2. Afterwards,
matchpb is calculated based on a prede�ned bound, which is 0.7 in this example. In
Table 7.1 we denoted elements above this bound in bold. It means that matchpb is
one in these cases, which is used in the calculation of matchi. In this way, we get the
following:

• In the case of matchp = contain, summarizing the matchpb values (in Table 7.1,
bold values showing that matchpb is one) we �nd that matchi = 2

• In the case of matchp = overlap, each matchpb value is 0, so matchi = 0

Function Contain Overlap

P/P
′

C2.F1 C2.F2 C2.F3 C2.F1 C2.F2 C2.F3

C1.F1 0.8 0 0 0.57 0 0
C1.F2 0 1 0 0 0.67 0

Table 7.1: Contain and overlap values for the previous example

Minimal number of matching participants. Sometimes it is not enough to match
just one participant between two candidates. For example, in the case of design patterns,
the Abstract Factory pattern has two fundamental participants (mandatory roles), called
Abstract Factory and Abstract Product, for matching. For this reason, it is important
to determine the minimal number of common participants of two potential siblings. Let
us denote the minimal number by m. The sibling relation between candidates C and C

′

with parameters m and bound is de�ned in the following way:

sibling(C,C
′
, bound,m) ={

true if matchi(C,C
′
, bound) >= m

false otherwise

The candidates can be grouped based on the sibling relation. A group contains can-
didates that have a sibling relation in pairs. By using groups, the evaluation of the
tools is more straightforward, and the statistical results are better than without it (see
Section 5.1.2 for a detailed discussion). In BEFRIEND, users can customize the sibling
relations by arbitrarily choosing between the contain and the overlap functions, giving
the bound and m parameters, and optionally selecting the roles for matching.

Continuing the previous example, let m = 1, matchp = contain and bound = 0.7.
Besides these parameters, C1 and C2 are placed into the same group.

100 Validation of reverse engineering tools

Domain dependent name matching In certain domains, the roles are not so im-
portant (e.g. code duplications have only one role called duplicated code). However, if
a domain contains several roles, some roles may be more important than the rest (as in
the case of the design pattern domain). For example, in the case of a Strategy design
pattern, the Strategy participant determines a candidate and hence, the sibling relation
should be based on this participant. With such domains, the matchpb function has to
be modi�ed.

Let roles be a set that denotes the roles that are the basis of the sibling relations among
the candidates. The matchpb is rede�ned as matchpb′ in these cases:

matchpb′(P, P
′
, bound, roles) ={

matchpb(P, P
′
, bound) if P.role ∈ roles

0 otherwise

In the case of domains where roles are important (e.g. design pattern miners), the
matchpb function has to be replaced with matchpb′ in the formula of matchi.

Future extensions With the previous de�nitions, it is possible that a group contains
two or more candidates which are not siblings. Figure 7.2 shows an example of this
problem. The previous example has been extended with one more candidate C3. In this
way, grouping candidates based on the original sibling relation means that C1 and C3
are placed in the same group. As we do not allow such cases, the groups have to be
transitive. Currently, in these cases the common candidates appear in each group. In
the current example it means two groups: (C1, C2) and (C2, C3).

Overall, it may bias the statistics and the comparison because some candidates may be
repeated across the groups (like C2). Therefore, this problem should be dealt with in
the future. A trivial solution for this problem is to apply di�erent grouping methods per
use case:

• In the case of manual evaluation, it is easier to evaluate related candidates together
so a compliant grouping is enough. E.g. in the current example, it means only
one group: (C1, C2, C3).

• Comparing candidates requires transitive, but not distinct groups. E.g. in the
current example it means two groups: (C1, C2) and (C2, C3).

• Calculating statistics requires transitive and distinct groups, E.g. in the example,
it means three groups: (C1), (C2) and (C3).

At present, the benchmark supports the �rst strategy for each use case. However, it
could be easily extended with the two other approaches.

7.2 Use scenarios 101

Figure 7.2: Problem of the non-transitivity feature of the sibling relation

7.2 Use scenarios

Now we will show how the system works with the help of some scenarios graphically
illustrated below. In each case, �rst we give a general description of its functionality,
then we demonstrate its use with a concrete example. The examples are continuous, they
are built on each other, and they show how the benchmark is used. The �rst example
begins with an empty benchmark without any kind of domain or evaluation criteria.

7.2.1 Setting up the database

In this scenario, we show how the user can create a new domain and evaluation crite-
rion, how he can upload data in the system, and how he can set the sibling algorithm
parameters. The functions that help one make the necessary settings can be found in
the Settings and Upload menus.

102 Validation of reverse engineering tools

Creating a new domain Now a new domain has to be created based on the data
to be uploaded. For the creation of a new domain, the Domain settings panel must be
used.

Figure 7.3: Creating a new domain

Example: We will upload the results of a duplicated code detecting tool. First, with the
help of the Domain settings panel, we create a new domain which is called Duplicated

Code. As a result, the actual domain is set to the newly created Duplicated Code (see
Figure 7.3). If we have created more than one domain, we can select the domain we
would like to activate from the Select active domain drop-down list. The functionality of
BEFRIEND depends on and is performed on the active domain (e.g. querying candidates,
evaluating candidates, statistics and comparison).

Creating new evaluation criteria In order to be able to evaluate the uploaded data,
appropriate evaluation criteria are required. The user can create an arbitrary number of
criteria per domains. On the basis of this, the uploaded candidates can be evaluated.
In one evaluation criterion, one question has to be given to which an arbitrary number
of answers can be de�ned. Similar to the domain case, we can create a new criterion
under the Settings menu. When creating a new criterion, the following data should be
entered:

• The title of the evaluation criterion (Title).

• The question related to the criterion (Question).

• The possible answers to the question (Choice). For each answer a percentage ratio
should be added to indicate to what extent the given question has been answered.
Based on the replies by users, the benchmark can calculate di�erent statistics using
this ratio.

• Should the precision and recall values be calculated? (Y/N)

Example: We will create an evaluation criterion called Correctness for the previously
created Duplicated Code domain. Enter a value of number 4 (meaning that we will have
four possible answers) in The number of choices within the created criteria �eld in the
Evaluation criteria panel and click on the Create new criteria button. After �lling out
the form that appears and clicking on the Submit button, the criterion appears in the

7.2 Use scenarios 103

Figure 7.4: Correctness criteria

setting surface (see Figure 7.4). The Correctness criterion is used to decide to what
extent a code clone group comprises cloned code fragments. For the criterion, we also
have to say whether the precision and recall values will be calculated or not.

During the evaluation, we will use two other criteria. One of them is Procedure abstrac-
tion with the related question 'Is it worth substituting the duplicated code fragments

with a new function and function calls?' And the possible answers are:

• Yes, we could easily do that. (100%)

• Yes, we could do that with some extra e�ort. (66%)

• Yes, we could do that, but only with a lot of extra e�ort. (33%)

• No, it is not worth doing that. (0%)

With this, we de�ne how much e�ort would be needed to place the duplicated code
fragments into a common function. The easier it is to introduce a function, the more
useful the given candidate is on the basis of this criterion. This is an important indicator
because a tool that might not be able to �nd all the clones, but is able to �nd most of
the easily replaceable ones is worth much more from a refactoring viewpoint.

The third criterion is Gain with the related question 'How much is the estimated gain of

refactoring into functions?' The possible answers are:

• The estimated gain is remarkable. (100%)

• The estimated gain is moderate. (50%)

• There is no gain at all. (0%)

It is important to evaluate how much bene�t would be gained by placing the code
fragments into a function. It may happen that something is easily replaceable, but it is
not worth the trouble since no bene�t is gained by doing so.

Uploading data into the benchmark When the user has created the appropriate
domain and the required evaluation criteria, he has to upload the candidates produced

104 Validation of reverse engineering tools

Figure 7.5: Uploading data into BEFRIEND

by the tools to be evaluated. The upload page can be found in the Upload menu. The
format of the �les to be uploaded is completely arbitrary, the only condition being that
the evaluated tool should provide a BEFRIEND plug-in to perform the uploading. The
benchmark provides a plug-in mechanism whereby implementing an interface the output
format of any tool can be uploaded. Currently, the benchmark has plug-ins for the output
formats of the following tools: Columbus, CCFinderX, Simian, PMD and Bauhaus.

For uploading, the following data items are needed: the name of the tool and the name
and programming language of the software being analyzed. If an item was not present
earlier, we can add the new data to the list by selecting the New item option. The
uploaded data refer to a certain source code, so it is important to provide some kind of
access to these sources. Currently, the benchmark supports two access methods - http
and svn.

Example: Continuing the evaluation process, we upload the results produced by the
clones command line program of the Bauhaus tool into the system. First, click on the
Upload menu, which will take you to the upload page (see Figure 7.5). After giving the
required data and the path of the �le containing the results, click on the Upload button
to perform the uploading.

Sibling setting Siblings allow candidates with similar properties to be handled to-
gether during an evaluation (see Section 7.1.1). Settings can be applied in the Settings
menu, on the Siblings settings panel (see Figure 7.6). The user can choose the Contain
or the Overlap function. In the Path matching bound �eld, the bound of the matchpb

relation should be between 0 and 100 (the matchp relation is projected into the interval
0 to 100). In the Min. number of matching participants �eld, the number of participants
whose matching we need for two sibling candidates should be given (the m parameter

7.2 Use scenarios 105

of the sibling relation). Settings set by the user have to be saved in named con�gu-
rations. Thus, if we wish to use an already saved setting in the future, we can load it
by selecting it from the Load shortcut menu. In this case the system will not rerun the
sibling grouping algorithm, but just reload the previously stored con�guration.

Figure 7.6: Sibling settings

Example: In the last part of the scenario, we set the sibling parameters (see Figure 7.6).
For linking, we use the Contain function and the matching bound is set at 90%. The
reason for choosing this bound is that this way the candidates can be linked even in the
case of short code clones (10 lines). The ratio of the Min. number of participants to

match is 1, which means that it is enough to have two matching participants to link two
clone candidates. We save this con�guration as Moderate.

7.2.2 Data evaluation

The main task of the benchmark is to perform a visualization and evaluation of the
uploaded data. In this section, we summarize what these functions do.

Query view The uploaded candidates can be accessed through the Evaluation menu.
First, the Query view appears (see Figure 7.7), which helps the user de�ne the aspects,
on the basis of which the uploaded candidates are listed. There are four possible aspects:
Tool, Software, Language and the currently active domain (Design Pattern, Duplicated
Code or Rule Violation). The possible values of the aspects depend on the data of the
already uploaded candidates. For example, the Design Pattern aspect contains values
like State or Adapter, while Tool contains values like Columbus when the active domain
is Design Pattern.

106 Validation of reverse engineering tools

Figure 7.7: Query view

With more settings, even narrower candidate sets can be de�ned. If the user would like
to skip an aspect when �ltering, this aspect should be set to the None value. If he would
like to see all the items related to the selected aspects, the All value should be used.
The order of the sequence of aspect selection is arbitrary. At the bottom of the query
view, there is a Connect siblings check box. If this box is marked, the candidates appear
in groups, not individually.

Example: Select the Evaluation menu. The Query view page appears (see Figure 7.7). In
the �gure, the �rst aspect is Software, whose value is set to JUnit4.1. The second aspect
is Tool, whose value is All ; the third and fourth aspects are not used. We also activated
the Connecting siblings check box. By clicking on the Go to results view button, we will
get to the view of candidates satisfying the given aspects (see Figure 7.8).

Figure 7.8: Results view

Results view The columns of the table correspond to the aspects de�ned in the Query
view, with the exception of the last column. Here, the candidate identi�ers can be seen.
By clicking on the identi�ers, the Individual instance view or the Group instance view

appears, depending on whether the user has set the grouping of siblings in the Query

view. Blue identi�ers represent a single candidate (or instance), while red identi�ers
represent grouped candidates (or instances).

Example: In the �rst column of the table, JUnit4.1 can be seen based on the aspects set
in the Query view (see Figure 7.8). Since all the tools were selected, the second column

7.2 Use scenarios 107

of the table contains every tool found in the database. The third column comprises the
identi�ers of the duplicated code candidates found by the tools. It can be seen that not
all identi�ers are present in the table since we have set the grouping of siblings in the
Query view, so here the groups appear with the smallest candidate identi�ers.

Group instance view and Individual instance view The Instance view is used to
display candidates and evaluate whether they are instances or not. BEFRIEND supports
two kinds of instance views, namely Group instance view and Individual instance view.
While the Group instance view can display multiple (grouped) candidates simultaneously,
the Individual instance view displays the participants of only one candidate in each case.
Apart from this di�erence, the two views are essentially the same.

In the Results view, the Instance view can be accessed by clicking on a candidate
identi�er. If the user has set the grouping of siblings in the Query view (see Figure 7.7),
the system automatically applies the Group instance view. Otherwise, it applies the
Individual instance view.

Figure 7.9: Group instance view

Group instance view: The Participants table comprises the participants of the can-
didates; the di�erent participants of all the siblings appear. The table has as many

108 Validation of reverse engineering tools

columns as the number of candidates in the group. Each column corresponds to a given
candidate whose identi�ers are indicated at the top of the column. In the intersection of
a row of participants and a column of candidates, either a green

√
or a red × symbol

appears. The green
√

means that the candidate in the given column comprises the
participant in the row. The × symbol means that this particular candidate of the group
does not have such a participant. By clicking on the green

√
with the right mouse

button, a pop-up menu appears, with the help of which the participant's source code
can be displayed. Whether the source code should be displayed on the left or right hand
side of the surface under the table can be selected from the menu. This is very useful
because, for instance, the participants of the duplicated code candidates lie next to each
other.

The evaluation criteria and, along with these, the voting user interface can be accessed
by clicking on the 'Show criteria' link under the table of participants (see Figure 7.9).
Statistics about previous votes of the candidates can be accessed by clicking on the stat
link above the evaluation column. By moving the mouse above any of the green

√

symbols, a label appears with the source code name of the given participant (if it has
one). Comments can also be added to the candidates. A candidate can be commented
on by clicking on the candidate identi�er appearing above the Participants table. This
window even contains information that reveals which tool found the given candidate.

Example: Click on candidate #31 in the Results view created in the previous example
(see Figure 7.8). The Group instance view appears (see Figure 7.9). Right-click on
any of the green

√
symbols, and select Open to left in the appearing pop-up menu.

Right-click on another green
√

symbol, and select Open to right in the menu. This
way, the source code of two clone participants will be displayed next to each other.
After examining the participants of all the four candidates belonging to this group, the
evaluation criteria can be displayed by clicking on the 'Show criteria' link. Here, the
candidates can be evaluated.

Statistics view This view can be reached from the Query view by clicking on a link
other than a candidate identi�er. Here, relying on the structure seen in the Results

view, the user gets some statistics according to the evaluation criteria applied, based on
the previous user votes (see Figure 7.10). One table that comprises the vote statistics
for all of the candidates concerned is associated with each evaluation criterion. In the
�rst column of the table, the candidate identi�ers appear. The identi�er of the grouped
candidates is red, while that of the others is blue. Besides the identi�ers, �ve columns
can be found (mean, deviation, minimum, maximum and median) representing statistics
about user votes for the corresponding candidate2. If we have decided in the Settings

2On the top of the statistics view the user can set the strategy of how to aggregate the votes of a
user in the case of grouped candidates (red identi�ers): based on the average, maximum, minimum,
deviation or median of the group candidate ratio. In the case of groups, these values (for each user)
were used to calculate the statistics shown in Figure 7.10.

7.2 Use scenarios 109

menu that the precision and recall scores should be calculated, they will also appear
under the table corresponding to the criterion.

Figure 7.10: Bauhaus correctness statistics

Example: After having evaluated all the candidates found by the tools, we examine the
statistic we get for the votes of each tool. Let us go back from the Group instance view

(see Figure 7.9) to the Results view (see Figure 7.8) by clicking on the Back to previous

view link. Here, we get the statistical values of all the tools by clicking on 'JUnit4.1'.
According to the 3 criteria, three tables belong to each tool. In the Correctness table
of the Bauhaus-clones tool, the statistics of the candidate votes can clearly be seen
(see Figure 7.10). Furthermore, it can also be seen that some candidates are grouped,
these being marked in red by the system. Underneath the table, information is provided
like precision and recall scores. The Number of instances above the threshold and Total

number of instances above the threshold are based on a setting at the top of the statistics
view. It is called the Threshold for calculating precision and recall, which by default is
50%. This value determines which candidates can be accepted as instances (as true
positives). The �rst three items of information (starting with 'Number of') refer to the
results of the current tool, while the three items of information below Precision (starting
with 'Total number') refer to the results of all the tools examined.

On the basis of this data, precision and recall scores are automatically calculated. In the
case of Bauhaus the �rst is 62.79%, while the second is 84.38% .

Comparison view The system comprises yet another interesting view called the Com-
parison view. In order to activate this view we have to start from a statistics view that

110 Validation of reverse engineering tools

comprises several tools. The comparison view compares the instances found by each
tool. For each possible coupling, it de�nes the instance sets found by two tools, and the
di�erence and intersection of these sets. This view allows us to compare the tools with
each other.

Figure 7.11: Comparison view

Example: In the Statistics view loaded in the previous example, click on the Switch to

comparison view and the Comparison view will appear (see Figure 7.11). A comparison
of tools is carried out in pairs, and here we also have the opportunity to link siblings in
the same way as in the other views (here the grouped instances are marked in red as
well).

7.3 Experimental results

Now we will summarize the results of the experiments performed using BEFRIEND.
We should mention here that the aim of the experiment was the demonstration of the

capabilities of our system rather than the evaluation of the di�erent tools. During the
demonstration, �ve duplicated code �nder tools were assessed on two di�erent open
source projects, called JUnit and NotePad++. The tools used in the experiments were
Bauhaus (clones and ccdiml), CCFinderX, Columbus, PMD and Simian.

Over 700 duplicated code candidates were evaluated by two developers. For the evalua-
tion, three evaluation criteria were used, namely Correctness, Procedure abstraction and
Gain (see Section 7.2.1). The results of using the tools on the two open source projects
are shown in Table 7.2 and Table 7.3.

The precision and recall scores shown in the tables were calculated based on the Correct-
ness criteria. In the rows of Procedure abstraction and Gain, the average values obtained
from the votes given for the candidates are shown according to the criteria applied. We
should add that a threshold value is needed to calculate the precision and recall scores.

7.3 Experimental results 111

Criteria Bauhaus Columbus PMD Simian
ccdiml

Precision 100.0% 96.15% 62.5% 61.43%
Recall 5.06% 28.09% 64.61% 48.31%
Proc. abstr. 62.87% 65.59% 48.16% 48.12%
Gain 55.95% 53.37% 33.88% 34.88%

Table 7.2: Results on NotePad++

The candidates above this threshold are treated as instances (see Section 7.2.2). We
used the default threshold value of 50%, but the threshold can be adjusted arbitrarily.
For example, in the case of three voters, if two of them give 66% to a candidate, while
the third one gives 33%, the average of the three votes is 55%. In such cases, it is
reasonable to accept the candidate as an instance since two of the three voters accepted
it, while only one rejected it.

Criteria Bauhaus CCFinder Colum- PMD Simian
clones bus

Precision 62.79% 54.84% 100.0% 100.0% 100.0%
Recall 84.38% 53.13% 12.5% 15.63% 6.25%
Proc. abstr. 48.31% 44.23% 79.0% 73.0% 66.25%
Gain 29.36% 30.98% 62.5% 62.5% 62.5%

Table 7.3: Results on JUnit

CCFinderX is missing from Table 7.2 because it produced a huge number of hits with
the parameters we used (it found over 1000 duplicated code candidates containing at
least 10 lines). We were only able to evaluate the four other tools on NotePad++.

We learned some useful things during the evaluation. In the case of JUnit, PMD and
Simian both produced a very similar result to Columbus's, but our experience is that
in general, the token based detectors (Bauhaus-clones, CCFinderX, PMD, Simian) pro-
duce a substantially larger number of hits than the ASG based tools (Bauhaus-ccdiml,
Columbus). This is partly due to the fact that while the ASG based tools �nd only the
candidates of at least 10 lines, which are also syntactically coherent, the token-based
detectors mark the clones that are in many cases shorter than 10 lines and in such a way
that they expand the clone with several of the preceding and succeeding instructions (e.g.
with '}' characters, indicating the end of the block). For example, a clone candidate
can mark the last line of a method and the �rst line of the subsequent method. Based
on this, the evaluation could be extended with a new criterion. The new criterion would
apply to the accuracy of the marking of a clone candidate. It would also de�ne what
portion of the marked code is in the instance.

Based on the Gain and Procedure abstraction values of certain tools, we can say that the
ASG-based detectors �nd fewer but mostly more valuable and easily refactorable clone

112 Validation of reverse engineering tools

instances. In contrast, the token-based tools �nd more clone instances that produce a
more complete result.

We should mention that we also imported the design pattern candidates from DEEBEE
into BEFRIEND. In addition to these, the system contains coding rule violation can-
didates found by PMD and CheckStyle. In this way, BEFRIEND contains the results
of three signi�cantly di�erent families (domains) of reverse engineering tools, namely
duplicated code detectors, design pattern miners and coding rule violation checkers.

7.4 Summary

We developed BEFRIEND from our benchmark for evaluating design pattern miner tools
called DEEBEE. During the development of BEFRIEND, we tried to generalize it in every
way possible, e.g. an arbitrary number of domains can be created, domain evaluation
aspects and the settings of candidate siblings can be customized. To upload the results
of di�erent tools, the benchmark provides a plug-in mechanism. We applied BEFRIEND
to three reverse engineering domains, namely design pattern mining tools, code clone
mining tools, and coding rule violation checking tools. The evaluation results stored in
DEEBEE were migrated to BEFRIEND, and in the code clones domain we applied the
benchmark using more examples. The sibling mechanism of DEEBEE was also improved
to support other domains as well.

The work done here is the �rst step towards creating a generally applicable benchmark
that can help one to evaluate and compare many kinds of reverse engineering tools. In
the future, it would be good to get the opinions and advice of reverse engineering tool
developers about our benchmark to achieve and satisfy all their needs. BEFRIEND is
freely available to the public via the link http://www.inf.u-szeged.hu/befriend/

Chapter 8

Conclusions

�In all human a�airs there are e�orts, and there are results,
and the strength of the e�ort is the measure of the result.�

James Allen

The maintainability of (legacy) software systems usually becomes increasingly di�cult
after several releases of the system. It may be caused by the fact that important parts
of the software development process were left out because of strict deadlines. These
phases typically include the speci�cation of the system, designing the system architecture
and testing the deliverables. However, legacy systems provide important, valuable and
frequently irreplaceable functionalities, hence the system has to be recovered. Rewriting
the system from scratch is costly, time consuming, and there is a big chance of failure.
In contrast, reengineering the system in small steps is relatively cheap and safe. The
success of reengineering largely depends on the reverse engineering phase. Reverse
engineering provides high level information about the source code, e.g. in the form of
design patterns, coding rule violations and duplicated code fragments. The problem
is that these tools sometimes produce false positives, which might lead to the overall
failure of the whole reengineering project. In this thesis we provided techniques, tools and
experiments for improving, evaluating and comparing the performance and correctness
of reverse engineering tools.

First, we proposed a machine learning�based approach to improve the results of our
design pattern miner tool. We extended the architecture of the Columbus framework
and integrated machine learning tools. Experiments were also performed on a real�life
software system to demonstrate the feasibility of our approach.

Next, we evaluated and compared three design pattern miner tools called Columbus,
Maisa and CrocoPat. These tools were evaluated in terms of speed, memory consumption
and the di�erences between the candidates. In the case of CrocoPat, the necessary
Columbus plugin was also developed to generate the input for the tool. Furthermore,
the corresponding pattern de�nitions in its own pattern description language (RML) were
de�ned by us.

In the next part, an online benchmark (DEEBEE) for evaluating and comparing design
pattern miner tools was presented. In this study, based on the results of Chapter 4, the

115

116 Conclusions

grouping of similar candidates was introduced to provide reliable statistics and compar-
isons. Experiments were also performed to demonstrate the capabilities of the bench-
mark. Then the benchmark was evaluated based on the requirements de�ned by Sim et
al. [74].

We made the CSV format of DEEBEE as simple as possible, but it became insu�ciently
expressive. Furthermore, we found that formats of design pattern miner tools had certain
de�ciencies or problems. Based on this motivation, a common exchange format was
proposed in Chapter 6. First, we de�ned requirements for the format, and then, taking
into account the requirements, we elaborated on the metamodels of the format. The
format was implemented in XML, based on the entities and relations de�ned in the
metamodel.

In Chapter 7 we introduced BEFRIEND, a benchmark for reverse engineering tools.
BEFRIEND is based on DEEBEE and is a fully generalized version of it. First, it supports
the evaluation and comparison of di�erent kinds of reverse engineering tools via domains.
BEFRIEND supports arbitrary evaluation criteria for each tool domain. It also handles
and groups similar candidates based on a generalized sibling relation. The benchmark
user interface was also applied on real-life examples.

There are several ways our work might be extended in the future. For example, noting
the �rst thesis point, the proposed machine learning based improvement method could
be adapted to other kinds of reverse engineering tools (e.g. bad code smell [36] miners).
As for the benchmarks presented(DEEBEE and BEFRIEND), other case studies and
new reverse engineering domains could be introduced like that done in the area of
change impact analysis tools [85]. In addition, benchmarks could support performance
measurement information as well. The DPDX format might be extended in di�erent
ways. For instance, it could be compared with other approaches (e.g. GXL) or it
could be evaluated and improved through the collaboration of design pattern miner tool
creators.

117

Appendix A

Related Work

A.1 Design pattern mining

One of the �rst studies in this topic is the one describing the BACKDOOR (Backwards
Architecting Concerned with Knowledge Discovery of OO Relationships) [71] inductive
method. The method provides guidelines for analyzing existing object-oriented software
systems and reverse architecting design patterns. The crucial part of the method is the
analysis of design pattern candidates, namely to select the characteristics that properly
identify them. This is the most human-intensive part. The purpose of this part is to
compare the potential patterns found against the set of reference patterns. The basis
of the comparison is not only their structure but also their semantics. The pattern
candidates were classi�ed according to their correspondence with the reference design
patterns. One aspect of the classi�cation was the implementation and another was
the purpose. The measures of a classi�cation are complete match and partial match,
thus they have a four level classi�cation of possible patterns. The technique permits
the creation of a pattern knowledge base whose main purpose is to help development
organizations create their own custom pattern library.

Kaczor et al. [50] proposed a bit-vector algorithm for design pattern identi�cation. The
algorithm initialization step converts the design pattern motif and the analyzed program
model into strings. To model the design patterns and the analyzed program, six pos-
sible relations can be used between elements: association, aggregation, composition,
instantiation, inheritance and dummy. The authors gave an e�cient Iterative Bit-vector
Algorithm to match the string representation of the design patterns and the analyzed
program. They compared their implementation with explanation-based constraint pro-
gramming and metric-enhanced constraint programming approaches.

Costagliola et al. [22] based their approach on a visual language parsing technique. The
design pattern recognition was reduced to recognizing sub-sentences in a class diagram,

119

120 Related Work

where each sub-sentence corresponds to a design pattern speci�ed by an XPG grammar.
Their process consist of two phases: the input source code is translated into a class
diagram represented in SVG format; then DPRE (Design Pattern Recovery Environment)
recovers design patterns using an e�cient LR-based parsing approach.

Tonella and Antoniol [82] presented an interesting approach to recognize design patterns.
They did not use a library of design patterns as others did but, instead, discovered
recurrent patterns directly from the source code. They employed concept analysis [72]
to recognize groups of classes sharing common relations. The reason for adapting this
approach was that a design pattern could be considered as a formal concept. They used
inductive context construction which then helped them to �nd the best concept.

Albin-Amiot et al. [1] introduced a Pattern Description Language (PDL) that was suitable
for detecting design patterns from source code and also for generating source code. Their
system was also able to detect some distorted versions of design patterns and could repair
them automatically with the aid of a source-to-source transformation engine.

Keller et al. [52] argued that design patterns form the basis of many of the key elements
of large-scale software systems, so to comprehend these systems they needed to recover
and understand design patterns. They emphasized not only the design's structure, but
its rationale too. They utilized the SPOOL environment which provided tools for ana-
lyzing existing source code and recovering design components like design patterns. They
implemented query mechanisms that could recognize the structural descriptions of pat-
terns in the source code models. The SPOOL environment gave some visual information
about the query's results (the design patterns found) and information about the design
pattern's class diagram to discover the pattern's structure and documentation about its
intent and motivation. They used this environment with three industrial systems and
searched for three design patterns (Template Method, Factory Method and Bridge).
They checked the intent of the design patterns found and noticed that the discovered
design patterns' intents did not necessarily correspond to the original design patterns'
intents.

Asencio et al. [6] used the Imagix [45] tool to parse the source code. The tool built
a database of program entities and relationships. They introduced a recognizer spec-
i�cation language where they made declarative speci�cations � logical conditions � to
describe design pattern structures. Afterwards, their tool called Osprey automatically
generated Python source code from these declarative speci�cations, which searched pat-
terns in the database generated by Imagix. They tested their system on several software
systems and obtained promising results, but also found false positives. They classi�ed
the causes of these false hits. The �rst class of problems were the front end analyzer
errors. The second class was the pattern ambiguity. The cause of these false hits were
the structural similarities among design patterns, like those of the Decorator and Proxy
patterns. The third class of problems were the partial patterns. Actually, there were
many situations where the full pattern was not present in the code.

A.2 Improvement of design pattern mining 121

Campo et al. [18] utilized design pattern recognition for framework comprehension. They
concluded that some design patterns could be distinguished only by their dynamic be-
haviour, because their structures were the same (e. g. Composite vs. Decorator and
State vs. Strategy).

A.2 Improvement of design pattern mining

The accuracy of design pattern discovery has been improved by some researchers using
dynamic analysis which, apart from the structural information, also considers runtime
information of the system in question [89, 90]. First, the author performed a static
analysis and labeled each pattern candidate with a fuzzy value that represented the
correctness of the candidate. Afterwards, false candidates were ruled out by dynamic
analysis and by using these fuzzy values.

Guéhéneuc et al. [44] introduced a method for reducing the search space for design
patterns. First, they analyzed several programs manually and searched for source classes
that act together as design patterns and set up a repository from them. Afterwards, they
parsed these programs with tools to obtain models of their source code, and computed
metrics from these models (like size, cohesion and coupling). In the next step they
ran their rule learner algorithm that returned a set of rules characterizing the design
pattern participants by the metric values. This way, they obtained rule sets (called a
�ngerprint) for the participant classes of the design patterns. Based on these �ngerprints,
unknown classes were characterized. They then integrated this �ngerprint technique into
their constraint-based tool suite to reduce the search space. Their work is in some sense
similar to ours, but we made use of machine learning after the structural matching phase
(taking into consideration the whole design pattern and not just individual classes) to
�lter out false candidates.

Antoniol et al. introduced pattern recognition by using metrics [4]. They analyzed source
code and class diagrams and created AOL (Abstract Object Language) speci�cations
containing information about classes, their members and relations. The design pattern
descriptions were also stored in AOL format. Next, they created an AST (Abstract
Syntax Tree) from the AOL speci�cation. Afterwards, they computed metrics for each
candidate class from the AST and created a set for each participant class in the searched
design pattern containing only those candidate classes which met the participant classes'
metric conditions (these conditions were set up manually). This way, they signi�cantly
reduced the search space. Next, they checked the required structural relations among
the candidate classes in these sets. They were also able to verify the consistency between
the code and the design. They then tested their system on public and industrial systems
and got good results.

122 Related Work

As we mentioned previously, a lot of e�ort has gone into improving the design pattern
mining process. The approaches focus on two aspects of the design pattern mining
process, namely

• improving the results in the last step of the process via a dynamic analysis

• reducing the search space by incorporating some human knowledge into the process

A.3 Evaluation of reverse engineering tools

Sim et al. [74] collected the most important aspects, properties and problems of bench-
marking in software engineering. They argued that benchmarking has a strong positive

e�ect on research. They gave a de�nition for benchmarking: �a test or set of tests
used to compare the performance of alternative tools or techniques.� A benchmark has
preconditions. First, there must be a minimum level of maturity of the given research
area. Second, it is desirable that diverse approaches exist. The authors de�ned seven
requirements of successful benchmarks, namely accessibility, a�ordability, clarity, rele-
vance, solvability, portability and scalability. Sim gives a more detailed description and
examples in her PhD thesis [73].

Nowadays, more and more papers deal with the evaluation of reverse engineering tools.
These are needed because the number of reverse engineering tools is increasing and it is
di�cult to decide which of these tools is the most suitable for a given task.

Evaluation of design pattern mining tools

Petterson et al. [63] summarized problems during an evaluation of accuracy in pattern
detection. The goal was to make accuracy measurements more comparable. Six major
problems were revealed: design patterns and variants, pattern instance type, exact and
partial match, system size, precision and recall, and the control set. A control set was
�the set of correct pattern instances for a program system and design pattern.� The
determination of the control sets is very di�cult, hence solutions taken from natural
language parsers were considered. One good solution is tree banks. Tree banks could
be adapted by establishing a large, manually validated pattern instances database. An-
other adaptable solution is that of a pooling process: �The idea is that every system

participating in the evaluation contributes a list of n top ranked documents, and that

all documents appearing on one of these lists are submitted to manual relevance judge-

ment.� The process of constructing control sets has the following problems. They are
not complete in most software systems, and in a real-life software system a single group
is not able to determine a complete control set. They stated that a community e�ort is

required to make control sets for a given set of applications.

A.3 Evaluation of reverse engineering tools 123

Guéhéneuc et al. [43] introduced a comparative framework for design recovery tools.
The purpose of the authors' framework was not to rank the tools, Ptidej (Pattern Trace
Identi�cation, Detection, and Enhancement in Java [65]) and LiCoR (Library for Code
Reasoning [55]), but to compare them on the basis of their qualitative aspects. This
framework contained eight aspects called context, intent, users, input, technique, output,
implementation and tool. There is a major need for such a framework since making a
comparison among the several design recovery tools is very di�cult due to the fact that
they have quite di�erent characteristics in terms of representation, output format and
implementation techniques. This framework provides an opportunity for comparing not
only similar systems, but also systems which are di�erent. Our study is di�erent from this
one because we used a benchmark to evaluate design pattern instances and to compare
design pattern miner tools based on their results.

Dong et al. [30] introduced a systematic review of design pattern mining techniques.
The authors presented a comparative study on di�erent aspects of several approaches
of design pattern mining. These aspects include the type of the algorithm applied
(structural, behavioural, etc.) and supported programming languages (C++, Java, etc.),
system representation (AST, matrix, etc.). Furthermore, the authors found that di�erent
approaches yield di�erent results, and they collected the possible reasons for this, like
missing roles, role types, missing relationships, delegation implementations and merging
roles. In this sense, this work is similar to that presented in Chapter 4, but it was
published later.

Arcelli et al. [5] proposed three categories for design pattern mining tools, considering
the information which was used during the detection process. These categories are the
�entire� representation of design patterns, the minimal set of key structures that a design
pattern consists of, and the sub-components of design patterns. They dealt with the
last category, and two tools for this called FUJABA and SPQR were introduced and
compared. The basis of the comparison was how a tool decomposes a design pattern
into smaller pieces. The conclusion was that the decomposition methods of the two
examined systems are very similar, and after they argued the bene�ts of sub-patterns.

P-MARt, an XML-based repository of micro-architectures similar to design patterns, was
introduced by Guéhéneuc [40]. In each session, he asked students to analyse a new system
and detect design patterns manually. Furthermore, he collected micro-architectures from
his colleagues as well. The micro-architectures are stored in a XML �le.

Evaluation of other reverse engineering tools

Bellon et al. [10] performed an experiment to evaluate and compare clone detectors. The
experiment involved several researchers who applied their tools on carefully selected large
C and Java programs. The comparison shed light on some facts that were previously

124 Related Work

unknown, so both the strengths and the weaknesses of the tools were discovered. Their
benchmark provides a standard procedure for every new clone detector. Bellon also
published a publicly available benchmark [11].

Rysselberghe et al. [69] compared di�erent clone searching techniques (string, token and
parse tree-based). For the sake of comparison, they developed reference implementa-
tions of the di�erent techniques instead of using existing tools. During their evaluation,
they asked certain questions, some of which correspond to the criteria introduced in BE-
FRIEND. One such question was 'How accurate are the results?' The di�erent techniques
were tested on �ve small-and medium-sized projects by using the evaluating questions.
In another article, they compared the reference implementations of the clone search-
ing techniques based on refactoring aspects [68]. These aspects were called suitable,
relevance, con�dence and focus.

Burd et al. [17] evaluated �ve clone searching tools on the university project called
GraphTool. They also examined the problem of how to link the instances. For this
reason, they used a simple overlap method. In the evaluation part, they applied the
well-known precision and recall scores approach. In addition, they presented di�erent
statistics and comparison mechanisms, some parts of which are even now supported by
BEFRIEND (e.g. intersection and di�erence of the results).

Wagner et al. [88] compared three Java bug searching tools on one university and �ve
industrial projects. A 5-level severity scale, which can be integrated into BEFRIEND,
served as the basis for comparison. Based on this scale, 'Defects that lead to a crash of

the application' is the most serious one, while 'Defects that reduce the maintainability

of the code' is the least serious one. The tools were compared not only with each other,
but with reviews and tests as well. We should mention here both the reviews and the
tests can be loaded into BEFRIEND by writing the appropriate plug-ins. In two other
articles [86, 87] they also examined the performance of bug searching tools.

Ayewah et al. [7] evaluated the FindBugs tool on three large scale projects called SUN
JDK 1.6, Google and GlassFish. During the evaluation they applied the following cate-
gories in the case of JDK 1.6: Bad analysis, Trivial, Impact and Serious.

Rutar et al. [67] evaluated and compared �ve tools called FindBugs, JLint, PMD, Ban-
dera and ESC/Java. The evaluation was carried out on �ve projects (Apache Tomcat
5.019, JBoss 3.2.3, Art of Illusion 1.7, Azureus 2.0.7 and Megamek 0.29). They ob-
served that the rate of overlap among the tools was very low and the correlation among
the hits of the tools was weak. This led them to conclude that rule violation searching
tools de�nitely require an evaluation and comparison tool like BEFRIEND.

Sim et al. [75] developed the CppETS benchmark to evaluate C++ extractors. The
benchmark used two categories, namely accuracy and robustness. It consisted of 25
test cases, 14 in the accuracy and 11 in the robustness category. The test cases were

A.3 Evaluation of reverse engineering tools 125

typically less than 100 lines of code long, and none contained more than 1000 lines.
They measured the performance by asking questions in a text �le in all test cases. These
questions have to be answered by the persons using the extractor. They evaluated four
extractors called Ccia, cppx, Rigi and TkSee/SN.

Sim et al. [76, 77] described a live demonstration of program comprehension tools.
Five software development teams were involved in this demonstration, namely Lemma,
PBD, Rigi, TkSee and Visual Age C++. UNIX Tools such as grep and emacs were also
demonstrated because of their popularity. The tools had to solve two reverse engineering
and three maintenance tasks on the x�g drawing package. Afterwards, they collected
the results of the tools and closed with a discussion of observations. They mentioned
that 'the biggest di�culty for some teams was parsing the source code.' This is a serious
problem in design pattern mining too, so it is vital that the extracted facts about the
source code are correct.

We already have some experience in developing a benchmark. The o�cial code size
benchmark for the GCC compiler called CSiBE [12, 23] is the result of our previous work
(see http://gcc.gnu.org/benchmarks/). The primary purpose of CSiBE is to monitor
the size of the code generated by GCC. In addition, the compilation time and the code
performance measurements are also provided.

Appendix B

DPDX

B.1 Output formats of DPD tools

To emphasize the similarities and di�erences all formats are presented using the ex-
ample of the `Decorator' instance taken from Java IO, illustrated in Figure 6.10 (see
Section 6.3.3). This is also done for tools that cannot analyze Java programs (like
Columbus) or do not try to detect instances of the `Decorator' pattern (like Fujaba).
In such cases, we showed what the format would look like if the tool supported the
`Decorator' pattern mining from Java source code. In addition, we also reviewed the
result representation format used by two DPD result repositories, namely P-MARt [61]
and DEEBEE [97].

1<pattern name="Decorator">

2 <role name="Component">"Writer"</role>

3 <role name="Decorator">"Bu�eredWriter"</role>

4 <role name="ConcreteComponent">"OutputStreamWriter"</role>

5 <role name="ConcreteDecorator">"CharCountBu�eredWriter"</role>

6 <role name="operation">"close"</role>

7</pattern>

Figure B.1: Output format of SPQR

INSTANCE Component ConcreteComponent Decorator ConcreteDecorator

Decorator[0] Writer OutputStreamWriter Bu�eredWriter CharCountBu�eredWriter

Decorator[0] Writer OutputStreamWriter Bu�eredWriter BlackListBu�eredWriter

Table B.1: DP-Miner result

127

128 DPDX

1<StructuralAnnotation name="Decorator"

2 fuzzyBelief="56.6666666666664">

3 <BoundObject key="Component" name="java.io.Writer"/>

4 <BoundObject key="Decorator" name="java.io.Bu�eredWriter"/>

5 <BoundObject key="operation" name="write(char[],int,int)"/>

6</StructuralAnnotation>

Figure B.2: Output format of Fujaba

Solution 0

Component = Writer

Component.Operation() = Writer.close()

Decorator = Bu�eredWriter

Decorator.Operation() = Bu�eredWriter.close()

Decorator.component = Bu�eredWriter.out

ConcreteComponent = OutputStreamWriter

ConcreteComponent.Operation() = OutputStreamWriter.close()

ConcreteDecorator = CharCounterBu�eredWriter

ConcreteDecorator.Operation() =

CharCounterBu�eredWriter.close()

ConcreteDecorator.AddedBehavior() =

CharCounterBu�eredWriter.extendStream()

Figure B.3: Output format of Maisa

1<pattern name="Decorator">

2 <instance>

3 <role name="Component" class="java.io.Writer"/>

4 <role name="Decorator" class="java.io.Bu�eredWriter"/>

5 </instance>

6</pattern>

Figure B.4: Output format of SSA

B.1 Output formats of DPD tools 129

Source class(es) for pattern class Component:

/src/Writer.java(50): pattern class Component =

source class Writer

/src/Writer.java(323): pattern operation Operation =

source operation close

Source class(es) for pattern class ConcreteComponent:

...

Source class(es) for pattern class Decorator:

...

Source class(es) for pattern class ConcreteDecorator:

Figure B.5: Output format of Columbus

Decorator Pattern.

Writer is the Decoratee class.

Bu�eredWriter is the Decorator class.

Concrete Decorator classes:

CharCounterBu�eredWriter BlackListBu�eredWriter

�ush() is the decorate operation

Files Location:

java/io/Writer.java, java/io/Bu�eredWriter.java

Figure B.6: Output format of PINOT

Decorator : 100%

component as java.io.Writer ,

concretecomponent-1 as java.io.FileWriter ,

concretecomponent-2 as java.io.ObjectWriter ,

decorator as java.io.Bu�eredWriter ,

concretedecorator-1 as java.io.CharCounterBu�eredWriter ,

concretedecorator-2 as java.io.BlackListBu�eredWriter

Figure B.7: Output format of Ptidej

Decorator

class AbstractClass,Writer,Writer.java:1:6

operation �ush,Writer,Writer.java:3:15

class ConcreteClass,Bu�eredWriter,Bu�eredWriter.java:8:12

operation �ush,Bu�eredWriter,Bu�eredWriter.java:9:9

Figure B.8: Input format of DEEBEE

130 DPDX

01<microArchitectures>

02 <microArchitecture number="76">

03 <roles>

04 <components>

05 <component roleKind="AbstractClass">

06 <entity>java.io.Writer</entity>

07 </component>

08 </components>

09 <concreteComponents>

10 <concreteComponent roleKind="Class">

11 <entity>java.io.StringWriter</entity>

12 </concreteComponent>

13 </concreteComponents>

14 <decorators>

15 <decorator roleKind="AbstractClass">

16 <entity>java.io.Bu�eredWriter</entity>

17 </decorator>

18 </decorators>

19 <concreteDecorators>

20 <concreteDecorator roleKind="Class">

21 <entity>./CharCountBu�eredWriter</entity>

22 </concreteDecorator>

23 <concreteDecorator roleKind="Class">

24 <entity>./BlackListBu�eredWriter</entity>

25 </concreteDecorator>

26 </concreteDecorators>

27 </roles>

28 </microArchitecture>

29</microArchitectures>

Figure B.9: Format of PMART

B.2 DPDX attribute values 131

B.2 DPDX attribute values

In order to make our DPDX format really useful, the tools (and people) using the
format must agree on a standard terminology for keywords applied in DPDX. This is
important because XML attributes are just strings, but we need a special meaning for
some strings (e.g. the relation name cannot be an arbitrary string but a discrete value
from a known relation types set). So it is essential that all users of the format use
the same keyword for describing the same concept. Otherwise the primary aim of the
common exchange format, namely to make the design pattern candidates comparable,
would be lost. For this very reason we would suggest that all researchers interested in
using (or even developing) DPDX should use our publicly available WIKI page [92] as
a primary source of the existing DPDX attribute values. Each researcher is welcome to
extend the available keywords if there is no suitable one available. This page prevents
us from using di�erent keywords with the same meaning; moreover the introduction of
new keywords would be based on a common consensus.

As an example, we collected a reference list of possible keywords used as attribute values
in DPDX, which is presented in tables B.2, B.3 and B.4.

Tag name Attribute name Possible attribute
values

`Role' `kind' Class, Method, Field,
Call

`Property' `name' abstractness, visibility
staticness

`Relation' `relationName' subtypeOf, hasType,
invokes

Table B.2: Attribute values of DPDX

Each property tag with a di�erent name attribute has a di�erent set of possible kind

values. These values are listed in Table B.3.

Property name Property
attribute

Possible attribute values

abstractness `kind' abstract, interface, concrete
visibility `kind' public, protected, private
staticness `kind' static, non-static

Table B.3: Property values

Table B.4, which summarizes the possible values for program element kinds and names,
is organized somewhat di�erently. The reason for this is that there are semantic depen-
dencies between program elements.

132 DPDX

The �rst column of the table shows the possible values for the `kind' attribute of a
program element (note that program elements are `NamedElement', `TypedElement',
`IndexedElement', `Block' and `ReferencingStatement'). The second column shows the
possible program element names within this kind of element. The third column contains
a brief description of which element is denoted by the second column.

The listed values are language independent, although the keywords used in the tables
follow the Java terminology. We prefer this solution instead of creating a whole new
terminology. We chose Java for the base language because of its current popularity.
Despite the equivalence in terminology, our keywords have a more general meaning.
They can be interpreted for various di�erent programming languages. For example, the
property value abstract (which is a Java keyword) can be used in DPDX to describe C++
design pattern candidates as well. We have di�erent interpretations of the keywords for
di�erent languages; e.g. the abstract property of a Java class means the class is de�ned
using the abstract Java keyword, but in the case of a C++ class, it means that the class
has at least one pure virtual method (but not all of them are pure virtual as this would
make the class an interface).

B.2 DPDX attribute values 133

Program element
kind

Possible child node
name

Denoted element

class, �eld, method body (implicit) �eld initializer, class
initializer or body of method

invocation target the expression denoting the
object on which the method

is invoked
call the invocation expression

itself
get target the expression denoting the

object whose �eld is
accessed. The value �this�
denotes the object for which

the current method is
executing

�eld the expression denoting the
accessed �eld

set target the expression denoting the
object whose �eld is

accessed. The value �this�
denotes the object for which

the current method is
executing

�eld the expression denoting the
accessed �eld

value the expression denoting the
new value of the �eld

conditional if condition
then �rst alternative
else second alternative

switch switch switch expression
cases a block of blocks, each

representing a di�erent case.
Individual cases are identi�ed
by their index within this

block
whileloop, dowhileloop,

dountilloop
loopcondition condition

loopbody loop body
forloop forinit

forincrement
forcondition
forbody

Table B.4: Program element hierarchy

134 DPDX

B.3 DPDX implementation examples

Figures B.10, B.11, B.12 and B.13 show the implementation of DPDX.

01<PatternSchema id ="PS1" name="Decorator" variantOf="%NONE%">

02 <Roles>

03 <Role id="R1" name="Component" kind="Class" cardinality="1">

04 <Property name="abstractness" value="abstract" strict="false"/>

05 <Role id="R2" name="Operation" kind="Method" cardinality="+"/>

06 </Role>

07 <Role id="R3" name="Decorator" kind="Class" cardinality="1">

08 <Role id="R4" name="Forwarder" kind="Method" cardinality="+">

09 <Role id="R5" name="ForwardCall" kind="Call" cardinality="1"/>

10 </Role>

11 <Role id="R6" name="Parent" kind="Field" cardinality="1"/>

12 </Role>

13 <Role id="R7" name="ConcreteDecorator" kind="Class" cardinality="*">

14 <Property name="abstractness" value="concrete" strict="true"/>

15 </Role>

16 </Roles>

17

18 <Relations>

19 <Relation id="RE1" name="subTypeOf" source="R3" srcCard="1"

20 target="R1" targetCard="1" mandatory="true" direct="false"/>

21 <Relation id="RE2" name="subTypeOf" source="R7" srcCard="1"

22 target="R3" targetCard="1" mandatory="false" direct="false"/>

23 <Relation id="RE3" name="invokes" source="R5" srcCard="1"

24 target="R2" targetCard="1" mandatory="true" direct="true"/>

25 <Relation id="RE4" name="hasType" source="R6" srcCard="1"

26 target="R1" targetCard="1" mandatory="true" direct="false"/>

27 </Relations>

28</PatternSchema>

Figure B.10: Implementation of the schema metamodel

B.3 DPDX implementation examples 135

01<ProgramElements>

02 <NamedElement id ="PE1" name="java.io.Writer" kind="class"

03 source="P1">

04 <TypedElement id="PE2" name="write" kind="method" source="P2">

05 <ref>

06 <ref namedElement="PE13"/>

07 <ref namedElement="PE14"/>

08 <ref namedElement="PE14"/>

09 </ref>

10 </TypedElement>

11 <TypedElement id="PE3" name="�ush" kind="method" source="P3"/>

12 </NamedElement>

13

14 <NamedElement id ="PE4" name="java.io.Bu�eredWriter" kind="class"

15 source="P4">

16 <TypedElement id="PE5" name="write" kind="method" source="P5">

17 <ref>

18 <ref namedElement="PE13"/>

19 <ref namedElement="PE14"/>

20 <ref namedElement="PE14"/>

21 </ref>

22 <IndexedElement id="PE6" indexInParent="1" kind="block">

23 <Block nameInParent="synchronized">

24 <IndexedElement id="PE7" indexInParent="3" kind="conditional">

25 <Block nameInParent="then">

26 <ReferencingStatement id="PE8" indexInParent="2"

27 kind="call" referencedElement="PE2" source="P6"/>

28 </Block>

29 </IndexedElement>

30 </Block>

31 </IndexedElement>

32 </TypedElement>

33 <TypedElement id="PE9" name="�ush" kind="method" source="P7">

34 <IndexedElement id="PE10" indexInParent="1" kind="block">

35 <Block nameInParent="synchronized">

36 <ReferencingStatement id="PE11" indexInParent="2"

37 kind="call" referencedElement="PE3" source="P8"/>

38 </Block>

39 </IndexedElement>

40 </TypedElement>

41 <NamedElement id="PE12" name="out" kind="�eld" source="P9"/>

42 </NamedElement>

43

Figure B.11: Implementation of the program metamodel - �rst part

136 DPDX

44 <NamedElement id="PE13" kind="basicType" name="char[]"/>

45 <NamedElement id="PE14" kind="basicType" name="int"/>

46

47 <Sources>

48 <Source id="P1" URI="/java/io/Writer.java" line="33" col="1"

49 endLine="308" endCol="1"/>

50 <Source id="P2" URI="/java/io/Writer.java" line="128" col="5"

51 endLine="128" endCol="81"/>

52 <Source id="P3" URI="/java/io/Writer.java" line="293" col="5"

53 endLine="293" endCol="52"/>

54 <Source id="P4" URI="/java/io/Bu�eredWriter.java" line="47"

55 col="1" endLine="253" endCol="1"/>

56 <Source id="P5" URI="/java/io/Bu�eredWriter.java" line="154"

57 col="5" endLine="183" endCol="5"/>

58 <Source id="P6" URI="/java/io/Bu�eredWriter.java" line="169"

59 col="3" endLine="169" endCol="28"/>

60 <Source id="P7" URI="/java/io/Bu�eredWriter.java" line="232"

61 col="5" endLine="237" endCol="5"/>

62 <Source id="P8" URI="/java/io/Bu�eredWriter.java" line="235"

63 col="6" endLine="235" endCol="17"/>

64 <Source id="P9" URI="/java/io/Bu�eredWriter.java" line="49"

65 col="5" endLine="49" endCol="23"/>

66 </Sources>

67</ProgramElements>

Figure B.12: Implementation of the program metamodel - second part

B.3 DPDX implementation examples 137

01<DPDResult >

02 <Tool name="NotNamed" version="1.0"/>

03 <Program name="JDK" version="1.6" language="Java"/>

04 <Diagnostic id="PI1" patternName="Decorator" patternSchema="PS1">

05 <RoleAssignments>

06 <RoleAssignment id="RA1" role="R1" player="PE1"/>

07 <RoleAssignment id="RA2" role="R2" player="PE2"/>

08 <RoleAssignment id="RA3" role="R2" player="PE3"/>

09 <RoleAssignment id="RA4" role="R3" player="PE4"/>

10 <RoleAssignment id="RA5" role="R4" player="PE5"/>

11 <RoleAssignment id="RA6" role="R4" player="PE9"/>

12 <RoleAssignment id="RA7" role="R6" player="PE12"/>

13 <RoleAssignment id="RA8" role="R5" player="PE8"/>

14 <RoleAssignment id="RA9" role="R5" player="PE11"/>

15 <RoleAssignment id="RA10" role="R7" player="%MISSING%"/>

16 </RoleAssignments>

17

18 <RelationAssignments>

19 <RelationAssignment relation="RE1" source="PE4" target="PE1"/>

20 <RelationAssignment relation="RE3" source="PE8" target="PE2"/>

21 <RelationAssignment relation="RE3" source="PE11" target="PE3"/>

22 <RelationAssignment relation="RE4" source="PE12" target="PE1"/>

23 </RelationAssignments>

24

25 <Justi�cations>

26 <Justi�cation for="RA5" score="80%" explanation=""/>

27 <Justi�cation for="RA8" score="80%" explanation="conditional

28 forward"/>

29 <Justi�cation for="RA10" score="" explanation="missing subclass"/>

30 <Justi�cation for="PI1" score="95%" explanation=""/>

31 </Justi�cations>

32 </Diagnostic>

33</DPDResult>

Figure B.13: Implementation of the result metamodel

Appendix C

Summary

C.1 Summary in English

The main contributions of this work are summarized as follows. First, we employ machine
learning methods to further re�ne the results of our design pattern miner tool. We
perform experiments to measure the performance (speed and memory consumption)
of design pattern miner tools. Furthermore, we develop DEEBEE, a benchmark for
evaluating and comparing design pattern miner tools, and perform some experiments by
using it. We also introduce an XML-based output format (DPDX) for design pattern
miner tools. Last but not least, we develop BEFRIEND, a benchmark that can be used
for evaluating and comparing reverse engineering tools.

A method for improving design pattern mining

The motivation of this work is to remove false pattern candidates given by the basic
matching algorithm of our design pattern miner tool [13] by applying machine learning
methods. Our approach is to analyze the candidates returned by the basic matching
algorithm, taking into consideration several aspects of the candidate code fragment
and its neighbourhood, such as whether a candidate class has a parent or not. The
information corresponding to these aspects is referred to as predictors, whose values can
be used in a machine learning system. We employ a conventional learning approach;
that is, we �rst manually tag the candidates as true or false. Afterwards, the values of
the predictors on the candidates are calculated. Then we load these into two learning
systems, namely a decision tree-based and a neural network system. These in turn provide
models that incorporate the acquired knowledge. We test the models with the cross-
validation method. We performed our experiments on StarWriter [80] as the subject
system for pattern mining and we searched for the Adapter Object and the Strategy

design patterns. In our experiments we achieved learning accuracy scores of 67�95%

139

140 Summary

and with the model we were able to �lter out 51 of the 59 false candidates of the
Adapter Object design pattern (out of a total of 84 candidates) and 33 of the 35 false
candidates of the Strategy pattern (out of a total of 42 candidates).

Evaluating the speed and memory consumption of design pattern miner tools

The aim of this study is to compare three design pattern miner tools, namely Columbus,
Maisa and CrocoPat. The study is based on the same input, hence ensuring a fair
comparison, because any parsing errors that occured a�ected all three tools alike. The
tools are compared in three aspects: di�erences between the candidates, speed and
memory consumptions. We do not analyze whether a design pattern candidate is true
or false; we examine these tools only from the viewpoint of structural candidates and
di�erences. We experimentally test our preliminary assumptions about the causes of
the di�erences between the results of the tools. During the experiments we identi�ed
the following common causes of the di�erences: di�erent de�nitions of design patterns,
precision of pattern descriptions and di�erences in algorithms.

Based on the experiments, it is clear which tool should be used in certain circumstances
in terms of speed or memory consumption. Columbus is the fastest in the case of complex
patterns or in the case of small-or medium-sized systems. CrocoPat is the fastest in the
case of simpler patterns or in the case of large sized systems, while Maisa can used if
just a small amount of memory is available.

Validating design pattern miner tools with DEEBEE

The motivation for this thesis derives from the above two studies. During these two
studies we faced the problem of evaluating and comparing the results of design pattern
miner tools. Di�erent result formats have to be processed and the appropriate source
code fragments have to be located and the results of a comparison need to be recorded.
We performed these tasks manually in the case of the above two studies, which were
quite dull and time-consuming. We also observed that there was a desire in confer-
ences and publications for a means of evaluating patterns easily and e�ectively [63].
Hence, we developed a publicly available benchmark, DEEBEE (DEsign pattern Evalua-
tion BEnchmark Environment), for evaluating and comparing design pattern miner tools.
Our benchmark is general, being language, software, tool and pattern independent. With
this benchmark the accuracy (precision and recall) of the tools can be validated by any-
one. Our benchmark is also able to relate the same but di�erently reported pattern
candidates (siblings), thus it eases the evaluation process and improves the correctness
of evaluation and comparison results.

With the help of our benchmark the accuracy of two design pattern miner tools (Colum-
bus and Maisa) are evaluated on reference implementations of design patterns and on

C.1 Summary in English 141

two software systems, NotePad++ and FormulaManager. Design pattern instances used
in NotePad++ were also discovered by hand, so both precision and recall scores are cal-
culated by DEEBEE. We developed FormulaManager to test the tools on a program
where each design pattern is implemented in a real-life context.

DPDX: a common format for design pattern miner tools

The above studies and other studies [54] revealed many limitations of the current output
formats of the design pattern miner tools. Some tools do not report either their own
identity or the name and version of the program that they analyzed. Some output
format do not contain all roles relevant to a given motif or do not identify reported roles
unambiguously. Some tools do not identify detected motif candidates unambiguously or
do not report their conceptual schema of the identi�ed motif. Other tools do not justify
their results or use ad hoc (generally textual) output formats.

In this thesis we present DPDX, a common exchange format for design pattern detection
tools. The proposed format is based on a well-de�ned and extendible metamodel that
addresses the limitations described above. The extendible metamodel consists of three
parts, namely the schema metamodel, program element metamodel and result meta-
model. The proposed metamodel is implemented in an XML-based language (DPDX)
that can be easily adapted by existing and future tools, providing a means for improving
accuracy and recall scores when evaluating, comparing and combining their �ndings.

Validation of reverse engineering tools with BEFRIEND

This thesis introduces BEFRIEND (BEnchmark For Reverse engInEering tools workiNg
on source coDe), the further development of DEEBEE. The results of reverse engineering
tools recognizing the arbitrary characteristics of source code can be subjectively evaluated
and compared with BEFRIEND. Such tools include design pattern miners, duplicated
code detectors and coding rule violation checkers. BEFRIEND di�ers from DEEBEE in
�ve aspects. First, it allows the uploading and evaluating of results related to di�erent
domains (like duplicated code detectors and design pattern miners). Second, it allows
the editing of the evaluating aspects of the results, while DEEBEE has �xed evaluation
aspects. Third, it improves and extends the user interface. Fourth, it generalizes sibling
relationships to tackle the problems of other domains, not just design pattern mining,
and last but not least, it allows the uploading of �les in di�erent formats by introducing
a plug-in oriented architecture.

We applied BEFRIEND to three reverse engineering domains, namely design pattern
mining tools, duplicated code detector tools, and coding rule violation checking tools.
The evaluation results stored in DEEBEE were migrated to BEFRIEND, and in the
duplicated code domain we applied the benchmark using additional examples, namely
�ve duplicated code �nder tools were assessed on two di�erent open source projects.

142 Summary

C.2. Summary in Hungarian

Jelen munka f® hozzájárulásai a következ®képpen foglalhatóak össze. El®ször gépi tanuló
algoritmusokat alkalmaztunk a tervezési minta keres® eszközünk eredményeinek ponto-
sításához. Majd kísérleteket végeztünk el tervezési minta keres® eszközök performanciá-
jának (sebesség és memóriaigény) mérésére vonatkozóan. Továbbá kifejlesztettünk egy
benchmarkot (DEEBEE), tervezési minta keres® eszközök kiértékelésére és összehasonlí-
tására, valamint ezt felhasználva végeztünk néhány kísérletet. A tervezési minta keres®
eszközök számára bevezettünk egy XML alapú formátumot (DPDX) is. Végül, de nem
utolsó sorban kifejlesztettük a BEFRIEND benchmarkot, amely visszatervez® eszközök
kiértékelésére és összehasonlítására használható fel.

Egy módszer tervezési minta keresés javítására

Ezt a munkát a tervezési minta keres®nk alap algoritmusa által megadott hamis min-
tajelöltek eltávolítása motiválta, melyhez gépi tanuló algoritmusokat alkalmaztunk. Az
eljárásunk lényege az alap algoritmus által visszaadott jelöltek analizálása, �gyelembe
véve a jelölt kódrészletnek és környezetének számos tulajdonságát, például azt, hogy
egy jelölt osztálynak van-e szül®je vagy sem. Ezen információkat hívjuk prediktoroknak,
melyek értékeit a gépi tanuló rendszer használja fel. Szokványos tanulási megközelítést
alkalmaztunk: el®ször kézzel igaznak vagy hamisnak osztályoztuk a jelölteket, ezután
pedig a jelöltekhez tartozó prediktor értékeket határoztuk meg. A soron következ® lé-
pésben ezeket betöltöttük két tanulórendszerbe, ahol az egyik egy döntési fa, míg a másik
egy neurális háló volt. A tanuló algoritmusok modelleket adtak a megszerzett tudásról,
összefüggésekr®l. A modelleket keresztvalidáció módszerrel teszteltük. Kísérleteinket a
StarWriter [80] rendszeren végeztük el, ahol az Adapter Object és a Strategy mintákat
kerestük. A kísérletek során 67�95% tanulási pontosságot értünk el, és az el®állt mo-
dellekkel képesek voltunk kisz¶rni 51 hamis Adapter Object jelöltet az 59 hamis jelölt
közül (összesen 84 jelölt volt), valamint 33 hamis jelöltet a 35 hamis Strategy jelölt közül
(összesen 42 jelölt volt).

Tervezési minta keres® eszközök sebességének és memóriaigényének kiérté-

kelése

Ennek a tanulmányak az volt a célja, hogy három tervezési minta keres® eszközt össze-
hasonlítsunk, a Columbust, a Maisat és a CrocoPat-et. A tanulmány közös bemeneten
alapszik, így biztosítva az összehasonlítás korrektségét, mivel bármilyen elemzési hiba
egyformán befolyásolta mindhárom eszközt. Az eszközök három szempont szerint ke-
rültek összehasonlításra: a jelöltek közötti különbségek, sebesség és memóriaigény. Azt
nem vizsgáltuk, hogy egy tervezési minta jelölt helyes vagy sem; az eszközöket csak a
jelöltek szerkezeti eltéréseinek fényében hasonlítottuk össze. Kísérletek során teszteltük

C.2 Summary in Hungarian 143

el®zetes feltevéseinket az eszközök eredményei közötti különbségek okairól. A kísérle-
tek során a különbségek következ® gyakori okait azonosítottuk: tervezési minták eltér®
de�níciója, minta leírások pontossága és az algoritmusok különböz®sége.

A kísérletekre alapozva egyértelm¶vé vált, hogy mely eszköz milyen körülmények mellett
alkalmazható, �gyelembe véve a sebességet vagy memóriaigényt. Komplex minták vagy
kis és közepes rendszerek esetén a Columbus volt a leggyorsabb. A CrocoPat egyszer¶bb
minták vagy a nagy méret¶ rendszerek esetén volt a leggyorsabb, míg a Maisat akkor
célszer¶ használni ha csak kevés memória áll rendelkezésre.

Tervezési minta keres® eszközök validációja DEEBEE-vel

Ezt a tézispontot a két el®z® tanulmány motiválta. Az el®z® két tanulmány során szembe-
sültünk a tervezési minta keres® eszközök eredményeinek kiértékelése és összehasonlítása
során felmerül® problémákkal. Különböz® eredmény formátumokat kellett feldolgozni,
meg kellett keresni a megfelel® forráskódrészletet és az összehasonlítás eredményét el
kellett tárolni. Ezeket a feladatokat a két korábbi tanulmány során kézzel végeztük el,
ami igencsak id®igényes volt. Konferenciákon és publikációkban [63] is meg�gyeltünk egy
olyan eszköz iránti igényt, amely lehet®vé teszi a minták egyszer¶ és hatékony kiérté-
kelését. Ezek miatt kifejlesztettünk egy publikusan elérhet® benchmarkot, a DEEBEE-t
(DEsign pattern Evaluation BEnchmark Environment), amely tervezési minták kiértékelé-
sét és összehasonlítását támogatja. A benchmark általános: nyelv-, szoftver-, eszköz- és
mintafüggetlen. A benchmarkkal az eszközök pontossága(precision) és teljessége(recall)
bárki által validálhatóvá válik. A benchmark arra is képes, hogy ugyanazon de eltér®
módon közölt mintajelölteket (testvérek) összekapcsoljon, így egyszer¶sítve a kiértéke-
lési folyamatot és javítva a kiértékelési és összehasonlítási eredmények helyességét.

A benchmark segítségével két tervezési minta keres® eszköz (Columbus és Maisa) pontos-
ságát értékeltük ki, a tervezési minták referencia implementációján és két szoftverrend-
szeren, a NotePad++-on és a FormulaManageren. A NotePad++ rendszerb®l további
tervezési minta példányokat is felderítettünk kézzel, így mind a pontosság (precision) és
teljesség (recall) statisztikákat biztosítja a DEEBEE. A FormulaManagert is mi fejlesz-
tettük ki azért, hogy az eszközöket egy olyan programon is teszteljük, ahol minden egyes
minta valós környezetben van implementálva.

DPDX: tervezési minta keres® eszközök közös formátuma

A fenti tanulmányok és egyéb munkák [54] rámutattak a tervezési minta keres® eszközök
jelenlegi kimeneti formátumainak számos hiányosságára és korlátaira. Néhány eszköz
nem közli saját identitását vagy az elemzett program nevét és verzióját. Más kimeneti
formátumok nem tartalmazzák egy minta lényeges szerepl®it vagy nem egyértelm¶en
azonosítják a szerepl®ket. Bizonyos eszközök nem egyértelm¶en azonosítják a jelölteket

144 Summary

vagy az azonosított mintához tartozó sémájukat nem adják meg. Néhány eszköz nem
indokolja az eredményeit vagy ad-hoc formátumot (pl. szöveges) használ.

Ebben a tézispontban bemutattuk a DPDX-et, a tervezési minta keres® eszközök kö-
zös csereformátumát. A javasolt formátum egy jól de�niált és b®víthet® metamodellen
alapszik amely a fent említett hiányosságokat, határokat célozza meg. A b®víthet® me-
tamodell három részb®l áll, a séma metamodellb®l, a programelem metamodellb®l és az
eredmény metamodellb®l. A metamodell egy XML alapú nyelven van implementálva, ami
így könnyen adaptálható a létez® és a jöv®ben kifejlesztésre kerül® eszközök által, ezzel
biztosítva egy eszközt amely növeli az eredmények kiértékelésének, összehasonlításának
és kombinálásának pontosságát.

Visszatervez® eszközök validációja BEFRIEND-el

Ez a tézispont bevezeti a BEFRIEND-et (BEnchmark For Reverse engInEering tools wor-
kiNg on source coDe), amely a DEEBEE továbbfejlesztett változata. A BEFRIEND-el a
forráskód tetsz®leges tulajdonságait felismer® visszatervez® eszközök eredményei értékel-
het®ek ki és hasonlíthatóak össze egymással. Ilyen eszközök a tervezési minta keres®k,
duplikált kód azonosítók és a szabálysértés ellen®rz®k. A BEFRIEND öt szempontban
jelent®sen eltér az el®djét®l (a DEEBEE-t®l). El®ször, lehet®vé teszi különböz® terü-
letekhez (pl. duplikált kód detektorokhoz és tervezési minta keres®khöz) kapcsolódó
eredmények feltöltését és kiértékelését. Másodszor, biztosítja az eredmények kiértéke-
lési szempontjainak szerkesztését, míg a DEEBEE-nek rögzített kiértékelési szempontjai
vannak. Harmadszor, javítja és b®víti a felhasználói felületet. Negyedszer, általánosítja
a csoportosító mechanizmust (testvér kapcsolatok) az egyéb területek (pl. duplikált kód
keres®k) problémáinak kezelése miatt, és végül de nem utolsó sorban, lehet®vé teszi
különböz® formátumok feltöltését egy plug-in architektúra bevezetésével.

A BEFRIEND-et három visszatervez® területen alkalmaztuk, tervezési minta keres®k,
kód másolat keres®k és kódolási szabálysértés azonosító eszközök esetén. A DEEBEE-
ben tárolt kiértékelési eredményeket pedig migráltuk a BEFRIEND-be, és a kód másolat
területen ki is próbáltuk a benchmarkot: öt duplikált kód keres® eszközt értékeltünk ki
két különböz® nyílt forráskódú rendszeren.

Bibliography

[1] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Guéhéneuc, and Narendra Jussien.
Instantiating and Detecting Design Patterns: Putting Bits and Pieces Together. In
16th International Conference on Automated Software Engineering (ASE'01), pages
166�173. IEEE Computer Society, November 2001.

[2] Hervé Albin-Amiot and Yann-Gaël Guéhéneuc. Design patterns: A round-trip. In
Proceedings of 11th ECOOP Workshop for PhD students in Object-Oriented Sys-

tems, June 2001.

[3] Hervé Albin-Amiot and Yann-Gaël Guéhéneuc. Meta-modeling design patterns:
application to pattern detection and code synthesis. In Proceedings of First ECOOP
Workshop on Automating Object-Oriented Software Development Methods, 2001.

[4] Giuliano Antoniol, Roberto Fiutem, and L. Cristoforetti. Using Metrics to Identify
Design Patterns in Object-Oriented Software. In Proceedings of the Fifth Interna-

tional Symposium on Software Metrics (METRICS98), pages 23�34. IEEE Com-
puter Society, November 1998.

[5] Francesca Arcelli, Stefano Masiero, Claudia Raibulet, and Francesco Tisato. A Com-
parison of Reverse Engineering Tools based on Design Pattern Decomposition. In
Proceedings of the 15th Australian Software Engineering Conference (ASWEC'05),
pages 677�691. IEEE Computer Society, February 2005.

[6] Angel Asencio, Sam Cardman, David Harris, and Ellen Laderman. Relating Ex-
pectations to Automatically Recovered Design Patterns. In Proceedings of the

Ninth Working Conference on Reverse Engineering (WCRE'02), pages 87�96. IEEE
Computer Society, 2002.

[7] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian
Zhou. Evaluating static analysis defect warnings on production software. In PASTE

'07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program anal-

ysis for software tools and engineering, pages 1�8. ACM, 2007.

[8] Zsolt Balanyi and Rudolf Ferenc. Mining Design Patterns from C++ Source Code.
In Proceedings of the 19th International Conference on Software Maintenance

(ICSM 2003), pages 305�314. IEEE Computer Society, September 2003.

145

146 Bibliography

[9] The Bauhaus Homepage.
http://www.bauhaus-stuttgart.de.

[10] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Ettore Merlo.
Comparison and Evaluation of Clone Detection Tools. In IEEE Transactions on

Software Engineering, Volume 33, pages 577�591, September 2007.

[11] Bellon benchmark. http://www.bauhaus-stuttgart.de/clones/.

[12] Árpád Beszédes, Rudolf Ferenc, Tamás Gergely, Tibor Gyimóthy, Gábor Lóki, and
László Vidács. CSiBE Benchmark: One Year Perspective and Plans. In Proceedings

of the 2004 GCC Developers' Summit, pages 7�15, June 2004.

[13] Árpád Beszédes, Rudolf Ferenc, and Tibor Gyimóthy. Columbus: A Reverse Engi-
neering Approach. In Proceedings of the 13th IEEE Workshop on Software Technol-

ogy and Engineering Practice (STEP 2005), pages 60�69. IEEE Computer Society,
September 2005.

[14] Dirk Beyer and Claus Lewerentz. CrocoPat: E�cient pattern analysis in object-
oriented programs. In Proceedings of the 11th IEEE International Workshop on

Program Comprehension (IWPC 2003), pages 294�295. IEEE Computer Society,
2003.

[15] Dirk Beyer, Andreas Noack, and Claus Lewerentz. E�cient Relational Calculation
for Software Analysis. In Transactions on Software Engineering (TSE'05), pages
137�149. IEEE Computer Society, February 2005.

[16] Christopher M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, 1995.

[17] Elizabeth Burd and John Bailey. Evaluating Clone Detection Tools for Use during
Preventative Maintenance. In Proceedings of the 2th International Workshop on

Source Code Analysis and Manipulation (SCAM 2002), pages 36�43. IEEE Com-
puter Society, 2002.

[18] Marcelo Campo, Claudia Marcos, and Alvaro Ortigosa. Framework comprehension
and design patterns: A reverse engineering approach. In Proceedings of the 9th

International Conference on Software Engineering and Knowledge Engineering, June
1997.

[19] The CCFinder Homepage.
http://www.ccfinder.net/.

[20] Checkstyle homepage . http://checkstyle.sourceforge.net/.

[21] Elliot J. Chikofsky and James H. Cross II. Reverse Engineering and Design Recovery:
A Taxonomy. In Journal: IEEE Software, Volume 7, pages 13�17, January 1990.

Bibliography 147

[22] Gennaro Costagliola, Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and
Michele Risi. Design Pattern Recovery by Visual Language Parsing. In Proceedings

of the 9th Conference on Software Maintenance and Reengineering (CSMR'05),
pages 102�111. IEEE Computer Society, March 2005.

[23] CSIBE Homepage.
http://www.csibe.org.

[24] DC++ Project.
http://sourceforge.net/projects/dcplusplus.

[25] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented Reengi-
neering Patterns. Square Bracket Associates, 2008.

[26] Design Pattern Benchmark Homepage.
http://www.inf.u-szeged.hu/designpatterns/.

[27] The Design Pattern Detection tool Homepage.
http://java.uom.gr/∼nikos/pattern-detection.html.

[28] Jing Dong, Dushyant S. Lad, and Yajing Zhao. DP-Miner: Design Pattern Dis-
covery Using Matrix. In ECBS'07, pages 371�380, Washington, USA, 2007. IEEE
Computer Society.

[29] Jing Dong, Sheng Yang, and Kang Zhang. Visualizing Design Patterns in Their
Applications and Compositions. IEEE Trans. Softw. Eng., 33:433�453, July 2007.

[30] Jing Dong, Yajing Zhao, and Tu Peng. A Review of Design Pattern Mining Tech-
niques. the International Journal of Software Engineering and Knowledge Engineer-

ing (IJSEKE), pages 823�855, 2008.

[31] DPDX Homepage.
https://sewiki.iai.uni-bonn.de/dpdx/.

[32] Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus
� Reverse Engineering Tool and Schema for C++. In Proceedings of the 18th In-

ternational Conference on Software Maintenance (ICSM'02), pages 172�181. IEEE
Computer Society, October 2002.

[33] Rudolf Ferenc, Juha Gustafsson, László Müller, and Jukka Paakki. Recognizing
Design Patterns in C++ programs with the integration of Columbus and Maisa.
In Proceedings of the 7th Symposium on Programming Languages and Software

Tools (SPLST 2001), pages 58�70. University of Szeged, June 2001.

[34] Rudolf Ferenc, Juha Gustafsson, László Müller, and Jukka Paakki. Recognizing
Design Patterns in C++ programs with the integration of Columbus and Maisa.
Acta Cybernetica, 15:669�682, 2002.

148 Bibliography

[35] FindBugs homepage . http://findbugs.sourceforge.net/.

[36] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley Pub Co, 1999.

[37] The FUJABA Homepage. http://www.cs.uni-paderborn.de/cs/fujaba/.

[38] FxCop homepage .
http://msdn.microsoft.com/en-us/library/bb429476.aspx.

[39] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Pub Co, 1995.

[40] Yann-Gaël Guéhéneuc. P-MARt: Pattern-like Micro Architecture Repository.
http://www-etud.iro.umontreal.ca/∼ptidej/yann-gael/

Work/Publications/Documents/EuroPLoP07PRa.doc.pdf .

[41] Yann-Gaël Guéhéneuc. A reverse engineering tool for precise class diagrams. In
Proceedings of the 2004 conference of the Centre for Advanced Studies on Collab-

orative research (CASCON'04), pages 28�41. IBM Press, 2004.

[42] Yann-Gaël Guéhéneuc and Narendra Jussien. Using explanations for design pat-
terns identi�cation. In Proceedings of IJCAI Workshop on Modelling and Solving

Problems with Constraints, pages 57�64, August 2001.

[43] Yann-Gaël Guéhéneuc, Kim Mens, and Roel Wuyts. A Comparative Framework for
Design Recovery Tools. In Proceedings of the 10th Conference on Software Main-

tenance and Reengineering (CSMR'06), pages 123�134. IEEE Computer Society,
March 2006.

[44] Yann-Gaël Guéhéneuc, Houari Sahraoui, and Farouk Zaidi. Fingerprinting Design
Patterns. In Proceedings of the 11th Working Conference on Reverse Engineering

(WCRE 2004), pages 172�181. IEEE Computer Society, 2004.

[45] The Imagix Homepage.
http://www.imagix.com.

[46] The JHotDraw Homepage.
http:/www.jhotdraw.org.

[47] IBM Jikes Project.
http://jikes.sourceforge.net/.

[48] The JRefactory Homepage.
http:/jrefactory.sourceforge.net/.

[49] The JUnit Homepage.
http:/www.junit.org.

Bibliography 149

[50] Olivier Kaczor, Yann-Gaël Guéhéneuc, and Sylvie Hamel. E�cient Identi�cation of
Design Patterns with Bit-vector Algorithm. In Conference on Software Maintenance

and Reengineering (CSMR'06), pages 175�184. IEEE Computer Society, 2006.

[51] Holger Kamp�meyer and Ste�en Zschaler. Finding the Pattern You Need: The
Design Pattern Intent Ontology. In MoDELS, Volume 4735 of Lecture Notes in

Computer Science, pages 211�225. Springer, 2007.

[52] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick Pagé. Pattern-
Based Reverse-Engineering of Design Components. In The 21st International Con-

ference on Software Engineering (ICSE'99), pages 226�235. IEEE Computer Society,
1999.

[53] Günter Kniesel and Alexander Binun. Standing on the Shoulders of Giants � A
Data Fusion Approach to Design Pattern Detection. In 17th IEEE International

Conference on Program Comprehension (ICPC'09). IEEE Computer Society, 2009.

[54] Günter Kniesel and Alexander Binun. Witnessing Patterns: A Data Fusion Approach
to Design Pattern Detection. Technical report IAI-TR-2009-01, ISSN 0944-8535,
CS Department III, Uni.Bonn, Germany, January 2009.

[55] The Licor Homepage.
http://prog.vub.ac.be/research/DMP/soul/soul2.html.

[56] Alan K. Mackworth. The logic of constraint satisfaction. Artif. Intell., 58(1-3):3�20,
1992.

[57] Maisa Homepage.
http://www.cs.helsinki.fi/group/maisa/.

[58] The Mozilla Homepage.
http://www.mozilla.org.

[59] Hausi A. Müller, Scott R. Tilley, and Kenny Wong. Understanding software systems
using reverse engineering technology perspectives from the Rigi project. In Proceed-
ings of the 1993 conference of the Centre for Advanced Studies on Collaborative

research (CASCON '93), 1993.

[60] The NotePad++ Homepage.
http://notepad-plus.sourceforge.net/.

[61] P-MARt Homepage.
www.ptidej.net/downloads/pmart/.

[62] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A.I. Verkamo. Software
Metrics by Architectural Pattern Mining. In Proceedings of the International Con-

ference on Software: Theory and Practice (16th IFIP World Computer Congress),
pages 325�332, 2000.

150 Bibliography

[63] Niklas Pettersson, Welf Löwe, and Joakim Nivre. On Evaluation of Accuracy in
Pattern Detection. In First International Workshop on Design Pattern Detection

for Reverse Engineering (DPD4RE'06), October 2006.

[64] PMD homepage . http://pmd.sourceforge.net/.

[65] The Ptidej Homepage. http://www.ptidej.net.

[66] John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[67] Nick Rutar, Christian B. Almazan, and Je�rey S. Foster. A Comparison of Bug Find-
ing Tools for Java. In ISSRE '04: Proceedings of the 15th International Symposium

on Software Reliability Engineering, pages 245�256. IEEE Computer Society, 2004.

[68] Filip Van Rysselberghe and Serge Demeyer. Evaluating Clone Detection Techniques.
In Proceedings of the International Workshop on Evolution of Large Scale Industrial

Software Applications, 2003., 2003.

[69] Filip Van Rysselberghe and Serge Demeyer. Evaluating Clone Detection Techniques
from a Refactoring Perspective. In 19th International Conference on Automated

Software Engineering (ASE'04), pages 336�339. IEEE Computer Society, 2004.

[70] Nija Shi and Ronald A. Olsson. Reverse Engineering of Design Patterns from Java
Source Code. In Proceedings of the 21st IEEE/ACM International Conference

on Automated Software Engineering (ASE'06), pages 123�134, Washington, USA,
2006. IEEE Computer Society.

[71] Forrest Shull, Walcelio L. Melo, and Victor R. Basili. An Inductive Method for
Discovering Design Patterns from Object-Oriented Software Systems. Technical
report, 1996.

[72] Michael Si� and Thomas W. Reps. Identifying modules via concept analysis. In
Proceedings of the 13th IEEE International Conference on Software Maintance

(ICSM'97), pages 170�179. IEEE Computer Society, October 1997.

[73] Susan Elliot Sim. A Theory of Benchmarking with Applications to Software Reverse

Engineering. PhD thesis, University of Toronto, 2003.

[74] Susan Elliot Sim, Steve Easterbrook, and Richard C. Holt. Using Benchmarking
to Advance Research: A Challenge to Software Engineering. In Proceedings of the

Twenty-�fth International Conference on Software Engineering (ICSE'03), pages
74�83. IEEE Computer Society, May 2003.

[75] Susan Elliott Sim, Richard C. Holt, and Steve Easterbrook. On Using a Benchmark
to Evaluate C++ Extractors. In Proceedings of the Tenth International Workshop

on Program Comprehension (IWPC'02), pages 114�123. IEEE Computer Society,
Jun 2002.

Bibliography 151

[76] Susan Elliott Sim and Margaret-Anne D. Storey. A Structured Demonstration of
Program Comprehension Tools. In Proceedings of the Seventh Working Conference

on Reverse Engineering (WCRE'00), pages 184�193. IEEE Computer Society, Nov
2000.

[77] Susan Elliott Sim, Margaret-Anne D. Storey, and Andreas Winter. A Structured
Demonstration of Five Program Comprehension Tools: Lessons Learnt. In Pro-

ceedings of the Seventh Working Conference on Reverse Engineering (WCRE'00),
pages 210�212. IEEE Computer Society, Nov 2000.

[78] The Simian Homepage.
http://www.redhillconsulting.com.au/products/simian/.

[79] Jason Smith and David Stotts. SPQR: Flexible Automated Design Pattern Ex-
traction From Source Code. In Proceedings of the 24th IEEE/ACM International

Conference on Automated Software Engineering (ASE'03). IEEE Computer Society,
2003.

[80] The StarO�ce Homepage.
http://www.sun.com/software/star.

[81] The source code of FormulaManager.
http://www.sed.hu/src/FormulaManager/.

[82] Paolo Tonella and Giuliano Antoniol. Object Oriented Design Pattern Inference. In
Proceedings of the International Conference on Software Maintenance (ICSM '99),
pages 230�238. IEEE Computer Society, 1999.

[83] The Trac Homepage.
http://trac.edgewall.org/.

[84] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spyros T.
Halkidis. Design Pattern Detection Using Similarity Scoring. In IEEE Transactions

on Software Engineering, Volume 32, pages 896�909, Nov 2006.

[85] Gabriella Tóth, Péter Heged¶s, Judit Jász, Árpád Beszédes, and Tibor Gyimóthy.
Comparison of Di�erent Impact Analysis Methods and Programmer's Opinion -
an Empirical Study. In Proceedings of the 8th International Conference on the

Principles and Practice of Programming in Java (PPPJ 2010), pages 109�118,
September 2010.

[86] Stefan Wagner. A literature survey of the quality economics of defect-detection
techniques. In ISESE '06: Proceedings of the 2006 ACM/IEEE international sym-

posium on Empirical software engineering, pages 194�203. ACM, 2006.

[87] Stefan Wagner, Florian Deissenboeck, Michael Aichner, Johann Wimmer, and
Markus Schwalb. An Evaluation of Two Bug Pattern Tools for Java. In Pro-

ceedings of the 1st IEEE International Conference on Software Testing, Veri�cation

and Validation (ICST 2008), pages 1�8. ACM, 2008.

152 Corresponding publications of thesis topics

[88] Stefan Wagner, Jan Jurjens, Claudia Koller, and Peter Trischberger. Comparing
Bug Finding Tools with Reviews and Tests. In Proceedings of 17th International

Conference on Testing of Communicating Systems (TestCom'05), pages 40�55.
Springer, 2005.

[89] Lothar Wendehals. Improving Design Pattern Instance Recognition by Dynamic
Analysis. In Proceedings of the ICSE 2003 Workshop on Dynamic Analysis (WODA),

Portland, USA, May 2003.

[90] Lothar Wendehals. Specifying Patterns for Dynamic Pattern Instance Recognition
with UML 2.0 Sequence Diagrams. In Proceedings of the 6th Workshop Software

Reengineering (WSR2004), pages 63�64, May 2004.

[91] Lothar Wendehals. Struktur- und Verhaltensbasierte Entwurfsmustererkennung.
PhD thesis, Universität Paderborn, Institut für Informatik, September 2007.

[92] WIKI page of DPDX.
https://sewiki.iai.uni-bonn.de/research/dpd/.

[93] WinMerge Project.
http://sourceforge.net/projects/winmerge.

Corresponding publications of thesis topics

[94] Rudolf Ferenc, Árpád Beszédes, Lajos Fülöp, and János Lele. Design Pattern Mining
Enhanced by Machine Learning. In Proceedings of the 21th International Conference

on Software Maintenance (ICSM 2005), pages 295�304. IEEE Computer Society,
September 2005.

[95] Lajos Jen® Fülöp, Tamás Gyovai, and Rudolf Ferenc. Evaluating C++ Design
Pattern Miner Tools. In Proceedings of the 6th International Workshop on Source

Code Analysis and Manipulation (SCAM 2006), pages 127�136. IEEE Computer
Society, September 2006.

[96] Lajos Jen® Fülöp, Árpád Ilia, Ádám Zoltán Végh, and Rudolf Ferenc. Comparing
and Evaluating Design Pattern Miner Tools. In Proceedings of the 10th Symposium

on Programming Languages and Software Tools (SPLST 2007), pages 372�386.
Eötvös Loránd University, Faculty of Informatics, June 2007.

[97] Lajos Jen® Fülöp, Rudolf Ferenc, and Tibor Gyimóthy. Towards a Benchmark
for Evaluating Design Pattern Miner Tools. In Proceedings of the 12th European

Conference on Software Maintenance and Reengineering (CSMR 2008), pages 143�
152. IEEE Computer Society, April 2008.

Corresponding publications of thesis topics 153

[98] Lajos Jen® Fülöp, Árpád Ilia, Ádám Zoltán Végh, Péter Heged¶s, and Rudolf Ferenc.
Comparing and Evaluating Design Pattern Miner Tools. Journal of ANNALES Uni-

versitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Com-

putatorica, 31:167�184, 2009. Department of Computer Algebra, Eötvös Loránd
University.

[99] Günter Kniesel, Alexander Binun, Péter Heged¶s, Lajos Jen® Fülöp, Alexander
Chatzigeorgiou, Yann-Gaël Guéhéneuc, and Nikolaos Tsantalis. DPDX � A Common
Exchange Format for Design Pattern Detection Tools. In Proceedings of the 14th

European Conference on Software Maintenance and Reengineering (CSMR 2010),
pages 232�235. IEEE Computer Society, March 2010.

[100] Günter Kniesel, Alexander Binun, Péter Heged¶s, Lajos Jen® Fülöp, Alexander
Chatzigeorgiou, Yann-Gaël Guéhéneuc, and Nikolaos Tsantalis. A common exchange
format for design pattern detection tools. Technical report IAI-TR-2009-03, ISSN
0944-8535, CS Department III, University of Bonn, Germany, October 2009.

[101] Lajos Jen® Fülöp, Péter Heged¶s, Rudolf Ferenc, and Tibor Gyimóthy. Towards
a Benchmark for Evaluating Reverse Engineering Tools. In Tool Demonstrations of

the 15th Working Conference on Reverse Engineering (WCRE 2008), pages 335�336.
IEEE Computer Society, October 2008.

[102] Lajos Jen® Fülöp, Péter Heged¶s, and Rudolf Ferenc. BEFRIEND - a Benchmark
for Evaluating Reverse Engineering Tools. Journal of Periodica Polytechnica, Elec-

trical Engineering, 52/3-4:153�162, 2008. Budapest University of Technology and
Economics.

	Preface
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Summary by chapters
	Summary by results

	Background
	Reverse engineering
	Terminology
	Columbus framework

	I A proposed method for improving design pattern mining
	Improvement of an existing design pattern miner tool
	The learning process
	Predictors
	Adapter object
	Strategy

	Machine learning approaches used
	Results
	Adapter object candidates investigation
	Strategy candidates investigation
	Learning efficiency

	Summary

	II Evaluation of design pattern miner tools
	Performance evaluation of design pattern miner tools
	Framework
	CrocoPat

	A comparative approach
	Results
	Discovered pattern candidates
	Pattern mining speed
	Memory requirements

	Summary

	Validation of design pattern miner tools
	Benchmark
	Architecture
	Fundamental participants and siblings
	Upload file format.
	Benchmark contents

	Usage scenarios
	Browsing the database
	Evaluating and comparing tools
	Adding a new tool

	Experiments performed
	Reference implementations
	NotePad++
	FormulaManager

	Evaluation of the benchmark
	Summary

	Common format for design pattern miner tools
	Background
	Motivation
	Requirements
	State of the art

	DPDX concepts
	Specification
	Reproducibility
	Justification
	Completeness
	Identification of role players
	Language independence
	Identification of candidates
	Comparability

	DPDX meta-models
	Schema metamodel
	Program element metamodel
	Result metamodel

	DPDX implementation
	Implementation details
	Integration and visualization

	Summary

	III Evaluation of reverse engineering tools
	Validation of reverse engineering tools
	Background
	Sibling relation

	Use scenarios
	Setting up the database
	Data evaluation

	Experimental results
	Summary

	Conclusions
	Appendices
	Appendix Related Work
	Design pattern mining
	Improvement of design pattern mining
	Evaluation of reverse engineering tools

	Appendix DPDX
	Output formats of DPD tools
	DPDX attribute values
	DPDX implementation examples

	Appendix Summary
	Summary in English
	Summary in Hungarian

	Bibliography

