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We consider the estimation of affine transformations aligning a known 2D shape and its distorted ob-
servation. The classical way to solve this registration problem is to find correspondences between the
shapes and then compute the transformation parameters from these landmarks. Here we propose a novel
approach where the exact transformation is obtained as the solution of a polynomial system of equations.
The method has been tested on synthetic as well as on real images and its robustness in the presence
of segmentation errors and additive geometric noise has also been demonstrated. We have successfully
applied the method for the registration of hip prosthesis X-ray images. The advantage of the proposed
solution is that it is fast, easy to implement, has linear time complexity, works without established
correspondences and provides an exact solution regardless of the magnitude of transformation.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Registration is a crucial step in almost all image processing tasks
where images of different views or sensors of an object need to
be compared or combined. Typical application areas include visual
inspection, target tracking in video sequences, super resolution, or
medical image analysis. In a general setting, one is looking for a
transformation which aligns two images such that one image (called
the observation) becomes similar to the second one (called the tem-
plate). Due to the large number of possible transformations, there
is a huge variability of the object signature. In fact, each observa-
tion is an element of the orbit of the transformations applied to the
template. Hence the problem is inherently ill-defined unless this vari-
ability is taken into account. A good survey of registration methods
can be found in [1–5]. Basically registration algorithms fall into two
main categories: feature-based and area-based methods.

Feature-based methods [6,7] aim at establishing point correspon-
dences between two images. For that purpose, they extract some
easily detectable features (e.g. intersection of lines, corners, etc.)
from the images and then use these points to compute the closest
transformation based on a similarity metric. Therefore, to make this
approach feasible, the correspondence problem must be solved first.
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Unfortunately, the solution of this problem is far from trivial and
usually relies on the assumption that the deformation is close to
identity and that features provide a strong contextual evidence for
matching landmark points. Other approaches based on “continuous
landmarks”, such as curves representing the boundaries of objects,
usually yield to a complex, non-convex optimization problem re-
quiring computationally expensive algorithms to solve. Searching for
the best transformation usually requires an iterative algorithm like
the iterative closest point (ICP) algorithm [8]. The main drawback
of these methods is that an optimization procedure has high com-
putational cost. In addition, the reliable solution of the correspon-
dence problem assumes that the transformation is close to identity.
The main advantage of these methods is that as long as a sufficient
number of point matches are available, one can usually find an opti-
mal aligning transformation implying that these algorithms are less
sensitive to occlusions.

Area-based methods [9–13] treat the problem without attempt-
ing to detect salient objects. These methods are sometimes called
correlation-like methods because they use a rectangular window to
gain some preliminary information about the distortion. They search
the position in the observation where the matching of the two win-
dows is the best and then look for sufficient alignment between the
windows in the template and in the observation. When the distor-
tion is small, often Fourier descriptors [14] or mutual information
[15] is used. The drawback of this family of methods is also the high
computational cost and the restricted range of distortions.

In many situations, the variability of image features is so complex
that the only feasible way to register such images is to reduce them
to a binary representation and solve the registration problem in that
context [16]. X-ray images are good examples as they usually exhibit
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highly nonlinear radiometric distortions [17,18] making registration
hard to solve. Therefore binary registration (i.e. shape matching) is
an important problem for many complex image analysis tasks.

Several techniques have been proposed to address the affine
registration problem. By thresholding the magnitude of Fourier
transform of the images Zhang et al. [19] construct affine invariant
features, which are insensitive to noise, in order to establish point
correspondence. Several Fourier domain based methods [20,21]
represent images in a coordinate system in which the affine trans-
formation is reduced to an anisotropic scaling factor, which can
be computed using cross correlation methods. Govindu and Shekar
[22] develop a framework that uses the statistical distribution of
geometric properties of image contours to estimate the relevant
transformation parameters. Main advantages of these methods are
that they do not need point correspondences across views and im-
ages may also differ by the overall level of illumination. A novel
one-element voxel attribute, the distance-intensity (DI) is defined
in [23]. This feature encodes spatial information at a global level,
and the distance of the voxel to its closest object boundary, to-
gether with the original intensity information. Then the registration
is obtained by exploiting mutual information as a similarity mea-
sure on the DI feature space. For matching 2D feature points, [24]
reduces the general affine case to the orthogonal case by using the
means and covariance matrices of the point sets, then the rotation
is computed as the roots of a low-degree complex coefficients poly-
nomial. Another direct approach [25] extends the given pattern to
a set of affine covariant versions, each carrying slightly different
information, and then extract features for registration from each of
them separately. The transformation is parameterized at different
scales, using a decomposition of the deformation vector field over a
sequence of nested (multiresolution) subspaces in [26]. An energy
function describing the interactions between the images is then
minimized under a set of constraints, ensuring that the transforma-
tion maintains the topology in the deformed image. Manay et al. [27]
explore an optimization framework for computing shape distance
and shape matching from integral invariants, which are employed
for robustness to high-frequency noise. Shape warping by the com-
putation of an optimal reparameterization allows this method to
account for large localized changes such as occlusions and configu-
ration changes. In [28] a method for identifying silhouettes from a
given set of Radon projections is presented. The authors study how
the Radon transform changes when a given 2D function is subjected
to rotation, scaling, translation, and reflection. Using these proper-
ties, the parameters of the aligning transformation are expressed
in terms of the Radon transform. In [9] a computationally simple
solution is proposed to the affine registration of gray level images
avoiding both the correspondence problem and the need for opti-
mization. The original problem was reformulated as an equivalent
linear parameter estimation one having a unique and exact solution.
However, the method relies on the availability of rich radiometric
information which is clearly not available in the binary case.

In this paper, as an extension of our previous work [29], we pro-
pose a novel method which provides an accurate and computation-
ally simple solution to the affine registration of planar shapes. The
main difficulty with binary images is that they do not contain radio-
metric information, only the foreground pixel coordinates are avail-
able for the registration algorithm. We will show how the binary
registration problem can be formulated as the solution of a system
of polynomial equations obtained by integrating a set of polynomial
functions over the shape domains. The proposed method provides
a direct solution without established correspondences or optimiza-
tion. Moreover, the robustness of the resulting algorithm in the pres-
ence of an i.i.d. Gaussian noise on the point coordinates as well as
segmentation errors are also demonstrated. On the other hand, be-
ing an area-based method, it is sensitive to occlusions. Comparative

tests on partially occluded shapes reveal, however, that other area-
based state of the art methods cannot cope with occlusion either.
Finally, we demonstrate the performance on real images and apply
the method to align pairs of hip prosthesis X-ray images.

This paper organizes as follows. In Section 2, we present our
approach and the proposed algorithmic solution. Then in Section 3,
we will analyze the robustness of the proposed method in the
presence of an additive Gaussian noise on the pixel coordinates.
Finally, experimental results and comparative tests are presented in
Section 4.

2. Estimation of affine transformations

Let us denote the homogeneous coordinates of the template and
observation points by x = [x1, x2, 1]

T ∈ P2 and y = [y1, y2, 1]
T ∈ P2,

respectively. The identity relation between the two images is then
as follows:

y = Ax ⇔ x = A−1y, (1)

where A is the unknown affine transformation that we want to re-
cover:

A =

⎛
⎜⎝
a11 a12 a13

a21 a22 a23

0 0 1

⎞
⎟⎠ and A−1 =

⎛
⎜⎝
q11 q12 q13

q21 q22 q23

0 0 1

⎞
⎟⎠ .

Note that A−1 exists and it is also an affine transformation since A
is affine. Classical landmark-based approaches would now identify
at least 3 point pairs ({xi, yi}n�3

i=1 ) and solve the system of linear
equations obtained from Eq. (1). However, we are interested in a
direct solutionwithout solving the correspondence problem. For that
purpose, we will take the Lebesgue integral1 of both sides of the
identity relation∫

P2
xdx = 1

|A|
∫

P2
A−1ydy, (2)

where the integral transformation x = A−1y, dx = dy/|A| has been
applied. The determinant |A| is the Jacobian which corresponds to
the measure of the transformation. Furthermore, let shapes be rep-
resented by their characteristic function 1 : P2 → {0, 1}, where 0
and 1 correspond to the background and foreground, respectively. If
we denote the template by 1t and the observation by 1o, then Eq. (1)
implies

1t(x)= 1o(Ax) = 1o(y). (3)

The Jacobian can then be evaluated by integrating

∫
P2

1t(x) dx= 1
|A|

∫
P2

1o(y) dy ⇔ |A| =
∫

P2 1o(y) dy∫
P2 1t(x) dx

.

Since the characteristic functions take only values from {0, 1}, we can
further simplify the above integrals by making use of the relation:∫

P2
1t(x) dx ≡

∫
D
dx,

where the finite domain D consists of the template foreground re-
gions: D = {x ∈ P2|1t(x) = 1}. Similarly, we can restrict the integral
of 1o(y) to the observation foreground regions F. Therefore evaluat-
ing the integrals yields the area of the foreground regions. From this

1 Although we write these integrals in P
2, they are equivalent to the cor-

responding Lebesgue integrals in R
2 (i.e. integration is actually performed in the

corresponding Cartesian coordinate system). This is because by using homogeneous
coordinates, the real plane R

2 is mapped to the w=1 plane in real projective space
P

2 and affine transformations will never alter the homogeneous component w. One
can therefore safely assume that it is always 1 and ignore it.
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Fig. 1. The effect of the � functions. �(x) = x, �(x) = [x21 , x
2
2, 1]

T , �(x) = [x31, x
3
2 , 1]

T .

point of view, the measure of the transformation |A| corresponds to
the ratio of the observation and template shapes' area

|A| =
∫
F dy∫
D dx

, (4)

which can be directly computed from the input images. The sign
ambiguity of the determinant is also easily eliminated: a negative
Jacobian would mean that the transformation is not orientation-
preserving (i.e. flipping of coordinates is allowed). In practice, how-
ever, physical constraints will usually prevent such a transformation
hence we can assume that |A| is always positive.

Now multiplying Eqs. (2) and (3) yields a finite integral equation:

∫
P2

x1t(x) dx= 1
|A|

∫
P2

A−1y1o(y) dy ⇔
∫
D
x dx = 1

|A|
∫
F

A−1ydy.

(5)

This equation implies that the finite domains D and F are also
related as F = AD, i.e. we match the shapes as a whole instead
of point correspondences. In fact, Eq. (5) is a linear system of two
equations for k = 1, 2:

|A|
∫
D
xk dx = qk1

∫
F

y1 dy + qk2

∫
F

y2 dy + qk3

∫
F

dy.

It is clear that both sides of the equation as well as the Jacobian
can be easily computed from the input shapes. Unfortunately, two
equations alone are not enough to solve for six unknowns.

2.1. Construction of the polynomial system

In order to generate more equations, let us remark that the iden-
tity relation in Eq. (1) remains valid when a function � : P2 → P2

is acting on both sides of the equation [29]. Indeed, for a properly
chosen �

�(x)= �(A−1y). (6)

We thus obtain the following integral equation from Eqs. (5) and (6):

∫
D

�(x) dx= 1
|A|

∫
F

�(A−1y) dy. (7)

The basic idea of the proposed approach is to generate enough lin-
early independent equations by making use of nonlinear � functions.
Note, however, that the generated equations contain no new infor-
mation, they simply impose new linearly independent constraints.
Indeed, from a geometric point of view, Eq. (5) simply matches the
center of mass of the template and observation while the new equa-
tions of Eq. (7) match the center of mass of the shapes obtained by
the nonlinear transformations � (see Fig. 1). Since �'s are also ap-
plied to the unknowns, the resulting equations will be nonlinear. The
simplest nonlinear system is a low order polynomial system thus
we aim at choosing � such that Eq. (7) is polynomial. The following
proposition states that this is achieved when � is a polynome.

Proposition 1. Let � : Pn → Pn and x ∈ Pn (n ∈ N). If the kth
coordinate of �(x), denoted by �k(x)=pk is a real n-variate polynome,
1� k�n, then applying � in Eq. (7) results in a polynomial system of
equations up to a degree of deg(pk).

Proof. See in the Appendix.

It is thus clear that the class of xn(n ∈ N0) functions are a perfect
choice for �. Hence, we obtain the following polynomial equations
for k = 1, 2 and n = 1, 2, 3:

|A|
∫

xnk =
n∑

i=1

(
n
i

) i∑
j=0

(
i
j

)
qn−i
k1 qi−j

k2 q
j
k3

∫
yn−i
1 yi−j

2 . (8)

The system of equation (8) contains six polynomial equations up to
order three which is enough to solve for all unknowns. In fact we
have two separate systems for k = 1, 2 as

|A|
∫

xk = qk1

∫
y1 + qk2

∫
y2 + qk3

∫
1, (9)

|A|
∫

x2k = q2k1

∫
y21 + q2k2

∫
y22 + q2k3

∫
1

+ 2qk1qk2

∫
y1y2 + 2qk1qk3

∫
y1 + 2qk2qk3

∫
y2, (10)

|A|
∫

x3k = q3k1

∫
y31 + q3k2

∫
y32 + q3k3

∫
1

+ 3q2k1qk2

∫
y21y2 + 3q2k1qk3

∫
y21

+ 3q2k2qk3

∫
y22 + 3qk1q

2
k2

∫
y1y22

+ 3qk2q
2
k3

∫
y2 + 3qk1q

2
k3

∫
y1

+ 6qk1qk2qk3

∫
y1y2. (11)

However, we may get several possible solutions for each unknown
qki due to the cubic polynomial equations. Out of these potential
solutions, we can select the right one by dropping the complex roots
and selecting the transformation whose determinant matches the
Jacobian computed by Eq. (4).

Note that an exact solution always exists, whenever Eq. (3) is
satisfied. In practice, however, a solution may not exists due to dis-
cretization errors or noise on the point coordinates. We can always
check for the existence of a solution by computing the resultant of
the system, which is a second order polynome. On the other hand,
the solution is not unique (but exists!), when the shape is affine
symmetric.

We remark that this method could also be extended to higher di-
mensions at the price of adding higher order polynoms or restricting
the space of admissible transformations. For example, in many med-
ical applications 3D volume images are used. In this case, we should
add a fourth-order equation and solve three systems. This is obvi-
ously more difficult as well as the higher powers may compromise
numerical stability. Another idea is to use �'s of mixed coordinates
(e.g. �(x)= [x1x2, x2, 1]

T ). This will generate new equations without
increasing their order, but we loose the benefit of handling the coor-
dinates separately, i.e. we have to solve one large polynomial system
instead of three smaller ones.

2.2. Numerical implementation

We have constructed our equations in the continuum but in prac-
tice we only have a limited precision digital image. This means that
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the integrals, which are in fact the coefficients of the unknowns in
Eqs. (9)–(11), can only be approximated by a discrete sum over the
foreground pixels introducing an inherent, although negligible error
into our computation. In [30,31], the effect of such errors on mo-
ment computation has been analyzed and a number-theoretical es-
timation of quantization errors is derived. The continuous domains
D and F are represented as finite sets of foreground pixels

D ≈ D = {di}ni=1 and F ≈ F = {fi}mi=1,

where n and m are the number of foreground pixels of the template
and observation, respectively. As a consequence, the integrals are
approximated by a finite sum over these foreground pixels

∫
D
xk dx ≈

n∑
i=1

di
k and

∫
F

yk dy ≈
m∑
i=1

fik, k = 1, 2,

where di
k and fik denote the kth coordinate of the ith foreground

pixel. The Jacobian in Eq. (4) reduces to

|A| = m
n
. (12)

Clearly, the resolution of the images affects the precision of these
approximations. As the mesh size tends to zero, the finite sums ap-
proximate better the integrals. Therefore, our method performs bet-
ter on higher resolution images. Experiments show that images with
size 500 × 500 already provide accurate approximations.

Algorithm 1 summarizes the steps of our registration method. It
is clear that the solution is obtained in a single pass without any
loop or optimization. Although, we have to solve a polynomial sys-
tem, the complexity of this step is constant and, most importantly,
independent of the image size. Matlab is quite efficient in solving our
system but other packages are also available, like PHCpack [32–34].

Algorithm 1. Pseudo-code of the proposed algorithm.

Input: template and observation shapes as binary images
Output: Estimated affine transformation Â
1: Estimating the Jacobian A using Eq. (12)
2: Evaluating the integrals in Eqs. (9)–(11) provides the coefficients
of the unknowns.
3: Solving the system of equations (9)–(11) using a standard
solver (e.g. Matlab).
4: Choosing the correct transformation based on the Jacobian
gives Â−1

The images need to be scanned only once, and the integrals in
Eqs. (9)–(11) as well as the Jacobian can be evaluated during this
scan. This step takes c1N time,where N is the size of the input images.
Once the system is constructed, the rest of the algorithm runs in
constant (c2) time independently of the input size. Thus the overall
time complexity of the method is c1N + c2, i.e. O(N). Nevertheless,
our experiments show that c1N 	 c2, hence the actual running time
is dominated by the constant c2 (see Table 3).

3. Estimation in the presence of noise

There are two types of noise which can affect a binary image.
One is “radiometric”, i.e. pixels may randomly take a foreground or
background color. This is typically present in the form of a salt and
pepper noise, which can be efficiently removed by appropriate mor-
phological filtering. The second type manifests as an uncertainty in
the point coordinates, i.e. it is a geometric noise. More precisely, the
observed point coordinates may differ by a random distance from
the true coordinates as shown in Fig. 2. This will definitely under-
mine the identity relation in Eq. (1) yielding an error in our system.

Fig. 2. The noise tolerance of the proposed method has been tested on observations
corrupted by additive Gaussian noise on the coordinates. (a) original. (b) � = 5. (c)
� = 10. (d) � = 20.

In the following section, we will analyze this case and compute the
average error caused by a geometric noise on the observation.

3.1. Geometric noise

It is a realistic assumption that the observed point coordinates
are around the true ones, hence we will consider an i.i.d. additive
Gaussian noise model on the observation coordinates. The identity
relation Eq. (1) thus becomes

y∗ = y + �(y) = Ax + �∗(y∗) ⇔ x = A−1(y∗ − �∗(y∗)),

where �(y) ≡ �∗(y∗) = [�∗
1(y

∗), �∗
2(y

∗), 0]T is the noise function which
gives a random translation in every point y∗ = [y∗

1, y
∗
2, 1]

T . We as-
sume that �∗

1 and �∗
2 are independent and normally distributed with

0 means and variances �1 and �2, respectively. In fact, �∗(y∗) is a
sample from a 2D, 0 mean Gaussian distribution with a diagonal co-
variance matrix diag(�1,�2). Thus Eq. (7) becomes∫
D

�(x) dx= 1
|A|

∫
F∗

�(A−1(y∗ − �∗(y∗)))J(y∗) dy∗,

where the integral transformation x = A−1(y∗ − �∗(y∗)), dx =
J(y∗) dy∗/|A| has been applied. Hereafter, we will omit the integration
domains unless they are ambiguous. In fact, the Jacobian becomes
J(y∗)/|A| in the noisy casewith J(y∗)=(1−�∗

1(y
∗)′y∗

1
−�∗

2(y
∗)′y∗

2
+|∇�∗(y∗)|)

depending on the actual noise. �∗
1(y

∗)′y∗
2
denotes the partial derivate

based on the second variable (y∗
2) and

|∇�∗(y∗)| =
∣∣∣∣∣
�∗
1(y

∗)′y∗
1

�∗
1(y

∗)′y∗
2

�∗
2(y

∗)′y∗
1

�∗
2(y

∗)′y∗
2

∣∣∣∣∣ .
It is clear that the integrals of �∗

i give the expected value, which is
always 0 in our case. Furthermore, since in practice we always work
with discrete pixel coordinates, the partial derivatives of �∗ can be
approximated via finite differences, e.g. by central differences with
h ∈ N

�∗
1(y

∗)′y∗
1

≈ 1
2h

(�∗([y∗
1 + h, y∗

2, 1]
T) − �∗([y∗

1 − h, y∗
2, 1]

T )),

�∗
1(y

∗)′y∗
2

≈ 1
2h

(�∗([y∗
1,y

∗
2 + h, 1]T) − �∗([y∗

1, y
∗
2 − h, 1]T )).

Therefore the integral of these derivatives will also be approximated
by the integral of the finite differences, which thus evaluates to 0.

3.1.1. Computation of |A|
Since the true coordinates y are unknown on a noisy observation,

we have to integrate using y=y∗ − �∗(y∗). Thus the numerator of Eq.
(4) becomes∫

dy =
∫
(1− |∇�∗(y∗)|) dy∗ =

∫
dy∗,

because
∫ |∇�∗(y∗)|dy∗ = 0 according to our previous deductions.

Therefore Eq. (4) remains valid in the noisy case.
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3.1.2. �(x)= x
The right-hand side of Eq. (9) has to be evaluated on the noisy

observation. Thus denoting K := A−1(y∗ − �∗(y∗)), i.e. Kk = qk1(y∗
1 −

�∗
1(y

∗)) + qk2(y∗
2 − �∗

2(y
∗)) + qk3, we get for k = 1, 2∫

A−1
k ydy =

∫
Kk dy

∗ −
∫

Kk�
∗
1(y

∗)′y∗
1
dy∗

−
∫

Kk�
∗
2(y

∗)′y∗
2
dy∗ +

∫
Kk|∇�∗(y∗)|dy∗.

It is easy to see that all terms, except the first one, evaluates to 0.
For example∫

Kk�
∗
1(y

∗)′y∗
1
dy∗ =

∫
(qk1(y

∗
1 − �∗

1(y
∗))

+ qk2(y
∗
2 − �∗

2(y
∗))+ qk3)�

∗
1(y

∗)′y∗
1
dy∗.

Evaluating the coefficient of qk1 yields∫
(y∗

1 − �∗
1(y

∗))�∗
1(y

∗)′y∗
1
dy∗ =

∫
y∗
1�

∗
1(y

∗)′y∗
1
dy∗ −

∫
�∗
1(y

∗)�∗
1(y

∗)′y∗
1
dy∗.

Using finite differences for �∗
1(y

∗)′y∗
1
and by iterated integrals, we get

for the first term

1
2h

∫
y∗
1

(∫
�∗
1([y

∗
1 + h, y∗

2, 1]
T )dy∗

2

)
dy∗

1

− 1
2h

∫
y∗
1

(∫
�∗
1([y

∗
1 − h, y∗

2, 1]
T )dy∗

2

)
dy∗

1

= 1
2h

∫
y∗
10dy

∗
1 − 1

2h

∫
y∗
10dy

∗
1 = 0,

since �1 is a 0 mean Gaussian for which
∫

�1=0. The remaining terms
can be evaluated in a similar way. Finally, the right-hand side of
Eq. (9) in the case of a noisy observation is as follows:∫

Kk dy
∗ = qk1

∫
y∗
1 dy

∗ + qk2

∫
y∗
2 dy

∗ + qk3

∫
dy∗.

Hence Eq. (9) remains valid. This is not surprising as the equation
matches the center of mass of the template and observation shapes.
When the observation coordinates are corrupted by a 0mean additive
noise, the center of mass will not change as the noise components
integrate to 0.

3.1.3. �(x)= [x21, x
2
2, 1]

T

Using the noisy observation, Eq. (10) becomes

|A|
∫

x2k dx =
∫
(A−1

k (y∗ − �∗(y∗)))2 dy∗.

It is clear that both first and second order noise statistics will ap-
pear in the above equation. While first order statistics are vanishing,
second-order moments (

∫
�∗
k(y

∗)2 =�2
k , k=1, 2) will affect the equa-

tion. It is straightforward to show, using similar considerations as in
Section 3.1.2, that in the noisy case Eq. (10) becomes

|A|
∫

x2k dx =
∫
(A−1

k (y))2 dy + q2k1�
2
1 + q2k2�

2
2.

Thus the error introduced by the noisy observation depends on the
noise variances �2

1 and �2
2, as well as on the strength of the unknown

transformation A.

3.1.4. �(x)= [x31, x
3
2, 1]

T

In this case, we will have third order noise statistics involved.
Fortunately, any symmetric distribution will have a third central
moment of zero, thus using again similar considerations as before,
the noisy equation (11) is as follows:

|A|
∫

x3k dx =
∫
(A−1

k (y))3 dy + 3q2k1qk3�
2
1 + 3q2k2qk3�

2
2.

3.1.5. Summary
In summary, the error caused by an i.i.d. additive Gaussian noise

on the point coordinates of the observation is as follows:

Equation Error term

|A|: Eq. (4) 0
�(x) = x: Eq. (9) 0
�(x) = [x21, x

2
2, 1]

T : Eq. (10) q2k1�
2
1 + q2k2�

2
2

�(x) = [x31, x
3
2, 1]

T : Eq. (11) 3qk3(q2k1�
2
1 + q2k2�

2
2)

An experimental analysis of the noisy case is presented in Section
4.2. Our findings suggest that the proposed algorithm can cope with
noisy observations up to as high as �1 = �2 = 10 noise levels.

4. Experimental results

The proposed algorithm has been tested on a large database of
binary images of size 1000× 1000. The dataset consists of 56 differ-
ent shapes and their transformed versions, a total of ≈ 50 000 im-
ages. The applied affine transformations were randomly composed
of 0◦ , 10◦, . . . , 350◦ rotations; 0, 0.4, . . . , 1.2 shearings; 0.5, 0.7, . . . , 1.9
scalings, and −20, 0, 20 translations along both axes. Some typical
examples of these images can be seen in Fig. 3. The original shapes
were then used as template and the transformed images as the ob-
servation. The proposed algorithm has been implemented in Matlab
7.2 and ran on a Pentium IV 3.2GHz under Linux operating system.
The average runtime was around 1 s including the computation of
the integrals and the solution of the polynomial system. The dataset
and a demo implementation of our method are available for down-
load at http://www.inf.u-szeged.hu/∼kato/software/.

In order to quantitatively evaluate registration results, we defined
two kind of error measures. The first one (denoted by �) measures
the distance between the true A and the estimated Â transformation
obtained by our algorithm, based on all template pixels p. Intuitively,
� shows the average transformation error per pixel. Another measure
is the absolute difference (denoted by �) between the observation
and the registered image.

� = 1
|D|

∑
p∈D

‖(A − Â)p‖ and � = |R�O|
|R| + |O| · 100%,

where D is the set of template pixels, � means the symmetric differ-
ence, while R and O denote the set of pixels of the registered shape
and observation, respectively. Note that � can only be used when the
true transformation A is also known, while � can always be com-
puted. On the other hand, � gives a better characterization of the
transformation error as it directly evaluates the mistransformation.
� sees only the percentage of non-overlapping area between the
observation and registered shapes. Hence the value of � depends also
on the compactness and topology of the shapes. The performance of
our algorithm on the benchmark dataset has been evaluated based
on these measures. A summary of these results is presented in
Table 1. Another important indicator is the number of test cases
where the algorithm finds no solution. Although all the applied
transformations were affine, it is possible that an observation is
not on the orbit of its template. The reason is mainly due to an
excessive amount of numerical error in the coefficients caused by a
combination of strong deformation and discretization error. The
compactness of the shapes also affects the amount of discretization
error. Obviously, such errors arise only around the boundaries thus
shapes with a longer contour will produce higher discretization
error. Our database contains 32724 filled shapes and 16558 line
drawings. Table 2 shows a comparison of the registration quality on
these shapes. It is clear that registration of line drawings (i.e. shapes
with longer contours) is slightly less accurate. Finally, the resolu-
tion of the images is also important. As we already mentioned in

http://www.inf.u-szeged.hu/~kato/software/


574 C. Domokos, Z. Kato / Pattern Recognition 43 (2010) 569 -- 578

Templ. Prop.Suk et al. [12]Kannala et al. [10]SC[7]Heikkilä[11]Obs.

Fig. 3. Registration results on synthetic image pairs. The first two columns show the template and its affine distorted observation to be matched while the other columns
contain the registration result of each considered method. The template and its registered observation are overlayed such that overlapping pixels are depicted in black while
non-overlapping ones are shown in light or dark gray, respectively.

Table 1
Registration results of the proposed method on the benchmark dataset containing
49 282 synthetic observations of 56 shapes. There was no solution in 5.47% of the
test cases.

Runtime (s) � (pixel) � (%)

Median 0.98 0.51 0.15
Mean 0.94 36.98 3.36
Variance 0.2 154.18 12.55

Table 2
Registration results (medians of error measures) of the proposed method on 32724
filled shapes and 16 558 line drawings.

Runtime (s) � (pixel) � (%) Unsolved (%)

Filled 1 0.49 0.06 4.03
Line drawings 0.95 0.55 0.63 8.32

Table 3
Median of error measures versus resolution of the observation.

Size (%) Runtime (s) � (pixel) � (%)

100 1.04 0.71 0.09
50 0.9 14.68 0.74
25 0.85 21.54 0.81
12.5 0.81 25.39 4.91

Section 2.2, the discrete sums will approximate better the inte-
grals at higher resolutions. Fortunately, the time complexity of our
method is linear hence increasing the resolution will not deteriorate
computing time. Table 3 shows the error and CPU time in function
of the resolution.

Table 4
Median of error measures on 1686 randomly selected images using the method of
Heikkilä [11], shape context [7], the method of Kannala et al. [10], Suk et al. [12]
and the proposed algorithm.

Runtime (s) � (pixel) � (%)

Heikkilä [11] 1.15 86.35 39.03
Shape context [7] 24.79 – 27.17
Kannala et al. [10] 32.45 8.89 9.7
Suk et al. [12] 5.62 0.51 0.19
Proposed 0.93 0.5 0.15

4.1. Comparison to previous approaches

Herein, we review some of the most relevant binary registration
approaches and, where an implementation was available, evaluate
quantitatively the performance of our algorithm with respect to
these methods. For that purpose, we have used 1686 randomly
chosen images from our database. The results are presented in
Table 4 and Fig. 3.

Flusser et al. propose an image registration algorithm based on
affine moments in [13]. First they extract some representative re-
gions and compute their moments, then the regions from the tem-
plate and observation are matched based on the similarity of their
moments. Then point correspondences are established as the centers
of the region pairs and the transformation is recovered in a classi-
cal way by solving a system of equations constructed from the point
correspondences. While both methods make use of moments, the
fundamental difference is that our method provides a direct solution
without any point correspondences.

Belongie et al. proposed a novel approach for shape matching
in [7]. The method first searches for point correspondences be-
tween the two objects, then estimates the transformation using these
correspondences. The point matches are established using a novel
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Table 5
Median of error measures versus � of the noise on 1377 randomly selected images.

� 1 2 5 10 15 20

� (pixel) 0.51 0.53 0.73 2.42 5.86 11.91
� (%) 0.19 0.27 0.79 2.72 6.24 10.64

Original � = 2.03% � = 8.2% � = 17.12%

Fig. 4. The robustness of the proposed approach in case of incomplete objects has
been evaluated on images where we have randomly removed 5%, 10%, and 20% of
the foreground pixels ((b)–(d)) of the original image (a). The registration results are
shown as overlayed contours of the registered shape.

Table 6
Median of error measures versus the ratio of removed foreground pixels on 1289
randomly selected images.

Measure Method 5% 10% 15% 20%

� (pixel) Heikkilä [11] 76.29 75 71.86 70.38
Kannala et al. 8.69 12.07 13.55 14.42
S. & F. [12] 8.09 16.12 24.73 33.09
Proposed 1.95 3.56 9.25 8.86

� (%) Heikkilä [11] 40.5 40.64 41.05 39.63
Kannala et al. 9.42 10.82 12.54 14.41
S. & F. [12] 4.44 8.78 12.98 17.7
Proposed 1.93 3.78 10.96 10.9

Table 7
Median of error measures versus the size of occlusion on 794 randomly selected
images.

Measure Method 2.5% 5% 10%

� (pixel) Heikkilä [11] 120.36 153.38 215.81
Kannala et al. 76.49 137.34 227.63
S. & F. [12] 42.61 91.88 175.32
Proposed 47.44 162.34 251.4

� (%) Heikkilä [11] 53.77 55.65 60.98
Kannala et al. 55.77 68.68 79.75
S. & F. [12] 23.91 37.16 47.65
Proposed 38.12 51.1 58.67

similarity metric, called shape context, which consists in construct-
ing a log-polar histogram of surrounding edge pixels. The advantage
compared to traditional landmark based approaches is that land-
marks need not be salient points nor radiometric information is in-
volved. Basically themethod can be regarded as matching two points
sets, each of them being a dense sample from the corresponding
shape's boundary. Obviously, there is no guarantee that point pairs
are exactly corresponding because of the sampling procedure. How-
ever, having a dense sample will certainly keep mismatch error at a
minimum. The correspondences are simply established by solving a
linear assignment problem, which requires time consuming opti-
mization methods. For example, the complexity of the Hungarian
method adopted in [7] is O(N3). We ran the demo software [35] pro-
vided by the authors on our dataset. Although the method uses reg-
ularized thin-plate splines as a flexible class of transformations, it is
possible to set the regularization parameter to get affine behavior:
beta_init = 500. Other parameters were also set empirically to their

� = 4.30% � = 1.07% � = 8.09% � = 2.42%

� = 4.15% � = 3.00% � = 3.14% � = 2.19%

Fig. 5. Registration results on real images. For each image pair, the first two rows
contain the template and observation with overlayed contours of the segmented
silhouettes, while the third row shows the difference between the registered shapes
and in the last row the evaluated error measure � is given. Note that this value
is related to the overlapping area hence it depends also on segmentation errors as
segmented regions will never match perfectly.

optimal value (number of iteration n_iter=15; annealing rate r=5).
Due to its high complexity, we had to reduce the size of the images
by a factor of 0.2. Nevertheless, as can be seen in Table 4, CPU time
was still over 20 s.

Probably the most closely related approach is the binary registra-
tion algorithm proposed by Kannala et al. [10,25]. The fundamental
difference is that [10] constructs a system of equations by basically
looking at the images at three different scales. Although the result-
ing system is linear, the solution is inherently less precise as in each
equation they can only use part of the available information. On the
other hand, our approach constructs the equations by making use of
the � functions hence we always use all the information available
in the images.

Another class of related methods consists in object matching
based on image moments [12,11]. Suk and Flusser [12] construct
affine normalized images bymaking use of imagemoments. An affine
transformation is decomposed into basic transformations, and then
they are successively eliminated by central and complex moments.
The aligning transformation of two objects is then obtained by affine
normalizing both images. This approach works well on synthetic
as well as on real images. We remark that the method in [12] al-
lows mirroring too, which is excluded in our model. In [11], Heikkilä
constructs affine descriptors using higher order moments and mo-
ment invariants. Similar to the previous method, the transformation
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� = 3.69% � = 7.62% � = 5.94% � = 4.13% � = 1.45%

Fig. 6. Registration of hip prosthesis X-ray images. Each image pair has been taken over a period of time about the same patient. The overlayed contour in the second row
shows the aligned contour of the corresponding image in the first row. For each pair, we have also evaluated the � measure.

parameters are eliminated one by one. However, in many cases this
may result in increased registration error as erroneous parameter
values are fixed and propagated towards the computation of subse-
quent parameters. In contrast, our approach solves for all parame-
ters hence error is better distributed over the estimated parameters.
We have obtained the Matlab implementation from the authors of
[10,12,11] and conducted a comparative test. The results presented
in Table 4 and Fig. 3 show that our method outperforms these ap-
proaches in terms of both quality and computing time. In the case
of [12], the registration quality is almost the same thus it is fair to
say that both methods give accurate registrations but our algorithm
runs faster. On the other hand, our method clearly dominates [12]
in terms of robustness as it is demonstrated in the next section.

4.2. Robustness

In Section 3, we derived the errors caused by noisy observations
in our polynomial system of equations (9)–(11). Herein, we will ex-
perimentally test the robustness of the proposed method against
i.i.d. Gaussian geometric noise. For that purpose, we have used 1377
randomly selected images from our benchmark database. An i.i.d.
Gaussian noise with �=1, 2, 5, 10, 15, 20 was added to the extracted
pixel coordinates of each observation and the registration algorithm
got as input the point list of this noisy observation and the original
template. To evaluate registration quality, the recovered transforma-
tion has been applied to the original (i.e. noiseless) observation and
the usual error measures � and � have been computed. It is clear
from Table 5 that the proposed algorithm provides good solutions
up to us high as � = 10 noise levels.

We also considered the robustness of the proposed approach in
case of incomplete objects. For that purpose, we have used 1289
randomly selected images from our benchmark database where we
have randomly removed 5%, 10%, 15%, and 20% of the foreground
pixels before registration (see Fig. 4). Clearly, such incomplete obser-
vations will cause errors in the original system of equations (9)–(11).
Table 6 shows that our method is quite robust while the error rate

of other state of the art methods considerably increases even for
as low as 5% missing pixels. However, we have to note that all of
these methods are less robust against the same amount of occlusion
(i.e. when missing pixels are not uniformly distributed over the
whole region). This is presented in Table 7, where we show the re-
sults on 794 randomly selected images with occlusions of size 2.5%,
5% and 10% of the input shape's area. Clearly, even relatively small
occlusions yield a rather high error rate for both the proposed and
other state of the art methods. This is because they are relying on
quantities obtained by integrating over the whole object area. Thus
large missing parts would drastically change these quantities result-
ing in false registrations. Nevertheless, in many application areas
one can take images under controlled conditions which guarantees
that observations are not occluded (e.g. medical imaging, industrial
inspection).

4.3. Real images

The performance of our method has also been evaluated on real
images. Fig. 5 shows some examples of these images with over-
layed contours. For segmentation, we have used classical thresh-
olding as well as active contours [36]. The main challenges are the
segmentation errors (e.g. see the fifth image in Fig. 5) and slight
projective distortion between the image pairs. In summary, when
reasonably good segmentations are available and the true transfor-
mation is close enough to an affine one then our method performs
quite well, as it is shown by the � error values and difference images
displayed below each image pairs.

4.4. Registration of hip prosthesis X-ray images

Hip replacement [17,37] is a surgical procedure in which the hip
joint is replaced by a prosthetic implant. In the short term post-
operatively, infection is a major concern. An inflammatory process
causes bone resorption and subsequent loosening or fracture of-
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ten requiring revision surgery. In current practice, clinicians assess
loosening by inspecting a number of post-operative X-ray images of
the patient's hip joint, taken over a period of time. Obviously, such
an analysis requires the registration of X-ray images as shown in
Fig. 6. Even visual inspection can benefit from registration as clini-
cally significant prosthesis movement can be very small [17,37].

There are two main challenges in registering hip X-ray images:
one is the highly nonlinear radiometric distortion [18] which makes
any graylevel-based method unstable. Fortunately, the segmen-
tation of the prosthetic implant is quite straightforward [38] so
binary registration is a valid alternative here. Herein, we used active
contours [36] to segment the implant. Let us remark that our binary
registration method is not directly affected by illumination changes
as there is no radiometric information available to the algorithm.
On the other hand, illumination variations may cause segmenta-
tion errors which affects our method (see Section 4.2). However,
such errors arise only in extreme cases as modern segmentation
algorithms are quite robust to illumination variations. The second
problem is that the true transformation is a projective one which
depends also on the position of the implant in 3D space. Indeed,
there is a rigid-body transformation in 3D space between the im-
plants, which becomes a projective mapping between the X-ray
images. Fortunately, the affine assumption is a good approximation
here as the X-ray images are taken in a well defined standard posi-
tion of the patient's leg. Some registration results are presented in
Fig. 6.

5. Conclusions

In this paper, we have presented a novel approach for planar
shape alignment. The fundamental difference compared to classical
image registration algorithms is that our model works without any
landmark, feature detection or optimization by adopting a novel idea
where the transformation is obtained as a solution of a set of poly-
nomial equations. It uses all the information available in the input
images, but there is no need for established correspondences. Our
algorithm is simple to implement and runs quite fast almost inde-
pendently of the image size. Experimental results show that the pro-
posed method provides good alignment on both real and synthetic
images. Furthermore, it is robust in the case of noisy observations.
Comparative tests show the efficiency and accuracy of our model
compared to state of the art methods.
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Appendix A. Proof of Proposition 1

Let 1� k�n arbitrary and fixed. We assume that �k(x) is polyno-
mial, i.e. there exists an n-variate real polynome pk with deg(pk)�1,
such that

�k(x)= pk(x1, . . . , xn) =
uk∑
i=1

si(A
−1
1 y)�i1 . . . (A−1

n y)�in , (A.1)

where uk =
(
deg(pk)+n
deg(pk)

)
, and A−1

j denotes the jth row of A−1. One

term of Eq. (A.1) can be expanded by making use of the Multinomial

theorem [39]. For a given i and for all 1� j�n, we get

(A−1
j y)�ij = (qj1y1 + · · · + qjnyn + qj(n+1))

�ij

=
∑

�ij1,...,�ij(n+1)∈N0
�ij1+...+�ij(n+1)=�ij

�ij!
�ij1! . . .�ij(n+1)!

q
�ij1

j1 . . . q
�ijn

jn q
�ij(n+1)

j(n+1) y
�ij1
1 . . . y

�ijn
n ,

hence we get an (n + 1)-variate real polynome. In fact, we should
compute the sum of the product of n pieces of (n + 1)-variate poly-
noms in Eq. (A.1). Let m = n(n + 1) and consider these products as
m-variate polynoms. Furthermore, the sum of m-variate polynoms is
also an m-variate polynome. Integrating and using this observation
we can rewrite Eq. (A.1) as

∫ uk∑
i=1

si(A
−1
1 y)�i1 . . . (A−1

n y)�in ≡
∫ vk∑

i=1

tiq
�i1
1 . . . q�im

m y�i1
1 . . .y�in

n ,

where vk=
(
deg(pk)+m
deg(pk)

)
. It is obvious from the above equation that the

system of equation has a degree of up to deg(pk). Furthermore, by
making use of the basic properties of the Lebesgue integral, we get

∫ vk∑
i=1

tiq
�i1
1 ...q�im

m y�i1
1 ...y�in

n =
vk∑
i=1

∫
tiq

�i1
1 ...q�im

m y�i1
1 ...y�in

n

=
vk∑
i=1

tiq
�i1
1 ...q�im

m

∫
y�i1
1 ...y�in

n =
vk∑
i=1

wiq
�i1
1 ...q�im

m .

The last term is indeed a real polynome rk with variables q1, ...,qm
yielding∫

�k(x) ≡ rk(q1, ...,qm).

Hence the system of equations is polynomial which completes the
proof.
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