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Affine Shape Alignment Using Covariant Gaussian
Densities: A Direct Solution
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Abstract—We propose a novel approach for the estimation
of 2D affine transformations aligning a planar shape and its
distorted observation. The exact transformation is obtained as a
least-squares solution of a linear system of equations constructed
by fitting Gaussian densities to the shapes which preserve the
effect of the unknown transformation. In the case of compound
shapes, we also propose a robust and efficient numerical scheme
achieving near real-time performance. The method has been
tested on synthetic as well as on real images. Its robustness in
the case of segmentation errors, missing data, and modelling
error has also been demonstrated. The proposed method does
not require point correspondences nor the solution of complex
optimization problems, has linear time complexity and provides
an exact solution regardless of the magnitude of deformation.

Index Terms—Registration, shape alignment, affine transfor-
mation, covariant function, Gaussian distribution.

EDICS Category: ARS-RBS Region, Boundary, and
Shape Analysis

I. INTRODUCTION

REGISTRATION is an important step in almost all image
processing tasks where images of different views or

sensors need to be compared or combined. There is a rich
literature on registration methods, good surveys can be found
in [1]–[3]. Common application areas include target tracking
in video sequences, visual inspection, super resolution, shape
matching [4] or medical image analysis [3]. In a general
setting, we want to estimate transformation parameters align-
ing two images such that one image (called the observation)
becomes similar to the second one (called the template).

Basically registration algorithms fall into two main cate-
gories: Landmark-based and Area-based methods. Landmark-
based methods [4] aim at establishing point correspondences
between two images and then use these points to compute
the closest transformation. Therefore, to make this approach
feasible, the correspondence problem must be solved first.
The common assumption needed to find good matches is
that the unknown transformation is close to identity (i.e. the
strength of the deformation is limited). Searching for the best
transformation usually requires an iterative method like the
Iterative Closest Point (ICP) algorithm [5], [6]. Radiometric in-
formation plays a crucial role in establishing correspondences.
However, since shapes are represented as binary images, ra-
diometric information is not available in our case. As a result,
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the correspondence problem becomes quite challenging. One
can only use geometric information but invariant geometric
features (e.g. corners, junctions) might be difficult to extract
(a circular shape, for instance). The main advantage of these
methods is that as long as a sufficient number of point
matches are available, one can usually find an optimal aligning
transformation implying that these algorithms are less sensitive
to occlusions. On the other hand, Area-based (or featureless)
methods [7]–[12] work without attempting to detect salient
objects. Instead, the problem is solved by computing global
descriptors [12] or invariants of the objects [13], [14]. When
the distortion is small, often Fourier descriptors [15] or mutual
information [16] is used. The drawback of this family of
methods is also the high computational cost and the restricted
range of distortions.

A. State of the Art

Several techniques have been developed to address the affine
registration problem. By thresholding the magnitude of the
Fourier transform of the images, Zhang et al. [15] construct
affine invariant features insensitive to noise, in order to es-
tablish point correspondence. Several Fourier domain based
methods [17] represent images in a coordinate system in which
the affine transformation is reduced to an anisotropic scaling
factor, which can be computed using cross correlation meth-
ods. Govindu and Shekar [18] develop a framework that uses
the statistical distribution of geometric properties of image
contours to estimate the relevant transformation parameters.
The main advantages of these methods are that they do not
need point correspondences across views and the images may
also differ by the overall level of illumination. For matching
2D feature points, [19] reduces the general affine case to the
orthogonal case by using the means and covariance matrices of
the point sets, then the rotation is computed as the roots of a
low-degree complex coefficients polynomial. Another direct
approach [20] extends the given pattern to a set of affine
covariant versions, each carrying slightly different information,
and then extract features for registration from each of them
separately. In [21], the transformation is parameterized at
different scales, using a decomposition of the deformation
vector field over a sequence of nested (multiresolution) sub-
spaces. An energy function describing the interactions between
the images is then minimized under a set of constraints,
ensuring that the transformation maintains the topology in the
deformed image. Manay et al. [22] explore an optimization
framework for computing shape distance and shape matching
from integral invariants which are employed for robustness to
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high-frequency noise. Shape warping by the computation of an
optimal reparameterization allows this method to account for
large localized changes, such as occlusions, and configuration
changes. In [23], a method for identifying silhouettes from a
given set of Radon projections is presented. The authors study
how the Radon transform changes when a given 2D function is
subjected to rotation, scaling, translation, and reflection. Using
these properties, the parameters of the aligning transformation
are expressed in terms of the Radon transform. In [12], an
image registration algorithm based on affine moments is pro-
posed. First, some representative regions are extracted which
are matched based on the similarity of their moments. Then
point correspondences are established as the centers of the
region pairs and the transformation is recovered in a classical
way by solving a system of equations constructed from the
point correspondences. Kannala et al. [13] construct a system
of equations by basically looking at the images at 3 different
scales. Flusser et al. [11] propose a novel image normalization
process with respect to unknown affine transformations based
on affine moment invariants. In Section VI, comparative results
are presented with these two methods.

In many situations, the variability of image features is so
complex that the only feasible way to register such images
is to reduce them to a binary representation and solve the
registration problem in that context [24]. Binary registration,
however, is an important problem in itself for many complex
image analysis tasks. Belongie et al. proposed a novel ap-
proach for shape matching [4]. The method first extracts points
by densely sampling the contour, then point matches between
the two objects are established using a novel similarity metric,
called shape context, which consists in constructing a log-
polar histogram of surrounding edge pixels. Obviously, there
is no guarantee that point pairs are exactly corresponding
because of the sampling procedure. The correspondences are
simply established by solving a linear assignment problem,
which requires time consuming optimization methods. The
advantage compared to traditional landmark based approaches
is that landmarks need not be salient points nor radiometric
information is involved. A novel segment-based shape match-
ing algorithm is presented in [25] which avoids problems
associated with purely global or local methods. This approach
generalizes the idea of finding a point-to-point correspondence
between two shapes to that of finding a segment-to-segment
correspondence.

In many applications, registration appears as the problem
of aligning a set of points. In [26], a robust approach is
proposed, where each point set is represented by a mixture
of spherical Gaussians and the point set registration is treated
as a problem of aligning the two mixtures. For this purpose,
the authors derived a closed-form expression for the L2-
distance between two Gaussian mixtures, which in turn leads
to a computationally efficient registration algorithm. Although
our approach also constructs a mixture of Gaussians, the
fundamental difference is that we do not represent shapes
while [26] basically recovers the underlying continuous shape
from the discrete point set using a method similar to Kernel
Density Estimation (KDE). An affine registration algorithm
for matching 2D feature points is presented in [19], which

recovers both the aligning affine transformation as well as
the unknown correspondences. The algorithm conists of two
steps: first the general affine case is reduced to the orthogonal
case, then the unknown rotation is computed as the roots
of a low-degree polynomial with complex coefficients. Co-
herent Point Drift (CPD) is introduced in [27], which is a
probabilistic method for nonrigid registration of point sets.
Coherent Point Drift (CPD) [27] is a probabilistic approach
for non-rigid registration of point sets. CPD simultaneously
recovers the non-rigid transformation and the correspondence
between the point sets without making any prior assumption
on the transformation model except that of motion coherence.
The registration is treated as a Maximum Likelihood (ML)
estimation problem with motion coherence constraint over the
velocity field such that one point set moves coherently to align
with the second set.

B. Contributions

The parametric estimation of two-dimensional affine trans-
formations between two gray-level images has been addressed
by Hagege and Francos in [28] which provides an accurate
and computationally simple solution avoiding both the cor-
respondence problem as well as the need for optimization.
The basic idea is to reformulate the original problem as an
equivalent linear parameter estimation one which can be
easily solved. This solution, however, relies on radiometric
information which is not available in binary images. In our
previous work [29], [30], an extension of these ideas has been
proposed to the binary case.

Herein, following our ideas outlined in [29], [30], we will
propose a novel method which provides an accurate and
computationally simple solution to the affine registration of
planar shapes. The main benefits of the algorithmic solution
presented in this paper are increased robustness compared
to [29] and a numerically more efficient computation scheme
compared to [30], allowing near real-time registration. The
main difficulty with binary images is that they do not contain
radiometric information, only the foreground pixel coordinates
are available for the registration algorithm. We will show,
that in spite of the missing radiometric information, we can
still formulate the registration problem as the solution of a
linear system of equations. The basic idea is to generate a
pair of covariant functions that are related by the unknown
transformation. The resulting algorithm is fast and provides a
direct solution without establishing correspondences.

This paper organizes as follows. We introduce our registra-
tion problem in Section II followed by the theoretical descrip-
tion of the proposed approach in Section III and the discussion
of its properties from various viewpoints in Section IV. We
then introduce an efficient numerical implementation scheme
in Section V. The performance and robustness of our method
is analyzed in Section VI on a large synthetic benchmark
dataset as well as in the context of traffic sign matching.
Furthermore, comparative tests on synthetic data against state-
of-the-art methods are also presented. Finally, Section VII
concludes the paper.
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II. PROBLEM STATEMENT

Let us denote template and observation points by x =
[x1, x2]T ∈ R2 and y = [y1, y2]T ∈ R2 respectively. The
relation between the shapes is then as follows

y = Ax+ t ⇔ x = A−1(y− t) = A−1y−A−1t, (1)

where (A, t) ∈ (R2×2 × R2×1) is the unknown affine
transformation that we want to recover. Classical landmark-
based approaches would now identify at least 3 point pairs
{xi,yi}n≥3

i=1 then solve the system of linear equations obtained
from Eq. (1). However, we are interested in a direct approach
without solving the correspondence problem. For that purpose,
shapes will be represented by their characteristic function
1 : R2 → {0, 1}, where 0 and 1 correspond to the background
and foreground respectively. If we denote the template by 1t

and the observation by 1o, the following equality also holds

1t(x) = 1o(Ax + t) = 1o(y). (2)

When we can observe some image features (e.g. gray-levels
of the pixels [28]) that are invariant under the transformation,
then we can define an additional relation

f(x) = g(Ax + t) = g(y), (3)

where f, g : R2 → R are covariant functions under the
transformation (A, t), defined on those observed features.
Furthermore, the above relations are still valid when a function
is acting on both sides of Eq. (1) and Eq. (3) [10], [28]–[30].
Indeed, for properly chosen η : R2 → R and ω : R → R, we
get

η
(
y
)

= η
(
Ax + t

)
(4)

ω ◦ g(y) = ω ◦ g(Ax + t) = ω ◦ f(x). (5)

Starting from either Eq. (4) or Eq. (5), we can generate as
many linearly independent equations as needed by making
use of nonlinear η (resp. ω) functions. There is a fundamental
difference between the above two equations though: the non-
linear function η is acting directly on the point coordinates
and hence on the unknown parameters of (A, t) resulting in
a nonlinear system of equations [10]; whereas ω is acting on
the covariant functions f and g allowing for a linear system
of equations [28]–[30]. Herein, we will explore the latter idea.

III. ESTIMATION OF AFFINE TRANSFORMATIONS

The crucial step of the proposed approach is to construct
a pair of covariant functions satisfying Eq. (3). Once these
functions are established, we can adopt the direct method
from [28], [29] to solve for the unknown transformation
(A, t). When graylevel images are considered, the image func-
tions themself serve as appropriate covariant functions [28].
Unfortunately, the construction of such functions for binary
images is a quite challenging task due to the lack of radio-
metric information: These functions must be based on the only
available geometric information.

(a) (b) (c)

Fig. 1. Gaussian PDFs fitted over a compound shape yield a consistent
coloring. (a) Original shape; (b) 3D plot of the Gaussian PDFs over the elliptic
domain with r = 2; (c) Gaussian densities as a grayscale image. The white
contour shows shape boundaries.

A. Construction of Covariant Functions

Since we know that the template and observation are
identical up to an affine transformation (this is stated in
Eq. (1)), we do not need to represent shapes. Therefore we
can safely consider the points of the template as a sample
from a bivariate normally distributed random variable denoted
by X ∼ N(µ, Σ) with probability density function (PDF) [29]

p(x) =
1

2π
√
|Σ| exp

(
− 1

2
(x− µ)T Σ−1(x− µ)

)
.

Applying any linear transformation to X results also in a bi-
variate normal random variable Y = AX + t with parameters

X
(A,t)7→ Y ∼ N(µ′,Σ′) = N(Aµ + t,AΣAT ). (6)

Obviously, the above equation is only valid when A is non-
singular and positive definite. In our case, (A, t) is an affine
transformation thus A is clearly non-singular. On the other
hand, a negative determinant would mean that the transforma-
tion is not orientation-preserving. In practice, however, such
transformations are usually excluded by physical constraints
hence we can assume that |A| is always positive. The pa-
rameters of the probability densities N(µ, Σ) and N(µ′, Σ′)
can be readily estimated as the sample means and covariances
of the point coordinates, while |A| can be expressed from
AΣAT = Σ′ as

|A||Σ||AT | = |Σ′|, hence |A| =
√
|Σ′|/|Σ|. (7)

From a geometric point of view, the mean values µ and µ′

represent the center of mass of the template and observation
respectively, while Σ and Σ′ capture the orientation and
eccentricity of the shapes. Fig. 1 shows a compound shape
and the fitted Gaussian densities of each component.

Now let us have a closer look at the relationship between
p(x) and s(y), the PDF of Y . It follows from Eq. (6), that
Σ′−1 = A−T Σ−1A−1, furthermore

(y − µ′) =
(
Ax + t− (Aµ + t)

)
= (Ax−Aµ).

We thus get

s(y) =
exp

(
− 1

2 (Ax−Aµ)T A−T Σ−1A−1(Ax−Aµ)
)

2π
√
|A||Σ|AT |

=
exp

(
− 1

2 (x− µ)T AT A−T Σ−1A−1A(x− µ)
)

|A|2π
√
|Σ| =

p(x)
|A| .
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Finally, substituting back |A| from Eq. (7), we get
√
|Σ|p(x) =

√
|Σ′|s(y). (8)

It is well known, that the normalizing constant 1/(2π
√
|Σ|)

in the density functions ensures that the integral of the PDF
evaluates to 1. It is also the maximum value of the density
function, which is inversely proportional to the area of the
shape. This dependence on the shape size may cause numerical
instabilities hence we define our covariant functions P,S :
R2 → R as the unnormalized densities

P(x) = 2π
√
|Σ|p(x) = exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
,(9)

S(y) = 2π
√
|Σ′|s(y) = exp

(
−1

2
(y − µ′)T Σ′−1(y − µ′)

)
.

Since the covariance matrices and mean vectors can be com-
puted from the images, both P and S is obtained directly from
the input shapes and they are covariant satisfying Eq. (3):

P(x) = S(Ax + t) = S(y). (10)

B. Linear Estimation of Affine Parameters

Since point correspondences are not available, we cannot
construct a system directly from Eq. (1) or Eq. (10). We know,
however, that the finite domains of the template and observa-
tion , Ft = {x ∈ R2|1t(x) = 1} and Fo = {y ∈ R2|1o(y) =
1} respectively, are related by (A, t): AFt + t = Fo [29].
Therefore multiplying Eq. (1) and Eq. (10), we can integrate
out individual point correspondences:∫

Ft

xP(x)dx = |A|−1

∫

Fo

A−1(y − t)S(y)dy,

where we have used the integral transformation x = A−1(y−
t), dx = |A|−1dy. Note that the Jacobian |A| can be easily
computed from the input images based on Eq. (7). In order to
generate more linearly independent equations, we will adopt
appropriate nonlinear functions ω : R→ R and generate new
equations according to Eq. (5):∫

Ft

xω
(P(x)

)
dx = |A|−1

∫

Fo

A−1(y − t)ω
(S(y)

)
dy.

(11)
If qki denotes the elements of A−1 and −A−1t

A−1 =
[

q11 q12

q21 q22

]
and −A−1t =

[
q13

q23

]
,

we can expand the integrals yielding the following linear
system

|A|
∫

Ft

xkω
(P(x)

)
dx =

2∑

i=1

qki

∫

Fo

yiω
(S(y)

)
dy + qk3

∫

Fo

ω
(S(y)

)
dy, k = 1, 2.

Adopting a set of linearly independent functions {ωi}`
i=1, we

can rewrite the system in matrix form



∫
Fo

y1ω1

(S(y)
) ∫

Fo
y2ω1

(S(y)
) ∫

Fo
ω1

(S(y)
)

...
...

...∫
Fo

y1ω`

(S(y)
) ∫

Fo
y2ω`

(S(y)
) ∫

Fo
ω`

(S(y)
)


×




qk1

qk2

qk3


 = |A|




∫
Ft

xkω1

(P(x)
)

...∫
Ft

xkω`

(P(x)
)


 , k = 1, 2. (12)

The solution of this linear system provides the parameters of
the registration. If ` > 3 then the system is over-determined
and the solution is obtained as a least squares solution. Note
that independently of the number of systems, the coefficient
matrix need to be computed only once. Hence the complexity
of the algorithm depends linearly on the size of the shapes.

C. Choosing the Integration Domain
A trivial choice for the domains in our integral equation

Eq. (11) is the foreground regions Ft and Fo [29]. Since the
parameters of the transformation are estimated by integrating
over the segmented domains, this approach works well as long
as we have a near-perfect segmentation. Unfortunately, this is
rarely encountered in reality [30]. Therefore a clear disad-
vantage of this approach is that any segmentation error will
inherently result in erroneous integrals causing misalignment.
Furthermore, even if the segmentation is perfect, the precision
of these domains is always compromised by discretization
error. On the other hand, image analysis often deals with
the matching of objects composed of several parts, yielding
a group of disjoint shapes when segmented. The topology of
such compound shapes will not change under the action of
the affine group. Herein, we will develop a robust method to
define corresponding integration domains making use of the
statistics of compound shapes.

Let us assume that the template consists of m ≥ 2 disjoint
shapes. This is the typical output of classical region-based
segmentation algorithms, where the labelling of the different
regions results in disjoint shapes, but similar results can be
achieved by detecting the conneted components of a compound
object. In both cases, the input of our method will be a pair
of labeled images, where each component on the template
has exactly one corresponding shape on the observation, i.e.
there exists a bijective mapping between the template and
observation components under the transformation (A, t). For
each pair of corresponding components, we can establish
covariant functions Pi and Si similar to Eq. (9):

Pi(x) = exp
(
− 1

2
(x− µi)T Σ−1

i (x− µi)
)

Si(y) = exp
(
− 1

2
(y − µ′i)

T Σ′−1
i (y − µ′i)

)
,

wehere Σi,Σ′i and µi,µ′i are the covariance matrices and mean
vectors of the ith shape on the template and observation,
respectively. This yields an equation similar to Eq. (11) for
each 1 ≤ i ≤ m. If the correspondence between components
would be known then we could simply construct a system of
m equations and solve for the unknowns. As such a matching
is not known, we will sum these relations yielding

m∑

i=1

∫

Ft

xω
(Pi(x)

)
dx =

∫

Ft

x
m∑

i=1

ω
(Pi(x)

)
dx = (13)

|A|−1

∫

Fo

A−1(y − t)
m∑

i=1

ω
(Si(y)

)
dy.
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∫
Do

y1

m∑
i=1

ω1

(Si(y)
) ∫

Do
y2

m∑
i=1

ω1

(Si(y)
) ∫

Do

m∑
i=1

ω1

(Si(y)
)

...
...

...
∫
Do

y1

m∑
i=1

ω`

(Si(y)
) ∫

Do
y2

m∑
i=1

ω`

(Si(y)
) ∫

Do

m∑
i=1

ω`

(Si(y)
)







qk1

qk2

qk3


 = |A|




∫
Dt

xk

m∑
i=1

ω1

(Pi(x)
)

...
∫
Dt

xk

m∑
i=1

ω`

(Pi(x)
)




, k = 1, 2

(16)

The next step is to get rid of the segmentation domains Ft

and Fo. Our goal is to to select appropriate domains Dt and
Do satisfying the following properties

1) they are related by the unknown transformation ADt +
t = Do

2) the integrands are rich enough (i.e. have characteristic
pattern) within the selected domains.

The key idea is using the statistics of the whole template and
observation objects. Indeed, the overall shape (i.e. the whole
foreground region) of the template and observation also gives
rise to a pair of covariant Gaussian densities p(x) and s(y).
Since the equidensity contours of these PDFs are ellipsoids
centered at the mean, it is natural to chose a corresponding
pair of these ellipses as the integration domain. Simplifying
Eq. (8), we get the well known Mahalanobis-distance which
defines a metric invariant under the unknown transformation
(A, t):

(x− µ)T Σ−1(x− µ) = (y − µ′)T Σ′−1(y − µ′).

Corresponding domains can then be obtained by selecting
points whose Mahalanobis-distance are less than r2 from the
mean:

Dt = {x ∈ R2|(x− µ)T Σ−1(x− µ) ≤ r2} (14)
Do = {y ∈ R2|(y − µ′)T Σ′−1(y − µ′) ≤ r2} (15)

To satisfy property 2), we may choose an ellipse according
to the two sigma rule (i.e. r = 2), which guarantees that about
95% of values are within the enclosed ellipsoid (see (Fig. 1)).
Experiments show that good alignments can be achieved by
settings ranging from r = 1 to r = 3. Another advantage
is that these domains are analytical which allows for a quite
efficient numerical implementation scheme, as discussed in
Section V.

In summary, all we need to construct a system of linear
equations are the means and covariances of the input shapes.
Based on these statistics, we can select the integration domains
and construct appropriate covariant functions yielding the
system Eq. (16) similar to Eq. (12).

IV. DISCUSSION

Herein, we give two alternative interpretations of the pro-
posed framework, thereby relating our approach to other state-
of-the-art approaches of shape alignment. First, we analyse the
method and show its relation to the metric based framework
proposed by Bronstein et al. [31]. Then the relation with
classical moment-based approaches is discussed.

A. Relation to Metric-Based Approaches

Bronstein et al. proposed a generic framework for non-rigid
shape matching in [31], [32], where the problem is studied
from the perspective of metric geometry. The basic idea is to
construct a so-called canonical representation of the original
shape. Making use of this representation, they are able to
either detect symmetry of non-rigid shapes [32] or solve a non-
rigid object recognition problem [31]. The mathematical back-
ground of this approach is based on measure theory. Herein,
we will discover the similarities and differences between our
approach and the framework presented by Bronstein et al. . In
particular, we will formally analyze the case of a single pair
of shapes outlined in Section III-A and Section III-B.

Following [31], let the template and observation be modeled
as metric spaces (Ft, dt) and (Fo, do), where dt, do : R2 →
R+

0

dt(u,v) = (u− v)T Σ−1(u− v) and

do(u,v) = (u− v)T Σ
′−1(u− v)

are the Mahalanobis-distances constructed on the template and
observation, respectively. This kind of metric is often called
an extrinsic metric [32]. Note that our Gaussians P and S are
uniquely determined by the respective Mahalanobis-distances
in their exponents, hence the above metrics are equivalent
to our covariant functions in Eq. (9). Now, we will show
that (Ft, dt) and (Fo, do) are isometric, i.e. there exist a
bijective homomorphism g : (Ft, dt) → (Fo, do). Indeed,
the map g : R2 → R2 is given by the unknown affine
transformation (A, t): g(u) = Au + t. g is clearly bijective
since A is nonsingular, while it is also easily seen that g is a
homomorphism:

dt(u,v) = (u− v)T Σ−1(u− v)
= (A−1g(u)−A−1t−A−1g(v) + A−1t)T

A−T Σ
′−1A−1

(A−1g(u)−A−1t−A−1g(v) + A−1t)

=
(
g(u)− g(v)

)T Σ
′−1

(
g(v)− g(v)

)

= do

(
g(u), g(v)

)
.

We remark that the only possible isometries are affine transfor-
mations, denoted by Iso(Ft, dt). This is obvious, because of
the properties of the Mahalanobis-distance (equidistant points
are lying on an ellipse, which can be obtained from an arbitrary
ellipse by applying an affine transformation). Thus Ft and
any F ⊂ R2 are extrinsically isometric [32], if there exist
g ∈ Iso(Ft, dt), such that g(Ft) = F . This means that F can
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(A,t)

ϕoϕ
t

Fig. 2. Canonical representation of a template and its observation.

be obtained from Ft by applying an affine transformation. In
this case Ft and F are called congruent [32].

For shape recognition [11], [14], [31], the canonical form
of the shapes is used, because this representation is uniquely
determined up to a rigid motion by the shape regardless of its
deformation (see Fig. 2). Therefore, if two shapes are identical
but deformed, then their canonical forms are related by a
simple rigid body transformation which is easy to verify [33],
[34] once canonical representation of the shapes are available.
In the framework of Bronstein et al. [31], canonical form
is obtained by embedding the shapes into the Euclidean
space (E, dE), where the only possible isometires are rigid
motions and the ordinary Euclidean metric dE(u) = uT u
is used. In the affine case, the embedding of the template
ϕ : (Ft, dt) → (E, dE) is given as ϕ(u) = RT u, where R
is obtained by factorizing the inverse covariance matrix Σ−1

of Ft:

Σ−1 = UVUT = U
√

V
√

VUT

= (U
√

V)(U
√

V)T = RRT , (17)

where V is diagonal and U could be either orthogonal or upper
triangular depending on whether we use SVD or LR decom-
position. Note that the factorization of Σ−1 is not unique,
but this ambiguity causes only different rigid transformations
within the Euclidean space. Making use of u = R−T ϕ(u), it
is easy to see that ϕ is a homomorphism, i.e. dt = dE(ϕ×ϕ):

dt(u,v) = (u− v)T Σ−1(u− v)

=
(
R−T ϕ(u)−R−T ϕ(v)

)T
RRT

(
R−T ϕ(u)−R−T ϕ(v)

)

=
(
ϕ(u)− ϕ(v)

)T
R−1RRT R−T

(
ϕ(u)− ϕ(v)

)

=
(
ϕ(u)− ϕ(v)

)T (
ϕ(u)− ϕ(v)

)

= dE
(
ϕ(u), ϕ(v)

)
.

Since Σ−1 is positive definite, RT is nonsingular, hence ϕ
is injective because ϕ(u) has a unique solution for all u.
Furthermore ϕ|Ft = ϕt ∈ Iso(Ft, dt), i.e. ϕt is bijective over
Ft and Fc = ϕt(Ft) is called the canonical form of the shape
Ft (see Fig. 2).

While recognition deals with the question of whether two
shapes are identical under a certain class of deformations,
registration wants to recover an aligning transformation be-
tween two shapes that are known to be identical but deformed.
Obviously, these are strongly related problems - solving either

will implicitly solve the other. In particular, recognition via
canonical representation will implicitly solve the alignment
problem of the shapes because (A, t) is obtained as ϕ−1

o ◦
E ◦ϕt, where E is the rigid body transformation between the
canonical forms. This is exploited in [11], [14].

The fundamental difference is that our approach doesn’t
recover canonical shapes. Instead of embedding the shapes
into an Euclidean space, we apply nonlinear ω functions to
the metrics (dt, do) to get any number of isometric spaces.
This is easily achieved since ω ◦ dt = ω ◦ do(g × g) thus
g : (Ft, ω(dt)) → (Fo, ω(do)) will also be an isometry.

B. Moment-based Interpretation
Image moments and invariants were introduced by Hu [35]

for 2D pattern analysis. Since then, they became one of
the most popular region-based descriptors because any shape
can be reconstructed from its infinite set of moments [36].
Traditional two dimensional (p + q)th order moments of a
function ρ : R2 → R are defined as mpq =

∫
R2 xp

1x
q
2ρ(x)dx,

where p, q ∈ N0. When ρ is an image function then these
moments are also referred to as image moments. In the
binary case, where objects are represented by their silhouette,
ρ is a characteristic function yielding mpq =

∫
F xp

1x
q
2dx,

where F = {x ∈ R2 : ρ(x) = 1}. This is often called
a shape moment. Generally, orthogonal moments, such as
Legendre [36] or Zernike moments [37], are numerically
more stable than regular moments. We remark, however, that
orthogonal moments can always be expressed by a finite set
of regular moments.

In this sense, we can recognize first order function moments
m10 =

∫
F x1ρ(x)dx in Eq. (16). A fundamental question is

what kind of ρ function could be used instead of the charac-
teristic function in order to solve the registration problem. As
we pointed out, we need covariant functions. While invariants
are immune to the action of the affine group, covariant
functions vary with the actual transformation thus providing
constraints on the unknown parameters. Indeed, from Eq. (5)
we get: ρ = ω ◦ f , where ω can be any function satisfying
Eq. (5). It is clear that higher order moments should be
avoided in order to keep our equations linear. Instead, a set of
linearly independent functions {ωi}`

i=1 is adopted to generate
appropriate moments. Theoretically almost any nonlinear ω
could be used, but we will show in the next section, that power
functions are computationally favorable.

V. NUMERICAL IMPLEMENTATION

We have constructed our equations in the continuum but in
practice we only have a limited precision digital image. This
means that the integrals can only be approximated. Another
issue is large numeric errors caused by highly varying pixel
coordinates. A standard technique to minimize this error is to
normalize the template and observation into [−1, 1]× [−1, 1].
Normalization is composed of a translation of the origin into
the center of the shape followed by an appropriate scaling. If
sk = max

∀x∈Ft

(||xk − µ(k)||), then

Nt =
[

1/s1 0
0 1/s2

]
, and tt =

[ −µ(1)/s1

−µ(2)/s2

]
, (18)
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where the coordinates of the mean vector are µ =
[µ(1), µ(2)]T . Normalization of the observation No is com-
puted similarly. Note, that the normalized mean and covariance
of the fitted Gaussians can also be computed from the un-
normalized parameters: µ∗ = 0 because of the normalization
and Σ∗ = NtΣNT

t ; furthermore µ∗i = Ntµi − Ntµ and
Σ∗i = NtΣiNT

t . Applying the normalizing transformation
(Nt, tt) to the template and (No, to) to the observation,
the algorithm will recover the transformation (A∗, t∗) which
aligns the normalized shapes. Then the original transformation
(A, t) is recovered by unnormalizing (A∗, t∗):

A = N−1
o A∗Nt, and t = N−1

o A∗tt + N−1
o t∗ − to. (19)

Furthermore, the normalization has to be taken into account in
our equations as it affects the measure of integrals. Therefore,
when normalizing the images, the left and right hand sides of
the equations in Eq. (16) have to be multiplied by |Nt| and
|No| respectively and the Jacobian of the transformation is

|A∗| = |No|
|Nt| |A|. (20)

A. Computing the Integrals

Herein, we will develop an efficient numerical scheme to
compute the integrals over the elliptic domains Dt and Do

defined in Section III-C. For that purpose, let us consider
power functions xn as the applied ωs (see Fig. 4). One term
of the integral from Eq. (13) over the normalized template
domain Dt = {x|xT Σ−1x ≤ r2} is computed as follows

∫

Dt

xω
(Pi(x)

)
dx =

∫

Dt

x exp
(
− 1

2
(x− µi)T Σ−1

i (x− µi)
)n

dx. (21)

The computation for Do is the same with obvious substitutions.
We can further simplify the integrand in Eq. (21) by translating
the origin of the coordinate system into µi and diagonalizing

Σ−1
i =

[
σ11 σ12

σ12 σ22

]
,

where µi and Σi are computed from the ith input shape. The
usual way to diagonalize a covariance matrix is by spectral
decomposition. Unfortunately, it is inherently ambiguous as
the applied rotation can be either α or α + π resulting in two
different orientations of the coordinate system. In order to have
a unique decomposition, we will diagonalize Σ−1

i by a shear
transformation Gi: Σ−1

i = GT
i DiGi, where

Gi =
[

1 σ12
σ11

0 1

]
, and Di =

[
σ11 0
0 |Σ−1

i |/σ11

]
. (22)

Actually, the diagonalization of Σ−1
i results in a coordinate

transformation (see Fig. 3) which in turn yields the following
integral transformation in Eq. (21):

z = Gi(x− µi) ⇒ x = G−1
i z + µi, and dx = |Gi|−1dz.

(23)
Furthermore, let z = [z1, z2]T and

2x

1x

i    i
Σ  ,µ

Σ,µ

2z
z 1

(a)
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�������������������

1
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2z
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1(z  )umax

1(z  )umin

z

(b)

Fig. 3. We compute the integrals over an elliptic domain. (a) An example
for the domain (bold line) and the integrated function (dashed lines) which
is the ith covariant function. (b) In order to simplify the integral, we should
translate the coordinate system to the mean of the ith object and diagonalize
its covariance matrix.

µ̂ = Giµi and Σ̂−1 = G−T
i Σ−1G−1

i =
[

σ̂11 σ̂12

σ̂12 σ̂22

]
,

where µ̂ = [µ̂(1), µ̂(2)]T , yielding

x = G−1
i z + G−1

i Giµi = G−1
i (z− µ̂).

The integration domain Dt in the new coordinate system
becomes D̂t = {z|(z− µ̂)T Σ̂−1(z− µ̂) ≤ r2}, because using
Σ−1 = GT

i Σ̂−1Gi we get

xT Σ−1x = (z− µ̂)T G−T
i GT

i︸ ︷︷ ︸
I

Σ̂−1 GiG−1
i︸ ︷︷ ︸

I

(z− µ̂)

= (z− µ̂)T Σ̂−1(z− µ̂).

Similarly, for (x− µi) we get

(x− µi)T Σ−1
i (x− µi) = zT G−T

i GT
i DiGiG−1

i z = zT Diz.

Putting the above pieces together, Eq. (21) has the following
form in the new coordinate system:
∫

Dt

xω (Pi(x)) dx =
∫

D̂t

G−1
i (z− µ̂) exp

(
−n

2
zT Diz

)
dz.

(24)
Expanding the first term

G−1
i (z− µ̂) =

[
1 −σ12

σ11

0 1

] [
z1 − µ̂(1)

z2 − µ̂(2)

]

=
[

z1 − σ12
σ11

z2 + σ12
σ11

µ̂(2) − µ̂(1)

z2 − µ̂(2)

]
(25)

and making use of the basic properties of integrals, it is easy
to see that we only need to compute the following types of
integrals (k = 1, 2):

ck

∫

D̂t

zk exp
(
− n

2
zT Diz

)
dz, c3

∫

D̂t

exp
(
− n

2
zT Diz

)
dz,

(26)
where c1 ∈ {1, 0}, c2 ∈ {−σ12

σ11
, 1}, and c3 ∈ {σ12

σ11
µ̂(2) −

µ̂(1),−µ̂(2)} are the coefficients of z1, z2, and the constants
from Eq. (25). Now we will derive a closed form formula for
computing the above integrals for k = 1. First, let us write
explicitly the double integrals in Eq. (26). The bounds for the
first variable z1 are z1min and z1max (see also Fig. 3)

z1min,max =
|Σ̂−1|µ̂(1) ∓

√
|Σ̂−1|σ̂22r2

|Σ̂−1|
= µ̂(1) ∓

√
σ̂22r2

|Σ̂−1|
.
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c1

z1max∫

z1min

z1

umax(z1)∫

umin(z1)

exp
(
−n

2
zT Diz

)
dz2dz1 =

c1
√

π

2C1

z1max∫

z1min

z1 exp
(
−nd11z

2
1

2

)
(erf (C1umax(z1))− erf (C1umin(z1))) dz1(27)

c2

z2max∫

z2min

z2

vmax(z2)∫

vmin(z2)

exp
(
−n

2
zT Diz

)
dz1dz2 =

c2
√

π

2C2

z1max∫

z1min

z2 exp
(
−nd22z

2
2

2

)
(erf (C2vmax(z2))− erf (C2vmin(z2))) dz2 (28)

c3

z2max∫

z2min

vmax(z2)∫

vmin(z2)

exp
(
−n

2
zT Diz

)
dz1dz2 =

c3
√

π

2C2

z1max∫

z1min

exp
(
−nd22z

2
2

2

)
(erf (C2vmax(z2))− erf (C2vmin(z2))) dz2 (29)

The bounds for the second variable z2 are functions of z1

corresponding to a vertical slice of the ellipse D̂t at z1:

umin,max(z1) = µ̂(2) − σ̂12(z1 − µ̂(1))± w1

σ̂22
,

where w1 =
√

σ̂22r2 − |Σ̂−1|(z1 − µ̂(1))2.
Now the first integral from Eq. (26) can be rewrit-

ten as Eq. (27), where C1 =
√

nd22/2 and erf(x) =
(2/
√

π)
∫ x

0
e−t2dt. The erf function can be efficiency approxi-

mated by its Taylor sum. We thus reduced the original double
integral to a single integral, which is easy and very fast to
compute by a standard quadrature formula. We can derive
similar formulas for the other two integrals in Eq. (26), as
shown in Eq. (28)–(29), with C2 =

√
nd11/2. The only

difference is that we change the order of integration variables
and associated bounds will be

z2min,max = µ̂(2) ∓
√

σ̂11r2

|Σ̂−1|
,

vmin,max(z2) = µ̂(1) − σ̂12(z2 − µ̂(2))± w2

σ̂11

with w2 =
√

σ̂11r2 − |Σ̂−1|(z2 − µ̂(2))2.

B. Choice of ω Functions

The closed form formulas Eq. (27)–(29) require that the
applied set of {ωi}`

i=1 functions be of the form

ωi : R→ R : ωi(x) = xni with ni ∈ R
While other choices are equally possible for ωi (e.g. a trigono-
metric family has been successfully used in our previous
work [29], [30]), only the above power functions allow a
closed form computation of the integrals. A clear benefit of this
numerical scheme is near-real time performance. We found
empirically that the nth power and nth root functions with
odd n, i.e. the set {x, x3, x5, 3

√
x, 5
√

x} (see Fig. 4), provides
satisfactory alignments in all of our test cases. It can be seen on
Fig. 4 that the power functions concentrate the coloring to near
by the center of mass of the shapes, producing sharp peaks,
whereas the root functions have an opposite effect resulting in
a smooth mixture surface.

The steps of the proposed algorithm are summarized in
Algorithm 1. Note that the solution is obtained in a single

(a) ω(x) = 5√x (b) ω(x) = 3√x (c) ω(x) = x3

Fig. 4. The effect of the applied ωs on the compound shape from Fig. 1.

Algorithm 1: Pseudo-code of the proposed algorithm.

Input : Template and observation are labelled
images (Lt, Lo); m = number of
components

Output: Estimated transformation (Ã, t̃)

Choose a set of exponents {ni ∈ R|i = 1 . . . `}1

Initialize r ∈ [1, 3]2

Normalize the input images by (Nt, tt) and (No, to)3

/*Constructing the system of
Eq. (16): Co (resp. Ct) denotes
the coefficient matrix (resp.
constants) on the left and right
hand sides of the system. */

{Ct, |Σ|} ←Coeffs(Lt, m, r, {ni}`
i=1, 2)4

{Co, |Σ′|} ←Coeffs(Lo, m, r, {ni}`
i=1, 3)5

Ct ← Ct

√
|Σ′|/|Σ|6

return7 


[
Nt tt

0 1

]−1



(C+
o ·Ct1..3,1)

T

(C+
o ·Ct1..3,2)

T

[0 0 1]




[
No to

0 1

]

−1

pass without any loop or optimization. Although we have to
compute the integrals and solve a linear system, the complexity
of these steps are constant and, most importantly, independent
of the image size. The images need to be scanned only once,
when computing the means and covariance matrices of the
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Function Coeffs computes Ct and Co for Algorithm 1.

Input : Labeled image; m = number of components; r;
{ni}`

i=1; c = number of columns of the matrix
C

Output: C, |Σ|
Set all element of C ∈ R`×c to 01

Compute µ, and Σ over the whole foreground region2

for i ← 1 to m do3

Compute µi and Σi of the ith component4

/*Diagonalize Σ−1
i */

Compute Gi, Di based on Eq. (22)5

Σ̂−1 ← G−T
i Σ−1G−1

i , µ̂ ← Giµi6

/*Computing the coefficients */
for j ← 1 to ` do7

n ← nj8

T ← [Eq. (27), Eq. (28), Eq. (29)]9

Cj,1..c ← Cj,1..c + T1..c

end10

end11

return C,|Σ|12

Gaussian densities. Once these parameters are computed, the
rest of the algorithm runs in constant time independently of
the input size.

VI. EXPERIMENTAL RESULTS

The proposed algorithm has been implemented in Matlab
7.2 and all tests have been ran on a Pentium IV 3.2 GHz under
Linux operating system. The benchmark datasets and the demo
implementation of our method are available for download at
http://www.inf.u-szeged.hu/∼kato/software/.

For quantitative evaluation, we created several benchmark
databases of ≈ 1500 synthetically generated observations
of 60 different compound shapes. The applied transforma-
tions were randomly composed of 0◦, 10◦, . . . , 350◦ rota-
tions; 0, 0.4, . . . , 1.2 shearings; 0.5, 0.7, . . . , 1.9 scalings, and
−20, 0, 20 translations along both axes. The resulting images
are of size ≈ 1500 × 1500, some typical examples can be
seen in Fig. 5. For the evaluation of registration results, we
defined two kinds of error measure: The first one (denoted by
ε) measures the average distance between the true (A, t) and
the estimated (Ã, t̃) transformation, while the second one is
the absolute difference (denoted by δ) between the observation
and the registered image:

ε =
1
|Ft|

∑

p∈Ft

‖(A−Ã)p‖, and δ =
|Fr 4 Fo|
|Fr|+ |Fo| ·100%,

where 4 means the symmetric difference, while Ft, Fo, and
Fr denote the set of pixels of the template, observation, and
the registered shape. Note that ε can only be used when the true
transformation (A, t) is also known, while δ can always be
computed. On the other hand, ε gives a better characterization
of the transformation error as it directly evaluates the misalign-
ment, whereas δ sees only the percentage of non-overlapping

Fig. 5. Some typical registration results on the synthetic data set. The
template and corresponding observation are shown in the first and second
row, respectively. Subsequent rows contain the registration results provided
by the method of Kannala et al. [13], Suk & Flusser [11], and the proposed
method.

TABLE I
MEDIAN OF ERROR MEASURES AND RUNTIME ON 1435 IMAGES.

Runtime (sec.) ε (pixel) δ (%)
Kannala et al. [13] 28.64 2.68 1.64
Suk & Flusser [11] 4.03 0.43 0.06
Proposed method 0.33 0.54 0.19

area between the observation and registered shape. The per-
formance of our algorithm on the benchmark dataset has been
evaluated based on these measures. A summary of these results
is presented in Table I.

The proposed approach has also been compared to some
recent binary registration approaches [11], [13]. One of the
most closely related approach is proposed by Kannala et al.
[13]. This method constructs a linear system of equations
by basically looking at the images at 3 different scales,
therefore the solution is inherently less precise as in each
equation they can only use part of the available information. In
contrast to [13], our approach always uses all the information
available in the images. The method proposed by Suk &
Flusser [11] computes normalization parameters based on
image moments. The aligning transformation can then be
directly computed from these parameters. We have obtained
the Matlab implementation from the authors of both methods
and conducted a comparative test on our benchmark datasets.
The results presented in Table I and Fig. 5 show that our
method outperforms these approaches in terms of computing
time. Furthermore, in contrast to [13], it provides almost
perfect alignments, while the registration quality of [11] is
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slightly better at the price of a more than 10 times higher CPU
time. On the other hand, our method clearly dominates [11] in
terms of robustness as it is demonstrated in the next section.

A. Robustness

The robustness of the proposed algorithm has been analyzed
against missing data, segmentation as well as modelling errors.
Besides using real images inherently subject to such errors, we
have also conducted a systematic test on simulated data: In the
first testcase, 10%, . . . , 90% of the foreground pixels has been
removed from the observation before registration to simulate
missing data. In the second case, square-shaped regions of a
total size 1%, . . . , 5% of the shape have been randomly added
to or removed from the boundary of foreground regions to
simulate segmentation error. Note that we do not include cases
where erroneous foreground regions appear as disconnected
regions, because such false regions can be efficiently removed
by appropriate morphological filtering. We therefore concen-
trate on cases where segmentation errors cannot be filtered out.
Another issue is modelling error. Obviously, the method would
fail for anything which is far from the affine case. It is however
expected to be robust when an affine deformation model is
a good approximation to the true transformation. This will
definitely undermine the identity relation in Eq. (1) yielding
an error in our system. Therefore our third testcase consists in
adding a zero mean Gaussian noise with σ deviation to each
pixel coordinate (basically a random displacement), resulting
in a non-linear deformation. See samples of these errors in
Fig. 6.

Table II summarizes the achieved performance with respect
to the above three cases. Considering the fact that a δ < 6%
corresponds to a visually acceptable alignment, our method
proved to be robust in all three cases, although at different
levels: It can tolerate up to as high as 50% missing pixels,
2.5% segmentation error, and a σ = 2.5 modelling error. Note
also that [13] is consistently outperformed by the proposed
approach in all testcases, whereas [11] is quite sensitive to
missing data and fails completely for modelling errors, but it
is robust against segmentation errors.

Finally, we remark that occlusion yields a rather high error
rate for both the proposed as well the other state-of-the-
art methods. This is because they are relying on quantities
obtained by integrating over the whole object area. Thus large
missing parts would drastically change these quantities result-
ing in false registrations. Nevertheless, in many application
areas one can take images under controlled conditions which
guarantees that observations are not occluded (e.g. medical
imaging, industrial inspection).

B. Real Images

The performance of our method has also been evaluated on
real images. Fig. 7 shows some examples of these images.
The segmentation was performed via thresholding. The main
challenges are segmentation errors and slight projective distor-
tion between the image pairs. In summary, when reasonably
good segmentations are available and the true transformation is
close enough to an affine one then our method performs quite

(a) Missing data (b) Segmentation error (c) Modelling error

Fig. 6. Sample observations for testing robustness. In c) the true contour is
overlayed in blue.

TABLE II
MEDIAN OF ERROR MEASURES VS. VARIOUS TYPE OF ERRORS.

Kannala et al. [13] Suk & Flusser [11] Proposed

Missing data (% of removed pixels)
% ε δ ε δ ε δ

10 3.66 2.38 19.28 9.86 2.16 1.26
50 7.65 4.71 110.23 50.54 6.06 3.67
90 26.22 14.75 258.12 92.2 18.33 10.04

Segmentation error (size of randomly added/removed squares in %)
% ε δ ε δ ε δ

1 5.84 3.85 1.65 0.88 4.97 2.96
2.5 10.77 6.67 3.21 1.74 9.27 5.27
5 18.37 11.06 5.68 3.08 17.96 9.86

Modelling error (σ of random displacements)
σ ε δ ε δ ε δ

1 6.19 3.96 73.11 34.86 5.19 3.08
2.5 12.74 7.82 75.09 35.67 10 5.7
5 27.33 16.73 73.63 35.02 18.44 10.48

δ = 2.64% δ = 5.55% δ = 9.42%
Fig. 7. Registration results on real images. Top: the images used as templates.
Bottom: the corresponding observations with the overlayed contour of the
registration results.

well, as it is shown by the δ error values displayed below each
image pair.

a) Registration of Traffic Signs: Nowadays, modern cars
include many safety systems. Automatic traffic sign recogni-
tion is a major challenge of such intelligent systems, where one
of the key tasks is the real-time matching of an observed sign
with its template. Fig. 8 shows typical registration results on
such images. Herein, we have used classical thresholding and
some morphological operations for segmentation but automatic
detection/segmentation is also possible [38]. Note that these
images are inherently corrupted by several type of error:
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δ = 25.88% δ = 35.28% δ = 0.81% δ = 5.27% δ = 1.47% δ = 11.76% δ = 5.35% δ = 10.23%

Fig. 8. Registration results on traffic signs. Top: the images used as templates. Bottom: the corresponding observations with the overlayed contour of the
registration results

First, the true transformation is projective, but -since signs
has to be detected and recognized from a larger distance- the
affine model is a valid assumption here. Second, thresholding
produced imperfect segmentations in the presence of specular
reflections. Finally, various surface errors resulted in missing
data inside foreground regions (see the last two images in
Fig. 8). In spite of these problems, our method performs quite
well when reasonably good segmentations are available and
the true transformation is close enough to an affine one.

VII. CONCLUSIONS

In this paper, we have presented a novel approach for planar
shape alignment. The fundamental difference compared to
classical image registration algorithms is that our model works
without any landmark, feature detection or optimization by
adopting a novel idea where the transformation is obtained
as a solution of a set of linear equations. The complexity of
the algorithm is linear and, by adopting an efficient numerical
scheme, it is capable of registering images at near real-time
speed. Experimental results show that the proposed method
provides good alignments on both real and synthetic images.
Furthermore, its robustness has been demonstrated against
missing data, segmentation and modelling errors. In general,
our method will perform well as long as the first and second
order statistics of shapes do not change dramatically, therefore
its superiority can be fully exploited in applications where
occlusion can be kept at a minimum (e.g. medical imaging or
industrial inspection). Comparative tests show the efficiency
and accuracy of our model compared to state-of-the-art meth-
ods.
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