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1 Introduction
In order to provide easier identification, the numbering of the chapters, definitions, 
and theorems of this abstract matches their numbering in the dissertation.

N otations
Real numbers and real intervals are denoted by small and capital letters, respectively. 
Real and interval vectors are denoted by boldface symbols, the components of vectors 
and the elements of vector and interval sequences are denoted by subscripts. The 
symbols R and I mean the set of real scalars and real intervals, respectively. For a 
set D C R" the set of n-dimensional boxes X , X  C D is denoted by 1(D). Real­
type functions are always identified by small type faces, while their interval inclusion 
functions are denoted by the corresponding capital letters.

In terval analysis, inclusion functions
Real interval: a non-empty, closed, bounded subset of R, for which X  = [X_, X] = {x E 
R | K  < x < X  }, where X_ and X  is the lower and upper bound of X , respectively. 
The width of an interval is given by w(X)  := X  — 2L, the relative width of an interval 
is given by wrei(X) := iu(JY’)/(min{|a;| | x E df}) if 0 0 X , and wrei(X) := w(X)  
otherwise. The real-type elementary arithmetic operations are extended to interval 
arguments by X  o Y  := {x oy  \ x E X,  y E Y}  e l ,  o e {+, —, •, /}. The elementary 
operations on interval vectors are defined componentwise, I f ^ : T C R - > R i s a  
real, standard mathematical function which is continuous on each closed interval in 
D, then the interval extension of p  is defined by $(7f) := {pfx) \ x E X }  for each 
X  E 1(D).

D efin itio n  1 A function F  : I" —>• I is said to he an inclusion function of f  : D C 
R" —>• R over X  E 1(D), if y  E Y  implies f ( y ) E F( Y)  for each Y  C X  box.

D efin itio n  4 The inclusion function F  : I” —>• I is said to be inclusion isotone over 
the box X  E I”, if for any pair of boxes Y ,  Z  C X ,  the property Y  C Z  implies 
F( Y)  C F(Z) .

D efin itio n  5 The inclusion function F  : I" —>• I has the convergence order of a > 0 
(or shortly, F  is a-eonvergent) over X  E I", if there exists a positive constant c E R 
such that for any Y  C X ,  Y  e l "  box

w(F(Y))  -  w( f (Y) )  < c(w (Y))a

holds, where f ( Y )  is the range of f  over Y .

D efin itio n  7 The inclusion function F  : I n — $■ I has the zero convergence property 
over X  E I", if w(F(Zi))  —>• 0 holds for all the {Zi},  Z i E I", ¿ = 1 ,2 ,,,, interval 
sequences for which Z i C X  and w(Zf)  —>• 0.



T he investigated  op tim iza tion  problem s
Let /  and gj (j  = 1 ,. . . ,  r) be continuous, real-type functions over the X 0 n- 
dimensional box. The investigated problem types are

mm /(* ) , (*)
XC-sy. o

{bound constrained global optimization problem) and

min /(a?),
s.t. gj{x) < 0, j  = (**)

X G X q,

{inequality constrained global optimization problem), In both eases the goal is to 
determine all the global minimizers and the f* minimum value.

T he m ain  steps of th e  in terval b ranch  and  bound  algorithm
We update two lists in the algorithm: the Worklist (denoted by £>y) contains subboxes 
waiting for further processing, while the subboxes satisfying the stopping criterion (as 
candidates of enclosures of the global minimizers) are stored in the Resultlist (£5).
Subdivision direction selection. The leading box Y  is subdivided perpendicular 
to its kth component, where k := min {j \ j  G {1,2, , , , ,  n}, D{j) = max"=1 D{i) },

Rule ‘A’: D{i) : = w{Yf).
Rule ‘B’: D{i) := w{ VtF{Y))  • w{Yi).

Rule ‘C’: D{i) := w ( V tF( Y)  • {Yt -  m{Yt))).
Rule ‘D’: D{i) : =  wrei{Yi). {wreJ{X) is the relative width of X.)

Subdivision methods. Traditional bisection rules: the leading box is divided into 
two subboxes. Multisection: splittings are made in more than one direction at the 
same time. In Chapter 3 of the dissertation I am dealing with new type of adaptive 
subdivision rules.

Accelerating devices. In the presented algorithms the following accelerating tools 
are applied: feasibility test, midpoint (cutoff) test, monotonicity test, concavity test, 
interval Newton-step, Chapter 4 shows some examples of designing problem specific 
accelerating tests.

Interval selection rules. Moore-Skelboe rule: let the leading box be that of the 
element Y  of the Worklist which has the smallest F_{Y) value, Hansen rule: let the 
leading box be the oldest box stored in the Worklist, New type of interval selection 
rules based on heuristic quantities are studied in Chapter 3,

D efin itio n  9 Consider the limits of the convergent (nested) subsequences of the se­
quence of leading boxes Let us denote the union of these limits by A C X 0.
Then we say that the investigated algorithm variant converges to A.



2 M u ltisection  subdivision  rules
In Chapter 2 of the dissertation several multiseetion interval subdivision methods 
were introduced and studied in an empirical way [5], The so-called multisplitting rules 
(which are very similar to that of the multiseetion) and the convergence properties of 
the algorithm variants using multisplitting were investigated by Csallner et al, [1] in a 
theoretical way. In the numerical tests I combined the subdivision direction selection 
rules ‘A’, ‘B’, ‘C’ and ‘D’ with all of the following subdivision methods:
-  /2 rule: the classical bisection;
-  /3 rule: subdivision of the leading box into 3 subboxes in the following way: at first, 
a bisection is performed to the leading box, and secondly, one of the two resulting 
subboxes is divided by a bisection in the second most promising direction;
-  /4  rule: subdivision of the leading box into 4 subboxes by two concurrent bisections 
in the first and second most promising directions.
Numerical results. I carried out the numerical tests on a large, widely studied stan­
dard test set consisting of 37 problems. Summarizing the numerical experiences we 
can conclude that multiseetion is advantageous and may result in significant improve­
ments when solving hard to solve problems. According to the majority of indicators, 
the algorithm variants C/3 and C/4 are the most efficient. As a part of the study, the 
results of earlier numerical tests showing the advantages of the newer direction selec­
tion rules ‘B’ and ‘C’ were confirmed, and moreover, it was shown that multiseetion 
may additionally improve these advantages. These results are even more remarkable 
when we take into account that the studied algorithms contained sophisticated ac­
celerating tests. For hard problems, the expected relative improvements of the best 
multiseetion algorithm variants are about 22% in the running time and about 25% in 
the number of objective function evaluations -  compared to the best bisection meth­
ods, On the other hand, multiseetion usually resulted in only slightly larger memory 
complexity than bisection.

3 S tudy o f a new  heuristic quantity  -  a feasib ility  
degree index

In Chapter 3 I introduce a new heuristic quantity for inequality constrained problems 
[6], The quantity approximates the feasibility degree of a box, thus, it is suitable to 
utilize the constraint information both in interval selection and in subdivision rules.

T he R e jee tln d ex  p a ram e te r for bound  constra ined  problem s
For (*) problems Casado, Csendes, García and Martinez have recently investigated 
the heuristic index

Pr(x)=p(r,x) r-Ejx
w(F(X))

an indicator of the proximity of a box to a minimizer point. In practice, the global 
minimum value, f* is usually not known in advance, thus, an /  approximation of it



must be used, Csendes considered the /  values as the actual element of a general 
sequence {fk}kLv

T he feasibility degree index
The new parameter is proposed by J, Fernández Hernández: evaluate

f - G j i X )  1 (1)

for each constraint. When w(Gj(X))  = 0, gj is constant over X .  In this ease, if the 
range Qj(X)  is positive, then X  is eliminated by the feasibility test, otherwise let 
puGj(X)  = 1, Moreover, let

r

p u (X ) = J ^ p u Gi(X), and then pup( f , X)  = pu(X)  - p ( f , X) ,  
i=i

where /  is determined by a general sequence pup(f, X ), The proposed pu(X)  param­
eter justifies the value of the parameter p ( f , X ) by a factor measuring the feasibility 
degree of the box.

T he investigated  in terval selection rules
Classical methods:
- C l :  Moore-Skelboe rule,
-  C2: Hansen-rule,

Rules based on p( fk, X):
-  C3: Select the box from the Worklist which has maximal p( fk, X ) value,
-  C4: A hybrid selection rule using p( f k, X): let Nm be a given positive constant. In 
each iteration, the algorithm chooses Nm boxes stored in the Worklist, the ones with 
the largest p( fk, X ) values. The updated Worklist consists of the selected boxes. The 
rest of the boxes are stored in a secondary list and are processed (by using Cl) at the 
end of the algorithm.
The convergence properties of rule C3 were investigated by Csendes, while the com­
putational behavior of rules C3 and C4 was studied by Casado et al.

New rules based on pup(fk, X )  :

-  C5: Select the box from the Worklist which has maximal pup( f k, X ) value,
-  C6: A hybrid rule like C4, but using the maximal pup(fk, X ),
To select a box which has both a high pup( f k, X ) value and a low F_(X) value: let

pupb(fk, X ) F(X) / pup( f k, X ) if pup(fk, X ) #  0, 
M  otherwise,



where M  is a preset large positive value,
-  C7: Select the box from the Worklist which has minimal pupb(fk, X ).

-  C8: A hybrid rule like C4 but using the minimal pupb(fk, X) .

T he investigated  in terval subdivision  rules
Static bisection and multisection rules:
-  Sl_/2: classical static bisection in the widest component;
-  S2_/4: static tetraseetion, i.e. bisection in the two widest components (/4 multi­
section);

S3_/9: static multiseetion into 9 subboxes (triseetion in the two widest compo­
nents).

Adaptive multisection based on p( fk, X): Let 0 < Pi < P2 < 1 be given threshold 
values,

S4_pf_/2,4,9:
(a) If p( fk, X ) < Pi, then perform a bisection on X;
(b) if Pi < p ( f k, X )  < P2, then perform a /4  multiseetion on X;
(e) if p(/fc, X ) > P2, then perform a /9 multiseetion on X ,

Adaptive multisection based on pup( f k, X):
-  S5 pup /2,4,9: like S4, but using pup(fk, X ) instead of p( fk, X) .
Rule S4 was recently investigated by Casado et al.

C onvergence investigation

Convergence results for the new interval selection rules. In Section 3,3,1 
of the dissertation I introduce the convergence properties of the algorithm variants 
using rules C5 and C7 [6], In order to investigate the convergence properties, we 
assume that the stopping condition of the algorithms cannot be fulfilled, I study the 
algorithms with the feasibility test as the only accelerating device, with the exception 
of those eases where the applied accelerating tests are explicitly indicated,

t h eo r em  17 [6] Assume that the inclusion function of the objective function is iso­
tone and it has the zero convergence property, the inclusion functions of the constraint 
functions are isotone, and the p( fk, Z)  parameters are calculated by the sequence 
{/fc}fcLi; fk —t f  > f*, for which there exists a feasible point x  e X 0 with f {x)  = / .  
Then the interval branch-and-bound algorithm that selects that interval from the work­
ing list which has the maximal pup(fk, Z)  value (i.e., which uses criterion C5) may 
converge to a feasible point x  e X 0 for which f {x)  > f*, i.e., to a point which is not 
a global minimizer point of the problem.

In Theorem 18 I prove a similar statement in the ease when the inclusion functions 
of the constraint functions are «-convergent (but not necessarily isotone).



The cutoff test and the zero convergence property of the inclusion function of /  
can be sufficient to ensure convergence to global minimizer points even if f k does not 
converge to f*.

lemma  1 [6] Assume that the interval inclusion functions of the constraint functions 
are inclusion isotone. Let { x k}r=l be a nested subbox sequence generated by the 
branch-and-bound algorithm that converges to a feasible point x . Then the following 
three statements are equivalent:

1. For a suitable number i, pu(Xi)  = 0.

2. For a suitable number i, pu { Xk) = 0 V/>- > i.

3. For a suitable i andi/k > i the subbox X k does not contain strictly feasible points,
and moreover, there exists a constraint gs having gs(x) = 0 and having the Gs 
inclusion function providing interval inclusions without overestimation on the 
lower bound over all these X k subboxes.

th eo r em  19 [6] Assume that the inclusion functions of the objective function and 
the constraint functions have the zero convergence property, no interval sequence 
{vU f= i, x t C X q contains an { X kl} subsequence for which lim¿ ^ ^ p v f X ^ )  = 0 
and that f k converges to f  < f*. Then the interval branch-and-bound algorithm that 
selects that box Z  from the working list which has the maximal pup(fk, Z)  value as 
first criterion, and the box which has the maximal p( f k, Z)  value as second criterion 
(i.e., for choosing between boxes having the same pup(fk, Z)  value) produces an ev­
erywhere dense sequence of subintervals converging to each feasible point of the search 
region X 0 regardless of the objective function value.

th eo r em  20 [6] Assume that the inclusion functions of both the objective function 
and the constraint functions are isotone and have the zero convergence property. Con­
sider the interval branch-and-bound algorithm that uses the feasibility test (and op­
tionally the cutoff and the monotonicity tests) and that selects as next actual box that 
subinterval Z  from the working list which has the maximal pup(fk, Z)  value as first 
criterion, and the box which has the maximal p( f k, Z)  value as second criterion. I f 
the sequence { f k} converges to the global minimum value f  * and there exist at most 
a finite number of f k values below f*, then the algorithm converges to a set of global 
minimizer points.

Applying the above theorem for the updated best upper bound of the global 
minimum (i.e, for /) , we can state the following corollary:

C orollary  1 [6] I f  our algorithm uses the feasibility test (and optionally the cutoff 
test and the monotonicity test) as accelerated devices, and selects as next leading 
box that box Z  from the working list which has the maximal pup(f,  Z)  value as first 
criterion, and the box which has the maximal p{ f , Z) value as second criterion, where 
f  is the best upper bound for the global minimum value, and its convergence to f  * can 
be ensured, then the algorithm converges exclusively to global minimizer points.



The interval selection rules can be combined through a u : R2 —>• R utility function:

th eo r em  21 [6] Assume that the inclusion functions of both the objective function 
and the constraint functions are isotone and have the zero convergence property. Con­
sider an interval branch-and-bound algorithm that uses the feasibility test (and option­
ally the cutoff test and the monotonicity test), and which selects as next actual box 
that box from the working list which has the maximal u{pup{fk, Z),  —F f Z )) value as 
first criterion, and the box which has the maximal p( f k, Z)  value as second criterion.

(a) Then the sufficient conditions for the convergence of the algorithm to a set of
global minimizes points are that the sequence { f k} converges to the global min­
imum value f*, there exist at most a finite number of f k values below f* and 
that the utility function u(x,y) is strictly monotonically increasing in both of its 
arguments.

(b) On the other hand, fk > f  * + S for a S > 0 allows convergence to a non-optimal
point even for the class of the above defined utility functions having the property 
under (a).

If we additionally assume that we apply the cutoff test with the /  values, we get 
a general convergence condition:

th eo r em  22 [6] Assume that the inclusion functions of both the objective function 
and the constraint functions have the zero convergence property. Consider an interval 
branch-and-bound algorithm that uses the end-off test, in addition to the feasibility test 
(and optionally, the monotonicity test) and that uses an arbitrary interval selection 
criterion (e.g. one of the criteria Cl to C8). Then a sufficient condition for the 
convergence of this algorithm to a set of global minimizer points is that the sequence 
{fk} converges to the global minimum value f* and with the exception of a finite 
number of iteration steps at each iteration fk = f { x k) holds for an Xk G X 0 feasible 
point.

If it is ensured, that the sequence of the /  values converges to /*, then, under 
the assumptions of Theorem 22 the algorithm variants using the C1-C8 rules will 
converge to a set of global minimizer points.

As we have seen, the availability of a sequence converging to the global minimum 
is indispensable. One of the common estimators of the global minimum is given by

fk := m in{ jU , F ^ 1) , . . . ,  F ( Y S)}, (2)

where Y l , . . .  , Y S are the result boxes after subdividing the leading box in the itera­
tion cycle k, and / 0 := F ( X 0). Another estimator of the global minimum is

fk ■= F ( X k), (3)

where X k is the leading box in the iteration cycle k.



C orollary  2 [6] Assume that the inclusion functions of both the objective func­
tion and the constraint functions are isotone and have the zero convergence property. 
Consider the interval branch-and-bound algorithm that uses the feasibility test (and 
optionally the cutoff and the monotonicity tests) and that selects the next box to be 
subdivided by one of the following rules:

• maximal pup(fk, X )  value (Rule C5),

• maximal u(pup(fk, X ) , —F( X) )  value, or

• minimal pupb(fk, X )  value (Rule C7).

Then both { f k} of (2) and {F (X fe)} of (3) 'may fail to converge to f*.

Properties of the subdivision rules. In Section 3.3.2 of the dissertation I study 
the adaptive multiseetion rule based on the parameter pup( f , X)  [6], The /  values 
are assumed to be generated by (2).

t h eo r em  23 [6] Let us consider an interval B&B algorithm which selects the box 
with the smallest lower bound F ( X)  as the next box to be subdivided (i.e. applies Rule 
Cl). There exist optimization problems (**) for which the inclusion functions of both 
the objective function and the constraint functions are isotone and a-convergent, and 
the following statements are true:

1. An arbitrary large number N(>  0) of consecutive leading boxes selected by the 
algorithm have the properties that: neither of these processed boxes X  contains 
a global minimizer point, and the related pup( f , X)  values are larger than a 
preset P2 < 1.

2. There exists a subsequence of the leading intervals converging to a global min­
imizer point, such that for each element of this subsequence pup( f , X)  < Pi 
holds for a fixed 0 < P\.

C om pu ta tio n a l stud ies
In Section 3.4 of the dissertation I perform a detailed comparative study between the 
earlier and the newly proposed algorithm variants. The following test problem are 
considered:
1. Obnoxious facility location problems.
2. Constrained problems based on a set of standard test functions for bound con­
strained global optimization.
Studying the interval selection strategies. The generated test problems were 
solved by the algorithm variants including rules C1-C8, As a brief eonelusion we can 
state that the new type of methods (C5 to C8) may improve the efficiency of the 
branch and bound algorithm. This improvement can be achieved even in eases when 
the problem is hard to solve and the rules using p (fk, Z) alone are also very efficient.



Moreover, in many eases the hardest problems could be solved only with those al­
gorithms which utilized the constraint information during the interval selection step. 
The improvement is especially considerable for problems in which the optimizers are 
situated close to the border of the feasible set
Studying the adaptive multisection rules. The subdivision rules S1-S5 were 
all examined for both the facility location problems and the constrained versions of 
the standard test problems. As the results show, the adaptive S4 rule proved to 
be slightly better than rule S5, The reason of these -  mainly negative -  results is 
probably the presetting methodology of the Pi and P2 threshold values: for the more 
sophisticated S5 subdivision methods the threshold parameters should be determined 
with more accurate methods,

4 Solving circle packing problem s
In Chapter I am dealing with the problem of finding the optimal packings of con­
gruent circles in a square. In contrast to the recent computer methods, the present 
algorithms (used as computer-assisted optimality proofs) are fully based on interval 
computations. In the bulk of the chapter I discuss the construction of some elements 
of the algorithmic frame. These tools are designed specifically for the considered 
problem class.

P rob lem  definitions
Let n > 2 be a given integer. The commonly used approaches of the particular 
packing problem are the following:

1, Place a number of n equal circles without overlapping into the unit square maxi­
mizing the radius of the circles.

The following approach results in an equivalent optimization problem:

2, Place a number of n points into the unit square maximizing the minimal distance 
between the pairs of points

In the dissertation I study the 2, representation of the problem considering square 
of distances instead of distances. Let the unit square be the set [0, l]2, and denote 
(fx i, 2/1) , , , , ,  (xn, yn)) the set of points to be locate, (In the sequel I denote this set 
briefly by (x,y)  E [0, l]2"), Moreover, let djtj denote the square of distance between 
the points (xi, yf) and (xj, yf). Then the global optimization problem is the following:

max miii|., ( / ;< „ d,r
s.t, 0 < x,. / / , < ! .  i = l , 2 , . . . , n . (4)

The objective function of (4) to be maximized is as below:

f n(x, y) = min (x{ -  aq)2 +  (ip -  yf?  = min di:j.



Prior to the results of the present dissertation the optimal solutions of the eases 
n = 2 , , , , ,  27, 36 were known, A part of the optimality proofs based on computer- 
assisted methods, but those methods used floating point arithmetic.

In tro d u c in g  an  in terval inclusion function
In Section 4,3 I give a non-trivial interval inclusion function of the objective function
(5):

THEOREM 24 [2] Let ( X , T )  c  [0, l]2", and let

Dij = (X, -  X j f  +  ()) -  Yj f ,  for all 1 < i #  j  < n.

Let a := min1<i?y<„ D^, a E R, and b : = min1<i?y<„ D^, b E R. Then the interval 
Fn( X , Y )  := [a,b] encloses the range of f n(x,y)  over the (X,X)  2n-dimensional 
box.

I prove the following important properties of the constructed inclusion function:
-  An evaluation of Fn( X , Y )  requires 0( n2) operations (similarly to the evaluation 
of f n(x,y)).
-  for n = 2 Fn( X , Y )  provides sharp enclosure in both bounds (apart from the 
directed outward roundings of the interval arithmetic implementation); but in the 
ease of n > 3 Fn(X,  X) is sharp only in the lower bound, in the upper bound it may 
result in overestimation;
-  Fn( X , Y )  is inclusion isotone;

-  Fn( X , Y )  is zero convergent.

T he first version of th e  developed algorithm
In Section 4,4 I give an overview on the further specification of the frame algorithm: 

M onotonicity properties.

t h eo r em  25 [2] Let ( X , Y )  C [0, l]2" be an arbitrary 2n-dimensional box. I f  for 
some k, k E {1,2, . . .  ,n} and for all j ( ^  k) either X k < X j, or Dkj > Fn(X,  Y )  
holds, then f n is monotonously decreasing over ( X , T )  in the variable xk. Then X k 
can he -shrinked to \Xk, X k].

The objective function can be tested in a similar way for the monotonous increas­
ing property and for the variables yk.

The method of handling free circles.

D efin itio n  12 Consider the point packing problem (f) for a given n > 2. Consider 
an optimal point packing, i.e. a vector (x,y)  = (aq,, , , ,  xn, y i , . . . ,  yn) for which f n 
is maximal. We call a point pk = {xk, yk), k E {1, , , , ,  n} of this optimal packing to



be a free point, if there exists a half line II with the endpoint pk and there exists a 
positive real number e, such that

f n(x, y) = f n(x i , . . . , x ’k, . . . , x n, y i , . . . , y ’k, . . . , y n) 

for all (x'k,y'k) E H  f~) A e(pk), where A £{pk) denotes the e-neighborhood of pk-

Each free point in an optimal point packing is identified by the center of a free 
circle of the corresponding optimal circle packing. The handling of free circles is 
crucial in the solution of circle packing problems, since they pose a continuum set of 
equivalent global optimizers,

th eo r em  27 (based on) [2] Let (X ,  Y ) C [0, l]2” be an arbitrary 2n-dimensional box. 
I f  for some k, k E {1,2, . . .  ,n} and for all k) the statement Dkj > Fn{ X , Y )  
holds, then for each optimal packing in (X , Y )  the point {xk, yk) of the packing is a 
free point and it can move within (Xk, Yk). Thus, for further investigations on the box 
it is enough to store one point from (Xk,Yk) together with the information ‘(Xk,Yk) 
can contain exclusively free points ’.

The method of active areas. This method played a key role both in the earlier 
theoretical and in the computer-aided optimality proofs. The developed reliable vari­
ants of the method proved to be the most efficient accelerating tests of the present 
algorithms. The essence of the method is the following: Assume that we have a / 0 
lower bound for the maximum of the minimal pairwise distances. Then, from each 
component (Xjt, Yf) of the actual box we can iteratively delete those points, which have 
a distance smaller than / 0 to all points of the remained region of another component.

As a starting point, I represented the remaining region of each component by a 
rectangle in the intermediate steps. Under this condition I developed a basic interval 
elimination process between two rectangles. In order to improve the efficiency of the 
method, in the first algorithm I quantized each rectangle horizontally and vertically 
into cells, and I performed the basic elimination procedure for the relevant rows of 
cells and columns of cells, respectively.
Numerical results for local verification. In the first numerical tests my goal 
was to carry out an interval-based reliable validation of the earlier published real­
type optimal solutions for n = 2 , , , , ,  27, 36, Note that a part of these solutions 
were achieved by computer methods using floating point operations. The width of 
the components of the starting box was set to 0,01, The possible results of the 
verification process are the following:

-  Acceptation: the enclosure of the maximum value contains the published real-type 
maximum, and moreover, an element of £5 encloses the given real-type solution,
-  Rejection: the algorithm terminates with the empty lists £>y and Cs . Then we can 
conclude that in the initial search region there exists no solution having the pre-given 
objective function value.

The introduced algorithm was able to verify (accept) -  with the exception of 
4 hard eases -  the optimality of all the previously known real-type optimizers and



optimum values within 2 hours of running time. As a try, the test set contained a false 
optimum value from an older publication. This packing value was correctly rejected 
by the algorithm.

Numerical results for global verification. The hardest difficulty was the efficient 
handling of such solutions which are equivalent in the geometric sense but which dif­
fer in their numerical representation (e.g, results of index permutations or symmetry 
transformations). The currently known best idea resolving this difficulty is the split­
ting of the square into tiles. All the optimal solutions can be found by processing 
all the tile combinations consisting of n tiles. Both in the earlier proposed and the 
present algorithms the square is divided into k x l identical rectangles.

During the global verification procedures the time limit was set to 4 hours. The 
pre-given optima and optimizers to be cheeked were the same as for the local veri­
fication study. With the exception of 3 eases, for n = 2 , , , , ,  20 the algorithm has 
managed to validate (accept) the correctness of the real-type solutions (within the 
applied tolerance value). In each unsolved ease the main difficulty was to carry out 
the procedure on one particular tile combination.

T he im proved algorithm
As a result of my more extensive study [3, 4] I developed an improved algorithm of 
the basic algorithm of Section 4,4 which is able to solve some open problem instances 
n > 28, n ^  36, This algorithm is introduced in Section 4,5,
A more sophisticated method for handling free circles.
1. Let (X , X) e l 2" include all the remaining boxes after a certain number of iteration 
loops when executing the B&B algorithm. Let /  be the current cutoff value,
2. Assume that there exist machine representable points p ^ , , , ,  ,pkt, Pks £ (Xfc5, W5), 
s e {1,, , ,  , t} within t different components of (X ,X)  such that D(Pks, (Xj, Yj)) > 
F ( X ,  Y )  > f  holds for all s e {1, . . . ,  t} and for all j  ^  ks, j  e {1, , , , ,  n}. Let K  
denote the set of indices {hi , . . .  kt}.
3. Replace the components (X*, 1)) with the point intervals pi for each i e K.  Run 
the B&B algorithm on the resulting (X ', Y' )  box ignoring the step of improving / ,
4. Let (X", Y")  e I2" include all the candidate boxes remained. The output box of 
the procedure is then given by (X*, Y*) for i e K  and (X'J, Y") for j  K.

th eo r em  28 [4] The above procedure is correct in the sense that all the optimal 
solutions in ( X , T )  are also present in the output box.

Improving the method of active areas: eliminating with polygon represen­
tations. Instead of representing the remaining regions by sets of cells, Nurmela and 
Ostergard approximated the remaining sets by polygons in their computer-assisted 
method. The proposed procedure raises several problems when using floating point 
computations. As a solution I introduce the main features of a reliable version of this 
polygon approach using interval computations.

Investigating subsets of tile combinations. Prior to the results of the present 
dissertation, the main problem when solving circle packing problem instances for



ii > 27. a ±  30 was the number of initial tile combinations, (For n = 28, a sequential 
process on those combinations would require about 1000 times more processor time -  
i.e. about several decades, even with non-interval computations -  compared to the ease 
of n = 27.) The idea behind the newly proposed method is that we can utilize the local 
relations between the tiles and eliminate groups of tile combinations together. Let us 
denote a generalized point packing problem instance by P(n,  X i , . . . ,  X n, Yi,, , , ,  Yn) 
where n is the number of points to be located, (Xi,Yi) E I2, i =  1 , . . . n  are the 
components of the starting box, and the objective function of the problem is given by 
(5), The theorem below shows how to apply a result achieved on a 2m-dimensional 
packing problem for a 2n-dimensional problem with n > m > 2,

th eo r em  30 [4] Let n > m  > 2 be integers and let

Prn = P(m, Z u . . . ,  Zm, Wu Wm) = P( m , (Z, W)) ,  and

Pn = P{n, .V,.. . . ,  X n, Y ,  ■■■, Yn) = Pin. (X.  Y) )
be point packing problem instances (Xi,Yi,Zi,Wi E I; X*, 1*, Z*, W) C [0,1]). Run 
the B&B algorithm on Prn using an f  cutoff value in the accelerating devices but 
skipping the step of improving f . Stop after an arbitrary number of iteration steps. 
Let (Z[, . . . ,Z'm, W{ , . . . , W^ )  := (Z' ,W>) be the enclosure of all the elements placed 
on and Cs- Assume that there exists a p invertable, distance-preserving geometric 
transformation satisfying p{Zi) = Xi and = Yit, Vi = 1, , , , ,  m. Then for each
point packing (a?, y) E R2” satisfying (a?, y) E ( X , Y )  and f n(x,y)  > f ,  the statement

(x, y) E . . . ,  <p{Z’J , . . . ,  X n, v{W [ ) , . . . ,  p{W>rrf f  . . . ,  Yn) := (X ', Y ')

also holds.

C orollary  3 [f] Let p be the identity transformation and assume that the B&B 
algorithm terminates with an empty Worklist and with an empty Resultlist, i.e. the 
whole search region (Z, W ) = (Zh . . . ,  Zm, Wlv  . . ,  Wm) = (Xi , . . . ,  Xm, Yi,. . . ,  Ym) 
is eliminated by the accelerating devices using f .  Then (X,X)  does not contain any 
(x,y)  E M2" vectors for which f n(x,y)  > f  holds.

Basic algorithms used in the optimality proofs. I start the optimality proofs 
by finding the feasible tile patterns and their remaining areas on some small subsets 
of the whole set of tiles. Then I process bigger and bigger subsets while using the 
results of the previous steps. Thus, the whole method consists of several phases. The 
two basic procedures are:
-  GrowQ: add tiles from a new column to each element of a set of tile combinations,
-  JoinQ: join the elements ot two sets of tile combinations pairwise.
Numerical results: optimal packing of 28, 29, and 30 circles. The obtained 
results can be summarized as below (n =  28, 29, 30):
-  Apart from symmetric eases, one initial tile combination (more precisely, the re­
maining areas of the particular combination) contains all the global optimal solutions 
of the packing problem of n points,
-  The guaranteed enclosures of the global maximum values are



F*s = [0.2305354936426673,0.2305354936426743], w(F*s) «  7 • ÍO^15,
F*9 = [0.2268829007442089,0.2268829007442240], w(F*9) «  2 • ÍO^14,
F*0 = [0.2245029645310881,0.2245029645310903], w(F*0) «  2 • 10-15.

-  The exact global maximum value differs from the currently best known function 
value by at most w(F*).
-  Apart from symmetric eases, all the global optimizers of the problem of packing 
n points are located in the introduced ( X, Y) *t box. Each component of the result 
boxes are very narrow (with the exception of the components enclosing possibly free 
points).
-  The differences between the volume of the starting and the result boxes are more 
than 711, 764, and 872 orders of magnitudes, respectively.
-  The total computational time was approximately 53, 50, and 20 hours, respectively.
Optimality of the conjectured best structures. A packing structure specifies 
which points are located on the sides of the square, which pairs have minimal distance, 
and which points can move in the particular packing. The vectors corresponding to 
the rigid subset of a packing are denoted by an r superscript. In the dissertation I 
prove the following statements in a numerical way:
-  The system of equations describing the rigid subset of the particular structure has 
exactly one (x ,y ) rn solution over the box (X ,Tr)*,r.

-  For n = 28, 29 the packing (a?, y )rn can be extended by a point which can move in 
the corresponding component of (X , Y")*.
-  (a?, y)rn is the only optimal point packing in (X , Y)*f .
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