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Bevezetés

Ezen összefoglaló tartalmazza a szerző „Quotient and Power methods fór the Graph Colouring 

Problem,, című doktori disszertációjának eredményeit. A szerző kifejlesztett egy általános keret­

rendszert gráfszínezési algoritmusok számára, ahol a hagyományos színezés speciális gráf homo- 

morfizmusokon keresztül került definiálásra Zykov munkássága nyomán [64; 65]. Ezen homomor- 
fizmusok hasznosnak bizonyultak az algoritmus tervezésben (lásd Juhos et al. ([35; 37-43]). Ezen 

összefoglaló az értekezés struktúráját követi, amelyben Az eredmények a kifejlesztett gráfszínezési 
keretrendszernek megfelelően különböző részekre tagolódnak.

A szerző a gráfszínezési folyamatot kvóciens és hatványgráfok segítségével, gráf homomor- 

fizmusokon sorozatával definiálta (lásd Juhos et al. [37; 41]). A szerző Kvóciens és Hatvány 

Módszernek nevezte el az ezen elven alapuló színezési módszereit. Továbbá ezen gráf homo- 

morfizmusokat mátrixok és azokon értelmezett megfelelő műveletek segítségével határozta meg, 

melyet a színezési folyamat Merge Modelljeinek nevezett el [37; 40; 41]. A tárgyalt mátrix műve­

letek, Merge Műveletek egymásutánja hoz létre egy hagyományos értelemben vett színezést. A 

szerző a Merge Modelleken nyugvó stratégiákat, Merge Stratégiákat dolgozott ki [35; 38; 42; 43] 

amelyek lehetséges irányokat határoznak meg egy megoldás felé. Továbbá a szerző megadott 

három általános keretrendszert (Merge Keretrendszert) amelyekbe ezen stratégiák beágyazha­

tok [38; 40]. A keretrendszerek általánosítják a hagyományos szekvenciális színezési sémákat, 
így a már létező algoritmusok ezekbe beágyazhatok, amely azok általánosításához vezet. Egy 

ilyen beágyazás jelentős futási és színezési teljesítménynövekedést eredményezhet. Továbbá a 

keretrendszerek a stratégiákkal karöltve alkotnak konkrét algoritmusokat, Merge Algoritmusokat. 

A szerző több algoritmust is elkészített, amelyek a kísérleti vizsgálatok során felülmúltak több 
standard 'benchmark' algoritmust standard 'benchmark' gráfokon és az ún. 'phase transition' te­

rületen generált 'nehéz' gráfokon is [35; 37-43]. Egy-egy ilyen algoritmus az adott Merge Modell 

Merge Műveleteinek sorozatát generálja az alkalmazott Merge Stratégia vagy Stratégiák szerint, 

amely az eredeti gráfszínezési probléma egy lehetséges megoldását szolgáltatja.

A gráfszínezési problém a

A gráf két véges diszjunkt halmazból álló halmazpár G =  (V, E ), aho I E  C V  x V. k V  halmaz 

elemei a G gráf csúcsai, míg az E  halmaz elemei alkotják G éleit. A g rá f csúcs k-színezés (vagy 

röviden gráf k-színezés) a gráf csúcsaihoz színeket rendel egy k elemű színhalmazból, C-ből. A 

probléma akkor jelentkezik amikor a színezésnél figyelembe kell vennünk az éleket.

D e f in it io n  1 (H e lyes  g rá f  k-színezés) A g rá f G =  (V, E ) egy helyes k-színezése, ha léte­

zik, egy olyan k-színezés, ahol a szomszédos csúcsok különböző színeket kapnak:

c : V  — ■  C  , Vi ■  c(vi) , V(v i ,V j ) e E  ^  c (v i) =  c (v j ) , |C | =  k

D e f in it io n  2 (G rá f  m in im á lis  csúcsszínezése) A g rá f G =  (V, E ) egy minimális csúcs­

színezése egy olyan helyes g rá f x-színezés, ahol x  a legkevesebb szín amely egy lehetséges k- 
színézésben elérhető.
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A x - t  a G gráf k rom a tikus  szám ának nevezzük. A következőkben a gráfszínezési probléma a 

gráf minimum csúcsszínezési problémáját jelenti. Egy helyes színezésre példa az 1. ábrán látható. 

Az l(a ). ábra egy gráfot ábrázol v  G V ,i G {1, 2 , . . . ,  6}  csúcsokkal/csomópontokkal és a köztük

V4

V\ V‘2 V3 V4 V5 Ve

v i ü 1 1 ü 1
v2 1 1
v3 1 1 1 1
v4 ü 1 ü 1
v5 1 1
v6 1 1 1

(b) Szomszédsági mátrix

V4

(c) Egy helyes színezés

1. ábra. Egy gráf és annak egv helyes 3-színezése, amely egyben minimális színezés is.

futó élekkel. Mellette az l(b ) . ábrán a gráf szomszédsági mátrixa található, amely az élek által 

definiált relációt határozza meg1, továbbá a l(c ) . ábra a gráf egy minimum színezését mutatja, 

ahol { v \ , v 4}, { v 2, v6} és { v y v s }  csúcshalmazok alkotják a színosztályokat. A színosztályoknak 
független csúcshalmazoknak2 kell lenniük, ahhoz hogy helyes színezést kapjunk. A ü-ák a l(b ). 

ábrán egy független csúcshalmazt jelölnek, a { v i , v 4} színosztályt.

Számos algoritmus ismert az irodalomban a minimum színezési probléma megoldására. Ezen 

algoritmusok két osztályba sorolhatók: az egzakt algoritmusok, ahol az optimális megoldás ga­

rantált, azonban a megoldásra fordított idő tekintélyes lehet a probléma komplexitásának köszön­

hetően (- amely NP-teljes [45]); és a nem egzakt algoritmusok, azaz az approximációs algorit­

musok, ahol az optimális megoldás nem garantált, de sok esetben jó  közelítő megoldást képesek 

adni belátható időn belül. Az utóbbi tartalmazhat sztochasztikus elemet is. Átfogó összefoglaló 

a következő publikációkban található ezekről a módszerekről: [23; 32; 47; 63]. A gráfszínezési 

probléma megoldható egzakt módon a keresési tér egy szisztematikus bejárásával [15; 16; 34], 

Sajnos ez a módszer hatékonyan nem alkalmazható, mert már kisebb gráfok is hatalmas keresési 
teret eredményezhetnek, így a futási ideje ennek a keresési megoldásnak nagyon megnő. Ezen 

módszer hatékonyságának növelése érdekében számos heurisztikát fejlesztettek ki, hogy egy jó 

kezdeti lehetséges megoldást generáljanak, amely közel van a kívánt optimumhoz [4; 17; 26­

28; 46; 49; 55; 58; 60-62], Majd a generált lehetséges megoldásból kiindulva egy szisztematikus 

keresés jelentősen javíthatja a kezdeti megoldást.

Általában a keresés a generált megoldás környezetét tekinti elsőként, amely egy szomszédsági 

reláció meglétét feltételezi a keresési térben. Ez a megközelítés vezetett a helyi keresési eljá­
rások kifejlődéséhez [1; 8; 10; 23; 29; 31]. Általában ezek az eljárások valamilyen heurisztikát 

alkalmaznak egy új lehetséges megoldás generálására egy már meglévőből, annak környezetében. 
Habár ezek a heurisztikák jelentősen javíthatják a meglévő lehetséges megoldást, általában nem

1A 0-ák pontokkal lettek helyettesítve az áttekinthetőség kedvéért.
2Nincs él a halmaz elemei között.
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V4

2, ábra, Élhozzáadási és esúesösszehúzási lépések egy Zykov-fában. Ugyanazon szín v2 és 
v5-höz való rendelése nem java llo tt, m ivel az nem optim ális színezéshez vezet ezért köztük 
egv él behúzása egv ésszerű lépés. Továbbá ugyanazon szín rendelése a v2 v6 csúcsokhoz 
viszont tám ogatja a m inim ális színezést, ezért ezek összehúzhatok.

szolgáltatják az optimumot, így ezek a közelítő algoritmusok kategóriájába esnek. Manapság 

számos vizsgálat történt a sztochasztikus folyamatok alkalmazására a helyi kereső algoritmusok­

ban, amelyek javíthatják azok hatékonyságát. Egy példa ezen eljárásokra a tabu-keresés [3; 31], 

szimulált hűtés [9; 33] és a hangya kolóniákkal való optimalizálás [5; 12]. A sztochasztikus 

eljárások közül sok a lehetséges megoldások egy populációját tartja számon és hasznosítja. Ilye­

nek az az evolúciós algoritmusok, amelyek alkalmazása népszerű a gráfszínezési algoritmusok 

között [2; 13; 14; 19; 20; 22; 25; 30; 48; 56; 59], A színezési algoritmusok között számos 

egészértékű programozási megközelítéssel is találkozhatunk, ahol az egészértékű változók bizo­

nyos struktúrákat azonosítanak például: független csúcshalmazokat [50]; színeket és csúcsokat 

[11; 51; 53]; aciklikus gráf orientációt [21]. Számos esetben bináris változókról van szó, amelyek 

bináris vektorként összefoghatok. így az optimális megoldás(ok) is egy bináris vektorként áll(nak) 

elő megalkotva az ún. színezési politópot. Ezek a politópok állnak a probléma vizsgálatának a 
középpontjában [6; 24], Számos relaxált verziója létezik az egészértékű feladatoknak, amelyek 

egy közelítését kívánják megadni a politóp egy-egy lapjának [18; 44; 50; 52; 57], Sajnos ezen 

egészértékű feladatok megoldása jelentős időt vehet igénybe, ezért különböző technikákat fejlesz­

tettek ki, hogy a futási sebességét javítsák, ilyen például az oszlopgenerálás módszere a korlátozás 

és szétválasztási módszerrel karöltve [7; 50; 53; 57], Valójában it t  a korlátozás és szétválasztás 

módszer implicit módon Zykov ötletén tartalmazza ([57]). Az elmúlt évszázad közepén Zykov 

összekötetlen csúcsok összehúzását és élhozzáadást alkalmazott gráfokon színhozzárendelés he­

lyett, a színezési problémára. Egy példa erre a 2. ábrán látható. Ezekkel a műveletekkel új 

gráf jön létre mely örökölheti az eredeti gráfszínezési tulajdonságait, mint például a kromatikus 

számát.



4

A disszertációban a szerző Zykov ötletéből kiindulva bevezetett négy különböző modellt (Merge 

Modellt). Ezen modellek hatékonyságát mutatta be elméleti és kísérleti eredményeken keresztül. 

A Merge Modellek az eredeti színezési probléma ekvivalens átfogalmazásai. Három ezeken a 

modelleken nyugvó általános színezési keretrendszert (Merge Keretrendszerek) definiált a szerző 

amelyek általánosításai a hagyományos szekvenciális színezési sémáknak. A modellek létező és új 

színezési algoritmusoknak egy egységes és tömör leírását teszik lehetővé. Amely számos előnnyel 

jár: egységes strukturális összehasonlítás, futási idő csökkenés, színezési teljesítménybeli javulás 

valamint új algoritmikus megközelítések támogatása. A szerző bemutatta a módszer hatékony­

ságát és előnyeit. A szerző megalkothatott számos új (színezési) Merge Stratégiát és Merge 

Algoritmust amelyek hatékonynak bizonyultak az elméleti elemzés és tapasztalati vizsgálatok so­

rán. Továbbá kidolgozott egy általános módszert amellyel általános stratégiák tervezhetők és 

mesterséges intelligenciái eljárások alkalmazhatók a színezési probléma megoldásában.

Kvóciens és H atvány M ódszer

A szerző a gráfszínezési folyamatot kvóciens és hatványgráfok segítségével, gráf homomorfizmu- 

sokon sorozatával definiálta (lásd Juhos et al. [37; 41]), amint azok a 3. ábrán láthatók. A 

homomorfizmusok az azonos színű csúcsok következetes összehúzásából vagy csoportba foglalá­
sából származnak. A szerző Kvóciens és Hatvány Módszernek nevezte el az ezen elven alapuló 

színezési módszereit. Ezeknek célja egy olyan homomorfizmus megtalálása amely az eredeti grá­

fo t3 egy megfelelő teljes gráfba vagy azzal homomorf gráfba képezi. Az így kapott homomorfizmus 

meghatároz egy színezést az eredeti gráfra. A szekvenciális színezési eljárások támogatása végett 

a tekintett homomorfizmus további homomorfizmusok egymásutánjaként, kompozíciójaként kerül 

előállításra, megadva egy ún. közbenső homomorfizmus sorozatot. Ezen homomorfizmusok hasz­

nos közbenső gráf struktúrákat hoznak létre, amelyek vizsgálata hatékony színezési eljárásokat 

eredményeztek valamint a színezési folyamatba egy alternatív betekintést nyújtanak (lásd Juhos 

et ai. [37-43]).

Merge Modellek

Gráf homomorfizmusok definiálják a kapcsolatot az eredeti és egy kvóciens vagy hatvány grá f/m ulti­

gráf között. A szerző definiált négy mátrix műveletet, amelyeket Merge Műveleteknek, vagy 

röviden Merge-nek nevezett el (lásd Juhos et al. [37; 41]). Egy Merge Művelet az eredeti gráf 

szomszédsági mátrixát képezi le egy mátrixba amely egy kvóciens gráf/multigráfot vagy hatvány 

gráf/multigráfot határoz meg, ezeket a szerző Bináris/lnteger Merge Square-nek (A /A )  és Bi- 
náris/lnteger Merge Table-nek (T /T ) ,  vagy összefoglaló nevükön Merge Mátrixoknak nevezett 

el [37; 41]. Általánosságban egy Merge Mátrixot M  fog a következőkben jelölni. Egymást kö­

vető Merge Műveletek sorozata hoz létre egy hagyományos értelemben vett színezést. A Merge

3Vagy egy ekvivalens átalakítását.
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feltétele4 M j  =  0, ami azt jelenti, hogy M* és M j sorok (és oszlopok is, ha szükséges) Merge- 

Ihetők, amint az l(b )  ábra mutatja. Az utolsó lehetséges Merge-vel létrejövő záró homomorf kép 

(Merge Mátrix) sorai határozzák meg a színezés egy lehetséges megoldását. Az illető (Merge-elt) 
sorok független csúcshalmazokhoz tartoznak, ezek határozzák meg a színosztályokat. A 3. ábra 

példákat mutat a Merge Műveletekre, míg az 1. táblázat definiálja a műveleteket sor és mát­

rix műveletek segítségével is. Továbbá ezen táblázat összefüggéseket tartalmaz a Bináris Merge 
Mátrixok A  és T  és Integer párjaik A  és T  között.

S o r  m ű v e l e t e k k e l M á t r ix  m ű v e l e t e k k e l

l f +1J =  a +  b T ÍÍ+11 =  01 .7 Tlí+Ü =  ( I  +  W )  Ti*]

T f +l] =  a V b t | í+11 =  0T 
T [t+i] =  T [t+i] _  a  o b T lt+i] =  0 t

h l  j

J'lt+l] _  rp[t\ y  p j i [ t \  _  MT[t]

T [t+1] =  T [t+1] _  ^  .(a  0  b ) ( / ,  0  I i)

A f +11 =  a +  b A f +11 =  0T 
A [í+ 1] =  aT +  b T a V 1 =  0

A ^+b =  ( I  +  W ) A ® ( I  +  W ) T

A f + i \  =  a v  b A f +li =  0T 
A f +1] =  A f +1] -  a o b A f l] =  0T 
A [í+ 1] =  ( 4 í+1])t  A ^ 1] =  0

^[í+i] =  ^[*] v  ( p A W p T )  _  (M A W M T)

1. táblázat. A  különböző Merge Műveletek meghatározásai több módon. A a és b az M  
Merge M á tr ix  z-edik és j-e d ik  Merge-lhető sorát je lö lik . A  felső index a í-ed ik Merge lépést 
je len ti a és b sorok Merge-e esetén; a P  =  I  ® I j , R =  I j  ® I j , W  =  P  — R, ahol I  az Z-edik 
sora az egységmátrixnak I -nek. M j az M  mátrix Z-edik sora, míg M  ¿az z-edik oszlopot 
je lö li. A  o a Hadamard-Sehur szorzatot, valam int ® a diadikus szorzatot je lö li.

A Merge Table-k az eredeti gráf csúcsai és a szomszédos színosztályok közötti kapcsolatot írják 

le, azaz hogy van-e él közöttük vagy sincs. Alapvetően az eredeti gráf szomszédsági mátrixa hoz­

zárendelhető egy színosztályhoz (amely egy hatvány gráf csúcsa), valamint az oszlopok az eredeti 
gráf csúcsaihoz. A korábbiak szerint két altípust különböztetünk meg, nevezetesen a súlyozottat 

(Integer Merge Table Model/hatvány multigráf) és a súlyozatlant (Bináris Merge Table Mo- 

del/hatvány gráf), annak megfelelően, hogy a Merge folyamat során keletkező többszörös éleket 

figyelembe vesszük vagy sem. Ezek két alapvető sor műveletetet határoznak meg az összeadás és 

az elemenkénti bináris OR műveletet. Ha csak a sorokra alkalmazzuk őket, akkor hatvány multig- 
ráfokat/gráfokat, azaz Integer/Bináris Merge Table-ket kapunk, ha az oszlopokra is alkalmazzuk 

egyben akkor kvóciens multigráfokat/gráfokat, azaz Integer/Bináris Merge Square-eket kapunk. 

A Merge Square-knél mind a sorok, mind az oszlopok színosztályokat azonosítanak és azok kö­

zötti viszonyokat írnak le, azaz hogy van-e él közöttük vagy sincs. Minden Merge Mátrix közös 

jellemzője, hogy egy sor az eredeti gráf egy független csúcshalmazát határozza meg. Itt jegyezzük 

meg, hogy a kezdeti Merge Mátrix a szomszédsági mátrix, melynek sorai a csúcsokat azonosítják. 
Emlékezzünk, a színosztályok független csúcshalmazok, valamint a csúcsok egy elemű független 

csúcshalmazokat határoznak meg. A Merge Műveletek hagyományos értelemben ezek unióját

4Mjj az (i, j)-edik mátrixelem.
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(a) Hatvány multigráf G //{vi ’V4}

(c) Hatvány gráf G/{vi’V4}

V3

V2

V3

V2
(e) Kvóciens multigráf G /  {v1; v4}

(g) Kvóciens gráf G / { v 1, v 4}

V3

V2

Vl V2 V3 V4 V5 V6

{ r í ,  r4} 0 1 2 0 1 1
r2 1 ■ 1
rs 1 1 ■ 1 ■ 1
r5 1 ■ 1
r6 1 ■ 1 ■ 1

(b) Integer Merge Table. Az r 4 és r 2 sorok össze­
adódtak.

Vl V2 Vs Vs Ve

{ r í , r 4 } 0 1 1 0 1 1
r2 1 1
rs 1 1 1 1
r5 1 1
r6 1 1 1

(d) Binary Merge Table. Az rí éf! r 2 sorokon elemen-
kénti OR művelet lett végrehajtva.

{m , m } V2 Vs Vs Vs

{ r í , r 4 } 0 1 2 1 1
r2 1 1
rs 2 1 1
r5 1 1
r6 1 1 1

(f) Integer Merge Square. Az r 4 és r2 sorok és v1 és
v4 oszlopok összeadódtak.

{ m , m } V2 Vs Vs Vs

{ r í , r 4 } 0 1 1 1 1
r2 1 1
rs 1 1 1
r5 1 1
r6 1 1 1

(h) Binary Merge Square. Az r 4 és r 2 sorokon és v 4 
és v4 oszlopokon elemenkénti OR művelet lett végre­
hajtva.

3. ábra. Különböző Merge Műveletek eredményei.
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jelentik. Ezen modelljét a színezésnek a szerző Merge Modellnek nevezte el. A 4. ábra a Merge 

Mátrixok különböző struktúráit/ részstruktúráit mutatja utalva a megfelelő gráfra/részgráfra. A

4. ábra. Az eredeti gráf és egy rész színezése a kezdeti Merge M átrixszal, a szomszédsági 
mátrixszal; egy a színezésnek megfelelő hatvány m u ltig rá f és a színezett csúcsokhoz tartózó 
Integer Merge Table részmátrixszal; egy a színezésnek megfelelő kvóciens m u ltig rá f és a színe­
zett csúcsokhoz tartózó Integer Merge Square részmátrix. A  segédstruktúrák a részmátrixok 
oldalain helyezkednek el. Ezek összegzik vagy számolják a nem-zéró elemeket a sorokban és 
az oszlopokban. A  ^  bal sorösszeg az eredeti gráfban a megfelelő csúcsok fokszám összegét 
adja; a p.r jobb sorösszeg egy színosztály szomszédjainak a számát adja; a ^ t a szomszédos 
színezett csúcsok számát adja; valam int y b a szomszédos színek számát m utatja.

modell támogatja a párhuzamos szoftver és hardver implementációt. Egy szekvenciális színezési 

algoritmus amely ezen modellre épül jelentős teljesítménybeli javulást könyvelhet el. A szerző 

ezen javulást elméletileg és tapasztalatilag is alátámasztotta (lásd Juhos et al. [40]) valamint 

hatékony új színezési eljárásokat dolgozott ki ezen modellek segítségével [35; 38-40; 42; 43].

Merge K eretrendszerek

A Merge Modellek a gráfszínezést mátrix reprezentáció és speciális műveletek útján definiálják. 

A szerző kidolgozott három általános keretrendszert amelyek absztrakt színezési algoritmusokat 

határoznak meg (lásd Juhos et al. [41; 42]). Ezen absztrakciók az általánosításai a tradicionális 

színezési sémáknak. A Merge Műveletek helyettesítik a hagyományos értelemben vett színe­

zést. A Merge Modellekben eltűnik a különbség a szín és a csúcs kiválasztási stratégiák között. 

Elegendő egy általános sorválasztási stratégiát meghatározni, amely alkalmas színezett vagy szí­

nezetlent sorok kiválasztására is, ha a tradicionális színezési sémákat akarjuk követni. Azonban 

it t  a színek csak jelzés értékűek, azt jelzik, hogy egy sor érintett volt-e már a Merge Műveletben. 
Attól függően, hogy milyen sorrendben választjuk ki a különböző állapotú (színezett/színezetlen)
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sorokat kaphatunk két eltérő keretrendszert: vagy először egy színezetlen (Uncoloured) sort vá­

lasztunk, majd egy színezettet (Coloured) a Merge Művelethez (UC Merge Keretrendszer) vagy 

fordítva (CU Merge Keretrendszer). Ezen keretrendszerek általánosításai a hagyományos színe- 

zési sémának (lásd Juhos et al. [41]). Ezen keretrendszerek pszeudokódját a 5. ábra ismerteti.

A choose-unc és choose-col eljárás/kiválasztási stratégiák nem pontosan definiáltak, absztrakt

UC M erge K eretrendszer(A szomszédsági mátrix )
1 M  ^  A
2 repeat
3 u ^  argchoose-unCi{M“ rac} //N em  színezett sor (index) választás.
4 c ^  arg choose-cob {Mi?01} //Színezett sor (index) válasz tás a ahol M uc =  0
5 M  ^  merge(M, {u, c}) / / A z « s c  sorok/oszlopok Merge-elése. b
6 u n t il M unc üres
7 re tu rn  M

CU M erge Keretrendszer^  szomszédsági mátrix )
1 M  ^  A
2 repeat
3 c ^ - argchoose-coli {M ico1} //Színezett sor (index) választás.
4 u ^-  argchoose-unci {M iunc} //N em  Színezett sor (index) válásztás c, ahol M cu
5 M ^  merge(M, {u, c}) / / A z « s c  sorok/oszlopok Merge-elése.
6 u n t il M unc üres
7 re tu rn  M

0

°Muc =  Mcu =  0 a Merge feltétel, azaz, hogy nincs él az adott független csúcshalmazok között.
6 A Merge Square-eknél, az oszlopok is részt vesznek a Merge Műveletben.
cMcu =  Muc =  0 a Merge feltétel, azaz, hogy nincs él az adott független csúcshalmazok között.

5. ábra. Az UC és CU Merge Keretrendszer

CC Merge Keretrendszer(A szomszédsági mátrix )
1 M  ^  A
2 repeat
3 {i, j }  ^  arg choosep j  } {Mi ,  M j  : i = j }  / /K é t sor (index) választás a a , ahol M j  = 0
4 M  ^  merge(M, {i, j } ) / /A z  i és j  sorok/oszlopok Merge-elése.
5 u n t il M  nem Merge-lhető
6 re tu rn  M

°Mjj =  Mji  =  0 a merge feltétel, azaz, hogy nincs él az adott független csúcshalmazok között.

6. ábra. A CC Merge Keretrendszer

stratégiák. Ezek helyettesíthetők konkrét választási stratégiákkal amelyek a színezett M coi és 
nem színezett M unc rész-Merge-Mátrixokat használják. Ezen mátrixok tartalmazzák a színezett 

M /01 és nem színezett M 'unc sorait az eredeti Merge Mátrixnak. A 4. ábra példákat mutat a szí­
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nezett rész-Merge-Mátrixokra. A choose-unc eljárás kiválaszt egy színezetten sort/csúcsot, míg 

a choose-col egy színezett sort/'színosztályt' választ vagy egy üres sort képez a színezett rész- 

Merge-Mátrixokban, ami az egy operandusú Merge-t támogatja, ezzel nyitva egy egy elemű új 

színosztályt. Valójában nem szükséges megkülönböztetni a színezett és színezetlen státuszokat, 

egy közös kiválasztási stratégia a choose választhatna tetszőleges két sort egy Merge Mátrixból, 

hogy végrehajtsa rajtuk a Merge Műveletet. Ez a megközelítés a CC Merge Keretrendszerben lett 

definiálva (lásd Juhos et al. [37]), melynek pszeudokódját az 6. ábra mutatja. Egy sor a Merge 

Mátrixban egy színosztályt azonosít, azaz független csúcshalmazt. Hagyományos értelemben a 
CC Merge Keretrendszerben két tetszőleges színosztályt/független csúcshalmazt választunk majd 

ezek unióját képezzük. Míg az UC és CU Merge Keretrendszerekben a választott független csúcs­

halmazok közül az egyik mindig egyelemű, ezel a színezettlen csúcsok, amelyeket a színezettlen 

sorok azonosítanak. A CC Merge Keretrendszer a legáltalánosabb, habár ez lefedi az UC és 

CU keretrendszereket, azok külön definíciója szükséges az algoritmusok egyszerűbb rendszerezése 

miatt, annál is inkább, mert a tradicionális színezési sémák ezek valamelyikébe illenek. Ezen 

keretrendszerek az új színezési modellel támogatják az egységes algoritmus analízist (lásd Juhos 

et a!. [38; 40; 42; 43]).

A szerző bemutatta, hogy egy színezési algoritmus futási teljesítménye javul egy megfelelő 

Merge eretrendszerbe ágyazzuk egy megfelelő Merge Modellt alkalmazva. Anélkül, hogy az algo­

ritmus lépéseit megváltoztatnák a Merge Modellbeli reprezentáció számítási teljesítménybeli igény 

csökkentést okoz. Eiben és van Hemert et al. rámutattak hogy az élek vizsgálata kulcsfontosságú 

faktor a legtöbb színezési algoritmus futása tekintetében [19; 59]. A tradicionális sémák esetén 

amikor egy csúcsot szeretnénk színezni, akkor két választásunk van az élvizsgálatokra amelyel a 

helyes színezést biztosítjuk: a színezett csúcsokat vesszük számba ( A coi), vagy az színezendő 

csúcs szomszédait vesszük számba (A neigh). A következőkben láthatjuk, hogy az élvizsgálatok 

jelentős mértékben csökkenthetők, ha alkalmazzuk a Merge Modelleket (A mm).

C o ro l la ry  1 ([40 ]) Ha adott egy véletlen g rá f Gnp f ixp élvalószínűséggel és adott egy színezés! 

algoritmus A , akkor a következőkben alakul az élvizsgálatok száma # (.).'

1. Színezett csúcsok vizsgálata esetén: # ( A C0/) =  O (n 2)

2. Szomszédok vizsgálata esetén: # ( A neigh) =  O (n 2)

3. Merge-lt sorok/színosztályok esetén: # (A n m ) <  ö  { )

A fenti tétel az aszimptotikus viselkedést mutatja, azonban megvizsgálhatjuk a legrosszabb esetet 

is.

C o ro l la ry  2 ([40 ]) Legyen G egy tetszőleges g rá f ekkor az alábbiak érvényesek

1. # ( A mm) S # (A coI)

2. # ( A  mm) S # (A neigh)
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Mindhárom keretrendszer egy egységes szerkezetet tükröz. Az algoritmusok ezen keretrendsze­

rekben Merge Mátrix sorok sorozatos kiválasztását végzik, majd végrehajtanak rajtuk egy Merge 

Műveletet, mely eredményeképpen végül előáll egy színezés. Egyik általános keretrendszernek 

sincs konkrét sorkiválasztási stratégiája. A keretrendszerek konkrét kiválasztási stratégiákkal al­

kotnak algoritmusokat, Merge Algoritmusokat.

Merge Stratégiák

Ahhoz, hogy egy konkrét algoritmust kapjunk, az algoritmus lépéseit definiálni kell, azaz itt 

Merge Műveletek egy sorozatát kell megadni. Egy Merge Művelet két sort/oszlopot vesz az ak­

tuális Merge Mátrixból és egy újabb Merge Mátrixot képez, ha a Merge feltétel engedi. Merge-k 

ismételt alkalmazása elvezet egy záró Merge Mátrixhoz, ahol további Merge nem lehetséges. A 

Merge-ek sorozata alapvető befolyással bír a lehetséges megoldás jósága tekintetében, ez hatá­

rozza meg a használt színek számát, amely egybeesik a záró mátrix sorainak számával5. A szerző 

több Merge Stratégiát dolgozott ki, hogy hatékony Merge sorozatot állítson elő [35; 37-43]. Ezen 
stratégiák hasznosnak bizonyultak az elméleti és kísérleti elemzés folyamán is. Az új probléma 

megközelítés új stratégiák kialakítására ad lehetőséget, amint alább láthatjuk. Az egyszerűség 
kedvéért a felsorolt stratégiák Bináris Merge Modelleket feltételeznek, habár Integer megfelelőjük 

is tárgyalásra került a disszertációban, ahol az Integer Merge Modellek erényei külön kerültek tár­

gyalásra [40], néhányat említve belőlük: támogatják a visszalépést (backtracking) és a másodlagos 

döntéshozatalt (tie breaking), ha az elsődleges stratégia több sort is kiválasztana Merge-elésre. 
A következő stratégiák sor-pár kiválasztási stratégiák, azaz a legáltalánosabb keretrendszerhez, 

a CC Merge Keretrendszerhez alkalmas választási eljárások, de az UC es CU Keretrendszerekhez 

is használhatók. Legyen a sor-pár kiválasztás stratégia alapja az X  mátrix. A mátrix X j  eleme 

legyen arányos az M i és M j sorok kiválasztási valószínűségével egy algoritmus minden lépésé­

ben6. A sor-pár kiválasztási stratégia válassza a következő két sort { i , j }  =  a rg m a x j X j .  A 

következő stratégiák meghatározzák X -e t egy tetszőleges Merge Mátrixra, így egy algoritmus 
minden lépését definiálják.

A leghosszabb Merge sorozat. Mivel a Merge Mátrix sorok M i -k színosztályokat azonosítanak. 

Ennélfogva a cél a sorok számának csökkentése. Ezt a leghosszabb Merge sorozattal létrehozásá­
val érhetjük el, mivel a sorok száma minden lépésben eggyel csökken. Ennek érdekében a szerző 

bevezetett két stratégiát (lásd Juhos et al. [38]). A Dót Product Stratégia a nem-zéró elemek 
alakulását követi nyomon a Merge-k során. Megkísérli azok számát minimálisan tartani, mivel 

azok akadályozzák a Merge-eket, így a stratégia alapja

X i j  =  (M i, M j ) [M i j  =  0] (1)

ahol [ M j  =  0] a Kronecker delta függvény, mely [x =  x] :=  1, egyébként 0 (ez magába foglalja

5Emellett, a Merge Table-kban a zéró elemek a színosztályok elemeit azonosítják egy optimális megoldás 
esetén, ha színezés szempontjából jelentéktelen alacsony fokszámú csúcsok {v : d(v) < x} el lettek távolítva.

6X minden lépésben változhat.
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a Merge feltételt) M i é s M j  a Védik és j-ed ik  sor egy Bináris Merge Mátrixban7. Egy A  Bináris 

Merge Square-re, ez az alábbiak szerint írható

X  =  A A t  o a  (2)

Bár a nem-zéró elemek meggátolhatják a Merge Műveleteket, a zéró elemek segítenek, támogatják 

azokat. így a Cosine Stratégia figyelembe veszi mindkettő alakulását a Merge-k során és annak 

megfelelően alakítja a sor kiválasztásokat, az alábbiak szerint

* {M i  , M j  ) rargmaxXy =  argmax [MtJ = OJ
i,j i,j |M i  | |M j |

arg max ,.  ̂ ,, , . r  ,. 
l ,j \\Mi\ \ ||M jH

[M i j  =  0] (3)

Párhuzamos sorok. A Cosine Stratégia előnyben részesíti a párhuzamos sorokat a Merge 

Mátrixokban. Ez ésszerű választás azért is mert a szomszédsági mátrix sorai amelyek azonos 
színosztályhoz tartoznak egy optimális színezésben majdnem párhuzamosak. A Merge-k során a 

keletkező Merge Square Mátrixokban ez a párhuzamos tulajdonság egyre karakteresebbé válik. A 

Merge Square-ek ésszerű módosításai Karger et al. [44] munkássága nyomán további támogatást 

nyújt a Cosine stratégia számára. Felhasználva ezt az szerző definiálta a 'Zykov-fa és Lovász- 

theta' stratégiát (lásd Juhos et. al. [35; 43])

Szín hasonlóság. Valójában a Zykov-fa és Lovász-theta stratégia a csúcsok szín hasonlósá­
gának becslésén alapszik. A szomszédsági mátrix egy szín különbözőségi relációt határoz meg, 

mivel a csúcsok amelyek (él-)relációban vannak nem színezhetők azonosan. Ennek ellenkezője a 

színezési reláció. Egy színezés megadható egy szín hasonlósági reláció meghatározásával, it t  csak 

az azonosan színezett csúcsok állnak relációban. A reláció egy { 0 , 1 } - mátrixszal kifejezhető, ez 

a színezési mátrix. Ez megadja, hogy két csúcs azonos színű vagy különböző. Bár az optimális 

színezések mátrixa is megadható eképpen, ezekre nem támaszkodhatunk, mert ezek alkotják a 

feladat megoldását. Noha ezek nem ismertek, az átlaguk közelíthető egy szemi-definit program 

(lásd Karger et al. [44]) megoldásával amely a Lovász-theta-t is szolgáltatja eredményül 6:

6 =  m in { t : Z  V 0, zu =  t  — 1, ze =  —1 Ve £ E }  (4)

így egy közelített szín hasonlósági relációt kapunk. Ez egy Z opt valós értékű mátrixszal írható le, 

amely egy megoldása az Eq. 4-nek. Legyen X  az alábbiak szerint származtatva

X  =  (Z opt +  1) O (1 — I )

ahol I  az egységmátrix. A legnagyobb és legkisebb elemei X-nek fontos információt hordoznak. 
A szerző ezen információkat valamint Zykov munkásságát felhasználva (lásd [64; 65]) elkészítette 

a 'Zykov-fa és Lovász-theta' stratégiát [35; 43]. Ahol egy kvóciens gráf csúcsai összekötendők 

(a rgm in i;j { X j  : X i j- <  0 } csúcsok) vagy Merge-lendők (argm axi;j- X j  csúcsok) a kicsi illetve 

nagy közelített hasonlósági értékeknek megfelelően (lásd 2. ábra). Az összekötési (él hozzá-

7Bináris Merge Mátrixok esetén [Mij =0] =  (1 — M i j ).
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adási) és Merge Műveletek során a hasonlóság egyre karakterisztikusabbá válik, támogatva ezzel 

az egyre értékesebb sor kiválasztásokat. Az algoritmus több él ( { í j  : X j  <  0} élek) együt­

tes hozzáadásával vagy több Merge művelet (a { { i ,  j }  : X j  >  0.50} csúcsokon) elvégzésével 

felgyorsítható, mivel noha a szemi-definit probléma Eq. 4 polinomiális időben megoldható, a 
gyakorlatban azonban ez időigényes.

Norma minimalizálás az eredményben. A Dót Product Stratégia azt a két sort M r és M s vá­

lasztja ki Merge-elésre, amelyeknek maximális a skaláris szorzatuk { r ,  s} =  argm axi;j  (Mi ,  M j }. 

Ez az eredmény Merge Mátrixban az elemenkénti 1—norma8 minimalizálását eredményezi, mivel

|M / r s | =  |M | — m axgj (M i, M j} =  |M | — (M r , Ms}, így

arg ( | M | — max (M i , M j } )  = a rg m in ( |M | — (M i , M j }) =  a rgm in  |M /i?-1 (5)
V i,j )  i,j i,j

A záró Merge Mátrix, ami egy optimális megoldáshoz tartozik, rendelkezik a legkisebb elemenkénti 

mátrixnormával az összes lehetséges záró mátrix közül. Emiatt az elemenkénti norma minimali­

zálása ésszerű stratégia. Továbbá egy optimális zárómátrixnál a származtatott mátrixnormák is 

minimálisak. Ez a megfigyelés vezetett a szerző legnagyobb norma csökkentés stratégiájához (lásd 

Juhos et al. [42]). Speciális esetben ez a Spektrálnorma minimalizálási stratégiához vezet, amely 

a legkisebb a származtatott normák között és ennélfogva jó  karakterizációja egy mátrixnak. A 

szerző a spektrálnorma minimalizálási stratégiát elemezte, amely hatékonynak bizonyult az elem­

zések során. Mivel a spektrálnorma a származtatott 2-normávaI egyezik, ezért ezen stratégia 

alapja a következő

X \\mU\2[Mij °] l^3
0 i  =  j

(6)

A Spektrálnorma Stratégia próba Merge-ket kell, hogy végezzen, ahol az eredmény mátrix nor­

mája határozza meg a kiválasztási stratégiát. Ez számításigényes feladat. Merikoski és Kumar 

megadott több hatékony spektrálnorma közelítési formulát. (lásd [54]). Legyen M  =  A  egy 

Binary Merge Square ekkor egy közelítés

A / i j
T!r= 1 <(A / i j ) r , e ) 2

(7)

ahol l a sorok száma az A / j  'próba' Merge Mátrixban. Felhasználva ezen formuIá(ka)t a szerző 

adaptálta a Spektrálnorma stratégiát és közelített Spektrálnorma Stratégiákat vezetett be (lásd 

Juhos et al. [42]). A közelítéssel lehetőség nyílik a választási stratégia közvetlen meghatározására

8Valójában az összes elemenkénti norma minimalizálását.
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az aktuális Merge Mátrixból próba Merge-ek nélkül:

( (A / i j e) =  {A ó e) +  {Aj >e) -  {Ai, A j )
{ {A / í j  )j , e) =  0
( (A / i j  ) r , e) =  {A r , e) -  1 r  6 Î
<{A / i j )r, e ) =  {Ar , e) r £  Î u  { i , j }

ahol Î  egy index halmaz a A i és A j sorok közös egyeseinek pozíciójával. így az Eq. 7 direktben 

számítható az aktuális Merge Mátrixból ’próba’ Merge-k nélkül. Továbbá a közelítő formula 

rámutat a Dót Product Stratégiával való hasonlóságra. Az Eq. 7 egy hatékony stratégiát alkot 

egy T  Bináris Merge Table-val is, de it t  a direkt számításban a harmadik sora az Eq. 8-nak 

másként alakul: {{T /ij ) r , e) =  {Tr , e). Habár, ahhoz hogy az eredeti (közelítő) Spektrálnorma 

Stratégiát visszakapjunk Binary Merge Table-ra az Eq. 79, a T / ij T j j  szimmetrikus mátrixon kell, 

hogy végbemenjen. Ekkor a T / j  'próba' mátrix spektrálnorma négyzetét vagy annak közelítését 

kapjuk vissza, amely szintén alkalmas a stratégia megvalósítására, valamint ez esetben is fennáll 

a direkt kalkuláció lehetősége, a próba Merge-k és mátrixok elhagyása mellett.

M átrix tulajdonságok -  Merge Útvonal. A szerző bevezette a Merge Path-ok fogalmát [42], 
A Merge-k nyomán a mátrixok tulajdonságai követhetők. A kívánt mátrix tulajdonságokból (pl. 

sajátértékek) alkossunk egy tulajdonságvektort. Képezzék ezek a vektorok az alapját a kiválasztási 

stratégiáknak (m int például a legnagyobb saját vagy szinguláris érték, azaz a spektrálnorma). Az 

egymást követő tulajdonságvektorok egy útvonalat, a Merge útvonalat határoznak meg. Az 

útvonal elemei összefüggésben vannak a színezés lépéseivel az útvonal vége pedig a színezés 

jóságával, amint azt a 7(a )). ábra is mutatja. Az ideális útvonal amely optimális színezéshez

(a) Legnagyobb spektrálnorma csökkentés. A 
görbék vége meg lett hosszabbítva a könnyebb 
összehasonlíthatóság miatt (vízszintes vonalak).

(12 .2, 12 .4 , 121 . 2)

(b) Egy 3D Merge Útvonal, amely a három legnagyobb 
sajátérték útját mutatja a Merge-ek során.

7. ábra. A  sajátértékek alakulása a Merge-k során. A  tek in te tt gráf 2 0 - kromatikus, egyen­
lően partic ioná lt, 200 csúcsú, 0.64 élsűrűséggel amely az ún, ’phase trans ition ’ terü let köze­
pén helyezkedik el. A  spektrálnorma értéke a záró B ináris Merge Square esetén x  — 1 =  19, 
ha az optim um ot elértük, egyébként ez nagyobb.

BVagy az eredeti spektrálnorma számítás.
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vezethet nem ismert, mert a feladat egy ilyen útvonal megtalálása. Az optimális útvonal kezdő és 

a végpontjai általában ismertek, a szerző bevezetett egy általános stratégiát amely az optimális 

Merge Útvonal közelítésén alapszik (lásd Juhos et al. [42]) felhasználva egy előzetes tudást. Az 

előzetes tudás megszerzéséhez a szerző vázolt egy koncepciót a Merge Útvonal intelligens tanulási 

és klaszterezési eljárásokkal való ötvözésére (Juhos et al. [36] alapján).

Kiterjesztett heurisztikák és meta-heurisztikák. A szerző a nem Merge alapú színezési straté­

giák egy Merge kiterjesztését határozta meg, az illető stratégiák egy megfelelő Merge Keretrend­

szerbe való beágyazásával, amelyek jelentős színezési teljesítmény javulást okoztak (lásd Juhos 

et al. [38]). A kiterjesztet stratégiák teljesítményének elméleti és tapasztalati vizsgálata javulást 

m utatott az eredetihez képest. A kiterjesztés a Bináris Merge Square-ek példáján egyszerűen nyo­

mon követhető, habár általában a kiterjesztés a többi Merge Modellben is érvényes. Egy Bináris 

Merge Square a szomszédsági mátrixa egy kvóciens gráfnak, amely egy egyszerű gráf az eredeti 

gráfhoz hasonlóan. így egy stratégia amely az eredeti gráf szomszédsági mátrixán működik, az 

egy Merge Square Modellel is képes együttműködni. Ez lehetőséget biztosít egy dinamikus fe­

lülvizsgálati eljárásra amely során minden Merge Művelet után, a stratégia képes előző döntéseit 
megváltoztatni, azon új információk alapján amely a keletkező Merge Mátrixban elérhető.

A Merge Modellek strukturális jellemzői támogatást nyújtanak meta-heurisztikák tervezéséhez 

is (lásd Juhos et al. [37]). A szerző gráfszínezési evolúciós algoritmusok számára definiált a Merge 

Table modellek segítségével egy finom ított fitnesz függvényt a hagyományosan alkalmazott fitnesz 

javításaként. Melynek eredményeként egy simább optimalizálási felületet kapunk, növelve az 

optimalizálás hatékonyságát. A ( M (n) jelölje a nem-zéró elemek számát a záró Merge Table­

ben (lásd 4. ábra), az új (-fitness függvény ekkor f  (n) =  (kM (n) — x)ZM (n), ahoI M ( n )  az 

a záró Merge Table amely a n  permutációhoz és egy mohó színezéshez tartozik. Ez követi 

az elemenkénti norma optimalizálási stratégiát a Bináris Merge Table-ben (lásd Dót Product 

Stratégia). Továbbá a szerző egy mutáció operátort is definiált amely a színezésben a Merge 
Modellek alapján a problémás/nehezen színezhető csúcsokat előreveszi a színezési folyamatban.

Merge Algoritmusok

A szerző kombinálta a Merge Stratégiáit a különböző Merge Keretrendszereivel valamint ele­

mezte ezek teljesítményét (lásd Juhos et al. [35; 37-43]). Az így keletkezett algoritmusok össze­

hasonlításra kerültek standard 'benchmark' eljárásokkal számos 'benchmark' gráfon. A kísérleti 
eredmények igazolták a szerző algoritmusainak hatékonyságát, melyek általában felülmúlták a 

'benchmark' eljárásokat különösképpen az ún. 'phase transition' területen ahol az igazán ne­

héz problémák találhatók. Néhány eredmény a kiterjedt vizsgálatból megtalálható a 8. ábrán, 

ahol az új Merge Stratégiák különböző Merge Keretrendszerekbe ágyazva kerültek összehasonlí­
tásra standard 'benchmark' eljárásokkal. Az ábrákon az algoritmusok jelölései követik a Merge 

Keretrendszerek UC, CU és CC jelöléseit. Az UC Merge Keretrendszerben az UCC^Ott-m c  -¡e~ 
lölést használva choose — col jelöli a színezett sor amely elsőként kerül kiválasztásra, míg a 

choose — unc jelöli a rákövetkező színezett sor kiválasztási stratégiát. Hasonlóképpen van ez
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a CU Merge Keretrendszerben is, csak CU^OSe-COT jelöléssel. Továbbá a CC Merge Keret­
rendszerben a C C  — CHOOSE, azonosításban a CHOOSE jelöli az egyetlen sor-pár kiválasztási 

stratégiát. A kiválasztási függvények a következők szerint jelöltek, a szerző Merge Stratégiái: 

'dotprod' - Dót Product; 'cos' - Cosine; 'a  - közelített Spektrálnorma; 'Zykov^' - Zykov-fa és 

Lovász-theta stratégia10 és ' E A Z - evolúciós stratégia a (-fitnesszel, valamint a kiválasztott 

'benchmark' algoritmusok jelölése: 'dsatur' - DSatur heurisztika és 'Erdős' - Erdős heurisztika. 

Valamint a 'greedy' a mohó választási stratégiát jelöli. Az összehasonlítás egységesítése m iatt 

a 'benchmark' algoritmusok be lettek ágyazva a megfelelő Merge Keretrendszerbe egy megfelelő 

Merge Modell felhasználásával.

Konklúzió

A szerző új színezési megközelítése a gráfszínezés hatékony modelljének bizonyult. Jelentős 

csökkentést hozhat az algoritmusok számítási igényében. Továbbá egységes és tömör leírását 

biztosítja a színezési eljárásoknak, biztosítva ezzel az egységes szerkezetben vett strukturális 

elemzését. Az algoritmusok implementálása ezen közös módon lehetőséget biztosít az egységes 

teljesítmény mérésre. Az új színezési keretrendszer általánosítja az eddig színezési sémákat. Ezen 

általánosítás következményeként egy algoritmus beágyazása a modellbe annak kibővítése mellett 

jelentős színezési teljesítmény javulással is járhat. Ezen új megközelítés új információ kinyerési 

technikákat is támogat amely az algoritmus tervezésben segíthet valamint új irányokat adhat a 

probléma elemzéséhez. A szerző számos hatékony színezési stratégiát és algoritmust m utatott 

be valamint ismertetett egy általános stratégia készítésre alkalmas módszert amely lehetőséget 

biztosít mesterséges intelligenciái eljárások alkalmazására a színezési problémához.

10A +  kitevő jelöli majd a többszöri él hozzáadás alkalmazását.
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8. ábra. Az algoritmusok á lta l átlagosan használt színek száma az ún, ;phase trans ition ’ 
területen. A  vizsgált gráfok: 10-kromatikusak, egyenlően partic ioná lt véletlen gráfok, a 
generálásnál az élek valószínűsége a következők szerint skálázott: 0.1 <  pe <  0.9. M inden 
pe élvalószínűséghez 10 db gráf kerü lt elkészítésre, { 1, 2 , . . . ,  10}  pszeudo véletlen
alapbeállítások m e lle tt.
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T hesis 1 A szerző a gráfszínezési folyamatot kvóciens és hatványgráfok segítségével, gráf 

homomorfizmusokon sorozatával definiálta (lásd Juhos et al. [37; 41]). A szerző Kvó­

ciens és Hatvány Módszernek nevezte el az ezen elven alapuló színezési módszereit. 

A szerző megadta ezen módszereknek konkrét megvalósításait mátrixok és azokon ér­

telmezett speciális műveletek segítségével. Az így keletkező megvalósításokat Merge 

Modelleknek nevezte el. Ezen modellek alkalmazásával az eredeti probléma transz­
formálódik és az eredeti gráf homomorf képei jönnek létre. Az új modellek képesek a 

létező színezési algoritmusok leírására. Egy algoritmus beágyazása a modellbe jelen­

tősen csökkentheti annak számítási igényét. Továbbá a beágyazás az algoritmus egy 

természetes kiterjesztését is biztosítja, mely annak színezési teljesítményét növelheti. 

A modell ellentétben a tradicionális sémákkal nem tesz különbséget a színek és a 

csúcsok között, integrálja őket, mely egy egységes algoritmus szerkezethez vezet ahol 

a csúcs és szín választás nincs megkülönböztetve.

T hesis 2 A szerző egységesítette és általánosította a szekvenciális színezés korábbi mo­

delljeit, melyeket három Merge Keretrendszerben foglalt össze felhasználva a Merge 
Modelleket [41; 42], Ezen keretrendszerek egységes és tömör leírását biztosítják az 

algoritmusoknak és ezzel az összehasonlításuk egy egységes úton megvalósítható. 

Továbbá a szerző összefüggéseket vázolt fel az egységes leírásból fakadóan bizonyos 

algoritmusok színezési teljesítménye és leírása között. A meglévő algoritmusok egy 

Merge Keretrendszerben való kifejezésével, kihasználva az általánosítást, új algorit­
musok formálhatók.

T hesis 3 A szerző bemutatta, hogy egy színezési algoritmus futási teljesítménye javul 

ha azt egy megfelelő Merge Keretrendszerbe ágyazzuk felhasználva egy megfelelő 

Merge Modellt. Anélkül, hogy az algoritmus lépéseit megváltoztatnák az új repre­

zentációnak köszönhetően az algoritmus futási ideje lerövidül [38; 40]. A szerző ezen 

javulást elméletileg alátámasztotta és kísérletekkel is igazolta. A kísérletek során az 

ún. 'phase transitions' területen, ahol a problémák nehézzé válnak, vizsgált külön­

böző algoritmusokat, különböző Merge Keretrendszerekben. Továbbá megadott egy 

módját létező algoritmusok természetes kiterjesztésére egy Merge Keretrendszerben 

amely a színezési teljesítmény jelentős növelését hozhatja.

T hesis 4 Minden Merge Modellben a színezési művelet az ún. Merge Művelettel lett 

helyettesítve. Számos Merge Stratégiát fejlesztett ki a szerző, amelyek a Merge Mű­
veletek hatékony sorozatát generálják . A Merge Modellek mátrix reprezentációjának 

köszönhetően a szerző mátrix normák segítségével is definiált már meglévő heuriszti­

kákat egy alkalmas Merge Keretrendszerbe való ágyazás után, valamint számos általa 

kifejlesztett stratégiáit is. A szerző által bevezetett stratégiák listája alább olvasható:

-  kiterjesztett Hajnal; kiterjesztett Welsh-Powell (w -no rm ) [38]
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-  SpektráInorma[42]

-  közelített Spektrálnorma [42]

-  Dót product (entrywise norms) [38]

-  Cosine [38]

-  Zykov-fa és Lovász-theta [35; 43]

A szerző ezeket a stratégiákat kombinálta különböző Merge Modellekkel és Merge 

Keretrendszerekkel és számos új algoritmust á llított így elő. Ezek teljesítményét 

összehasonlította számos ismert 'benchmark' algoritmus teljesítményével. Az új al­
goritmusok többnyire felülmúlták a 'benchmark' algoritmusokat standard gráfokon va­

lamint ezen túlmenően nehezen megoldható problémákon, gráfokon is, az ún. 'phase 

transition' területen ahol a teszt gráfok alkalmas megválasztása nem torzíthatta a 

vizsgálat eredményét.

T hesis 5 A szerző bevezette a Merge Útvonal fogalmát [42], Egy Merge Útvonal a Merge 

Műveletek során a változó Merge Modell struktúra alapján jön létre. A keletkező mát­

rixok tulajdonságai alkotják az elemeit. Az útvonal elemei a színezés, a Merge Mű­
veletek lépéseihez kapcsolódnak. A szerző a Merge Műveletek alkalmazási stratégiáit 

ezen útvonal komponensein keresztül határozta meg. Amely mesterséges intelligen­

ciái eljárások alkalmazását tette lehetővé a színezésben, mint például gépi tanulás és 

klaszterezés [36] alapján.

T hesis 6 A szerző beágyazta Merge Stratégiáit egy meta-heurisztikus eljárásba, egy evo­

lúciós algoritmusba és létrehozta a következő komponenseket [37-39; 42] :

-  Egy mutáció operátort, amely felismeri a nehezen színezhető csúcsokat és elő­
reveszi azokat a színezési folyamatban.

-  Egy finom ított fitnesz függvényt a hagyományosan alkalmazott fitnesz javítását 

adja, növelve ezzel az optimalizálás hatékonyságát.

A keletkező meta-heurisztikus algoritmusok jó l teljesítettek a 'benchmark' algoritmu­
sokkal való kísérleti összehasonlításban számos 'benchmark' gráfon beleértve az ún. 

'phase transition' területet is.
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