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Bevezetés

Ezen Gsszefoglal6 tartalmazza a szerz6 ,Quotient and Power methods for the Graph Colouring
Problem,, cimii doktori disszertaciéjanak eredményeit. A szerzé kifejlesztett egy altalanos keret-
rendszert grafszinezési algoritmusok szamara, ahol a hagyomanyos szinezés specialis graf homo-
morfizmusokon keresztiil keriilt definialasra Zykov munkassaga nyoman [64; 65]. Ezen homomor-
fizmusok hasznosnak bizonyultak az algoritmus tervezésben (lasd Juhos et al. ([35; 37-43]). Ezen
Osszefoglald az értekezés struktarajat koveti, amelyben Az eredmények a kifejlesztett grafszinezési
keretrendszernek megfeleléen kiilonb6z6 részekre tagolddnak.

A szerz6 a grafszinezési folyamatot kvéciens és hatvanygrafok segitségével, graf homomor-
fizmusokon sorozataval definialta (lasd Juhos et al. [37; 41]). A szerz6 Kvéciens és Hatvany
Modszernek nevezte el az ezen elven alapul6 szinezési médszereit. Tovabba ezen graf homo-
morfizmusokat matrixok és azokon értelmezett megfelels miiveletek segitségével hatarozta meg,
melyet a szinezési folyamat Merge Modelljeinek nevezett el [37; 40; 41]. A targyalt matrix mive-
letek, Merge Miveletek egymasutanja hoz létre egy hagyomanyos értelemben vett szinezést. A
szerz6 a Merge Modelleken nyugvo stratégiakat, Merge Stratégidkat dolgozott ki [35; 38; 42; 43]
amelyek lehetséges iranyokat hataroznak meg egy megoldas felé. Tovabba a szerz6 megadott
harom altalanos keretrendszert (Merge Keretrendszert) amelyekbe ezen stratégiak beagyazha-
tok [38; 40]. A keretrendszerek altalanositjak a hagyomanyos szekvencialis szinezési sémakat,
igy a mar létezé algoritmusok ezekbe beagyazhatdk, amely azok altalanositasdhoz vezet. Egy
ilyen beagyazas jelent8s futasi és szinezési teljesitményndvekedést eredményezhet. Tovabba a
keretrendszerek a stratégiakkal kardltve alkotnak konkrét algoritmusokat, Merge Algoritmusokat.
A szerzb tobb algoritmust is elkészitett, amelyek a kisérleti vizsgalatok soran feliilmaltak tobb
standard 'benchmark’ algoritmust standard 'benchmark’ grafokon és az an. 'phase transition’ te-
rilleten generalt 'nehéz’ grafokon is [35; 37-43]. Egy-egy ilyen algoritmus az adott Merge Modell
Merge Miiveleteinek sorozatat generalja az alkalmazott Merge Stratégia vagy Stratégiak szerint,
amely az eredeti grafszinezési probléma egy lehetséges megoldasat szolgaltatja.

A grafszinezési probléma

A graf két véges diszjunkt halmazbdl allé halmazpar G = (V, E), ahol E C V x V. AV halmaz
elemei a G graf cstcsai, mig az I/ halmaz elemei alkotjak G éleit. A graf csiics k-szinezés (vagy
roviden graf k-szinezés) a graf csucsaihoz szineket rendel egy & elemii szinhalmazbdl, C-bsl. A
probléma akkor jelentkezik amikor a szinezésnél figyelembe kell venniink az éleket.

Definition 1 (Helyes graf k-szinezés) A graf G = (V, E) egy helyes k-szinezése, ha léte-
zik, egy olyan k-szinezés, ahol a szomszédos csicsok kiilénbéz6 szineket kapnak:
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Definition 2 (Graf minimalis cstuicsszinezése) A graf G = (V| E) egy minimélis csiics-
szinezése egy olyan helyes graf x-szinezés, ahol \ a legkevesebb szin amely egy lehetséges k-

szinezésben elérheté.



A Y-t a GG graf kromatikus szamanak nevezziik. A kovetkez6kben a grafszinezési probléma a
graf minimum cshcsszinezési problémaéjat jelenti. Egy helyes szinezésre példa az 1. abran lathaté.
Az 1(a). abra egy grafot abrazol v; € V)i € {1,2,...,6} csucsokkal /csomépontokkal és a koztiik

U4 Uq
V1 V2 Vs Vg Vs Vg
s s vy O 1 1 0 - 1 s "
(%) 1 1 .
vy 1 1 1 1
s 02 vy 0 10 1 e 02
I |
ve 1 - 1 - 1
U1 U1
(a) Egy graf (b) Szomszédsagi matrix (c) Egy helyes szinezés

1. Abra. Egy graf és annak egy helyes 3-szinezése, amely egvben minimalis szinezés is.

fut6 élekkel. Mellette az 1(b). abran a graf szomszédsagi matrixa talalhats, amely az élek altal
definialt relaciét hatarozza meg!, tovabba a 1(c). 4bra a graf egy minimum szinezését mutatja,
ahol {vy, v}, {v2,v6} és {vs,v5} csticshalmazok alkotjak a szinosztalyokat. A szinosztalyoknak
fiiggetlen csicshalmazoknak? kell lenniiik, ahhoz hogy helyes szinezést kapjunk. A 0-ak a 1(b).
abran egy fliggetlen cstcshalmazt jeldinek, a {v1,v4} szinosztalyt.

Szamos algoritmus ismert az irodalomban a minimum szinezési probléma megoldasara. Ezen
algoritmusok két osztalyba sorolhaték: az egzakt algoritmusok, ahol az optimalis megoldas ga-
rantalt, azonban a megoldasra forditott id6 tekintélyes lehet a probléma komplexitasanak készén-
hetSen (- amely NP-teljes [45]); és a nem egzakt algoritmusok, azaz az approximaciés algorit-
musok, ahol az optimalis megoldas nem garantalt, de sok esetben j6 kozelité megoldast képesek
adni belathat6 idén beliil. Az utébbi tartalmazhat sztochasztikus elemet is. Atfogé dsszefoglalé
a kovetkezé publikaciokban talalhaté ezekr6l a médszerekrdl: [23; 32; 47; 63]. A grafszinezési
probléma megoldhaté egzakt médon a keresési tér egy szisztematikus bejarasaval [15; 16; 34].
Sajnos ez a médszer hatékonyan nem alkalmazhats, mert mar kisebb grafok is hatalmas keresési
teret eredményezhetnek, igy a futasi ideje ennek a keresési megoldasnak nagyon megné. Ezen
médszer hatékonysaganak ndvelése érdekében szamos heurisztikat fejlesztettek ki, hogy egy jo
kezdeti lehetséges megoldast generaljanak, amely kozel van a kivant optimumhoz [4; 17; 26—
28; 46; 49; 55; 58; 60—-62]. Majd a generalt lehetséges megoldasbdl kiindulva egy szisztematikus
keresés jelentésen javithatja a kezdeti megoldast.

Altalaban a keresés a generalt megoldas kornyezetét tekinti elséként, amely egy szomszédsagi
relaci6 meglétét feltételezi a keresési térben. Ez a megkdzelités vezetett a helyi keresési elja-
rasok kifejlédéséhez [1; 8; 10; 23; 29; 31]. Altalaban ezek az eljarasok valamilyen heurisztikat
alkalmaznak egy aj lehetséges megoldas generalasara egy mar meglévsbél, annak kdrnyezetében.
Habar ezek a heurisztikak jelentSsen javithatjak a meglévs lehetséges megoldast, altalaban nem

LA 0-3k pontokkal lettek helyettesitve az attekinthetség kedvéért.
2Nincs él a halmaz elemei kbzott.
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2. abra. Elhozzaadasi és csicsosszehtizasi lépések egy Zykov-faban. Ugyanazon szin v, és
vs-hoz vald rendelése nem javallott, mivel az nem optimaélis szinezéshez vezet ezért koztik
egy ¢l behtzasa egy ésszerd lépés. Tovabba ugvanazon szin rendelése a vy vg csiicsokhoz
viszont taAmogatja a minimalis szinezést, ezért ezek 6sszehtzhatok.

szolgaltatjak az optimumot, igy ezek a kozelits algoritmusok kategériajaba esnek. Manapsag
szamos vizsgalat tortént a sztochasztikus folyamatok alkalmazasara a helyi keresé algoritmusok-
ban, amelyek javithatjak azok hatékonysagat. Egy példa ezen eljarasokra a tabu-keresés [3; 31],
szimulalt hiités [9; 33] és a hangya koléniakkal valé optimalizalas [5; 12]. A sztochasztikus
eljarasok koziil sok a lehetséges megoldasok egy populaciéjat tartja szamon és hasznositja. Ilye-
nek az az evoluciés algoritmusok, amelyek alkalmazasa népszeri a grafszinezési algoritmusok
kozstt [2; 13; 14; 19; 20; 22; 25; 30; 48; 56; 59]. A szinezési algoritmusok k&zdtt szamos
egészértékii programozasi megkozelitéssel is talalkozhatunk, ahol az egészértékii valtozok bizo-
nyos struktarakat azonositanak példaul: figgetlen csticshalmazokat [50]; szineket és csucsokat
[11; 51; 53]; aciklikus graf orientaciét [21]. Szamos esetben binaris valtozokrél van sz6, amelyek
binaris vektorként 6sszefoghatok. Igy az optimalis megoldas(ok) is egy binaris vektorként all(nak)
el6 megalkotva az Gn. szinezési politépot. Ezek a politépok allnak a probléma vizsgalatanak a
kdzéppontjaban [6; 24]. Szamos relaxalt verzidja létezik az egészértékii feladatoknak, amelyek
egy kozelitését kivanjak megadni a politép egy-egy lapjanak [18; 44; 50; 52; 57]. Sajnos ezen
egészértékii feladatok megoldasa jelent8s id6t vehet igénybe, ezért kiilonb6z6 technikakat fejlesz-
tettek ki, hogy a futasi sebességét javitsak, ilyen példaul az oszlopgeneralas médszere a korlatozas
és szétvalasztasi médszerrel karltve [7; 50; 53; 57]. Valéjaban itt a korlatozas és szétvalasztas
moédszer implicit médon Zykov otletén tartalmazza ([57]). Az elmult évszazad kdzepén Zykov
Gsszekotetlen cstcsok Gsszehuizasat és élhozzaadast alkalmazott grafokon szinhozzarendelés he-
lyett, a szinezési probléméara. Egy példa erre a 2. abran lathat6. Ezekkel a miveletekkel 0]
graf jon létre mely 6rokolheti az eredeti graf szinezési tulajdonsagait, mint példaul a kromatikus

szamat.



A disszertacidban a szerz8 Zykov otletébsl kiindulva bevezetett négy kiilonb6zé modellt (Merge
Modellt). Ezen modellek hatékonysagat mutatta be elméleti és kisérleti eredményeken keresztiil.
A Merge Modellek az eredeti szinezési probléma ekvivalens atfogalmazasai. Harom ezeken a
modelleken nyugvé altalanos szinezési keretrendszert (Merge Keretrendszerek) definialt a szerzé
amelyek altalanositasai a hagyomanyos szekvencialis szinezési sémaknak. A modellek létezs és 0]
szinezési algoritmusoknak egy egységes és tomor leirasat teszik lehet6vé. Amely szamos elénnyel
jar: egységes strukturalis Gsszehasonlitas, futasi id6 csokkenés, szinezési teljesitménybeli javulas
valamint 0] algoritmikus megkozelitések tamogatasa. A szerz6 bemutatta a médszer hatékony-
sagat és el6nyeit. A szerz6 megalkothatott szamos 0j (szinezési) Merge Stratégiat és Merge
Algoritmust amelyek hatékonynak bizonyultak az elméleti elemzés és tapasztalati vizsgalatok so-
ran. Tovabba kidolgozott egy altalanos médszert amellyel altalanos stratégiak tervezhetbk és
mesterséges intelligenciai eljarasok alkalmazhaték a szinezési probléma megoldasaban.

Kvéciens és Hatvany Modszer

A szerz§ a grafszinezési folyamatot kvéciens és hatvanygrafok segitségével, graf homomorfizmu-
sokon sorozataval definialta (lasd Juhos et al. [37; 41]), amint azok a 3. abran lathatsk. A
homomorfizmusok az azonos szinii csticsok kovetkezetes 6sszehiizasabél vagy csoportba foglala-
sabél szarmaznak. A szerz6 Kvéciens és Hatvany Moédszernek nevezte el az ezen elven alapulé
szinezési modszereit. Ezeknek célja egy olyan homomorfizmus megtalalasa amely az eredeti gra-
fot? egy megfelels teljes grafba vagy azzal homomorf grafba képezi. Az igy kapott homomorfizmus
meghataroz egy szinezést az eredeti grafra. A szekvencialis szinezési eljarasok tamogatasa végett
a tekintett homomorfizmus tovabbi homomorfizmusok egymasutanjaként, kompoziciéjaként keriil
eléallitasra, megadva egy n. kézbensé homomorfizmus sorozatot. Ezen homomorfizmusok hasz-
nos kdzbens6 graf struktirakat hoznak létre, amelyek vizsgalata hatékony szinezési eljarasokat
eredményeztek valamint a szinezési folyamatba egy alternativ betekintést nyajtanak (lasd Juhos
et al. [37-43]).

Merge Modellek

Graf homomorfizmusok definialjak a kapcsolatot az eredeti és egy kvéciens vagy hatvany graf/multi-
graf kozott. A szerz6 definidlt négy matrix miiveletet, amelyeket Merge Miiveleteknek, vagy
roviden Merge-nek nevezett el (lasd Juhos et al. [37; 41]). Egy Merge Miivelet az eredeti graf
szomszédsagi matrixat képezi le egy matrixba amely egy kvéciens graf/multigrafot vagy hatvany
graf/multigrafot hataroz meg, ezeket a szerz Binaris/Integer Merge Square-nek (A/A) és Bi-
naris/Integer Merge Table-nek (7'/T), vagy 6sszefoglalé neviikon Merge Matrixoknak nevezett
el [37; 41]. Altalanossagban egy Merge Matrixot M fog a kdvetkezékben jelslni. Egymast ko-
vet6 Merge Miiveletek sorozata hoz létre egy hagyomanyos értelemben vett szinezést. A Merge

3Vagy egy ekvivalens atalakitasat.



feltétele* M;; = 0, ami azt jelenti, hogy M; és M; sorok (és oszlopok is, ha sziikséges) Merge-
lhet&k, amint az 1(b) abra mutatja. Az utolsé lehetséges Merge-vel létrejové zaré homomorf kép
(Merge Matrix) sorai hatarozzak meg a szinezés egy lehetséges megoldasat. Az illets (Merge-elt)
sorok fliggetlen csticshalmazokhoz tartoznak, ezek hatarozzak meg a szinosztalyokat. A 3. abra
példakat mutat a Merge Miiveletekre, mig az 1. tablazat definiadlja a miveleteket sor és mat-
rix miveletek segitségével is. Tovabba ezen tablazat Gsszefiiggéseket tartalmaz a Binaris Merge
Matrixok A és T és Integer parjaik A és T kozott.

SOR MUVELETEKKEL MATRIX MUVELETEKKEL
T —at+b T —0 | T = (74 W)Tl
T —avb T — QT |l — iy prid — pgt
=i —aob T = o7 | T =TI S (a@ b)(I; © L)
Al T Al g

7 J
AT —avp AT — o [ At — Al v (P AW PTY — (M AV M)
A — A a0 Al = of

1. tablazat. A kiilonb6z6 Merge Miiveletek meghatarozasai tobb moédon. A a és b az M
Merge Matrix i-edik és j-edik Merge-lhetd sorat jelslik. A [ felss index a t-edik Merge lépést
jelenti a és b sorok Merge-e esetén; a P = I, 1;, R =1;®1;, W = P— R, ahol I, az i-edik
sora az egységmatrixnak [-nek. M; az M matrix i-edik sora, mig M ; az i-edik oszlopot
jeloli. A o a Hadamard-Schur szorzatot, valamint @ a diadikus szorzatot jelsli.

A Merge Table-k az eredeti graf cstcsai és a szomszédos szinosztalyok kdzotti kapcesolatot irjak
le, azaz hogy van-e él kozottitk vagy sincs. Alapvet6en az eredeti graf szomszédsagi matrixa hoz-
zarendelhets egy szinosztalyhoz (amely egy hatvany graf csticsa), valamint az oszlopok az eredeti
graf cstcsaihoz. A korabbiak szerint két altipust kiilonboztetiink meg, nevezetesen a silyozottat
(Integer Merge Table Model/hatvany multigraf) és a salyozatlant (Binaris Merge Table Mo-
del/hatvany graf), annak megfelelGen, hogy a Merge folyamat soran keletkezd tobbszorss éleket
figyelembe vessziik vagy sem. Ezek két alapvets sor miiveletetet hataroznak meg az Gsszeadas és
az elemenkénti binaris OR miveletet. Ha csak a sorokra alkalmazzuk &ket, akkor hatvany multig-
rafokat/grafokat, azaz Integer/Binaris Merge Table-ket kapunk, ha az oszlopokra is alkalmazzuk
egyben akkor kvéciens multigrafokat/grafokat, azaz Integer/Binaris Merge Square-eket kapunk.
A Merge Square-knél mind a sorok, mind az oszlopok szinosztalyokat azonositanak és azok ko-
z6tti viszonyokat irnak le, azaz hogy van-e él k6zottiik vagy sincs. Minden Merge Matrix k6zds
jellemzéje, hogy egy sor az eredeti graf egy fliggetlen csticshalmazat hatarozza meg. Itt jegyezziik
meg, hogy a kezdeti Merge Matrix a szomszédsagi matrix, melynek sorai a csticsokat azonositjak.
Emlékezziink, a szinosztalyok fiiggetlen csicshalmazok, valamint a csticsok egy elemi fiiggetlen
csucshalmazokat hataroznak meg. A Merge Miiveletek hagyomanyos értelemben ezek uniéjat

*M;; az (4, j)-edik matrixelem.
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V1 V2 Vs Vg Vs Vg

{Tl, T4} 0 1 2 0 1 1

T2 1 : 1 .
T3 11 r - 1
s . . . 1 . 1
Te r -1 - 1

(b) Integer Merge Table. Az ry és rq sorok Ossze-
adodtak.

Uy V2 U3z Ug Us g

{ri,;a}y 0 1 1 0 1 1

T | .
r3 11 - 1 - 1
rs . . A |
Ts r - 1 - 1

(d) Binary Merge Table. Az ry és ry sorokon elemen-
kénti OR muvelet lett végrehajtva.

{Ul y Ug } Vo Vg Vs Vg

{Tl,T4} 0 1 2 1 1

To 1 1

T3 2 1

s 1 . . .
T6 1 11

(f) Integer Merge Square. Az 7y és ro sorok és vy és
vy oszlopok Gsszeadodtak.

{Ul y Ug } Vo Vg Vs Vg

{Tl,T4} 0 1 1 1 1

7o 1 1 .
T3 1 - -1
Ts 1 . . 1
T6 1 1 1

(h) Binary Merge Square. Az ry és 79 sorokon és v
és vy oszlopokon elemenkénti OR mivelet lett végre-
hajtva.

3. dbra. Kiilonb6z6 Merge Miveletek eredményei.



jelentik. Ezen modelljét a szinezésnek a szerz6 Merge Modellnek nevezte el. A 4. abra a Merge
Matrixok kilonb&z6 struktarait/részstruktarait mutatja utalva a megfelel§ grafra/részgrafra. A

-_‘. ““‘I ul '.'. l-‘,: .-‘_"
Vg ,ub Vg V9
"'- H:
v1 ,Ur"-,:: ,Ub
V1 Vg Ué;'-._w Vs Vg V1 Vg {v5,v3}‘;l v4:,-"v6 :
r1 S8 1T 121 2 w8111 2 12°2| |
ry 1o 1 - - T4 ""-fj.2 s o« 1 s 1 0« |9 Ty ol . . D) 1
rs 1. 1 - 1 - 1 {rs,rs}6|1 1 - 2 . 24 :.-'" {r5,r3}"~6 11 . 2 24
ry - - 1 - 1 - 11111 1(6)/ 11 1 1 1 5
rs - i 1 -1 ~

4. &bra. Az eredeti graf és egy rész szinezése a kezdeti Merge Méatrixszal, a szomszédsigi
matrixszal; egy a szinezésnek megfelel hatviany multigraf és a szinezett csticsokhoz tart6zo
Integer Merge Table részméatrixszal; egy a szinezésnek megfelel§ kvociens multigraf és a szine-
zett csticsokhoz tartdzo Integer Merge Square részmétrix. A segédstruktiarak a részmatrixok
oldalain helyvezkednek el. Ezek Osszegzik vagy szamoljak a nem-zérd elemeket a sorokban és
az oszlopokban. A py; bal sortsszeg az eredeti graftban a megfelels csicsok fokszam Osszegét
adja; a p, jobb sortsszeg egy szinosztaly szomszédjainak a szamét adja; a py a szomszédos
szinezett cstcsok szaméat adja; valamint p, a szomszédos szinek szamét mutatja.

modell tamogatja a parhuzamos szoftver és hardver implementaciét. Egy szekvencialis szinezési
algoritmus amely ezen modellre épiil jelent6s teljesitménybeli javulast kdnyvelhet el. A szerzé
ezen javulast elméletileg és tapasztalatilag is alatamasztotta (lasd Juhos et al. [40]) valamint
hatékony 0 szinezési eljarasokat dolgozott ki ezen modellek segitségével [35; 38-40; 42; 43].

Merge Keretrendszerek

A Merge Modellek a grafszinezést matrix reprezentacié és specialis miveletek atjan definialjak.
A szerz6 kidolgozott harom altalanos keretrendszert amelyek absztrakt szinezési algoritmusokat
hataroznak meg (lasd Juhos et al. [41; 42]). Ezen absztrakciok az altalanositasai a tradicionalis
szinezési sémaknak. A Merge Miveletek helyettesitik a hagyomanyos értelemben vett szine-
zést. A Merge Modellekben eltiinik a kiillonbség a szin és a cstcs kivalasztasi stratégiak kdzott.
Elegend6 egy altalanos sorvalasztasi stratégiat meghatarozni, amely alkalmas szinezett vagy szi-
nezetlent sorok kivalasztasara is, ha a tradicionalis szinezési séméakat akarjuk kovetni. Azonban
itt a szinek csak jelzés értékiiek, azt jelzik, hogy egy sor érintett volt-e mar a Merge Miiveletben.
Attdl fiiggben, hogy milyen sorrendben valasztjuk ki a kiilonb6z6 allapota (szinezett/szinezetlen)



sorokat kaphatunk két eltéré keretrendszert: vagy el6szér egy szinezetlen (Uncoloured) sort va-
lasztunk, majd egy szinezettet (Coloured) a Merge Miivelethez (UC Merge Keretrendszer) vagy
forditva (CU Merge Keretrendszer). Ezen keretrendszerek altalanositasai a hagyomanyos szine-
zési sémanak (lasd Juhos et al. [41]). Ezen keretrendszerek pszeudokédjat a 5. abra ismerteti.

A choose-unc és choose-col eljaras/kivalasztasi stratégiak nem pontosan definialtak, absztrakt

UC MERGE KERETRENDSZER(A szomszédségi matrix )

1 M+~ A

2 repeat

3 u «— arg choose-unc; { M} //Nem szinezett sor (index) valasztés.

4 ¢ + arg choose-col; { M} //Szinezett sor (index) valasztas * ahol M. = 0
5 M « merge(M, {u,c}) //Az u és ¢ sorok/oszlopok Merge-elése. °

6 until M“"*¢ {ires

7 return M

CU MERGE KERETRENDSZER(A szomszédségi matrix )

1 M+~ A

2 repeat

3 ¢ + arg choose-col; { M} //Szinezett sor (index) valasztas.

4 u « arg choose-unc, { M} //Nem Szinezett sor (index) vélasztés ¢, ahol M., =0
5 M — merge(M, {u,c}) //Az u és c sorok/oszlopok Merge-elése.

6 until M7 iires

7 return M

®Mye = Mg, = 0 a Merge feltétel, azaz, hogy nincs él az adott fliggetlen csticshalmazok kozott.
bA Merge Square-eknél, az oszlopok is részt vesznek a Merge Miiveletben.
M., = My, = 0 a Merge feltétel, azaz, hogy nincs él az adott fiiggetlen cstcshalmazok kozott.

5. dbra. Az UC és CU Merge Keretrendszer

CC MERGE KERETRENDSZER(A szomszédsagi matrix )

1 M+~ A

2 repeat

3 {i,7} « argchoosey; jy{ My, My : i # j} //Két sor (index) valasztasa ¢, ahol My =0
4 M — merge(M,{i,j}) //Az i és j sorok/oszlopok Merge-elése.

) until M nem Merge-lhetd

6 return M

*M;; = Mj; = 0 a merge feltétel, azaz, hogy nincs él az adott fiiggetlen csticshalmazok kozott.

6. Abra. A CC Merge Keretrendszer

stratégiak. Ezek helyettesithet6k konkrét valasztasi stratégiakkal amelyek a szinezett A7 és
nem szinezett M""¢ rész-Merge-Matrixokat hasznaljak. Ezen matrixok tartalmazzak a szinezett
M és nem szinezett M} sorait az eredeti Merge Matrixnak. A 4. abra példakat mutat a szi-



nezett rész-Merge-Matrixokra. A choose-unc eljaras kivalaszt egy szinezetten sort/cstcsot, mig
a choose-col egy szinezett sort/'szinosztalyt’ valaszt vagy egy lires sort képez a szinezett rész-
Merge-Matrixokban, ami az egy operandusti Merge-t tamogatja, ezzel nyitva egy egy elemi qj
szinosztalyt. Valéjaban nem sziitkséges megkiilonbdztetni a szinezett és szinezetlen statuszokat,
egy kozos kivalasztasi stratégia a choose valaszthatna tetszéleges két sort egy Merge Matrixbdl,
hogy végrehajtsa rajtuk a Merge Miiveletet. Ez a megkdzelités a CC Merge Keretrendszerben lett
definialva (lasd Juhos et al. [37]), melynek pszeudokédjat az 6. abra mutatja. Egy sor a Merge
Matrixban egy szinosztalyt azonosit, azaz fliggetlen cstcshalmazt. Hagyomanyos értelemben a
CC Merge Keretrendszerben két tetszéleges szinosztalyt/fiiggetlen csticshalmazt valasztunk majd
ezek unigjat képezzitk. Mig az UC és CU Merge Keretrendszerekben a valasztott fliggetlen cstcs-
halmazok kézil az egyik mindig egyelemdi, ezel a szinezettlen cstcsok, amelyeket a szinezettlen
sorok azonositanak. A CC Merge Keretrendszer a legaltalanosabb, habar ez lefedi az UC és
CU keretrendszereket, azok kiilon definicidja sziikséges az algoritmusok egyszeriibb rendszerezése
miatt, annal is inkdbb, mert a tradicionalis szinezési sémak ezek valamelyikébe illenek. Ezen
keretrendszerek az 4j szinezési modellel tamogatjak az egységes algoritmus analizist (lasd Juhos
et al. [38; 40; 42; 43]).

A szerz6 bemutatta, hogy egy szinezési algoritmus futasi teljesitménye javul egy megfelel
Merge eretrendszerbe agyazzuk egy megfelels Merge Modellt alkalmazva. Anélkiil, hogy az algo-
ritmus |épéseit megvaltoztatnak a Merge Modellbeli reprezentacié szamitasi teljesitménybeli igény
csokkentést okoz. Eiben és van Hemert et al. ramutattak hogy az élek vizsgalata kulcsfontossagi
faktor a legtobb szinezési algoritmus futasa tekintetében [19; 59]. A tradicionalis sémak esetén
amikor egy csicsot szeretnénk szinezni, akkor két valasztasunk van az élvizsgalatokra amelyel a
helyes szinezést biztositjuk: a szinezett cstcsokat vessziik szamba (A.y), vagy az szinezendd
cstics szomszédait vesszitk szamba (A,,¢ign). A kovetkezSkben lathatjuk, hogy az élvizsgalatok
jelents mértékben csokkenthetdk, ha alkalmazzuk a Merge Modelleket (A,m).

Corollary 1 ([40]) Ha adott egy véletlen graf G, ,, fix p élvaldsziniiséggel és adott egy szinezési
algoritmus A, akkor a kbvetkez6kben alakul az élvizsgélatok szama #(.):

1. Szinezett csiicsok vizsgalata esetén: (Ao = O(n?)
2. Szomszédok vizsgalata esetén: (Apeigh) = O(n?)

3. Merge-It sorok/szinosztalyok esetén: #(Amm) < O ( n? )

logn

A fenti tétel az aszimptotikus viselkedést mutatja, azonban megvizsgalhatjuk a legrosszabb esetet

is.
Corollary 2 ([40]) Legyen G egy tetszbleges graf ekkor az alabbiak érvényesek

L #(Amm) < #(-Acol)
2. #(-Amm) < #(Aneigh)
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Mindharom keretrendszer egy egységes szerkezetet tiikréz. Az algoritmusok ezen keretrendsze-
rekben Merge Matrix sorok sorozatos kivalasztasat végzik, majd végrehajtanak rajtuk egy Merge
Miiveletet, mely eredményeképpen végiil el6all egy szinezés. Egyik altalanos keretrendszernek
sincs konkrét sorkivalasztasi stratégiaja. A keretrendszerek konkrét kivalasztasi stratégiakkal al-
kotnak algoritmusokat, Merge Algoritmusokat.

Merge Stratégiak

Ahhoz, hogy egy konkrét algoritmust kapjunk, az algoritmus lépéseit definialni kell, azaz itt
Merge Miiveletek egy sorozatat kell megadni. Egy Merge Miivelet két sort/oszlopot vesz az ak-
tualis Merge Matrixbdl és egy Gjabb Merge Matrixot képez, ha a Merge feltétel engedi. Merge-k
ismételt alkalmazasa elvezet egy zar6 Merge Matrixhoz, ahol tovabbi Merge nem lehetséges. A
Merge-ek sorozata alapvet6 befolyassal bir a lehetséges megoldas jésaga tekintetében, ez hata-
rozza meg a hasznalt szinek szamat, amely egybeesik a zar6 matrix sorainak szamaval®. A szerz6
tobb Merge Stratégiat dolgozott ki, hogy hatékony Merge sorozatot allitson el6 [35; 37-43]. Ezen
stratégiak hasznosnak bizonyultak az elméleti és kisérleti elemzés folyaman is. Az 4 probléma
megkozelités aj stratégiak kialakitasara ad lehetéséget, amint alabb lathatjuk. Az egyszer(iség
kedvéért a felsorolt stratégiak Binaris Merge Modelleket feltételeznek, habar Integer megfelel6jiik
is targyalasra keriilt a disszertaciéban, ahol az Integer Merge Modellek erényei kiilon keriiltek tar-
gyalasra [40], néhanyat emlitve bel6lik: tamogatjak a visszalépést (backtracking) és a masodlagos
dontéshozatalt (tie breaking), ha az els6dleges stratégia tSbb sort is kivalasztana Merge-elésre.
A kovetkez§ stratégiak sor-par kivalasztasi stratégiak, azaz a legaltalanosabb keretrendszerhez,
a CC Merge Keretrendszerhez alkalmas valasztasi eljarasok, de az UC es CU Keretrendszerekhez
is hasznalhatok. Legyen a sor-par kivalasztas stratégia alapja az X matrix. A matrix Xij eleme
legyen aranyos az M; és M; sorok kivalasztasi valésziniiségével egy algoritmus minden lépésé-
benS. A sor-par kivalasztasi stratégia valassza a kbvetkezs két sort {i,j} = argmax;j Xij. A
kévetkezd stratégisk meghatérozzak X-et egy tetszéleges Merge Matrixra, igy egy algoritmus
minden lépését definialjak.

A leghosszabb Merge sorozat. Mivel a Merge Matrix sorok M;-k szinosztalyokat azonositanak.
Ennélfogva a cél a sorok szamanak csokkentése. Ezt a leghosszabb Merge sorozattal létrehozasa-
val érhetjiik el, mivel a sorok szdma minden lépésben eggyel csokken. Ennek érdekében a szerz6
bevezetett két stratégiat (lasd Juhos et al. [38]). A Dot Product Stratégia a nem-zér6 elemek
alakulasat kdveti nyomon a Merge-k soran. Megkisérli azok szamat minimalisan tartani, mivel
azok akadalyozzak a Merge-eket, igy a stratégia alapja

A

Xij = (Mj, My) [My; = O] (1)

ahol [M;; = 0] a Kronecker delta fiiggvény, mely [z = x| := 1, egyébként 0 (ez magaba foglalja

5Emellett, a Merge Table-kban a zerd elemek a szinosztalyok elemeit azonositjdk egy optimalis megoldas
esetén, ha szinezés szempontjabol jelentéktelen alacsony fokszamu cstcsok {v : d(v) < x} el lettek tavolitva.
6 X minden lépésben valtozhat.
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a Merge feltételt) M; és M; a i-edik és j-edik sor egy Binaris Merge Matrixban”. Egy A Binaris
Merge Square-re, ez az alabbiak szerint irhat6

X =A4AT o A (2)

Bar a nem-zér6 elemek meggatolhatjak a Merge Miiveleteket, a zéré elemek segitenek, tamogatjak
azokat. gy a Cosine Stratégia figyelembe veszi mindketté alakulasat a Merge-k soran és annak
megfelelGen alakitja a sor kivalasztasokat, az alabbiak szerint

. M;, M; M;, M;
arg max X;; = argmax< - ]>[Mz’j = 0] = arg max W, M)
T

T T [M;; = 0] (3)
J i | M| | M wi || Ml || Ml

Parhuzamos sorok. A Cosine Stratégia el6nyben részesiti a parhuzamos sorokat a Merge
Matrixokban. Ez ésszer(i valasztas azért is mert a szomszédsagi matrix sorai amelyek azonos
szinosztalyhoz tartoznak egy optimalis szinezésben majdnem parhuzamosak. A Merge-k soran a
keletkez6 Merge Square Matrixokban ez a parhuzamos tulajdonsag egyre karakteresebbé valik. A
Merge Square-ek ésszer(i médositasai Karger et al. [44] munkassaga nyoman tovabbi tamogatast
nyajt a Cosine stratégia szamara. Felhasznalva ezt az szerz6 definialta a 'Zykov-fa és Lovasz-
theta’ stratégiat (lasd Juhos et. al. [35; 43])

Szin hasonlésédg. Valéjaban a Zykov-fa és Lovasz-theta stratégia a cstcsok szin hasonlésa-
ganak becslésén alapszik. A szomszédsagi matrix egy szin kiilonbozéségi relaciét hataroz meg,
mivel a cstcsok amelyek (él-)relaciéban vannak nem szinezhet6k azonosan. Ennek ellenkezgje a
szinezési relaci6. Egy szinezés megadhat6 egy szin hasonl6sagi relacié meghatarozasaval, itt csak
az azonosan szinezett cstcsok allnak relaciéban. A relacié egy {0, 1} —matrixszal kifejezhets, ez
a szinezési matrix. Ez megadja, hogy két csiics azonos szinii vagy kiilonb6z6. Bar az optimalis
szinezések matrixa is megadhat6 eképpen, ezekre nem tamaszkodhatunk, mert ezek alkotjak a
feladat megoldasat. Noha ezek nem ismertek, az atlaguk kozelithet egy szemi-definit program
(lasd Karger et al. [44]) megoldasaval amely a Lovasz-theta-t is szolgaltatja eredményiil 0:

@zmtin{t:ZtO,zii:t—l,z@:—1Ve€E} (4)

Igy egy kdzelitett szin hasonlésagi relaciot kapunk. Ez egy Z,p; val6s értékii matrixszal irhaté le,
amely egy megoldasa az Eq. 4-nek. Legyen X az alabbiak szerint szarmaztatva

X = (Zopt +1) o (1 =1)

ahol I az egységmatrix. A legnagyobb és legkisebb elemei X-nek fontos informaciét hordoznak.
A szerz§ ezen informacidkat valamint Zykov munkassagat felhasznalva (lasd [64; 65]) elkészitette
a 'Zykov-fa és Lovasz-theta’ stratégiat [35; 43]. Ahol egy kvéciens graf cstcsai 6sszekstendsk
(argmin; j{X;; : Xi; < 0} csucsok) vagy Merge-lendsk (argmax; ; X;; csicsok) a kicsi illetve
nagy kozelitett hasonlésagi értékeknek megfeleléen (lasd 2. abra). Az Gsszekotési (él hozza-

"Binaris Merge Matrixok esetén [M;; = 0] = (1 — M;;).
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adasi) és Merge Miiveletek soran a hasonlésag egyre karakterisztikusabba valik, tamogatva ezzel
az egyre értékesebb sor kivalasztasokat. Az algoritmus tobb él ({ij : Xij < 0} élek) egyiit-
tes hozzaadasaval vagy tébb Merge mivelet (a {{4,j} : Xij > 0.50} cstcsokon) elvégzésével
felgyorsithat6, mivel noha a szemi-definit probléma Eq. 4 polinomialis idében megoldhaté, a
gyakorlatban azonban ez idGigényes.

Norma minimalizalds az eredményben. A Dot Product Stratégia azt a két sort M, és M, va-
lasztja ki Merge-elésre, amelyeknek maximalis a skalaris szorzatuk {r, s} = argmax; ; (M;, M;).

8

Ez az eredmény Merge Matrixban az elemenkénti 1—norma® minimalizalasat eredményezi, mivel

\M/Ts\ = |M| — max; j (M;, Mj) = |M| — (M,, M), igy

arg (M)~ e (01, 04 ) = angonin (01] = (04, M) = argomin My (9

A zaré Merge Matrix, ami egy optimalis megoldashoz tartozik, rendelkezik a legkisebb elemenkénti
matrixnormaval az &sszes lehetséges zaré matrix kdziil. Emiatt az elemenkénti norma minimali-
zalasa ésszer(i stratégia. Tovabba egy optimalis zaromatrixnal a szarmaztatott matrixnormak is
minimalisak. Ez a megfigyelés vezetett a szerzs legnagyobb norma csékkentés stratégiajahoz (lasd
Juhos et al. [42]). Specialis esetben ez a Spektralnorma minimalizalasi stratégidhoz vezet, amely
a legkisebb a szarmaztatott normak kozott és ennélfogva jé karakterizacidja egy matrixnak. A
szerz$ a spektralnorma minimalizalasi stratégiat elemezte, amely hatékonynak bizonyult az elem-
zések soran. Mivel a spektralnorma a szarmaztatott 2-normaval egyezik, ezért ezen stratégia
alapja a kdvetkezs

2 (6)

1 . .
Xij = |15 [Mij =0 7
0 i=j

A Spektralnorma Stratégia proba Merge-ket kell, hogy végezzen, ahol az eredmény matrix nor-
maja hatarozza meg a kivalasztasi stratégiat. Ez szamitasigényes feladat. Merikoski és Kumar
megadott tobb hatékony spektralnorma kozelitési formulat. (lasd [54]). Legyen M = A egy
Binary Merge Square ekkor egy kozelités

l, Ai',«,ez
\\A/muz# L1 (o) @

ahol | a sorok szama az A ;; 'préba’ Merge Matrixban. Felhasznalva ezen formula(ka)t a szerz$

adaptalta a Spektralnorma stratégiat és kozelitett Spektralnorma Stratégiakat vezetett be (lasd
Juhos et al. [42]). A kozelitéssel lehet8ség nyilik a valasztasi stratégia kdzvetlen meghatarozasara

8Valojaban az Osszes elemenkénti norma minimalizalasat.
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az aktualis Merge Matrixbél proba Merge-ek nélkiil:

((Asip)ive) = (Aije) + (Aj,e) — (A, Aj)

<(A/z'j)jae> =0 (8)
<(A/ij),«,e> = (A,e)—1 re?

<(A/ij)Tae> - <ATae> r g‘é TuU {27]}

ahol 7 egy index halmaz a A; és A; sorok kdzds egyeseinek pozicisjaval. Igy az Eq. 7 direktben
szamithaté az aktualis Merge Matrixbdl "préba’ Merge-k nélkiil. Tovabba a kozelité formula
ramutat a Dot Product Stratégiaval val6 hasonlésagra. Az Eq. 7 egy hatékony stratégiat alkot
egy T Binaris Merge Table-val is, de itt a direkt szamitasban a harmadik sora az Eq. 8-nak
masként alakul: ((7;;),,e) = (1}, e). Habar, ahhoz hogy az eredeti (kézelits) Spektralnorma
Stratégiat visszakapjunk Binary Merge Table-ra az Eq. 77, a T/ijT/j;j szimmetrikus matrixon kell,
hogy végbemenjen. Ekkor a T);; 'préba’ matrix spektralnorma négyzetét vagy annak kozelitését
kapjuk vissza, amely szintén alkalmas a stratégia megval6sitasara, valamint ez esetben is fennall
a direkt kalkulacié lehet&sége, a préba Merge-k és matrixok elhagyasa mellett.

Métrix tulajdonsigok — Merge Utvonal. A szerzé bevezette a Merge Path-ok fogalmat [42].
A Merge-k nyoman a matrixok tulajdonsagai kovetheték. A kivant matrix tulajdonsagokbdl (pl.
sajatértékek) alkossunk egy tulajdonsagvektort. Képezzék ezek a vektorok az alapjat a kivalasztasi
stratégiaknak (mint példaul a legnagyobb sajat vagy szingularis érték, azaz a spektralnorma). Az
egymast kovet6 tulajdonsagvektorok egy atvonalat, a Merge Gtvonalat hataroznak meg. Az
atvonal elemei Osszefliggésben vannak a szinezés lépéseivel az Gtvonal vége pedig a szinezés

josagaval, amint azt a 7(a)). abra is mutatja. Az idealis atvonal amely optimalis szinezéshez

(12.2,12.4,121.2)
‘ bptimél i 1201 \L
100 Minimised - 4
100 random ————-
Optimal

: ~ = = =Random
2 \L
E iiiii
g N
o) N
0] \\ \ _

\Y \

\ .

- . _ (1,-1:36)
0O 20 40 60 80 100 120 140 160 180 200 20— o — - 2610
Merge steps " - - :

(a) Legnagyobb spektralnorma csékkentés. A (b) Egy 3D Merge Utvonal, amely a harom legnagyobb
gorbék vége meg lett hosszabbitva a kdnnyebb  sajatérték Gtjat mutatja a Merge-ek soran.
Osszehasonlithatosag miatt (vizszintes vonalak).

7. &bra. A sajatértékek alakulisa a Merge-k soran. A tekintett graf 20—kromatikus, egyen-
16en particionalt, 200 cstcsid, 0.64 élstriiséggel amely az Gn. ’phase transition’ teriilet koze-
pén helyvezkedik el. A spektralnorma értéke a zar6 Binaris Merge Square esetén y — 1 = 19,
ha az optimumot elértiik, egvébként ez nagvobb.

9Vagy az eredeti spektralnorma szamitas.
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vezethet nem ismert, mert a feladat egy ilyen Gtvonal megtalalasa. Az optimalis Gtvonal kezd6 és
a végpontjai altalaban ismertek, a szerz6 bevezetett egy altalanos stratégiat amely az optimalis
Merge Utvonal kdzelitésén alapszik (lasd Juhos et al. [42]) felhasznalva egy elézetes tudast. Az
el6zetes tudas megszerzéséhez a szerzé vazolt egy koncepciét a Merge Utvonal intelligens tanulasi
és klaszterezési eljarasokkal val6 6tvozésére (Juhos et al. [36] alapjan).

Kiterjesztett heurisztikdk és meta-heurisztikdk. A szerz6 a nem Merge alapa szinezési straté-
giak egy Merge kiterjesztését hatarozta meg, az illets stratégiak egy megfelels Merge Keretrend-
szerbe val6 beagyazasaval, amelyek jelent8s szinezési teljesitmény javulast okoztak (lasd Juhos
et al. [38]). A kiterjesztet stratégiak teljesitményének elméleti és tapasztalati vizsgalata javulast
mutatott az eredetihez képest. A kiterjesztés a Binaris Merge Square-ek példajan egyszeriien nyo-
mon kovethetd, habar altalaban a kiterjesztés a tobbi Merge Modellben is érvényes. Egy Binaris
Merge Square a szomszédsagi matrixa egy kvéciens grafnak, amely egy egyszer(i graf az eredeti
grafhoz hasonléan. gy egy stratégia amely az eredeti graf szomszédsagi matrixan miksdik, az
egy Merge Square Modellel is képes egyiittmiikddni. Ez lehet&séget biztosit egy dinamikus fe-
lilvizsgalati eljarasra amely soran minden Merge Miivelet utan, a stratégia képes el6z6 dontéseit
megvaltoztatni, azon () informéacidk alapjan amely a keletkezé Merge Matrixban elérhets.

A Merge Modellek strukturalis jellemz&i tamogatast nyGjtanak meta-heurisztikak tervezéséhez
is (lasd Juhos et al. [37]). A szerzé grafszinezési evolaciés algoritmusok szamara definialt a Merge
Table modellek segitségével egy finomitott fitnesz fliggvényt a hagyomanyosan alkalmazott fitnesz
javitasaként. Melynek eredményeként egy simabb optimalizalasi feliletet kapunk, névelve az
optimalizalas hatékonysagat. A (j(n) Jelolje a nem-zér6 elemek szaméat a zar6 Merge Table-
ben (lasd 4. abra), az Gj (-fitness figgvény ekkor f(7) = (kasr) — X)Car(r), ahol M(x) az
a zar6 Merge Table amely a 7 permutaciéhoz és egy mohé szinezéshez tartozik. Ez koveti
az elemenkénti norma optimalizalasi stratégiat a Binaris Merge Table-ben (lasd Dot Product
Stratégia). Tovabba a szerz§ egy mutaci6 operatort is definialt amely a szinezésben a Merge
Modellek alapjan a problémas/nehezen szinezhet6 csicsokat el6reveszi a szinezési folyamatban.

Merge Algoritmusok

A szerz6 kombinalta a Merge Stratégiait a kiilonbézé Merge Keretrendszereivel valamint ele-
mezte ezek teljesitményét (lasd Juhos et al. [35; 37-43]). Az igy keletkezett algoritmusok Gssze-
hasonlitasra keriiltek standard 'benchmark’ eljarasokkal szamos 'benchmark’ grafon. A kisérleti
eredmények igazoltak a szerzé algoritmusainak hatékonysagat, melyek altalaban felilmualtak a
‘benchmark’ eljarasokat kiilondsképpen az an. 'phase transition’ teriileten ahol az igazan ne-
héz problémak talalhatok. Néhany eredmény a kiterjedt vizsgalatbol megtalalhat6 a 8. abran,
ahol az 4j Merge Stratégiak kiilonbdz6 Merge Keretrendszerekbe agyazva keriiltek &sszehasonli-
tasra standard 'benchmark’ eljarasokkal. Az abrakon az algoritmusok jeldlései kdvetik a Merge
Keretrendszerek UC, CU és CC jel6léseit. Az UC Merge Keretrendszerben az UCCCZ;’;’SSS:%C je-

I6lést hasznalva choose — col jeldli a szinezett sor amely elséként keriil kivalasztasra, mig a

choose — unc jeloli a rakdvetkezé szinezett sor kivalasztasi stratégiat. Hasonléképpen van ez
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Uchoose—unc
choose—col

a CU Merge Keretrendszerben is, csak C jeloléssel. Tovabba a CC Merge Keret-
rendszerben a C'C' — CHOOSE, azonositdsban a CHOOSE jeloli az egyetlen sor-par kivalasztasi
stratégiat. A kivalasztasi fliggvények a kovetkezdk szerint jeldltek, a szerzé Merge Stratégiai:
‘dotprod’ - Dot Product; 'cos’ - Cosine; ‘6" - kozelitett Spektralnorma; "Zykovy' - Zykov-fa és
Lovasz-theta stratégial® és 'EAS - evoluciés stratégia a (-fitnesszel, valamint a kivalasztott
‘benchmark’ algoritmusok jelolése: "dsatur’ - DSatur heurisztika és 'Erdés’ - Erd6s heurisztika.
Valamint a 'greedy’ a mohé valasztasi stratégiat jeloli. Az Gsszehasonlitas egységesitése miatt
a 'benchmark’ algoritmusok be lettek agyazva a megfelel6 Merge Keretrendszerbe egy megfelels

Merge Modell felhasznalasaval.

Konklazio

A szerz$ 4] szinezési megkozelitése a grafszinezés hatékony modelljének bizonyult. Jelentds
csOkkentést hozhat az algoritmusok szamitasi igényében. Tovabba egységes és tomor leirasat
biztositja a szinezési eljarasoknak, biztositva ezzel az egységes szerkezetben vett strukturalis
elemzését. Az algoritmusok implementalasa ezen kdzos médon lehet8séget biztosit az egységes
teljesitmény mérésre. Az (j szinezési keretrendszer altalanositja az eddig szinezési sémakat. Ezen
altalanositas kovetkezményeként egy algoritmus beagyazasa a modellbe annak kib&vitése mellett
jelent8s szinezési teljesitmény javulassal is jarhat. Ezen 0j megkozelités 0j informacié kinyerési
technikakat is tamogat amely az algoritmus tervezésben segithet valamint @j iranyokat adhat a
probléma elemzéséhez. A szerzé szamos hatékony szinezési stratégiat és algoritmust mutatott
be valamint ismertetett egy altalanos stratégia készitésre alkalmas médszert amely lehetéséget

biztosit mesterséges intelligenciai eljarasok alkalmazasara a szinezési problémahoz.

A + kitevs jeloli majd a tobbszori él hozzdadas alkalmazasat.
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8. dbra. Az algoritmusok altal atlagosan hasznélt szinek szama az Gn. "phase transition’
teriileten. A vizsgalt grafok: 10-kromatikusak, egvenlGen particionalt véletlen grafok, a
generalasnal az élek valoszintsége a kovetkezdk szerint skdlazott: 0.1 < p. < 0.9. Minden
Pe €lvalosziniiséghez 10 db kiilonbozs graf keriilt elkészitésre, {1,2,...,10} pszeudo véletlen
alapbeallitasok mellett.



THESIS 1 A szerzé a grafszinezési folyamatot kvéciens és hatvanygrafok segitségével, graf
homomorfizmusokon sorozataval definialta (lasd Juhos et al. [37; 41]). A szerzd Kvo-
ciens és Hatvany Médszernek nevezte el az ezen elven alapul6 szinezési médszereit.
A szerz6 megadta ezen médszereknek konkrét megvalésitasait matrixok és azokon ér-
telmezett specialis miiveletek segitségével. Az igy keletkez6 megvalésitasokat Merge
Modelleknek nevezte el. Ezen modellek alkalmazasaval az eredeti probléma transz-
formalédik és az eredeti graf homomorf képei jonnek létre. Az () modellek képesek a
letez6 szinezési algoritmusok leirasara. Egy algoritmus beagyazasa a modellbe jelen-
tésen csokkentheti annak szamitasi igényét. Tovabba a beagyazas az algoritmus egy
természetes kiterjesztését is biztositja, mely annak szinezési teljesitményét névelheti.
A modell ellentétben a tradicionalis sémakkal nem tesz kiilonbséget a szinek és a
csucsok kozott, integralja Sket, mely egy egységes algoritmus szerkezethez vezet ahol
a cslcs és szin valasztas nincs megkiilénbdztetve.

THESIS 2 A szerz$ egységesitette és altalanositotta a szekvencialis szinezés korabbi mo-
delljeit, melyeket harom Merge Keretrendszerben foglalt ssze felhasznalva a Merge
Modelleket [41; 42]. Ezen keretrendszerek egységes és tomor leirasat biztositjak az
algoritmusoknak és ezzel az &sszehasonlitasuk egy egységes Gton megvaldsithaté.
Tovabba a szerz6 Gsszefiiggéseket vazolt fel az egységes leirasbol fakadéan bizonyos
algoritmusok szinezési teljesitménye és leirasa kozott. A meglévé algoritmusok egy
Merge Keretrendszerben valé kifejezésével, kihasznalva az altalanositast, aj algorit-

musok formathatok.

THESIS 3 A szerz6 bemutatta, hogy egy szinezési algoritmus futasi teljesitménye javul
ha azt egy megfelel6 Merge Keretrendszerbe agyazzuk felhasznalva egy megfelel
Merge Modellt. Anélkiil, hogy az algoritmus lépéseit megvaltoztatnak az aj repre-
zentaciénak kdszonhetSen az algoritmus futasi ideje lerdvidiil [38; 40]. A szerzd ezen
javulast elméletileg alatamasztotta és kisérletekkel is igazolta. A kisérletek soran az
an. 'phase transitions’ teriileten, ahol a problémak nehézzé valnak, vizsgalt kiilon-
b6z6 algoritmusokat, kiilonb6z6 Merge Keretrendszerekben. Tovabba megadott egy
médjat létezd algoritmusok természetes kiterjesztésére egy Merge Keretrendszerben
amely a szinezési teljesitmény jelent6s ndvelését hozhatja.

THESIS 4 Minden Merge Modellben a szinezési mivelet az an. Merge Miivelettel lett
helyettesitve. Szamos Merge Stratégiat fejlesztett ki a szerz6, amelyek a Merge M-
veletek hatékony sorozatat generaljak . A Merge Modellek matrix reprezentaciéjanak
kdszonhetben a szerz6 matrix normak segitségével is definialt mar meglévé heuriszti-
kakat egy alkalmas Merge Keretrendszerbe valé agyazas utan, valamint szamos altala
kifejlesztett stratégiait is. A szerzé altal bevezetett stratégiak listaja alabb olvashaté:

— kiterjesztett Hajnal; kiterjesztett Welsh-Powell (oo—norm) [38]
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— Spektralnorma[42]

— kozelitett Spektralnorma [42]

— Dot product (entrywise norms) [38]
— Cosine [38]

— Zykov-fa és Lovasz-theta [35; 43]

A szerz6 ezeket a stratégiakat kombinalta kiilénbdzé Merge Modellekkel és Merge
Keretrendszerekkel és szamos @) algoritmust allitott igy el6. Ezek teljesitményét
Gsszehasonlitotta szamos ismert 'benchmark’ algoritmus teljesitményével. Az Gj al-
goritmusok tébbnyire felilmaltak a "benchmark’ algoritmusokat standard grafokon va-
lamint ezen talmen&en nehezen megoldhaté problémakon, grafokon is, az an. 'phase
transition’ teriileten ahol a teszt grafok alkalmas megvalasztasa nem torzithatta a
vizsgalat eredményét.

THESIS 5 A szerz6 bevezette a Merge Utvonal fogalmat [42]. Egy Merge Utvonal a Merge
Miiveletek soran a valtozé Merge Modell struktara alapjan jon létre. A keletkezé mat-
rixok tulajdonsagai alkotjak az elemeit. Az Gtvonal elemei a szinezés, a Merge M-
veletek lépéseihez kapcsolddnak. A szerzé a Merge Miiveletek alkalmazasi stratégiait
ezen Gtvonal komponensein keresztiil hatarozta meg. Amely mesterséges intelligen-
ciai eljarasok alkalmazasat tette lehetévé a szinezésben, mint példaul gépi tanulas és
klaszterezés [36] alapjan.

THESIS 6 A szerzé beagyazta Merge Stratégiait egy meta-heurisztikus eljarasba, egy evo-
luciés algoritmusba és létrehozta a kdvetkezé komponenseket [37-39; 42] :

— Egy mutaci6 operatort, amely felismeri a nehezen szinezhet6 cstcsokat és els-

reveszi azokat a szinezési folyamatban.

— Egy finomitott fitnesz fiiggvényt a hagyomanyosan alkalmazott fitnesz javitasat
adja, ndvelve ezzel az optimalizalas hatékonysagat.

A keletkez& meta-heurisztikus algoritmusok j6l teljesitettek a 'benchmark’ algoritmu-
sokkal val6 kisérleti 6sszehasonlitasban szamos 'benchmark’ grafon beleértve az an.
'phase transition’ teriiletet is.
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