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Chapter 1

Introduction

The bulk of substances and processes in nature is often characterized by certain
degree of inhomogeneity: one might say, it is rather the rule than the exception.
The most frequently mentioned example is the almost always inevitable presence
of impurities or other lattice defects in crystals. The theoretical description of
this kind of feature of real systems established the concept of disorder, and
started on its way the investigation of the—nowadays wide-spread—disordered
models, which is gently developing to be an independent discipline.

From a theoretical point of view, in systems with many degrees of freedom
one has to distinguish between two cases on the ground of dynamics of random
impurities. If the characteristic relaxation time associated to impurities t; is
comparable to that of thermal degrees of freedom t;, i.e. t; ~ t;, then in
the theoretical description randomness appears just as an additional parameter
among other parameters characterizing the thermal degrees of freedom. In this
case disorder is termed annealed.

The situation is very different, however, if impurities relax much slower than
thermal degrees of freedom: t; >> ;. In the theoretical approaches randomness
is now considered to be time-independent. This is the case of quenched or frozen
disorder. As a consequence disorder has to be treated separately from thermal
degrees of freedom: averaging procedure decomposes into the calculation of
thermal expectational value and the averaging over disorder. In the sequel we
always think of quenched disorder if it is not specified.

Among disordered models special attention was payed for models which ex-
hibit a phase transition, where the obvious question arises, what consequences
the introduction of disorder has (if it has at all) on the properties of pure (e.i.
homogeneous) system. According to the experiences quenched disorder has ef-
fects on the nature of phase transitions in varying degrees. It may lead to the
elimination of the transition by smearing out singularities. Or it may cause the
change of order of the transition: a first order transition can turn to a continuous
one. In case of a continuous transition (which is not “smeared out” by random-
ness), a basic question was, how universal properties, such as critical exponents
are influenced by disorder. Here, a heuristic relevance-irrelevance criterion was
formulated by Harris for diluted systems, which was generalized to other kinds
of random models [43]. Intensive numerical and analytical work has started to
clarify the universality class of various disordered models, including those which
have a discontinuous transition in their pure form.
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Besides classical transitions, also zero-temperature quantum phase transt-
tions attracted much interest, where the critical behavior in random systems is
formed by the interplay between disorder and quantum fluctuations instead of
thermal ones, leading to a new mechanism for phase transitions, which differs
in many respects from the activated dynamics in thermally driven transitions.
Quantum fluctuations are more pronounced in low-dimensional systems, such
as spin chains, where a remarkable progress was achieved by an asymptotically
exact real-space renormalization group scheme developed for the random Heisen-
berg chain by Ma, Dasgupta and Hu [89]. This method was then extended to
other random quantum spin chains including the random transverse-field Ising
spin chain by Fisher [33, 31, 32]. In these systems a new type of coarse-grained
behaviour was found. By coarse-graining, most systems flow toward a fixed
point, where the ratio of local parameters in the Hamiltonian remains finite.
Contrary to this it turned out, that in these quantum spin chains, the distribu-
tion of parameters becomes arbitrarily broad on a logarithmic scale as the fixed
point is approached. The ratio of parameters is typically infinite or zero here,
and the system is governed by an infinite-randomness fized point.

Disorder was found however to influence not only the critical behaviour.
Griffiths and McCoy pointed out in the random classical [37] and quantum Ising
model [91], respectively, that there exists an extended region around the critical
point, where several physical quantities are singular. The origin of Griffiths
phase (also termed as a line of “semicritical fixed points”) are the fluctuations of
disorder. The so called Griffiths-McCoy singularities are much more enhanced in
quantum systems, where statics and dynamics are inherently linked. According
to a phenomenological scaling theory the origin of singular behaviour of all
quantities studied so far, were reduced to a common physical ground.

One might think, among disordered models those with infinite randomness
are less tractable. For models governed by a finite-randomness fixed point, dis-
order can be treated as a perturbation of the pure behaviour, and perturbative
methods are sometimes applicable. For the study of models with infinitely strong
randomness, perturbative techniques obviously cannot be developed. Instead of
this, a large amount of information can be extracted from these systems, (sur-
prisingly, in certain cases more is known about disordered models than about
corresponding pure ones), via methods exploiting that disorder completely dom-
inates and prescribes the physics close to the fixed point.

This latter type of randomness, i.e. the infinitely strong one, is the main
subject of the present work. We shall discuss two related issues. In the first
part of the thesis we deal with the singular behaviour of random quantum spin
chains at criticality and in the Grrifiths phase, whereas in the second part a
classical model, the random-bond ¢-state Potts model is studied in a special
limit, where thermal fluctuations become irrelevant. A common feature of both
problems, that the critical behaviour is strongly dominated by fluctuations of
disorder as opposed to quantum fluctuations (resp. thermal fluctuations in the
classical model). The new results presented in this work were published in Refs.
[54, 112, 55, 53, 70].

The outline of the thesis is the following. In Chapter 2 we shortly summerize
the theory of critical phenomena in disordered classical and quantum systems,
and give a general phenomenological description of Griffiths phase.

In Chapter 3 previously known results on the random transverse-field Ising
chain are reviewed, including the free-fermion description of the model, the



relation with random walk, and the phenomenological scaling theory of the so
called rare events.

In Chapter 4 we present our numerical and phenomenological results on the
Griffiths phase of random transverse-field Ising spin chain. We consider here
quantities, the singular behaviour of which is not trivially related to that of the
energy gap, such as the second energy gap, non-linear susceptibility, and energy-
density autocorrelation function. By using phenomenological scaling arguments
we relate the exponents describing the singular behaviour of the above quantities
to the dynamical exponent. In the free-fermion picture closed forms for these
quantities are derived, which are then analysed numerically. The numerical
results support the validity of scaling considerations.

Subsequently we extend the Ma-Dasgupta-Hu type real-space renormaliza-
tion group scheme to the Griffiths phase, which is presented in Chapter 5.
We give an analytic solution for the flow equations of the random transverse-
field Ising chain in the Griffiths region, where we show that the procedure is
asymptotically exact, and the dynamical exponent stays invariant during renor-
malization. By the help of this an exact expression for the determination of
dynamical exponent is given. On the ground of phenomenological considera-
tions we propose the above assertions to be generally valid for quantum spin
chains. In order to check this we solve numerically the renormalization group
flow equations of random quantum Potts chain. Our results are compatible with
theoretical considerations.

Chapter 6. is devoted to the study of random XY- and random dimerized
XX chain. Here, we develop a phenomenological theory of average quantities,
which relies on the scaling behaviour of rare events. Establishing a relation
with random walks, rare events are identified as regions corresponding to sur-
viving walks. By the help of this theory we determine the complete set of bulk-
and surface critical exponents. These are than compared to numerical results
on operator-profiles obtained by using the free-fermion representation. We find
critical order parameter profiles follow the conformal predictions, if we use the
exponents obtained from phenomenology. Furthermore we determine the aver-
age behaviour and the distribution of dynamical correlations at criticality and
in the Griffiths phase. Using the decoupling of models under study into two
Ising chains, we give an analytical expression for the dynamical exponent.

In Chapter 7 we turn to study the g-state random Potts model, where after
appropriate parameterization the ¢ — oo limit is sensible, and the magnetization
exponent is known to converge to a finite value. Contrary to previous finite-gq
calculations we perform here a direct investigation in the ¢ — oo limit by the
help of random cluster representation of the model. We show that in this limit
thermal fluctuations becomes irrelevant, and critical behaviour is determined
by a single dominant graph in the geometric representation of the model. To
find this graph is equivalent to an optimization problem of a non-convex cost-
function defined on the set of graphs. We solve this problem by a stochastic-
and a combinatorial optimization method, and analysing the fractal properties
of dominant graph, we give a more accurate estimation for critical exponents,
than previously.
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Chapter 2

Criticality and disorder

2.1 Critical phenomena

In the present work we deal with continuous phase transitions of disordered
models. These phase transitions have to be discussed in the light of critical
phenomena in pure systems, irrespective whether the corresponding pure system
undergoes a first- or a second order transition. Therefore we review a few basic
notions connected with critical phenomena in pure systems, before we turn to
discuss the consequences of randomness in the next section.

2.1.1 Critical exponents

We consider here a pure system with many degrees of freedom and short-range
interactions between them, which possesses a continuous phase transition. To
quantify the deviation from criticality one introduces a control parameter 0,
which is zero at the transition. In thermally driven phase transitions it is the
reduced temperature, but in general it may be some other parameter of the
Hamiltonian.

The system is characterized by a continuous function of 4, the order parame-
ter, which is non-zero at one side of the transition (6 < 0), called ordered phase,
and vanishes otherwise. The opposite side of critical point is termed disordered
phase. In the sequel we deal with magnetic phase transitions, which are con-
nected with the vanishing of magnetization. Here the local order parameter
density is the local magnetization

. of
(i(x)) = — =L 21)
where the local external field h(r) couples to to the local magnetization operator
m(r) in the free energy density f(r). Here and in the following (...) denotes
thermal expectation value, which reduces at zero temperature to ground state
expectational value.

The bulk two-point correlation function for the magnetization operator is
obtained by taking the functional derivative of the free energy with respect to
the position-dependent field

F

(2.2)
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It has the asymptotic behaviour lim, o, C(r,8) = (i (0)){m(r)), since the local
order parameters are asymptotically uncorrelated. The ordered phase is char-
acterized by {(m(r)) # 0, meaning, there is long-range order (LRO), while in the
disordered phase {(mi(r)) = 0 and there is short-range order (SRO). Counsidering
the connected part of correlation function, i.e. the spatial correlation of fluctu-
ations around the average, Ceon(r,8) = {((m(0) — (1(0)))(m(r) — {m(r)))), one
observes in both phases:

Ceon (7,0 # 0) ~ e77/¢, (2.3)

where £ is the correlation length. This is the distance over which the fluctua-
tions of microscopic degrees of freedom (here the local order parameters) are
significantly correlated with each other. (Note that Ceon(r) = C(r) for 6 > 0.)

Close to criticality the singular part of thermodynamic quantities are de-
scribed by power-laws, where the powers are called critical exponents. A critical
point is hallmarked by an infinite correlation length, which close to the transi-
tion diverges as

E~107", (2.4)

where v is the correlation length exponent. Strictly at criticality (6§ = 0) £ is
infinite, and the bulk correlation of the order parameter has an algebraic decay,

C(r,0) ~ 777, (2.5)

where 1 is the decay exponent. This type of behaviour of correlation is called
quasi-long-range order (QLRO). The bulk order parameter (simply denoted by
m) vanishes in the ordered phase close to the transition as

m ~ (=6)°, (2.6)
where 3 is the order parameter exponent. The specific heat ¢ = g%{ diverges as
¢~ 1872, (2.7)

with «, the specific heat exponent. Perturbing the system by an external mag-
2

netic field h, leads to the divergence of the susceptibility y = % following the

scaling law

x ~ 1677, h — 0. (2.8)

At 6 = 0 the order parameter vanishes with A like
m ~ W/, (2.9)

Close to the surfaces of the system (if there are any) various properties may
behave differently as in the bulk. This necessitates the introduction of the analo-
gous surface critical exponents, through the singular behaviour of corresponding
surface quantities, e.g. my ~ (—=8)?", where mj is the surface magnetization.

In most cases the critical exponents are fully specified by the symmetry
properties of the model under consideration, and do not depend on microscopic
details of interaction. This allows phase transitions to be categorized into dif-
ferent universality classes.
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2.1.2 Scaling

The power-low form of quantities in terms of parameters 4, h etc. measuring the
deviation from critical point, is linked to the self-similarity of critical fluctuations
inside the correlation volume £?. The system is then covariant under a global
change of the length-scale and singular quantities are homogeneous functions of
their arguments. These properties form the basis of the scaling hypothesis.

When lengths are rescaled by a factor b > 1, i.e. when r — r/b, the scaling
fields (8, h) are changed by a factor b~ where z is the scaling dimension of
conjugate quantities. When d — x > 0 (< 0) the corresponding scaling field
grows (decreases) under rescaling. Such a field is said to be relevant (irrele-
vant) whereas it is marginal when z = d. The system becomes invariant under
rescaling only when the relevant scaling fields vanish which corresponds to the
critical point. Since irrelevant variables finally vanish under rescaling, only rel-
evant and marginal scaling fields influence the critical properties, the marginal
ones generally leading to varying exponents.

Assuming that the only relevant scaling fields are § and h, the free energy
density is a homogeneous function of its variables and transforms as

f (5, h, %) =p7if (bl/”d, bi—omp, %) , (2.10)

where x,, is the scaling dimension of magnetization. The critical behaviour of
conjugate quantities and their derivatives can be deduced from (2.10), and the
corresponding exponents are all related to z,, and v, as follows:

o = 2—dv (2.11)
8 = vy (2.12)
v o= v(d-2zm) (2.13)
o = %-1 (2.14)
no= 2. (2.15)

Relation (2.12) can be recovered from the second ¢ derivative of both sides of
(2.10) at h = 1/L = 0 and taking b = 67%. From (2.10) it follows for the scaling
form of magnetization

1 _ = &m 1/vs pd—zm E
m (5,h,L> =b"""m (b 8,0 h, 7)) (2.16)

Taking now h = 1/L = 0 and b = 67" one gets (2.13). Similarly, putting

6=1/L=0and b= h¥=—7 one obtains (2.15). From (2.10) the scaling form
of susceptibility is

X (5, h, %) = by (bl/”d, b h, %) : (2.17)

Taking h = 1/L =0 and b = t" one arrives to (2.14). The transformation law
of the two-point function follows from (2.10) and (2.2)

C(r,8) = b‘g’”"C(%,bl/”(S). (2.18)
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Now with the choice § = 0 and b = r relation (2.15) is recovered. At the critical
point singularities are supressed by a finite L. Finite-size scaling exploits the
way they develop when L — oo in order to determine the critical exponents.
For example choosing § = h =0 and b = L in (2.16) gives

m o~ L4, (2.19)

2.1.3 Conformal invariance

Covariance under conformal transformations [11, 46] is expected to hold at the
critical point of systems with short-range interactions, which possess transla-
tional and rotational symmetry and are invariant under uniform scaling.

A conformal transformation r — r'(r) can be viewed as a generalization of
uniform scaling, where the local structure of the lattice (i.e. angles between
curves) is preserved, but the rescaling factor b(r) is a smooth function of posi-
tion. It follows from the Jacobian of the transformation as b(r)~¢ = det(dr'/0r).
Since local fields transform as h(r) — h'(r') = b(r)?=*h(r), two point correla-
tion function in (2.2) transforms like

(ria(ry)io(r2)) = b(ry) ™™ b(ry) = (i (v )i (r5)) (2.20)

under a conformal transformation. The conformal group for d > 2 is finite-
dimensional and contains rotations, uniform dilatations, translations, inversions
and the special conformal transformation

r r

W = 7'_2 -+ a, (221)
which is a composition of previous ones. It is especially useful, since a semi-
infinite system with a flat surface containing the origin is invariant under (2.21)
if a parallel with the surface, and the covariance under such an infinitesimal
transformation determines the form of critical two-point functions.

In two dimensions the conformal group is isomorfic with the group of com-
plex analytic functions w(z). Therefore it is infinite-dimensional and the local
dilatation factor is |dw/dz|™'. A frequently used conformal mapping in two
dimensions is the logarithmic transformation

L
w= o In z, (2.22)
which maps the infinite z plane onto a periodic strip of width L and infinite
length. Applying (2.22) on the correlation function (2.18) at criticality, it can
be shown, that the correlation length £ along the strip is related to the scaling

dimension x,, via 5
_ T
&= 7 Tm- (2.23)

Furthermore the above procedure allows to determine the boundary-induced
operator profiles [57, 129, 56].

If a disordered system has the required symmetry properties on average, then
the results of conformal invariance are expected to hold for the corresponding
average quantities. When some of the symmetries quoted above are broken,
then some of the results associated to conformally invariant systems still hold,
like the relation (2.23) as observed in specific examples [57].
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2.2 The effects of disorder

In this section we discuss the question how randomness affects the phase tran-
sitions. We shall use through and through the terminology of renormalization
group (RG) theory which is a useful tool in the theory of phase transitions.
Generally in real-space RG methods a partial trace (i.e. trace over a fraction of
degrees of freedom) in the patition sum is performed. After this in some cases
it can be replaced by an effective Hamiltonian which has the same structure as
the original one, however with different parameters and a reduced number of
degrees of freedom. The iteration of this procedure is then leads to the chang-
ing of parameters in the Hamiltonian, which can be illustrated in the parameter
space by the so called RG trajectories. A point in the parameter space which
is left invariant by the transformation is called a fized point. The phase dia-
gram can be divided into attractive basins of fixed points, from any point of
which the system flows to the same fixed point. In such a region the large-scale
behaviour is described by the properties of the fixed point. The decreasing of
degrees of freedom during the RG transformation corresponds to the rescaling
of correlation length. Therefore in a fixed point the correlation length must be
either zero or infinite. The former ones are called trivial fixed points and these
control the ordered and disordered phases, whereas the latter are the critical
fixed points controlling the system on the critical surface.

Relevance-irrelevance criteria For continuous phase transitions perturba-
tion expansions were developed [86, 87, 88, 28, 82] to treat the effect of weak
disorder and also a heuristic relevance-irrelevance criterion on the stability of
a pure system fixed point against weak disorder is known[43], which was origi-
nally derived in diluted systems, but can be generalized to other kinds of random
systems. The Harris-criterion predicts the randomness, which couples to the
energy density, to be relevant, if

v <df2, (2.24)

where v is the correlation length exponent of the pure system. In this case
the system flows to a new disordered fixed point in the parameter space (see
later). While if v > d/2, randomness is irrelevant, and the critical behaviour is
governed by the pure system fixed point. Note that the above criterion takes
into account only the immediate vicinity of the pure system fixed point, i.e. it
concerns only weak disorder. It can happen that a model is stable against weak
disorder, however sufficiently strong randomness brings it to a new fixed point.
Such a behaviour can be observed e.g. in the one-dimensional Ashkin-Teller
model and the quantum-clock model [13].

The effect of quenched disorder at a first-order transition point is compar-
atively less understood than the same phenomena at a continuous transition
point. Here neither a general relevance criterion, nor a consistent perturbation
expansion is known to apply around the discontinuity fixed point of the pure
model. One remarkable exception is the stability criterion by Aizenman and
Wehr [2] (based on an idea of Imry and Wortis [64], see also by Hui and Berker
[50]), which rigorously states that in two dimensions any amount of quenched
disorder will soften the first-order transition in the pure system into a continuous
one. In three dimension the same criterion predicts a cross-over phenomenon:
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generally the transition stays discontinuous for weak disorder, whereas it turns
to a second-order one for sufficiently strong disorder [21].

Irrelevant disorder If quenched disorder is irrelevant, the system is spa-
tially inhomogeneous on a microscopic scale, but by coarse-graining it, becomes
asymptotically homogeneous on macroscopic scales. The coarse-grained be-
haviour is thus equivalent with that of the corresponding pure system, and the
system belongs to the pure system universality class.

If randomness is relevant, the resulting disordered fixed points can be further
classified on the basis of the coarse-grained behaviour of the system in the low-
energy and long-wavelength limit[96].

Finite randomness fixed points One possibility for the system by coarse-
graining it is to remain inhomogeneous also on macroscopic scales, however
with finite relative magnitude of inhomogenities (i.e. ratio of parameters in the
Hamiltonian) in the long-wavelength limit. In this case the system is said to be
governed by a finite randomness fixed point.

Infinite-randomness fixed points An other possible scenario by coarse-
graining a random system is that the relative magnitude of inhomogenities does
not remain finite, but grows without limits. In these systems the distributions of
the logarithmic magnitudes of the terms in the Hamiltonian become arbitrarily
broad, as the energy scale tends to zero. The critical behaviour is controlled
by an infinite-randomness fized point (IRFP). Broad distributions involve the
lack of self-averaging. Considering finite samples of size N, the thermal average
of a quantity X is obviously sample-dependent in a quenched random system.
Therefore, if one is interested in the average quantity, one has to perform an
additional average over the disorder configurations, which is called quenched
disorder average. We shall denote by [...]ay in the following. The sample-to-
sample fluctuations of X can be described by the normalized variance:

[Xg]av - [X]gv

DN(X): [X]g

(2.25)

If Dy(X) — 0 in the thermodynamic limit N — oo, then X is said to be self-
averaging and a sufficiently large sample is a good representative of the whole
ensemble. Contrary if Dy (X) tends to a finite limit, the sample-to-sample
fluctuations remains finite, and any sample, no matter how large, is never a
good representative of the ensemble. In this case X is called non-self-averaging,
and in order to characterize X, its whole distribution is needed.

There are only few models known, where the critical behaviour is controlled
by an IRFP. Most of them are one-dimensional quantum chains at zero temper-
ature: random singlet states of certain antiferromagnetic chains, the quantum
critical point of random transverse-field Ising (and Potts) chains or the Haldane
state in the random spin-1 Heisenberg chain. In addition to chains we men-
tion here spin—% ladders, which exhibit essentially one-dimensional behaviour,
as well [84, 97]. Later it turned out that also the quantum critical behaviour of
higher-dimensional systems, such as the d = 2 and d = 3 random ferromagnetic
transverse-field Ising model, is governed by an IRFP [96].
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2.3 Classical spin models with quenched disor-
der

Here, we introduce two simple but non-trivial classical spin systems, which are
basic for the theoretical study of critical behaviour with quenched disorder. The
simplest and historically first studied spin system having a continuous phase
transition, is the Ising model [65]. It is defined by the Hamiltonian

H= —JZaiaj - hZai, (2.26)
(i) ¢

where ¢; = +1 is a classical Ising spin attached to site 7 of a d-dimensional
lattice, and the first sum is taken only over nearest-neighbour spins. The short-
range interaction tends to align neighbouring spins if J > 0 (the case of Ising
ferromagnet), while for J < 0 antiparallel orientation is favorable (Ising antifer-
romagnet). Below a critical temperature T, the system possesses two ordered
phases with non-zero per site magnetization m = (¢). (See the phase diagram
in Fig. 2.1.) The phase boundary h = 0 ends in a critical point at T' = T..
Disorder is introduced in (2.26) via the

parameters J and h: h
H= - Z Jzijdi()'j —Zhw’i, (2.27) TTT
<G> ¢l ________ ——
where, now, .J;; and h; are quenched random L ¢ l L T
variables. Hereby one obtains the various

random Ising models.

An important generalization of (2.26) (in
the sense that more than two values of spin
variables are allowed) is the g¢-state Potts
model,

Figure 2.1: Phase diagram of the
Ising ferromagnet. Crossing the
dashed line the system undergoes

a first order transition. A critical
Hpops = — Z Jijo(oi, 05) — Z hid (o, 1), point is located at T =T, h = 0.
i

(i)
(2.28)
where the classical Potts spin oy, is allowed to take ¢ different values o; =
1,2,...,q and 6(4,j) is the Kronecker symbol. For ¢ = 2 one recovers the
Ising Hamiltonian (2.26) up to a multiplicative and an additive constant. Other
notable special case of (2.28) is bond-percolation, which can be regarded as the
suitably defined g — 1 limit of ¢g-state Potts model [132].

For h = 0 the pure Potts model has a low temperature ordered and a high
temperature disordered phase. In between them a phase transition point takes
place, which is of first order, if ¢ is above some dimension-dependent critical
value ¢.(d) < g, otherwise it is continuous. However, even in the former case
the transition softens to a continuous one in the random bond Potts model [2].

Diluted models

The simplest realizations of systems with quenched disorder are the diluted mag-
nets. These systems may be interpreted as a binary alloy with a magnetic and
a non-magnetic component, which occupy the lattice sites randomly. The two
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Te PM

FM

Figure 2.2: Phase diagram of a diluted ferromagnet. The ferromagnetically ordered
phase is denoted by F'M, whereas the paramagnetic phase by PM.

relevant parameters of such a system are the temperature and the concentra-
tion of, say, the non-magnetic component p. The phase diagram is depicted in
Fig. 2.2. The line T = 0 of the phase diagram corresponds to the problem
of site-percolation. Decreasing p from one towards zero, p. is the first value
where an infinite cluster of magnetic atoms appears (in an infinite system). The
singular point, p,, is a geometric analogon of continuous phase transitions. For
example the density of the spanning cluster playing the role of order parameter
vanishes as p ~ (p. —p)P» close to p.. Below a certain concentration, p., the sys-
tem has a long-range ordered phase at low enough temperature, while above p,
there does not exist any long-range order. Crossing the separatrix a continuous
phase transition occurs, which belongs to different universality classes at T'= 0
(percolation) and at p = 0 (pure ferromagnetic system). In the intermediate
region 0 < p < p. the critical exponents are constant. If dilution is irrelevant,
the systems on the separatrix flows to the attractive pure system fixed point
and the exponents agree with that of pure one. If dilution is relevant, a new
attractive fixed point appears on the phase boundary which controls the whole
region 0 < p < p., and characterized by different exponents than that of pure
one.

A particular diluted model is the bond-diluted Ising ferromagnet, obtained
by putting h; = 0 and J;; = 0 with probability p and Jy; = J > 0 with
probability 1 — p in (2.27).

Random field models

The second important class is the family of random field models. Considering
(2.27) with J;; = J and hy’s as independent random variables with zero mean,
(drawn from, e.g. a Gaussian distribution with variance hg) one obtains the
random field Ising model. There is a competition between the two terms in
the Hamiltonian at 7' = 0: the interaction tends to align neighbouring spins,
while external fields try to pin the spins according to the sign of local field.
Fixing the the value of the exchange coupling J, the two relevant parameters
are the variance of the field distribution hy and the temperature T'. The phase
diagram looks similar to that of diluted models (one should replace p by hg).
For sufficiently small hg and T the interaction term wins and the system is
in its ferromagnetic phase with non-vanishing magnetization. As opposed to
dilution, random field is always a relevant perturbation. Finding the ground



2.4. PHASE TRANSITIONS IN QUANTUM SYSTEMS 13

state is an optimization problem and since the T' = 0 fixed point controls the
whole critical line, the structure of the ground-state gives some insight into the
finite-temperature behaviour, as well.

Spin glasses

The paradigms of quenched disordered systems are the spin glasses [6]. These
are different from other random systems in many respects: at the transition the
non-linear response functions diverges, dynamics is rather slow in the spin-glass
phase and near the transition, they are characterized by a “random” order pa-
rameter and the “chaotic” behaviour of correlations as a function of temperature
can be observed.

A particular spin glass model is the Ising spin glass. It can be originated
from (2.27) by choosing h; = 0 and J;; = +J with probability 1 — p and p,
respectively. So both ferromagnetic and antiferromagnetic couplings are allowed
between pairs of spins.

The phase diagram (Fig. 2.3) is richer P
than that of diluted models. In addition to

ferromagnetic, antiferromagnetic, and para-
magnetic phases a spin glass (SG) phase ap- AF
pears at low enough temperature and at in-
termediate concentration of antiferromagnetic
couplings. The two main physical ingredi-

ents controlling this region are the quenched
disorder and the frustration. This later means

that not all terms in the Hamiltonian can be
minimized simultaneously. These lead to a
rugged multi-valley structure of the energy-
landscape with exponentially many local min-

ima having approximately the same energy. 0

SG PM

FM

The finding of the true minimum (or min- T
ima if degeneracy is possible) is an optimiza-~

tion procedure again. The microscopic pic- Figure 2.3: Phase diagram of
ture behind the spin-glass behaviour is that the three-dimensional Ising spin
the samples consist of small ferromagneti- 8lass on a cubic lattice. —In be-
cally ordered islands, the momenta of which ~ feen ferromagnetic- (FM) and al-
point to random directions. Therefore in tiferromagnetic (AF) phase a spin
this phase the conventional order parameter Eg(lai%pha;eo(SG) takes place, where
is zero [(0)]ae = 0. However [(0)2]as # 0, 777

while in the paramagnetic phase it vanishes, so this quantity is suitable for
order parameter.

2.4 Phase transitions in quantum systems

So far we quoted examples for phase transitions in classical (spin) systems. Now
we turn to the survey of phase diagrams of quantum-mechanical systems. First
we deal with features, which are characteristic also for pure quantum models,
while phenomena caused by randomness are discussed in the next section.
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In the classical disordered systems in the previous section two antagonis-
tic effects are present: On the one hand there were short-range interactions
between spins, which enforce ordering, and on the other hand thermal fluctua-
tions, which try to destroy the order. At criticality these two conflicting effects
are in some sence in equilibrium. Furthermore there was an other ingredient, a
parameter (dilution, variation of random fields, concentration of antiferromag-
netic couplings), which can be used in order to tune the critical temperature.
In a quantum-mechanical model all these effects may be present, as well. What
makes the situation much different is that the Hamiltonian describing the sys-
tem contains non-commuting local terms. This leads to quantum fluctuations
and gives an entirelly different way for the relaxation of the system, via quantum
tunelling.

We now discuss the influ-
ence of quantum fluctuations on
the critical behaviour of the sys-
tem. We first argue that they
are irrelevant at finite-tempera-

quantum ture transitions. In order to do

disordered this, one has to compare the

‘Eﬁg‘gg QCP @agnit}lde of thermal fluctua-
/ tions with that of quantum fluc-

tuations. The former is given
by the thermal energy per de-
gree of freedom, which is of or-
Figure 2.4: Phase diagram of a quantum sys- der kg1, while the later is mea-
tem. A quantum critical point (QCP) is located sured by the zero-point quan-
at T =0, A=A, tum of energy, which is hw,, if
the characteristic frequency of fluctuations is w.. It is known, that close to
the transition the correlation length £, becomes infinite, according to (2.4). At
the same time fluctuations become very slow, and the relaxation time diverges,
which is known as ”critical slowing-down”. The characteristic time scale, which
is set by the relaxation time close to criticality, and the characteristic length
scale, given by the correlation length, are connected as

T~ € (2.29)

where the exponent z, defined in this way, is called dynamical exponent. By the
help of (2.4) and (2.29) one obtains for the characteristic frequency

1
We ~ =~ [0]"*. (2.30)
At a finite T, quantum fluctuations are negligible if fiw, <« kpT,, or equiva-
lently

18] < T, (2.31)

which can always be satisfied close enough to the transition for finite 7,. Hence
for any finite T, the transition is therefore classical.

Suppose there is a parameter A, by which the transition temperature can
be tuned, and after all, at some value A., T, is forced to zero. (See phase
diagram in Fig. 2.4.) We see, that the width of the region, where (2.31) is valid,
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shrinks to zero as T, — 0 (Fig. 2.4). If T, = 0 a new universality class emerges,
which differs from the classical one. Changing A along the line 7' = 0 a quantum
phase transition (QPT) occurs at A = A, which is triggered purely by quantum
fluctuations. At T = 0 no heat bath exists, and thermally activated hopping
in the energy landscape is replaced by tunelling through barriers. A so called
quantum control parameter measuring the deviation from quantum critical point
can be conveniently defined as § = %

So for finite T, the critical behaviour of a d-dimensional quantum system
is equivalent with that of a d-dimensional classical system. Contrary to this,
strictly at the quantum critical point (QCP) the physics is described by a (d -+
1)-dimensional classical action, where the extra dimension corresponds to the
imaginary time 7 = it of the quantum-mechanical problem. The reason for
this connection is the Suzuki-Trotter transformation [125]. The main idea of
Suzuki-Trotter mapping is, that the imaginary time evolution operator of a
d-dimensional quantum model, which is Hermitian, can be viewed as a transfer-
matrix of a (d + 1)-dimensional classical model, in the anisotropic limit where
the lattice spacing in the transfer direction vanishes. In this case the quantum
model is called the Hamiltonian limit of the classical model, while the later is the
lattice representation of the former. The extension of the classical system in the
transfer direction is h/kpT, where T is the temperature of the quantum model.
For T, # 0 the correlation length in the imaginary time direction is limited
by 7i/kpT., and the critical behaviour is controlled by the diverging correlation
length in space dimensions. So the behaviour is like that of a d-dimensional
classical system. For T, = 0, however, correlations in the temporal direction
can grow unlimitedly. Therefore the system behaves as a (d + 1)-dimensional
classical one.

In quantum models relation (2.29) is a consequence of the fact, that statics
and dynamics are inextricably connected, since both statical properties and dy-
namics of the system are determined by the Hamiltonian. According to Suzuki-
Trotter mapping the imaginary time of a quantum model can be viewed as
additional spatial dimension of a classical model. Thus, it is supposed that
the correlation length in this direction (the relaxation time) diverges simultane-
ously with spatial correlation length near criticality, as given in (2.29). In pure
systems the dynamical exponent is one, z = 1, which corresponds to the equiv-
alence of time and space, and also corresponds to a linear dispersion relation,
which is indeed the case for the exactly solvable one-dimensional transverse-field
Ising model.

In order to illustrate the relevance of QPT’s one mentions the metal-insulator
transition in three-dimensional doped semiconductors [81] or the superconducting-
insulator transition [85]. In both cases the control parameter is the concentra-
tion of impurities. Other examples are the quantum spin glasses [117, 6], where
the control parameter is an external thermodynamical parameter, such as the
strenght of the magnetic field.

2.4.1 Transverse-field Ising model and quantum Potts model

For concreteness we introduce here the simplest model possessing a QPT. As the
prototype of thermal phase transitions is the classical Ising model, the protoype
of systems possessing a QPT, is the transverse-field Ising model (TIM). It is
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defined by the Hamiltonian:

H=->Y" Jjoioi =Y ha}, (2.32)

<if> i
where ¢? and ¢} are Pauli matrices, representing a spin sitting on site i of a
d-dimensional hypercubic lattice. The first sum in (2.32) runs over only nearest-
neighbour pairs of sites. This model is the Hamiltonian limit of the classical
Ising model in (2.27). For later convenience we introduce here immediately the
random version of TIM, where exchange couplings, J; and external fields h; are
independent random variables.

Since [07,07] # 0 for all ¢, (2.32) is genuinely a quantum-mechanical model.
The interaction term tends to order the spins along the x-axis, while the trans-
verse fields, coupled to o}, try to flip them to the z-axis hence they tend to
destroy the order. If the exchange couplings are positive, the interaction prefers
a parallel orientation of neighbouring spins, and the order is ferromagnetic, while
if they are negative, the antiparallel alignment is favourable, and it is the case
of an antiferromagnet. By allowing both ferromagnetic and antiferromagnetic
couplings, one gets the quantum Ising spin glass. (The sign of h;’s can always
be gauged away by local spin rotations around the z-axis.)

Now we consider the pure ferromagnetic TIM, i.e. J;; =.J > 0 and h; = h.
Fixing J, the quantum control parameter is defined as § = h;h“, where h, is
the dimension-dependent critical value of the field h. In any dimension at zero
temperature the TIM has a ferromagnetically ordered phase with non-zero mag-
netization for 6 < 0, while if § > 0 the system is in its paramagnetic phase with
vanishing magnetization. The two regions are separated by a quantum critical
point at § = 0. If the dimensionality of the system is below the lower critical
dimension d,, which is between two and three, the system is paramagnetic at
any finite temperature, while if d > d., the ferromagnetic order holds on also
for finite temperatures.

Quantum fluctuations are introduced in this model by the presence of trans-
verse terms: If h was zero, the interaction term would be diagonal in the z-
representation, the ¢” operators could be replaced by its eigenvalues, and the
model would be equivalent to the classical Ising model, with a unique ground
state (in small symmetry breaking longitudinal field). On the other hand if
interaction were switched off, the spins would be pinned by external fields, and
the ground state would be classical again.

If J is non-zero, and the field is switched on, H is no longer diagonal in the
z-representation, and the model becomes quantum-mechanical. The ground-
state will be a superposition of classical states, which describes the quantum-
mechanical tunelling between local minima of the classical energy-landscape.
Quantum fluctuations which manifests itself in tunelling are the strongest at
the critical point § = 0.

As we have already mentioned, the lattice representation of (2.32) is a clas-
sical d+ 1-dimensional Ising model with ferromagnetic interactions in the extra,
temporal direction:

BHiassical = — Z Z Kijai(T)Uj(T) - ZZ KiO'i(T)Ui(T + 1)a (233)

T i

where 7 = 1,2,..., L, refers to slices of the (imaginary) time direction. The
reduced interactions, K;; are the same in all time slices. The couplings in (2.33)
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are related to that of the quantum Ising model, as K;; = ArJy;, exp(—2K;) =
tanh(A7h;), where A7 is the width of a time slice. The extension in this direc-
tion is equal to the temperature of the quantum model: L, A7 = 3. Performing
the Hamiltonian limit A7 — 0 leads to K;; — 0 and K; — oo in (2.33). At
criticality the universal properties are not affected by A7, and (2.33) belongs to
the same universality class as the TIM.

A generalization of TIM is the g-state quantum Potts model. 1t is defined by
the Hamiltonian

1, =
H ==Y qJié(nin;) - ZghiZMf, (2.34)
() i k=1

where the ¢ x ¢ matrix M; given in (B.3) flips the Potts spin at site 4, the states
of which are labelled by |n;), n; = 1,2,...,4. This model is the Hamiltonian
limit of the classical ¢g-state Potts model given in (2.28), and it reduces to (2.32)
for g = 2.

2.4.2 Quantum phase transitions in the presence of disor-
der

So far we have concentrated on the quantum critical behaviour of pure systems.
Now we sketch here what differences to the pure quantum critical behaviour
may arise by the introduction of disorder. We illustrate this through the random
variant of TIM in (2.32), where the exchange interactions J;; and external fields
h; are independent, random variables, drawn from some distributions, #(J)dJ
and p(h)dh, respectively.

Throughout this work we are dealing with lattice models, in which random
variables at different lattice sites are uncorrelated, although the question of cor-
related disorder is also a subject of intensive research[130, 111]. Another feature
is that, random variables are identically distributed in space. The problem of
7inhomogeneous disorder”, when variables are drawn from position-dependent
distributions, has also attracted much interest, but it is not discussed here.
For a recent study of this issue in the RTIC with algebraic decaying surface
inhomogeneous disorder see Ref. [72].

As we have already discussed in Section 2.2, a pure system fixed point may
be eighter stable against disorder or unstable, if the system flows to a new,
disordered fixed point. For deciding the relevance of disorder one invokes the
Harris-criterion, which indicates the pure quantum Ising critical point to be
unstable against weak disorder if d < 4.

As we have already mentioned, time scale and length scale are connected in
quantum systems according to (2.29), and pure critical behaviour is isotropic
in the sence that z = 1. This is not necessarily true in the vicinity of a dis-
ordered quantum critical point. This follows from the fact, that randomness
is uncorrelated in spatial directions, however the quenched (time-independent)
randomness is perfectly correlated along the time direction. The anisotropy in
time direction is manifesting itself in a dynamic exponent differing from one. A
conventional finite randomness fixed point is characterised by a finite dynamical
exponent, while an IRFP is characterised by extremly strong anisotropy, with
a formally infinite dynamical exponent. The random transverse-field Ising fer-
romagnet in one-, two- and three spatial dimensions were found to be governed
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by an IRFP with z = oo [106, 113, 63, 96]. The IRFP was argued to be attrac-
tive also for quantum Ising spin glasses for strong disorder [96], but in contrary
to this, Monte-Carlo results predicted a conventional fixed point with finite z
[38, 115]. For a possible explanation of this controversy see Ref. [13].

2.5 Griffiths phase

A surprising feature of disordered quantum (and also classical) systems, which
has no counterpart in pure systems, is the presence of an extended region around
the critical point, the so called Griffiths phase, where several physical quantities
are singular (Griffiths-McCoy singularities). Such anomalous behaviour was
first found by Griffiths in the paramagnetic phase of the site-diluted classical
Ising ferromagnet [37]. While in classical systems these singularities are only
essential, in a quantum system they can by rather strong, as was pointed out
by McCoy, who found the divergence of susceptibility in the McCoy-Wu model
[93, 92] (which is the lattice representation of the one-dimensional random TIM)
in an extended region above the critical point [91]. Although such a singular
phase exists also in the ferromagnetic side of the critical point, we shall focus
on the paramagnetic region in the following.

The underlying physics behind Griffiths-McCoy singularities is that there
exist such rare regions in the sample, which contain much stronger couplings
than the average. These strongly coupled domains (SCD) tend to order locally
even if the whole system is in the disordered phase. The spins sitting in such a
locally ordered cluster, are frozen together, and act collectively, as a giant spin.
These give a strong response for external perturbations, which may lead to the
divergence of average response functions, e.g. the susceptibility. Besides, to
such a well-localised ordered formation a small energy gap is associated, since
one knows from the exact solution of the homogeneous transverse-field Ising
chain, that the gap vanishes (exponentially in an open chain) with the system
size, in the ordered phase.

The vanishing energy gap involves the anomalous behaviour of dynamical
quantities. Locally ordered clusters contain small fields, which corresponds to
large temporal couplings in the lattice representation of the model, which tend
to order the spins ferromagnetically in the time direction, so relaxation time
is consequently large. These rare, exponential slowly relaxing domains lead to
power-law-tail distributions of relaxation time 7o, and other quantities related
to it. The broad distribution of 7 implies the algebraic decay of average auto-
correlations. This is reminescent of a critical point, however the characteristic
spatial extent of the strongly coupled domains is still finite and spatial correla-
tions fall off exponentially with a finite correlation length. Therefore Griffiths
phase is termed as a line of “semicritical fixed points”. This anisotropy is also
reflected in the dynamical exponent, which differs from one, and varies contin-
uously in the Griffiths phase, tending to a limiting value as the critical point is
approached. This limiting value was found to coincide with the value obtained
at criticality, in the one- and two-dimensional random TIM, indicating, that
also the critical behaviour is dominated by the rare strong clusters.

Depending on the type of disorder distribution, the Griffiths phase may
extend to the whole paramagnetic phase, but in some cases it has a finite upper
boundary d¢, above which (i.e. for § > d¢) the forming of SCD-s, i.e. locally
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ordered regions is impossible. In the one-dimensional RTIM for example, where
he = J in the pure case, SCD-s cannot exist if max{J;;} < min{h;}. Thus é¢
depends on the form of coupling and field distributions. So does z, which is
exactly known in the one-dimensional random TIM, and was found to be non-
universal in the Griffiths region. At the upper limit of the Griffiths phase d¢g
we have z = 1, thus the isotropy of time and space axes is restored.

There exists a phenomenological theory [126, 39] of the Griffiths phase, by
the help of which the origin of singular behaviour of various quantities is reduced
to a common physical ground. We shall introduce this in the following section.

2.5.1 Phenomenological description

Consider the quantity Pr,(V), which measures the probability, that in a finite d-
dimensional sample of volume V' = L? there is a cluster of N =17 < V strongly
coupled spins. Here, [ is the typical linear size of the SCD. Since N consecutive
strong bonds can be found with exponentially small probability ~ exp(—AN),
whereas the cluster could be placed at ~ V different sites, we have

PL(N) ~ Vexp(—AN), (2.35)

where A is some positive constant. The imaginary relaxation time of such a SCD
is, however, exponentially large in the volume, which can be seen as follows. The
vanishing of temporal correlation corresponds to the insertion of a domain wall
perpendicular to the time axis in the lattice representation of the quantum
model under consideration. This costs an energy proportional to the volume of
the SCD E = —~BN, where B is a positive constant. The probability of such an
event (i.e. the formation of a domain wall}, and thus the characteristic length
between walls, which gives the relaxation time, is proportional to the Boltzmann
factor

Tret ~ €xp(BN). (2.36)

Combining (2.35) and (2.36) one obtains a broad power-law distribution of imag-
inary relaxation times

4_1

Pr(Trel) ~ V1o

(2.37)

The power depends on the microscopic details, so it is expected to vary smoothly
in the Griffiths-phase.

For a classical system with activated dynamics the difference is that in the
relaxation time (2.36) not the volume but the surface of the SCD appears 7y ~
exp(B'N Ea ). This leads to a much narrower, stretched exponential distribution
P () ~ exp(—A(In Trel)ﬁ). Therefore Griffiths-McCoy singularities are
rather weak in classical systems and it is hard to observe them by numerical
simulations.

The energy gap is related to the relaxation time as e; ~ %, hence (2.37)

. a4’
implies the algebraic decay of its distribution Pr(e;) ~ VeP '. The follow-
ing argumentation sheds light upon an another physical meaning of %. The
dimensionless probability distribution is

- A5 _ (1.H7)d
Pr(lne;) = e1 Pr(er) ~ L% P = (Le;’ )", (2.38)
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where in the last expression the dynamical exponent z appears, which relates the
time scale to the length scale by definition. Comparing the last two expressions
in (2.38), one obtains A/B = d/z. Hence the linearized form of the low energy
tail of distribution reads as:

In[Pr(lne)] = gln €1 -+ const. (2.39)

Another singular quantity related to 7, is the local susceptibility x; at site [,
defined through the local magnetization

my = — lim —— (2.40)
as:
. Omy
= 8H,
H; is the strength of the local longitudinal field, which enters the Hamiltonian
(2.32) via an additional term H;o}, and Ep is the ground-state energy of the

system. One knows from the one-dimensional TIM, that y; is inversely propor-
tional to the energy gap (see (4.1)), therefore one expects

(2.41)

In[Pr(Inx;)] = -g In x; -+ const. (2.42)

It may happen that the linear response is analytical in the Griffiths-phase and
singularity arises ounly in the non-linear response (e.g. in higher-dimensional
quantum spin glasses). Therefore one often investigates the local non-linear
susceptibility, defined as
Pm
nl . l
= lim ———
X T g OH} '
which is the first non-vanishing higher derivative of my, since my; is an odd
function of H;.
In the one-dimensional TIM X?l contains the third power of gap in the de-
nominator (see (4.3)), hence one assumes that the tail of its distribution is

(2.43)

d
In[Pr, (In x")] = —ar In X} + const, (2.44)

with

2" =32, (2.45)
From (2.42) it is obvious, that the average local susceptibility diverges if z > d,
while the condition for the divergence of non-linear susceptibility follows from
(2.44) as z > 4.

Now we deduce the scaling form of singular thermodynamic quantities for a
finite but small temperature T" and external field H. The average susceptibility
can be obtained using (2.42) and expecting a cutoff in the distribution of order
T

[Xaw(T) ~ T (2.46)
The same result can be deduced from the asymptotic decay of the average spin-
spin autocorrelation function

oo}

[aMﬂEWﬁ%mw~fowmme~/ P (Teet)drees ~ 7.
i (2.47)
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-1
Using the sum rule for susceptibility, [X]oo = [, [Glaw(7)d7, one recovers
(2.46).

The scaling form of average susceptibility in the presence of a small longi-
tudinal field of strength H, when the appropriate scaling variable is T/H, is
expected to be

d_q.
[X]cw(Ta H) =4 1X(T/H)? (2'48)

where y(z) is some smooth scaling function. Putting H = T in (2.48) yields
d_
[Xaw(T =0, H) ~ H="". (2.49)
Integrating (2.49) by H, one gets the scaling form of average local magnetization
[m*]ee(T =0,H) ~ H:. (2.50)

Since the magnetization is related to the ground state energy according to (2.40),
integrating (2.50) over H once again yields for the scaling form of average in-
ternal energy at small T and H:

E(T,H) = H* T E(T/H), (2.51)
where E(z) is a smooth scaling function. With the choice T = H one obtains
E(T,H =0) ~T*, (2.52)

This yields for the scaling behaviour of specific heat:

OF
o(T,H=0)==(T,H=0)~T*. (2.53)
oT
Thus all above Griffiths-McCoy singularities are characterized with a single
exponent z, which varies continuously with the control parameter in the Griffiths
phase.

2.6 Experimental realizations

In this work we restrict ourselves mainly to the study of disordered one-dimension-
al quantum systems. There are a few magnetic materials for the description of

which the three-dimensional version of our models are adequate. Since spe-

cial phenomena (Griffiths-phase etc.) are present also in the less complicated

one-dimensional models, the investigation of them helps us to understand the

behaviour of more realistic two- and three-dimensional systems better. In fact

the special features arising from the interplay between disorder and quantum

fluctuations, are more pronounced in one-dimension than in higher dimensional

systems.

For three-dimensional Ising-model an experimental realization is the com-
pound LiHo,Y: «F4, an insulating magnetic material [134, 133]. It is an
isostructural derivative of the dipolar-coupled Ising ferromagnet LiHoF4, where
non-magnetic Y>* ions and magnetic Ho®* ions occupy randomly the rare-earth
sites. Applying an external magnetic field of strength I' perpendicular to the
easy magnetic axis, results in the splitting of the ground-state doublets of Ho®*+
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ions, and makes for the system possible to tunnel between these states. This
diluted system can be described by a random transverse-field Ising spin glass
with transverse-field A ~ I'?. In this system studied with z = 0.167 a spin-glass
phase appears below a temperature T, (I"), which depends on the applied field,
I". Crossing the phase boundary at T = 98mK the divergence of non-linear
susceptibility was found, which vanishes at 25mK [134] in contrast to theoreti-
cal expectations. This discrepancy may originate from the long-range nature of
dipolar coupling.

On the other hand one-dimensional models have experimental relevance on
their own right, as well. There are special substances in which chains of rel-
ative strongly interacting atoms are settled, which interact weakly with each
other. One can mention, e.g. the ionic crystal SroCuQg3, in which paramagnetic
copper atoms are aligned along lines, and the strength of coupling between
them, mediated by oxygen atoms is 2000K [36]. The interaction energy be-
tween such chainsg separated by Sr atoms is 5K. Thus in the temperature range
5K < T < 2000K this system is quasi-one-dimensional, and can be described
by the antiferromagnetic Heisenberg chain. Other examples are SrzCuPtOg,
where antiferromagnetic couplings between Cu atoms are provided by Pt, while
in SrgCulrOg the interaction mediated by Ir is ferromagnetic. The isostruc-
tural compound Sr3CuPty _IryOg is a realization of a one-dimensional spin-
glass. Other examples are the various tetracyano-quinodimethanide(TCNQ)-
salts, such as quinolinium-(TCNQ)s. These are one-dimensional insulating
compounds, in which positive ions have two states. They can be described
by a Hubbard model with half-filling of electrons. When hopping term is much
larger than Coulomb-repulsion term, the latter model is equivalent to a Heisen-
berg antiferromagnet.

Measurements on the susceptibility of quinolinium-(TCNQ)e came to the
low temperature behaviour x ~ T~ with « < 1 universal [127]. This, together
with other results of measurements on dynamical properties [128] was inter-
preted as evidence that the above compound is a random-exchange Heisenberg
antiferromagnet.

An interesting relation of the random transverse-field Ising models to the
non-Fermi liquid behaviour of f-electron compounds, such as U and Ce inter-
metallics. In these systems the the low temperature properties of the Kondo
impurities have been mapped onto an effective random transverse-field Ising
chain with random bonds and fields having power-law decaying spatial correla-
tions [14, 15, 111].



Chapter 3

The random transverse-field
Ising chain

In this chapter we review the known results on the random transverse-field Ising
spin chain (RTIC) with free ends:

L—1 L
H=-Y Jiofat, = hoi, (3.1)
g=1 i=1

where .J; and h; are independent random variables, drawn from distributions
w(J)dJ and p(h)dh, respectively. The sign of J; and h; can be chosen to be
positive without loss of generality, since it is always possible to make the sign
disappear by a gauge transformation ¢¥ — —c?, ¢f — —of on the appropriate
sites, which is a consequence of the absence of frustration in one dimension.
Thus the one dimensional transverse-field Ising ferromagnet, antiferromagnet
and spin-glass are equivalent. In higher dimensions it is no longer true be-
cause of frustration. The random transverse-field Ising chain is self-dual. The
transformation

~Z __ x &
Oy = 00441
2
~r z
oy = Haj (3.2)
j=1

maps (3.1) into the same Hamiltonian however with parameters J; = h; and
hi = J;_1, thus bonds and fields are formally interchanged.

3.1 Phase diagram with non-random couplings

The transverse-field Ising chain with non-random couplings J;; = J and h; = h
is exactly solvable by mapping it to free fermions [83, 104]. Its lattice represen-
tation, the two-dimensional classical Ising model was firstly solved by Onsager
in a more complicated way [100].

Introducing the quantum control parameter § = In %, the phase diagram
looks as shown in Fig 3.1. At zero temperature and § < 0 the system is in its

23
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ferromagnetic phase with longe-range order and non-vanishing magnetization.
The energy gap vanishes exponentially with the system size in the thermody-
namic limit. (The way €; vanishes in this phase depends on the boundary
condition [9].)
If § > 0 or T > 0 there is short-range order with zero magnetization and the
system is paramagnetic. Here the energy gap is finite.
T P At T = 0 the two phases are sep-
M crical point arated by a quantum critical point at
| 6 = 0. Its location also follows from
0 3 the self-duality of the model. This
point is characterized by quasi-long-
Figure 3.1: Phase diagram of the homo-  pange order, and by critical exponents
geneous transverse-field Ising chain. v=1,1m = % and z = 1. According
to the Harris-criterion in (2.24) this model is unstable against weak randomness
and is driven to a new fixed point.

3.2 Phase diagram of the random model

The quantum control parameter of the random model is

_ [Inhlay = [In J]ao
0= var[J] + var[h] ’ (8:3)

where var[z] denotes the variance of x. The phase diagram is similar to that
of non-random one (see Fig 3.2). A striking difference is the appearance of
Griffiths phase. For the random model there exists a large amount of exact,
conjectured and numerical results, which we shall briefly summerize below.

3.2.1 Critical region

According to Fisher’s renormalization group (RG) treatment [33], which will
be introduced in detail in Chapter 5, the critical behaviour of the model is
controlled by an IRFP, with extremely (logarithmically) broad distribution of
quantities. The average bulk magnetization vanishes close to the transition as
[M]ay ~ (—0)? with the conjectured exponent

so2-g  p= YD (3.4)

The corresponding surface exponent is
Bs =1, (3.5)

which is an exact result of McCoy [91]. From the RG treatment the zero-
temperature scaling form of magnetization in a small applied longitudinal field
H is exactly known for 6 < 1 (see Ref. [33]). At criticality (6 = 0) the bulk
magnetization behaves as [m],(H) ~ W, for H < 0.
The relation between the RTIC and random walk (see Section 3.5.1) can be
used in order to calculate the finite-size scaling of surface magnetization [59]:
[m]ay ~ L~*m, Ty = (3.6)

8
m =

1
5
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The RG method leads to the following results on correlations [33]. The spin-spin
correlation function
C*(r) = {ofoiy,) (3.7)

behaves typically at criticality as —InC*(r) = Ar'/? for large r, where the
constant A is broadly distributed. For [6] <« 1 C%(r) decays typically as
—1In C*(r) = r/&yp and the typical correlation length &, diverges as

1

‘Styp ~ W Vgyp = 1. (38)

viyp

This was found also by Shankar and Murthy [121] via transfer matrix calcula-
tions.

The average correlations, which are measurable, are dominated by the rare,
strongly correlated regions with order unity correlations, and therefore behave
differently. At criticality the power-law decay of mean correlation

(G p— (39)

was found, while for [0} < 0 the true correlation length diverges faster than

‘ftyp M 1
e~ v (3.10)

The critical point characterized by extreme anisotropy. Time scale is related
to length scale as
InT ~ £Y2, (3.11)

which corresponds to an infinite dynamical exponent z = oo [33].

According to phenomenological and numerical results [109] the critical au-
tocorrelation function G*(7r) = (67 (7)o?(0)) typically falls off faster than any
power-law, while the average decays logarithmically slowly

[Gao(r) ~ (In7) =2, (3.12)

The critical transverse spin correlation function Cc(r) = (oi07,,) is a self-
averaging quantity and at criticality its average behaves as — In[C (7)] gy ~ 72,
like its typical value [109]. The critical average transverse spin autocorrelation
function [G(7)]ay = [{eZ(7)07(0))]ay decays as [G*(T)]aw ~ 77" [109].

2 2

3.2.2 Griffiths phase

In the paramagnetic phase the disordered Grifliths phase is located in the region
0 < § < d¢, where free energy is a non-analytic function of 7" and H, as it was
discussed in Section 2.5.

This region extends to d¢g, above which all transverse-fields are bigger than
couplings. The exact value of the dynamical exponent is known [59]. It is the

positive root of the equation
1/z
)] - 819

av
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The dynamical exponent generally depends both on ¢ and on the distributions
w(J) and p(J). However it becomes universal, i.e. distribution independent, in
the vicinity of the critical point where z(d) &= 1/(24), |6} < 1, in accordance
with the RG results [33, 31]. On the other hand z =1 as 6§ — 4.

The phenomenological argumentations on scaling behaviour of singular quan-
tities achieved for the RTIM in general dimension d in Section 2.5, also hold
here with d = 1. The numerical results on different singular quantities in the
Griffiths phase are all in agreement with the analytical formula in (3.13) and
the observed small deviations are attributed to finite-size corrections [138, 58].
Below the critical point lies the

! PM ordered Griffiths phase, exhibiting
FM similar singularities as its disorder-

l : ed counterpart. The underlying

B 0 8 ®  physics of singularities in this re-

ordered disortiered gion is understood due to duality,

Griffiths phase ~ Griffiths phase which connects the point in the
paramagnetic phase at § to the po-
Figure 3.2: Phase diagram of the RTIC. int in the ferromagnetic phase at
8. The formations corresponding to SCD’s in the paramagnetic side of criti-
cal point, are the weakly coupled domains (WCD) in the ferromagnetic phase,
which contain smaller bonds and stronger fields than the average, and are lo-
cally in the disordered phase. A WCD effectively cuts the system inty two very
weakly interacting parts and thus reduces the surface order enormously. The
dual object, i.e. a SCD is known to be associated with a very small energy gap,
€1. Thus in the tails of the distributions, m? and €; are dual quantities, and
one expects the following singularity of surface magnetization in the ordered
Griffiths phase:
P(lnm?) ~ (mH)Y*, m* =0. (3.14)

This scaling relation, which can be proven exactly for the RTIC (see Section
3.4), is expected to hold also for other one-dimensional disordered quantum
chains.

3.3 Free fermion description of RTIC

The problem of diagonalization of (3.1) is equivalent to the eigenvalue problem
of a 2F x 2 matrix if one would expand H in the tensoral product space of
spin states. However considerable simplification can be achieved by mapping H
through a Jordan-Wigner transformation and a following canonical transforma-
tion to a free fermion model:

H=> ¢ (njnq - %) , (3.15)

g=1

in terms of the n} (n,) fermion creation (annihilation) operators. The en-
ergy of modes ¢, is obtained through the solution of an eigenvalue problem,
which necessitates the diagonalization of a 2L x 2L tridiagonal matrix with
non-vanishing matrix-elements T5;_1 9, = T532:-1 = hy, ¢ = 1,2,..., L and
T5 2541 = To441,2e = Ji, 1 =1,2,..., L —1, and the components of the eigenvec-
tors Vy are denoted as V,(2i — 1) = —¢,(¢) and V,(2i) = ¢,(4),i=1,2,..., L,
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i.e.

0 ha _(I)q(l)

hh 0 . U, (1)
0 Ji 0 bhy —%4(2)

T = ha 0 ’ , ‘/q:
JL—l \IJQ(L_l)
JL—l 0 hL _(I)Q(L)

hr 0 v, (L)

(3.16)
One considers only the ¢, > 0 part of the spectrum. The details of this standard
method can be found in Appendix A.2. The eigenvalue problem of (3.16) is
analytically solvable only for the pure model [104]. However it is a powerful
tool also for the numerical study of the random model, since the dimensionality
of the problem is reduced from 27 to 2L.
In the following we derive expressions for various quantities in the free
fermion picture, which are needed later.

3.3.1 Ceritical point

First we give a justification of criticality condition given by (3.3). The critical
point for the RTIC can be obtained from the condition that the energy gap,
which is inversely proportional to the relaxation time, must vanish in the ther-
modynamic limit. From Eq.(A.15) one obtains that a non-trivial solution with
zero eigenvalue exists if det((A ~ B)(A -+ B)) = 0. Or simply det(A — B) = 0,
since (A — B)T = (A + B). The exact solution of the pure model tells us, that
with periodic boundaries the first gap can be zero even in a finite chain. There-
fore one considers here the corresponding matrix for the cyclic chain, which
reads as

hi O Jr,
Ji he O
Jo  hs
A.-B,= . (3.17)
0
Jr1 hr

The determinant of (3.17) vanishes if Hle hi = Hle Ji. In the L — oo limit,
when boundary effects are irrelevant, this yields the criticality condition also for
the free chain:

nhley = [In J]ae. (3.18)

For a special case the validity of Eq. (3.18) follows from the self-duality
of the model. Assuming that there exist only a single phase transition in the
system, where physical properties are singular, it must be located at the fixed
point of the transformation (3.2) [80]. Thus if #(J) and p(h) are identical, the
system is expected to be at its criticality, and (3.18) is trivially satisfied.



28 CHAPTER 3. THE RANDOM TRANSVERSE-FIELD ISING CHAIN

3.3.2 Magnetization and dynamical correlations

Since the Hamiltonian contains products of two step operators, it commutes
with the operator

Q= Haf. (3.19)

Q has two eigenvalues: () = +1, therefore the space of spin states decomposes
into two orthogonal subspaces. In the free fermion picture these two sectors
are related to the parity of the fermion number operator N = Zle e =
Sr o7 +1). ¥Q =1, N is even, and if Q = 0, N is odd. The operator
o¥ maps a state from one sector to the other, hence the ground state expec-
tation value (0}¢¥]0) is zero. Consequently (0}c¥|0) is not suitable as an order
parameter. The true order parameter has to be determined from the asymp-
totic behaviour of the autocorrelation function Gf (1) = (Ojef (7)o (0){0). Using
o (1) = e"Hafe ™M the autocorrelation function assumes the form

Gi (1) =Y W(ilof |0)* exp [~ (E; — Eo)], (3.20)

i

where [) is the i-th eigenstate of H with eigenvalue E;. Then lim, ., Gi(7) =
(m#)?, since the magnetization is asymptotically uncorrelated. In the ordered
phase the first energy gap vanishes exponentially in the thermodynamic limit,
i.e. the first excited state becomes degenerate with the ground-state. Therefore
in the large 7 limit only the first excited state survives in (3.20) and the local
magnetization is given by the off-diagonal matrix element:

m{" = (1]of |0}, (3.21)

where the superscript refers to the boundary condition. In the fermion repre-
sentation of is expressed as

O’f = AlBl e Ag_lBg_lAg (322)
with
A=Y b nf +ng) B =Y tbg(@)(rf —my) - (3.23)
q q

Using [1) = #;7|0) the matrix-element in (3.21) is evaluated by Wick’s theo-
rem. Since for ¢ # j (0}A4;4;]0) = (0|B;B;{0) = 0, one obtains for the local
magnetization

Hl Gll G12 e Gll—l
£ H2 G21 G22 e G21—1
mC = . ) . N (3.24)
H Gn Gp ... Gua
where
Hy = (0lm4;[0) = 2,(j)

Git = (0|BrAj|0) = =" W, (k)@y(j) . (3.25)

q
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The surface magnetization can be given in a closed form [58]. One possible
route to this is to put Az = 0, what implies that the eigenvalue s§ of S§ =
%af becomes a good quantum number. In the fermion-picture the twofold
degeneracy s7 = :l:% corresponds to the presence of a zero mode, ¢; = 0, with
an eigenvector satisfving V1(2i) = ¥1(i) = 0,7 = 1,2,..., L. Then the first
excited state |1) is degenerate with the ground state |0) and the matrix-element
in (3.21) corresponds to the ground-state expectation value of the magnetization:

m{"t = (0lof|0), (3.26)

which is given by (3.24). The surface magnetization, m? = m{ = ®,(1) can
easily be obtained by solving TV; = 0 with V1(2i) = 0 for i = 1,...,L and
using the normalization condition Y, ®1(¢)? = 1. This yields

1+ Lz—l 11 (%) T o . (3.27)

This can be derived also with free boundaries in the L — oo limit [102)].
The autocorrelation between surface spins can be obtained directly from

(3.20) as:

Gi(r) =D |@4(1)]* exp(—Te,) (3.28)
a
whereas bulk autocorrelation function can be given in a more complicated form
in terms of a Pfaffian (for details see Ref. [58]).

3.4 Relation with random walks

Another source of exact results is the mathematical equivalence between the
RTIC and the Sinai walk [120], which was found by Igl6i [59]. Namely, Eq.
(A.15) can be transformed into the eigenvalue problem of the Fokker-Planck op-
erator of a one-dimensional random walk (RW) with nearest-neighbour hopping
in a random environment [59, 62]. Among others the following correspondances
were established:

J & (wi+17i)1/2 (329)
h, & (wi7i+1)1/2 (330)
e e =M, (3.31)

where w; ;41 = w(i — ¢ & 1) transition probabilities characterizing the random
walk, and Ay is the k’th eigenvalue of the Fokker-Planck operator.
The free boundaries of RTIC of size L correspond to adsorbing boundaries
in the RW problem at site ¢ = 0 and i = L. The surviving probability Py (L),
i.e. the probability for the walker starting near one of the adsorbing walls not
to cross its starting point after L steps, is given in a form similar to (3.27). It
was thus established:
Pyyru(L) & m2(L). (3.32)

The control parameter of the RW is defined as

[ln w<_]¢w - [ln w—>]av
varfwe ] + varfw]

Saw = (3.33)
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At ogw = 0 the diffusion is ultra-slow and the averaged mean-square dis-
placement grows as [(X2(t))]sw ~ In*t. Around this point, i.e. for small
dpw # 0 takes place the region of anomalous diffusion, characterized by

[<X2 ()]aw ~ t\p’ (3.34)

with ¥ < 1, which is the analogon of Griffiths phase in RTIC. Comparing the
finite-size-scaling behaviour of the largest non-zero eigenvalue A; (L) ~ L™ ¥ in
this region with that of the energy gap of RTIC in the Griffiths-phase e, ~ L™%,
one obtains using Eq. (3.31)

1
e —. (3.35)

=

Now exploiting, that ¥ is known exactly

l(%—:) T _ 1 (3.36)

av

—

25, 75] in the form

and using (3.29), (3.30) and (3.35), one obtains for the dynamical exponent of
the RTIC the implicit equation in (3.13).

Eq. (3.36) follows from the observation, that the product of independent,
identically distributed random variables A = xjz9z3 ... (the so called Kesten-
variable) has a singular distribution P(\) ~ A71T#, with p given by [2#],, =
1 [75]. One can also arrive at (3.13) directly by regarding the perturbative
expression for the energy gap in (3.42) as a Kesten-variable. Applying this
argument to the exact expression of surface magnetization

1 L 1 s 2
m§:1+2:1 <7> , (3.37)

=11

one obtains (3.14).

3.5 Phenomenological theory

In random quantum spin chains the critical properties are expected to be con-
trolled by an IRFP, where distributions are extremely broad and as a con-
sequence the average and typical behavior of these quantities are completely
different. The average is dominated by such realizations (the so called rare
events), which have a very large contribution, but their fraction is vanishing in
the thermodynamic limit. In this section we identify these rare events for the
RTIC model and use their properties to develop a phenomenological theory, on
the ground of which we derive some of the results listed in Section 3.2. Later
we shall apply this theory with slight modifications to the random XX and XY
chains.

3.5.1 Surface order parameter and the mapping to ran-
dom walks

The surface order parameter is given by the simple formula in (3.27). It is easy
to see from (3.27) that in the thermodynamic limit the average surface order
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parameter is zero (non-zero), if the geometrical mean of the J; couplings is
(smaller) greater than that of the h; couplings. From this the definition of the
control parameter in (3.3} follows.

Next we compute the average value of the surface order parameter for the
extreme binary distribution!, i.e. the limit A — 0 and ho = 1 in (4.17). For a
random realization of the couplings the surface order parameter at the critical
point (p = ¢ = 1/2) is zero, if a product of the form of Hi}:l(Ji)—g, I =
1,2,..., L is infinite, i.e. the number of A-couplings exceeds the number of A7 !-
couplings in any of the [1,]] intervals. Otherwise the surface order parameter
has a finite value of O(1). The sequence of couplings J; can be represented by
one-dimensional random walks that start at zero and make the i-th step upwards
(for J; = A™1) or downwards (for J; = X). The ratio of walks representing a
sample with finite surface order parameter is given by the survival probability
of the walk Py, i.e. the probability of the walker to stay always above the
starting point in L steps.

In the vicinity of the critical point, the scaling behavior of the average sur-
face order parameter can be obtained from the survival probabilities of biased
random walks [58], where the probability that the walker makes a step towards
the adsorbing boundary, ¢, is different from that of a step off the boundary, p.
The control parameter of the walk, d,, = p — ¢, is proportional to the quantum
control parameter § in (3.3) evaluated with the binary distribution. Thus the
basic correspondences are:

[m5(0, L)]aw ~ Pourv (0w, L), 6 ~ G (3.38)
We recall the asymptotic properties of Py (0, L) [58]. For unbiased walks:
Paure (0 = 0,L) ~ L7Y2 (3.39)
for walks with a drift away from the wall:
Paure (60 > 0, L — 00) ~ 8y , (3.40)
and for walks with a drift towards the wall:
Poury(60 < 0,L) ~ exp(=L/&w), &w ~ 0,7 (3.41)

In this way we have identified the rare events for the surface order parameter,
which are samples with a coupling distribution which have a surviving walk
character. The scaling properties of the average surface order parameter and
the correlation length immediately follow from Eqgs. (3.39), (3.40) and (3.41).

3.5.2 Scaling of low-energy excitations

The rare events are also important for the low-energy excitations. The results
are obtained by using a simple relation for the smallest gap €1(I) of an open
system of size ] with free boundary conditions, expecting that it goes to zero at
least as ~ 1/1. Then one can neglect the r.h.s. of the eigenvalue problem of T

IThe extreme binary distribution represents one possible explicit construction of the
infinite-randomness fixed point.
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in (A.16) and derive approximate expressions for the eigenfunctions ®, and .

Finally one arrives at
-1

a(l) ~mimi_yh [

=1

hj
7 (3.42)
(For details see Ref. [61].) Here, the surface order parameter at the other end
of the chain 1y is given by replacing h;/J; for hy_;/Jr—; in Eq. (3.27).

Before using (3.42) we note that (surface) order and the presence of low-
energy excitations are inherently related. Samples with an exponentially small
gap have finite, O(1), order parameters at both boundaries and the coupling
distribution follows a surviving walk picture. Such a coupling configuration
represents a SCD, which at the critical point extends over the size of the system,
L. In the off-critical situation, in the Griffiths phase the SCD-s have a smaller
extent, [ < L, and they can be localized both in the bulk and near the surface
of the system. The characteristic excitation energy of a SCD can be estimated
from Eq. (3.42) as

-1
al~ 1] % ~ exp{-ltrln(J/h)} , (3.43)

where I, measures the size of transverse fluctuations of a surviving walk of
length [, defined as the conditional expectation value of the position of the
walker after [ steps under the condition, that the walker survives until the /th
step, whereas In(.J/h) is an average ratio of the couplings.

At the critical point (6 = 0), where [ ~ L, the size of transverse fluctuations
of the couplings in the SCD is Iy, ~ L'/? [58]. Consequently one obtains from
Eq. (3.43) for the scaling relation of the gap:

€1(0 = 0,L) ~ exp(—const - L*/?) . (3.44)

Then the appropriate scaling variable is Ine/ VL and the distribution of the
excitation energy is extremely (logarithmically) broad.

In the Griffiths phase the size of a SCD can be estimated along the lines of
Ref. [58] as I ~ &, In L and the size of transverse fluctuations is now Iy ~ [ ~
In L. Setting this estimate into Eq. (3.43) we obtain for the scaling relation of
the gap:

e (Ly~L77%, (3.45)

where 7 is the dynamical exponent.

3.5.3 Scaling theory of correlations

The scaling behavior of critical average correlations is also inherently connected
to the properties of rare events. Here the quantity of interest is the probability
P#(1), which measures the fraction of rare events of the local order parameter
my'. 2 For the surface order parameter m# it is given by the surviving prob-
ability, P*(1) = Pgypy, according to Eq. (3.38). We start with the equal-time
correlations
(C" (1) ]aw = (O]} o, 10)]ay - (3.46)
2Here and throughout the section p = z for the RTIC, while considering the XX and XY
chains (see later) u = z,y, 2.
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In a given sample there should be local order at both reference points of the
correlation function in order to have C*(r) = O(1). This is equivalent of having
two SCD-s in the sample which occur with a probability of Py (1,1 + r), which
factorizes for large separation lim, o, P§'(I,] + r) = P*(I)P"(l + r), since the
disorder is uncorrelated. The probability of the occurrence of a SCD at position
I, P*(l), has the same scaling behavior as the local order parameter [m]']ay.
Generalizing the arguments leading to (3.21), [m]']av is given by

(] lav = Kbulo7' [0)]av, (3.47)

where |®,) denotes the lowest eigenstate of H having a non-vanishing matrix-
element of o}' with the ground state in the ordered phase. It behaves at a bulk
point, 0 < I/L < 1, as:

[m} (L)]ay ~ L7, (3.48)

whereas for a boundary point, [ = 1, this relation involves the surface scaling
dimension z. Consequently P*(I) transforms as P*(I) = b=*" P#(1/b) under a
scaling transformation, when lengths are rescaled by a factor b > 1. Recalling
that for spatial correlations there should be two independent SCD-s we obtain
the transformation law:

[CH(7)]ay = D2 [CH (r/b)]ay - (3.49)
Now taking b = r one obtains power-law decay with the exponent
nt = 2zH . (3.50)

For critical time-dependent correlations the scaling behaviour is different from
that in (3.49). This is due to the fact that disorder in the time direction
is perfectly correlated and the autocorrelation function in a given sample is
G (r) = O(1), if there is one SCD localized at position I. Therefore the aver-
age autocorrelation function [G} (In 7)),y scales as the probability of rare events
PE(]):

(G (In7)]ay = b—e" (G} (In /6oy (3.51)

where we have used the relation in Eq. (3.11) between relevant length and time
at the critical point. Taking the length scale as b = (In7)? we obtain for points
! in the volume:

[GH(T)]aw ~ (In7)™7" (3.52)

whereas for surface spins, I = 1, one should use the corresponding surface decay
exponent 7'

Next we turn to study the scaling properties of the average correlation func-
tions in the Griffiths phase, i.e. outside the critical point. For equal-time cor-
relations in a sample C#(r) = O(1), if the SCD extends over a large distance of
r, which according to Eq. (3.41) is exponentially improbable. Thus the average
spatial correlations decay as

[CH(1)]av ~ exp(=1/§), £~ &w, (3.53)

where £, is defined in Eq. (3.41). On the other hand the autocorrelation func-
tion in a sample is G#(7) = O(1), if there is one SCD localized at 1, which occurs
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with a probability of P#(l) ~ 1/L. Consequently the average autocorrelation
function, which scales as P#(1), transforms under a scaling transformation as:

(G} (T)]av = b—]‘[Gf"/b(r/b‘z)];W 0>0, (3.54)

where we used the scaling combination 7/b* in accordance with Eq. (2.29). Now
taking b = 71/ one obtains

(G (T)]ay ~ 772, (3.55)

both in the volume and at the surface.



Chapter 4

Numerical study of the
Griffiths phase

The singular quantities studied so far in the Griffiths phase are all related to the
scaling properties of the lowest energy gap. This explains the observation why a
single varying exponent is sufficient to characterize the singularities of the differ-
ent quantities. There are, however, other observables, which are expected to be
singular as well, but not connected directly to the first gap. As an example one
could consider the distribution of the second (or some higher) gap. By similar
reasons as for the first gap these higher excitations are also expected to vanish
in the thermodynamic limit and the corresponding probability distributions are
described by new exponents valid for small values of the gaps. As another ex-
ample we consider the connected transverse spin autocorrelation function Gf(7)
In the McCoy-Wu model, this function corresponds to the energy-density cor-
relation function in the direction of correlated disorder. Therefore we adopt
in the following this terminology and call Gf(7) the energy-density autocorre-
lation function. Finally one should mention the non-linear susceptibility whose
distribution is expected to be described by a new varying exponent. In the
one-dimensional RTIM this quantity has not yet been investigated before.

In this section we extend previous numerical work and study the scaling
behavior of the above mentioned singular quantities in the Griffiths phase. We
present a phenomenological scaling theory and we confront its predictions by
results of numerical calculations, based on the free-fermion representation of
the Hamiltonian in (3.1). We show that the physical quantities we studied
are characterized by power-law singularities with varying critical exponents,
the value of those are connected to the dynamical exponent through scaling
relations.

4.1 Free fermion description of dynamical quan-
tities
The local susceptibility defined in (2.41) can be expressed as [58]:

=23 [ilor [0 gi@i . (4.1)

35
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Using (3.22), for the boundary spin I = 1 one has the simple expression:
_ 12, (D)

Similarly, the local non-linear susceptibility defined in (2.43) can be obtained
by perturbation calculation and reads as:

X' =24 {Dozofz% 10 13) g Gl o (Kl 0)+
8,7k ¢
o]0 2 io#]0)[2
S (R) 3 ) oo
For surface spins, [ = 1, (4.3) simplifies:
nl _ O,(1)20,(1)* (1 1Y _ (1)) 5~ [ 2D
u _24{§ (ep + €g)ep (619 €q> g( €p > ; €q } .
(4.4)

Next we consider the connected part of energy-density autocorrelation function
at site I, G, defined by

G () = (0lo7 (1)a7 (0)]0) — (0]arf (7)|0){0]orf (0)]0)
=" [0lof|i)|? expl—T(E; — Ey)] - (4.5)
>0

In the free-fermion representation of is expressed as [83]:
of = ABy, (4.6)
with 4; and By given in (3.23). By the help of this G{(7) is given by
Gi(1) = [Ws(1))@ (1) = Us(D2s(1)|” exp[—(es + €] | (4.7)
5>

which can be expressed for surface spins as

Gitr) =3 |- sa,0) enfrlte)]. @
Sy

4.2 Phenomenological and scaling considerations

Previously, along a phenomenological argumentation, we arrived to the distri-
bution of first energy gap given in (2.39), where now d = 1.

Next, we consider the second gap, €2, which is connected to the existence
of a second strongly connected cluster of N' < N spins, and its value is given
according to the argumentations in Section 2.5.1 as

€2 ~ exp(—BN') . (4.9)
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The probability with which a cluster of size N' occurs, provided another cluster
of size N > N' exists, is given by P} (N') ~ Lexp(—AN") Z@ZN, P(N). For
N'" <« L (or in the infinite system size limit L — oo} this can be estimated as:

P} (N'y ~ L* exp[-2AN"] . (4.10)
Thus from (4.9) and (4.10) we have
Pl(Ines) ~ L2/, (4.11)

with 1/2' = 24/ B, thus
2'=2/2. (4.12)

Note that the scaling combination in the r.h.s. of (4.11) is dimensionless, as it
should be. Repeating the above argument for the third, or generally the nth gap
the corresponding distribution is described by an exponent z(" = z /n, however
the finite size corrections for these gaps are expected to increase rapidly with n.

The scaling behavior of the average spin autocorrelation function is given
by:

mmmzfmmmwwmqmm, (4.13)

where the factor with the matrix-element is |M;|* ~ 1/L, since the probability
that a low energy cluster is localized at a given site, [, is inversely proportional
to the length of the chain. Then using (2.38) one arrives to the result in (2.47)
with d = 1, thus establishing the relation between the decay exponent of the
spin autocorrelation function and the dynamical exponent.

For energy-density autocorrelations, according to (4.7) and (4.8) the char-
acteristic energy scale is €3 and the asymptotic behavior of the average energy-
density autocorrelation function is given by:

(Glalr) = [ Phlea) M P exp(—ren)des (4.14)

Now we take the example of the surface autocorrelation function in (4.8) to
show that the factor with the matrix-element, |M{|?, is proportional to 3.
The remaining factor in (4.8) with the first components of the eigenvectors is
expected to scale as 1/L due to similar reasons as for the spin autocorrelations,
thus [Mf|* ~ L€} and together with (4.11) one has Pj (e2)|Mf|* ~ Le}z/‘/“.
Before evaluating the integral in (4.14) we note that for a fixed L the expression
in (4.14) stays valid up to 7 ~ L*. Therefore to obtain the L independent
asymptotic behavior in 7 we should instead vary L, so that according to (4.11)

take L ~ € 1) and in this way we stay within the border of validity of (4.14)
for any 7. With this modification we arrive to the algebraic decay of average
energy-density autocorrelation function:

[GClav(T) ~ 77", (4.15)
with an exponent 1, related to the dynamical exponent as

1
e =2+, (4.16)
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Figure 4.1: Probability distribution of —Ine; and — In ey for the uniform distribution
at ho = 2 (left) and the binary distribution (A == 4) at ho = 2.5 (right). The slopes of
fitted straight lines correspond to 1/z(ho) and 1/2 (ho), respectively. They follow the
predicted relation 2’ (ho) = z(ho)/2.

where the relation in (4.12) is used. We expect that the factor, |Mf|?, has
the same type of scaling behavior for any position I, thus the relation in (4.16)
stays valid both for bulk and surface spins. We note that the reasoning above
(4.16) applies also for the spin autocorrelation function, in which case in (4.13),
however there is no explicit L dependence.

In this way we have established a phenomenological scaling theory which
connects the unconventional exponents in (4.12), (4.16) to the dynamical expo-
nent. In the next section we confront these relations with numerical results.

4.3 Numerical results

In the numerical calculations we have considered RTIC’s with up to L = 128
sites and the average is performed over several 10000 realizations, typically we
considered 50000 samples. For some cases, where the finite-size corrections were
strong, we also made runs with L = 256, but with somewhat less realizations.

We have used two types of random distributions. In the binary distribution
the couplings can take two values A > 1 and 1/ with probability p and ¢ = 1—p,
respectively, while the transverse-field is constant:

w(J) = pd(J = X) +q6(J = A7),
p(h) = 6(h — ho) . (4.17)

From (3.3) the criticality condition is (p — ¢) In A = ln hg, whereas for the sym-
metric binary distribution p = ¢ = % it is hg = 1. In the Griffiths phase,
1 < ho < A, the dynamical exponent from (3.13) is determined by the equation

hi = pAY + gt (4.18)

In the wuniform distribution both the couplings and the fields have rectangular
distributions:
1, for0<J <1
w(J) = {O, otherwise
—1
p(h):{ho , for0<h<ho

4.19
0, otherwise ( )
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Figure 4.2: Probability distribution of the linear and non-linear susceptibility, In x1
and In 7', respectively, for the uniform distribution at ko = 3. The straight lines are
fitted to the data for the largest system size, their slopes correspond to 1/z(ho) and
1/2™ (ho), respectively. They follow the predicted relation 2™ (ho) = 32(ho).

The critical point is at hg = 1, whereas the dynamical exponent is given by the
solution of the equation
zln(1—27%) = —Inho. (4.20)

The Griffiths phase now extends to 1 < hp < .
We start to present results about the distribution of the first and second

gaps.
As illustrated in Fig. 4.1, both

for the uniform and the binary dis- 9

tributions, the asymptotic scaling re- | |

lations for the distribution of the first o e s

two gaps in (2.39) and (4.11) are sat- /,/"/ *

isfied. From the asymptotic slopes of = 4 i

the distributions we have estimated = /‘ 5 g

the 1/z and 1/2' exponents for the ost / % e, =04 o

two largest finite systems, L = 64 and / eplm128 o

L = 128, which are presented in Fig. 0¥ 7120 ¢

4.3 for different points of the Grif- ! 2 HO’O 4 °

fiths phase for the uniform distribu-

tion. As seen in the Figure the z ex-

ponent calculated from the first gap Figure 4.3: The estimates for 1/z and 1/2’
agrees very well with the analytical as a function of ho for the uniform distri-
results in (4.20). For the 2’ exponent, bution. The full line for 1/z corresponds
as calculated from the distribution of to the analytical result (3.13), the broken
the second gap the scaling result in 1 corresponds to 2/z.

(4.12) is also well satisfied, although the finite-size corrections are stronger than
for the first gap. For the third gap, due to the even stronger finite size effects, we
have not made a detailed investigation. Extrapolated results at hg = 2 are found
to follow the scaling result z3) = z/3. Next, we analyzed the distribution of the
linear and non-linear local susceptibilities at the surface spin. As demonstrated
in Fig. 4.2 both type of distributions satisfy the respective asymptotic relations
in (2.42) and (2.44), from which the critical exponents z and 2™ are calculated.
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Figure 4.4: The estimates for 1/z and 1/2™ as a function of hg for the uniform
distribution. They have been obtained from our analysis of the probability distribution
of In y; and In ¥}, respectively, for two system sizes (as exemplified in fig. 3). The full
line for 1/z corresponds to the analytical result (3.13), the broken line corresponds to

1/32, which should be identical with 1/2™.
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Figure 4.5: The bulk energy-energy autocorrelation function [G7 /,]av(7) for the bi-
nary distribution (A = 4) at ho = 1.5 for different system sizes as a function of InT.
The slope of the straight line identifies the exponent ne (ho).

The estimates are shown in Fig. 4.4 at different points of the Griffiths phase.
As seen in the Figure the numerical results for the dynamical exponent, z, are
again in very good agreement with the analytical results in (4.20) and also the
exponent of the non-linear susceptibility, 2™, follows fairly well the scaling in
(2.45).

Finally, we calculated the average energy-density autocorrelation function.
As seen in Fig. 4.5 [G)ay (1) displays a linear region in a log-log plot, the size of
which is increasing with L, but its slope, which is just the decay exponent, ., has
only a weak L dependence. The slope of the curve and thus the corresponding
decay exponent 17, has a variation with the parameter hq, as illustrated in Fig.
4.6. The estimated 7, exponents at the critical point, hg = 1, and in the Griffiths
phase are presented in Fig. 4.7. As seen in this Figure the variation of 1, is well
described by the form 7,.(8) = 1, (0) + 1/2(5). This functional form corresponds
to the scaling result in Eq.(4.16), if the critical point correlations decay with

1e(0) = 2. (4.21)
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Figure 4.6: The bulk energy-energy autocorrelation function [G7 /,]av(7) for the bi-
nary distribution (A == 4) at different values for hg for L = 128 as a function of In .
One observes the variation of the exponent 7. {(ho) {identical to the slope of the straight
line fits) with increasing hg.
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Figure 4.7: The exponent 7. (ho) for the binary distribution (A == 4). The full line is
the analytical prediction 1. (ho) = 2 + 1/z(ho) with z(ho) given by the exact formula
(3.13) for the binary distribution with A = 4.

The numerical calculations with L = 128 give a slightly higher value 7. (0) = 2.2
[109]. However, the finite-size estimates show a slowly decreasing 7,(0) with
increasing system size. Repeating the calculation with L = 256 we got 7.(0) ~
2.1. Thus we can conclude that the scaling relation in (4.16) is probably valid
and then (4.21) is the exact value of the decay exponent of the average critical
energy-density autocorrelations!.

4.4 Summary
We have considered the random transverse-field Ising spin chain and studied the

singular behaviour of susceptibility, non-linear susceptibility, higher gaps, and
the energy-density autocorrelation function in the Griffiths phase. Our main

I Numerical estimates for the decay exponent of the average energy-density autocorrelation
function for surface spins at the critical point are % & 2.5 with L = 128 [109], which is some-
what larger than for bulk autocorrelations. Discrepancies between estimates for z from surface
and bulk quantities have been observed before [58]. They can be attributed to corrections to
scaling effects which are different for different quantities, see also Fig. 6 in Ref. [138]
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conclusion is that all the above singular quantities can be characterized by
power-law singularities and the corresponding varying critical exponents can be
related to the dynamical exponent z(d) and, for energy-density autocorrelations,
to the n.(0) critical point exponent. Since the exact value of 2(d) is known in
(3.13) and we expect that also the relation in (4.21) is valid, we have a complete,
analytical description of the Griffiths phase of the RTIM in one dimension. Much
of the reasoning of our phenomenological scaling considerations in Section 4.2
stay valid for other random quantum systems. Especially the scaling behavior
of the higher gaps and the corresponding relation in (4.12) should be valid even
for higher dimensions and the same is true for the distribution of the non-linear
susceptibility and the corresponding relation in (2.45).



Chapter 5

RG study of the Griffiths
phase

Among the theoretical methods developed to study random quantum systems
the renormalization group (RG) scheme introduced by Ma, Dasgupta and Hu[89]
plays a special role. For a class of systems, the critical behavior of those is con-
trolled by an infinite randomness fixed point, the RG method becomes asymp-
totically exact during iteration. For some one-dimensional models, e.g. the ran-
dom transverse-field Ising model [33] and the random XXZ model [32], Fisher
has obtained analytical solution of the RG equations and in this way many
new exact results and new physical insight about the critical behavior of these
models have been gained. Subsequent analytical [58] and numerical [137, 58]
investigations of the models are in agreement with Fisher’s results. The RG-
scheme has been numerically implemented in higher dimensions [96, 84], as well,
to study the critical behavior of the RTIM and reasonable agreement with the
results of quantum Monte-Carlo simulations[106] has been found. Considering
the Griffiths-phase of random quantum spin chains here the RG-scheme has
been rarely used[84], mainly due to the general belief that the method looses
its asymptotically exact properties by leaving the vicinity of the scale invariant
critical point.

Our aim is to clarify the applicability of the Ma-Dasgupta-Hu (MDH) RG-
method in the Griffiths phase of random quantum spin chains. We start with
the RTIC, extend the method to the Griffiths phase and present the analytical
solution of the RG-equations. Then, for general models, we analyze by scaling
considerations the structure of the RG equations around the line of semicritical
fixed points and arrive to the conclusion that the RG method becomes asymp-
totically exact in the whole Griffiths region. This statement is then checked
numerically in the random quantum Potts model (RQPM) by solving the RG
flow equations.

5.1 The Ma-Dasgupta-Hu RG-method
Investigating quantum phase transitions one is interested in the low-temperature

properties of the system and would like to systematically eliminate high-energy
degrees of freedom. A simple way of doing this the MDH RG-method firstly

43
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developed for the random spin-1 Heisenberg chain [89] and later applied for
other spin chaing (RTIC, XX-, XY-, and XXZ chain) [33, 32].

The main idea of the method is to take the strongest term in the Hamilto-
nian, find the ground states of it, and take the coupling to the rest of the system
perturbatively, and then throw out the excited states involving the strong cou-
pling, yielding an effective Hamiltonian with couplings smaller then decimated
ones. Thus iteration of the above operations leads to the successive decrease of
energy scale.

We show here the implementation of the above procedure on the RTIC,
where one distinguishes between two cases.

Strong bond decimation If the largest coupling is a bond, e.g. ) = J3, one
considers the block-Hamiltonian containing the two spins connected by Jo (see
Fig. 5.1):

H 3 = —Jgﬂgdg - hg()’:;f - h30'§. (51)

We assume, that Jo > he,hs. The ground state of (5.1) lies in the subspace
spanned by | 1) and | }J). Solving the eigenvalue problem in this subspace
yields for the ground state energy:

1 (ha + h3)?
E@I—\/J;?*Jr‘(hQ’Jf‘hB)Q:_J2_§M+”' (5.2)
2

The first excited state is in the sector spanned by | 1) and | [1). The energy
associated to this is

1 . 2
El:—\/J;,z—’r(hg—fm)gz—J2—§w+... (53)
2

Thus the excitation energy:

hahs

2

B, —Ey =222 4 (5.4)

Dropping the two higher lying states with energies E3 ~ E; = Jo, we are left
with an effective Hamiltonian which acts on a single spin as

- hahg

23 =

A 055 (5.5)

Strong field decimation If the strongest term in the Hamiltonian is a field,
one has to consider the block (see Fig. 5.1):

H13 = —hgdg - JlO'fO'rf - JQO’é‘EO'g. (56)
Assuming ho > Ji, Jo the last two term can be regarded as a small perturbation
on the first one. These can be treated by second order degenerate perturbation
theory in the subspace |of 12 ¢3) with ¢f,06f =1 or |. This yields for the

effective Hamiltonian: I
f{13 = - ;difdg. (57)

The same result can be obtained much easier by eliminating the strong coupling
in the dual of (5.6), as shown in Fig. 5.1.
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Figure 5.1: The course of MDH strong disorder RG-scheme for RTIC and RQPM. In
case of a strong bond (A) one ends up with a single effective spin in a field hos = ’f}; .
For a strong field (B) the decimation is equivalent to eliminating a strong bond in
the dual lattice. Then the central spin is eliminated, leaving an effective coupling

Foo e J1J2 . H
Jiz = Py between remaining spins.

Thus the basic RG-equations for coupling and field decimations are given by

hihiga Fo Ji1ds (5.8)

h=
/{,Ji ’ /ihz‘, ’

respectively, which are related through duality. Here, for the RTIM we have
k = 1. Note that for £ > 1 the generated new couplings are smaller than
decimated ones', which leads to the gradual decrease of Q during the procedure.

Under renormalization one follows the probability distributions of the cou-
plings R(J, ), and that of the fields P(h, ), which are normalized, such that

Q Q
/ P(h, Q)dh = / R(J.O)dJ = 1. (5.9)
0 0

When the energy-scale is lowered as {2 — 1 — df), which amounts to elimi-
nating dQ[P(£2, Q) + R(Q), Q)] spins, the distribution R(J, 1) is changing as

R(J,Q —dQ) =
Q Q

= {R(J,Q)+dQP(Q,Q)/ dJ1/ dJsR(J1, Q)R (J5, Q) x
0 0

X [‘5 (J' Jlsf’“) — 0 =) el - J3)” 1-dQ[R(Q,;z)+P(Q,Q)] '
(5.10)

! Otherwise the procedure may fail. For details see Ref. {13, 69].
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The first term in brackets accounts for generated new couplings, while the second
and third term for decimated ones. The last factor is included in order to
maintain normalization.

A similar equation for the field distribution follows from (5.10) through du-
ality, which amounts to interchange P <+ R and J < h.

Now expanding R(J, ) — dQ) and P(h,Q — dQ) we obtain the differential
equations:

LD — RUMIPEO,0) - RE,0)
_P(0,0) QdJ’R(J',Q)R(Jg’“,Q)% , (5.11)
Jr
D — ph, )[R, ) - P(O,0)
_R(Q,0) i dh’P(h',Q)P(%,Q)% , (5.12)
hr

The fixed point (2 — 0) solution to the above equations at the critical point
(R = P) of the RTIC (s = 1) was found by Fisher [33, 31]. It is given in terms
of the distribution p(n) of the variable n = —(InQ —1In J)/In ) as

p(n)dn = exp(—n)dn. (5.13)

5.2 Analytical study of RTIC

For the RTIC (s = 1) we found one class of solutions, which satisfy the RG
equations also in the off-critical situation. They are of the form:

R(J,Q) = R(Q’Q)(Q/J)l—R(Q,Q)Q
P(h,Q) = P(Q,Q)(@/n)' 77002 (5.14)

where the distributions involve the parameters, R(Q) = R(,Q) and P() =
P(Q, ), which satisfy the relation (P — R}{) = 1/z = const. Thus the solution
is characterized by a single parameter z = z(d), which depends on the quantum
control-parameter §. At the critical point we have 1/z(0) = 0, whereas in the
paramagnetic phase 1/z(d) > 0 and monotonically increases with 4.

In terms of the variables, u = RQ + 1/22 = PQ —1/2z and v = —InQ we
obtain the differential equation

du 1

9
I S
dv+ 427

(5.15)

which has the solution, v = 1/(v — vg), vo = const, ot the critical point with
1/z = 0. This is identical to the critical fixed point solution in (5.13). At
this point we refer to Fisher’s analysis [33, 31] and conclude that the functions
in Egs (5.14) indeed represent the fixed point distribution for all non-singular
initial distributions. Another argument for Eqs. (5.14) representing the true
fixed point distribution, is based on the numerical solution of Eqs. (5.11) and
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(5.12), which are evolving towards the special solutions in (5.14) for different
initial distributions. A third argument can be found in Ref. [52].

In the Griffiths phase, § > 0, the solution of Eq.(5.15) in terms of the original
energy-scale variable, Q, is given by

_ up/2z + 1/42% tanh [In(Qo/2)/22]
~ 1/2z+4uptanh [In(Qo/Q)/22]

(5.16)

where © = ug at a reference point = Qg. Approaching the line of semicritical
fixed points, i.e. for 2/l — 0, we have in leading order:

RO = PO —1/2 = R(Q0)/[P(0)2] (/0)"* + ... (5.17)

thus P and R have different low energy asymptotics.

The physical relevance of 1/z can be obtained by studying the change of
number of spins, ng — ng — dng connected with a change in the energy scale
as £1 — Q — df). This leads to the differential equation

%? = ng [P(Q, Q) + R(Q,Q)], (5.18)
the solution of which is given by:
ng = {cosh [In(Qo/Q)/22] + 22 yosinh [In(Qo/Q)/22]} 7 , (5.19)

which along the line of semicritical fixed points has the asymptotic behavior
ng = const - /%, Q — 0. Since the typical distance between remaining spins
is Lo ~ 1/ng ~ Q7Y% we can identify z as the dynamical exponent, which
governs the relation between time- and length-scales as 7 ~ L?.

Next we show that z is invariant along the RG trajectory and can be deduced
from the original distributions. For this we consider the averages, [J*]a and
[h™"]av, and using Eqs.(5.11) and (5.12) we calculate the derivative:

STy = (1= [T/)"])
x (P(, Q) Q[0 + R(2, QO ], , (5.20)

which is vanishing for p = fi, if [(J/h)#*]ay = 1. Consequently ji stays invariant
along the RG trajectory until the fixed point, where using the distribution in
Eqs.(5.14) we obtain ji = 1/z. Thus the dynamical exponent for the RTIM is
given by the solution of the equation (3.13), which is then exact, since the RG-
transformation becomes asymptotically exact as € — 0. This latter statement
follows from the fact that the ratio of decimated bonds, Any, and decimated
fields, Any,, goes to zero as Any/Ang, = R(Q,Q)/P(,Q) ~ Q/%. Then the
probability, Pr(«), that the value of a coupling, J, being neighbor to a deci-
mated field is Q < J < af) with 0 < a < 1 is given by Pr(a) = 1 — af*?, which
goes to zero for any non-zero «, since RQ ~ Q% at the fixed point. Conse-
quently the decimations in Eq.(5.8) and the related RG equation in Eqs.(5.11)
and (5.12) are indeed exact. Thus we presented here a derivation of (3.13),
which is independent of that introduced in Section 3.4.
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5.3 General scaling theory

Next, we consider general random quantum spin chains with a critical IRFP and
analyze the structure of the RG equations close to the line of semicritical fixed
points, thus as 2 - 0. As for the RTIM, the decimation for fields and couplings
is asymmetric and for @ — 0 exclusively fields are decimated out, which are
typically infinitely stronger, than neighbouring couplings. Therefore the RG
decimation equations in Eq.(5.8) are asymptotically exact. The second point is
to show that the dynamical exponent stays invariant along the RG trajectory,
even though in the starting phase the RG equations are approximative. For
this we consider the low energy tail of the distribution function of the first gap,
Ppr(lner), which involves the exponent z, and use the scaling result of Section
4.2. This states that the probability distribution of the second, third, etc. gaps
are related to Pr(Ine;) as Pr(lnes) ~ P¥(lney), Pr(lnez) ~ Pl(lne), ete, due
to the fact that for a small second, third gap one needs two, three independent
SCD-s and the corresponding probabilities are multiplied. In the RG decima-
tion the SCD-s are only eliminated through coupling decimation, since their
couplings are stronger than the average fields. If at some time a SCD with a
small gap, €1, is eliminated then in the probability distribution, Py, (Ine€;), one
should consider the former second gap and use the corresponding conditional
probability, Pr(lne;) — Pr(lnes)/Pr(lne) ~ Pr(lne ). Thus the small energy
tail of the gap-distribution and consequently the dynamical exponent remains
invariant under the renormalization procedure. The previously obtained exact
results for the RTIM give strong support for the validity of these phenomeno-
logical considerations.

5.4 Numerical analysis of the random quantum
Potts model

For a numerical demonstration of the validity of the above statement we con-
sidered two random quantum spin chains, the one-dimensional RQPM and the
dimerized Heisenberg (XXX) chain, both having a set of RG equations very
similar to that of the RTIM in (5.8).

The g-state RQPM was already introduced in Section 2.4.1. We study here
its one-dimensional version given by the Hamiltonian

L

L g—1
H==3qJidnini) -5 ém Sk, (5.21)
2 k=1

i=1

where periodic boundaries are considered, i.e. spins at site 1 and site L + 1 are
taken to be identical.

Fields and couplings play analogous role as for the RTIC. The quantum
Potts chain is self-dual, and the quantum control parameter is the same as that
of RTIC, given in (3.3). As it is shown in Appendix B, the recursion equations
are of form of (5.8) and & takes the value £ = ¢/2 [119].

At the critical point the RG-equations for 1 < k& < oo have been solved by
Senthil and Majumdar [119] with the result that & is an irrelevant variable and
the IRFP is the same as for the RTIM. In the Griffiths-phase we could not find
a complete solution of the RG equations, in spite of the close similarity to that
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of the RTIM. We could, however, show that up to an accuracy of QO(Q2'/%) the
solution is of the form of Eqs.(5.14) and thus there is infinite randomness along
the line of fixed points.

This can be shown in an other way by using the numerical founding, that
close to the fixed point 2 = Q* = 0 the distribution

pla, Q)de = QP (%,Q) d% 0<x <1 (5.22)

has a non-vanishing value at x=1:

1,Q = p*(1 .
PO =P, (5.23)
while ; ;
r(y, Ndy = QR(ﬁ,Q)dﬁ 0<y<1 (5.24)
is zero at r = 1:
7’(1, Q)iQ:Q*:O = 7'*(1) =0. (525)

(See Fig. 5.2.) Then equation (5.18) reduces in the vicinity of the fixed point
(- 0) to
dng nop*(1)

with the solution
ng = O (Y x const. (5.27)

Repeating the argument below Eq. (5.19), we can read off the dynamical expo-
nent as 1
z= . 5.28
p*(1) (5:28)
Now we derive the form of fixed point solution to (5.12) for general & > 1,
using the assumptions in (5.23) and (5.25), which was found by numerics.
In terms of the distribution functions (5.22) and (5.24), Eq. (5.12) can be

written as

0 d ! 1
r5E=05htn = plr. D[P0~ (LO1+r(1.0) [ de'pla’ (. )
(5.29)
Close to the fixed point @ = Q* = 0, where r(1,0Q*) = 0, p(1,9") = p*(1) and
Qg—g |Q:m =0, Eq. (5.29) becomes significantly simpler:

op*
Tor T

P’ (%) = % (%) —H%, (5.31)

where we have used relation (5.28).
The exponent z, however, does depend on the parameter &, since the validity
of the condition in Eq.(3.13) is limited to x = 1, thus in general z = z,(9).

—p"(@)(1 —p*(1)). (5.30)

Its solution is
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Figure 5.2: The distributions p(x, Q) vs. z (left) and r(y, Q) vs. y (right) on a log-log
scale for different energy scales 2 denoted on the figures, obtained from the numerical
solution of (5.11) and (5.12) with & = 3/2 and uniform distribution with hg = 2. The
solid line in figure left corresponds to (5.31) with the extrapolated value z = 0.519. In
figure right r(y, Q) evolves towards a power-law distribution with power —1 as Q — 0.

We have calculated the dynamical exponent by solving numerically the RG
flow equations (5.11) and (5.12). In a mathematical point of view these are
connected integro-differential equations with singular kernels in the integrals.

In the numerical integration the bond and field variables are discretized,
as J, = n-AJ and h, = n-Ah, n =1,2,..., where N = 75 = 2 is the
number of representative points in a unit interval, which we call resolution. The
distribution functions R and P at a given energy-scale {) are represented by a
set of functional values {R(J;, )} and {P(h;, )}, respectively.

Decreasing the energy scale by a small finite value AQ the evolution of
distribution functions was computed by the standard forth-order Runge-Kutta
method [98].

At each stage of the energy scale the integrals in (5.11) and (5.12) have to be
evaluated, where the domain of integration vanishes as {1 — 0. To overcome this
difficulty the resolution was doubled at energies ! = £, 1, %,... by introducing
new points into the sets {R(J;, 1)} and {P(hs, )} in between already existing
points through polynomial fitting.

The normalization of distributions, which otherwise would deteriorate due
to numerical errors, was restored after each Runge-Kutta step by integrating P
and R over the whole domain of definition and renormalizing them. In the re-
gions, where the integrand was slowly varying, a standard quadrature (Simpson
formula [98]) was used, while the region containing the singularity was found to
be able to be well approximated by a power-law. The border separating the two
regions, were set automatically by monitoring the error of polynomial fitting.

The procedure was stopped at the final energy scale 2; = mlﬁ, and the
effective value of the dynamical exponent for various intermediate energy scales
were extracted by fitting a straight line to p(x, Q) in a log-log plot (Fig 5.2),
where the slope is asymptotically related to z according to (5.31). These values
were then extrapolated to {2 = 0. The computation was then repeated with
larger and larger resolutions, and finally the effective values were extrapolated to
N — 00, by the BST-algorithm [8]. Starting with a uniform initial distribution
in (4.19), the resulted values of z,, are seen in Fig. 5.3.

We have also calculated the dynamical exponent by a numerical implemen-

LI
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Figure 5.3: Dynamical exponents from numerical solution of Egs. (5.11) and (5.12)
(denoted by a and v), and from numerical iteration of recursion-equations (5.8) for
different values of the parameter k. For x = 1 (RTIM and the random dimerized
XX-chain) the exact result is given by the full line, for x = 2 and 4 the broken lines
are guide to the eye.

tation of the RG scheme over 50000 samples of length L < 2!, Starting with
the uniform probability distribution, we got the estimates shown in Fig. 5.3:
1/z; is a monotonously decreasing function of x and eventually it is expected
to go to zero in the whole Griffiths phase in the limit £ — oco.

These results were compared with dynamical exponents of the XXX-chain,
calculated by P. Lajké, directly from the asymptotic behaviour of the distribu-
tion of surface magnetization, as given in Eq. (3.14). For the dimerized XXX
chain J and b in Eq.(5.8) are replaced by the Heisenberg couplings at odd and
even positions, J, and J,, respectively, and the parameter takes the value k = 2
[89, 32]. The distance from the critical point is measured similarly to (3.3). For
numerical calculations of surface magnetization the DMRG method was used,
for chains with L < 64 and some 20000 samples were considered. An overall
agreement between dynamical exponents calculated by the two methods was
found. As a demonstration we show in Fig. 5.4 the distribution of m, for the
XXX-chain and for the ¢ = 4 state RQPM, where for both models we are at
the same distance from the transition point. As seen in Fig. 5.4 the asymptotic
behavior of the two distributions is identical, as expected on the RG basis, since
% = 2 for both models. Furthermore the dynamical exponents agree very well
with those calculated by the RG method.

5.5 Summary

In this chapter we have pointed out by exact calculations on the RTIC and gen-
eral scaling considerations, that MDH RG-method is applicable along the lines
of semicritical fixed points of quantum spin chains, where it is asymptotically
exact. We found the fixed point solutions to the RG flow equations governing
the RTIC in the Griffiths region. We presented an exact result for the dynam-
ical exponent, and showed, that z stays invariant along the RG procedure. By
a general scaling argument on the gap distribution we suggest this later state-
ments to be generally valid for other spin chains. We performed a numerical
analysis of RG flow equations of the one-dimensional RQPM, and determined
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Figure 5.4: Probability distribution of the logarithm of the surface magnetization
of the dimerized random XXX-chain with § = ~(In2)/2 for different finite systems
calculated by the DMRG method by P. Lajké. The slope of full straight line 1/2(8) =
0.47 comes from the RG treatment. In the inset the same quantity is shown for the
q = 4 state RQPM at the same distance from the critical point. The asymptotic slope
of this distribution can be well fitted by the same exponent as for the XXX-model.

the s-dependent dynamical exponents. For x = 2 an excellent agreement was
found with DMRG results on the dimerized XXX model, which is described by
the same RG equations. These and other numerical results strongly support the
asymptotic exactness of the procedure and the correctness of other exact and
phenomenological findings.



Chapter 6

The random XX- and XY
chain

In this chapter we are going to extend the methods and calculations brought
out in Chapter 4 to other disordered quantum spin chains. Namely, we are
going to study here XY- and dimerized XX spin-% chains with random exchange
couplings by analytical and numerical methods and by phenomenological scaling
theory.

6.1 Phase diagram with non-random couplings

First we introduce a few well-known antiferromagnetic spin-% models including
those, which are the subject of investigation, then we give a brief survey of their
zero-temperature phases.

We start with the general one-dimensional XYZ model, the other models
under investigation are its special cases. It is given by the Hamiltonian

Hyxyz =Y (JFSFSEa + TSP + J7 S SEa), (6.1)
I
where Sl”' = %0{" are the components of a spin—% operator attached to site [.

By rotating the spins at appropriate sites, one can always render the couplings
J¥ and J! to be positive. If the couplings J7 are now positive, the model is
antiferromagnetic, while if they are negative, it is ferromagnetic.

The special cases we consider are the following. Putting J = J = Jf
in (6.1) one gets the Heisenberg (or XXX) model. 1f JF = J' # J¢ in (6.1),
the model is called XXZ model. Moreover if .J7 = 0 one arrives to the simpler
XX model. In the above models S7 = 3", 5] is a conserved quantity. Keeping
Ji = 0 but allowing J# and J/ to be different, the resulting model is called XY
model.

The homogeneous XYZ model (i.e. JF = J*, J = JY,Jf = J*) is controlled
by two parameters: The parameter A given by

2J7

A=
Jr £ J

(6.2)

53
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Figure 6.1: Left: Zero-temperature phase diagram of the pure antiferromagnetic XYZ
chain. Phase boundaries are indicated by solid lines. XAF(YAF) refers to a phase
with antiferromagnetic order in the x(y) direction. ZF(ZAF) denotes a phase with
(anti)ferromagnetic order in the z direction. The points labeled by H have Heisenberg
symmetry. Right: Phase diagram of the pure dimerized XX chain.

and the anisotropy parameter

JE—JY

The phase diagram is shown in Fig. 6.1 [4]. The system exhibits QLRO with
continuously varying decay exponents along phase boundaries. These criti-
cal lines separate various long-range ferro- and antiferromagnetically ordered
phases. The point @ = 0, A = 1 corresponds to the antiferromagnetic Heisen-
berg chain, whereas a = 0, A = —1 can be transformed to a Heisenberg ferro-
magnet. The XY chain takes place along the line A = 0 divided into two parts
by the isotropic XX point.

Another issue in the context of XX chain is dimerization. (See Fig. 6.1
(right).) It was pointed out by Haldane, that isotropic antiferromagnetic chains
of integer spins have an energy gap, whereas half integer spin chains are gap-
less [42]. However, alternating couplings in spin-1/2 chains enforce a dimerized
ground state, and an energy gap is induced. See Fig. 6.1 (right). In the absence
of disorder the spin-1 and dimerized spin—% chains are in the same phase. This
dimerized phase is characterized by a finite gap, exponentially decaying spatial
correlations, and a non-vanishing string order parameter(see Ref. [47, 45]).

Now we shall focus on the line A = 0 and summerize the existing results on
the system subjected to randomness.
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6.2 Previously known results for random cou-
plings

The XX point is known to be unstable both against symmetric randomness
JP = J!, and asymmetric randomness, i.e. when J7 and J/ are drawn from
independent distributions, #%(J*) and «¥(.J¥), respectively [29]. Furthermore
in both cases the fixed point governing the critical behaviour is an IRFP.

In case of asymmetric randomness one obtains the random XY chain. The
known results on this model are taking over from that of RTIC through the
mapping of the XY chain into two decoupled RTIC. This mapping was developed
in the thermodynamic limit and for finite chains with periodic boundaries [32,
103, 45].

The quantum control parameter of the model is the average anisotropy de-
fined as:

[ln J%]ay = [In J¥]ay

0 = var(ln J¢] + var[ln J¥] ’ (6.4)

For 8, > 0 (< 0) there is long-range order in the z (y) direction, i.e.
im0 [CH(r)]ay # 0 for p = z(y), where [C*(r)]sy is defined in (3.46). C*(r)
in the XY model can be expressed as the product of two independent Ising
correlators (3.7). Thus at criticality (8, = 0) the typical spin-spin correlations
(p = x,y) decay as ~ e—Arl/z, where the distribution of A is broad, like in
the RTIC. Whereas average correlations decay algebraically (QLRO), with bulk
decay exponents twice as that of RTIC, i.e. * =n¥ =3 — /5. The correlation
length exponent is the same as that of RTIC, i.e. v = 2.

Considering the random XX model, where couplings are correlated as Jj* =
J} = J;, one can move the system away from criticality by introducing alter-
nation such that even (e) and odd (o) couplings, connecting the site 2i,2i + 1
and 2i — 1, 24, respectively, are taken from distributions p¢(J¢) and p°(J°). The
quantum control parameter is now the average dimerization defined as:

[In J%a — [In J¢a

0a = var[ln J°] + var[ln Je] ’ (6.5)

At §; = 0 the system is critical. According to the RG treatment by Fisher
[32], in the resulting phase all spins are paired and form singlets, however, the
distance between two spins in a singlet pair can be arbitrarily large. It is thus
termed random-singlet (RS) phase. The long singlet bonds are typically much
weaker than short ones and bonds cannot cross each other. The relation between
length and time scale was found to be identical to that of RTIC in (3.11). Typical
spatial correlation of spins decays as ~ e—A’”W, where the constant A4 is broadly
distributed. Although rare widely separated pairs of spins, which have strong
O(1) correlation lead to the algebraic decay of average correlations. Because of
the singlet nature of pairs of spins, all components decay with the same power,
which is n* = n¥ = n* = 2. This phase is gapless, and there is no string order.
The RG approach predicts the antiferromagnetic random XX fixed point to
control the critical behavior of the antiferromagnetic Heisenberg model, too.

The region §; # 0 corresponds to the random dimer (RD) phase, which is
gapless like the RS phase, but has a non-vanishing string order.

In both random XX and XY chains, a Griffiths phase takes place around the
critical point. As shown by an RG analysis [51, 135], applicable in the vicin-
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ity of the RS fixed point, the Griffiths phase is characterized by a dynamical
exponent predicted to be a continuous function of the quantum control param-
eter (anisotropy or dimerization) and the singular behavior of different physical
quantities are all expected to be related to it.

The RG predictions [32, 51, 135] have been compared to the results of nu-
merical studies [40, 118, 45], especially in the RS phase of isotropic chains. In
the RS phase some numerical results are controversial: in earlier studies [118] a
different scenario from the RG picture is proposed (in particular with respect to
the transverse correlation function), later investigations on larger finite systems
have found satisfactory agreement with the RG predictions [45], although the
finite-size effects were still very strong.

6.3 Results

In this chapter we extend previous work in several directions. Here we consider
open chains and study both bulk and surface quantities, as well as end-to-
end correlations. We develop a phenomenological theory which is based on
the scaling properties of rare events and determine the complete set of critical
decay exponents. We calculate numerically (off-diagonal) spin-operator profiles,
whose scaling properties are related to (bulk and surface) decay exponents [129]
and compare the profiles with predictions of conformal invariance. Another new
feature of our work is the study of dynamical correlations, both at the critical
point and in the Griffiths phase, which are not accessible by the MDH RG-
method. Finally, we perform a detailed analytical and numerical study of the
Griffiths phase and calculate, among others, the exact value of the dynamical
exponent.

6.3.1 Free-fermion representation
We consider an open XY chain (i.e. with free boundary conditions) with L sites
described by the Hamiltonian:

L—1
H="> (JFSrst, +J7S!Sty) - (6.6)

=1

We use two types of random distributions already introduced in Section 4.3,
both for the XY and XX models. One of them is a binary distribution:

w(JT) = pa(JT = A) +qd(JT = AT

(V) = 6V - Jg), (6.7)
the other is a uniform one:
/e 1, for 0 < J® <1
() = {O, otherwise
S (JOH™Y, for 0 < Jv < B
() {O, otherwise ’ (6:8)

For the XX model the corresponding distributions p*(J¢) and p°(.J?) follow from
correspondences:

JE s JE TV - JC,
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m(J7) = pe(J€), w(JY) = p°(J°) . (6.9)

Note that the critical points of the two models (§, = 0 and d4 = 0, respectively)
are not equivalent due to the different disorder correlations.

Following a completely analogous way, as for the RTIC, i.e. performing the
Jordan-Wigner transformation, and a subsequent canonical transformation, the
Hamiltonian (6.6) is mapped into a system of non-interacting fermions with
Hamiltonian (3.15). For details see Appendix A. The fermion excitations are
non-negative and satisfy the set of equations

eUe(l) = JL @l =1)+ Jf (1 +1)
eq®e(l) = JE 01— 1)+ J)e,(1+1), (6.10)
with boundary conditions J§ = J} = 0. These equations are nothing but (A.14)

in components. Introducing a 2L-dimensional vector V, with components:
Vol =3)=®,(21 = 1),  Vo(4l —2) =¥, (20 - 1),

Vy(4l — 1) = ¥,(20), Vy(dl) = @,4(21); (6.11)
Eqs.(6.10) then correspond to the eigenvalue problem of the matrix:
0o o J
0 0 o0 Jf
Jo 0 o0 0 J&
Jg0 0 o0 JH
Jy 0 0 0 JY
T= 0 0 0 (6.12)
- . N
J 5, 0 0 0 Ji4
J 0 0 0

JE 0 0

We confine ourselves to the positive part of the spectrum, as was argued in
Appendix A. The eigenvalues of T in (6.12) are of two classes. For g = 2i—~1, i =
1,2,..., L the even components of the eigenvectors are zero, i.e. Vao;1(2j) =
0, j =1,2,...,L, whereas for the other class with ¢ = 2¢ the odd components
are zero, V2;(2j — 1) = 0. Consequently T can be expressed as a direct product
T =T, @ T,, with the tridiagonal matrices T, , T, of size L x L. As a result
one has to diagonalize these two matrices. Thus for chains with even number of
sites, L = 2N, the two classes of eigenvectors are given in terms of the vectors
$ and ¥ via:

€241 : Do 1(27) = Wy a1(25-1)

€2 ©2(25 — 1) = Wau(29)
fori,j=1,...,N.

For the XX model the even and odd sectors are degenerate, €z;_1 = €9;, thus

it is sufficient to diagonalize only one matrix. In this case one has the additional
relations:

I
o

(6.13)

I
o

Doy 1(25 —1) = Wy(25-1),

®4:(25) = Uy1(2)) .
The matrices T, and T, are in one-to-one correspondence with the eigenvalue
problem of one-dimensional TIM-s. This exact mapping for finite open chains
is presented in Appendix C.

XX — model (6.14)
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Local order parameters Next we are going to study the long-range order in
the ground state of the system. For similar reasons as for the RTIC, the local
order parameter in a finite system is given by the off-diagonal matrix element:

mi = (1|57]0) . (6.15)

(Note that there is a difference of a factor of 3 between the form of (3.21) and
that of (6.15) since the former is defined in terms of Pauli operators instead of
spin operators.) It can be calculated from the determinant (3.24) containing
matrix elements in (3.25).

For surface spins the local order parameter is simply given by m7 = ®1(1)/2,
which can be evaluated in the thermodynamic limit L — oo in the phase with
long-range order, when ¢; = 0. Using the normalization condition 3, |®1(1)|> =
1 we obtain for the surface order parameter:

1 r L/2—1 [ Jy 2 —1/2
mi = S |1+ > H(—"JJ;) Xy
e 6.16
T, -1 (6.16)
m{ = 2 1+ZH<“’JJ‘1> XX.
i =1 j=1 2j

We note that this formula is exact for finite chains if we use fixed spin boundary
condition, s§ = +1/2, which amounts to have J/_; = 0. In the fermionic
description the two-fold degeneracy of the energy levels, corresponding to s} =
1/2 and s§ = —1/2, is manifested by a zero energy mode in (3.15) and from the
corresponding eigenvector we obtain mf in (6.16) for any finite chain.

For non-surface spins the expression of the local order parameter (3.24) can
be simplified by using the relations (6.13). Then, half of the elements of the
determinant (3.24) are zero, the non-zero-elements being arranged in a checker-
board pattern, and mj can be expressed as a product of two determinants of
half-size, which reads for [ = 2j as:

Hy G2 G G1,2j—2
. 1 Hs G320 Gsa G352
H’)J—l GQ]—l,Q GQ}—l 4 G’«’J—l,?]—?
Gaoa Gags Ga2j-1
Gag Gaz ... Gagj
x | . D T (6.17)
Gaja Gajs Gaj,2j-1

The local order parameter m/, related to the off-diagonal matrix-element of
the operator S/ can be obtained from (3.24) and (6.16) by exchanging J;* <> J/.

The local order parameter mj is given as in (3.47), where |¢,) is now the
ground state |0). Since (0|o;|0) also contains a non-singular contribution, the
scaling behaviour of its singular part is more convenient to determine by con-
sidering the off-diagonal order parameter mj = (¢.|o;|0), where (¢.| is now the
first excited state of H, which has non-vanishing matrix element with |0) [57].



6.3. RESULTS 59

Using (4.6) the off-diagonal order parameter m; is given by

1

2§ =@ (D)W2(1) + 1 (1) P2(1)] - (6.18)

For the XX model one can obtain simple expressions using the relations in (6.14)
as:

My = %[(I)l(% - P
X X —model (6.19)
[W1(20)]

[T

z —
mgi —

In the context of XY and XX chains we shall call mf ¥ and mj transverse and
longitudinal order parameters, respectively, in the following.

Autocorrelations Next we consider the dynamical correlations GJ (1) =
(5/'()S]' (1)) as a function of the imaginary time 7. For the 2-component of
the surface spins they are given following (3.28) as

Gir) = g Z 2 exp(~re,)
L/’)
= 4 Z eXp(—7'€221_1) s (620)

where we have used the relations in (6.13).
The connected longitudinal correlation is given in a simple form for any
position [ in (4.8) as

G (1) = 1 31— B0, () + T, ) expl-r(eg + )] . (6:21)

p>q

6.3.2 Phenomenological theory from scaling of rare events

In this section we identify the rare events for the random XY (and XX) model,
which dominate the average quantities, and use their properties to develop a
phenomenological theory in an analogous way as it has been done for the RTIC.

Surface order parameter The local order parameter at the boundary is
given by the simple formula in (6.16), which has the same structure like that
of RTIC in (3.27). Thus using the extreme binary distribution (i.e. A — 0 and
J§ =1in (6.7)) and following the same argumentations as for RTIC in Section
3.5.1, we conclude with the basic correspondences between the average surface
order parameter of the XY (and X X) model and the surviving probability of
adsorbing random walks:

[m7 (6, D)]aw ~ Peury (0w, L/2), 6~ by . (6.22)

The scaling properties of the average surface order parameter and the correlation
length then follow from (3.39), (3.40) and (3.41) and will be evaluated in Section
6.3.3.
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Scaling of low-energy excitations In order to estimate the scaling of low-
energy excitations, we neglect the r.h.s. of the eigenvalue equation of matrix 7'
in (6.12), which is reasonable, if €; vanishes at least as fast as €3 ~ 1/1, with the
system size [. We shall see, that it is fulfilled. Deriving approximate expressions
for ®; and ¥; we obtain, similarly to (3.42), the expression for the first gap:

r,..x Y = Jgj—l
ey ~mimi TP ] _— (6.23)
j=1 2j

Here m7 is given in (6.16) and the surface order parameter at the other end of
the chain, m{_,, is given by replacing JJ; , /J5; by J] | o:/Jf_5; in (6.16).

The characteristic excitation energy of an SCD can be estimated from (6.23)
as

1/2-1 Jgj_l [ —
al)~ I —j;—fwexp{—??hﬂjyﬁf)}, (6.24)
g=1 2j

where I, measures the size of transverse fluctuations of a surviving walk of
length 1/2 and In(J#/.Jv) is an average ratio of the couplings (it is ln(Je¢/.J?)
for the XX model). Applying the properties of I, given in Section 3.5.2 we
get similar behaviour as for the RTIC. At the critical point we arrive at (3.44),
whereas in the Griffiths phase to (3.45), which now contains the dynamical
exponent of the XY (XX) model.

6.3.3 Critical properties

Here we consider in detail the random XY and XX chains in the vicinity of the
critical point. The off-critical properties in the Griffiths phase are presented in
the following section.

Length- and time scales As we argued in Section 3.5 the rare events are
SCD-s, having a coupling distribution of surviving RW character. The typical
size of an SCD, as given by &, in Eq. (3.41), is related to the average correlation
length of the system £. Then using the correspondences in (6.22), (3.41) and
(3.53) we get the relation:

E~1077, v=2. (6.25)

The typical correlation length, &y, as measured by the average of the loga-
rithm of the correlation function is different from the average correlation length.
One can estimate the typical value by analyzing the formula (6.16) for the sur-
face order parameter, where the products are typically of ] j(Jif,’j_l/ Jrfj)2 ~
exp(const - |8|L), thus [ms(L,0 < 0))yp ~ exp(—const - [6]L) ~ exp(—L/&yp)-
Therefore we obtain:

Vegp = 1. (6.26)

We note that ot the critical point the largest value of the above products is
typically of [1;(J5;_,/J5;)* ~ exp(const - L'/?), since the transverse fluctua-
tions in the couplings are of O(L'/?). Therefore we have [ms(L,d = 0)]iyp ~
exp(—const - L1/?).

As shown in Eq. (6.24) the value of the smallest gap is related to the size
of transverse fluctuations of an SCD [,. Close to the critical point (§ — 0) one
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has li; ~ &'/2, and therefore the characteristic relaxation time of a sample scales
with correlation length & as
In 7oy ~ Y2 (6.27)

We note that the results in this part about length- and time scales are valid
both for the XY- and XX models. They also hold in identical form for the
RTIC, which can be understood as a consequence of the mapping of the XY
chain into decoupled RTIC-s.

Quasi-long-range order

At the critical point the decay exponent of correlations are related to the scaling
exponent z# of the fraction of rare events of the given quantity (see Eq. (3.50))
and its value generally depends on the type of correlations of the disorder, thus
it could be different for the XY and the XX models. Analyzing the scaling
properties of the rare events in the XY and XX chains we have calculated the
critical decay exponents of different correlation functions, both between two
spins in the volume and for end-to-end correlations. Our results are presented
in Table 6.1.

In the following we are going to derive these exponents by analytical and
scaling methods and then confront them with the results of numerical calcula-
tions based on the free fermion technique.

Longitudinal order parameter We start with the scaling behavior of the
longitudinal order parameter m;, which in the XX chain is given by the simple
formula in (6.19). Summing over all sites one gets the sum-rule

L
> mi=1 XX—model, (6.28)
=1

where we have used (6.13) and the fact that the ®, and ¥, are normalized.
Since this sum-rule is also valid for the average quantities, we get immediately

[m]]ay = L™ (1/L), (6.29)
where 7* (1) is a scaling function with [ = /L. Consequently for bulk spins the
finite-size dependence of the local order parameter is [mj]a, ~ L', thus we

have *(X X) =1 and from (3.50) the decay exponent is

I (XX)=2

(XY) | 9*(XX) | ¥ (XY) | *(XX)
bulk || 3—v3"7 | 2 4 2(x)
surface 1 1 2 1

Table 6.1: Decay exponents of critical correlations in the random XY and XX chains.
The exponents with a superscript ) are those calculated by Fisher with the RG
method [32], whereas **) follows from the results of the RTIC in Ref. [33, 31].
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A further consequence of the sum-rule is that the average value of the bulk order
parameter is the same, if the averaging is performed over any single sample.
Thus the order parameter m* and the correlation function (0|57 57, ,.|0) are self-
averaging. 'This is quite unusual in disordered systems where the correlations
are generally not self-averaging [25].

The surface order parameter mj for the XX model satisfies the relation
mi = 2(m¥)?, which follows from relation m? = ®;(1)/2 and (6.19). Then
a rare event with m¥ = O(1) is also a rare event for the order parameter m?.
Consequently the fraction of rare-events Py is given by the surviving probability
in (3.39). Thus the scaling dimension is 27 = 1/2 and the decay exponent of
critical end-to-end correlations is

ni(XX) =1

We calculated the order-parameter profile [m}],, numerically for large finite
systems up to L = 256. As shown in Fig. 6.2 the numerical points of the scaled
variable L{mj].. are on one scaling curve m*(l) for different values of L. The
scaling curve has two branches for odd and even lattice sites, which cross at
I = L/2. The upper part of the curves in the large L limit is very well described

by the function m*(l), = Asin(xl)~*/2, which corresponds to the conformal
result on off-diagonal matrix element profiles [129]:

LA A
[mf’];ww(z) <51n7rz> , (6.30)

with 2% = 1 and 2{ = 1/2. On the other hand the lower part of the curves in
Fig. 6.2 is given by m*(); = Asin(wl), which corresponds to Eq. (6.30) with
x5 = 2. Thus we obtain that average critical correlations between two spins
which are next to the surface are decaying as [C*(2,L — 1)]ay ~ L™, Using
the sum-rule for the profile in Eq. (6.28) and the conformal predictions one
can determine the pre-factor A from normalization. Then from the equation
A/2 fol [(sin7wz)~Y? 4 sinwa]de = 1, one gets A = .86735, which fits well the
numerical data on Fig. 6.2.

These results about the conformal properties of the profile are in agreement
with similar studies of the RTIC [57, 58]. Thus it seems to be a general fea-
ture that critical order-parameter profiles of random quantum spin chains are
described by the results of conformal invariance, although these systems are
strongly anisotropic (see Eq. (6.27)) and therefore not conformal invariant.

Next we turn to study the order parameter m; and the longitudinal corre-
lation function in the random XY model. In this model the disorder in the
J{ and J/ couplings is uncorrelated, therefore one can perform averaging in
the two subspaces T, and T, or in the two decoupled RTIC-s, independently.
Note that the expression for m; in Eq. (6.18) is given as a product of two
vector-components, where each vector belongs to different subspaces and have
the same average behavior. Since the couplings entering the two separate eigen-
value problems are independent one gets for the disorder average

The probability for m] being of order one is the product of the probabilities for
®4 (1) and P2 (1) being of order one hence we conclude that the scaling dimension
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Figure 6.2: Finite-size scaling plot of the longitudinal order-parameter profiles [mjlav
for the XX model at criticality for different system sizes calculated numerically with the
fermion method using Eq. (6.19). The data are for the uniform distribution, averaged
over 50000 samples. The profiles predicted by conformal invariance are indicated by
full lines.
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Figure 6.3: Finite size scaling plot of the longitudinal order-parameter profiles [mjlav
for the XY model at criticality for different system sizes calculated numerically with
the fermion method using Eq. (6.19). The data are for the uniform distribution,
averaged over 50000 samples.

for mf{ in the random XY chain is twice that for the random XX chain. Thus
the decay exponents are
(XY) =4

and
i (XY) =2

in the bulk and at the surface, respectively.

The numerical results about the order-parameter profile is shown in Fig. 6.3.
The data collapse is satisfactory, although not as good as for the X X model.
Similar conclusion holds for the relation with the pro