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Chapter 1

Overview

My dissertion contains the main results of my research activity carried out
during the time of my PhD studies at the University of Szeged. It includes
three papers of mine which have been published. These works are related to the
following two different fields of mathematics:

1- complete polynomial vector fields
2- geodesics on warped product manifolds.
In accordance with our papers, the dissertation is divided into three main

Chapters:
1) In Chapter 2 we shall describe complete polynomial vector fields on a finite-

dimensional simplex S := (x1 + x2 + · · · + xn = 1) with an application to
differential equations in genetical dynamic systems,

2) Chapter 3 deals with the complete polynomial vector fields on the Euclidean
unit ball B := (x2

1 + . . . + x2
n < 1),

3) Chapter 4 is devoted to the geometry of the central symmetric warped
product structures on IRN

0 × IR.

In Chapter 2 we are going to describe the complete polynomial vector fields
and their fixed points in a finite-dimensional simplex. We apply the results to
differential equations of genetical evolution models.

There are several well-known models in literature [4], [5], [2] on the time
evolution of a closed population consisting of IN different species - with the whole
population at time t ≥ 0 as the solution of a system of ordinary differential equ-
ations d

dtvk(t) = Fk(v1(t), v2(t), . . . , rN (t)) (k = 1, 2, . . . , N) where the functions
Fk are some polynomials of at most 3-rd. degree. During a seminar on such
models one has raised the problem what are the strange consequences of the as-
sumption that the evolution has no starting point in time, in particular what can
be stated on non-changing distribution in that case. In this chapter we provide
the complete algebraic description of all polynomial vector fields (with arbitrary
degrees), V (x) = (F1(x), F2(x), . . . , FN (x)) on IRN which give rise to solutions
for the evolution equation defined for all time parameters t ∈ IR, and satisfying
the natural rate conditions r1(t), r2(t), r3(t), . . ., rN (t) ≥ 0;

∑N
k=1 rk(t) = 1

whenever r1(0), r2(0), . . ., rN (0) ≥ 0 and
N∑

k=1

rk(0) = 1. On the basis of the

explicit formulas obtained we describe the structure of the set of zeros for such
vector fields which corresponded to the non-changing distribution.

In Chapter 3 we are going to describe the complete polynomial vector fields in
the unit ball B := (x2

1+x2
2+· · ·+x2

N < 1) of IRN . This work originates from a nice
parametric formula due to L.L. Stachó [3] for the complete real polynomial vector
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fields on the unit disc IK of the space C of complex numbers. He has shown that a
real polynomial vector field p : C → C is complete in IK iff p is a finite real linear
combination formed by the functions iz, γzm − zzm+2, (z ∈ C, m = 0, 1, . . .)
and (1 − |z|2)Q where Q is any real polynomial from C to C. Our result in this
chapter establishes that p : IRIN → IRIN is a complete polynomial vector field in
the unit ball B if and only if p(x) = R(x)−〈R(x), x〉x+(1−〈x, x〉)Q(x) for some
polynomials Q, R : IRIN → IRIN. This theorem not only generalizes the result
of [3] on IK, but it even simplifies it by showing that the complete polynomial
vector fields on the unit disc of C have the form [ip(z)z + q(z)(1 − |z|2)] where
p, q : C → IR are any real polynomials.

In Chapter 4 we shall study the geometry of the central symmetric warped
product manifold structures on IRN

0 ×IR1 where IRN
0 = IRN\{0}, which correspond

to the potential functions a‖x‖, a ≥ 0, and equipped with the Riemannian scalar
product 〈·, ·〉 defined by the following properties:

i) the projection onto IRN along IR1 of this Riemannian scalar 〈·, ·〉 is canonical
Euclidean,

ii) IR1 is orthogonal to IRN with respect to 〈·, ·〉,
iii) the projection onto IR1 along IRN of 〈·, ·〉 at (a, α) ∈ IRN

0 ×IR1 is the canonical
one multiplied by U(|a|2), where U : IR+ → IR+ is smooth.
Notice that these properties determine uniquely the scalar product of the

vectors (X, ξ), Y (η) ∈ T(a,α)(IR
N
0 × IR1) and it can be written in the form

〈(X, ξ) · (Y, η)〉 = 〈X, Y 〉 + U(|a|2) · ξ · η.
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Chapter 2

Complete polynomial vector fields in a simplex

Throughout the whole work IRN := {(ξ1, . . . , ξN ) : ξ1, . . . , ξN ∈ IR} denotes
the vector space of all real N -tuples. We reserve the notations x1, . . . , xN for the
standard coordinate functions xk : (ξ1, . . . , ξN ) → ξk on IRN . Also we reserve the
notation S for the unit simplex

S : =
(
x1 + · · ·+ xN = 1, x1, . . . , xN ≥ 0

)
=

= {p ∈ IRN : x1(p) + · · ·+ xN (p) = 1, x1(p), . . . , xN (p) ≥ 0} .

Recall [6] that by a vector field on S we simply mean a function S → IRN .
A function ϕ : S → IR is said to be polynomial if it is the restriction of some
polynomial of the linear coordinate functions x1, . . . , , xN : for some finite system
of coefficients αk1...kN

∈ IR with k1, . . . , kN ∈ {0, 1, . . .}) we can write ϕ(p) =∑
k1,...,kN

αk1...kN
xk1

1 · · ·xkN

N (p ∈ S). In accordance with this terminology, a
vector field V on S is a polynomial vector field if its components Vk := xk ◦ V
(that is V (p) = (V1(p), . . . , VN (p)) for p ∈ S) are polynomial functions. It is
elementary that given two polynomials Pm = Pm(x1, . . . , xN) : IRN → IR (m =
1, 2), their restrictions to S coincide if and only if the difference P1 −P2 vanishes
on the affine subspace AS :=

(
x1 + · · · + xN = 1

)
generated by S. We shall

see later that a polynomial P = P (x1, . . . , xN) vanishes on the affine subspace
M :=

(
γ1x1 + · · ·+ γNxN = δ

)
iff P = (γ1x1 + · · ·+ γNxN − δ)Q(x1, . . . , xN ) for

some polynomial Q. Thus polynomial vector fields on S admit several polynomial
extensions to IRN but any two such extensions differ only by a vector field of the
form (x1 + · · ·+ xN − 1)W .

Definition. A locally Lipschitzian (e.g. polynomial) vector field V : IRN →
IRN is said to be complete in a (non-empty) subset K ⊂ IRN if for any point
p ∈ K there is a (necessarily unique) curve Cp : IR → K such that Cp(0) = p and
d
dt

Cp(t) = V (Cp(t)) (t ∈ IR).

Our purpose will be to describe the complete polynomial vector fields on the
simplex S and we apply the results to differential equations of genetical evolutions
models.

Our main results are as follows.

2.2. Theorem. A polynomial vector field V : S → IRN is complete in S if and
only if with the vector fields

Zk := xk

N∑
j=1

xj(ej − ek) (k = 1, . . . , N)
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where ej is the standard unit vector ej := (0, . . . , 0,

j︷︸︸︷
1 , 0, . . . , 0), we have

V =
N∑

k=1

Pk(x1, . . . , xN )Zk

for some polynomial functions P1, . . . , PN : IRN → IR.

2.3. Theorem. Given a complete polynomial vector field V of S, there are
polynomials δ1, . . . , δN : IRN−1 → IR of degree less than that of V such that the
vector field

Ṽ :=
N−1∑
k=1

xk

[
δk(x1, . . . , xN−1) −

N−1∑
�=1

x�δ�(x1, . . . , xN−1)
]
ek+

+ (x1 + · · ·+ xN−1 − 1)
N−1∑
�=1

x�δ�(x1, . . . , xN−1)eN

coincides with V on S. The points of the zeros of V inside the fa-
cial subsimplices SK := S ∩ (x1, . . . , xK > 0 = xK+1 = · · · = xN )
(K =1, . . . , N) can be described as

(∗)
SN ∩ (V = 0) = S ∩

N−1⋃
k=1

(
δk(x1, . . . , xN−1) = 0

)
,

SK ∩ (V = 0) = SK ∩ (
δ1(x1, . . . , xN−1) = · · · =

= δK(x1, . . . , xN−1)
)

(K < N).

x1

x2

x3

x1

x2

x3

x1

x2

x3

Fig1. The fundamental vector fields Z1, Z2, Z3 in the case N = 3.
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Concerning the genetical time evolution equation for the distribution of spe-
cies within a closed population, in [7] we have the system

(∗∗)

d

dt
xk =

( N∑
i=1

g(i)xi − g(k)
)
xk+

+
N∑

i,j=1

w(i, j)xixj

[ N∑
�=1

M(i, j, �)ε(i, j, �, k)− xk

]

for describing the behaviour of the rates x1(t), . . . , xN (t) at time t of the N species
of the population. Here the terms g(k), M(i, j, �) and ε(i, j, �, k) are non-negative
constants with

∑N
�=1 M(i, j, �) =

∑N
k=1 ε(i, j, �, k) = 1. Observe that this can be

written as
d

dt
x =

N∑
k=1

g(k)Zk + W

with the vector fields

Zk:=xk

N∑
j=1

xj(ej−ek),

W :=
N∑

i,j,k=1

w(i, j)xixj

[ N∑
�=1

M(i, j, �)ε(i, j, �, k)−xk

]
ek,

respectively. As a consequence of Theorems 2.1 and 2.2 we obtain the following.

2.4. Theorem. Let N ≥ 3. Then the time evolution of the popula-
tion can be retrospected up to any time t ≤ 0 starting with any distribution
(x(0), . . . , xN (0)) ∈ S if and only if the term W vanishes on S, that is if simply
d/dt x =

∑N
k=1 g(k)Zk(x1, . . . , xN). In this case the set of the stable distributions

has the form

⋃
γ∈{g(1),...,g(N)}

S ∩ (xm = 0 for m �∈ Jγ) where Jγ := {m : g(m) = γ} .

2.5. Corollary. If g(1), . . . , g(N) ≥ 0 and the vector field (**) is complete in S
then

d

dt

N∑
k=1

g(k)xk(t) ≥ 0

for any solution t → x(t) ∈ S of the evolution equation dx/dt = V (x).
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Chapter 3

Complete polynomial vector
fields of the Euclidean ball

In this chapter we will describe the complete polynomial vector fields in the
unit ball of a finite dimensional inner product space which we identify with IRN .

Our work arises from an idea of a nice result of L.L. Stachó [4] in 2001
where he characterized the complete real polynomial vector fields in the (two-
dimensional) unit disc IK of the complex plane C. We will show that our result
not only generalizes the results of [4] on IK, but it even simplifies them.

3.1. Definition. Given any subset K in IRN the set of real n tuples and a
mapping v : IRN → IRN , we say that v is a complete vector field in K if for
every point k0 ∈ K there exists a curve x : IR → K such that x(0) = k0 and
dx(t)

dt = v(x(t)) for all t ∈ IR.

In Chapter 2 we represented complete polynomial vector fields on a simplex
as polynomial combinations of some finite family of complete vector fields of third
degree. This idea motivates the formulation of our main result in this section.

First let us reformulate Stachó’s theorem [4] in terms of polynomial combina-
tions instead of linear combinations asserting (in complex notations, when iden-
tifying IR2 with C in the usual manner) that a polynomial vector field v : C → C
is complete in the unit disc IK if and only if it is a finite IR-linear combination of
the vector fields from the family

F :=
{
iz, µzn − µzn+2, (1 − |z|2)Q :

n = 0, 1, . . . ; µ = 1, i; Q ∈ PolIR(C, C)
}

.

Actually we have the simpler form for the real linear span (the family of all finite
linear combinations) of F as

SpanIRF =
{
P · iz + Q(1 − |z|2) :

P ∈ Pol(C, IR), Q ∈ Pol(C, C)
}

.

3.2. Remark. Recall that a mapping v : IRN → IRN is said to be a poly-
nomial vector field if v(x) = (p1(x), . . . , pN (x)); x ∈ IRN for some polynomials
p1, . . . , pn : IRN → IR, of N variables (that is each pi is a finite linear combina-
tion of functions of the form xm1

1 . . . xmN

N with non-negative integers mj where
xj : (ξ1, ξ2, . . . , ξN) → ξj denotes the j-th canonical coordinate function of IRN ).
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3.3. Definition. By writing 〈(ξ1, ξ2, . . . , ξN ), (η1, η2, . . . , ηN )〉 :=
∑N

i=1 ξiηi for
the inner product in IRN , it is easy to see that a polynomial (or even smooth)
vector field is complete in the ball B := (〈x, x〉 < 1) if and only if it is complete
in the sphere S := (〈x, x〉 = 1). Furthermore, v is complete in S if and only if it
is orthogonal to the radius vector on S, i.e. if 〈v(x), x〉 = 0 for x ∈ S.

We know from Chapter 2 that if F : IRN → IR is a polynomial and p :
IRN → IR be any polynomial such that p(M) = 0 and M ⊂ RN , then there is a
polynomial q : IRN → IR such that P = q ·F , when F (x) = φ1(x)·φ2(x) · · ·φN (x),
and the φi are linearly independent affine functions. Now we will prove the case
when f(x) = 1 − 〈x, x〉 which is important to formulate our main result.

3.4. Lemma. Let f : IRN → IR be a polynomial such that f(x) = 0 for x ∈ S
where S := (〈x, x〉 = 1). Then there exists a polynomial Q : IRN → IR, such that
f(x) = (1 − 〈x, x〉)Q(x).

Lemmas with such a character seem to be very important in the theory of
complete polynomial vector fields of domains defined by polynomial inequalities.
In the complex case, due to the algebraic closedness of the field C, there are
similar results but the proofs cannot be imitated in the real case, even in the case
of a ball.

3.5. Theorem. Let P : IRN → IRN be a polynomial mapping. Then P is a
complete polynomial vector field in the sphere S := (〈x, x〉 = 1) if and only if

[P (x) = R(x) − 〈R(x), x〉x + (1 − 〈x, x〉)Q(x)]

for some polynomial mappings R, Q : IRN → IRN .

3.6. Corollary. Let Vk : x → ek − 〈ek, x〉x where k = 1, 2, 3, . . . , N . Then

every complete polynomial vector field on the sphere S :=
( N∑
i=1

x2
i = 1

)
coincides

with some vector field of the form V (x) =
∑N

k=1 pk(x)Vk(x) when restricted to S
where p1, . . . , pn : IRn → IR are appropriate polynomials.

x1

x2

x3

x1

x2

x3

x1

x2

x3

Figure 2. The vector fields Vk : x → ek − 〈ek, x〉x, (k=1, 2, 3) on S ⊂ IR3.
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3.7. Corollary The complete polynomial vector fields on S are exactly the res-
rictrictions of the vector fields of the form

Ṽ : x → xA(x)

where A is any polynomial mapping IRN → Mat(−)(N, IR) into the space af all
antisymmetric N × N -matrices.

3.8. Remark. There is an interesting link between the complete polynomial
vector fields of the unit simplex P := (x1 + · · ·+ xN , x1, . . . , xN ≥ 0) and those
of the sphere S := (x2

1 + · · ·+ x2
N = 1). Namely, the mapping

T : (x1, . . . , xN) → (x2
1, . . . , x

2
N)

maps the positive part S+ := S ∩ (x1, . . . , xN ≥ 0) of the sphere onto P in
a one-to-one manner. Given any smooth complete vector field W : P → IRN

(W (x) = (w1(x), . . . , wN (x))) of the simplex P , its pull-back to S+ is

T#V : S+ � (x1, . . . , xN ) → d

dτ

∣∣∣∣
τ=0

T−1
(
T (x) + τW (T (x))

)
=

=
d

dτ

∣∣∣∣
τ=0

(
[x2

1 + τw1(x2
1, . . . , x

2
N)]1/2, . . . , [x2

N + τwN (x2
1, . . . , x

2
N )]1/2

)
=

=
1
2
(
x−1

1 w1(x2
1, . . . , x

2
N ), . . . , x−1

N wN (x2
1, . . . , x

2
N )

)
.

In particular the operation T# establishes the following relationship between the
fundamental complete polynomial vector fields Zk(x) := xk

∑N
i=1 xi(ei −ek) of P

of P and Vk(x) := ek − 〈ek, x〉x of S, respectively:

T#Zk(x) = 1
2xkVk(x) (k = 1, . . . , N) .

Therefore all complete polynomial vector fields of P are pulled back to complete
polynomial vector fields of S+. Namely we have

T#
(∑N

k=1 pk(x)Zk(x)
)

=
N∑

k=1

1
2
xkpk(x2

1, . . . , x
2
N )Vk(x).

x1

x2

x3

x1

x2

x3

x1

x2

x3

Figure 3. The vector fields xkVk(x), (k=1, 2, 3) on S+ ⊂ IR3.
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Chapter 4

Geodesics on a central symmetric
warped product manifold

Let U : IR+ → IR+ be a given smooth function. We consider the manifold
IRn

0 × IR1, where IRn
0 = IRn\{0} is equipped with a Riemannian scalar product

〈·, ·〉 satisfying the following conditions:

i) The projection onto IRn
0 along IR1 of the Riemannian scalar product 〈·, ·〉 is

the canonical Euclidean one.
ii) IR1 is orthogonal to IRn

0 with respect to 〈·, ·〉.
iii) The projection onto IR1 along IRn

0 of 〈·, ·〉 at (a, p) ∈ IRn
0 ×IR1 is the canonical

one multiplied by the function U .

These properties determine uniquely the scalar product of the tangent vectors
(X, ξ), (Y, η) ∈ T(a,β)(IR

n
0 × IR1) and it can written in the form

(1) g(a,β)((X, ξ), (Y, η)) = 〈X, Y 〉 + ξ · η · ∪(|a|2).
where 〈X, Y 〉 =

∑n
i=1 Xi · Yi. For the sake of simplicity we shall write

〈(X, ξ), (Y, η)〉∗ = g(a,β)((X, ξ)(Y, η)).

This simplification will not lead to any confusion since we know every time which
point the tangent vector belongs to. We will regard β in (a, β) like the (n+1)-th
coordinate.

One of our basic results is formulated in the following theorem.

4.1. Theorem. The Levi-Civita connection of the Riemannian metric (1)
introduced above has the following Christoffel symbols

Γk
i,j(a, β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i, j, k ≤ n
0 if i, j ≤ n, k = n + 1
0 if i, k ≤ n, j = n + 1
0 if j, k ≤ n, i = n + 1
−∂k(U(z))/2 if k ≤ n, i, j = n + 1
∂i(U(z))/2U(z) if j, k = n + 1
∂j(U(z))/2U(z) if i, k = n + 1
0 if i, j, k = n + 1

,

where 1 ≤ i, j, k ≤ n + 1, z = 〈a, β〉 and ∂s is the derivative with respect to the
s-th coordinate.

4.2. Corollary. The system of differential equation of the geodesics is

β̇ = h/U(Z)
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äj = ajh
2U ′(Z)/U2(Z) 1 ≤ j ≤ n

where h is a suitable constant, Z = 〈a, β〉, and (a(s), β(s)) is the geodesic whose
coordinates are {aj}n

j=1 and β.

Hence we get the following description of geodesics.

4.3. Theorem Let (x(s), ξ(s)) be a geodesic in IRn
0 × IR1 with respect to

the Riemannian metric (1). We denote its initial values at s = 0 by x(0) = x0,
ξ(0) = ξ0, ẋ(0) = t0, ξ̇(0) = τ0. Then one has the following possibilities:

a) If τ0 = 0 then the geodesic (x(s), ξ(s)) is contained in the line x(s) =
t0s+x0, ξ(s) = ξ0; this geodesic is complete except in the case if ξ0 = 0
and the vectors t0 and x0 are collinear.

b) If τ0 > 0 then the projection of the geodesic onto IRn
0 is an ellipse with

centre 0. Its equation has the shape

x(s) = cos(
√

τ0‖x0‖−1s)x0 + sin(
√

τ0‖x0‖−1s)
√

τ0‖x0‖t0.

The corresponding geodesic is complete except in the case if the vectors t0

and x0 are collinear and the projected ellipse is degenerated to a segment
with the midpoint 0.

c) If τ0 < 0 then the projection of the geodesic onto IRn
0 is a hyperbola with

center 0. Its equation has the shape

x(s) = cos h(
√

τ0‖x0‖−1s)x0 + sinh(
√

τ0‖x0‖−1s)
√

τ0‖x0‖t0.

If the vectors t0 and x0 are collinear then the projected hyperbola is
degenerated to a half line. The corresponding geodesic is complete.

Now we deal with the second case to give the geometry of Kepler Motions.
In this case the determining function of the metric is U(z) = c

√
z. We have

the following description of the geodesics.

4.4. Theorem. Let (a(s), α(s)) be a geodesic in IRn
0 × IR1 with respect to

the Riemannian metric (1). We denote its initial values at s = 0 by a0 = a(0),
α0 = α(0), T = ȧ(0), τ = α̇(0). Let E1, E2 ∈ IRn

0 be orthogonal unit vectors in
W which are spanned by a0 and T . Choose E1, E2 satisfying the following

a0 = a1 · E1, T = T1 · E1 + T2 · E2.

If T2 �= 0 we get the following description of geodesics:
The geodesics do not leave the space spanned by W and IR1. Furthermore, if

we denote the projection of T to IR1 along IRn
0 by T3, there are three possibilities:

i) if |(T, τ)|2∗ = T 2
1 +T 2

2 +c · |a0
1| ·T 2

3 < 0, then the projection of the geodesic
onto W is an ellipse,
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ii) if |T, τ)|2∗ = T 2
1 +T 2

2 + c · |a0
1| ·T 2

3 = 0, then the projection of the geodesic
onto W is a parabola,

iii) if |T, τ)|2∗ = T 2
1 +T 2

2 + c · |a0
1| ·T 2

3 > 0, then the projection of the geodesic
onto W is a hyperbola.

The equation of the projected geodesic in polar-coordinate is

P (γ) =
2 · |a0

1|3 · T 2
2

−c · T 2
3 · |a0

1|3 + v · cos(ϕ − ω)
,

where

v = sgn(c) = ·
√

4 · T 2
1 · T 2

2 · |a0
1|4 + (2 · T 2

2 · |a0
1|2 + c · T 2

3 · |a0
1|3)2,

ω = arc sin
(2 · T1 · a0

1 · sgn(c)
U

)

and p = |a|, cos ϕ = 〈a, E1〉/|a|.

4.5. Corollary. If c > 0, then all the projections of geodesics are hyperbolas
which have two asymptotic straight lines through the origin with the direction
ω−arc cos(1/ε) and ω +arc cos(1/ε). The nearest point of these asymptotic lines
to the origin is (ω, |a0| · T 2

2 /(u − v)). Thus the origin is not contained inside the
hyperbola.

4.6. Corollary. The projection of a geodesic is a circle if and only if c < 0,
T is perpendicular to a0 and |T |2 + |(T, τ)|2∗ = 0. The radius of this circle is
2 · |T |2/(−c · τ2). Its center is the origin.

4.7. Corollary. If the projection of a geodesic is an ellipse, and for its
eccentricity ε �= 0, then its long axis has direction ω and length 2·|a0|·T 2

2 ·u
u2−v2 . It has

two focal points: the origin and
(
ω,

2·|a0|·T 2
2 ·u

u2−v2

)
. Its short axis has length 2·|a0|·T 2

2 .

4.8. Corollary. If the projection of the geodesic is a parabola, then it is
open in direction ω. Its nearest point is (ω + π,−T 2

2 /(c · τ2)) and its focal point
is the origin.

4.9. Corollary. If the projection of the geodesic is a hyperbola and c < 0,
then its focal point is the origin. It has two asymptotic straight lines with direction

ω + arc cos(1/ε)(1/ε) and ω − arc cos(1/ε).

4.10. Theorem. If τ > (<)0 then α is strictly increasing (decreasing) and
it depends on p = |a| according to the following differential equation

(12)
dα

dp
=

sgn sin(ϕ − ω) · |a0| · T2√
p2(v2 − u2) + 2|a0|T 2

2 · u · p − |a0|2 · T 4
2

,
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where we have used the notations of our first theorem.

4.11. Corollary. If the projection of the geodesic is an ellipse, then

p(α) =
c · a2

0 · τ2

|T, τ
|2∗ −

|a0| · v
|(T, τ)|2∗

· sin
( √|T |2 + τ2

τ · |a0| · sgn(sin(ϕ − ω))
− const

)
,

where const is such a number, that p(α) = |a0|.

4.12. Corollary. If the projection of the geodesic is a parabola, then

p(α) =
c · τ2

4
· (α0 − α) + |a0|.
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