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1 The Approximation Problem

In [28], V. Totik settled the Saff conjecture, which was a basic long standing

conjecture in the theory of approximation by weighted polynomials. Let w : R →
R be a non-negative continuous function such that limx→±∞ xw(x) = 0. Let us

define q by the w(x) = exp(−q(x)) equation, and call q(x) to be an external field.

The problem of Saff was the following: what f(x) functions can we uniformly

approximated by weighted polynomials of the form w(x)nPn(x).

This approximation problem appears in several applications. It must be em-

phasized that the exponent of the weight changes with n, so this is a different (and

in some sense more difficult) type of approximation than what is usually called

weighted approximation. In fact, the polynomial Pn must balance exponential

oscillations in wn.

Clearly, the function which we approximate must be continuous. We shall

see that exactly those continuous functions can be approximated by wnPn which

vanishes on a particular closed set Zw. So the problem reduces to finding Zw.

Interestingly, a measure called the equilibrium measure associated with w plays

an important role in the problem. We will denote the support of this measure by

Sw, this is a compact set.

Let us assume that q(x) is a convex function. Saff conjectured that in this

case a continuous f(x) can be uniformly approximated by weighted polynomials

if and only if it vanishes outside of the support Sw. In other worlds, Zw is the

complement of the interior of Sw.

Originally this statement was believed to be true without the convexity re-

striction until a counterexample was given by Totik in [29]. In [29] he also proved

the conjecture under an additional smoothness condition on q.
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We remark that convex external fields have the useful property that Sw is an

interval.

Instead of the whole real line we may define w(x) on a closed subset Σ of the

real line. Suppose now that Σ = [0, +∞). There is a theorem which says that if

xq′(x) is increasing on Σ then Sw is an interval. This is again a useful statement,

since there are external fields which are not convex but xq′(x) is increasing.

Totik raised the following question. Assume that xq′(x) is increasing on Σ

and let [a, b] denote the support Sw. Can we uniformly approximate continuous

functions vanishing outside (a, b) by weighted polynomials w(x)nPn(x)? This was

the original problem which has lead to this dissertation.

The positive answer to this question was given in [3]. There the approximation

problem was solved for so called “weak convex” function, which is a large class

of functions which contains both the convex functions as well as those when

xq′(x) is increasing. As an example, consider the external field q(x) := xλ, where

λ ∈ (0, 1). Obiously q is not convex on [0, +∞) but xq′(x) is increasing there.

So the Sw will be an interval [a, b] (which interval may even be found in terms

of λ). And continuous functions vanishing outside (a, b) can be approximated by

weighted polynomials w(x)nPn(x).

In this dissertation we extend even further the validity of the above results (see

Chapter 4). We define “weak convex” functions with basepoints A and B, and

consider external field which belongs to this class. This class is larger than those

in [3], nevertheless we will still use the “weak convex” denomination. We will

also prove that “weak convex” external fields generate an equilibrium measure

whose support is an interval (see Chapter 2). In particular, the support will be

an interval when exp(q(x)) is a convex function.

In Chapter 3 we will also consider the equilibrium problem on the unit circle.

3



We give conditions which guarantee that the support of the equilibrium measure

will be an arc of the circle.

2 Logarithmic Potential Theory

Let Σ ⊂ R be a closed set. A weight function w on Σ is said to be admissible, if

it satisfies the following three conditions:

(i) w is upper semi-continuous,

(ii) {x ∈ Σ : w(x) > 0} has positive capacity,

(iii) if Σ is unbounded, then |z|w(z) → 0 as |z| → ∞, z ∈ Σ.

In the approximation problem will always assume in the theorems that w is

continuous, and that Σ is regular with respect to the Dirichlet problem in C\Σ.

Condition (iii) can be relaxed, but that would make the proofs more complicated.

(For related results when (iii) is not assumed see [5], [6] and [25].)

We define q by

w(x) =: exp(−q(x)),

so q : Σ → (−∞,∞] is a lower semi-continuous function.

Let M(Σ) be the collection of all positive unit Borel measures with compact

support in Σ. We define the logarithmic potential of µ ∈ M(Σ) as

Uµ(x) :=

∫
log

1

|x − t|dµ(t),

and the weighted energy integral as

Iw(µ) := −
∫ ∫

log(|x − y|w(x)w(y))dµ(x)dµ(y).
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We say that a property holds quasi everywher (q.e.) if it holds everywhere

except a set with capacity zero. We will need the following basic theorem ([24],

Theorem I.1.3):

Theorem 1 Let w be an admissible (not necessarily continuous) weight on the

closed set Σ and let Vw := inf{Iw(µ) : µ ∈ M(Σ)}. Then

(a) Vw is finite,

(b) there exists a unique element µw ∈ M(Σ) such that Iw(µw) = Vw,

(c) setting Fw := Vw − ∫
qdµw, the inequality

Uµw(x) + q(x) ≥ Fw

holds quasi-everywhere on Σ,

(d) the inequality

Uµw(x) + q(x) ≤ Fw (1)

holds for all x ∈ Sw := supp(µw).

Remark According to our definition, every measure in M(Σ) has compact sup-

port, so the support Sw is a compact set.

The measure µw is called the equilibrium or extremal measure associated with

w.

Notation 2 When we say that a property holds inside G - where G is a subset

of R - we mean that the property is satisfied on every compact subset of G.
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3 Totik’s Results

We are considering uniform approximation of continuous functions on Σ by weighted

polynomials of the form wnPn, where degPn ≤ n. Theorem 3 is a Stone-

Weierstrass type theorem for this kind of approximation (see [13], or see [24],

Theorem VI.1.1).

Theorem 3 There exists a closed set Z = Z(w) ⊂ Σ, such that a continuous

function f on Σ is the uniform limit of weighted polynomials wnPn, n = 1, 2, ...,

if and only if f vanishes on Z.

Thus the problem of what functions can be approximated is equivalent to

determining what points lie in Z(w). This latter problem is intimately related to

the density of µw. The support Sw := supp(µw) plays a special role (see [29], or

[13], or see [24], Theorem VI.1.2):

Theorem 4 The complement of Sw belongs to Z.

The definition of functions with smooth integrals was introduced by Totik in

[28]. This was a crucial definition in solving the Saff conjecture.

Definitions 5 We say that a function f(x) has smooth integral on R ⊂ R, if

f(x) is non-negative a.e. on R and

∫
I

f = (1 + o(1))

∫
J

f (2)

where I, J ⊂ R are any two adjacent intervals, both of which has length 0 < ε,

and ε → 0. The o(1) term depends on ε and not on I and J .

Clearly, all continuous functions which have a positive lower bound have

smooth integral. But log(1/|t|) also has smooth integral on [−1/2, 1/2].
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The next three theorems are due to Totik, [28].

Theorem 6 Let us suppose that [a, b] is a subset of the support Sw, and the

extremal measure has a density v on [a, b] that has a positive lower bound and

smooth integral there. Then (a, b) ∩ Z(w) = ∅.

Theorem 7 Let us suppose that (a, b) is a subset of the support Sw, and that q

is convex on (a, b). Then µw has a density v in (a, b) which has a positive lower

bound and smooth integral inside (a, b).

From these two theorems follows

Theorem 8 Let us suppose that (a, b) is a subset of the support Sw, and that q

is convex on (a, b). Then (a, b) ∩ Z(w) = ∅. In particular, every function that

vanishes outside (a, b) can be uniformly approximated by weighted polynomials of

the form wnPn.

Notice that Theorem 8 is a local result; it works for any part of the extremal

support where q is convex.

4 Main Results

Here are some agreements we will follow.

Notation 9 Unless otherwise noted, all intervals in the dissertation are arbitrary

intervals (that is, they may be open, half open, closed, bounded or unbounded).

The notation I = [(a, b)] will mean that I is an interval (of any type) with end-

points a and b. The notation int(I) is used for the interior points of I. Absolute

continuity inside I means that the function is absolutely continuous on any com-

pact set which is lying in I.
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When we consider a function which is increasing on [a, b], it is assumed that

it is increasing only almost everywhere. This we will define more precisely in the

dissertation. In this sense we can say that if q is convex thenn q′ is increasing

(although q′ exists only a.e.).

Now we are ready to define “weak convexity”. We remark that the convexity

of q implies the convexity of exp(q), so the class of weak convex functions contains

the convex functions.

Definition 10 We say that a function q : D → R (D ⊂ R) is weak convex on

an interval I = [(a, b)] ⊂ D (a, b ∈ R) with basepoints A, B ∈ R, A < B, if the

following properties hold:

(i) I ⊂ [A, B],

(ii) q is absolutely continuous inside (a, b) (so q′ exists a.e. in I),

(iii) if a ∈ I, then

lim inf
x→a+0

q(x) = q(a),

and if b ∈ I, then

lim inf
x→b−0

q(x) = q(b),

(iv) I can be written as the disjoint union of finitely many intervals I1, ..., In

such that for any interval Ik (1 ≤ k ≤ n)):

exp(q(x)) is convex on Ik, or (3)

(x − A)(B − x)q′(x) + x is increasing on Ik. (4)

If −∞ < A and B = +∞ then (4) should be replaced by:

(x − A)q′(x) is increasing on Ik. (5)
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If −∞ = A and B < +∞ then (4) should be replaced by:

(B − x)q′(x) is increasing on Ik. (6)

If both −∞ = A and B = +∞ then (4) should be ignored, thus in this case

exp(q(x)) must be convex on the whole I.

(v) if x0 is any endpoint of any Ik but different of a and b then:

lim sup
x→x−

0

q′(x) ≤ lim inf
x→x+

0

q′(x), (7)

We will simply just say that q is weak convex on an interval I (without men-

tioning the basepoints), if q is weak convex on the interval I = [(a, b)] ⊂ D

(a, b ∈ R) with basepoints a and b.

The following theorem is our main theorem.

Theorem 11 Let w be a continuous admissible weight on R. Suppose that q is

weak convex on [A, B] with finite basepoints A, B satisfying Sw ⊂ (A, B). Then

Z(w) = (int Sw)c. Thus a continuous function f(x) can be uniformly approxi-

mated by weighted polynomials wnPn if and only if f(x) vanishes outside Sw.

We will also give several conditions on q which guarantees that the support

of the equilibrium measure is an interval. Our most general theorem which guar-

antees that the support is an interval is the following.

Theorem 12 Let w = exp(−q) be an admissible weight on R and suppose that

q is weak convex on the interval I ⊂ Σ with basepoints A, B ∈ R satisfying

Sw ⊂ [A, B] . Then Sw ∩ I is an interval.
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In the next theorem we give an integral representation for the density of the

equilibrium measure. For the sake of simple notations we state the next theorem

for the interval [−1, 1], instead of [A, B].

Theorem 13 Let w = exp(−q) be an admissible weight on R such that min Sw =

−1, max Sw = 1. Suppose that q is absolutely continuous inside (−1, 1) and q′ is

bounded on [−1, 1]. Assume further that lim infx→−1+0 q(x) = q(−1),

lim infx→1−0 q(x) = q(1) and with some constants −1 ≤ u ≤ v ≤ 1 we have

q′(x) ≤ −1

1 − x
on (−1, u),

−1

1 − x
≤ q′(x) ≤ 1

x + 1
on (u, v),

1

x + 1
≤ q′(x) on (v, 1),

(1 − x)2q′(x) − x is increasing on (−1, u),

(1 − x2)q′(x) + x is increasing on (u, v),

(x + 1)2q′(x) − x is increasing on (v, 1).

Then Sw = [−1, 1] and the density of µw is dµw(t) = v(t)dt a.e. t ∈ [−1, 1],

where we define v(t) for a.e. t ∈ [−1, 1] as follows:

For t ∈ (−1, u), let

v(t) :=
1

π2
√

1 − t2

[ t + 1

1 − t

∫ 1

−1

(1 − s)2q′(s) − s − [(1 − t)2q′(t) − t]

(s − t)
√

1 − s2
ds

+
2

1 − t
(π +

∫ 1

−1

(1 − s)q′(s)√
1 − s2

ds)
]

(8)
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For t ∈ (u, v), let

v(t) :=
1

π2
√

1 − t2

∫ 1

−1

(1 − s2)q′(s) + s − [(1 − t2)q′(t) + t]

(s − t)
√

1 − s2
ds. (9)

For t ∈ (v, 1), let

v(t) :=
1

π2
√

1 − t2

[1 − t

t + 1

∫ 1

−1

(s + 1)2q′(s) − s − [(t + 1)2q′(t) − t]

(s − t)
√

1 − s2
ds

+
2

t + 1
(π −

∫ 1

−1

(s + 1)q′(s)√
1 − s2

ds)
]

(10)

In Chapter 3 we will consider the equilibrium problem on the unit circle C.

Using the unit circle we also reveal the connections between different conditions

on the real line, and we give a new condition not covered by the weak convexity

definition at Definition 10.

Let now α, β ∈ R be two angles, |β − α| < 2π. We define [̂α, β] to be the arc

[eiα, eiβ] ⊂ C, where we go from eiα to eiβ in a counterclockwise direction. We

define ̂[α, α + 2π] to be the full circle C.

We will prove the following two theorems:

Theorem 14 Let w(z) = exp(−q(z)), |z| = 1 be a weight on C and let I = 
γ, δ�
be an interval with 0 < δ− γ ≤ 2π. Assume that q is absolutely continuous inside

I and

lim inf
x → y

x ∈ I

q(x) = q(y) (11)

whenever y is an endpoint of I with y ∈ I. Let eic be any point which is not

an interior point of Î. Let ̂[α1, β1], ..., ̂[αk, βk] be k ≥ 0 arcs of C. Here, for all

1 ≤ i ≤ k, 0 < βi − αi ≤ 2π and (Sw ∪ Î) ⊂ [̂αi, βi]. Suppose further that I
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can be written as a disjoint union of n ≥ 1 intervals I1, ..., In and for any fixed

1 ≤ j ≤ n, either

eq(θ)
[
2 sin

(θ − c

2

)
q′(θ) − cos

(θ − c

2

)]
sgn

(
sin

(θ − c

2

))
(2.2)

is increasing on Ij or for some 1 ≤ i ≤ k:

sin

(
θ − αi

2

)
sin

(
βi − θ

2

)
q′ (θ) +

1

4
sin

(
θ − αi + βi

2

)
(2.3)

is increasing on Ij. Finally we assume that

lim sup
θ→θ−0

q′(θ) ≤ lim inf
θ→θ+

0

q′(θ),

whenever θ0 is an endpoint of Ij (1 ≤ j ≤ n) but not an endpoint of I. Then

Sw ∩ Î is an arc of C.

Here sgn denotes the signum function.

Example: The following example illustrates the theorem.

Let q(θ) = cos(5θ) sin(3θ) defined on Σ = [2.9, 3.18] ∪ [3.95, 4]. (We may

define w to be zero outside Σ so that w is defined on C. ) We claim that both

Sw ∩ ̂[2.9, 3.18] and Sw ∩ ̂[3.95, 4] are arcs of C. (One of them may be an empty

set.)

Take α1 = 2.9, β1 = 4 and α2 = 3.95, β2 = 3.18 + 2π.

One can verify that (2.2) is satisfied on [2.9, 3.17] but not on the whole

[2.9, 3.18]. (At (2.2) c can be chosen to be any number such that eic is not

an interior point of ̂[2.9, 3.18].) Also, using α1 and β1 we see that (2.3) is not

satisfied on the whole [2.9, 3.18]. However (2.3) is satisfied on the subinterval

[3.17, 3.18]. So the combination of the (2.2) and (2.3) conditions implies that
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Sw ∩ ̂[2.9, 3.18] is an arc. Note that (2.3) is satisfied using α2 and β2 on the whole

[3.95, 4]. So Sw ∩ ̂[3.95, 4] is an arc.

Theorem 15 For given k ∈ N+ let

Σ := ∪k
i=1[Ai, Bi] ⊂ R̄, where (12)

−∞ < A1 ≤ B1 < A2 ≤ B2 < ... < Ak ≤ Bk < +∞.

Let W = exp(−Q) be a weight on Σ, I ⊂ Σ be an interval and assume that Q is

absolutely continuous inside I and

lim inf
X → Y

X ∈ I

Q(X) = Q(Y ) (13)

whenever Y is an endpoint of I with Y ∈ I. Assume further that I can be written

as a disjoint union of intervals I1, ..., In such that for any fixed 1 ≤ j ≤ n either

eQ(X) is convex on Ij, (14)

or for some 1 ≤ i ≤ k − 1

(X − Bi)(Ai+1 − X)Q′(X) + X is decreasing on Ij, (15)

or

(X − A1)(Bk − X)Q′(X) + X is increasing on Ij. (16)
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Finally we assume that

lim sup
X→X−

0

Q′(X) ≤ lim inf
X→X+

0

Q′(X),

whenever X0 is an endpoint of Ij (1 ≤ j ≤ n) but not an endpoint of I. Then

SW ∩ I is an interval.

Example: Let Σ := [−2,−1] ∪ [1, 2], and let Q(X) = log(X + 1), X ∈ [1, 2],

and on [−2,−1] let Q(X) an arbitrary lower semi-continous function. Then

SW ∩ [1, 2] is an interval. Indeed, (X − (−1))(1 − X)Q′(X) + X is constant

1 (X ∈ [1, 2]), i.e., it is a decreasing function.

5 Some Lemmas

The following lemma is crucial in the proof of Theorem 12:

Lemma 16 Let w = exp(−q) be an admissible weight on R and let I ⊂ Σ be an

interval. Let µw be the equilibrium measure associated with w. Assume that q is

absolutely continuous inside I and that

lim inf
x → z

x ∈ I

q(x) = q(z), if z is an endpoint of I with z ∈ I. (17)

If for some function f : int(I) → R+, the function f(x) d
dx

[Uµw(x) + q(x)] is

strictly increasing on int(I), then Sw ∩ I is an interval.

As we already have mentioned, an important special case of Theorem 12 is:
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Theorem 17 Let w = exp(−q) be an admissible weight on R and suppose that

exp(q) is convex on the interval I ⊂ Σ and satisfies condition (17) . Then Sw ∩ I

is an interval.

Another special case is the following theorem:

Theorem 18 Let w = exp(−q) be an admissible weight on R and let I ⊂ Σ be an

interval. Suppose that q is absolutely continuous inside I and satisfies condition

(17). Suppose that with some finite constants A < B we have I ⊂ [A, B], Sw ⊂
[A, B] and (x − A)(B − x)q′(x) + x is increasing on the interval I. Then Sw ∩ I

is an interval.

When is the “exp(q) is convex” condition weaker than the “(x − A)(B −
x)q′(x) + x is increasing” condition? The answer is given in the following propo-

sition. For simplicity let A := −1 and B := 1.

Proposition 19 Let J ⊂ [−1, 1] be an open interval and q be a function defined

on J which is absolute continuous inside J .

a) If

q′(x) ∈
[ −1

1 − x
,

1

x + 1

]
, x ∈ J,

and exp(q(x)) is convex on J , then (1 − x2)q′(x) + x is increasing on J .

b) If

q′(x) ≥ 1

x + 1
, x ∈ J, ( or q′(x) ≤ −1

1 − x
, x ∈ J),

and (1 − x2)q′(x) + x is increasing on J , then exp(q) is convex on J .

We also remark that if q′′ exists, then (3) holds if and only if

0 ≤ (q′(x))2 + q′′(x), x ∈ Ik,
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(4) holds if and only if

0 ≤ 1

(x − A)(B − x)
+

( 1

x − A
− 1

B − x

)
q′(x) + q′′(x), x ∈ Ik, (18)

finally, (5) holds if and only if

0 ≤ 1

x − A
q′(x) + q′′(x), x ∈ Ik.

Remark At Theorem 14 the choice of c is not important. We also remark

that if Î is the full circle, then one should check only condition (2.2) and ignore

(2.3) which is a stronger assumption. A simple corollary of Theorem 14 is:

Corollary 20 Let w(z) = exp(−q(z)), |z| = 1 be a weight on C and let I1 :=

(γ1, γ1 + 2π) and I2 := (γ2, γ2 + 2π) where eiγ1 
= eiγ2. Assume that (2.2) is

increasing on I1 where c := γ1, and (2.2) is increasing on I2 where c := γ2. Then

Sw = C.

A special case of Theorem 14 is:

Lemma 21 Let w(z) = exp(−q(z)), |z| = 1 be a weight on C and let I = 
γ, δ�
be an interval with 0 < δ − γ ≤ 2π. Suppose q is absolutely continuous inside I

and satisfies (11). Let eic be any point which is not an interior point of Î. If

eq(θ)
[
2 sin

(θ − c

2

)
q′(θ) − cos

(θ − c

2

)]
sgn

(
sin

(θ − c

2

))
(19)

is increasing on I, then Sw ∩ Î is an arc of C.

We remark that if q is twice differentiable then condition (19) is equivalent to

the condition

q′(θ)2 + q′′(θ) +
1

4
≥ 0, θ ∈ (γ, δ)
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The following defintions are used in the proof of Theorem 11.

Let x ∈ [−1, 1]. Depending on the value of c ∈ [−1, 1] the following integrals

may be regular Lebesgue integrals or Cauchy principal value integrals.

vc(x) := −PV

∫ c

−1

√
1 − t2

π2
√

1 − x2(t − x)
dt,

hc(x) := PV

∫ 1

c

√
1 − t2

π2
√

1 − x2(t − x)
dt.

For 0 < ι and a ∈ R we define

a+
ι := max(a, ι) and a−

ι := max(−a, ι).

In the proof of the approximation problem the following lemmas are crucial.

Lemma 22 Let −1 < a < b < 1 and 0 < ι be fixed. Then the family of functions

F+ := {vc(x)+
ι : c ∈ [−1, 1]} and F− := {vc(x)−ι : c ∈ [−1, 1]} have uniformly

smooth integrals on [a, b].

Lemma 23 Let F (x) = G(x) − H(x), where F (x), G(x), H(x) are a.e. non-

negative functions defined on an interval, G(x) and H(x) have smooth integrals

and H(x) ≤ (1 − η)G(x) a.e. with some η ∈ (0, 1). Then F (x) has smooth

integral.

Lemma 24 Let N(x) be a right-continuous function on [−1, 1] which is of bounded

variation. Let f(x) ∈ L1([−1, 1]) be non-negative. Then

PV

∫ 1

−1

f(t)N(t)

t − x
dt = −N(1)f1(x) +

∫
(−1,1]

ft(x)dN(t), a.e. x ∈ [−1, 1], (20)
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where the integral on the right hand side is a Lebesgue-Stieltjes integral and

fc(x) := −PV

∫ c

−1

f(t)

t − x
dt, a.e. x ∈ [−1, 1].

Definition 25 We say that a function g(x) has bounded variation almost every-

where inside a set E ⊂ R if for every compact set F ⊂ E there exists G ⊂ F

such that F \ G has measure zero and g(x) has bounded variation on G.

Lemma 26 Let w be an admissible weight which is absolutely continuous inside

R. Let the interval [a0, b0] be a subset of the support Sw. If q′(x) has bounded

variation a.e. inside (a0, b0) and the extremal measure has a density V on [a0, b0]

that has positive lower bound inside (a0, b0) then (a0, b0) ∩ Z(w) = ∅.
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