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1 Introduction

1.1 The Approximation Problem

In [28], V. Totik settled the Saff conjecture, which was a basic long standing

conjecture in the theory of approximation by weighted polynomials. Let w : R →

R be a non-negative continuous function such that limx→±∞ xw(x) = 0. Let us

define q by the w(x) = exp(−q(x)) equation, and call q(x) to be an external field.

The problem of Saff was the following: what f(x) functions can we uniformly

approximated by weighted polynomials of the form w(x)nPn(x).

This approximation problem appears in several applications. It must be em-

phasized that the exponent of the weight changes with n, so this is a different (and

in some sense more difficult) type of approximation than what is usually called

weighted approximation. In fact, the polynomial Pn must balance exponential

oscillations in wn.

Clearly, the function which we approximate must be continuous. We shall

see that exactly those continuous functions can be approximated by wnPn which

vanishes on a particular closed set Zw. So the problem reduces to finding Zw.

Interestingly, a measure called the equilibrium measure associated with w plays

an important role in the problem. We will denote the support of this measure by

Sw, this is a compact set.

Let us assume that q(x) is a convex function. Saff conjectured that in this

case a continuous f(x) can be uniformly approximated by weighted polynomials

if and only if it vanishes outside of the support Sw. In other worlds, Zw is the

complement of the interior of Sw.

Originally this statement was believed to be true without the convexity re-

striction until a counterexample was given by Totik in [29]. In [29] he also proved
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the conjecture under an additional smoothness condition on q.

We remark that convex external fields have the useful property that Sw is an

interval.

Instead of the whole real line we may define w(x) on a closed subset Σ of the

real line. Suppose now that Σ = [0, +∞). There is a theorem which says that if

xq′(x) is increasing on Σ then Sw is an interval. This is again a useful statement,

since there are external fields which are not convex but xq ′(x) is increasing.

Totik raised the following question. Assume that xq ′(x) is increasing on Σ

and let [a, b] denote the support Sw. Can we uniformly approximate continuous

functions vanishing outside (a, b) by weighted polynomials w(x)nPn(x)? This was

the original problem which has lead to this dissertation.

The positive answer to this question was given in [3]. There the approximation

problem was solved for so called “weak convex” function, which is a large class

of functions which contains both the convex functions as well as those when

xq′(x) is increasing. As an example, consider the external field q(x) := xλ, where

λ ∈ (0, 1). Obiously q is not convex on [0, +∞) but xq ′(x) is increasing there.

So the Sw will be an interval [a, b] (which interval may even be found in terms

of λ). And continuous functions vanishing outside (a, b) can be approximated by

weighted polynomials w(x)nPn(x).

In this dissertation we extend even further the validity of the above results (see

Chapter 4). We define “weak convex” functions with basepoints A and B, and

consider external field which belongs to this class. This class is larger than those

in [3], nevertheless we will still use the “weak convex” denomination. We will

also prove that “weak convex” external fields generate an equilibrium measure

whose support is an interval (see Chapter 2). In particular, the support will be

an interval when exp(q(x)) is a convex function.
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In Chapter 3 we will also consider the equilibrium problem on the unit circle.

We give conditions which guarantee that the support of the equilibrium measure

will be an arc of the circle.

1.2 Logarithmic Potential Theory

Let Σ ⊂ R be a closed set. A weight function w on Σ is said to be admissible, if

it satisfies the following three conditions:

(i) w is upper semi-continuous,

(ii) {x ∈ Σ : w(x) > 0} has positive capacity,

(iii) if Σ is unbounded, then |z|w(z) → 0 as |z| → ∞, z ∈ Σ.

In the approximation problem will always assume in the theorems that w is

continuous, and that Σ is regular with respect to the Dirichlet problem in C\Σ.

Condition (iii) can be relaxed, but that would make the proofs more complicated.

(For related results when (iii) is not assumed see [5], [6] and [25].)

We define q by

w(x) =: exp(−q(x)),

so q : Σ → (−∞,∞] is a lower semi-continuous function.

Let M(Σ) be the collection of all positive unit Borel measures with compact

support in Σ. We define the logarithmic potential of µ ∈ M(Σ) as

Uµ(x) :=

∫
log

1

|x − t|dµ(t),

and the weighted energy integral as

Iw(µ) := −
∫ ∫

log(|x − y|w(x)w(y))dµ(x)dµ(y).
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We will need the following basic theorem ([24], Theorem I.1.3):

Theorem 1 Let w be an admissible (not necessarily continuous) weight on the

closed set Σ and let Vw := inf{Iw(µ) : µ ∈ M(Σ)}. Then

(a) Vw is finite,

(b) there exists a unique element µw ∈ M(Σ) such that Iw(µw) = Vw,

(c) setting Fw := Vw −
∫

qdµw, the inequality

Uµw(x) + q(x) ≥ Fw

holds quasi-everywhere on Σ,

(d) the inequality

Uµw(x) + q(x) ≤ Fw (1)

holds for all x ∈ Sw := supp(µw).

Remark According to our definition, every measure in M(Σ) has compact sup-

port, so the support Sw is a compact set.

The measure µw is called the equilibrium or extremal measure associated with

w.

Notation 2 When we say that a property holds inside G - where G is a subset

of R - we mean that the property is satisfied on every compact subset of G.

1.3 Totik’s Results

We are considering uniform approximation of continuous functions on Σ by weighted

polynomials of the form wnPn, where degPn ≤ n. Theorem 3 is a Stone-
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Weierstrass type theorem for this kind of approximation (see [13], or see [24],

Theorem VI.1.1).

Theorem 3 There exists a closed set Z = Z(w) ⊂ Σ, such that a continuous

function f on Σ is the uniform limit of weighted polynomials wnPn, n = 1, 2, ...,

if and only if f vanishes on Z.

Thus the problem of what functions can be approximated is equivalent to

determining what points lie in Z(w). This latter problem is intimately related to

the density of µw. The support Sw := supp(µw) plays a special role (see [29], or

[13], or see [24], Theorem VI.1.2):

Theorem 4 The complement of Sw belongs to Z.

The definition of functions with smooth integrals was introduced by Totik in

[28]. This was a crucial definition in solving the Saff conjecture.

Definitions 5 We say that a function f(x) has smooth integral on R ⊂ R, if

f(x) is non-negative a.e. on R and

∫

I

f = (1 + o(1))

∫

J

f (2)

where I, J ⊂ R are any two adjacent intervals, both of which has length 0 < ε,

and ε → 0. The o(1) term depends on ε and not on I and J .

Clearly, all continuous functions which have a positive lower bound have

smooth integral. But log(1/|t|) also has smooth integral on [−1/2, 1/2].

The next three theorems are due to Totik, [28].

Theorem 6 Let us suppose that [a, b] is a subset of the support Sw, and the

extremal measure has a density v on [a, b] that has a positive lower bound and

smooth integral there. Then (a, b) ∩ Z(w) = ∅.
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Theorem 7 Let us suppose that (a, b) is a subset of the support Sw, and that q

is convex on (a, b). Then µw has a density v in (a, b) which has a positive lower

bound and smooth integral inside (a, b).

From these two theorems follows

Theorem 8 Let us suppose that (a, b) is a subset of the support Sw, and that q

is convex on (a, b). Then (a, b) ∩ Z(w) = ∅. In particular, every function that

vanishes outside (a, b) can be uniformly approximated by weighted polynomials of

the form wnPn.

Notice that Theorem 8 is a local result; it works for any part of the extremal

support where q is convex.

1.4 Main Results

Here are some agreements we will follow.

Notation 9 Unless otherwise noted, all intervals in the dissertation are arbitrary

intervals (that is, they may be open, half open, closed, bounded or unbounded).

The notation I = [(a, b)] will mean that I is an interval (of any type) with end-

points a and b. The notation int(I) is used for the interior points of I. Absolute

continuity inside I means that the function is absolutely continuous on any com-

pact set which is lying in I.

Notation 10 Throughout the dissertation we agree on the following. Suppose

that a function g(x) - which is usually defined by using q’(x) - is said to be

increasing (or decreasing) on a set E, but it is defined on a set F ⊂ E, where

E\F has measure zero. Then by ”f(x) is increasing on E” we mean the following:
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there exists a set G ⊂ F so that E\G has measure zero and f(x) is increasing on

G, i.e.,

f(x) ≤ f(y), if x < y, x, y ∈ G. (3)

In other words, we do not require that f(x) is increasing everywhere, where it is

defined. (We will use the terminology ”strictly increasing”, if strict inequality is

required in (3).)

Similarly, when we write that, say, 1/(x − A) ≤ q ′(x) on an interval (v, b), we

will mean that there exists a set G ⊂ (v, b) so that (v, b)\G has measure 0, q ′(x)

exists on G and 1/(x − A) ≤ q′(x) on G.

These agreements weaken the assumptions on the functions in the theorems, but

the given proofs are correct for this modified increasing/decreasing definition as

well. When reading the proofs the reader should keep in mind that we are not

working on the whole interval but on a subset of the interval having full measure,

even though it is not indicated.

Notation 11 We will say that a function g(x) is convex on an interval I, if

a) g(x) is absolutely continuous inside I, (so g ′ exists a.e. in I), and

b) g′(x) is increasing on I. (By our agreement (see above) this means that there

exists a set G such that I\G has measure zero, g ′(x) exists on G, and g′(x) is

increasing on G.)

Now we are ready to define “weak convexity”. We remark that the convexity

of q implies the convexity of exp(q), so the class of weak convex functions contains

the convex functions.

Definition 12 We say that a function q : D → R (D ⊂ R) is weak convex on

an interval I = [(a, b)] ⊂ D (a, b ∈ R) with basepoints A, B ∈ R, A < B, if the

following properties hold:
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(i) I ⊂ [A, B],

(ii) q is absolutely continuous inside (a, b) (so q ′ exists a.e. in I),

(iii) if a ∈ I, then

lim inf
x→a+0

q(x) = q(a),

and if b ∈ I, then

lim inf
x→b−0

q(x) = q(b),

(iv) I can be written as the disjoint union of finitely many intervals I1, ..., In

such that for any interval Ik (1 ≤ k ≤ n)):

exp(q(x)) is convex on Ik, or (4)

(x − A)(B − x)q′(x) + x is increasing on Ik. (5)

If −∞ < A and B = +∞ then (5) should be replaced by:

(x − A)q′(x) is increasing on Ik. (6)

If −∞ = A and B < +∞ then (5) should be replaced by:

(B − x)q′(x) is increasing on Ik. (7)

If both −∞ = A and B = +∞ then (5) should be ignored, thus in this case

exp(q(x)) must be convex on the whole I.

(v) if x0 is any endpoint of any Ik but different of a and b then:

lim sup
x→x−

0

q′(x) ≤ lim inf
x→x+

0

q′(x), (8)
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We will simply just say that q is weak convex on an interval I (without men-

tioning the basepoints), if q is weak convex on the interval I = [(a, b)] ⊂ D

(a, b ∈ R) with basepoints a and b.

Remark The assumptions (4), (5), (6) and (7) are meant in the broader sense

(see Notation 10 and 11).

Examples: 1.) q(x) := xλ is weak convex on [0, +∞) for any positive λ, because

xq′(x) is increasing on [0, +∞).

2.) If H ∈ (0, 1) then q(x) := ln
√

1 − x2 is weak convex on [−H, H]. (Interest-

ingly, q is concave, moreover exp q is also concave.)

3.) For any c > 0, q(x) := cos(cx)/c2 is weak convex on Σ := [−1, 1]

For the proofs and for further examples, please go to Section 2.3.

The following theorem is our main theorem. We are considering only external

fields which are weak convex on the full [A, B] interval. Note also that we make

the Sw ⊂ (A, B) assumption instead of Sw ⊂ [A, B].

Theorem 13 Let w be a continuous admissible weight on R. Suppose that q is

weak convex on [A, B] with finite basepoints A, B satisfying Sw ⊂ (A, B). Then

Z(w) = (int Sw)c. Thus a continuous function f(x) can be uniformly approxi-

mated by weighted polynomials wnPn if and only if f(x) vanishes outside Sw.

We will also give several conditions on q which guarantees that the support

of the equilibrium measure is an interval. Our most general theorem which guar-

antees that the support is an interval is the following.

Theorem 14 Let w = exp(−q) be an admissible weight on R and suppose that

q is weak convex on the interval I ⊂ Σ with basepoints A, B ∈ R satisfying

Sw ⊂ [A, B] . Then Sw ∩ I is an interval.
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In the next theorem we give an integral representation for the density of the

equilibrium measure. For the sake of simple notations we state the next theorem

for the interval [−1, 1], instead of [A, B]. (To get the general version, replace

everywhere x + 1 by x − A and 1 − x by B − x.)

Theorem 15 Let w = exp(−q) be an admissible weight on R such that min Sw =

−1, max Sw = 1. Suppose that q is absolutely continuous inside (−1, 1) and q ′ is

bounded on [−1, 1]. Assume further that lim infx→−1+0 q(x) = q(−1),

lim infx→1−0 q(x) = q(1) and with some constants −1 ≤ u ≤ v ≤ 1 we have

q′(x) ≤ −1

1 − x
on (−1, u)

−1

1 − x
≤ q′(x) ≤ 1

x + 1
on (u, v)

1

x + 1
≤ q′(x) on (v, 1),

(1 − x)2q′(x) − x is increasing on (−1, u).

(1 − x2)q′(x) + x is increasing on (u, v).

(x + 1)2q′(x) − x is increasing on (v, 1).

Then Sw = [−1, 1] and the density of µw is dµw(t) = v(t)dt a.e. t ∈ [−1, 1],

where we define v(t) for a.e. t ∈ [−1, 1] as follows:

For t ∈ (−1, u), let

v(t) :=
1

π2
√

1 − t2

[ t + 1

1 − t

∫ 1

−1

(1 − s)2q′(s) − s − [(1 − t)2q′(t) − t]

(s − t)
√

1 − s2
ds

+
2

1 − t
(π +

∫ 1

−1

(1 − s)q′(s)√
1 − s2

ds)
]

(9)
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For t ∈ (u, v), let

v(t) :=
1

π2
√

1 − t2

∫ 1

−1

(1 − s2)q′(s) + s − [(1 − t2)q′(t) + t]

(s − t)
√

1 − s2
ds. (10)

For t ∈ (v, 1), let

v(t) :=
1

π2
√

1 − t2

[1 − t

t + 1

∫ 1

−1

(s + 1)2q′(s) − s − [(t + 1)2q′(t) − t]

(s − t)
√

1 − s2
ds

+
2

t + 1
(π −

∫ 1

−1

(s + 1)q′(s)√
1 − s2

ds)
]

(11)

In Chapter 3 we will consider the equilibrium problem on the unit circle C.

Using the unit circle we also reveal the connections between different conditions

on the real line, and we give a new condition not covered by the weak convexity

definition at Definition 12.

Let now α, β ∈ R be two angles, |β − α| < 2π. We define [̂α, β] to be the arc

[eiα, eiβ] ⊂ C, where we go from eiα to eiβ in a counterclockwise direction. We

define ̂[α, α + 2π] to be the full circle C.

We will prove the following two theorems:

Theorem 16 Let w(z) = exp(−q(z)), |z| = 1 be a weight on C and let I = bγ, δe

be an interval with 0 < δ− γ ≤ 2π. Assume that q is absolutely continuous inside

I and

lim inf
x → y

x ∈ I

q(x) = q(y) (12)

whenever y is an endpoint of I with y ∈ I. Let eic be any point which is not

an interior point of Î. Let ̂[α1, β1], ..., ̂[αk, βk] be k ≥ 0 arcs of C. Here, for all

1 ≤ i ≤ k, 0 < βi − αi ≤ 2π and (Sw ∪ Î) ⊂ [̂αi, βi]. Suppose further that I
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can be written as a disjoint union of n ≥ 1 intervals I1, ..., In and for any fixed

1 ≤ j ≤ n, either

eq(θ)
[
2 sin

(θ − c

2

)
q′(θ) − cos

(θ − c

2

)]
sgn

(
sin

(θ − c

2

))
(2.2)

is increasing on Ij or for some 1 ≤ i ≤ k:

sin

(
θ − αi

2

)
sin

(
βi − θ

2

)
q′ (θ) +

1

4
sin

(
θ − αi + βi

2

)
(2.3)

is increasing on Ij. Finally we assume that

lim sup
θ→θ−

0

q′(θ) ≤ lim inf
θ→θ+

0

q′(θ),

whenever θ0 is an endpoint of Ij (1 ≤ j ≤ n) but not an endpoint of I. Then

Sw ∩ Î is an arc of C.

Here sgn denotes the signum function.

Theorem 17 For given k ∈ N+ let

Σ := ∪k
i=1[Ai, Bi] ⊂ R̄, where (13)

−∞ < A1 ≤ B1 < A2 ≤ B2 < ... < Ak ≤ Bk < +∞.

Let W = exp(−Q) be a weight on Σ, I ⊂ Σ be an interval and assume that Q is

absolutely continuous inside I and

lim inf
X → Y

X ∈ I

Q(X) = Q(Y ) (14)
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whenever Y is an endpoint of I with Y ∈ I. Assume further that I can be written

as a disjoint union of intervals I1, ..., In such that for any fixed 1 ≤ j ≤ n either

eQ(X) is convex on Ij, (15)

or for some 1 ≤ i ≤ k − 1

(X − Bi)(Ai+1 − X)Q′(X) + X is decreasing on Ij, (16)

or

(X − A1)(Bk − X)Q′(X) + X is increasing on Ij. (17)

Finally we assume that

lim sup
X→X−

0

Q′(X) ≤ lim inf
X→X+

0

Q′(X),

whenever X0 is an endpoint of Ij (1 ≤ j ≤ n) but not an endpoint of I. Then

SW ∩ I is an interval.
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2 Weak Convex External Fields

2.1 Introduction

Potential theory connects many areas and problems of mathematics. Examples

include the electrostatic equilibrium, the weighted transfinite diameter, weighted

Chebyshev polynomials, zero distribution of orthogonal polynomials, fast decreas-

ing polynomials, incomplete polynomials, approximation by weighted polynomi-

als, Padé approximation, Hankel determinants, and random matrices ([10], [24]).

Let w(x) be an admissible weight function defined on a closed set Σ ⊂ R

(precise definitions will be given below). The basic problem in weighted potential

theory is to find the unit measure - called the equilibrium measure associated with

w - which minimizes the weighted energy integral:

Iw(µ) := −
∫ ∫

log(|x − y|w(x)w(y))dµ(x)dµ(y).

The function q(x) := log(1/w(x)) is called the external field.

The determination of the equilibrium measure is usually a difficult or impos-

sible task. One should first find the support Sw of the equilibrium measure. If we

can show that the support consists of N intervals, then theoretically we can use

the method described in [11] to find the location of these intervals. Then, at least

theoretically, the equilibrium measure may be obtained from the Riemann-Hilbert

problem.

This is the reason why it is important to have conditions which guarantee

that the support is an interval, or the union of several intervals. These type of

conditions are also used as assumptions on the external field at many problems.

For example, the convexity of q(x) was assumed in the formulation of the Saff
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conjecture. This was a problem of approximation by weighted polynomials of the

form wn(x)Pn(x), proven by Totik ([28]).

There are only a few conditions in the literature which guarantee that the

support of the equilibrium measure is a single interval. The following two condi-

tions are well known ([20]):

1.) If q is convex on the interval I, then Sw ∩ I is an interval.

2.) If Σ := [0, +∞) and xq′(x) is increasing on the interval I ⊂ Σ then Sw ∩ I is

an interval.

A condition similar to 2.) is introduced in [3], which is weaker than both 1.)

and 2.). In this dissertation some other conditions are given. Their combination

(which we will call weak convexity condition) is weaker than the ones given in [3].

Other type of conditions can be found in [7], [8], [15] and [16], which guarantee

that the support of the equilibrium measure is an interval, or the union of several

intervals. In [10] Deift, Kriecherbauer and McLaughlin showed that for a real

analytic external field the support always consists of a finite number of intervals.

The reader can find the definition of the logarithmic capacity in [24], I.1. We

say that a property holds quasi-everywhere, if the set where it does not hold has

capacity 0.

2.2 Results and Proofs

Let Σ ⊂ R be any closed set, let w : Σ → [0, +∞) be admissible. Define

Σ0 := {x ∈ Σ : 0 < w(x)}

Lemma 18 Let w = exp(−q) be an admissible weight on R and let I ⊂ Σ0 be an

interval. Let µw be the equilibrium measure associated with w. Assume that q is
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absolutely continuous inside I and that

lim inf
x → z

x ∈ I

q(x) = q(z), if z is an endpoint of I with z ∈ I. (18)

If for some function f : int(I) → R+, the function f(x) d
dx

[Uµw(x) + q(x)] is

strictly increasing on int(I), then Sw ∩ I is an interval.

Proof. Suppose on the contrary that there exist a, b ∈ Sw∩I, a < b: (a, b)∩Sw =

∅.

Let µ := µw denote the equilibrium measure associated with w and

U(x) := Uµ(x) :=

∫

R

ln
1

|x − t|dµ(t)

be the logarithmic potential function of µ. Since U(x) is a C∞ function on (a, b), it

is absolutely continuous on every closed subset of (a, b). Because of the Lebesgue

monotone convergence theorem, U(x) is continuous on [a, b]. (Indeed, we may

assume that diam(Sw) ≤ 1, so ln(1/|x − t|) > 0 x, t ∈ Sw. We split the above

integral to two integrals, one with measure µ|(−∞,a] and the other with measure

µ|[b,+∞). Since U(a) and U(b) are finite from (1), we can apply Lebesgue’s theorem

to the two integrals.) So U(x) is absolutely continuous on [a, b].

Let R(x) := U(x) + q(x). By our assumption f(x)R′(x) is increasing on I,

i.e., there exists a set G ⊂ I so that I\G has measure zero, f(x)R′(x) exists for

all x ∈ G, and f(x)R′(x) is increasing on G. (See our agreement at Notation 10.)

It follows that we cannot find numbers x1, x2 ∈ int(I)∩G, x1 < x2, for which

both 0 < R′(x1) and 0 > R′(x2) hold.
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From Theorem A we have R(x) := U(x) + q(x) ≥ Fw x ∈ (a, b) and

R(a), R(b) ≤ Fw. It is impossible that R(x) = Fw for all y ∈ (a, b) ∩ G,

because then f(x)R′(x) would be constant function on (a, b). So there is a

y ∈ (a, b) ∩ G : Fw < R(y). We have:

0 < R(y) − Fw ≤ R(y) − R(a) = R(y) − lim inf
x→a+0

R(x) = lim sup
x→a+0

∫ y

x

R′(t)dt

which implies the existence of x1 ∈ (a, y) ∩ G : 0 < R′(x1). Similarly

0 > Fw − R(y) ≥ R(b) − R(y) = lim inf
x→b−0

R(x) − R(y) = lim inf
x→b−0

∫ x

y

R′(t)dt,

so there is an x2 ∈ (y, b) ∩ G : 0 > R′(x2). This is a contradiction.

If q is convex, then exp(q) is also convex, so the following theorem is a gener-

alization of the well known theorem in which the convexity of q is assumed.

Theorem 19 Let w = exp(−q) be an admissible weight on R and suppose that

exp(q) is convex on the interval I ⊂ Σ0 and satisfies condition (18) . Then Sw∩I

is an interval.

Proof. Suppose on the contrary that there exist a, b ∈ Sw∩I, a < b: (a, b)∩Sw =

∅.

Let

m(x, y, t) :=
f(y)

t − y
+ f(y)q′(y) − f(x)

t − x
− f(x)q′(x) (19)

Our goal is to find a non-negative function f(x) such that for any fixed x < y,

where x, y ∈ (a, b) we have:

0 ≤ m(x, y, t) t ∈ R\(a, b) (20)
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and equality holds for at most finitely many values of t.

If we can find such a function f(x), then integrating (20) with respect to dµ(t)

gives

0 < f(y)
d

dy
[Uµ(y) + q(y)] − f(x)

d

dx
[Uµ(x) + q(x)] (21)

(We have strict inequality, since µ has measure zero on any finite set.) With

Lemma 18 this will prove Theorem 19.

For fixed a < x < y < b let us find the infimum of t → m(x, y, t) where

t ∈ R\(a, b). If 0 < f(x) and 0 < f(y), but f(x) 6= f(y), then the function

t → m(x, y, t) has exactly one critical point in R\[x, y], which is:

t0 :=
y
√

f(x) − x
√

f(y)√
f(x) −

√
f(y)

, (22)

and we have

m(x, y, t0) = f(y)q′(y) − f(x)q′(x) − (
√

f(y) −
√

f(x))2

y − x
=: I(x, y). (23)

Simple calculus argument shows that on R\(x, y) the one variable function t 7→

m(x, y, t) achieves its minimum at t0 and nowhere else. (Indeed, limt→x− m(x, y, t) =

limt→y+ m(x, y, t) = +∞ and limt→−∞ m(x, y, t) = limt→+∞ m(x, y, t) = f(y)q′(y)−

f(x)q′(x) > I(x, y), so there must be a unique global minimum at the critical

point t0.)

If either f(x) or f(y) equals zero, but not both of them zero, then on R\(x, y)

we still have a unique minimum at t0, which is I(x, y) (though t0 is no longer a

critical point).
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Finally, if f(x) = f(y) > 0, then for all t ∈ R\(a, b) we have

I(x, y) = f(y)q′(y) − f(x)q′(x) < m(x, y, t) (24)

In conclusion,

I(x, y) ≤ m(x, y, t) (25)

holds for all t ∈ R\(a, b), and assuming not both f(x) and f(y) are zero, then

equality holds for at most one value of t.

To finish the proof we claim that

f(x) := e2q(x)

satisfies 0 ≤ I(x, y). Notice that if f(x) is defined this way, then f(x)q ′(x) =

e2q(x)q′(x) = h(x)h′(x) where h(x) :=
√

f(x) = eq(x). By our assumption h(x) is

a convex function. We have

I(x, y) = h(y)h′(y) − h(x)h′(x) − (h(y) − h(x))2

y − x
.

Assume h(x) ≤ h(y). Using h′(x) ≤ h′(y) we get

I(x, y) ≥ (h(y) − h(x))
(
h′(y) − h(y) − h(x)

y − x

)
.

Here the first factor is non-negative and the second factor is also non-negative,

since h(x) is a convex function.

Assume now h(x) > h(y). Using h′(x) ≤ h′(y) we get

I(x, y) ≥ (h(y) − h(x))
(
h′(x) − h(y) − h(x)

y − x

)
.
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Here the first factor is negative and the second factor is non-positive, since h(x)

is a convex function.

So in all cases 0 ≤ I(x, y) and this together with (25) implies statement (20).

The following statement follows from Theorem 19 since Proposition 24 implies

that exp(q) is convex. Nevertheless, we give another proof.

Theorem 20 Let w = exp(−q) be an admissible weight on R and let I ⊂ Σ0 be

an interval. Suppose that q is absolutely continuous inside I, satisfies condition

(18) and (x−A)2q′(x)− x is increasing on the interval I, where A ∈ R\int(I) is

a fixed real number. Then Sw ∩ I is an interval.

Proof. As before, we would like to find a non-negative function f(x) such that

(20) holds and we have strict inequality in (20) with the exception of finitely

many values of t.

As in the proof of Theorem 19 it is enough to show that 0 ≤ I(x, y). This

time let us define f(x) as follows:

f(x) := (x − A)2 (26)

With this choice we have

I(x, y) = f(y)q′(y) − f(x)q′(x) − (
√

f(y) −
√

f(x))2

y − x

≥ [(y − A)2q′(y) − y] − [(x − A)2q′(x) − x] ≥ 0. (27)

since (x − A)2q′(x) − x is an increasing function by our assumption.
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Theorem 21 Let w = exp(−q) be an admissible weight on R and let I ⊂ Σ0

be an interval. Suppose that q is absolutely continuous inside I and satisfies

condition (18). Suppose that with some finite constants A < B we have I ⊂

[A, B], Sw ⊂ [A, B] and (x − A)(B − x)q′(x) + x is increasing on the interval I.

Then Sw ∩ I is an interval.

Proof. As before, we would like to find a non-negative function f(x) such that

(20) holds and we have strict inequality in (20) with the exception of finitely

many values of t.

Let us define f(x) as follows:

f(x) := (x − A)(B − x). (28)

Let us assume first that f(x) 6= f(y). We now show that t0 6∈ (A, B) holds

(t0 is defined at (22)).

Assume that f(x) > f(y). Now t0 ≤ A if and only if
√

f(x)(y − A) ≤
√

f(y)(x − A) which holds if and only if

(B − x)(y − A) ≤ (B − y)(x − A). (29)

Similarly, t0 ≥ B if and only if

(B − x)(y − A) ≥ (B − y)(x − A). (30)

Either (29) or (30) holds, which proves that t0 6∈ (A, B). The proof of this

observation is similar in the case when f(x) < f(y).

In the case f(x) = f(y), t0 does not exist.
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For fixed a < x < y < b we want to find the infimum of m(x, y, t) (see (19))

where t ∈ Sw. Since Sw ⊂ [A, B] and (a, b) ∩ Sw = ∅, we have t ∈ [A, B]\[x, y].

Using t0 6∈ (A, B) and calculus we gain that the minimum of m(x, y, t) is achieved

at either t := A or t := B and nowhere else. It turns out that m(x, y, A) and

m(x, y, B) has the same value which is

m(x, y, A) = m(x, y, B) = [(y − A)(B − y)q′(y) + y]− [(x − A)(B − x)q′(x) + x].

And this expression is non-negative, because of the assumption of the theorem.

Therefore 0 ≤ m(x, y, t) holds and we have strict inequality with the exception

of at most two values of t (t := A and t := B). This proves Theorem (21).

Theorem 22 Let w = exp(−q) be an admissible weight on R and let I ⊂ Σ0

be an interval. Suppose that q is absolutely continuous inside I and satisfies

condition (18). Suppose that with some constant A ∈ R we have I ⊂ [A, +∞),

Sw ⊂ [A, +∞) and (x − A)q′(x) is increasing on the interval I. Then Sw ∩ I is

an interval.

Proof. The proof of this theorem is identical to the proof of Theorem 21, with

the exception that we define f(x) := x−A. Exactly the same way as in the proof

of Theorem 21, we can see that if f(x) 6= f(y), then t0 6∈ (A, +∞). We also see

the same way that the minimum of m(x, y, t), t ∈ [A, +∞)\[x, y] is achieved at

either A or when t → +∞. It turns out that

m(x, y, A) = lim
t→+∞

m(x, y, t) = (y − A)q′(y) − (x − A)q′(x),

which expression is non-negative.
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The symmetric version of Theorem 22 also holds. That version can be used

when for some constant B ∈ R we have Sw ⊂ (−∞, B) and (B − x)q′(x) is

increasing on I.

In the next proposition we compare the ”exp(q) is convex” and the ”(x −

A)(B−x)q′(x)+x is increasing” conditions. When is one weaker than the other?

The answer depends on whether q′(x) is greater or less than −1/(B − x) and

1/(x−A). The proof is not quite obvious due to the fact that differentiability of

q′ is not assumed. For simplicity let A := −1 and B := 1.

Proposition 23 Let J ⊂ [−1, 1] be an open interval and q be a function defined

on J which is absolute continuous inside J .

a) If

q′(x) ∈
[ −1

1 − x
,

1

x + 1

]
, x ∈ J,

and exp(q(x)) is convex on J , then (1 − x2)q′(x) + x is increasing on J .

b) If

q′(x) ≥ 1

x + 1
, x ∈ J, ( or q′(x) ≤ −1

1 − x
, x ∈ J),

and (1 − x2)q′(x) + x is increasing on J , then exp(q) is convex on J .

Proof.

a) Let q(x) := exp(q(x)), x ∈ J . Let x, y ∈ J , x < y be fixed. Since q is

convex, q′(y) ≥ (q(y) − q(x))/(y − x), from which

q′(y)

q(y)
≥

1 − q(x)
q(y)

y − x
. (31)

From the convexity it also follows that

q(y) ≥ q(x) + (y − x)q′(x). (32)
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Notice that q(x) + (y − x)q′(x) > 0, because q′(x)/q(x) = q′(x) > −1/(1 − x).

Using (31) and (32) we get

q′(y)

q(y)
≥

1 − q(x)
q(x)+(y−x)q′(x)

y − x
. (33)

Our goal is to show that (1 − x2)q′(x) + x ≤ (1 − y2)q′(y) + y. By (33) it is

enough to show that

(1 − x2)
q′(x)

q(x)
+ x ≤ (1 − y2)

1 − q(x)
q(x)+(y−x)q′(x)

y − x
+ y.

After simplifications we see that this inequality is equivalent to

0 ≤
(
q′(x) − −1

1 − x

)( 1

x + 1
− q′(x)

)
,

which holds by the assumption of part a).

b) By symmetry we can assume that 1/(x + 1) ≤ q ′(x), x ∈ J . The function

k(x) := (1 − x2)q′(x) + x is increasing and k(x) ≥ 1 for all x ∈ J . Let x, y ∈

J, x < y be fixed. We have

q(r) =

∫ r

x

k(t) − t

1 − t2
dt + C, r ∈ J

and so

eq(r)q′(r) = exp
( ∫ r

x

k(t) − t

1 − t2
dt + C

)k(r) − r

1 − r2
.

We want to show that eq(x)q′(x) ≤ eq(y)q′(y), that is,

1 ≤ exp
( ∫ y

x

k(t) − t

1 − t2
dt

)k(y) − y

k(x) − x

1 − x2

1 − y2
.
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Since k is an increasing function, it is enough to show that

1 ≤ exp
( ∫ y

x

K − t

1 − t2
dt

)K − y

K − x

1 − x2

1 − y2
, (34)

where the constant K is defined by K := k(x) ≥ 1. The right hand side of (34)

can be decreased further if we replace K by 1. But if K = 1, we have equality in

(34). Statement b) is proved.

Proposition 24 Let J ⊂ R be any open interval and q be a function defined

on J which is absolute continuous inside J . Let A ∈ R\J be arbitrary. If (x −

A)2q′(x) − x is increasing on J , then exp(q) is convex on J .

Proof. Assume that k(x) := (x − A)2q′(x) − x is increasing on J . Let x, y ∈

J, x < y be fixed. Following the idea of the proof of Proposition 23, part b), we

want to show that

k(x) + x

(x − A)2
≤ exp

( ∫ y

x

k(t) + t

(t − A)2
dt

)k(y) + y

(y − A)2
. (35)

If k(y) + y ≥ 0, then we can decrease the right hand side of (35) by replacing

the function k(t) by K, and after this by replacing k(y) by K, where K := k(x).

If, however k(y) + y < 0, then we can decrease the right hand side of (35) by

replacing the function k(t) by K∗, and we can increase the left hand side by

replacing k(x) by K∗, where K∗ := k(y). Thus, in both cases, the new inequality

we want to show is of the form

L + x

(x − A)2
≤ exp

( ∫ y

x

L + t

(t − A)2
dt

) L + y

(y − A)2
, (36)
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where L is a constant (L = K or L = K∗). Using the notation

l(r) :=

∫ r

x

L + t

(t − A)2
dt

we see that (36) is equivalent to exp(l(x))l′(x) ≤ exp(l(y))l′(y), so we must show

that exp(l(r)) is a convex function on J . But this is equivalent to (l′(r))2+l′′(r) ≥

0, r ∈ J , as simple differentiation shows. Now direct calculation shows that

(l′(r))2 + l′′(r) =
(L + A)2

(r − A)4
≥ 0.

Remark Differentiation shows that if q′′ exists, then (4) holds if and only if

0 ≤ (q′(x))2 + q′′(x), x ∈ Ik,

and (5) holds if and only if

0 ≤ 1

(x − A)(B − x)
+

( 1

x − A
− 1

B − x

)
q′(x) + q′′(x), x ∈ Ik, (37)

finally, (6) holds if and only if

0 ≤ 1

x − A
q′(x) + q′′(x), x ∈ Ik.

In most cases, the following statement is also true:

Let I ⊂ R be an interval with I ⊂ [A1, B1] ⊂ [A2, B2] ⊂ R. If q is weak convex

on I with basepoints A2 and B2, then q is also weak convex on I with basepoints
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A1 and B1. For example, this statement is true if q′′(x) exists and the sets

H :=
{
x ∈ I : q′(x) >

1

x − A2

}
and H∗ :=

{
x ∈ I : q′(x) >

−1

B2 − x

}

consist of finitely many intervals. To see this, let us partition I to finitely many

subintervals J1, J2, ..., Jt so that for any k the open subinterval int(Jk) is a subset

of H or H∗ completely. We will assume that both A2 and B2 are finite. (The

proof is exactly the same if at least one of them is not finite. Proposition 23

can be also stated for the case when A or B is not finite, the proof remains the

same.) Let us consider Jk for a fixed k (1 ≤ k ≤ t). We want to show that either

exp(q(x)) is convex on Jk, or (x−A1)(B1 − x)q′(x) +x is increasing on Jk. Since

k is arbitrary, this will prove that q is weak convex on I with basepoints A1 and

B1. We know that either exp(q(x)) is convex on Jk, or (x−A2)(B2 − x)q′(x) + x

is increasing on Jk. We may assume that the second property holds, since if

exp(q(x)) is convex, then there is nothing to prove.

Case I. If q′(x) ≥ 1/(x − A2), x ∈ Jk or q′(x) ≤ −1/(B2 − x), x ∈ Jk, then

exp(q) must be convex on Jk. This follows from the fact that (x − A2)(B2 −

x)q′(x) + x is increasing on Jk and from Proposition 23.

Case II. Assume now that

q′(x) ∈
[ −1

B2 − x
,

1

x − A2

]
, x ∈ Jk.

Notice that for x ∈ Jk we have

0 ≤
( 1

x − A1

− 1

x − A2

)( 1

B1 − x
+ q′(x)

)

+
( 1

B1 − x
− 1

B2 − x

)( 1

x − A2

− q′(x)
)
, (38)
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because all factors here are non-negative. From (38) we get

1

(x − A2)(B2 − x)
+

( 1

x − A2

− 1

B − x2

)
q′(x) + q′′(x)

≤ 1

(x − A1)(B1 − x)
+

( 1

x − A1
− 1

B1 − x

)
q′(x) + q′′(x),

and the left hand side of this inequality is non-negative, since (x − A2)(B2 −

x)q′(x)+x is increasing on Jk. Thus the right hand side is also non-negative, i.e.,

(x − A1)(B1 − x)q′(x) + x is increasing on Jk.

Our most general theorem which guarantees that the support is an interval is

the following.

Theorem 25 Let w = exp(−q) be an admissible weight on R and suppose that

q is weak convex on the interval I ⊂ Σ0 with basepoints A, B ∈ R satisfying

Sw ⊂ [A, B] . Then Sw ∩ I is an interval.

Proof. Suppose on the contrary that there exist a, b ∈ Sw∩I, a < b: (a, b)∩Sw =

∅.

We will define a positive function f : (a, b) → R such that for any fixed

t ∈ R\(a, b):

gt(x) := f(x)
( 1

t − x
+ q′(x)

)
(39)

is an increasing function of x on (a, b) and it is strictly increasing with the excep-

tion of finitely many t. This will finish the proof of Theorem 25 (see the beginning

of the proof of Theorem 19).

Let I = ∪n
i=1Ik be the decomposition of I to intervals, given in the definition

of weak convexity.
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Let E1 := 1. We can find positive constants E2, ..., En uniquely such that the

following f(x) function is continuous on I. For x ∈ Ik (k = 1, ..., n) let

f(x) :=

{
Ek exp(2q(x)) if (4) is satisfied on Ik

Ek(x − A)(B − x) if (5) is satisfied on Ik

. (40)

We can assume that A and B are finite, since the proof of Theorem 25 is the

the same if A = −∞ or B = +∞ with a slight modification. (For example, if

−∞ < A and B = +∞, then we have to use Theorem 22 in our proof instead of

Theorem 21, and we have to define f(x) as

f(x) :=

{
Ek exp(2q(x)) if (4) is satisfied on Ik

Ek(x − A) if (6) is satisfied on Ik

,

instead of the definition at (40).)

Now by the proof of Theorem 19, (39) is increasing on any Ik ∩ (a, b) where

(4) is satisfied, and strictly increasing with the exception of finitely many t. By

the proof of Theorem 21, (39) is also increasing on any Ik ∩ (a, b) where (5) is

satisfied, and strictly increasing with the exception of finitely many t.

Let Ik and Ik+1 to be adjacent intervals, Ik+1 being to the right of Ik. Let

u denote the number which separates Ik and Ik+1. Let x ∈ int(Ik) ∩ (a, b) and

y ∈ int(Ik+1) ∩ (a, b) be arbitrary inner points (assuming these are not empty

sets). Using what we have just said and (8) we get:

gt(x) ≤ lim
r→u−

gt(r) ≤
f(u)

t − u
+ f(u) lim sup

r→u−

q′(r)

=
f(u)

t − u
+ f(u) lim inf

r→u+
q′(r) ≤ lim

r→u+
gt(r) ≤ gt(y). (41)
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In (41) the very first and last inequality is strict inequality with the exception

of finitely many t, and the set of these exceptional t values does not depend on

the choice of x and y. Thus gt(x) ≤ gt(y) and with the exception of finitely many

t we have gt(x) < gt(y) for all x ∈ int(Ik) ∩ (a, b) and y ∈ int(Ik+1) ∩ (a, b).

Since this holds for any k = 1, ..., n, we conclude that gt(x) is an increasing

function of x on the whole (a, b) and it is strictly increasing with the exception

of finitely many t.

2.3 Examples

Since our weak convexity definition is a generalization of the one given in [3], all

the examples given in [3] could be repeated here. We just list some new examples

to demonstrate how large the class of weak convex functions is.

1.) Let C(x) be any positive convex function on Σ := R. Then q(x) :=

ln(C(x)) is weak convex on Σ := R. If we assume that lim|x|→∞ x/C(x) = 0, then

w(x) := 1/C(x) is an admissible weight function, and Sw will be an interval by

Theorem 25.

2.) q(x) := 1+c
2

ln(1 + x) + 1−c
2

ln(1 − x) is weak convex on Σ := [−H, H],

where c is any constant and H ∈ (0, 1). Thus Sw is an interval. Now

w(x) =
1

(1 − x)(1−c)/2(1 + x)(1+c)/2
, x ∈ [−H, H]

is the corresponding weight function. In particular if c := 0 we get that the

concave function q(x) := ln
√

1 − x2 is weak convex on [−H, H] (now w(x) =

1/
√

1 − x2). (We remark that exp(q(x)) is also concave.)

Notice that (1−x2)q′(x)+x = c constant, which shows that our q(x) in example
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2.) is weak convex with basepoints −1 and 1. Hence by the remark on Page 29

it is weak convex indeed.

3.) For any c > 0, q(x) := cos(cx)/c2 is weak convex on Σ := [−1, 1], thus Sw

is an interval.

Indeed, (1 − x2)q′(x) + x is increasing, because q′(x) = − sin(cx)/c, and

d

dx
[(1 − x2)q′(x) + x] =

2x sin(cx)

c
− (1 − x2) cos(cx) + 1 ≥ 2x sin(cx)

c
+ x2 ≥ 0.

4.) q(x) := x2(x − 1/2)(x + 1/3) is weak convex on Σ := [−1, 1], thus Sw is

an interval.

In this example neither exp(q) is convex on the whole [−1, 1], nor (1−x2)q′(x)+x

is increasing on the whole [−1, 1]. However, exp(q) is convex on [−1,−0.2]∪[0.3, 1]

and (1 − x2)q′(x) + x is increasing on [−0.7, 0.7]. So we can partition [−1, 1] to

smaller intervals (say, to [−1,−0.2), [−0.2, 0.7) and [0.7, 1]) so that one of our

criteria is satisfied on any of the small intervals, as it is described at the definition

of weak convexity. Hence q(x) is weak convex.

5.) In [7], [8] and [16] Damelin, Dragnev and Kuijlaars studied the follwing

external fields (sometimes in the context of fast decreasing polynomials):

q(x) := −cxα, x ∈ Σ := [0, 1], (42)

and

q(x) := −c sign(x)|x|α, x ∈ Σ := [−1, 1], (43)

where c > 0, α ≥ 1. They proved that for the external fields at (42) and at (43)

the support will be the union of at most two intervals. In both cases Sw is the full

interval (Sw = [0, 1] and Sw = [−1, 1] respectively), whenever c is small enough.
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In this direction we can say the following: Let q(x) be a twice differentiable

function on Σ := [−1, 1] such that q′′(x) is bounded and let q(x) := cq(x), x ∈

[−1, 1] where c ∈ R. Then there exists ε > 0 such that Sw is an interval whenever

|c| < ε. The proof of this statement is simple: if c is close to zero, then (37) holds,

say, with A := −2, B := 2, so from Theorem 21 we gain that Sw is an interval

(but not necessarily the full [−1, 1]).

Let us examine now the case when q(x) := −cxα, x ∈ Σ := [0, 1]. Let

A := 0, B := 1, so g(x) := (x−A)(B −x)q′(x)+x = −cα(x−x2)xα−1 +x. Then

g′(x) := −cα2xα−1 + cα(α + 1)xα + 1. Notice that g′(0) = 1 and g′(1) = cα + 1,

which are positive values. Calculating g′′(x) we see that g′(x) is a decreasing

function on [0, (α − 1)/(α + 1)] and increasing on [(α − 1)/(α + 1), 1]. So there

exist G1, G2 ∈ [0, 1], G1 ≤ G2, such that g′(x) is non-negative on [0, G1] ∪ [G2, 1]

and negative on (G1, G2). That is, g(x) is increasing on [0, G1] ∪ [G2, 1], so both

Sw∩[0, G1] and Sw∩[G2, 1] are intervals (empty sets are possible). But our criteria

(5) cannot state anything on [G1, G2]. Using (4), too, we see that exp(q) is convex

on [G, 1] where G := (α − 1)/(cα). Thus Sw ∩ [0, G1] and Sw ∩ [min(G2, G), 1]

are intervals (empty sets are possible), but unfortunately we cannot say anything

about Sw ∩ [G1, min(G2, G)].

2.4 Integral Representation for the Equilibrium Measure

Let x ∈ R. If f is integrable on L \ (x − ε, x + ε) for all 0 < ε then the Cauchy

principal value integral is defined as

PV

∫

L

f(t)dt := lim
ε→0+

∫

L\(x−ε,x+ε)

f(t)dt,
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if the limit exists.

It is known that PV
∫

L
g(t)/(t−x)dt exists for almost every x ∈ R if g : L → R

is integrable.

Now we are ready to prove Theorem 15.

Proof of Theorem 15 The hypotheses of Theorem 15 imply that exp(q) is

convex on (−1, u) and on (v, 1) (see Proposition 24). Thus q is weak convex on

[−1, 1] and so Sw is an interval, which must be [−1, 1].

According to [3] (Lemma 16), if the function

h(t) :=
1

π2
√

1 − t2
PV

∫ 1

−1

√
1 − s2q′(s)

s − t
ds +

1

π
√

1 − t2
(44)

is non-negative (a.e. t ∈ [−1, 1]), then h(t) is the density of µw.

We perform the following manipulation:

(t+1)[(1−s)2q′(s)−s]+2[(1−s)(s− t)q′(s)+s] = (1− t)[(1−s2)q′(s)+s] (45)

Dividing this by (s− t)
√

1 − s2 and integrating with respect to s (principal value

integral), we get:

1

π2
√

1 − t2

[t + 1

1 − t
PV

∫ 1

−1

(1 − s)2q′(s) − s

(s − t)
√

1 − s2
ds

+
2

1 − t
(π +

∫ 1

−1

(1 − s)q′(s)√
1 − s2

ds)
]

= h(t) (46)

where we used the fact (see [24], formula IV.(3.20)) that

PV

∫ 1

−1

1

(s − t)
√

1 − s2
ds = 0 (47)
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and

PV

∫ 1

−1

s

(s − t)
√

1 − s2
ds

=

∫ 1

−1

1√
1 − s2

ds + tPV

∫ 1

−1

1

(s − t)
√

1 − s2
ds = π + 0 = π. (48)

From (44) and (48) we also see that

1

π2
√

1 − t2
PV

∫ 1

−1

(1 − s2)q′(s) + s

(s − t)
√

1 − s2
ds = h(t). (49)

Finally, using the identity

(1 − t)[(s + 1)2q′(s) − s] − 2[(s + 1)(s − t)q′(s) − s] = (t + 1)[(1 − s2)q′(s) + s]

we get the same way that

1

π2
√

1 − t2

[1 − t

t + 1
PV

∫ 1

−1

(s + 1)2q′(s) − s

(s − t)
√

1 − s2
ds

+
2

t + 1
(π −

∫ 1

−1

(s + 1)q′(s)√
1 − s2

ds)
]

= h(t) (50)

Now we claim that h(t) is non-negative for a.e. t ∈ [−1, 1]. Assuming −1 6= u,

let t ∈ (−1, u). Notice that in (46) the term

π +

∫ 1

−1

(1 − s)q′(s)√
1 − s2

ds

is non-negative, see [3], Theorem 10.

Actually, Theorem 10 in [3] has different assumptions on q than our assump-

tions at Theorem 15 above. Nevertheless, the proof of Theorem 10 ([3]) works

for our assumptions, if we make the following modification in the proof. Let
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A := −1, B := 1, a ∈ [A, B) and let

h(β) :=

∫ β

a

√
x − a

β − x
q′(x)dx, β ∈ (a, B].

We have to show that h(β) is continuous on (a, B] - which is a long argument in

the proof of Theorem 10 ([3]). But now, using the boundedness of q ′, we can see

this immediately. For this purpose let β0, β ∈ (a, B] and let β → β0. Without

loss of generality we can assume that β0 < β. Using the triangle inequality we

get

|h(β) − h(β0)| ≤
∣∣∣
∫ β

β0

√
x − a

β − x
q′(x)dx

∣∣∣ +
∣∣∣
∫ β0

a

[√x − a

β − x
−

√
x − a

β0 − x

]
q′(x)dx

∣∣∣

≤ C
[ ∫ β

β0

√
1

β − x
dx +

∫ β0

a

[√ 1

β0 − x
−

√
1

β − x

]
dx

]
,

and clearly both of these terms are going to zero as β → β0.

Let us return to the proof of Theorem 15. Let t be a number such that q ′(t)

exists. In (46) the term

PV

∫ 1

−1

(1 − s)2q′(s) − s

(s − t)
√

1 − s2
ds

= PV

∫ 1

−1

(1 − s)2q′(s) − s − [(1 − t)2q′(t) − t]

(s − t)
√

1 − s2
ds (51)

is also non-negative which we can see as follows: if s ∈ (−1, u), then

(1 − s)2q′(s) − s − [(1 − t)2q′(t) − t]

s − t

is clearly non-negative because (1 − x)2q′(x) − x is increasing on (−1, u). Now

let s ∈ (u, 1) (if u 6= 1). By the assumptions of Theorem 15 we have q ′(t) ≤
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(−1)/(1 − t) and q′(s) ≥ (−1)/(1 − s), from which

(1 − s)2q′(s) − s − [(1 − t)2q′(t) − t]

s − t

≥
(1 − s)2 −1

1−s
− s − [(1 − t)2 −1

1−t
− t]

s − t
= 0

Since the integrand at the right hand side of (51) is non-negative it is no

longer a principal value integral but a Lebesgue integral. So the ”PV” sign can

be dropped.

The proof of the non-negativity of h(t) in the remaining cases (when t ∈ (u, v)

or t ∈ (v, 1)) is similar. Thus h(t) is the density, indeed. The integral formulas

in Theorem 15 are coming from (46), (49) and (50) immediately (by using (47)).
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3 The Unit Circle and the Compactified Real

Line

Chapter 3 is based on the paper [5] of Benko, Damelin and Dragnev. Damelin

and Dragnev has made the following acknowledgement.

Acknowledgement D. Benko had a substantial contribution in our paper,

in deciding the topic of the paper as well as in the proofs of the theorems.

S. B. Damelin (Department of Mathematics and Computer Science, Georgia

Southern University, P.O. Box 8093, Statesboro, GA 30460, E-mail:

damelin@gsu.cs.gasou.edu)

P. D. Dragnev (Department of Mathematical Sciences, Indiana-Purdue Univer-

sity, Fort Wayne, IN 46805, E-mail: dragnevp@ipfw.edu)

3.1 Some Definitions

In recent years, equilibrium measures with external fields have found an increasing

number of applications in a variety of areas ranging from diverse subjects such as

orthogonal polynomials, weighted Fekete points, numerical conformal mappings,

weighted polynomial approximation, rational and Pade approximation, integrable

systems, random matrix theory and random permutations. We refer the reader to

the references [1, 2, 3, 9, 11, 17, 18, 19, 23, 24, 26, 27, 29] and those listed therein

for a comprehensive account of these numerous, vast and interesting applications.

Let us recall the following important definitions from Chapter 1.2. With a

compact set Σ ⊂ C and lower semi-continuous external field q : Σ → (−∞, +∞],
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we set w := exp(−q) and call w a weight associated with q, provided the set

Σ0 := {z ∈ Σ : w(z) > 0}

has positive logarithmic capacity. With an external field q (or a weight w), we

associate the weighted energy of a Borel probability measure µ on Σ as

Iw(µ) =

∫

Σ

∫

Σ

log
1

|s − t|w(s)w(t)
dµ(s)dµ(t).

The equilibrium measure in the presence of an external field q, is the unique prob-

ability measure µw on Σ minimizing the weighted energy among all probability

measures on Σ. Thus

Iw(µw) = min{Iw(µ) : µ ∈ P(Σ)}

where P(Σ) denotes the class

P(Σ) = {µ : µ is a Borel probability measure on Σ}.

For more details on these topics we refer the reader to the seminal monograph of

E. B. Saff and V. Totik [24].

The determination of the support Sw of the equilibrium measure µw is a major

step in obtaining the measure. As described by Deift [11, Chapter 6], information

that the support consists of N ≥ 1 disjoint closed intervals, allows one to set

up a system of equations for the endpoints, from which the endpoints may be

calculated. Knowing the endpoints, the equilibrium measure may be obtained

from a Riemann-Hilbert problem or, equivalently, a singular integral equation. It
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is for this reason that it is important to have a priori conditions on the external

field q to ensure that the support is an interval or the union of a finite number of

intervals. We refer the reader to the references [4, 3, 7, 8, 10, 12, 16, 22, 24, 25]

for an account of advances on the equilibrium measure and support problem for

one or several intervals.

In this present paper, we study supports of equilibrium measures for a general

class of weights on the compactified real line and unit circle and present several

conditions on the associated external field to ensure that the support of the

associated equilibrium measure is one interval or one arc.

In order to present our main results, we find it convenient to introduce some

needed notation and definitions.

Definition 26 Let R̄ := R ∪ {∞} denote the on point compactified real line. It

is a topological space which is isomorphic to the unit circle C. We will think of

∞ as +∞, that is, we agree that a < ∞ for any a ∈ R.

We will continue to use the −∞ and +∞ symbols but let us keep in mind that

they are the same point (which is ∞). For example, if b is a real number then

[−∞, b] denotes the set {∞} ∪ {x : x ∈ R, x ≤ b}.

Let U, V ∈ R̄, U ≤ V . In this chapter I := b U, V e ⊂ R̄ denotes an interval

which is open, closed, or half open, and has endpoints U and V . (Earlier we used

the [(U, V )] notation for this.) We define [V, U ] := (U, V )c, (V, U) := [U, V ]c,

(V, U ] := (U, V ]c, [V, U) := [U, V )c.

Let now α, β ∈ R be two angles, |β − α| < 2π. We define b̂α, βe to be the arc

beiα, eiβe ⊂ C, where we go from eiα to eiβ in a counterclockwise direction. If

β − α = 2π, let b̂α, βe to be the full circle C. If α − β = 2π, or α = β, then let

b̂α, βe be the single point exp(iα). Finally, if 0 ≤ β − α ≤ 2π and I = bα, βe

then define Î to be b̂α, βe.
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We say that W (X), X ∈ R̄ is a weight on R̄, if

w(x) :=
W (1+x

1−x
i)

|1 − x| , |x| = 1 (52)

is a weight on C.

Remark A We note that this definition of weights on the real line is more

general than the one given in [24] or [25], since we do not assume the existence

of lim |X|W (X) as |X| → +∞. However, since q := − log(w) is bounded from

below, |X|W (X) must be bounded from above. In addition, studying weights on

the compactified real line via weights on the unit circle C allows us to deduce

several results on the supports of the equilibrium measure µW on the line via a

general result for µw on the circle (see Theorems 27, 29 and 30).

In the next subsection, we describe the relation between the weighted energy

problem on R̄ and on C.

3.2 Connection between the Equilibrium Problem on R̄

and on C

We will make use of the Cayley transform between R̄ and on C as follows.

R̄ 3 X 7−→ x :=
X − i

X + i
∈ C (53)

defines a bijection between R̄ and C. The inverse is

C 3 x 7−→ X =
1 + x

1 − x
i ∈ R̄ (54)

The image of Y, T ∈ R̄ by the Cayley transform will be denoted by y and t.
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To any measure µ ∈ P(R̄), we assign the Borel probability measure µC on C

with

dµC(x) := dµ(X) (55)

This mapping is a bijection between Borel probability measures on R̄ and C.

Let the weights W and w be related by (52). The weighted logarithmic po-

tential of µ and µC is defined by

Uµ
W (X) :=

∫
log

1

|T − X|W (T )W (X)
dµ(T ),

UµC

w (x) :=

∫
log

1

|t − x|w(t)w(x)
dµC(t),

respectively ([25]). These are well-defined integrals (even though µ may not have

compact support), as well as

IW (µ) := −
∫ ∫

log(|X − Y |W (X)W (Y ))dµ(X)dµ(Y ).

From

|X − Y | =
∣∣∣1 + x

1 − x
i − 1 + y

1 − y
i
∣∣∣ =

2|x − y|
|1 − x||1 − y| . (56)

we have |T − X|W (T )W (X) = 2|t − x|w(t)w(x). Thus

Uµ
W (X) = UµC

w (x) − log 2 (57)

Integrating this we get

IW (µ) = Iw(µC) − log 2. (58)

Since

W = e−Q, w = e−q (59)

44



we have the following correspondence between q and Q:

q(x) = Q
(1 + x

1 − x
i
)

+ log |1 − x|, |x| = 1. (60)

For convenience we will agree on the notations

q(θ) := q(eiθ), w(θ) := w(eiθ), θ ∈ R.

Also, since

|1 − x| =
2

|X + i| =
2√

1 + X2
, |x| = 1, X ∈ R̄ (61)

we have

Q(X) = q
(X − i

X + i

)
+

1

2
log(1 + X2) − log 2, X ∈ R̄. (62)

We find it more convenient to use angles instead of complex numbers on the

unit circle. So let x = eiθ, and y = eiν for θ, ν ∈ R.

Clearly,

|x − y|
|1 − x||1 − y| =

| sin θ−ν
2
|

2| sin θ/2|| sin ν/2| and
1 + x

1 − x
i = − cot

θ

2
. (63)

Therefore, using (63), we readily calculate that

IW (µ) =

= −
∫ ∫

log
(∣∣∣ sin

θ − ν

2

∣∣∣W (− cot θ/2)

| sin θ/2|
W (− cot ν/2)

| sin ν/2|
)
dµ(− cot

θ

2
)dµ(− cot

ν

2
)

= −
∫ ∫

log
(∣∣∣ sin

θ − ν

2

∣∣∣w(θ)w(ν)
)
dµ(− cot

θ

2
)dµ(− cot

ν

2
) − log 4. (64)

Here, we used the fact that w(θ) = W (− cot θ
2
)/(2| sin θ

2
|) (see (52) ). In addition

45



we note that from (60) we get

q(θ) = Q

(
− cot

θ

2

)
+ log | sin θ

2
| + log 2. (65)

The formulae (52)-(58) allow us to conclude the following:

µ ∈ P(R̄) minimizes the energy integral IW (µ) over all probability measures

on R̄ if and only if its corresponding µC ∈ P(C) minimizes the energy integral

Iw(µC) over all probability measures on C. Moreover, the support SW is going to

be an interval or a complement of an interval in R̄ if and only if the corresponding

support Sw is an arc on C.

We close this section by introducing some remaining conventions which we

assume henceforth.

Let Ĩ be an arc of C. We shall say that f : Ĩ → R is absolutely continu-

ous inside Ĩ if it is absolutely continuous on each compact subarc of Ĩ. (As a

consequence, f ′ exists a.e. on Ĩ.)

Now let I be an interval or a complement of an interval in R̄. Let the arc Ĩ be

the image of I by the Cayley transform T : R̄ → C. We shall say that f : I → R

is absolutely continuous inside I if f ◦T−1 is absolutely continuous inside Ĩ . (If I

is a finite interval, this definition is equivalent to the usual definition of absolute

continuity inside I.)

We say that a function f is increasing on an interval I ⊂ R if there exist

J ⊂ I such that the Lebesgue measure of I \ J is zero and f(x) ≤ f(y) whenever

x, y ∈ J , x ≤ y. (This is a useful definition when f is defined only a.e. on I.)

We define “decreasing” in a similar manner.

Moreover, we say that f is convex on an interval I if f is absolutely continuous

inside I and f ′ is increasing on I.
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We finally note that under Cayley transform (or its inverse), sets with positive

capacity are transferred to sets with positive capacity.

3.3 Results on the Circle

Theorem 27 Let w(z) = exp(−q(z)), |z| = 1 be a weight on C and let I = bγ, δe

be an interval with 0 < δ− γ ≤ 2π. Assume that q is absolutely continuous inside

I and

lim inf
x → y

x ∈ I

q(x) = q(y) (66)

whenever y is an endpoint of I with y ∈ I. Let eic be any point which is not

an interior point of Î. Let ̂[α1, β1], ..., ̂[αk, βk] be k ≥ 0 arcs of C. Here, for all

1 ≤ i ≤ k, 0 < βi − αi ≤ 2π and (Sw ∪ Î) ⊂ [̂αi, βi]. Suppose further that I

can be written as a disjoint union of n ≥ 1 intervals I1, ..., In and for any fixed

1 ≤ j ≤ n, either

eq(θ)
[
2 sin

(θ − c

2

)
q′(θ) − cos

(θ − c

2

)]
sgn

(
sin

(θ − c

2

))
(2.2)

is increasing on Ij or for some 1 ≤ i ≤ k:

sin

(
θ − αi

2

)
sin

(
βi − θ

2

)
q′ (θ) +

1

4
sin

(
θ − αi + βi

2

)
(2.3)

is increasing on Ij. Finally we assume that

lim sup
θ→θ−

0

q′(θ) ≤ lim inf
θ→θ+

0

q′(θ),
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whenever θ0 is an endpoint of Ij (1 ≤ j ≤ n) but not an endpoint of I. Then

Sw ∩ Î is an arc of C.

Here sgn denotes the signum function.

Remark B The choice of c is not important, see Remark F and the proof of

Lemma 33. We also remark that if Î is the full circle, then one should check only

condition (2.2) and ignore (2.3) which is a stronger assumption.

Below we give a condition which guarantees that Sw is the full circle:

Corollary 28 Let w(z) = exp(−q(z)), |z| = 1 be a weight on C and let I1 :=

(γ1, γ1 + 2π) and I2 := (γ2, γ2 + 2π) where eiγ1 6= eiγ2 . Assume that (2.2) is

increasing on I1 where c := γ1, and (2.2) is increasing on I2 where c := γ2. Then

Sw = C.

Proof: By Theorem 27 Sw ∩ Î1 is an arc of C. Let eic be an interior point

of this arc, not identical to eiγ2 . Choose ρ1, ρ2 such that c < ρ2 < ρ1 < c + 2π

and both of the arcs (̂c, ρ1) and ̂(ρ2, c + 2π) contain only one of eiγ1 and eiγ2 , say,

(̂c, ρ1) contains eiγ1 and ̂(ρ2, c + 2π) contains eiγ2 .

Using the first observation of Remark B, we see that (2.2) is increasing on

(c, ρ1) because (2.2) is increasing on (c, ρ1) when at (2.2) c is replaced by γ2.

Similarly, (2.2) is increasing on (ρ2, c+2π) because (2.2) is increasing on (ρ2, c+2π)

when at (2.2) c is replaced by γ1. Thus (2.2) is increasing on (c, c + 2π) and so

Sw = C by Theorem 27 and by the choice of c. 2

Example: The following example illustrates the theorem.

Let q(θ) = cos(5θ) sin(3θ) defined on Σ = [2.9, 3.18] ∪ [3.95, 4]. (We may

define w to be zero outside Σ so that w is defined on C. ) We claim that both

Sw ∩ ̂[2.9, 3.18] and Sw ∩ ̂[3.95, 4] are arcs of C. (One of them may be an empty

set.)
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Take α1 = 2.9, β1 = 4 and α2 = 3.95, β2 = 3.18 + 2π.

One can verify that (2.2) is satisfied on [2.9, 3.17] but not on the whole

[2.9, 3.18]. (At (2.2) c can be chosen to be any number such that eic is not

an interior point of ̂[2.9, 3.18]. Or, simply check the (q′)2 + q′′ + 1/4 ≥ 0 condi-

tion, see Remark F.) Also, using α1 and β1 we see that (2.3) is not satisfied on

the whole [2.9, 3.18]. However (2.3) is satisfied on the subinterval [3.17, 3.18] (see

Figure 2.1). So the combination of the (2.2) and (2.3) conditions implies that

Sw ∩ ̂[2.9, 3.18] is an arc .

x

3.15

6

3.1

4

2

3.05
0

-2

32.95

Condition (2.2) on [2.9,3.18]

x

3.153.13.05

0.05

3
0

-0.05

-0.1

2.95

Condition (2.3) on [2.9,3.18]

Figure 1: Conditions (2.2) and (2.3) on the interval I1

Using α1 and β1 on [3.95, 4] is not helpful since (2.3) is a decreasing function

there. Also, (2.2) is not satisfied on the whole [3.95, 4]. However, (2.3) is satisfied

using α2 and β2 on the whole [3.95, 4]. Theorem 27 now implies that Sw∩ ̂[3.95, 4]

is an arc (see Figure 2.2). (We remark that α2 and β2 are not helpful on [2.9, 3.18]

since (2.3) is a decreasing function on [3.17, 3.18].)

Remark C It is a natural question to ask what αi and βi numbers we should

choose in order that (2.3) is as weak as possible. In most cases the following

statement is true:

Let [̂α, β] and [̂α′, β ′] (0 < β − α ≤ 2π, 0 < β ′ − α′ ≤ 2π) be two arcs of C
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Figure 2: Conditions (2.2) and (2.3) on the interval I2

such that Sw ⊂ [̂α, β] ⊂ [̂α′, β ′]. Let Î be an arc contained in [̂α, β]. If (2.2) or

(2.3) is satisfied with α′, β ′ then (2.2) or (2.3) is also satisfied with α, β.

For example, this statement is true if q′′(θ) exists and the sets

H :=
{
θ ∈ I : q′(θ) >

1

2
cot

(θ − α′

2

)}
, H∗ :=

{
θ ∈ I : q′(θ) >

1

2
cot

(θ − β ′

2

)}

consist of finitely many intervals. (The proof of this is similar to the proof of the

statement in the remark at section 2.2.)

Theorem 27 can be effectively used when w(z) is identically zero on some

arcs (that is, Σ is a subset of finitely many arcs ). If w(z) is zero on [̂ui, vi]

(0 < vi − ui < 2π), i = 1, ..., k, then we may choose [̂αi, βi] to be [̂vi, ui] in

Theorem 27. This is consistent with the discussion above. For convenience we

will state Theorem 29 in accordance with this remark.
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3.4 Results on the Compactified Real Line

For simplicity we just state our next theorem for finite intervals (so Σ is a subset

of R). Afterwards we will explain how to modify the statement if we have an

infinite interval or a complement of a finite interval.

Theorem 29 For given k ∈ N+ let

Σ := ∪k
i=1[Ai, Bi] ⊂ R̄, where (67)

−∞ < A1 ≤ B1 < A2 ≤ B2 < ... < Ak ≤ Bk < +∞.

Let W = exp(−Q) be a weight on Σ, I ⊂ Σ be an interval and assume that Q is

absolutely continuous inside I and

lim inf
X → Y

X ∈ I

Q(X) = Q(Y ) (68)

whenever Y is an endpoint of I with Y ∈ I. Assume further that I can be written

as a disjoint union of intervals I1, ..., In such that for any fixed 1 ≤ j ≤ n either

eQ(X) is convex on Ij, (69)

or for some 1 ≤ i ≤ k − 1

(X − Bi)(Ai+1 − X)Q′(X) + X is decreasing on Ij, (70)

or

(X − A1)(Bk − X)Q′(X) + X is increasing on Ij. (71)
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Finally we assume that

lim sup
X→X−

0

Q′(X) ≤ lim inf
X→X+

0

Q′(X),

whenever X0 is an endpoint of Ij (1 ≤ j ≤ n) but not an endpoint of I. Then

SW ∩ I is an interval.

Remark D We remark that Theorem 29 is also valid when one interval, say,

[Ak, Bk] is an infinite interval or a complement of a finite interval. If Ak > Bk

(and, of course, Bk < A1), then the conclusion of the theorem holds if (71) is

replaced by the condition:

(X − Bk)(A1 − X)Q′(X) + X is decreasing on Ij. (72)

If however Bk = +∞ then (71) should be replaced by the condition:

(X − A1)Q
′(X) is increasing on Ij. (73)

Finally, if A1 = −∞ (and so [A1, B1] is the infinite interval instead of [Ak, Bk])

then (71) should be replaced by the condition

(Bk − X)Q′(X) is increasing on Ij. (74)

At (72) and at Theorem 30 at (e) one can also consider an I which is a

complement of a bounded interval. We leave the details for the reader.

Theorem 30 reveals to us the following remarkable connection between pre-

viously known conditions on Q. It also gives us a new condition (which is (e)

below). As a consequence of Theorem 27 and 29 and Remark D, we now have the

52



following general result for the case when Σ is one real interval. See also Chapter

2. Recall that for A < B we define [B, A] := (A, B)c.

Theorem 30 Let W be a weight on R and let I ⊂ R be an interval. Assume

that Q is absolutely continuous inside I and satisfies (68) . Let A ≤ B be finite

constants and suppose that either of the following conditions below hold:

(a) (X − A)(B − X)Q′(X) + X is increasing on I ⊂ [A, B], SW ⊂ [A, B].

(b) (X − A)Q′(X) is increasing on I ⊂ [A, +∞), SW ⊂ [A, +∞).

(c) (B − X)Q′(X) is increasing on I ⊂ (−∞, B], SW ⊂ (−∞, B].

(d) (X − A)2Q′(X) − X is increasing on I ⊂ R \ {A},

(e) (X − A)(B − X)Q′(X) + X is decreasing on I ⊂ [B, A], SW ⊂ [B, A].

(f) Q is convex on I.

(g) exp(Q) is convex on I.

Then SW ∩ I is an interval.

Remark E

Theoretically one should ignore (d) and (f) since (g) is a weaker assumption

than both of these. Nevertheless we included them here, becasue sometimes they

are easier to check.

Notice that (a) in Theorem 30 corresponds to the case of Theorem 27 when

[̂α, β] is an arc of C disjoint of the point x = 1, (b) corresponds to the case when

[̂α, β] is a proper subarc of C such that exp(iβ) = 1, (c) corresponds to the case

when [̂α, β] is a proper subarc of C such that exp(iα) = 1, (d) corresponds to
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the case when [̂α, β] is the full circle C and a subcase of this is when A = ∞ (so

α = 0 and β = 2π ) which corresponds to (f). The condition (e) corresponds

to the case when [̂α, β] is a proper subarc of C which contains the point x = 1

inside the arc. Finally, (g) is the only condition which corresponds to (2.2) and

not (2.3).

Note also that if we let A = B then (e) leads to condition (d), since (X −

A)(A−X)Q′(X)+X is decreasing if and only if (X−A)2Q′(X)−X is increasing.

One may also combine the above conditions to create a weaker condition in

the spirit of Theorem 27 and 29.

3.5 Proofs

In this section, we present the proofs of our results. We find it convenient to

break down our proofs into several auxiliary lemmas. Our first lemma is

Lemma 31 Let w(z) = exp(−q(z)), |z| = 1 be a weight on C and let I = bγ, δe

be an interval with 0 < δ − γ ≤ 2π. Let 0 < β − α ≤ 2π and assume Sw ∪ Î ⊂

[̂α, β]. Suppose q(θ) := q(eiθ) is absolutely continuous inside I and satisfies (66).

Moreover, assume that

sin

(
θ − α

2

)
sin

(
β − θ

2

)
q′ (θ) +

1

4
sin

(
θ − α + β

2

)
(75)

is increasing on I. Then Sw ∩ Î is an arc of C.

Proof: Let

A := − cot
α

2
, B := − cot

β

2
, X := − cot

θ

2
. (76)
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First let us assume that α, β ∈ (0, 2π). Thus we may assume that 0 < α ≤

γ < θ < δ ≤ β < 2π and 0 < sin(α/2), 0 < sin(β/2). So A ≤ X ≤ B.

From (65), we have

Q′
(
− cot

θ

2

)
= 2 sin2

(
θ

2

) (
q′(θ) − 1

2
cot

θ

2

)
. (77)

Thus,

(X − A)(B − X)Q′(X) + X (78)

= −
(

cot
θ

2
− cot

α

2

) (
cot

θ

2
− cot

β

2

)
Q′

(
− cot

θ

2

)
− cot

θ

2

= −sin θ−α
2

sin θ−β
2

sin α
2

sin β
2

(
2q′(θ) − cot

θ

2

)
− cot

θ

2
.

Now we use the following identity which holds for any α, β, θ:

cot
(θ

2

)(sin θ−α
2

sin θ−β
2

sin α
2

sin β
2

− 1
)

=
sin(θ − α+β

2
)

2 sin(α
2
) sin(β

2
)
− 1

2

(
cot

α

2
+ cot

β

2

)
. (79)

It follows that

(X − A)(B − X)Q′(X) + X (80)

= −2
sin θ−α

2
sin θ−β

2

sin α
2

sin β
2

q′(θ) +
sin(θ − α+β

2
)

2 sin(α
2
) sin(β

2
)
− 1

2

(
cot

α

2
+ cot

β

2

)
.

Because 0 < sin(α/2), 0 < sin(β/2), the right hand side of (80) is increasing

on I if and only if (75) holds. Thus, if (75) holds then (X−A)(B−X)Q′(X)+X

is increasing on b− cot γ
2
,− cot δ

2
e. Now consider the corresponding equilibrium

problem on R̄ (as described earlier) and let SW denote the corresponding equi-

librium measure on R̄. Using Theorem 21 we get that SW ∩ b− cot γ
2
,− cot δ

2
e is

an interval. It follows that Sw ∩ Î is an arc of C. This proves Lemma 31 for the
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case when α, β ∈ (0, 2π).

Now let α ≤ 2π ≤ β, β − α < 2π. Note that 0 ≤ sin(α/2), 0 ≥ sin(β/2). We

cannot apply Theorem 21 because B ≤ A and X is outside [B, A]. However we

can use the observation that condition (75) is “rotation invariant”.

Let 0 < σ be a number such that

0 < α − σ =: α∗, β∗ := β − σ < 2π, (81)

and define

γ∗ := γ − σ, δ∗ := δ − σ,

q2(θ) := q(θ + σ). (82)

For w2 = exp(−q2) and the parameters α∗, β∗, γ∗, δ∗, we may apply the case

we studied above to get that Sw2
∩ ̂bγ∗, δ∗e is an arc of C. But this new equilibrium

problem is isomorphic to the original one in the sense that everything (including

the support) is rotated by the angle σ. It follows that Sw ∩ Î is an arc of C.

Finally, we need to establish the lemma for the case when Î is the full circle. So

let β−α := 2π. Using the rotation invariance we may assume that α = 0, β = 2π.

Condition (75) is now equivalent to

sin2
(θ

2

)
q′(θ) − 1

4
sin θ is increasing. (83)

Using (77) we get

2 sin2(
θ

2
)q′(θ) − 1

2
sin θ = Q′(− cot

θ

2
). (84)
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Thus Q′(− cot θ
2
) is increasing (0 < θ < 2π), that is, Q′(X) is increasing, and so

Q(X) is convex. It is well known, see [24], that in this case the support SW is an

interval. (The proof works for our more general weight.) So Sw is again an arc.

We have completed the proof Lemma 31 . 2

As a corollary to Lemma 31 , we have

Lemma 32 Let W be a weight on R̄, let J be a finite interval and suppose that

Q is absolutely continuous inside J and satisfies condition (68). Let A ≤ B be

finite constants with J ⊂ [B, A], SW ⊂ [B, A] and assume that (X − A)(B −

X)Q′(X) + X is decreasing on J . Then SW ∩ J is an interval.

Proof: Recall that [B, A] = (A, B)c, see Definition 26.

We may find α < β such that B = − cot(α/2), A = − cot(β/2) and β − α ≤

2π. Notice

that sin (α/2) sin (β/2) < 0 necessarily.

Let J = b− cot(γ/2),− cot(δ/2)e, where α ≤ γ ≤ δ ≤ β and so δ − γ ≤ 2π.

The left hand side of (80) is a decreasing function of X on J , and so the right

hand side of (80) is a decreasing function of θ on I := [γ, δ]. Multiply that right

hand side by the negative constant sin (α/2) sin (β/2). In this way we get an

increasing function of θ on [γ, δ]. So condition (75) is satisfied and from Lemma

31 , we deduce that Sw ∩ [̂γ, δ] is an arc of C. This implies immediately that

SW ∩ J is an interval. Lemma 32 is proved. 2

Our final lemma is:

Lemma 33 Let w(z) = exp(−q(z)), |z| = 1 be a weight on C and let I = bγ, δe

be an interval with 0 < δ − γ ≤ 2π. Suppose q is absolutely continuous inside I
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and satisfies (66). Let eic be any point which is not an interior point of Î. If

eq(θ)
[
2 sin

(θ − c

2

)
q′(θ) − cos

(θ − c

2

)]
sgn

(
sin

(θ − c

2

))
(85)

is increasing on I, then Sw ∩ Î is an arc of C.

Remark F Whether (85) is increasing on I or not, it does not depend on the

choice of c (as long as eic is not an interior point of Î). The proof of this is given

in the proof of Lemma 33 . We remark however that if q is twice differentiable

then condition (85) is easily seen to be equivalent to

q′(θ)2 + q′′(θ) +
1

4
≥ 0, θ ∈ (γ, δ)

which condition indeed does not depend on c.

We give the following example to Lemma 33 . Let Σ be one or several closed

arcs on the unit circle but not the full circle. Assume the weight w is zero on the

complement of Σ. Let eiρ be a point in the complement of Σ, and define

q(θ) := q(eiθ) := log | sin θ − ρ

2
| + d,

where d is an arbitrary constant. The value of c is our choice so let c := ρ. Then

(85) is increasing on the whole of Σ (in fact it is identically zero ) and therefore

Sw is a set of arcs. Moreover, each arc of Σ contains at most one arc of Sw.

Proof of Lemma 33 : First we show that whether (85) is increasing on I

or not, it does not depend on the choice of c. We do not assume the existance of

q′′.
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Let F (x) and u(x) be two real functions on (0, 1) such that F is bounded

and increasing, and u is non-negative and Lipschitz continous. Then there exists

E ⊂ (0, 1) of full measure such that

∫ b

a

(
F (x)u(x)

)′
dx ≤ (Fu)(b) − (Fu)(a) if a, b ∈ E, a ≤ b.

This observation easily follows from Fatou’s Lemma applied to the sequence of

functions [(Fu)(x + εn) − (Fu)(x)]/εn, εn → 0+.

Suppose eic and eic2 are not interior points of Î. Denote now (85) by Fc(θ).

Let J ⊂ I such that J has full measure and Fc(x) ≤ Fc(y) for all x ≤ y, x, y ∈ J .

We define the domain of Fc and q′ to be J . We have

eq(θ)q′(θ) =
Fc(θ) + eq(θ)

(
cos θ−c

2

)
sgn

(
sin θ−c

2

)

2
∣∣∣ sin θ−c

2

∣∣∣
, θ ∈ J, (86)

which shows that eqq′ is differentiable a.e. on J . Simple calculation gives

0 ≤ F ′
c(θ) = 2

∣∣∣ sin
θ − c

2

∣∣∣
[
(eq(θ)q′(θ))′ +

1

4
eq(θ)

]
a.e. θ ∈ J. (87)

Replace c by c2 at the formula (85) and denote it by Fc2(θ). Also, replace in

that formula eqq′ by the quotient at (86). Thus we see that with some u(θ), v(θ)

functions Fc2(θ) = Fc(θ)u(θ) + v(θ) holds, where inside (γ, δ):

the function u is non-negative and Lipschitz continuous, Fc is increasing and

bounded, and v is absolutely continuous (since eq is absolutely continuous inside

I).
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So by the observation above, we have

∫ b

a

(Fcu + v)′ ≤ (Fcu)(b) + v(b) − (Fcu)(a) − v(a) = Fc2(b) − Fc2(a)

for a.e. a, b ∈ I, where a ≤ b. But this integral is non-negative, since 0 ≤ F ′
c2 a.e.

θ ∈ I follows from (87) . Hence 0 ≤ Fc2(b) − Fc2(a), i.e., Fc2 is increasing. And

this is what we wanted to show.

We may assume that c ≤ γ < δ ≤ c + 2π. Let us rotate now Î to a position

such that the rotation takes eic to the point x = 1. Condition (85) will change

accordingly to a new condition where now c = 0. (We denote the new rotated

weight by w = exp(−q), too.) We now have to show that Sw ∩ Î is an arc of C

for the new Sw and new Î. Once we have done that we simply rotate Î back to

the original position and the proof is complete.

This argument shows that we can assume without loss of generality that c = 0

and 0 ≤ γ < δ ≤ 2π. Define

W
(1 + x

1 − x
i
)

:= |1 − x|w(x), |x| = 1. (88)

Using the arguments in Section 3.1, (88) may also be given as

W (X) :=
2w

(
X−i
X+i

)

√
1 + X2

, X ∈ R̄. (89)

We define Q(X) by W (X) =: exp(−Q(X)). Since w is a weight on C, we know

that W is a weight on R̄.

We now show that eQ(X)Q′(X) is increasing on

I0 := b− cot
γ

2
,− cot

δ

2
e. (90)
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Let x = eiθ. Note that from (65) we have

eQ(X) =
eq(θ)

2| sin θ
2
| . (91)

Using this and (77), for θ ∈ [0, 2π] we get

eQ(X)Q′(X) =
1

2
eq(θ)(2 sin

θ

2
q′(θ) − cos

θ

2
). (92)

Note that the right hand side of (92) is an increasing function of θ on I by

assumption. Now we apply Theorem 19, to conclude that SW ∩ I0 is an interval.

(Although this theorem is formulated for weights with lim|X|→+∞ XW (X) = 0,

the argument in the proof may be applied word for word for the more general

weights considered here. Naturally one should work with UµW

W (X) in the proof.)

Since SW ∩ I0 is an interval we conclude that Sw ∩ Î is an arc of C. The proof of

Lemma 33 is complete. 2

We are now ready to present the

Proof of Theorem 27: If Î is the full circle C then it follows from the

assumption that eiαt = eiβt = eic = eiγ for all t. Now, if (2.3) is increasing on Ij

then (2.2) is also increasing on Ij, as one can see. (Choose γ to be zero and use

(84), (92) and the fact that the convexity of Q implies the convexity of exp(Q).)

So we can get the weakest assumption if we assume that (2.2) is increasing on

the whole I, and we already know from Lemma 33 that Theorem 27 holds under

such an assumption. Thus, let us assume that Î is not the full circle.

As in the proof of Lemma 31 and 33 we observe that the statement of Theorem

27 is “rotation invariant”. So, we may assume that [̂γ, δ] does not contain the

x = 1 point and eiαt 6= 1, eiβt 6= 1 for any t. We can also assume that c = 0.
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Let X = − cot(θ/2), Ai = − cot(αi/2) Bi = − cot(βi/2), and Q(X) be defined

by (62). Let Ij be given by

Ij = bξj, ηje, 0 < ηj − ξj < 2π, (93)

and define

I0
j := b− cot

ξj

2
,− cot

ηj

2
e, I0 := b− cot

γ

2
,− cot

δ

2
e. (94)

Note that I0 is a finite subinterval of R and it is the disjoint union of the

intervals I0
j (j = 1, ..., n). We assume that I0

j is numerated from left to right.

Note also that [Ai, Bi] ⊃ I0
j (recall Definition 26).

By assumption, for any j (1 ≤ j ≤ n), we can find i (1 ≤ i ≤ k), such that

either

eQ(X) is convex on I0
j , or (95)

Ai < Bi and (X − Ai)(Bi − X)Q′(X) + X is increasing on I0
j or (96)

Ai ≥ Bi and (X − Ai)(Bi − X)Q′(X) + X is decreasing on I0
j . (97)

((95) is coming from the argument in Lemma 33 , (96) is from Lemma 31 , and

(97) is from Lemma 32 .)

Let E1 := 1. We can find positive constants E2, ..., En (uniquely) such that

the following function f is a positive continuous function inside I0. For x ∈

I0
j (j = 1, ..., n), let
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f(x) :=





Ek exp(2Q(X)) if (95) is satisfied on I0
j

Ek(X − Ai)(B − Xi) if (96) is satisfied on I0
j

Ek(X − Ai)(X − Bi) if (97) is satisfied on I0
j .

(98)

Let W := exp(−Q). We can use the argument in Theorem 25 to deduce

the result. For this purpose let A = − cot(α/2) and B = − cot(β/2) be any

two numbers such that A < B, [A, B] ⊂ I0, (A, B) ∩ SW = ∅. Let µ1 :=

µw

∣∣∣
̂[(α+β)/2,(α+β)/2+π]

, µ2 := µ − µ1. Using Uµw

w (x) = Uµ1

w (x) + Uµ2

w (x) and the

monotone convergence theorem it easily follows that Uµw

w (x) is absolutely contin-

uous on [̂α, β], and so by (57) UµW

W (X) is absolutely continuous on [A, B]. Also,

as in Chapter 2 one can verify that

f(X)
d

dX
(UµW

W (X)) (99)

is strictly increasing on [A, B]. By Lemma 18 we get that SW ∩ [A, B] is an

interval. It follows that SW ∩ I0 is also an interval and Sw ∩ Î is an arc of C. 2

We conclude this section with

The Proof of Theorem 29 and Theorem 30 These follow easily using

Theorem 27, Lemma 32 and the discussion in Section 3.1. 2.
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4 Approximation by Weighted Polynomials

4.1 Definitions and Notations

We collected below some frequently used definitions and notations in this chapter.

Definitions 34 Let L ⊂ R and let f : L → R ∪ {−∞} ∪ {+∞}.

f is Hölder continuous with Hölder index 0 < τ ≤ 1 if with some K constant

|f(x) − f(y)| ≤ K|x − y|τ , x, y ∈ L. In this case we write f ∈ Hτ(L).

The Lp norm of f is denoted by ||f ||p. When p = ∞ we will also use the ||f ||L
notation.

We say that an integral or limit exists if it exists as a real number.

Let x ∈ R. If f is integrable on L \ (x− ε, x+ ε) for all 0 < ε then the Cauchy

principal value integral is defined as

PV

∫

L

f(t)dt := lim
ε→0+

∫

L\(x−ε,x+ε)

f(t)dt,

if the limit exists.

It is known that PV
∫

L
g(t)/(t−x)dt exists for almost every x ∈ R if g : L →

R is integrable.

For 0 < ι and a ∈ R we define

a+
ι := max(a, ι) and a−

ι := max(−a, ι).

For a > b the interval [a, b] is an empty set.

We say that a property is satisfied inside L if it is satisfied on all compact

subsets of L.

o(1) will denote a number which is approaching to zero. For example, we
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may write 10x = 100 + o(1) as x → 2. Sometimes we also specify the domain

(which may change with ε) where the equation should be considered. For example,

sin(x) = o(1) for x ∈ [π, π + ε] when ε → 0+.

Let x ∈ [−1, 1]. Depending on the value of c ∈ [−1, 1] the following integrals

may or may not be principal value integrals.

vc(x) := −PV

∫ c

−1

√
1 − t2

π2
√

1 − x2(t − x)
dt,

hc(x) := PV

∫ 1

c

√
1 − t2

π2
√

1 − x2(t − x)
dt.

Define

B(x) := vc(x) − hc(x) = v1(x) = −PV

∫ 1

−1

√
1 − t2

π2
√

1 − x2(t − x)
dt, x ∈ [−1, 1].

Pn(x) and pn(x) denote polynomials of degree at most n.

Recall the definition of functions with smooth integral from the introduction:

Definitions 35 We say that f has smooth integral on R ⊂ L, if f is non-negative

a.e. on R and

∫

I

f = (1 + o(1))

∫

J

f (100)

where I, J ⊂ R are any two adjacent intervals, both of which has length 0 < ε,

and ε → 0. The o(1) term depends on ε and not on I and J .

We say that a family of functions F has uniformly smooth integral on R,

if any f ∈ F is non-negative a.e. on R and (100) holds, where the o(1) term

depends on ε only, and not on the choice of f , I or J .
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Cleary, if f is continuous and it has a positive lower bound on R then f has

smooth integral on R. Also, non-negative linear combinations of finitely many

functions with smooth integrals on R has also smooth integral on R.

From the Fubini Theorem it follows that if ν is a finite positive Borel measure

on T ⊂ R and {vt(x) : t ∈ T} is a family of functions with uniformly smooth

integral on R such that vt(x) is measurable on T × [a, b] (t ∈ T, x ∈ [a, b]), then

v(x) :=

∫

T

vt(x)dν(t)

has also smooth integral on R.

Finally, if fn → f uniformly a.e. on R, fn has smooth integral on R and f

has positive lower bound a.e. on R then f has smooth integral on R.

Remark 36
√

1 − t2 ∈ H0.5([−1, 1]) so
√

1 − x2B(x) ∈ H0.5([−1, 1]) by the

Plemelj-Privalov Theorem ([21], §19). As a consequence, vc(x) and hc(x) ex-

ist for any x ∈ [−1, 1] \ {c}.

The following definitions and facts are well known in logarithmic potential

theory (see [24] and [25]). We have disscussed them in section 1.2, but now we

will also consider weights which are not “admissible”.

Let w(x) 6≡ 0 be a non-negative continuous function on R̄ such that

lim
x→∞

|x|w(x) = α ∈ [0, +∞) exists . (101)

When α = 0, then w belongs to the class of so called “admissible” weights.

We write w(x) = exp(−q(x)) and call q(x) external field. If µ is a positive

Borel unit measure on R̄ - in short a “probability measure”, then its weighted

66



energy is defined by

Iw(µ) :=

∫ ∫
log

1

|x − y|w(x)w(y)
dµ(x)dµ(y).

The integrand is bounded from below ([25], pp. 3), so Iw(µ) is well defined and

−∞ < Iw(µ). We remark that we did not assume that µ has compact support.

Whenever it makes sense, we define the (unweighted) logarithmic energy of µ as

I1(µ) where 1 denotes the constant 1 function. There exists a unique probability

measure µw - called the equilibrium measure associated with w - which minimizes

Iw(µ). Also,

Vw := Iw(µw) is finite,

and µw has finite logarithmic energy when α = 0.

If the support of µ is compact, we define its potential as

Uµ(x) :=

∫
log

1

|t − x|dµ(t).

This definition makes sense for a signed measure ν, too, if
∫ ∣∣∣ log |t − x|

∣∣∣d|ν|(t)

exists.

Let

Sw := supp(µw) denote the support of µw.

When α = 0, then Sw is a compact subset of R. In this case with some Fw

constant we have

Uµw + q(x) = Fw, x ∈ Sw.
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4.2 Lemmas

We will need Lemma 22 of [3]. We formulate it as follows:

Lemma 37 Let A < B < 1, f ∈ L1[A, 1] and f ∈ H1[A, (B + 1)/2]. Define

v∗(x) :=
∫ 1

c
f(t)/(t − x)dt, where c ∈ [A, B] and x < c. Then

v∗(x) = (f(c) + o(1)) log
1

c − x
, as x → c−.

Here o(1) depends on c − x only.

Lemma 38 Let −1 < a < b < 1 and 0 < ι be fixed. Let 0 < ε < 1/10 and

δ :=
√

ε − 2ε. Then for x1, x2 ∈ [a, b] ∩ (c − δ, c + δ)c, |x1 − x2| ≤ ε, all the

quotients

vc(x1)
+
ι

vc(x2)+
ι

,
vc(x1)

−
ι

vc(x2)−ι
,

hc(x1)
+
ι

hc(x2)+
ι

,
hc(x1)

−
ι

hc(x2)−ι

equal to 1 + o(1) as ε → 0+. Here the o(1) term is independent of x1, x2 and c.

Proof. First we consider the case when x1, x2 ≤ c− δ. Note that for x1 > x2 we

have 1/(t − x2) < 1/(t − x1), t ∈ [c, 1], whereas for x1 ≤ x2 we have

1

t − x2
≤

(
1 +

x2 − x1

c − x2

) 1

t − x1
= (1 + o(1))

1

t − x1
, t ∈ [c, 1].

Multiplying these inequalities by
√

1 − t2/π2 and integrating on [c, 1] we gain

hc(x2)

hc(x1)
= 1 + o(1), (102)
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where
√

1 − x2
2/

√
1 − x2

1 = 1 + o(1) was also used. By the same argument, if

x1, x2 ≥ c + δ, we have vc(x2)/vc(x1) = 1 + o(1), from which

vc(x2)
+
ι

vc(x1)+
ι

= 1 + o(1). (103)

Returning to the case of x1, x2 ≤ c−δ, from vc(x) = hc(x)+B(x), from (102)

and from B(x2) = B(x1) + o(1) we get

|vc(x2) − vc(x1)| = |o(1)|(1 + |vc(x1) − B(x1)|)

≤ |o(1)|(|vc(x1)| + 1 + ||B||[a,b]). (104)

Assuming |vc(x1)| ≤ 1, we have

|vc(x2)
+
ι − vc(x1)

+
ι | ≤ |vc(x2) − vc(x1)| ≤ |o(1)|,

so (103) holds again. Finally, if |vc(x1)| ≥ 1, then from (104)

∣∣∣vc(x2)

vc(x1)
− 1

∣∣∣ = |o(1)|
(
1 +

1 + ||B||[a,b]

|vc(x1)|
)

= |o(1)|,

from which (103) again easily follows.

The proof of the rest of our lemma is similar.

Lemma 39 Let −1 < a < b < 1 and 0 < ι be fixed. Then the family of functions

F+ := {vc(x)+
ι : c ∈ [−1, 1]} and F− := {vc(x)−ι : c ∈ [−1, 1]} have uniformly

smooth integrals on [a, b].
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Proof. We consider F+ only (F− can be handled similarly). Let c ∈ [−1, 1]. Let

I := [u−ε, u], J := [u, u+ε] be two adjacent intervals of [a, b], where 0 < ε < 1/10.

We have to show that

∫
I
vc(t)

+
ι dt∫

J
vc(t)+

ι dt
= 1 + o(1), as ε → 0+,

where o(1) is independent of I, J and c. Let 0 < ε < 1/10 and let δ :=
√

ε−2ε (>

ε).

Case 1: Assume I ∪ J ⊂ (c − δ, c + δ)c. From Lemma 38 we have vc(t)
+
ι =

(1 + o(1))vc(t + ε)+
ι , t ∈ I. Thus

∫
I
vc(t)

+
ι dt = (1 + o(1))

∫
J
vc(t)

+
ι dt.

Case 2: Assume (I ∪ J) ∩ (c − δ, c + δ) 6= ∅. So I ∪ J ⊂ [c −√
ε, c +

√
ε]. Let

ε be so small that c ∈ [(a − 1)/2, (b + 1)/2]. (This can be done because of our

assumption of Case 2.)

Let f(t) :=
√

1 − t2/π2. Applying Lemma 37 (with A := (a − 1)/2, B :=

(b + 1)/2) we have
√

1 − x2hc(x) = (f(c) + o(1))(− log |c− x|) for x ∈ [c−√
ε, c)

as ε → 0+, which easily leads to

hc(x) = (
f(c)√
1 − c2

+ o(1))(− log |c − x|) for x ∈ [c − √
ε, c) as ε → 0+.

From here using hc(x) = vc(x) − B(x) we get

vc(x) = (
f(c)√
1 − c2

+ o(1))(− log |c − x|) for x ∈ [c − √
ε, c) as ε → 0+. (105)

Clearly, (105) also holds for x ∈ (c, c+
√

ε] (which can be seen by stating Lemma

37 for −1 < A < B instead of A < B < 1).

f(x) has a positive lower bound on [(a − 1)/2, (b + 1)/2]. So we can choose ε

so small that the right hand side of (105) is at least ι for all possible values of c
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and x. Hence vc(x) = vc(x)+
ι and

∫
I
vc(t)

+
ι dt∫

J
vc(t)+

ι dt
=

( f(c)√
1−c2

+ o(1))
∫

I
log 1

|c−t|dt

( f(c)√
1−c2

+ o(1))
∫

J
log 1

|c−t|dt
= (1 + o(1))2 = 1 + o(1),

where we used that log(1/|x|) has smooth integral on [−1/2, 1/2] ([3], Proposition

20).

Lemma 40 Let F (x) = G(x) − H(x), where F (x), G(x), H(x) are a.e. non-

negative functions defined on an interval, G(x) and H(x) have smooth integrals

and H(x) ≤ (1 − η)G(x) a.e. with some η ∈ (0, 1). Then F (x) has smooth

integral.

Proof. Let I and J be two adjacent intervals of equal lengths ε, where ε is “small

enough”. Let a :=
∫

I
G, A :=

∫
J
G, b :=

∫
I
H, B :=

∫
J
H. By assumption

A = (1 + o(1))a and B = (1 + o(1))b, as ε → 0+ (106)

and we have to show that A − B = (1 + o(1))(a − b).

We may assume that a − b 6= 0, otherwise F (x) = 0 a.e. on I which implies

a = b = 0 and so A = B = 0.

Integrating H ≤ (1 − η)G on I we get b ≤ (1 − η)a, from which (a + b)/

(a − b) ≤ (1 + (1 − η))/(1 − (1 − η)). Thus, from (106)

|(A − a) − (B − b)| ≤ |o(1)|(a + b) ≤ |o(1)|(a − b).
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Lemma 41 Let N(x) be a right-continuous function on [−1, 1] which is of bounded

variation. Let f(x) ∈ L1([−1, 1]) be non-negative. Then

PV

∫ 1

−1

f(t)N(t)

t − x
dt = −N(1)f1(x) +

∫

(−1,1]

ft(x)dN(t), a.e. x ∈ [−1, 1], (107)

where the integral on the right hand side is a Lebesgue-Stieltjes integral and

fc(x) := −PV

∫ c

−1

f(t)

t − x
dt, a.e. x ∈ [−1, 1].

Proof. First let us assume that N(x) is a bounded, increasing, right continuous

function.

Let us denote the left hand side of (107) by F (x). Since f(x) and f(x)N(x)

are in L1[−1, 1] and N(x) is of bounded variation, there is a set of full measure

in (−1, 1) where f1(x), F (x) and N ′(x) all exist. Let x be chosen from this set.

It follows that fc(x) exist for all c ∈ [−1, 1] \ {x}. Also,

F (x) = lim
ε→0+

( ∫ x−ε

−1

f(t)N(t)

t − x
dt +

∫ 1

x+ε

f(t)N(t)

t − x
dt

)
. (108)

t → ft(x) is an absolute continuous increasing function inside [−1, x) and it is

an absolute continuous decreasing function inside (x, 1] so at (108) we can use

integration by parts to get

∫ x−ε

−1

+

∫ 1

x+ε

= −fx−ε(x)N(x − ε) + f−1(x)N(−1) +

∫

(−1,x−ε]

ft(x)dN(t)

+fx+ε(x)N(x + ε) − f1(x)N(1) +

∫

(x+ε,1]

ft(x)dN(t)
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But above f−1(x) = 0 and

fx+ε(x)N(x + ε) − fx−ε(x)N(x − ε)

= [fx+ε(x) − fx−ε(x)]N(x + ε) + fx−ε(x)[N(x + ε) − N(x − ε)]. (109)

Note that

fx+ε(x) − fx−ε(x) = −PV

∫ x+ε

x−ε

f(t)

t − x
dt → 0 as ε → 0+,

since f1(x) exists.

We claim that εfx−ε(x) → 0 (and so the second term in (109) also tends to 0

since N is differentiable at x). In other words we claim that

lim
ε→0+

ε

∫ 1

ε

g(t)

t
dt → 0

for any integrable non-negative g(t) function. Integration by parts easily yields

to

lim
ε→0+

ε

∫ 1

ε

g(t)

t
dt = lim

ε→0+
ε

∫ 1

ε

∫ t

0
g(u)du

t2
dt

= lim
ε→0+

(
ε

∫ ρ

ε

)
+ lim

ε→0+

(
ε

∫ 1

ρ

)
≤

∫ ρ

0

g(u)du + lim
ε→0+

(
ε

∫ 1

ρ

)
,

where ρ was chosen such that
∫ ρ

0
g(u)du is small. And this verifies our claim.
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Putting these together, we get that on one hand,

lim
ε→0+

( ∫

(−1,x−ε]

ft(x)dN(t) +

∫

(x+ε,1]

ft(x)dN(t)
)

(110)

exists and equals to F (x) + f1(x)N(1), and on the other hand, (110) equals to

∫

(−1,1]\{x}
ft(x)dN(t) =

∫

(−1,1]

ft(x)dN(t) (111)

by the monotone convergence theorem (which can be used since c → fc(x) is

bounded from below on [−1, 1] since f1(x) is finite). The the continuity of N at

x allowed us to integrate on the whole (−1, 1] at (111). Thus (107) is proved.

Now let N(x) be a right-continuous function on [−1, 1] which is of bounded

variation. Then there exist N1(t), N2(t) bounded increasing right continuous func-

tions such that N(t) = N1(t) − N2(t), t ∈ [−1, 1]. Almost everywhere in [−1, 1]

the left handside of (107) is finite and (107) holds. This is also true for N2(x).

Therefore (107) is true for for N(x).

Definition 42 We say that a function g(x) has bounded variation almost every-

where inside a set E ⊂ R if for every compact set F ⊂ E there exists G ⊂ F

such that F \ G has measure zero and g(x) has bounded variation on G.

Lemma 43 Let w be an admissible weight which is absolutely continuous inside

R. Let the interval [a0, b0] be a subset of the support Sw. If q′(x) has bounded

variation a.e. inside (a0, b0) and the extremal measure has a density V on [a0, b0]

that has positive lower bound inside (a0, b0) then (a0, b0) ∩ Z(w) = ∅.

Proof. Clearly, it is enough to prove that (a, b)∩Z(w) = ∅ for any [a, b] ⊂ (a0, b0)

subinterval. So let [a, b] ⊂ (a0, b0). Let us replace (a0, b0) by a slightly smaller
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open subinterval which still contains [a, b]. This way we achieve that q ′(x) has

bounded variation a.e. on [a0, b0]. By Theorem 6 of Totik it is enough to show

that V has smooth integral on [a, b].

First we remark that the equilibrium measure µw is absolute continuous with

respect to the Lebesgue measure and V (t) := dµw(t)/dt is in Lp inside (a0, b0) for

any 1 < p < ∞. These follows from Theorem IV.2.2 of [24], since w is absolute

continuous on [a, b] and w′(x) = −w(x)q′(x) is in Lp([a, b]).

Now we need the concept of the balayage measure. Let ν be a measure on the

real line and K be an interval. There is a unique measure ν supported on K such

that the total mass of ν equals the total mass of ν and for some constant d we

have Uν(x) = Uν(x) + d for every x ∈ K. ν is called the balayage of ν onto K.

Actually, the balayage process moves (sweeps) only the part of ν lying outside

K, i.e.,

ν = ν|K + ν|R\K . (112)

For the second measure on the right there is a closed form (see [24], formula

II.4.47), which shows that by taking balayage onto K, we add to the portion of ν

lying in K a measure with a continuous density.

The relevance of the balayage to extremal fields is explained by the following:

if K ⊂ Sw is a closed interval and w1 is the restriction of w onto K (i.e., the

weight w1 is considered on K), then the equilibrium measure µw1
associated with

w1 is the balayage of µw onto K. (See [24], Theorem IV.1.6(e)).

Let us restrict w to [a0, b0]. Based on what we said about the balayage and

smooth integral, it is enough to prove that the equilibrium measure associated

with this restricted weight function has a density V1 which has smooth integral

on [a, b]. Indeed, by (112), V = V1 − V2, where 0 ≤ V2 is continuous and V has a
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positive lower bound on [a, b], so if V1 has smooth integral on [a, b], so does v.

Therefore from now on we will assume that w is defined on [a0, b0], i.e., Σ =

[a0, b0]. We will continue to use v for the density of the equilibrium measure

associated with this restricted w. This has positive lower bound on [a0, b0], too.

Also, from now on w denotes the restricted weight. Furthermore, because of the

balayage process, the new support Sw is the interval [a0, b0] (so V is defined on

[a0, b0]).

For x 6∈ (a0, b0) let V0(x) := 0, and for a.e. x ∈ (a0, b0) let

V0(x) :=
PV

∫ b0
a0

√
(t−a0)(b0−t)q′(t)

t−x
dt

π2
√

(x − a0)(b0 − x)
+

1

π
√

(x − a0)(b0 − x)
. (113)

We now show that this is the density of µw, that is, V (x) = V0(x) a.e. x ∈ [a0, b0].

The integral at (113) is the Hilbert transform on R of the function defined

as
√

(t − a0)(b0 − t)q′(t) on (a0, b0) and 0 elsewhere. This function is in Lp(R),

so by the M. Riesz’ Theorem the integral is also in Lp(R) hence V0(x) exists for

a.e. x ∈ [a0, b0]. Moreover, by the Hölder inequality (1/a + 1/b = 1/c implies

||fg||c ≤ ||f ||a||g||b) we see that V0 ∈ L1.9(R), so V0 ∈ L1(R), too.

By the proof of Lemma 16 of [3], the function V0 satisfies
∫

V0(x)dx = 1 and

∫ b0

a0

log |t − x|V0(t)dt = q(x) + C, x ∈ (a0, b0). (114)

The left hand side is well defined since by the Hölder inequlaity

x 7→
∫ b0

a0

∣∣∣ log |t − x|
∣∣∣|V0(t)|dt is uniformly bounded on [a0, b0]. (115)

Consider the unit signed measure µ defined by dµ(x) := V0(x)dx. By (114)

Uµ(x) + q(x) = −C, x ∈ (a0, b0). From this and from Uµw(x) + q(x) = Fw,
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x ∈ [a0, b0], we get Uµ(x) = Uµw(x), x ∈ (a0, b0). But (115) shows that Uµ+

(x)

and Uµ−

(x) are finite for all x ∈ [a0, b0]. So Uµ+

(x) = Uµw+µ−

(x), x ∈ (a0, b0).

Here µ+ and µw + µ− are positive measures which have the same mass. µw, µ−

(and µ+) all have finite logarithmic energy (see (115)), hence µw +µ− has it, too.

Applying Theorem II.3.2. of [24] we get Uµ+

(z) = Uµw+µ−

(z) for all z ∈ C. By

the unicity theorem ( [24], Theorem II.2.1. ) µ+ = µw + µ−. Hence µ = µw, that

is, V (x) = V0(x) a.e. x ∈ [a0, b0].

To keep the notations simple we will assume that −1 < a < b < 1, and

a0 = −1, b0 = 1, that is, the support of µw is [−1, 1]. This can be done without

loss of generality. Let E ⊂ [−1, 1] denote the set of full measure where q ′(x)

exists and has bounded variation on E. For t ∈ [−1, 1] define

v(t) :=

√
1 − t2

π2
√

1 − x2
and M(t) := lim

s→t+, s∈E
q′(s),

where v(t) also depends on the choice of x. Clearly, M(t) = q ′(t) a.e., M(t)

has bounded variation on [−1, 1] and it is right continuous. It is known that

there exist M1(t), M2(t) bounded increasing right continuous functions such that

M(t) = M1(t) − M2(t), t ∈ [−1, 1].

Applying Lemma 41 for f(t) := v(t) and N(t) := M(t), let us fix an x ∈ [a, b]

value for which both (107) and dµw(x) = V (x)dx are satisfied. (These are satisfied

almost everywhere.) From (113) and Lemma 41 we have

V (x) =
1

π
√

1 − x2
+ PV

∫ 1

−1

√
1 − t2q′(t)

π2
√

1 − x2(t − x)
dt

=
1

π
√

1 − x2
+ PV

∫ 1

−1

v(t)M(t)

t − x
dt = L(x) +

∫

(−1,1]

vt(x)dM(t),
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where L(x) := 1/(π
√

1 − x2) − M(1)B(x).

Let 0 < ι. Since L(x) is a continuous function on [a, b] (see Remark 36), L(x)+
ι

and L(x)−ι have smooth integrals on [a, b]. Also, by Lemma 39 F+ and F− have

uniformly smooth integrals on [a, b], so all

∫

(−1,1]

vt(x)+
ι dM1(t),

∫

(−1,1]

vt(x)−ι dM1(t),

∫

(−1,1]

vt(x)+
ι dM2(t),

∫

(−1,1]

vt(x)−ι dM2(t)

have smooth integral on [a, b]. Therefore

V (x)
(+)
(ι) := L(x)+

ι +

∫

(−1,1]

vt(x)+
ι dM1(t) +

∫

(−1,1]

vt(x)−ι dM2(t) and

V (x)
(−)
(ι) := L(x)−ι +

∫

(−1,1]

vt(x)−ι dM1(t) +

∫

(−1,1]

vt(x)+
ι dM2(t)

have smooth integrals on [a, b]. (These new functions are not to be mixed with

V (x)−ι and V (x)−ι .)

Set

V (x)(ι) := V (x)
(+)
(ι) − V (x)

(−)
(ι) .

Then, using |z+
ι − z−ι − z| ≤ ι, z ∈ R, we get

|V (x)(ι) − V (x)| ≤ |L(x)+
ι − L(x)−ι − L(x)|
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+

∫

(−1,1]

|vt(x)+
ι − vt(x)−ι − vt(x)|dM1(t) +

∫

(−1,1]

|vt(x)+
ι − vt(x)−ι − vt(x)|dM2(t)

≤ ι +

∫

(−1,1]

ιdM1(t) +

∫

(−1,1]

ιdM2(t)

= ι(1 + M1(1) − M1(−1) + M2(1) − M2(−1)). (116)

So

V (x)(ι) → V (x) uniformly a.e. on [a, b] as ι → 0+. (117)

And since

V (x) has positive lower bound a.e. on [a, b], (118)

V (x)(ι) has also positive lower bound a.e. on [a, b], assuming ι is small enough. In

addition, vt(x) ≥ 0 when t ∈ [0, x], whereas vt(x) ≥ B(x) ≥ −||B||[a,b] when t ∈

(x, 1], so V (x)
(−)
(ι) is bounded a.e. on [a, b]. It follows that V (x)

(−)
(ι) ≤ (1−η)V (x)

(+)
(ι)

a.e. x ∈ [a, b] for some η ∈ (0, 1).

Applying Lemma 40 we conclude that V (x)(ι) has smooth integral on [a, b] (if

ι is small enough). Therefore V (x) has smooth integral by (117) and (118).

4.3 Solution of the Approximation Problem

Now we will prove our main theorem.

Theorem 44 Let w be a continuous admissible weight on R. Suppose that q is

weak convex on [A, B] with finite basepoints A, B satisfying Sw ⊂ (A, B). Then
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Z(w) = (int Sw)c. Thus a continuous function f(x) can be uniformly approxi-

mated by weighted polynomials wnPn if and only if f(x) vanishes outside Sw.

Proof. By Theorem 25 Sw =: [a0, b0] is an interval. Let v(x), x ∈ [a0, b0] denote

the density of µw (we have already seen that it exists). Let [a, b] ⊂ (a0, b0) be

arbitrary. We will show that v(x) has positive lower bound and bounded variation

a.e. on [a, b]. Once we did that we are done by Lemma 43.

By assumption [a, b] can be written as the disjoint union of finitely many

intervals I1, ..., In such that for any interval Ik (1 ≤ k ≤ n):

exp(q(x))q′(x) is increasing on Ik, or (119)

(x − A)(B − x)q′(x) + x is increasing on Ik. (120)

Let E ⊂ [a0, b0] be the set where we require the increasing property of exp(q(x))q ′(x)

or (x − A)(B − x)q′(x) + x. (Recall that [a0, b0] \ E has measure zero.) Let

x0 ∈ [a, b]. Because of the increasing properties we required, we have

lim inf
x→x0, x∈E

|q′(x)| < ∞, lim sup
x→x0, x∈E

|q′(x)| < ∞

which are still valid when x0 is an endpoint of an Ik interval, because of (8).

It follows that both exp(q(x))q′(x) and (x−A)(B−x)q′(x)+x are of bounded

variation a.e. on those Ik intervals where they are assumed to be increasing. Since

q is absolutely continuous on [a, b], exp(−q(x)) has bounded variation there. And

[(x−A)(B − x)]−1 has also bounded variation on [a, b]. The sum and product of

two functions of bounded variation is again of bounded variation. Thus q ′(x) has

bounded variation a.e. on [a, b].
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Next, we show that the density v(x), x ∈ [−1, 1] of the equilibrium measure

corresponding to w = exp(−q) has positive lower bound on [a, b].

Let 1 < λ. Define

qλ(x) := λq(x) + (λ − 1) log
1

x − A
, x ∈ [a0, b0],

and qλ(x) := +∞ for x 6∈ [a0, b0]. Then wλ := exp(−qλ) is an admissible weight

on R, and Swλ
⊂ [a0, b0]. In fact, wλ may be viewed as a continuous weight on

Σ := [a0, b0]. We claim that Swλ
is an interval. For this purpose we will now show

that on any Ik:

a) (x − A)(B − x)q′λ(x) + x is increasing if

(x − A)(B − x)q′(x) + x is increasing,

b) exp(qλ(x)) is convex if exp(q(x)) is convex.

Note that (x− A)(B − x)q′λ(x) + x = λ[(x− A)(B − x)q′(x) + x] − (λ− 1)B,

so a) is proved.

To prove b) we claim that if a non-negative function g(x) is convex on a

subinterval of [0, +∞) then g(x)λx1−λ is also convex there. Indeed, let 0 ≤

α, β, α + β = 1, otherwise arbitrary. For the convexity we need to prove

αg(a)λa1−λ + βg(b)λb1−λ ≥ g(αa + βb)λ(αa + βb)1−λ.

81



It is enough to prove that

αaAλ + βbBλ ≥ (αaA + βbB)λ(αa + βb)1−λ, (121)

where we introduced A := g(a)/a, B := g(b)/b and used g(αa + βb) ≤ αg(a) +

βg(b) = αaA + βbB. But (121) is equivalent to

(αaAλ + βbBλ

αa + βb

)1/λ

≥ αaA + βbB

αa + βb
,

which inequality holds, since 1 < λ and both sides are a weighted average of A

and B.

Now assume that exp(q) is convex on an interval Ik ⊂ [a, b]. Since g(x) :=

exp(q(x + A)) is convex on the shifted Ik − A ⊂ [0,∞) interval, we have that

g(x)λx1−λ = exp(λq(x + A) + (λ − 1) log(1/x)) = exp(qλ(x + A)) is also convex

there, so b) is proved.

So by a), b) and Theorem 25, Swλ
⊂ [a0, b0] is an interval. Let δA denote

the unit point mass measure at A, and let δ̂A denote the balayage of δA onto

[a0, b0]. Recall that δ̂A is a positive unit measure and it has the property that

U δ̂A(x) = U δA(x) + c, x ∈ [a0, b0].

We show that

µw

∣∣∣
Swλ

≥ 1

λ
µwλ

+
(
1 − 1

λ

)
δ̂A

∣∣∣
Swλ

. (122)

We know that with some constant F :

Uµwλ (x) + qλ(x) ≥ F q.e. on [a0, b0],

Uµwλ (x) + qλ(x) = F q.e. on Swλ
.
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that is,

Uµwλ (x) + (λ − 1)U δ̂A(x) + λq(x) ≥ F + (λ − 1)c q.e. on [a0, b0],

Uµwλ (x) + (λ − 1)U δ̂A(x) + λq(x) = F + (λ − 1)c q.e. on Swλ
.

Hence

Uσ(x) + q(x) ≥ F + (λ − 1)c

λ
q.e. on [a0, b0],

Uσ(x) + q(x) =
F + (λ − 1)c

λ
q.e. on Swλ

,

where the σ positive unit measure is given by

σ :=
1

λ
µwλ

+
(
1 − 1

λ

)
δ̂A.

We also know that

Uµw(x) + q(x) = const. q.e. on [a0, b0].

Since q is finite on [a0, b0], we gain

Uσ(x) ≥ Uµw(x) + const. q.e. on [a0, b0], (123)

hence this also holds µw-everywhere (because µw has finite logarithmic energy).

By the principle of domination (Theorem II.3.2 of [24]) (123) also holds for all

x ∈ C. Equality holds for q.e. x ∈ Swλ
.

Let Ω be a bounded domain containing Swλ
. The measure µwλ

has finite

logarithmic energy. δ̂A has also finite logarithmic energy because U δ̂A(z) ≤
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U δA(z) + const., z ∈ C (Theorem II.4.4, [24]), and U δA(z) is bounded on [a0, b0].

So if a set E ⊂ Swλ
has zero capacity then σ(E) = 0, too. So applying Theorem

IV.4.5 ([24]), we see that (122) holds on the full Swλ
. But the density of δ̂A has

positive lower bound on [a0, b0] (see our remark at (112)). Consequently, v(x) has

positive lower bound on Swλ
.

Let us prove that Swλ
⊃ [a, b], if λ is close to 1. Let x0 ∈ (a0, a) =: B0,

x1 ∈ (b, b0) =: B1. Since x0 ∈ Sw, it is known that there exists an n and a

weighted polynomial wn(x)Pn(x), x ∈ [a0, b0] which attains its maximum value

in B0 and nowhere else on [a0, b0] \ B0. Note that

wλ(x)nPn(x) = w(x)λn(x − A)(λ−1)nPn(x), x ∈ [a0, b0],

so wλ(x)n|Pn(x)| uniformly approaches to w(x)n|Pn(x)| on [a0, b0] as λ → 1+. So

there exists 1 < λ0 such that wλ(x)n|Pn(x)|, x ∈ [a0, b0] also attains its maximum

in B0 when λ ∈ (1, λ0). Therefore, by a well known property of weighted poly-

nomials, Swλ
∩B0 6= ∅ for any λ ∈ (1, λ0). By the same logic, there exists 1 < λ1

such that Swλ
∩ B1 6= ∅ for any λ ∈ (1, λ1). But Swλ

is an interval. It follows

that Swλ
⊃ [a, b] when λ ∈ (1, min(λ0, λ1)). Thus v(x) has positive lower bound

on [a, b].
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