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C h a p t e r 1 

In t roduct ion 
The theory of functional differential equations deals with differential equations 

where the right hand sides depend on delayed arguments of the unknown function. 
The first examples appeared about 200 years ago and were related to geometric 
problems. The interest in the field grew rapidly in the second half of the 20th 
century. The books of Myshkis [64], Bellman and Cooke [9], Krasovskii [33], Hale 
[23], Hale and Lunel [24], Dieckmann [14] greatly influenced the developments. 
Today new applications [13,29,50,51,52,54,55,58,73] also continue to arise and the 
involved interesting mathematical problems require modifications and further de-
velpoments of the theory. 

Over the past several years it has become apparent that there is a need for a the-
ory of equations containing delays that are functions of the state of the system be-
cause such equations appear in applications. For example retarded equations with 
state-dependent delay are of interest in classical electrodynamics [15,16,17,18,20], 
in population models [7], in models of blood cell production [56] and of commodity 
price fluctuation [8]. 

A simple model taken from [11] is as follows: An object moves along a line, 
x(t) denotes its position at time t. A base located at x — —w < 0 controls the 
position of the object. We assume that the base has instantaneous information 
on the location of the object, i.e., on x(i), moreover signals controlling the object 
travel from the base to the object at a speed c > 0. In addition, we suppose 
that x(t) > —w for all t, i.e., the object does not collide with the base. For the 
base it takes a unit amount of time to produce the control signal for the object. 
Therefore, the signal which reaches the object at time t was sent by the base at 
the time t — 1 — x{t) + w). This leads to the equation 

x(t) = -fix (t) + g \ x \ t - l - — ~ — 

with positive parameters /r, w, c and a response function g : M —• R. The 
term —g,x(t) represents an instantaneous damping. Positive (negative) feedback 
with respect to the preferred position at 0 £ 1 is expressed by the condition 
ug{u) > 0 (< 0) for all u ^ 0. More complicated delay functions for related con-
trol problems are obtained in [71,72]. 
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Let h > 0. The function 

g : C([-h, -1 - - - ^ G R 

is in general not smooth enough in order to define well-posed initial value prob-
lems for the above equation on all of an open subset of C([—h, 0], R). This means 
that the basic tools of dynamical systems theory, like linearization and local in-
variant manifolds, cannot be applied in a straightforward way. A reason for lack 
of differentiability of g is that the evaluation map 

is not Lipschitz continuous. This is the main source of difficulties of the study of 
differential equations with state-dependent delay. 

Equations with state-dependent delay in the derivative, that is the state-
dependent neutral equations are also used in applications [17,19], though we still 
do not have a general theory for such equations. For some interesting results 
related to state-dependent neutral equations we refer to [25,26]. 

In this work we prove results for two different classes of functional differential 
equations with state-dependent delay contained in [4,5,6]. 

In Chapter 2 we consider a class of neutral differential equations with state-
dependent delay. Using the parameters of the equation conditions are given for 
the stability, asymptotic stability and attractivity of the zero solution. 

In Chapter 3 a monotone semiflow is constructed for a class of differential 
equations with state-dependent delay, and it is proved that the cu-limit set of all 
points from an open dense subset of the phase space is an equilibrium point. 

In Chapter 4 for the class of differential equations considered in the previous 
chapter, we show the existence of a nontrivial periodic orbit and a homoclinic orbit 
connecting 0 to the periodic orbit. 

Now let us review the problems studied and the results obtained in every 
chapter. 

In Chapter 2 we consider the nonlinear one-dimensional neutral differential 
equation with state-dependent delay 

For given A0 > 0, let C = C([-A0,0],R). For given t0 G R+, u G R+, 
y G C([t0 - X0,t0 +w],R) and t G [t0,t0+u], yt G C is defined by yt[r) = y(t+r), 

C x [ - M ] 3 (<t>,s) 0(s) G R 

( 1 ) dt 

2 



for all r € [—A0,0]. Suppose that p G R, q G C(R+,R), r G C(R+ x C,R), 
s G C(R+ x C, R), and there exist r0 , s0 G [0,Ao] such that r (R + x C) C [0,r0] 
and s(R+ x C) C [0,s0]-

We mention that it is not easy to prove stability results for neutral differential 
equations with state-dependent delay since even the basic questions such as the 
existence, uniqueness and continuous dependence of solutions are still not clarified. 
The stability for (non-neutral) retarded differential equations is well developed. A 
classical exemple is the linear equation 

x(t) = —a(t)x(t — r(t)), 

where a and q > 0 are positive constants and a : R + —> [0, a], r : R+ —> [0, q] 
are continuous functions. In case aq < § the zero solution is uniformly stable 
and | is the best possible constant ([64,78,49]). The number § also arises as an 
upper bound in stability conditions for nonlinear and nonautonomous equations 
[78,31,32]. For equations with more delay or distributed delay Krisztin [34,35] has 
proved an interesting result which we will use in Section 2.2 to obtain stability 
results for Eq. (1). 

It is known that in certain cases neutral differential equations are equivalent 
to retarded differential equations with infinite delay [70]. This method is used 
in [2,21,22,43,44,45,74,75] to study stability problems for neutral equations. Our 
purpose in Section 2.2 is not to transform Eq. (1) to a single retarded equation 
with infinite delay. Such a transform may not exist here. For each fixed solution 
of Eq. (1) we associate a retarded equation with infinite delay, and then use the 
results in [34,77,78] to obtain stability conditions for Eq. (1). The main results of 
Section 2.2 are the following. 

Theorem 2.2.2. Assume that 0 < p < 1 and there exists qo G R+ so that 
0 < q(t) < q0 for all t > 0. Let K = {k G N : s0 + kr0 < 
(i) If the condition 

.2 
qoso . qo iop y0 u \2 fc^o/o 
T — + 71 72 + VI 7 2 s ( s ° ~ k r ° l p -
1 - p (1 -vY 2(1 - p) qo 

holds and x : [io — Ao, oo) —» R with to G R+ is a solution of Eq. (1), then 

IM <11*10 II Y^C573 for all t> to. 
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(¡1) If 

1-P ( 1 -PY 2 ( 1 - p ) ^ K qo 

and lim inf^oo q(t) > 0 are satisfied, then the zero solution of Eq. (1) is asymp-
totically stable. 

Theorem 2.2.3. Assume that 0 < p < 1 and there exists qo G R + so that 
0 < q(t) < qo for all t > 0. 

(i) If the condition 
Qo so qprpp 
1-P ( 1 - P ) 2 -

holds and x : [to — Ao, oo) —> R with to G R+ is a solution of Eq. (1), then 

IW| < \\xt0\\\^e5/2 for all t> t0. 

(ii) If 
Qo so qprpp 
l - p + ( 1 - p ) » 

and lim inf^oo q(t) > 0 are satisfied, then the zero solution of Eq. (1) is asymp-
totically stable. 

In Section 2.3 we show the attractivity of the zero solution of Eq. (1) by 
extending results of Wu and Yu [76], given for neutral equations with constant 
delay to neutral equation with state-dependent delay. 

The main result of Section 2.3 is the following. 

Theorem 2.3.3. Assume that \p\ < 1, q(t) > 0 for all sufficiently large t G R, 

q(r) dr — oo, I J to 
f t 3 

2|p|(2 - \p\) + lim sup / q{r) dr < -
t-»oo Jt-S 0 Z 

and 
(2) 

for all y G C([—Ao, oo), R), the function [0, oo) 3 t t — s(t, yt) G R is increasing. 

Then every solution of Eq. (1) converges to zero as t —» oo. 

Note that condition (2) also plays an important role in nonneutral equations 
with state-dependent delay [60,39]. There is a wide class of applications where 
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s(t, yt) is defined by a threshold, that is, 

f , k(y(r)) dr — ko, 
Jt - s(t, yt) 

where k(t) is a positive continuous function and ko is a positive real number. In 
this case condition (2) holds. 

We mention that Theorem 2.3.3 can be extended to the equation 

jt [x{t) - px(t - r(t, xt))] = f(t, xt) 

with appropriate conditions on / . The extension requires standard techniques. 
In Chapter 3 we prove a result for monotone dynamical systems which is apli-

cable for the differential equation with state-dependent delay 

(3) x(t) = -nx(t) + f(x(t-r)), r = r(x(t)), 

where p > 0, / and r are smooth real functions with /(0) = 0 and f > 0. 
The theory of monotone dynamical systems was developed by Hirsch in 1980's. 

The infinite dimensional theory of monotone systems has been heavily influenced 
by the results of Matano, Smith and Thieme [66-69]. These results have a good 
applicability for ordinary differential equations and also for differential equations 
with constant delay. 

First let us consider Eq. (3) in the case r = constant. Eq. (3) generates a 
semiflow T on the phase space C([—r, 0],R). We introduce a closed partial order 
relation on C([—r, 0], R) in the following way: (ft < ift whenever <ft(s) < ift(s) for all 
s £ [—/?,, 0], (ft < ift whenever (ft < ift and (ft / ift, and (ft <C ift whenever (ft(s) 
for all s G [—i?,0]. The condition f > 0 guarantees that T is monotone, that is, 
for every (ft, ift in C([-r , 0],R) with (ft < ift, F{t,(ft) < F{t,ift) holds for all t > 0. 
It is also true that T is strongly order preserving (SOP), that is, T is monotone, 
and for every (ft, ift in C([—r,0],R) with (ft < ift, there exist io > 0 and open 
subsets U, V of C([-r , 0], R) with (ft G U and ift e V such that T{tQ,U) < f(to, V). 
Then applying a result of Smith and Thieme [65,68,69], we conclude that for all 
elements (ft from an open dense subset of C([—r, 0],R) the cu-limit set u{(ft) of (ft is 
an equilibrium point. 

We remark that analogous results were obtained by Smith and Thieme in 
[66,67] for non-quasi-monotone functional differential equations, that is, under a 
weaker condition than / ' > 0. 
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In the case r = r(x(t)) the situation becomes more difficult, because it is not 
obvious how to choose the phase space. The questions about existence, uniqueness, 
and continuous dependence of solutions of Eq. (3) are also not standard, see, e.g., 
[62]. In Section 3.2 we show that for suitable R > 0 and A > 0, the solution of Eq. 
(3) defines a semiflow F on the metric space X containing Lipschitz continuous 
functions mapping [—R, 0] into [—A, A] with metric d(<f>, ip) = snp_R<3<0 |$(s) — 
•0(s)|. The constant R > 0 is the maximum of r on [—A, A], The result of Smith 
and Thieme is not applicable for this semiflow generated by Eq. (3), since it does 
not have, in general, the SOP property. Indeed, consider two functions <p and 
ip in the phase space such that <p(s) < ip(s) < A for all s in [—72, —R + e) and 
<p(s) = ip(s) f°r all s in [-R + e,0], where e > 0. Let U be an open subset 
of the phase space with <p E U. Clearly, there is a function a E U such that 
V>(s) < a(s) for all s E [—R + e, 0]. Let x^ and xa denote the solutions of Eq. (3) 
with initial function ip and a, respectively. If we also have —r(x^(t)) E [—R + e, 0] 
and —r(xa(t)) E [—72 + e, 0] for all t > 0, then it is easy to see that there exists 
to > 0 such that F(to, ip) F(to, a). Therefore, in this case F cannot be SOP. 

We observe that F satisfies the following property. F is monotone, and for 
every </> and ip in the phase space with 4> < ij) and F(t, <j>) ^ F(t, ip) for all t > 0, 
there exist to > 0 and open subsets U, V of the phase space with (j) Eli and ip EV 
such that F(to,U) < F(to,V). This is why our aim is to prove a convergence 
result for monotone semiflows having the above property, the so-called mildly 
order preserving property (MOP) instead of the SOP property. The following 
assumption seems to be crucial in achieving our goal. If 0 and ip are in a compact 
invariant subset of the phase space, then <p < ip implies F(t, <p) ^ F(t, ip) for all 
t > 0. This condition is satisfied for the semiflow generated by Eq. (3) as well. 

In the proofs of the monotonicity the hypothesis f > 0 can be weakened 
like in [66,67], but f > 0 seems to be crucial in the verification of the property 
F(t, <p) ^ F(t, ip),t> 0, for all (p, ip in a compact invariant subset with <p <ip. 

Section 3.1 contains a general convergence result, which is a modified version 
of the convergence result of Smith and Thieme [65,68]: 

Theorem 3.1.1. Consider a metric space X with a closed partial order relation 
and a semiflow $ on X. Assume that 

(Ai) if x and y are in a compact invariant subset of X, then x <y implies x) ± 
for all t> 0, 

(A2) $ is MOP, 
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(A3) each point in X can be approximated either from below or from above in X, 
(A4) for each x in X, the orbit 0(x) of x has compact closure in X, and 
(A5) for each x in X and for each sequence (xn)i°, which approximates x either 

from below or from above in X, Un>i u(xn) has compact closure in X. 
Then the u-limit set of all points from an open dense subset of X is contained 
in the set of equilibria. 

The proof of this result can be found in Section 3.3. Section 3.2 gives explicit 
hypotheses on / and r ensuring the applicability of our convergence result for Eq. 
(3). 

Theorem 3.2.16. If f and r satisfy hypotheses 

V > 0 , 

/ e C^R.R), /(0) = 0, f(u) > 0 for all u€ R, 

there exists A > 0 such that |/(u)| < p\u\ for all |u| > A, 

k r e C ^ R ) , r(0) = 1, r([-A, A}) C (0,oo). 

then there is an open dense subset of X such that, for each element <f> of this 
subset, u(<f>) is an equilibrium point. 

Note that, it is not true in general that the w-limit set of every point of the 
phase space is an equilibrium point. Krisztin, Walther and Wu [41] have shown 
the existence of periodic orbits in the case r = 1 for certain p, f , and r. A similar 
result is proved by Mallet-Paret and Nussbaum [60,61], Kuang and Smith [47,48], 
and Arino, Hadeler and Hbid [3], Krisztin and Arino [39], Walther [72] in the state-
dependent delay case with a negative feedback condition. For the case r = r(x(t)) 
with a positive feedback condition Chapter 4 contains an analogous result. 

In Chapter 4 we show the existence of a nontrivial periodic orbit and a ho-
moclinic orbit connecting 0 to the periodic orbit for Eq. (3) with state-dependent 
delay and positive feedback. The main technical tools we use are: the result of 
monotone dynamical systems applicable for Eq. (3) in Chapter 3; a local unstable 
manifold at zero for Eq. (3) in [38]; and a discrete Lyapunov functional count-
ing sign changes given analogously to that of [39]. We mention that it is not 
clear whether the applied techniques in the proofs of periodic solutions of au-
tonomous differential equations with state-dependent delay and negative feedback 
(fixed point theorems, fixed point index) can be applied for the positive feedback 
case. Closest to the result presented in Chapter 4 is the work of Krisztin and 

m 
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Arino [39], where for the negative feedback case the structure of slowly oscillating 
solutions is described. 

In Section 4.1 we recall the hypotheses on / and r and the basic results from 
Chapter 3. The phase space is considered to be the space of such elements <j> G X 
for which the Lipschitz constant is not greater than 

M = max \-pu + f(v)\. 
{u,v)e[-A,A]x[-A,A] 

We introduce an additional condition on r to guarantee that the function t •-> 
t — r(x(t)) is strictly increasing. For example, the smallness of r' or concavity of 
r are sufficient. This monotonicity property oft^t — r(x(t)) plays an important 
role in the proofs. Then we need some results about the associated linear equation 

x(t) = -i*x(t) + /'(O)s(t - 1). 

The spectrum of the infinitesimal generator of the linear semigroup defined by the 
above linear equation consists of a Ao G M and complex conjugate pairs Afc, A&, for 
all integers k > 1, with (2k - l)7r < ImA^ < 2kir and ReAfc+i < ReAfc < Ao for all 
integers k > 1, and ReAfc —> —oo as k —> oo. We assume that ReAi > 0. 

In Section 4.2 we introduce the set S of functions 0 in the phase space for 
which the solution through 0 oscillates on [0, oo). We show that S is positively 
invariant, closed and there are not 0, 0 in 5 with 0 < 0. 

In Section 4.3 we use [38,Theorem 4.1] to show the existence of a 3-dimensional 
local unstable manifold which is tangent at 0 to the real generalized eigenspace of 
the spectral set {Ao, Ai, Ai}. For every element 0 of this local unstable manifold 
sufficiently small there is a solution through 0 which is defined on (—oo, 0] and 
stays close to 0. The forward extension of this local unstable manifold denoted by 
W is an invariant set. We prove that W and W fl S are compact and invariant, 
and W D S \ {0} is nonempty and is also invariant. 

In Section 4.4 we define a discrete Lyapunov functional which counts the sign 
changes of solutions. We show that if (¡> and -0 are different elements of W fl S, 
then the difference 0 — 0 has one or two sign changes on the interval [—r(0(O)), 0]. 
This fact guarantees the injectivity of a map from W fl 5 into M2 in Section 4.5. 

In Section 4.5 we prove the main result of this section: 

Theorem 4.5.4. 
(i) There is a periodic solution p : R —> R ofEq. (3). The minimal period T of p 

satisfies T G (1,2). 
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(ii) For each 0 e W n S \ {0}, there is a unique solution x4, : R -*• R of Eq. (3) such 
that 4 = 0, x+^Oast-* -oo, w(0) = {p t: t e [0, T]}, and for aUteR, xf 
has one or two sign changes on the interval [—r(x4>(t))10]. 

9 



Chapter 2 
3/2 Stability Theorems for Neutral 

Differential Equations 

2.1 Preliminary results 
Let R, R+, R_ and N be the set of real, nonnegative real, nonpositive real 

numbers and nonnegative integers, respectively. For given Ao > 0, C = 
C ([—Ao, 0], R) denotes the Banach space of continuous functions 0 : [—Ao, 0] —»R 
with norm ||0|| = sup_Ao<T<0 |0(T)|. For given £0 G R+, u> G R+, 
yeC ([t0 - A0, to + W], R) and t e [to, t0+u], yt G C is defined by yt (T) = y(£+r), 
for all t e [—Ao, 0]. Suppose that p e R with |p| < 1, q G C(R+,R), 
r e C(R+ x C,R), s G C(R+ x C,R), and there exist r0, so G [0, A0] such that 
r(R+ x C) C [0,ro] and s(R+ x C) C [0, s0]. 

Consider the nonlinear one-dimensional neutral differential equation with state-
dependent delay 

d 
( 1 . 1 ) - [X(T) - px(t - R(t, xt))] = -g(t) x(t - s(t, xt)). 

Note that for every bounded y G C(M, R) the functions R 9 1 r ( t , yt) G R and 
R 9 11—> s(t, yt) G R are continuous and bounded. 

For (to, 0) G R+ x C a function x e C ([to - AO, to + w), R) is called a solution 
of Eq. (1.1) on [to, to + w) through (to, 0), and is denoted by x(t0,0)(-) if ®to = 0, 
xt € C and the difference x(t) — px(t — r(t, xt)) is differentiate and satisfies Eq. 
(1.1) for t E (to, TO + u>). We assume the existence of a;(£o,0)(-) on [to — Ao,oo) 
for all to G R + and 0 G C, but the uniqueness of x(to,<f>)(-) is not necessarily 
required. Note that there are some results concerning the existence and uniqueness 
of solutions of Eq. (1.1) [25,30]. 

The zero solution of Eq. (1.1) is said to be stable if for every e > 0 and to > 0 
there exists 6 = S(e, to) > 0 so that 

|®(£o,0)(£)| < £ for all0 G C with ||0|| < ¿and for allt > £0. 

The zero solution of Eq. (1.1) is said to be asymptotically stable (AS) if it is 
stable and there is <5o = <5o(£o) > 0 s o that 

x(t0,0)(t) 0 as t -» oo for all0 G C with ||0|| < S0. 
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The zero solution is said to be uniformly stable (US) if for every e > 0 there 
exists <5 = ¿(e) > 0 so that 

<f>)(t)I < e for all^ G C with ||0|| < ¿and for alii > t0 > 0. 

The zero solution is said to be uniformly asymptotically stable (UAS) if it is 
US and for every e > 0 there exist ¿o > 0 and T = T(e) > 0 so that 

|a:(£o, 0)(i)| < e for all0 G C with ||0|| < ¿0 and for all t > t0 + T. 

The zero solution of Eq. (1.1) is said to be attractive if every solution of Eq. 
(1.1) tends to zero as t —» oo. 

In Chapter 2 we investigate the stability and asymptotic stability of the zero 
solution of Eq. (1.1). We achieve this in two different ways. On one hand we 
associate a family of retarded equations with infinite delay with Eq. (1.1), that is, 
for each fixed solution of Eq. (1.1) we associate a retarded equation with infinite 
delay. According to a result of Krisztin [34] this retarded equation with infinite 
delay gives information about the stability and asymptotic behaviour of the cor-
responding solution of Eq. (1.1). On the other hand we extend results of Wu and 
Yu [76] given for neutral equations with constant delay to neutral equations with 
state-dependent delay. 

Here let us review briefly some results of Krisztin [34], Wu and Yu [76] and Yu 
[79]. 

Let BC denote the Banach space of bounded and continuous functions 0 : 
(—oo,0] M with norm ||$||BC = supT<0 \<p(r)\. Let a G M and y : (—oo,a] —» R 
be a bounded, continuous function. For every real t < a the function G BC 
is defined by 2/t

(_oo,0](r) = y(t + r), r < 0. For the function / : R + x BC -» R we 
assume that f(t, 0) = 0 for all t G R+, and for every a > 0 and for every bounded, 
continuous function y : (—oo, a] —> R the function [0, a] 9 £ >-» f(t, y^-00'0') G R is 
continuous. 

Consider the one-dimensional functional differential equation with infinite de-
lay 

(1-2) x'(t) = f(t,x[~°°'0]). 

Define M : R+ x BC -» R by M(u,<f>) = max{0,max_u<T<o 0(r)}. For a 
bounded, nondecreasing, left-continuous and nonconstant function p from R + to 
R+ let 

POO POO P L / „ 0 / ^ \ 2 

pa = J^ dp, pi = Jf rdp{r), p2 = px + Y J I — - T\ dp(r). 
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For (to, <f>) E R+ x BC and v > 0 a function x E C((-oo, io + to), R) is called 
a solution of Eq. (1.2) on [£o,£o + w) through (to,<j>) if xto = <j> and Eq. (1.2) 
holds on (to, to + u>). The definitions of stability, asymptotic stability, uniform 
stability and uniform asymptotic stability of the zero solution of Eq. (1.2) are 
analogous to those for Eq. (1.1) replacing <p E C, ||0|| < S and <f> E C, ||0|| < So 
with <\> E BC, ||0||BC < S and <j> E BC, \\<I>\\BC < So, respectively. 

Theorem A (Krisztin [34]). Assume that 
(1.3) 

poo poo 
- / M(u, <t>) dp(u) < f(t, <j>)< M(u, -<f>) dp(u) for all (t, <f>) E R+ x BC. 

Jo Jo 

(i) If p2 < 3/2 holds and x : M —» R is a solution of Eq. (1.2) on [£o,oo) with 
to E M+, then 

(1.4) HxS"00'01 \\BC < llxL"00'01 WBC e5/2 for allt>t0. 

(ii) If p2 < 3 / 2 and 

' for all sequences {tn}™ inR+ with tn —> oo, and{0n}o° inBC, 
( . and for allc E R \ {0}, and B > 0 with || <f>n \\Bc <BforallnE N, 
^ ' ' and<j>n —* cas n —> oo uniformly on compact subsets of (—oo, 0], 

. the sequence {/(£n , 0n)}o°does not converge to zero as n —> oo, 

then the zero solution of Eq. (1.2) is UAS. 

Let us mention that the theorem of Krisztin is modified here in the sense that 
condition (1.4) does not appear explicitly in [34] but it can be deduced from the 
proof of Lemma 2.3 in [34]. On the other hand, the boundedness of the sequence 
{0n}o° i*1 condition (1.5) does not appear in [34] either, though it is considered to 
be bounded in Lemma 2.2 [34]. 

It is easy to see that p2 < + \ and we have the following corollary of 
Theorem A [34]. 

Corollary B. If the conditions p2 < |, p2 < § in Theorem A are replaced by 
Pi < 1, /¿I < 1, respectively, then the statements of Theorem A remain true. 

Applying the above results to the equation with distributed delay 

oo 
(1.6) x'(t) = 52ak(t)x(t-rk(t)), 

k=0 
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where ak G C ( R+, [0, ak] ) with ak G M+ and ak < oo, rfe G C ( R+, [0, gfc] ) 
with qk G M+ for all k G N, we obtain that 

oo 
5 > f c g f c < i 
k=0 

is a sufficient condition of US for Eq. (1.6) and 1 is the best possible constant (see 
[34]). 

Wu and Yu [76,79] considered the linear neutral differential equation 

(1.7) jt [x(t) - px(t - r)] = -q(t) x(t - s), t > 0 

assuming q : R+ —» R is eventually positive, r and s are positive reals, and p G M. 
Yu has shown that under the conditions p G [0,1) and 

3 
2p(2 -p)+ q(r) dr < - for all t > 0, 

Jt-s 2 

the zero solution of Eq. (1.7) is US (see [79]). 
He has also proved that under the conditions p G [0,1), 

/•OO 
I q(r) dr = oo 

Jo 

and 
f l 3 

2p(2 -p)+ sup / q(r) dr < - for all t > 0, 
t>o Jt- s 2 

the zero solution of Eq. (1.7) is AS (see [79]). 
Investigating the attractivity of the zero solution of Eq. (1.7), Wu and Yu have 

shown that the conditions |p| < 1, 

/•OO 
I q(r) dr = oo 

Jo 

and 
f 1 3 

2|p|(2 - |p|) + limsup / q(r) dr < -
t>0 Jt- s 1 

guarantee that every solution of Eq. (1.7) tends to zero as t —» oo (see [76]). 
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2.2 3 / 2 Stability theorems for neutral differential equations 

It is known that in certain cases neutral differential equations are equivalent 
to retarded differential equations with infinite delay [70]. This method is used 
in [2,21,22,43,44,45,74,75] to study stability problems for neutral equations. Our 
purpose in this section is not to transform Eq. (1.1) to a single retarded equation 
with infinite delay. Such a transform may not exist here. For each fixed solution 
of Eq. (1.1) we associate a retarded equation with infinite delay and then apply 
Theorem A and Corollary B, which enable us to establish 3/2 stability theorems 
for Eq. (1.1) (see [34,77,78]). 

Lemma 2.1. Let x : [to — Ao,oo) -» R be a solution of Eq. (1.1) and define 
y : [to, oo) —* R by y(t) = x(t) — px(t — r(t, xt)) for t > to. If y(t) —> c as t —> oo 

Q 
for some c G R, then x(t) —> as t —»• oo. 

1 - p 
Proof. Extend a; to a function from R to M by x(t) = x (to —XQ) for t < to —Ao-

Define the map p : R —» R by 

nu\ _ / r(t,xt), t>to, 
P{t)-\r(t0,xto), t < t0. 

Let the sequence {pn}^=0 of functions pn : M —> R be given by r)°(t) = t for all 
t G R, and 

T f ( t ) = rT~x(t - p(t)) for all integers n > 1 and t G R, 

that is 

77n(t) = t - p(t) - p(p(t)) p(r]n~1(t)) for all integers n > 1 and t G R. 

We extend y to a function from R to R so that 

y(t) = x(t) - px(t - p(t)) = x(t) - px(r}(t)) for all t G R. 

First we express x with y. For all t G M we have the sequence of equalities 

y(t) = x(t)-px(ri(t)), 

py(v(t))=px(y(t))-p2x(v
2(t)), 

Pny(vn(t)) = Pnx(vn(t)) - pn+1x(V
n+1(t)), 
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Summing the above equalities we obtain 
oo 

(2.1) a:(t) = Y^Pkv(vk(t)) for all t G R, 
fc=0 

which is convergent since |p| < 1. The convergence of x(t) to as t —»• oo 

follows immediately due to the fact that x(t) is convergent, y(t) —> c as t —> oo, 
and r)k(t) —* oo as t —• oo. This completes the proof. • 

The main results are the following. 

Theorem 2.2. Assume that 0 < p < 1 and there exists qo G R+ so that 
0 < q(t) < q0 for all t > 0. Let K = {k G N : s0 + kr0 < 
(i) If the condition 

Qo so qprpp gp z 1 ~ P „ ^ \2mk ^ o / o 
i 7i \2 + ^ \ ( s 0 - fcro) P < 3 /2 
1 - p ( 1 - p ) 2 2 ( l - p ) ^ 9 o 

holds and a:: [to - Ao, oo) —> R with to G R+ is a solution of Eq. (1.1), then 

M < ||^toll^e5/2 for all t> t0. 1-p 

(ii) If 
go So , gproP , go y ^ , l ~ P , N2 fc . o/o 
i 7; Y2 + ^ \ Z ^ I So - kro) p < 3 /2 
1 - p ( 1 - p ) 2 2 ( l - p ) f c ^ go 

and lim infi_+00 
g(t) > 0 are satisfied, then the zero solution of Eq. (1.1) is AS. 

Proof, (i) Let to G R+ and a solution x : [to — Ao,oo) —> R of Eq. (1.1) be 
given. Extend a; to a function from R to R by a;(t) = a:(to — Ao) for t < to — Ao. 
Define the maps p : R —> R and <r : R —> R by 

nu\ _ J r(i> xt)> t > t0 f . _ ( s(t, xt), t > t0 
PW ~ I r(t0, xto), t < to ' " \ s(t0, xt0), t < tom 

Let the sequence {77n}o° of functions rf1 : R —» R be given by rp(t) = t for all 
t G R, and 

r}n(t) = 77n-1(t - p(t)) for all integers n > 1 and t G R. 

Then 

^ ( t ) = t - p(t) - p(77(t)) p(?7n_1(t)) for all integers n > 1 and t G R. 
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Define the function y : R —» R by 

y(£) = x(t) - px(t - p(t)) = z(£) - px(r){t)) for all t G R. 

As in Lemma 2.1 expressing x with y, we get 

oo 
(2.1) x(t) = J2pky(vk(t)) for all t G R. 

fc=o 

Then y satisfies 

oo 
(2.2) y'(i) = -qr(i) y(i7*(t ~ *(*))) f o r 311 * > 

fc=0 

Now we define the function F : [to, oo) x BC R by 

oo 
F(t, 0) = - f l ( i ) - - «)• 

k=0 

Consider the retarded functional differential equation with infinite delay 

(2.3) z'(t) = F(t,z[-°°'\ t>t0. 

Clearly, y is a solution of Eq. (2.3). Observe that Eq. (2.3) is a particular case 
of Eq. (1.6) with rk(t) = t - r)k{t - o(t)) and ak(t) = q(t)pk, k G N. Then 
0 < rk(t) = £-[£- a(t) - p(t - a(t)) - p(r,(t - a(t))) pi^it - a(t)))] 
< s0 + kro and 0 < ak(t) = q(t)pk < qopk, k G N. Clearly, YlkLo 9opk < oo 
since 0 < p < 1. In order to apply Theorem A to Eq. (2.3) we need a bounded, 
nondecreasing, left-continuous and nonconstant function p from R + to R + . Define 
the sequences (gfc}o° and {afc}o° by qk — SQ + kro and ak = qoPk, respectively. 
Let 

fO, te[0,qo] 
\ aQ + ai + • • • + ak, t G (qk, gfc+i]-

Condition (1.3) becomes 

oo oo 
- Yl M(qk, (¡>)ak < F(t, <f>)<^2 M(qk, -<f>)ak for all (t, <f>) G [t0, oo) x BC, 

k=0 fc=0 

that is 
oo oo 

- y] ock max{0, max 0(r)} < F(t, <f>) < — V^Q!fcmin{0, min 0(r)} 
t̂ O -9fc<r<0 ^ —qk<r<0 
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which can easily be checked. We have 

oo 

EQO 

k=0 y 

oo 

E
k Qo so qor0p 

go So , qprop , gg „ V 

where K = {k G N : so + kro < ^j2}- Due to the assumption ¿¿2 < 3/2, from 
Theorem A (i) we conclude 

(2.4) \\yi-°°'0]M)\\BC < ||2/t
(
0
_OO'0l||sc e5/2 for all t > t0. 

Using the extension of x and the definition of y we infer 

Hyio '^l lBC^a+^l lxto l l . 

This inequality and (2.4) combined yield 

| y (£ ) |< ( l+p) | | x t Je 5 / 2 for all £ G R. 

Applying the last inequality for |y(£)| in (2.1) we obtain 

l*(*)l < l l ^ t o l l ^ e 5 7 2 for all £ G R, 1 - p 

wich gives the desired extimation on ||xt||. The proof of assertion (i) is complete. 
In order to show assertion (ii) it suffices to verify that every solution x of Eq. 

(1.1) tends to zero as £ —> 00 since assertion (i) implies the stability of the zero 
solution. 

Let x be a given solution of Eq. (1.1) as in the proof for assertion (i). We define 
the function y : R —* R and Eq. (2.3) with infinite delay as above. We want to 
apply Theorem A (ii) since the uniform asymptotic stability of the zero solution 
of the linear Eq. (2.3) implies, in particular, y(t) —> 0 as £ —> 00. Using Lemma 
2.1 we conclude x(£) —> 0 as £ —» 00. In the proof of (i) we saw that (1.3) holds for 
Eq. (2.3). By our assumption in Theorem 2.2 and the formula for p.2 in the proof 
of (i) yield P2 < 3/2. So only condition (1.5) remains to be verified. 
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Let {tn}o° and {0n}o° be sequences in M+ and BC, respectively, and let 
c e M, c / 0 and B > 0 with ||0n||Bc < B for all n G N, and tn -* oo, and 
0 n —> c as n —> oo uniformly on compact subsets of R_. Due to the fact that 
lim inft-.oo q(t) > 0, there exist a positive real number I and a positive integer no 
so that q(tn) > I for all integers n > no-

Select e > 0 so that 

P 

90 e l\c\ 

qoB 

1-p 4(1 - p ) 
N + 1 l - p ^ 1 

1 — p 1 —p 
Choose n\ G N so that n\ > no and 

and 

and select a positive integer N so that 

3 
1-p 4(1 —p) 

I<f>n(r) - CI < e for all r G [ -s 0 - Nro,0] and ni < n 6 N. 

We want to show that F(tn, <f>n) does not converge to zero as n —> oo. Having 
N N 

-F(tn, 0n ) =q(tn) + «(*») ^2pk[MVk(tn - ff(in)) - tn) ~ c] + 
k=0 

oo 
fc=0 

<l(tn) Pk</>n(rik(tn-(T(tn))-tn), 
k=N+1 

we obtain for all integers n > n\ that 
N 

q{tn)Y,Vk* 
k—0 

1 - n ^ 1 3/|c| 

N 
q(tn) ^2pk[<f>n(vk(tn ~ <r(tn)) ~ tn) ~ c] 

1-p 4(1 -pY 

1 

k=0 
< qoe 

l\c\ 

and 

q(tn) Pk<i>n(vk(tn-(7(tn))-tn) < 90 B 
k=N+l 

So for all integers n > no we get 
3Z|c| l\c\ l\c\ 

1-p 4(1 -p)' 

l\c\ P 

-F(tn,(f>n)\ > 

1-p 4(1 — p) 

l\c\ 
> 0 , 

4(1 ~p) 4(1 -p) 4(1 — p) 4(1 -p) 
which means that F(tn, <pn) does not converge to zero as n —» oo. Therefore, 
condition (1.5) holds for Eq. (2.3), and the proof is complete. • 

Remark. Since for each solution of Eq. (1.1) we have associated a different 
retarded equation with infinite delay, the uniform asymptotic stability of the zero 
solution of Eq. (2.3) does not imply the uniform asymptotic stability of the zero 
solution of Eq. (1.1). 
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Theorem 2.3. Assume that 0 < p < 1 and there exists go € R+ so that 
0 < q(t) < go for all t > 0. 
(i) If the condition 

go So qprpp 
l - p + ( l - p ) 2 ~ 

holds and x :[to - Ao, oo) —> R with to € R+ is a solution of Eq. (1.1), then 

M < M ^ e 5 / 2 for all t> t0. 

(ii) If 
go so qprpp 
l - p + ( l - p ) 2 

and liminf i_00 g(£) > 0 are satisfied, then the zero solution of Eq. (1.1) is AS. 
The proof is analogous to that of Theorem 2.2, the only difference is that now 

we apply Corollary B. All we need is p\, which we have already calculated, and 
condition (1.5), which we have verified. 

2.3 Attractivity for neutral differential equations 

In this section we prove the attractivity of the zero solution of Eq. (1.1) by ex-
tending some results of Wu and Yu [76] to neutral equations with state-dependent 
delay. First we give some lemmas concerning boundedness and convergence of 
oscillatory solutions. For the proofs see [4]. 

A solution x : [to - Ao, oo) —• R of Eq. (1.1) is said to be oscillatory if x has 
arbitrarily large zeros. 

Lemma 3.1. Assume that |p| < q(t) > 0 for all sufficiently large t G R, 

(3.1) 2|p|(2 " bl) + limsup / g(r) dr < \ 
t-*oo Jt-so 

and 
(3.2) 
for ally G C([-Ao, oo),R), the function [0,oo) 3 t t - s(t,yt) G R is increasing. 

Then every oscillatory solution ofEq. (1.1) is bounded. 

Note that condition (3.2) in Lemma 3.1 is the crutial point of the proof. 
Such a condition also plays an important role in nonneutral equations with state-
dependent delay [60,39]. There is a wide class of applications where s(t,yt) is 
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defined by a threshold that is 

/ , , k(y(T))dr = ko, 
Jt - s(t, yt) 

where k(t) is a positive continuous function and ko is a positive real number. In 
this case condition (3.2) holds. 

Lemma 3.2. Under the assumptions of Lemma 3.1, every oscillatory solution of 
Eq. (1.1) converges to zero as t —* oo. 

The main result is the following. 

Theorem 3.3. Assume that |p| < q(t) > 0 for all sufficiently large i G l , 

poo 
(3.3) / q(r) dr = oo, 

Jto 

f* 3 
2|p|(2 - |p|) + limsup / q(r) dr <-

t-*oo Jt-So 

and 

for ally e C([-Ao,oo),R), the function [0,oo) 9 t t - s(t,yt) G R is increasing. 

Then every solution of Eq. (1.1) converges to zero as t —> oo. 

Proof. Let to G R + and a solution x : [to - A0, oo) —> R of Eq. (1.1) be given. 
Using the notations p(t) = r(t, xt), cr(t) = s(t, xt) and y(t) = x(t) - px(t - p(t)) 
for t > to, we have 

(3.4) y'(t) = —q(t)x(t - o{t)) for all t > t0. 

Two cases are to be considered: 
Case I: x is oscillatory. Then the convergence to zero follows immediately from 

Lemma 3.2. 
Case II: x is nonoscillatory. We assume that x(t) is positive for all sufficiently 

large t. The case when x(t) is negative for all sufficiently large t is similar. Our 
assumption implies that y'(t) < 0 for all sufficiently large t, say for all t > To, which 
means that y(t) is decreasing on [To, oo). So the limit c = lim i_00 y(t) exists and 
we claim that it is finite. Indeed if x is bounded then y is also bounded and thus 
c G R. In case x is not bounded assume c = —oo. Then there exists T\ >to + ro, 
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Ti > T0 so that x(t) < px(t - p(t)) for all t > Tv Let M = supto<t<Tl x(t) 
and T2 = sup{£ > Tx : X(T) < M for t0 < r < £}. Observe that M > 0 since 
x(Ti) < px(Tx - p(Tx)). Using that x is unbounded from above we infer T2 < oo 
and M = x(T2) < px(T2 - p{T2)) < pM. From M > 0 we conclude p > 1. This 
contradiction leads to the conclusion c G R. Applying Lemma 2.1, we obtain the 
convergence of x(t) to as t —» oo. It remains to show that c = 0. Indeed if 
c / 0 then integrating (3.4) on [to, oo) and using (3.3), we get c = —oo which 
contradicts c G R, thereby completing the proof. • 

Remark. Theorem 3.3 can be extended to the equation 

where / : [0, oo) x C —» R. We assume that there exists a constant H > 0 and a 
continuous function q : [to> oo) —» R such that 

-q(t)M(A, -(f>) < f(t, <f>) < q(t)M(X, <j>) for all t > t0 and<£ G C with ||0|| < H. 

Then we can show that in case |p| < q(t) > 0 for all sufficiently large t G R and 

there exists h G (0, H) such that for every (j) G C with ||0|| < h, the solution of 
Eq. (3.5) through (to, <f>) converges to a constant as t —> oo. Moreover, if for every 
constant mapping c G C with ||c|| < H, we have 

then every solution of Eq. (3.5) through (to, <t>) converges to zero as t —• oo. We 
omit the proof because it follows the same technique as the proof of the Theo-
rem 3.3 with appropriate modifications. 

(3.5) 
d 
— [x(t) - px(t - r(t, xt))] = f(t, xt) dt 
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Chapter 3 

Convergence of Solutions 

3.1 Convergence in monotone dynamical systems 

Consider the differential equation with state-dependent delay 

(1.1) x(t) = -ixx(t) + f(x(t-r)), r = r(x(t)), 

where /x > 0, / and r are smooth real functions with /(0) = 0 and / ' > 0. 
In the case r = constant Eq. (1.1) generates a semiflow T on the phase space 

C([-r, 0], R). The condition f > 0 guarantees that T is monotone with respect to 
the pointwise ordering of the phase space, that is, for every 0, 0 in C([-r, 0],R) 
with 0 < 0, T(t, 0) < ^(t, ijj) holds for all t > 0. It is also true that T is strongly 
order preserving (SOP), that is, T is monotone, and for every 0, 0 in C([—r, 0], R) 
with 0 < 0, there exist to > 0 and open subsets U, V of C([-r, 0], R) with 0 G U 
and 0 G V such that F(to,U) < T(to, V). Then applying a result of Smith and 
Thieme [65,68,69], we conclude that the omega limit of all points from an open 
dense subset of the phase space is an equilibrium point. 

We remark that analogous results were obtained by Smith and Thieme in 
[66,67] for non-quasi-monotone functional differential equations, that is, under a 
weaker condition than / ' > 0. 

In the case r = r(x(t)) the situation becomes more difficult, because it is not 
obvious how to choose the phase space. The questions about existence, uniqueness, 
and continuous dependence of solutions of Eq. (1.1) are also not standard, see, e.g., 
[62]. In Section 3.2 we show that for suitable R > 0 and A > 0, the solution of Eq. 
(3) defines a semiflow F on the metric space X containing Lipschitz continuous 
functions mapping [—R, 0] into [—A, A] with metric d(0,0) = sup_Ji<s<0 |0(s) -
0(s)|. The constant R > 0 is the maximum of r on [—A, A]. A difficulty arises: 
the semiflow generated by Eq. (1.1) is not in general SOP. Thus the result of Smith 
and Thieme is not applicable. Our aim is to prove a convergence result which is 
applicable for Eq. (1.1). 

We give the result of Smith and Thieme first and then the modified version 
of this convergence result. In [65,68] a metric space X is considered and a closed 
partial order relation < on X. For x and y in X, x < y is written whenever x < y 
and x ^ y . 
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A semiflow $ is considered on X, that is a map $ : [0, oo) x X X, which 
satisfies: (i) $ is continuous, (ii) $(0, x) = x for all x E X, (iii) $(£, <3>(s, x)) = 
$(t + s,x) for alii > 0, s > Oand x G X. 

The orbit 0(x) of x G X is defined by O(x) = ($(t ,x) : t > 0}. A point 
x G X is called an equilibrium point if 0(x) = {x}. The set of all equilibrium 
points of $ is denoted by E. The omega limit set u(x) of x G X is defined 
by u(x) = n t>oUs> t$(s, x). Recall that u(x) is a nonempty, compact, invariant 
subset of X and dist($(£, x),u(x)) —> 0 as t —> oo provided O(x) is a compact 
subset o f * . A point x G * is called a quasiconvergent point if u(x) C E. The set 
of all such points is denoted by Q. A point x is called a convergent point if u(x) 
consists of a single point of E. The set of all convergent points is denoted by C. 

It is supposed that $ is monotone, that is, for every x,y in X with x < y, 
$(£, x) < <E>(t, y) holds for all t > 0. It is assumed that $ is strongly order 
preserving (SOP), that is, $ is monotone, and for every x, y in * with x < y, 
there exist to > 0 and open subsets I f , V of * with x Eli and y E V such that 
*(to,W)<*(to,V). 

Assume that for each x in X, 0(x) has compact closure in X. 
It is supposed that for every x in 

(a) there exists a sequence (xn)f° in * satisfying xn < xn+i < x (x < x n + i < xn) 
for all integers n > 1 and xn —* x as n oo, and 

(b) for the sequence (xn)f° with the property guaranteed by (a), Un>i w(xn) has 
compact closure in 
Then the result of Smith and Thieme [65,68] states that under the above as-

sumptions * = Int Q U Int C. In particular Int Q is dense in 
We observe that the semiflow $ generated by Eq. (1.1) has the following prop-

erty. $ is monotone, and for x, y in * with x < y and $(£, x) ^ <3>(t, y) for all 
t > 0, there exist to > 0, and open subsets U,V of X with x Eli and y E V such 
that <&(toM) < $(fo,V). 

We give some notations and definitions. We shall write x <$ y if x < y and 
$(i, x) ^ $(£, y) for all t > 0. For two subsets {a} = A and B of X with A< B 
or A < B or A <$ B, we shall write a < B or a < B or a B. 

We say that $ is mildly order preserving (MOP) if it is monotone, and for 
every x, y in X with x <$ y, there exist to > 0 and open subsets I f , V of X with 
x Eli and y EV such that $(t0,li) < $(i0 ,V). 

Note that the difference between the MOP and SOP properties is that we have 
one more assumption for the MOP property, that is, $(£, x) ^ $(£, y) for all t > 0 
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and for all x, y in X with x <y. Thus the MOP property is weaker than the SOP 
property. 

We say that x G X can be approximated from below (above) in X if there 
exists a sequence (xn)f in X satisfying xn <$ a:n+i x (x <$ xn+i xn) for 
all integers n > 1 and xn —* x as n —* oo. 

Since the semiflow generated by Eq. (1.1) is MOP, we are interested in proving 
a convergence result for the monotone semiflow being MOP instead of SOP. Thus a 
natural question appears: Under what conditions can we prove such a convergence 
result? In Section 3.3 we prove the following theorem. 

Theorem 1.1. Consider a metric space X with a closed partial order relation 
and a semiflow $ on X. Assume that 

(Ai) if x and y are in a compact invariant subset of X, then x < y implies x <$ y, 
(A2) $ is MOP, 
(A3) each point in X can be approximated either from below or from above in X, 
(A±) for each x in X, the orbit 0(x) of x has compact closure in X, and 
(As) for each x in X and for each sequence (xn)f, which approximates x either 

from below or from above in X, Un>i u(xn) has compact closure in X. 
Then X = IntQU IntC. In particular Int Q is dense in X. 

We mention that the differences between Theorem 1.1 and the theorem of 
Smith and Thieme are that assumption (Ai) in Theorem 1.1, the crutial point 
of the proof, does not appear in the result of Smith and Thieme, the semiflow 4> 
in Theorem 1.1 is MOP instead of SOP, and the definition of approximation in 
Theorem 1.1 differs from the one used by Smith and Thieme. An examination of 
the proof of the result of Smith and Thieme shows that due to assumption (Ai) 
the proof of Theorem 1.1 follows more or less the same line as that in [65,68]. 

3.2 Convergence of solutions for an Equation with 
State-Dependent Delay 

In this section we apply Theorem 1.1 for the differential equation with state-
dependent delay 

(1.1) x(t) = -px(t) + f(x(t - r(x(t)))). 

In order to achieve our goal, we need to establish hypotheses on / and r and 
choose an appropriate phase space ensuring that the conditions of Theorem 1.1 
are satisfied. 
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Consider the hypotheses 

(HI) 

p > 0 , 

f € C^R, R), /(0) = 0, f'(u) > 0 for all u 6 R, 

there exists A > 0 such that \f(u)\ < p\u\ for all |it| > A, 

k r € C1 (R, R), r(0) = 1, r([-A, A]) C (0,oo). 

Set R = maxue[_A>A]r(u), M = m a x ( U i V ) € [ _A lA]x [ -A ,A] I - pu + f(v)|, C 
C([-R, 0], R) and for 0 G C define 

lip(0) = s u p { | ^ ( s ) - 0 ( i ) | - | s - i r 1 : s , te[-R,0], s±t}. 

Let G be the map defined by the right hand side of Eq. (1.1), that is, 
G((f>) = —p0(O) + f (</>(—r(</>(0)))). Observe that G is not necessary defined for 
all <j> G C. For 0 G C with 0(0) £ [-A, A], G(4>) may not exist. Therefore 
consider the retraction p : C —> D defined by C 9 0 i-» p(0) G D, where 
D = {0 G C : - A < 0(£) < A, for - R < t < 0}. p(0) is a fimction mapping 
[-R, 0] into [—A, A] in the following way: 

(2.1) p { m = 

A for 0(£) > A, 
<f>(t) for - A < 0(i) < A, 
-A for 0(£) < —A. 

Consider the function G o p : C -* R defined by G(p(0)) = -pp(0)(O) + 
/(p(0)(—r(p(0)(O)))) for all 0 in C and the equation 

(2.2) x(t) = G(p(xt)), 

where xt G C, t > 0, is defined by x t(s) = x(t + s) for all s G [—R, 0]. 
We say that a fimction x : [-R, 6) —> R, 0 < S < oo, is a solution of Eq. (2.2) 

if x is continuous on [-R, ¿), x|[0ia) is differentiable on [0,5), and x satisfies Eq. 
(2.2) for all t G [0,5). ¿(0) denotes the right hand derivative of x at 0. 

We say that a function x : [—R, oo) —» [—A, A] is a solution of Eq. (1.1) if x is 
continuous on [—R, oo), x|[0]Oo) is differentiable on [0, oo), and x satisfies Eq. (1.1) 
for all t > 0. 

First we show existence, uniqueness, and continuous dependence of solutions 
of Eq. (2.2) and then of solutions of Eq. (1.1). 

We begin with proving the following claim. 
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Claim. The function G o p : C —• R is continuous and satisfies the following 
property: there exist constants ai > 0 and 0,2 > 0 such that for all Ri > 0 and for 
all 0, 0 in C with lip(4>) < Ri, 

(2.3) |G(p(0)) - G(p(0))| < (ai + a2Rx)| |0 - 0||. 

Proof. It is easy to check that p is continuous; thus G o p is continuous, and 
for all 0, 0 in C, we have 

(2-4) I|P(0)"P(0)II< 110-011 

and 

(2.5) lip(p(0)) < lip(0). 

To show (2.3), we make the estimations 

IG(p(0)) - G(p(0))| < p|p(0)(O) - P(0)(O)|+ 

l/(p(0)(-r(p(0)(O)))) - /(p(0)(-r(p(0)(O))))|. 

The function / is locally Lipschitzian because it is continuously differentiable. 
Thus there exists L > 0 such that 

l/(p(0)(-Kp(0)(O)))) - /(p(0)(-r(p(0)(O))))| < 

L|p(0)(-r(p(0)(O))) - p(0)(-r(p(0)(O)))| < 

L|p(0)(-r(p(0)(O))) - p(0)(-r(p(0)(O)))|+ 

^|p(0)(-r-(p(0)(O))) - p(0)(-r(p(0)(O)))|. 

Using (2.5) and the fact that r is locally Lipschitzian, being continuously differen-
tiable, we obtain that there exists N > 0 such that 

(2 8) m { " r {pm0)) ) " p m ~ T ^ 
-RIKP(0)(O)) - r(p(0)(O))| < RilV|p(0)(O) - p(0)(O)|. 

Combining (2.7) with (2.8) and (2.4), we find 

(2.9) |/(p(0)(-r(p(0)(O)))) - /(p(0)(-r(p(0)(O))))| < (LRiN + L)||0 - 0||. 

We deduce from (2.6), (2.9), and (2.4) that 

|G(p(0)) - G(p(0))| <p||0 - 0|| + (LRiN + L)||0 - 0| | 

=((p + L) + LNRx)U - 01| = (ai + a2Ri)U - 0||. 
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Observe that the constant ai + a2R\ depends on 0 and it is independent of 0. 
The proof is complete. • 

For local and global existence we refer to Theorem 1.1 of [62]. Consider 0 G C. 
Since G o p : C —»• R is continuous, by Theorem 1.1 of [62], for some 5 > 0, there 
exists a solution x* : [—.R, S) —» R of Eq. (2.2) through 0, that is, x* is a solution 
of Eq. (2.2) such that aĉ  f [ «,03 = 4>- As there exist constants C\ and c2 such that 
for all 0 in C, |G(p(0))| < ci||0|| +c 2 , by Theorem 1.1 of [62], the solution x* can 
be defined on [—R, 00). 

For uniqueness we refer to Theorem 1.2 of [62]. Consider 0 G C with 
lip (0) < 00, and for some 6 > 0 two solutions y* : [-J2, 5) —• R and 
z* : [-R, S) —• R of Eq. (2.2) through 0. Since G o p is continuous on C and 
it satisfies property (2.3), by Theorem 1.2 of [62], we obtain y^(t) = z*(t) for 
all t in [-R, (5). For continuous dependence of solutions of Eq. (2.2) we refer to 
Theorem 1.6 of [62]. 

We define the phase space X as the metric space of all real-valued continuous 
functions 0 : [—1?, 0] —» [—A, A] with lip(0) < 00, where the metric is obtained 
from ||0|| = max_ii<s<o |0(s)|. We introduce a closed partial order relation on 
X in the following way: 0 < 0 whenever 0(s) < 0(s) for all s G [—R, 0], 0 < 0 
whenever 0 < 0 and 0 ^ 0 , and 0 0 whenever 0(s) < 0(s) for all s G [-R, 0]. 

To prove existence, uniqueness, and continuous dependence of solutions of Eq. 
(1.1), we need the following proposition. 

Proposition 2.1. For every 0 G X the solution x = x^ : [—R, 00) —• R of Eq. 
(2.2) through 0 satisfies x(t) G [ -A, A] for all t > 0. 

Proof. Set ti = sup{s : x(t) G [-A,A] for all t G [0,s]}. If ti be-
longs to the interval of existence, then either x(t\) = A and x(ti) > 0 or 
a;^) = —A and x(t 1) < 0. Suppose x(ti) = A and x(t\) > 0. Since r 
is positive on [—A, A], we have x(t\ — r(x(ti))) < A. The monotonicity of 
/ yields f(x(ti - r(z(ti)))) < /(A). The solution x satisfies Eq. (2.2), that 
is xih) = -pp{xtl)(0) + f(p(x t l)(-r(p(x t l)(0)))). As ®tl(0) G [-A,A] and 
x h(~ r ( x t i (0 ) ) ) € [—A, A], according to the definiton of p, we obtain p(xt l)(0) = 
x t l(0) and p(xtl)(-r(p(xtl)(0))) = ®tl(—r(®tl(0))). Thus, ¿(ti) = -px(ti) + 
f{x(t\ — r(x(ti)))). The assumption —pA + /(A) < 0 implies ¿(ti) < 0. This is a 
contradiction. A similar argument leads to a contradiction in the case x(ti) = —A 
and x(ti) < 0. Therefore x(t) G [ -A, A] for all t > 0. • 
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Proposition 2.2. For every <j> E X there is a unique solution x = x^ : [—R, oo) —» 
[-A, A] ofEq. (1.1) such that ^If-^o] = 0-

Proof. Let 0 E X. Then there exists a solution x = x* : [-R, oo) —> M of Eq. 
(2.2) through 0. By Proposition 2.1, x(t) E [-A, A] for all t > 0. Hence p(xt) = xt 

and G(p(xt)) = G(xt) for all t > 0. Thus, x : [—72, oo) -* [—A, A] is a solution 
of Eq. (1.1) with x|[_bi0] = 0. Consider a solution y = y^ : [—R, oo) —»• [—A, A] 
of Eq. (1.1) such that y|[-i?,o] = 0- Since y(t) E [~A,A] for all t > 0, by the 
definition of p, yt = p(yt), and G(yt) = G(p(yt)) for all t > 0. Thus y is also a 
solution of Eq. (2.2) through 0; therefore x(t) = y(t) for all t in the interval of 
existence. • 

Proposition 2.3. Let e > 0, 0, 0 E X, x = x* : [-R, oo) -> [ - A, A] be the 
unique solution of equation x(t) = G(xt) such that = <t>, snd y = y^ : 
[-R, oo) —> [—A, A] be the unique solution of equation y(t) = G(yt) + e such that 
y|[-A,o] = Then there exists a constant c > 0 independent of e, 0, 0 such that 

Ix(t) - y(t)| < ect||0 - 0| | + (ect - 1)- for allt>0. 
c 

Proof. Since x(t) E [ -A, A] and y(t) E [-A, A] for all t > 0, G(xt) = G(p(xt)) 
and G(yt) = G(p(yt)) for all t > 0. Thus x is the solution of equation x(t) = 
G(p(xt)) with xlj.fl^] = 0, and y is the solution of equation y(t) = G(p(yt)) + e 
with = 0 . By Theorem 1.6 of [62], there exists c > 0 such that we have 
the desired estimation for |x(t) — y{t)\. • 

We define the map F by [0, oo) x X B (i, 0) i-> xf E X, where x^ denotes the 
solution of Eq. (1.1) through 0. 

Proposition 2.4. The map F is a semiSow on X, that is: 
(i) F is continuous, 

(ii) F(0,0) = 0 for all <p E X, 
(iii) F(t, F(s, 0)) = F(t + s, 0) for allt>0, for all s > 0 and for all<f>EX. 

Proof. Proof of (i). The continuity of F in the first variable is obvious. To 
prove the continuity of F in the second variable, consider the solutions x = x* and 
y = of Eq. (1.1) through 0 and 0o E X, respectively. Applying Proposition 2.3 
with e = 0, we obtain that there exists a constant c > 0 such that |x(£) — y(t)\ < 
e c t | |0 -0o | | for alii > 0. Hence ||xt - y t | | < e c t | | 0 -0 o | | for all t > 0, which implies 
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the continuity of F in the second variable. It is easy to see that (ii) and (iii) are 
satisfied. • 

Proposition 2.5. The semiflow F is monotone, that is, F(t, 0) < F(t, ip) when-
ever 0 < 0 and t > 0. 

Proof. Let 0, 0 be in X with 0 < 0, and eo > 0 such that —pA+/(A)+eo < 0. 
For all e in (0, eo), consider the equation 

First we show that the solution of Eq. (2.10) through 0 exists and it is unique. 
Consider the retraction p defined by (2.1), the map G(p(0)) = - M 0 ) ( O ) + 
/(p(0)( - r(p(0)(O)))) f°r all 0 G C, and the equation 

We mention that the definitions of solutions of Eq. (2.10) and Eq. (2.11) are the 
same as those for Eq. (1.1) and Eq. (2.2), respectively. Since the function defined 
by the right hand side of Eq. (2.11) is continuous, it satisfies property (2.3), and 
there exist constants cx and c2 such that for all 0 G C, |G(p(0))+e| < ci||0||+c2, by 
Theorem 1.1 of [62], we obtain that there exists a unique solution z£ : [-R, oo) —» R 
of Eq. (2.11) with z% = 0. We prove that z£(t) G [—A, A] for all t > 0. Set tx = 
sup{s : z£(t) G [—A, A] for all t G [0, s]}. If h belongs to the interval of existence, 
then either z£(tx) = A and ¿£(fi) > 0 or z£(tx) = —A and ¿e(ti) < 0. Suppose 
z€(t\) — A and z€(t\) > 0. Since r is positive, we have z£(t\ -r(ze(ti))) < A. The 
monotonicity of / yields f(z£(tx - r(ze(ti)))) < /(A). As z\x (0) G [ -A, A] and 
4 ( - r « ( ° ) ) ) £ we infer 

z\tx) = - pp(zim + / ( p « ) ( - r ( p « ) ( 0)))) + e 

= - pz£(tx) + f(z£(tx - r(z£(tx)))) + e<-pA + f(A) + e0. 

The assumption — p A + / ( A ) + eo < 0 implies z£(tx) < 0. This is a contradiction. A 
similar argument leads to a contradiction in the case z£(tx) = —A and z£(tx) < 0. 
Therefore, z£(t) G [-A,A] for all t > 0. Hence p(z£) = z\ and G(p(z£

t)) = 
G(zl) for all t > 0. Thus, ze : [-R,oo) [ -A, A] is a solution of Eq. (2.10) 
through 0. To prove uniqueness, consider a solution y£ : [—R, oo) —> [—A, A] 
of Eq. (2.10) with = 0. Since y£(t) G [ -A, A] for all t > 0, y£ is a solution 

(2.10) ¿(f) = -nz{t) + f(z(t - r(z(t)))) + e. 

(2.11) ¿(f) = G(p(zt)) + e. 
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of Eq. (2.11) through 0. Therefore ze(t) = y€(t) for all t G [-R, oo). Thus 
: [—12, oo) —> [—A, A] is the unique solution of Eq. (2.10) through 0. Denote 

by x and y the solutions of Eq. (1.1) with xo = 0 and yo = 0. Proposition 2.3 
implies ze —• y uniformly on compact subsets of [ -R, oo) as e —* 0. Therefore, in 
order to conclude the monotonicity of F, it suffices to show that x(t) < ze(t) for 
all t > 0 and for all e in (0,eo). Fix an e. If 0(0) = 0(0) then x(0) = z£(0). So 
i£(0)—¿(0) = /(0(-r(*(O))))-/(0(-r(*(O))))+e. As 0(-r(x(O))) < 0(-r(x(0))), 
the assumption f > 0 implies /(0(-r(x(O)))) < /(0(-r(x(O)))). Consequently, 
¿£(0) - ¿(0) > e > 0. Hence there exists 5 > 0 so that x(t) < z£(t) for all t in 
(0, S). The existence of such a 5 in the case 0(0) < 0(0) follows immediately from 
the continuity of ze and x. Therefore, by way of contradiction we can choose s > 0 
such that x(t) < z£(t) for 0 < t < s and x(s) = ze(s). Clearly, x(s) > z£(s). On 
the other hand we have 

(2.12) ze(s) = -pz£(s) + f(z£(s - r(z£(s)))) + e. 

As 0 < 0 and r is positive on [-A, A], x(s - r(x(s))) < z£(s- r(x(s))) = z£(s -
r(z£(s))). The assumption / ' > 0 implies f(x(s - r(x(s)))) < f(z£(s - r(z£(s)))). 
Consequently, 

(2.13) -px(s) + f(x(s - r(x(s)))) < -pze(s) + f(ze(s - r(z£(s)))) + e. 

Combining (2.12) with (2.13), we conclude z£(s) > x(s). This contradiction com-
pletes the proof. • 

Our next goal is to prove that if 0 and 0 belong to some compact invariant 
subset of X and 0 < 0, then 0 <jp- 0. In order to achive this purpose we need the 
following two lemmas. 

Lemma 2.6. Ifx:R—> [—A, A] and y : M —> [- A, A] are two solutions of Eq. 
(1.1), then the difference z = x — y satisfies the linear equation 

(2.14) z(t) = a(t)z(t) + b(t)z(t - r(x(t))) 

for all t e R, where a : R —• R and b : R —* R are continuous and bounded 
functions defined by 

a(t) = - p - [ f'[sy(t - r(x(t))) + (1 - s)y(t - r(y(t)))]dsx 
Jo 

(2-15) [ y'[s(t - r(x(t))) + (1 - s)(t - r(y(t)))]dsx 
Jo 

[ r'[sx(t) + (1 — s)y(£)]ds 
Jo 
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and 

(2.17) 

(2.16) b(t) = f1 f'[sx(t - r(x(t))) + (1 - s)y(t - r(z(t)))]ds. 
Jo 

Proof. Consider the solutions x : R [ -A, A] and y : R —> [ - A, A] of Eq. 
(1.1). For the difference z = x — y, we have 

z(t) = -pz(t) + f(x(t - r(x(t)))) - f(y(t - r(y(t)))) 

= -fxz(t) + f(x(t - r(x(t)))) ~ f(y(t ~ r(x(t))))+ 

f(y(t - r(x(t)))) - f(y(t - r(y(t)))) for all t e R. 

Using the equality 

f(u) - f(v) = jT1 £sf(su + (1 - s)v)ds 

= / f'(su + (1 - s)v)ds x (u - v) for all u, v G R, 
Jo 

we obtain, for t G R 
(2.18) 

z(t) = -tJLz(t) + [ f'[sx{t - r(x(t))) + (1 - s)y(t - r(a;(t)))]dsx 
Jo 

z(t - r(x(t))) + [ f[sy(t - r(x(t))) + (1 - s)y(t - r(y(t)))]dsx 
Jo 

[y(t — r(x(t))) — y(t — r(y(t)))], 

y(t-r(x(t)))-y(t-r(y(t))) = 

(2'19) " f1 y'[s(t ~ r(x(t))) + (1 - s)(t - r(y(t)))]ds x [r(x(t)) - r(y(t))], 
Jo 

(2.20) r{x{t)) - r(y(t)) = [ r'[sx(i) + (1 - s)y(i)]ds x z(t). 
Jo 

Combining (2.18) with (2.19) and (2.20), it follows that z satisfies Eq. (2.14), where 
a(t) and b(t) are continuous, bounded functions defined by (2.15) and (2.16). The 
proof is complete. • 

Remark 2.7. If x : [ -R, oo) —» [—A, A] and y : [—R, oo) —> [—A, A] are two 
solutions of Eq. (1.1), then the difference z = x — y satisfies Eq. (2.14) for t> R, 

31 



where a : [R, oo) —* R and b : [R, oo) —» R are continuous and bounded functions 
defined by (2.15) and (2.16). 

Lemma 2.8. If x : R —> [—A, A] and y : R —> [-A, A] are two solutions of Eq. 
(1.1) on R and XQ = yo, then x(t) = y(t) for allteR. 

Proof. Set z = x - y. By Lemma 2.6, z satisfies Eq. (2.14), with a(t) and 6(f) 
given by (2.15) and (2.16). Moreover, 6(f) > 0 for all t G R since f > 0. Define 
v(t) = z(t)e~foa(s)ds for all f € R. Multiplying Eq. (2.14) by e~fo o ( s ) d s , we 
infer 

(2.21) v(t) = b(t)z(t - r(®(f))) e" £ a ( s ) d s for all t € R. 

The definition of v(t) yields 

z(t - r(x(t))) = v(t - r(x(t))) eJo a(s>ds for all t G R. 

Thus v(t) satisfies the linear equation 

(2.22) v(t) = c(t)v(t - r(x(t))) for all f G R, 

where c(f) is defined by c(f) = 6(f) e"^-'««» ° ( s ) d s for all f G R, and c(f) is 
continuous and bounded, and c(f) > 0 for all f G R. In order to show that z(t) = 0 
for all f G R, it suffices to prove that v(t) = 0 for all f G R. Note that v(t) = 0 
for all f > —R due to the uniqueness of solutions and xq = yo. Set r = inf{f : 
v(s) = 0 for all s > t}. We claim that r = —oo. Otherwise —oo < r < —R. 
We have v(t) = 0 for all f > r. Therefore v(t) = 0 for all f > r. Then, by Eq. 
(2.22), v(t — r(x(t))) = 0 for all f > r, which using the definition of r, implies 
T = inf{f — r(x(t)) : t > t}. On the other hand using the assumption r(u) > 0 
for all u G [—A, A], we obtain inf{f - r(x(t)) : t > r} < r - r(x(r)) < r. This 
contadiction shows that r = -oo. Consequently, v(t) = 0 for all f G R and the 
lemma is proved. • 

In the proofs of the above lemmas it is important that the delay r depends 
only on x(t) and not on xt. The hypothesis / ' > 0 seems to be also crucial. 

Corollary 2.9. Let B be a compact invariant subset of X, where invariance 
means that for any <f> G B, there exists a solution x4* of Eq. (1.1) on R with Xq = <f> 
and i f G R for allteR. If 0, 0 G B with <t>^i), then x{ ± xf for allteR. 

If x : R —̂• R is a solution of Eq. (1.1) with zo = 0, then we also denote this 
solution by x4>. This should not cause confusion. 
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The semiflow F has the following property. 

Proposition 2.10. If 0, 0 G X with 0 <p 0 , then there exists t0 > 0 such that 
F(t, 0) < F(t, 0 ) for all t > t0. 

Proof. Consider 0, 0 G X with 0 0 , and the solutions x = x* : 
[ -R , oo) [ -A , A] and y = x* : [-R, oo) [ -A , A] of Eq. (1.1) through 0 and 
0, respectively. The monotonicity of F implies x(t) < y(t) for all £ > —R. Our 
aim is to prove that x(t) < y(t) for all £ > 2R. Then it follows that xt(s) < yt(s) 
for all s G [ - R , 0] and for all £ > 3R, that is, F(£,0) < F(£,0) for all £ > 3R. 
Set z = x - y. By Remark 2.7, z satisfies Eq. (2.14) for £ > R with a(£) and b(t) 
defined by (2.15) and (2.16) for £ > R. We define v(t) = z(t)e~ f*a(s)ds for all 
£ > R. Instead of (2.21) here we obtain 

(2.23) v(t) = b(t)z(t -r(x(t))) e" /« o ( s ) d s for all £ > R. 

v(t) satisfies the equation 

(2.24) i)(t) = c(t)v(t - r(x(t))) for all £ > R, 

_ rt . . . 
where c(£) is defined by c(£) = b(t) e J*-*•(*(*))a 3 3 for all t> R. The assumption 
0 <P 0 implies X2R ± y2R, that is, Z2R ± 0. By the definition of v, it follows that 
V2R ± 0. Since V(t) < 0 for all £ > -R, there exists u G [i2,2R] such that v(u) < 0. 
Having v(t - r(x(t))) < 0 for all £ > R and c(£) > 0, by (2.24), we deduce v(t) < 0 
for all £ > R. Therefore v(t) < v(u) < 0 for all £ > u. Hence x(t) < y(t) for all 
£ > 2R. The proof is complete. • 

Proposition 2.5 and Proposition 2.10 imply that F is MOP. 

Proposition 2.11. The semiflow F is MOP, that is, it is monotone, and for every 
0, 0 in X with 0 < f 0 , there exist to > 0 and neighbourhoods U of <j> and V of 0 
such that F(to,U) < F(t0,V). 

Proof. We have already shown the monotonicity of F in Proposition 2.5. 
Consider 0, 0 in X with 0 <j? 0 . Proposition 2.10 implies that there exists 
to > 0 such that F (to, 0) -C F(£o,0). There are neighbourhoods U of F (to, 0) 
and V of F (to, 0 ) such that U V. By the continuity of F (to, •), there exist 
neighbourhoods U of 0 and V of 0 such that F(to,U) C U and F (to, V) C V. 
Consequently, F(t0,U) < F(t0, V). Hence F(t0,U) < F(t0, V) as required. • 
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As the proof of Proposition 2.11 shows, we have also proved that for all 0, 0 
in X with 0 <p 0 , there exist to > 0 and neighbourhoods U of 0 and V of 0 such 
that F(to,U) < F(to, V). Since t0 can be choosen 372, by Proposition 2.10, we 
conclude the following property of F. 

Remark 2.12. If 0, 0 G X with 0 <p 0, then there exist neighbourhoods U of 
0 and V of 0 such that F(3R,U) < F(372, V). 

Our next goal is to prove that each point in X can be approximated either 
from below or from above in X. In order to do this, we need one more property 
of the semiflow F. 

Proposition 2.13. if 0, 0 G X with 0 < 0 and t > 0, then F(t, 0) « F(t ,0) . 

Proof. Consider 0, 0 G X with 0 0, and the solutions x = x^ : [—72, oo) —> 
[-A, A] and y = x^ : [-72, oo) [-A, A] of Eq. (1.1) through 0 and 0, re-
spectively. Suppose by way of contradiction that there exists s > 0 such that 
x(t) < y(t) for all 0 < £ < s and x(s) = y(s). Clearly, ±(s) > y(s). We have 
x(s — r(x(s))) < y(s — r(x(s))) = y(s — r(y(s))) since 0 << 0 and r is positive on 
[—A, A], The assumption / ' > 0 implies f(x(s - r(x(s)))) < f(y(s - r(y(s)))). 
Therefore x(s) -y(s) = f(x(s-r(x(s))))-f(y(s-r(y(s)))) < 0. This contradiction 
completes the proof. • 

Proposition 2.14. Each point in X can be approximated either from below or 
from above in X. 

Proof. Let 0 be in X. Define 0n(s) = min{A, 0(s) + and 0n (s) = 
max{-A, 0(s) — for all s G [-72,0] and n G N \ {0}. We prove that 0 can 
be approximated either from below by a subsequence of (0n)?° or from above by 
a subsequence of (0n)f° in X. Clearly, 0 n and 0 n are in X for all n G N \ {0}, 
and 0n —* 0 and 0 n —> 0 as n —> oo. First we show that for every n G N \ {0}, 
either 0 n <F 0 or 0 <P 0n- As for every n G N \ {0}, 0 n <C 0n , Proposition 
2.13 implies that for every n G N \ {0} and t > 0, F(t, 0 n ) < F(t, 0n). Hence it 
follows that for every n G N \ {0}, either 0 n <jr 0 or 0 0n . Therefore there 
is a subsequence (rik) such that either 0nfc < F 0 for all A: G N \ {0} or 0 <jp- 077fc 

for all k G N \ {0}. Without loss of generality assume that 0 <F 4>nk for all 
k G N\{0} . By Remark 2.12, for all k G N\{0} , there is a neighbourhood Uk of 0 
such that F(3R,Uk) < F(3R, 4>nk)- Since 0nfc —> 0 as A; —• oo, we obtain that for 
all fc G N \ {0}, there exists I G N \ {0} such that 0nfc+i G Uk- Consequently, for all 
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k G N \ {0}, there exists I G N \ {0} such that F(3R, 0nfc+J) < F(3R, 0 n J . This 
implies that for all k G N \ {0}, there exists I G N \ {0} such that 0nfc+i <p <j>nk-

Now it is clear how to choose a subsequence (0nfcj.) such that it approximates 0 
from above. • 

It remains to show the following. 

Proposition 2.15. For each 0 in X, the orbit 0 (0) of 0 has compact closure in X. 
Furthermore, for each 0 in X and for each sequence (0n)i°, which approximates 
0 either from below or from above in X, Un>iu>(0n) has compact closure in X. 

Proof. The first assertion follows by the Arzela-Ascoli theorem using the fact 
that lip(a:f) < M for all t > R. For the second assertion notice that, for all 0 in 
X, A;(0) is a nonempty, compact, and invariant set, and, for all 0 in X, CJ(0) is 
contained in the set of all functions 0 in X with lip(0) < M. Thus, for a sequence 
(0n)i°, which approximates 0 either from below or from above in X, Un>iw(0n) 
is also included in the set of all functions 0 in X with lip(0) < M, which by the 
Arzela-Ascoli theorem is compact. Hence Un>ia>(0n) is compact in X as well. • 

The set of equilibrium points of F is E = {0 G X : 0(s) = 0(0) for all s G 
[—R, 0], and /(0(0)) = p0(O)}. Note that for all 01, 02 G E with 0i # 02 , we 
have either 0i < 02 or 02 < 0i. According to Claim 2 (Section 3) an omega 
limit set cannot contain two points 01, 02 such that 0i < 02 or 02 < 01. Then it 
follows that for all 0 in A", the set cj(0) fl E has at most a single point. Therefore 
the set of quasiconvergent points Q coincides with the set of convergent points C. 
Consequently, Theorem 1.1 states in this special case: 

Theorem 2.16. Under hypotheses (HI) on f and r, X = IntC, that is, IntC is 
dense in X. 

Note that in general X ^ C. Krisztin, Walther and Wu [41] have shown the 
existence of periodic orbits in the case r = 1 for certain p, / , and r. A similar 
result is proved by Mallet-Paret and Nussbaum [60,61], Kuang and Smith [47,48], 
and Arino, Hadeler and Hbid [3] in the stat-dependent delay case with a negative 
feedback condition. For the case r = r(x(t)) with a positive feedback condition 
Chapter 4 contains an analogous result. Krisztin and Arino [39] have shown that 
there exists a smooth disk of nonquasiconvergent points for the case r = r(x(t)) 
with negative feedback condition. A similar result is expected for Eq. (1.1) in the 
positive feedback case. 
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3.3 Proof of the main result 
Hereafter we suppose that assumptions (AI)-(A5) of Theorem 1.1 axe satisfied. 

The proof of Theorem 1.1 consists of the following steps. 

Claim 1. 
(i) If $(T, x) > x for some T > 0, then u(x) is a T-periodic orbit 

(ii) If $(£, z) > x for t belonging to some nonempty open subset of (0, oo), then 
there exists p£ E such that $(£, z) —»p as t —• oo. 

(Hi) If $(T, z) z for some T > 0, then there exists p £ E such that $(£, z) —> p 
as t —> oo. 

Proof. The proofs of assertion (i) and (ii) can be found in Smith [65, The-
orem 2.1]. To prove (iii) consider z <$ $(T,z). Since $ is MOP, there exist 
neighbourhoods U of z, V of $(T, z), and t0 > 0 such that $(£o,W) < $(£o, V). 
As there exists e > 0 such that $(£, z) £ V for alii £ (T - e, T + e), it follows that 
$(£0 ,z) < $(£0 ,$(t ,x)) for allt £ ( T - e , T + e). Case (ii) implies $(t ,z) - * p e E 
as £ —» oo. • 

Claim 2. An omega limit set cannot contain two points x and y such that x <y. 

Proof. Suppose by way of contradiction that there are z, y in u(z) such 
that x < y. Then z <$ y because co(z) is a compact, invariant subset of X. 
As $ is MOP, there exist neighbourhoods U of z, V of y, and to > 0 such that 
$(t0,U) < $(io,V). Choose tx > 0 such that $(£1,2) G U and t2 > £1 such 
that $(£2,2) G V. Since $(£,z) G V for all £ G (£2 - e,t2 + e) and for some 
e G (0, t2 — ti), it follows that $(£0 + £i ,z) < $ (£ 0 , $ (£ ,2 ) ) = $ ( £ - £ i , $ ( t 0 + £i ,z)) 

for all £ € (t2-e, t2+e). By Claim l(ii), $(£, z) p£ E ast—»00. Thus u(z) = p 
and x = y, which is a contradiction. • 

An immediate consequence of Claim 2 is that an omega limit set cannot contain 
a maximal (minimal) element. 

Claim 3. Ifa£ u(x) and u(x) < a (a< CJ(Z)), then u(x) = a. 

Proof. Consider a £ u(x) and u(x) < a. Suppose that there exits b £ u(x) 
such that b a. Then b < a. Since b and a are in u>(z), we have obtained a 
contradiction to Claim 2. • 

Claim 4. If x <$ y, tk —> 00, $(£fc,z) —> p, and $(£fc,y) —• p as k 00, then 
peE. 
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Proof. Let x <$ y. Since $ is MOP, there exist neighbourhoods U of x, 
V of y and to > 0 such that $(to,W) < $(to,V). Let 5 > 0 be so small that 
{ $ ( s , z ) : 0 < s < 5} C U and ($(s ,y) : 0 < s < i } c V . Then 

(3.1) $(to + s, x) < $(to + s,y) for all s and s in [0,5]. 

Consider s = 0 in (3.1). Thus, $(t0 + s,x) < $(t 0 ,y) for all s in [0,5]. The 
monotonicity of $ implies $(tk — to + to + s, x) < $(tk — to + to, y) for all s in 
[0,5] and for all large k. Thus $(s, $(tfc, x)) < $(tk, y) for all s in [0,5] and for 
all large k. Passing to the limit as k —• oo, we infer $(s,p) < p for all s in [0,5]. 
Considering s = 0 in (3.1) and arguing as above, we obtain p < $(s ,p) for all s in 
[0,5]. Thus, $(s,p) = p for all 0 < s < 5 and therefore, for all s > 0, so p G E. • 

Claim 5. If x <$ y then u(x) fl u(y) C E. 

Proof. Consider p G u>(x) D cj(y). Then there exists a sequence (tk)f3 such 
that tfc —» oo and $(tk,x) —» p as k —• oo. ($(£&, y))f° is a sequence in the 
compact set O(y). By passing to a subsequence if necessary, we can assume that 
$(tk,y) —* q as k oo. The monotonicity of $ implies $(tk, x) < $(tk, y) for all 
integers k > 1. Letting k —> oo, we find that p < q. The case p < q contradicts 
Claim 2, since p, q G w(y). Hence p = q and by Claim 4, p G E. • 

Claim 6. Let Ki and K2 he compact subsets of X satisfying K\ K2. Then 
there are open sets U and V, with K\ cU and K2 c V, and t\ > 0, e > 0 such 
that $(t + s,U)< V) for all t > tx and for all0<s< e. 

Proof. Fix an x in K\. Since $ is MOP, for each y G K2, there exist neighbour-
hoods Uy of x, Vy of y, and ty > 0 such that $(£, Uy) < $(i , V )̂ for all t > ty. As K2 

is compact and{Vy}ye/^2 is an open cover of K2, we may choose a finite subcover, 
K2 C U^V j , , , where y* G K2 for all 1 < i < n. Set V = U^l

=1V3/i, U = n?=1Uyi 

and t = maxi<i<n tVi. Then $(t,U) c $(t,Uyi) < $(£, VyJ for all t > t and for 
all 1 < i < n. It follows that $(t,U) < V) for all t > t. Denote Vx = V 
and Ux = U to emphasize the dependence of these open sets on the point x G 
Similarly, tx = t. We have obtained that for each x G K\, there exist neighbour-
hoods Ux of x, Vx of K2, and tx > 0 such that $(t,Ux) < $(£, Vx) for all t > tx. 
Again, as {Ux}x^Ki is an open cover of K\, we may extract a finite subcover, 
Ki C U ™ ^ , where xt G Kx for all 1 < i < m. Set U = U^W«,, V = n ™ ^ , 
and ti = maxi<i<mtXi. Since $(£,V) C $(t,VXi) and $(t,UXi) < $(t,VXi) for 
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all t > t\ and for all 1 < % < m, we conclude that <b(t,UXi) < $(£, V) for all 
t > h and for all 1 < % < m. Thus, $(£,Zf) < $(£,V) for all t > fy. In order 
to obtain the stronger conclusion of the claim, we observe that, by the continuity 
of for each x G K\, there exist ex > 0 and a neighbourhood Wx of x such 
that $([0, ex) x Wx) c U. As {y\ix}xeK! is an open cover of K\, we may choose 
a finite subcover, K\ C U ^ W ^ . Denote U' = and e = mini<i<m e^. 
If x G U' and 0 < s < e, then x G WI i for some i. Thus $(s ,x) G U. There-
fore, $([0,e) x U') C U and then $(s,Z/) C W for all 0 < s < e. It follows that 
$(£ + s, W) C $(£, U) < $(£, V) for all £ > ii and for all 0 < s < e. • 

Claim 7. If x < y, £fc —» oo, $(£fc,x) —» a, $(£fc,y) —» b as k —» oo and a < 6, 
then 0(a) <$ 6. 

Proof . For u G O(x), i> G O(y) with u < v, define 

J(u, v) = sup{s > 0 : $(£, it) < v, 0 < £ < s}. 

Our aim is to prove that J (a, b) = +oo. First we verify two properties of J(u,v). 
(Pi) «/($(£, u), $(£, v)) is monotone nondecreasing in £. 
To show (Pi), it suffices to establish «/($(£, tt),$(£, u)) > J(u,v) for all £ > 0. 

We have $(s, u) < v for all 0 < s < J(u,v). The monotonicity of $ implies 
$(s, $(£, u)) < $(£, v) for all 0 < s < J(u, v) and £ > 0. Thus, J($(£, u), $(£, u)) > 
J(u, v) for all £ > 0. 

(P2) If Ufc < Vk, Uk G 0(x), Ufc G O(y), and ujt u, Vk v, then 
limsupfc^oo J(uk,vk) < J(u,v). 

If «/(it, v) = oo, then the assertion is obvious. Assume J(u, v) < oo. Suppose 
by way of contradiction there exists e > 0 such that lim s u p ^ ^ J(uk, Vk) — e > 
J(u,v). Let (h) be a sequence in N with ki —• oo as i —» oo such that 
limsupjt^oo J(uk,vk) = lim^oo J(uki,vki). Consequently, J(u,v)+e < J(uki,vki) 
for all large i. From the definition of J(ufci, UfcJ it follows that $(s,UfcJ < Ufc. for 
0 < s < J(u, v) + e and for all large i. Letting i —* oo, we obtain $(s, u) < v for 
0 < s < J(u, v) + e, which contradicts the definition of J(u, v). 

Denote a = limt_»oo 7(4»(£, x), $(£, y)), which exists in [0, oo] according to (Pi). 
By (P2), we obtain a < J(a,b). Suppose J(a,b) < 00. For 0 < s < J(a,b), 
$(s, a) < b. Moreover, $(s, a) < 6 for 0 < s < J (a, b). Otherwise b G u;(x), by the 
invariance ofw(x), a G u>(x), and a < b, in contradiction to Claim 2. We assert that 
$(s, a) <$ b for 0 < s < J(a,b). Indeed, by the invariance of w(x), 0(a) C w(x). 
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So $(s, a) is in u(x) U u(y) for 0 < s < J(a, b) and b is also in u(x) U u)(y). As 
u(x) U u(y) is compact and invariant, we deduce $(s, a) <$ b for 0 < s < J(a, b). 
Set K. = {$(s, a) : 0 < s < J(a, b)}. K. is compact and K, b. Thus, Claim 6 
implies that there exist tx > 0, e > 0 and open sets U, V with KcU and b G V such 
that $(£+s, U) < $(t, V) for all t > tx and 0 < s < e. Since $(tfe, y) -> b as k -» oo, 
there exists an integer ho such that $(tk,y) G V for all k > ko. As $(t k ,x) —> a 
as k —> oo, $(s, $(ifc,x)) $(s ,a) uniformly in s G [0, J(a,b)] as k —> oo. 
Consequently, there exists kx > 0 such that $(s, $(tk,x)) G U for all k > kx 

and for all s G [0, J(a, &)]. We infer $(t + s, $(s, $(£fc, x))) < $(t, $(ifc, y)) for all 
t > tx, for all 0 < s < e, for all k > k2 = max{fco, kx}, and for all s G [0, J(a, 6)]. 
On rearranging the arguments, we conclude $(s + s, $(£ + tk, x)) < $(£ + tk, y) 
for all t > tx, for all k > k2 and for all 0 < s + s < e + J(a,b). It follows 
that J($(t + £fc,x),$(£ + tk,y)) > J(a,b) + e for all t > tx and for all k > k2. 
Letting k —> oo, we obtain a > J (a, b) + e. But J(a, b) > a, which provides a 
contradiction. Hence J(a, b) = oo. Then 0(a) < b, that is, $(s, a) < b for all 
s > 0. Otherwise, as we have shown above, we get a contradiction to Claim 2. 
Moreover, 0(a) <$ b. Indeed, by the invariance of u(x), $(s, a) G UJ(X) for all 
s > 0, thus, a) G u(x) U u(y) for all s > 0, and b is also in u(x) U u(y). The 
compactness and invariance of u)(x) Ua;(y) implies the desired assertion. • 

Claim 8. If u, v G X and there exists x G u(u) such that x < OJ(V), then 
u(u) U;(v). Similarly, if there exists x G U(u) such that OJ(V) < x, then 
u(v) <$ u(u). 

Proof. First note that x G u(u), x < u>(v) implies x <$ u>(v). Indeed, we have 
x G UJ(U) U U(v) and y G a;(it) U U(v) for all y in U(v). By the compactness and 
invariance of u(u) U u>(v), x y for all y G w(v), that is, x u(v). Applying 
Claim 6, we obtain that there exist to > 0 and neighbourhoods U of x and V 
of u(v) such that $(to,U) < $(io, V). Since a;(i;) C V and u(v) is invariant, 
$(toM) < w(i>)- As x G u)(u), there exists tx > 0 such that $(ti, it) G U. 
Thus, $(to + ii,it) < ui(v). The monotonicity of $ and invariance of cj(V) imply 
$(io + tx + s, u) < u(v) for all s > 0. Hence UJ(U) < u(v). We assert that 
u;(u) < u>(v). Suppose that there exists z in u(u) fl w(t;). Due to the fact that 
z < UJ(V) and z G cu(v), by Claim 3, we find that z = U(v). Similarly, since 
u(u) < z and z G u(u), we get z = a;(it). On the other hand x < w(v) implies 
x < z, and x G u(u) implies x = z, which is impossible. Finally, w(it) <$ u(v) 
because of the compactness and invariance of u>(u) U u(v). • 
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Claim 9. If x < y, tk oo, $(tfc,x) —• a, $(tk,y) —• b as k —> oo and a < b, 
then u(x) <$ u>(y). 

Proof. According to Claim 7, 0(a) <$ 6. Hence a;(a) < b. We assert that 
a; (a) < b. Suppose b £ u(a). Then a; (a) = b, by Claim 3. Since a < u(a) and 
a £ LU(X), Claim 8 implies U(x) a;(a). This is impossible as u(a) C U(x). 
Consequently, a; (a) < b. Due to the fact that b is in u>(y), by Claim 8, we obtain 
u(a) <$ oj(y). Since every z £ u(a) belongs to u(x) as well, Claim 8 gives 
u(x) <$ w(y). • 

Claim 10. If x y then either 
(a) u(x) <$ u(y) or 
(b) u(x) = u(y) C E. 

Proof. If u(x) = uj(y), according to Claim 5, we obtain u(x) = u(y) C E. 
If u(x) ^ u(y), then we may suppose that there exists q £ u(y) \ u>(x). The 
other case is treated similarly. There exists a sequence (tfc) such that tk oo 
and —> q as A; —> oo. Since (<&(tfc,z))f° is a sequence in the compact set 
0(x), we may assume, by passing to a subsequence if necessary, that $(tk,x) —> p 
as k —> oo. The monotonicity of $ implies x) < for all k. Letting 
k —> oo, we get p < q. We assert that p < q. Indeed, if p = q, then q £ u>(x), 
which is a contradiction. Thus, by Claim 9, it follows that u(x) <$ cj(y). • 

Claim 11. Ifxo £ X can be approximated from below in X by a sequence (xn)f°, 
then there exists a subsequence (xn)i° of (zn)f° such that xn <$ zn+i <$ XQ for 
all integers n > 1, with xn —» xo as n —> oo, satisfying one of the following 
properties. 

(a) There exists UQ £ E such that 

uj(xn) <$ uj(xn+i) <$ uo = u>(xo) for all integers n > 1 

and 
lim dist(uo,u(xn)) = 0. 

n—>oo 

(b) There exists UQ £ E such that 

u(xn) = uo <$ (j(xo) for all integers n > 1. 

Ifu£E and u < $ U)(XQ), then u < UQ. 
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(c) u(xn) = u(xo) C E for all integers n > 1. 

An analogous result holds if XQ can be approximated from above in X. Claim 
11 describes three alternatives for the point xo: Xo can be a convergent point by 
(a), or xo can be a quasiconvergent point by (c), or xo can belong to the closure 
of the set of convergent points according to (b). 

Proof. By Claim 10, there exists a subsequence (®n)i° of (xn)i° such that 
either u>(xn) = u)(xn+i) C E for all integers n > 1 or u(xn) <$ w(xn + i) for all 
integers n > 1. 

Consider the case u(xn) <$ w(xn+i) for all integers n > 1, which is equivalent 
to oj(xn) < u(xn+1) for all integers n > 1, by the invariance and compactness of 
UJ(xn) Uu( i n + i ) , It follows that U(xn) <$ OJ(XQ) for all integers n > 1. Indeed if 
there exists no > 1 such that u>(xno) = u;(xo), then uj(xn) = OJ(Xo) for all n > no, 
which is a contradiction. Set Q = {y : y = limn^oo Vn, yn £ w(xn)} c Un>ia;(xn). 
Q, is nonempty due to the fact that (yn)i° is a monotone sequence in the compact 
set Un>i^(®n)- We claim that fl consists of a single element, that is, fi = {no}. 
Indeed, if there axe y and n in Vt so that yn —• y and un —* u as n —» oo, where 
yn, un € u(xn), then u(xn) u(xn+i) implies yn < n n + i and un < yn+1 for 
all integers n > 1. Letting n —> oo, we infer y < u and u < y, that is, y = u. 
We claim that no € E. Consider yn € u/(xn). Then yn —» no as n —• oo. By the 
continuity of $(£, yn) —> $(£,no) as n —» oo. Since G cu(xn) by the 
invariance of u(xn), we obtain $(£, yn) —» no as n —> oo. Thus, $(£, no) = no for 
all t > 0. It follows from the definition of fi and the compactness of Un>ia;(xn) 
that limn-.oo dist(no, w(xn)) = 0. Finally, u>(xn) <$ u(xo) for all integers n > 1 
implies no < cu(xo). If no G w(xo), then by Claim 3, we get u>(xo) = no, which 
is case (a). Suppose no ^ cu(xo). Then no < U(XQ), that is, no <$ a>(xo) by 
the invariance and compactness of {no} U o;(xo). Claim 6 implies that there is a 
neighbourhood W of cj(xo) and to > 0 such that no = no) < W) for all 
t > to. There exists t\ > 0 such that $(£i,xo) G W. By the continuity of $(ti, •), 
there is an integer no > 1 such that xn) G W for all n > no. Consequently, 
no < $(£ — £i, $(ii , xn)) for all t > £o + t\ and for all n > no- Letting £ —> oo, 
we obtain no < w(xn) for all n > no. Since cj(xno+i) uj(xk) for all large k, 
it follows that w(xno+i) < no- Thus, no < v(xno) u;(xno+i) < no, which is a 
contradiction. 

Consider the case u(xn) = cj(xn+i) c E for all integers n > 1. As xn xo, 
Claim 10 implies that either u(xn) = u>(xo) C E for all integers n > 1, which is 
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case (c), or u(xn) <$ U(XQ) for all integers n > 1. Suppose u(xn) <$ a/(xo) for 
all integers n > 1. Let ito G cj(xi) = u>(xn) C E. Consequently, uo <$ w(xo). 
Arguing exactly as above, we obtain that there exist an integer no > 1 and t2> 0 
such that uo < $(£, xn) for all t >t2 and for all n > no- Then ito < w(xn) for all 
n > no. Since ito G u(xn), by Claim 3, u(xn) = tto for all n > 1. Finally, if it G E 
and it <$ ui(xo), then arguing as above, we find that it < u)(xn) for all n > uq. AS 
u(xn) = uo, it follows that it < ito- • 

The next result gives some information which strengthens the assertion con-
cerning case (b) of Claim 11. 

Claim 12. In case (b) of Claim 11 we have in addition the following properties: 
(i) There exist a neighbourhood O of uo, to, £i > 0, and an integer n > 1 such 

that 
$(£,0) < $(t + t i ,x n ) for all t> t0. 

(ii) There is a neighbourhood U of XQ with the following property: for each x G U 
with x <$ xo, there exist a neighbourhood V of x in U, an integer N, and 
T > 0 such that 

uo < $(£, V) < $(£, xN) for allt>T. 

(iii) xo G IntC. 

Proof. Proof of (i). In case (b), we have ito <$ v(xo). Thus Claim 6 implies 
that there exist a neighbourhood W of CJ(XO), O of ito, and £o > 0 such that 
$(£,0) < $(£, W) for all £ > £0. There exists tx > 0 such that $(£i,x0) € W. By 
the continuity of $(£i, •), if follows that there exists an integer n > 1 such that 
$(¿1, Xn) e W. Then $(£, O) < $(£ + tuxn) for all £ > t0. 

Proof of (ii). We choose a neighbourhood U of XQ such that $(t\,U) C W. 
Let i 6 W with x <$ xo- Since $ is MOP, there exist a neighbourhood V of x 
with V C U, M of x0, and £2 > 0 such that $(£, V) < $(£, M) for all £ > t2. As 
there is an integer N such that XJV € M, we get $(£, V) < $(£, XJV) for all £ > t2. 
By (i), u0 = $(£, ito) G ^(£,0) < $(£,W) for all £ > £0. Due to the fact that 
$(£i,V) C $(£i,W) C W, we obtain u0 G $(£,0) < $(£ + £i,V) for all £ > £0. 
Hence u0 < $(£, V) < $(£, XJV) for all £ > T, where T = £0 + £1 +12 . 

Proof of (iii). Since u(xn) = ito> ^(t,Xff) —> 1x0 as £ —* 00. Thus, by (ii), we 
obtain U(v) = UQ for all v in V. Therefore, for all x G U with x <$ XQ, we get 
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u(x) = UQ and x G IntC. If we consider the sequence (xn)f°, which approximates 
xo from below, then xn G IntC for all large n. Hence xo G IntC. • 

Now we are in the position to prove Theorem 1.1. 
Proof of Theorem 1.1. Suppose XQ G <T\Int Q. Then there exists a sequence 

(Vn)T> such that yn G X \Q and yn —• xo as n —» oo. By assumption (A3) of 
Theorem 1.1, for each n, yn can be approximated either from below or from above 
in X. Consider the former case as the latter case is similar. Using Claim 11, 
we obtain, by passing to a subsequence if necessary, that for each n, there exists 
a sequence such that x^ <$ yn for all integers m > 1 and 
x^ —»• yn as m —> 00. For each n, yn Q; therefore case (b) of Claim 11 must 
hold. Claim 12(iii) implies that for each n, yn G IntC. Hence xo G IntC, which 
completes the proof. • 
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Chapter 4 

Periodic Solutions and Connecting Orbits 

4.1 Basic facts 
Consider the differential equation with state-dependent delay 

(1.1) x(t) = -fj,x(t) + f(x(t-r)), r = r(x(t)), 

where p > 0, / and r are smooth real functions with r(0) = 1 and f > 0. 
In this chapter we prove that there are a nontrivial periodic orbit and a homo-

clinic orbit connecting 0 to the periodic orbit. Eq. (1.1) with constant delay, i.e., 
r = 1, was widely studied in the monograph [41] and in the papers [36,37,40,42,46]. 
In these works the fine structure of the global attractor is described by using recent 
results of the geometric theory of infinite dimensional dynamical systems. The sit-
uation considered in the present paper is more complicated. Although most of the 
ideas from the above mentioned results can be applied, nontrivial modifications 
are necessary in the standard techniques. The main technical tools are as follows: 
the result of monotone dynamical systems applicable for Eq. (1.1) in Chapter 3; 
a local unstable manifold at zero for Eq. (1.1) in [38]; and a discrete Lyapunov 
functional counting sign changes given analogously to that of [39]. 

The following definitions and notations will be used in this chapter. The sym-
bols N and R+ denote the nonnegative integers and reals, respectively. R and Z 
stand for the set of all reals and all integers, respectively. 

The distance of two sets M and N is defined as 

d i s t ( M , N ) = sup d i s t ( m , N ) = sup inf d(m,n). 
m&M meMn^N 

A trajectory of a map g : M —* N, M C N, is a finite or infinite sequence 
(xj)j€/nz, / C I an interval in M, with Xj+1 = g(xj) for all j e I n Z with 
j + 1 e I n Z. 

If £ is a Banach space and 8 > 0, then Bs(£) denotes the open ball in £ with 
radius 8 and center at 0. 

A simple closed curve is a continuous map c from a compact interval [a, 6] C R, 
a < b, into Rn so that c| [a,fa) is injective and c(a) = c(b). The set of values of a 
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simple closed curve c, or trace, is denoted by |c|. The Jordan curve theorem guar-
antees that the complement of the trace of a simple closed curve c in R2 consists of 
two nonempty connected open sets, one bounded and the other unbounded, and |c| 
is the boundary of each of these components. We denote the bounded component 
by int(c) and the unbounded one by ext(c). 

Spectra of continuous linear maps T : £ £ axe defined as spectra of their 
complexifications. If a decomposition £ = T © Q into closed linear subspaces is 
given, then Pr? : £ —» £ and Prg : £ —• £ denote the associated projection 
operators along Q onto T and along T onto Q, respectively. 

For given reals a, b with a < b, C([a, 6], M) denotes the Banach space of continu-
ous functions 0 : [a, b] —> R with the norm given by ||0||c([a,6],R) — maxa<t<6 |0(£)|. 

C1([a, 6],R) is the Banach space of all C1-maps 0 : [a, b] —* R with the norm 
given by 

||0||c1([o,6]1R) = ||0||c([a,6],R) + ||0||c([a,6],R)-

Let $ : R + x £ —• £ be a semiflow. A set A C £ is called positively invariant if 
$(R+ x A) C A. It is called invariant (resp. negatively invariant) if for every x G A 
there is a complete phase curve, i.e., a map 7 : R —» £ with 7 ( t+s ) = $(£, 7(s)) for 
all s G R and t > 0, which satisfies 7(0) = x and 7(R) C A (resp. 7(( -oo, 0]) C A). 

We recall the hypotheses from Chapter 3: 

(HI) 

/ x > 0 , 

/ G C1(R, R), / (0) = 0, f'(u) > 0 for all u G R, 

there exists A > 0 such that | /(u)| < p\u\ for all |u| > A, 

r G C^R, R), r(0) = 1, r([-A,A]) C (0,oo). 

As in the previous chapter set 

R= max r(u), M= max | - p u + f(v)\, C = C([-R,0],R), 

and for 0 G C define 

lip(0) = sup{|0(s) - 0(£)| • \s - il"1 : s, t G [ - R , 0], s ^ i}. 

The set K = {0 G C : 0 < 0} is a convex cone in C. We have (0,00)K c K, 
K n (-K) = {0}, and K = {0 G C : 0(s) > Ofor all s G [ - R , 0]} is the interior 
of K. We introduce a closed partial order relation on C in the same way as in 
Chapter 3, that is: 
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0 < 0 whenever 0 — 0 G R , 
0 < 0 whenever 0 < 0 and 0 ^ 0 , and 

o 
0 <fC 0 whenever 0 — 0 G R. 
The relations 0 > 0, 0 > 0 and 0 » 0 are defined analogously. 
Let the subspace of elements 0 of C with lip(0) < M and 0(s) G [—A, A], 

s G [—R, 0], be denoted by Y. Then Y is a complete metric space. By the Arzela-
Ascoli theorem, Y is compact. 

We recall some basic properties from Chapter 3. Observe that Y C X, where 
X is defined in the previous chapter. Clearly the results obtained for X in Chapter 
3 remain valid for Y. 

Proposition 1.1. 
(i) For every 0 G Y, there is a unique solution x* : [—R, oo) —> [—A, A] of Eq. 

(1.1) through 0, that is x* is a solution of Eq. (1.1) and = 0-
(ii) The map F : R+ x Y 3 (t, 0) t-* xf G Y defines a continuous semiffow on Y. 

(iii) F is monotone, that is, F(t, 0) < F(t, 0) whenever 0 < 0 and t > 0. 
(iv) If 0, 0 G Y with 0 < 0 and F(t, 0) ^ F(£, 0) for ail t > 0, then F(£, 0) < 

F(£,0) for all t>3R. 
(v) If<j>,i!)€Y with 0 0 and t > 0, then F(t, 0) < F(£, 0). 

(vi) If 0, 0 G Y with 0 < 0, then there exists 0* G Y such that 0 0* 0 and 
—> e as t —> oo, where e G Y is an equilibrium point. 

(vii) If c G M and x : (c, oo) —> [-A, A], y : (c, oo) —> [ -A, A] are two solutions of 
Eq. (1.1), then the difference z = x — y satisfies the linear equation 

for all t e (c + 2R, oo), wherea: (c + 2R,oo) M andfc : (c + 2R,oo) -» R are 
continuous and bounded functions defined by 

(1.2) i(£) = a(t)z(t) + b(t)z(t - r(x(t))), 

a(£) = - / x - f f'(sy(t - r(x(t))) + (1 - s)y(t - r(y(t)))]d 
Jo 

sx 

(1.4) 6(t) = f1 f'[sx(t - r(x(t))) + (1 - s)y(£ - r(®(t)))]d 
Jo 

s. 
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The statement also holds in case c = —oo, when we have (—00,00) instead of 
(c, 00) and (c + 272,00). 

(viii) If x : R —> [—A, A) and y : R -* [-A, A] are two solutions of Eq. (1.1) and 
xq = yo, then x(t) = y(t) for a/I £ G R. 

If x : R —* R is a solution of Eq. (1.1) with XQ = 0, then we also denote this 
solution by x T h i s should not cause confusion. 

Hereafter we need the increasing property of the function 11—• t—r(x(t)), where 
x is a solution of Eq. (1.1) with values in [—A, A]. Either one of the following two 
hypotheses guarantees the desired property of the above function on some interval. 

(H2) |r'(u)| < j j for all u G [-A, A}. 

{ r G C2([-A, A], R) and there exists c G (0,1) 

with r"(u) < cp(r'(u)) for all u G [-A, A]. 

Condition (H2') was introduced by Mallet-Paret and Nussbaum [60]. The advan-
tage of (H2') comparing to (H2) is that it is independent of / . In the remaining 
part of the paper we always assume that, in addition to (HI), either (H2) or (H2') 
holds. 

Lemma 1.2. Let x : R —> [—A, A] be a solution of Eq. (1.1). Suppose x(p) = 0 
for some p G R. Then ft(t- r(x(t))) > 0 for all t > p. 

The proof is the same as that of [39, Lemma 2.5]. 
Now consider the space C and the linear equation 

(1.5) x(t) = -p.x(t) + f'(0)x(t - 1). 

Although the map C 3 0 -p<f>(0) + /'(O)0(-r(0(O))) G R is not, in general, 
differentiable, Eq. (1.5) can be considered as the linearization of Eq. (1.1) at 0 (see 
Cooke and Huang [12] and also [10,27,71]). 

For each 0 G C, Eq. (1.5) has a unique solution x^ : [—72,00) —> R through 
0. Solutions of Eq. (1.5) define the Co-semigroup T : R + x C —> C given by 
T(t, 0) = x f . The spectrum of the generator of the semigroup (T(t))t>o coincides 
with the zeros of the characteristic function CB\>->\ + p, — f'(0)e~x G C. 
According to [14] all zeros are simple. There is one real zero Ao; the others form a 
sequence of complex conjugate pairs (A/., Afc), k > 1, with (2k — l)7r < ImA^ < 2kx 
and ReAfc+i < ReAfc < Aq for all integers k > 1, and Re Afc —> - 0 0 as k —* 00. 
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We assume as in [41] that 

(H3) /'(0) > f o r e (lT>27r) w i t h = A^tan^. 
COS U A 

According to [41], (H3) is equivalent to ReAi > 0. 
Choose (3 with max{0,ReA2} < P < ReAi. The real generalized eigenspace 

C/3< of the generator associated with Ao, Ai and Ai is 3-dimensional and it 
is given by the segments of solutions M 9 t •-» eXot G M and R 9 t 
eReAli(acos(ImAi)i+fesin(ImAi)£), a, b G R, of Eq. (1.5). Let C<p denote the real 
generalized eigenspace of the generator associated with the pairs (Afc, Afc), k > 2 . 

We have a decomposition C = Cp< © C<p into generalized eigenspaces of the 
generator of the semigroup given by Eq. (1.5). Cp< and C<p are T(t) invariant 
for t > 0. T(t) can be extended to a group on Cp<. 

4.2 The separatrix 

Let S denote the set of 0 G Y such that x* oscillates on [0, oo), that is 

S = { 0 G Y : (x^) - 1 (0) is not bounded from above}. 

Then S is positively invariant. Since 

Y\S = Ut>0F(t,-)-1(ku(-K)) 

is open, it follows that S is closed. The set S is a separatrix for the semiflow F in 
the sense that its complement Y \ S splits into the set of initial data for solutions 
which are positive on some unbounded interval, and into the set of initial data for 
solutions which are negative on some unbounded interval. 

Proposition 2.1. (Nonordering of S). For all 0, 0 in Y with 0 < 0 and F(t, 0) ^ 
F(t, 0) for all t > 0, either 0 £ S or 0 £ S. 

Proof. Assume that S contains elements 0 , 0 with 0 < 0 and F(t, <j>) ^ F(t, 0) 
for all t > 0. Then the positive invariance of S and Proposition 1.1 (iv) yield 
0 = x^R -C 0 = xfR with 0, 0 in S. Using Proposition l.l(vi), we find 0*, 0* G Y 
such that 0 0* -C 0* 0, xf —> ex and xf —* e2 as t —» oo, where ex, e2 G Y 
are equilibrium points. Denote x = x^*, y = x^* and z = x — y. Proposition 
1.1 (v) implies 0 zt for all t > 0. By Proposition 1.1 (vii) with c = —R, we find 
that z satisfies Eq. (1.2) with a(t) and b(t) defined by (1.3) and (1.4). 
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We show that at least one of the w-limit sets of 0* and 0* consists of a non-
zero equilibrium point. Suppose that both x and y converge to 0 as £ —> oo. Then 
a(£) —» - p and £>(£) —> /'(0) as £ —• oo. From (H3), we obtain p < /'(0). Hence 
there is e > 0 such that /'(0) — e > \i + e. It follows that there exists T > R so 
that 

(2.1) a(t) > -p - e for all £ > T, and b(t) > f'{0) - e for all £ > T. 

The choice of e ensures the existence of a real number A* > 0 such that 

A* = - p - e + ( / ' (0) - e ) e " « A \ 

For all 5 g R , <5eA*4 is a solution of the equation 

v(t) = -(/X + e)v(t) + (/'(0) - e)v(t - R). 

Fix 5 > 0 so that z(t) > ôex'1 for all £ G [T,T + R]. If the assertion z(t) > 5exu 

for all £ > T is not true, then there exists t* > T + R such that z(t*) = 5eyt' and 
z(t) > Se*'* for all £ G [T, £*). Clearly, z(t*) - 5\*eyt* < 0. On the other hand 
using (2.1), z ( f ) = <5ert* and z{t*-r(®(f ))) > ¿e

A* («'-'(«CO» > 6ex'^~R\ we 
find 

¿(£*) - S\*ex t* =[a(£*) + p + e]z(t*) + b(t*)z{t* - r(®(f ))) 

- ( / ' ( 0 ) - e ) * e A * <«*-*> 

=[a(f ) + p + e]z(t*) + (6(f) - (/'(0) - e)]*(f - r(®(f ))) 

+ [/'(0) - e][z(t* - r(®(f))) - Je^*"*) ] > 0, 

a contradiction. Therefore z(t) > ¿e**4 for all £ > T, which contradicts the 
boundedness of z. 

Assume that p G u>(0*) is a non-zero equilibrium point. As the equilibrium 
points of F are constant functions, either 0 p or p < 0. If 0 p there is £o > 0 
so that 0 < xf0 . Proposition l. l(v) yields xf0 -C xf0, and thus 0 «C xf for all 
£ > to. Hence 0 £ S in contradiction to 0 G S. If p < 0 there is to > 0 so that 
xfQ < 0. Proposition l. l(v) implies xf0 < xf0 , and thus xf < 0 for all £ > £0. 
Therefore 0 ^ S in contradiction to 0 G 5. Similarly, if p G w(0*) is a non-zero 
equilibrium point, then we obtain a contradiction. • 
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4.3 An unstable set of zero 
Recall that we have a decomposition 

where max{0, ReA2} < P < ReAi, Cp< is the real generalized eigenspace of the 
generator given by the spectral set {Ao, Ai, Ai}, while C<p is the real generalized 
eigenspace of the generator for the complementary spectral set {Xk, \ k : k > 2}. 

According to [38,Theorem 4.1], there exist positive numbers 5i, 52, a continu-
ously differentiable map w : Bs1(Cp<) —• C<p such that the graph of the map w 
(the local unstable /3-manifold) 

Wp = {0 +tu(0) : 0 G (Cp<)} C C 

has the following properties: 
(i) w{0) = 0, W(BSl(Cp<)) C Bs2(C<P), DW(0) = 0, BSl{Cp<) C Y, 

w(B6l(Cp<)) CY,WPC Y . 

(ii) Wp is invariant in the sense that there exists ¿3 > 0 so that for all 0 G Wp 
with ||0|| < ¿3, there is a solution x* of Eq. (1.1) on (—00,0] such that 
x$ = 0, xf G Wp for all t < 0, and e_ / 3 txf —» 0 as t -+ -00 . 

(iii) There are ¿4 > 0, ¿5 > 0 such that if 0 G B$4 (C) and there exists a solution 
x* of Eq. (1.1) on (-00,0] so that e'^xf G BSb(C) for all t < 0, and 
e~^xf -* 0 as t —> -00, then 0 G Wp. 

Denote Wp = Wp D {0 G C : || 0|| < 53} and define the set W = F(R+ x Wp). 
Clearly, W c Y. Now we establish some properties of W fl 5, the closure W of W 
and the closure WnS of W D 5. 

Proposition 3.1. 
(i) W and W D S are compact and invariant subsets ofY. 

(ii) W fl S \ {0} is nonempty and invariant. 

Proof. The proof of (i). The compactness of W and W fl S follows from the 
compactness of Y. Consider 0 G W and a sequence (0n)f° in W such that 0 n —> 0 
as n —* 00. By the definition of W and by Proposition l.l(viii), for each n G N 
there exists a unique solution xn : M —> R of Eq. (1.1) with XQ = 0 n and x™ G W 
for all t G M. Since W C Y, and Y is compact, by the diagonalization procedure 
there is a subsequence {xUk)^L1 of (a;71)!0 such that (xnk)(j£=1 uniformly converges 
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to a continuous function y : R —» [—A, A] as k —* oo on each compact subset of R. 
Clearly, yo = 0. Using Eq. (1.1) it easily follows that y is also differentiable and 
satisfies Eq. (1.1) on R. By Proposition l.l(viii), y is unique. From x"fc G W we 
find yt 6 W for all t G R. Therefore, W is invariant. 

Now let 0 G W n S and a sequence (0n)f° in W fl S with 0 n —» 0 as n oo. 
The definition of W guarantees the existence of solutions xn : R —> R of Eq. (1.1) 
with xft = 0 n and x? eW for all t G R. It also follows that x? G S for all £ G R 
because of the definition of 5 and the monotonicity of F. A subsequence of (xn)f° 
converging uniformly on compact subsets of R can be constructed as above. We 
obtain a solution y as above. Clearly, yt G W fl S for all £ G R and yo = 0. Thus, 
W fl S is also invariant. 

The proof of (ii). Let eA°" denote the element [-72,0] 3 s ex°3 G R of Cp<. 
Obviously, we find eo > 0 so that 

eeA°" + w(eex° ) G Wp for |c| < e0. 

From Dw(0) = 0 it follows that 

II w(eeA°')|| 
ee A0- 0 as e —> 0. 

Hence, for small e > 0 
eeA°' + w(eex° ) » 0 and 

— eeA°' + w(—eex° ) < 0 . 

Fix such an e > 0, and define 

0 =eeAo- +w(eeAo') and 

Tj — — eeA°' + w(—eeXo). 

There is a continuous curve 7 : [0,1] —* C with 7(0) = 77, 7(1) = 0 , 7(s) G Wp for 
all s G [0,1], and 7(s) / 0 for all s G [0,1]. The sets 

J+ = {sE [0,1]: x / ( a ) » 0 for all sufficiently large £} and 

J" = {s G [0,1]: x]{3) < 0 for all sufficiently large £} 

are open, nonempty and disjoint subsets of [0,1]. From the connectedness of [0,1], 
it follows that there exists s* G [0,1] \ (J+ U J~). Clearly, 7 ( s*) G Wp n S \ {0} C 
W n 5 \ { 0 } . 
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To prove the invariance of W D S \ {0} consider <f> G W D S \ {0}. By the 
definition of W, there is a solution x^ : R —> R of Eq. (1.1) with = 0, and 
xf eW for all i e l . By the definition of S and the monotonicity of F it is clear 
that xf G 5 for all t G R. Proposition l.l(viii) gives xf ^ 0 for all t G R. • 

Proposition 3.2. Let 0 and 0 be in W f l S . If 0(s) = 0(s) for all s e 
[-r(0(O)),O], then the solution x* : R -» R of Eq. (1.1) through <f> coincides 
with the solution x* : R R of Eq. (1.1) through 0 . 

Proof. Since 0 and 0 are in WHS, there exist the solutions x^ : R —» R 
and x^ : R —> R of Eq. (1.1) through 0 and 0, respectively. By the invariance of 
WTuS, xf , xf G W D 5 C C 5 for all £ G R. If x* has no zero on an interval 
(—oo,T] then either xf » 0 or xf -C 0 for some t < 0. In either case Proposition 
l. l(v) and F(-, 0) = 0 imply 0 £ S, a contradiction. Analogous statement holds 
for x*. 

Therefore there are arbitrarily large negative numbers p and o so that x 
HP) = O 

and X̂ (CT) = 0. By Lemma 1.2, the functions i H i - r(x^(t))) and t i-» t — 
r(x^(t))) are strictly increasing on R. In particular, t — r(x*(t))) > —r(0(O)) and 
t - r(x+(t))) > —r(0(O)) = -r(0(O)) follows for all t > 0. Therefore 0|[-r(^(o)),o] 
and 0|[-r(v>(o)),o] determine the values of x^(i) and x^(t) for all t > 0 uniquely. 
Uniqueness is shown in the same way as in the proof of Proposition l.l(i). Hence 
x^(t) = x^(t) for all t G [-r(0(O)),oo). Using Proposition l.l(viii), we obtain 
x^(i) = x*(t) for all t G R. The proof is complete. • 

4.4 A discrete Lyapunov functional 
In this section first we define a discrete integer-valued Lyapunov functional. For 

equations with constant delay Mallet-Paret [57] introduced a discrete Lyapunov 
functional. A more general version is contained in [63]. The state-dependent delay 
requires a modified version of the functional. We have to count sign changes of 
solutions x of Eq. (1.1) on intervals of the form [t—r(x(t)), t] instead of on intervals 
with fixed length. For Eq. (1.1) with condition f < 0, a discrete Lyapunov 
functional is introduced in [39]. In our case, when / ' > 0, the definition of a 
Lyapunov functional is similar to that of [39], and its properties are analogous to 
the case / ' < 0. 

Let [a, b] be an interval and 0 be a real valued continuous function defined 
on an interval containing [a, 6] such that <j)\[a,b] # 0. Then the numbers of sign 
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changes sc(0, [a, b]) of 0 on [a, b] is 0 if either 0(s) > 0 for all s E [a, 6] or 0(s) < 0 
for all s E [a, &]; otherwise sc(0, [a, b]) is given by 

sc(0, [a, 6]) = sup{/c: there is SQ < si < ... < Sk such that Sj E [a, b] for 

i = 0,1,..., k, and 0(si)0(si+1) < 0 for i = 0,1,..., k — 1}. 

Define the functional V : C([a, 6], R) \ {0} —> 2NU {oo} by 

sc(0, [a, 6]) if sc(0, [a, b]) is even or oo, 
V(0, [a, 6]) = , 

sc(0, [a, 6]) + 1 if sc(0, [a, b]) is odd. 

Define the set 
H[a,b] = {0 € C\[a, 6], R): 0(6) ^ 0 or 0(a)0(6) > 0, 

0(a) / 0 or 0(a)0(6) < 0, 
all zeros of 0in (a, 6) are simple}. 

Some useful properties of V are contained in the next two lemmas. With a suitable 
modification, the proofs follow closely those of [39, Lemmas 4.1 and 4.2]. Therefore 
we omit them. 

Lemma 4.1. 
(i) V is lower semi-continuous in the following sense. If 0, 0 n are nonzero contin-

uous functions on the intervals [a, 6], [an,6n], respectively, and 

max |0n(s) — 0(s)| —• 0, an —• a, bn —> b as n oo, 
sela.bjnfan.bn] 

then 
V(0, [a, 6]) < liminf V(0n , [an, 6n]). 

71—>00 
(ii) If 0 G H[aM then ^(0, [a, 6]) < oo. 

(Hi) If 0 G C1([a — 5,b + <J], R) for some 8 > 0 and 0|[o,6] ^ 77[a,6], then there is 
7 G (0,8) such that 

| a - c | < 7 , |6 — d| < 7, 0 G Cx([c,d\, R), || 0 - 0|| ci([C)d],R) < 7 
imply 

V ( 0 , M ) = Y(0,[a,&]). 

Let a, (I : R —» R, r : R —> R be continuous functions such that 0(t) > 0, 
r(R) C [0,72], and the function i B i w i - r(i) G R is strictly increasing on R. 
Let v : R —> R be a continuous function which is continuously differentiable on R 
and satisfies 

(4.1) v(t) = a(t)v(t) + /3(t)v{t - r(t)) 

for all t E R. 
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Lemma 4.2. Assume that a, (3, T, v are given as above, moreover for all t G R 
f |[t—r(t),t] is not identically zero. Then 
(i) tu t2 G R, *i < t2 imply V(v, [ti - r(ti),ti]) > V(v, [t2 - r(t2),t2]); 

(ii) t G R and V(v, [s - r(s), s]) = V(v, [t- r(t),t]) < oo for all s G [t - 3R, t] imply 

The aim of this section is to establish the values of the Lyapunov functional 
for differences of functions in W fl 5. 

Proposition 4.3. If 0, 0 G WnS with 0 ^ 0 then 7 ( 0 - 0 , [-r(0(O)), 0]) = 2. 

Proof. Let 0, 0 G WnS with 0 ^ 0 . It follows that 0(s) # 0(s) for 
some s G [-r(0(O)),O], since otherwise, by Proposition 3.2, x^ = x^ on R, a 
contradiction. 

We have 7 ( 0 - 0 , [-r(0(O)),O]) > 2. Indeed, let 7 ( 0 - 0 , [-r(0(O)),O]) = 0. 
The difference x* - x* satisfies Eq. (4.1) with r(t) = r(x*(t)), a(t) = a(t) and 
P(t) = b(t), where a(t) and b(t) are defined by (1.3) and (1.4). Thus, using Lemma 
4.2(i), we get V(xf - x f , [-r(x*(t)),0]) = 0 for all t > 0. Therefore, xf < xf or 
xf > xf for all t > R. Hence 

Then, by Proposition l.l(iv), 
xtR < XAR OR XAR » XAR- By WnS C W n S = W fl S and by the invariance of 
S, xfR and xfR are in S, which contradicts Proposition 2.1. 

Let 0, 0 G W D S with 0 ^ 0 . To prove 7 ( 0 - 0 , [-r(0(O)), 0]) < 2, by the 
monotone property of 7 it suffices to show that there exists a sequence (tn)o° with 
tn - o o as n —• oo, and 7(xfn - xfn, [~r(x^(tn)), 0]) < 2 for all n G N. Set 
y = x^ — x^. Using Proposition l.l(vii) with c = — oo, we obtain that y satisfies 
Eq. (1.2) with a(t) defined by (1.3) and b(t) by (1.4). 

The definition of W implies y(t) —> 0 as t — oo. Hence, there exists a 
sequence (tn)o° with tn —• — oo as n —• oo, and 

|y(*n)| =sup |y( i n + s)\. 
8< 0 

The functions zn : ( -oo, 0] R, n G N, given by 

zn(t)= 

satisfy 

(4.2) |zn(t)| < 1 = |zn(0)| for all t < 0, 
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and 

zn(t) = a(tn + t)zn(t) + b(tn + t)zn(t - r(x4>(tn + £))), for all t < 0. 

Clearly, b(tn + 1 ) —> /'(0) and a(tn +1) —» —p as n —» oo uniformly on (-00,0]. 
Using the Arzela-Ascoli theorem and the equations for zn, we obtain a subsequence 
(znk)%°=0 of (zn)g° and a C1 function Z : (-00,0] -> R such that 

znk(t) Z(t), znk{t) Z(t) as k 00 

uniformly on compact subsets of (—00,0], and Z satisfies 

Z(t) = -pZ(t) + f'(0)Z(t - 1) for all t < 0. 

It follows that \Z(t)\ < 1 = \Z(0)\ for all t < 0. 
We claim that V(Zt, [-1,0]) < 2 for all t < 0. Using the definition of W and 

the invariance of Wp, we obtain that xfn and xfn are in Wp for all sufficiently large 
n £ N. Therefore, for all sufficiently large n £ N 

xtn=Xn+w(Xn), 

xi =Vn + w{r]n), 

where Xn, Vn are in Bs1(Cp<) and w(xn), wiVn) are in Bs2(C<p). We have ZQ1* = 
PrCp< Zok + Prc</3 ZQ". The definition of z£k and (4.3) imply that 

„ nfc _ Xnfc ~r)nk , p Uk _ ™{Xnk) ~ w(V n k) 
^ 0 - \y(tnk)\ and Prc<pZ° - |y(£nfc)| 

Note that || Prcp< ZQ1" || / 0, and Xnk ,Vnk —» 0 as k —> 00. Since w is continuously 
differentiable and Dw(0) = 0, we infer 

II Prc<0 zpk || _ \\ w(Xnk) ~ w(Vnk)\\ 
II Prc><#\\ ~ II Xnk Vnk || 0 ^ ^ 

Prom (4.2), we obtain that Prcp< Zpk is bounded. Therefore, we get Prc<tj Zpk —> 
0 as k —> 00. We conclude that limfe-^ z£k = lim^oo Prc0< Zpk £ Cp<. 
Consequently, ZQ £ Cp<. Since Cp< is invariant under T(t), t > 0, and back-
ward uniqueness holds for the solutions of x(t) = —px(t) + f'(0)x(t — 1), it 
follows that ZT G Cp< for all t < 0. The definition of Cp< implies that 
Z{t) = c0eA o i+CieR e A l i sin((ImAi)i+c2) for some (c0, ci, c2) G R3 with cg+cf ± 0. 
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If Ci = 0, then c0 ^ 0 and thus V{Zt) = 0 for all t < 0. If cx ± 0, 
then Z(t) = cieReAlt[sin((ImAi)i + c2) + ^ e ( A ° - R e A l ) t ] , and for all sufficiently 
large negative t the sign changes of Z are determined by the dominant term 
sin((ImAi)t + c2). Using ImAi G (TT̂ TT), we find V(Zt, [-1,0]) = 2 for all suf-
ficiently large negative t. From Lemma 4.2(ii), it follows that there exists T < 0 
such that Zr|[-i,o] e H[-i,o]- By Lemma 4.1(iii) and r(0) = 1, 

V(ZT, [-1,0]) = V(4 f c , [-r(x*(tnk + T)), 0]) for all sufficiently large k. 

Since 

[-r(x*(tnk + T)), 0]) = V(ytnk+T, [~r(^(tnk + T)), 0]), 

we find that V(ytnk+T, [-r(®*(t„fc + T)),0]) < 2 for all sufficiently large 
k, which completes the proof of V(<f> - 0 , [-r(0(O)), 0] < 2. Consequently, 
V(<f> - 0 , [-r(0(O)), 0]) = 2 for all 0, 0 in VP fl 5 with 0 ^ 0 . 

Let 0, 0 G VP fl S with 0 # 0, and choose two sequences of points 0n , 0 n G 
VP n 5, n G N, with <j>n ± 0 n , 0 n —» 0 and ipn —* 0 as n —» oo. We know that 
V(0n — 0 n , [—r(0n(O)),O]) = 2. From Lemma 4.1(i), we conclude 

U(0 - 0 , [-r(0(O)), 0]) < liminf U(0n - 0 n , [-r(0n(O)), 0]) = 2. 
n—>oo 

Therefore for all 0, 0 G VPnS with 0 ^ 0 we have V(0 - 0 , [-r(0(O)),0]) = 2. 
The proof is complete. • 

Proposition 4.4. If<f> G VP D S \ {0} and x = x^, then ®t|[_r(s(t)),o] £ ff[-r(x(t)),o] 
for all i G l , and there exists a sequence (tn)^» s u c ^ fof all n G Z we have 

£n+l — tn < 1, £n+2 — £n > 1) 

Z(tn) = 0, x(£2n) > 0, X(t2n+l) < 0, 

x(t) > 0 for all £ G (£2n, £2n+i), 

x(£) < 0 for all £ G (£2n-i, £2n)-

Proof. Let 0 G VP fl 5 \ {0}. By the invariance of VP n 5, the solution 
x = x* : R -» R of Eq. (1.1) with x0 = <f> satisfies xt G VPnS for all £ G R. 
By Proposition l.l(viii) x t ^ 0 for all £ G R. As 0 G VPnS, Proposition 4.3 
yields V(xt, [-r(x(£)), 0]) = 2 for all £ G R. Using Lemma 4.2(ii), it follows that 
Zt|[-r(x(t)),0] e if[_r(x(t)),0] for all t e l . By the definition of JT[_r(I(t))io], all 
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zeros of x are simple. Consequently, there is an increasing sequence (in)?°oo so 
that for all n E Z, x(tn) = 0, x(t2n) > 0, x(t2n+1) < 0, x(t) > 0 for all t E 

(t2n,t2n+i) and x(t) < 0 for all t E (t2n-i,t2n). The definition of H[_r^)t0] 

and V(xt, [-r(x(£)),0]) = 2 for all t E R imply tn+i - r(x(tn+1)) < tn, that is 
tn+i ~tn < r(x(tn+i)) = 1 for all n E Z. Similarly, we have t n + 2 - r (x ( t n + 2 ) ) > tn 

for all n E Z, that is i n + 2 - tn > r(x(tn+2)) = 1 for all n E Z. The proof is 
complete. • 

4.5 Dynamics on WnS 
This section contains the main result. Namely, we prove that the w-limit set 

of all points in W fl S \ {0} is a nontrivial periodic orbit. First, we need some 
preparatory results. 

We begin with the continuous map 

(0(0), 0(-r(0(O)))) E R2. 

Proposition 5.1. The restriction of II to W fl 5 is injective. 

Proof. Consider 0, 0 G W n S with 0 ^ 0 . By Proposition 4.3, V(xf -
xf, [—r(x^(0)),0]) = 2 for all t E R. Lemma 4.2(ii) implies (0 - 0)|[-rwo)),o] € 
H[-r(<f>(0)),0]- Therefore, 110 / 110, and the proof is complete. • 

As II is continuous and W n S is compact, II maps W n S onto its range 
n ( W n S ) C R2 homeomorphically. Let II - 1 : II(W n S) C be the map given 
by the inverse of W n S 9 0 «-* 110 G n(W7TS). 

Let xo £ II(WnS) and 0 = n_ 1(xo). By the invariance of W n S , xf E 
W n S for all t E R. The curve 

X : R 3 t >-> Uxf = (x+(t),x+(t - r(x*(t)))) E R 2 

is C1-smooth and has its range in II(Wn S). We call this curve the canonical 
curve through xo-

Proposition 5.2. The canonical curves through xo £ II(WnS\{0}) are injective. 

Proof. Consider xo € n (W n S \ {0}). Then 0 G W n S \ {0}. Thus xf # 0 
for all t E R, and by the definition of W, xf —> 0 as t —* —oo. We infer that 
xti i1 xt2 f°r h, t2 with t\ <t2. Otherwise x^ is a i2 — ti periodic solution, 
which contradicts xf —* 0 as t —> —oo. The proof is complete. • 
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The images of the closed hyperplane 

H = {0 G C : 0(0) = 0} 

and the subsets 

n + = {0 e n : 0(-r(0(O))) = 0 ( - l ) > 0}, 

= (0 G ft : 0(-r(0(O))) = 0 ( - l ) < 0} 
of ft under IT are 

{(u,v) GR2 :u = 0}, 

v+ = {(u,v) G R2 : u = 0, v > 0}, and V- = {(u,v) G R2 : u = 0, v < 0}, 

respectively. 
The canonical curves through xo # (0,0) intersects V- U v+ transversally. 

Indeed, for every xo G U(W~nS) \ {(0,0)} and 0 = n _ 1 (xo) , and for every t G R 
with IIxf G U+(G V-), the first component DxIlxfl, that is of the tangent 
vector of IIxf satisfies 

x+(t) = f(x+(t-l))>0(< 0). 

We introduce the intersection map 

c: (u_ u v+) n n(w n s) (u_ u v+) n n(w n s) 
as follows. For xo G (V_UU+)nn(W?TS) and 0 = n - ^ x o ) G (H-UH+)nWnS, 
Proposition 4.4 shows that there is a smallest zero zx = zi(0) of x4* : R —• R in 
(0, oo); we set 

c ( x o ) = nxf1 = (0 ,x^(z i - l ) ) . 

Analogously we can use the largest zero z-\ = -z_i(0) of x^ : R —» R in (—oo, 0) 
with 0 = n _ 1 (xo) , Xo G (V- U v+) n n ( W n S) to define the map 

c_ : (v_ u v+) n n(w n s) (u_ u v+) n n(w n s) 
by c_(xo) = nxf_x . It follows that c is continuous, and bijective with c _ 1 = c_. 
Moreover, c(v+ fl n(W D S)) = V- n n(W n S) and c(u_ D U(W n S)) = v+ n 
U(W n S) and the map 

P : v+ n N ( w n s) B XO •-> c(c(xo)) G V+ n N ( w n s) 

is continuous, and bijective with p_1(xo) = c_1(c_1(xo))- It is convenient to write 
XcHXo for elements in {(0, u) G R2 : u G R} if and only if the second components 
satify [xo]2-<[xo]2-

The following results follow closely those in [41] for Eq. (1.1) with constant 
delay. 
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Proposition 5.3. 
(i) For all xo, Xo in v+ D n(W n S) with Xo^Xo, p(xo)^p(Xo)-

(ii) For every trajectory (xn)~,» of P in v+ fl II(W n S), there exist x~ and x+ in 
v+ n n(WITS) so that 

Xn * X— as n > - 0 0 , x-n -» X+ as n oo. 

In case x~ i 0(x+ 0) the solution x : R R of Eq. (1.1) with x0 = 
n - 1 ( x - ) (zo = n - 1 ( x + ) ) is periodic. For 

On-Hx-) = {®?~1(X_) = * € r } and On-*(x+) = {*?" 1 ( x + ) = t € r } , 

dist(xf~1 ( x o ) , C?n-Mx-)) 0 as t -» - o o 

and 
dist(x?~1{xo), Gn-i(x +)) -> 0 as t -» oo. 

Proof. The proof of (i). Assertion (i) follows from c(xo)-<c(xo) Xo, Xo 
in (v_ Uu+)(1 II(W fl 5) with xo-̂ Xo- In order to derive this statement, consider 
Xo and xo in (v_ Uu+) fl II(W D S) with Xo~<Xo- In case Xo G V- and xo £ v+ we 
have c(xo) € and c(xo) e «+, thus c(xoHc(xo)-

Consider the case xo € and xo £ Let x : R —» R and x : R —> R 
denote the solutions of Eq. (1.1) with XO = II - 1 (xo) and xo = II - 1 (xo)-
The canonical curves x and x defined by x(t) = (x(t),x(t — r(x(t)))) and 
X(t) = (x(t), x(t — r(x(t)))) for all t G R, satisfy x(0) = Xo, x(0) = Xo, and 
0 = x(0) = x(0), 0 < x ( - l ) < x ( - l ) . By Proposition 4.4, ®o|[-i,oj € #[-i,o] 
and xo|[_i,o] € #[-i,o]- Thus x(0) > 0, x(0) > 0, and for the smallest positive 
zero z\ and z\ of x and x, respectively, we have 0 < x in (0, zi), 0 < x in (0, zi), 
x(zi) < 0, x(zi - 1) < 0, ¿(zi) < 0, x(zi - 1) < 0. 

The restriction xl[o,«i] and the line segment A : [0,1] 3 s i-» Xo+s(c(xo)—Xo) £ 
R2 from x(0) = Xo = A(0) to x(zi) = c(xo) = A(l) form a simple closed curve 
The set {(u,u) G R2 : u < 0, or u = Oand v < x(z\ — 1), or u = Oand x(—1) < v} 
belongs to ext(C). In particular x(0) G ext(£). 

We show x([0, zi])Dx([0, zi]) = 0. Otherwise there exit t G (0, zi] and t G (0, zi] 
with Ux£ = x(t) = x(£) = nx t . By the injectivity of II, xt- = x t , which implies 
x(s) = x(s+t—t) for all s G R. In case t < t, 0 = x(0) = x(t—t), a contradiction to 
0 < x in (0, zi). In case t < t, 0 = x(t—t+t—t) = x(t—t), a contradiction to 0 < x 
in (0, zi). Therefore x = x; in particular xo = XQ, and Xo = Xo, in contradiction to 
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X(HXo- Using 0 < x in (0, ¿1) and x(z - 1) < 0, we infer x([0, h]) n A([0,1]) = 0. 
Then x([0,*i]) n |C| = 0. Since Xo G ext(C), we obtain x([0,2i]) C ext(C). The 
injectivity of c yields c(xo) # c(Xo)- Therefore, we conclude that c(xo)-<c(xo)-

In case xo G v- and xo G v- one can proceed analogously. 
The proof of (ii). Let a trajectory (Xn)̂ foo °f Pin v+ HII( W D S) be given. The 

statement in (i) implies that the second components form a monotone sequence in 
R. As W fl S is compact and II is continuous, the set II(W fl S) is compact in R2. 
It follows that there exist x - and x+ i n v+ H II(W fl S) such that 

Xn —• X- as n —> - 0 0 and Xn —• X + as n —> 00. 

Observe v+ = v+ U {(0,0)}. 
If X- # 0 then p(x-) = X- by the continuity of p. From the definition of p and 

the injectivity of II, we conclude that the solution through II(x-) is a nontrivial 
periodic solution of Eq. (1.1). The argument in case x+ i1 0 is the same. 

Now consider the canonical curve x : K 3 i H ILE? ( x o ) G R2. The defi-
nition of p implies that there is a sequence (sn)^oo such that x(sn) = Xn and 
1 < sn+i — sn < 2 for all n G Z. By the continuity of II, we have 

xn-Hxo) = n _ 1 ( x n ) - n - ^ x + i as n —• 00. 

Let e > 0. By the continuous dependence of solutions of Eq. (1.1) on the ini-
tial data, there is 6 > 0 such that 0 G C and || 0 — II - 1(x+)| | < 8 imply 
suptg[0)T] infSE[0)2] || xf - xf || < e, where T denotes the minimal period of 
the solution xn_1(x+). That is 

d i s t ( 0 n - i ( x + ) , : 0 < a < 2}) < e. 

Choose no G N so that for no < n G N, 

l | n - 1 ( x n ) - n - 1 ( x + ) | | <5 . 

Thus, for n0 < n G N 

dist(e»n-i(x+)» {®?~1(Xn) = 0 < s < 2 j ) < e, that is 

d i s t (Pn- i ( x + ) l { * r ( x o ) •• sn < t < 2 + sn}) < e. 

Since 1 < sn+i - sn < 2 for all n G Z, it follows that 

dist(c?n-i(x+)> ®?"1(xo)) < e for all t > sn o . 
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The proof is complete. • 

Theorem 5.4. 
(i) There is a periodic solution p : R —> R of Eq. (1.1) such that pt € W C\S for 

all t e l . The minimal period u of p satisfies 1 < u; < 2. 
(ii) For each 0 G VP n S \ {0} the phase curve R+ 9 11-> F(t, 0) G Y tends to the 

periodic orbit O = {pt: t G [0, w]} as t —» oo. 

Proof. The proof of (i). Let 0 G VPnS\{0}. By the invariance of VPnS\{0} 
and Proposition 4.4, there is s > 0 with xf G 7i+ D VP n S. 

Let xo = f f x f = (0, x^(s — 1)), and consider the trajectory (xn)??oo P m 
v+ D II(VP n S). The definition of VP yields xf —• 0 as t -» -oo. This fact implies 
Xn —• 0 as n —* —oo. Note that xo / p(xo)- Otherwise the solution x^ of Eq. (1.1) 
is periodic, which contradicts xf —> 0 as t —> —oo. Therefore, using Proposition 
5.3(i), the sequence (Xn)^oo monotone. Moreover it is strictly increasing since 
Xn —• 0 as 7i —> —oo. Then x+ = limN_OO Xn satisfies x+ £ v+ H II(VP fl S). From 
Proposition 5.3(ii) it follows that the solution p : R —> R of Eq. (1.1) with po = 
n _ 1 ( x + ) is periodic. Let u > 0 be its minimal period. As x+ € fl II (VP D S) 
and VP D 5 is invariant, we obtain po G H+ and pt G VP D S for all t G R. The 
statement about the minimal period u is a consequence of Proposition 4.4 and 
p(x+) = X+-

The proof of (ii). Let 0 G VPnS\{0}. There is s > 0 with xf G H+nWnS. Let 
Xo = LLxf and consider the trajectory (Xn)^» P m v+ nlI(VPn5). In the same 
way as for (Xn)̂ oo> R follows that x„ —• 0 as n —> —oo, and (xn)™oo is a strictly 
increasing sequence. The monotonicity of p and limn_»_oo Xn — limn_»_00 Xn = 0 
imply that there is an integer k such that either 

Xn = Xn+k for all n G Z, or 

Xn -<Xn+k -<Xn+1 -<Xn+Jfc+l for all U G Z. 

In both cases lim^ooXn = limn_>00Xn = X+- Then Proposition 5.3(ii) yields 
F(t, 0) —> O as t —• oo. The proof is complete. • 
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Summary 
The theory of functional differential equations deals with differential equations 

where the right hand sides depend on delayed arguments of the unknown function. 
The first examples appeared about 200 years ago and were related to geometric 
problems. The interest in the field grew rapidly in the second half of the 20th cen-
tury. Over the past several years it has become apparent that there is a need for a 
theory of differential equations with state-dependent delay because such equations 
appear in several applications (in classical electrodynamics, in population models, 
in models of blood cell production). 

Equations with state-dependent delay in the derivative, that is the state-
dependent neutral equations are also used in applications though we still do not 
have a general theory for such equations. 

Consider the differential equation with state-dependent delay 

x(t) = -px(t) + f{x{t - r(x{t)))), 

where / and r are smooth real functions. Let h > 0. The function 

C([ -M],®0 3 0 -> -M0(O) + /(0(-r(0(O)))) G R 

is in general not differentiable. Therefore the basic tools of dynamical systems 
theory, like linearization and local invariant manifolds, cannot be applied in a 
straightforward way. This shows the main source of difficulties of the study of 
differential equations with state-dependent delay. 

In this work we prove results for two different classes of functional differential 
equations with state-dependent delay. We use the notations: C = C([—h, 0], R); if 
x : I —» R is a continuous function on the interval I and t, t — h £ I, then xt £ C 
is defined by x t(s) = x(t + s), s € [-/&, 0]. 

In Chapter 2 we consider the nonlinear one-dimensional neutral differential 
equation with state-dependent delay 

d 
(1) - [®(t) - px(t - r(t, st))] = -q(t) x(t - s(t, xt)), 

where p £ R, q : [0, oo) —> [go, oo), r : [0, oo) x C —• [0,ro], and s : [ 0 , o o ) x C - > 
[0, so] with go > 0 and ro, so < h. Using the parameters of the equation, conditions 
are given for the stability and attractivity of the zero solution of Eq. (1). 

When p = 0 and the function s is independent of xt then according to a result 
of Myshkis, Yorke and Lillo, the assumption goso < | implies the uniform stability 



of the zero solution, and § is the best possible constant. The number § also arises 
as an upper bound in our stability condition for Eq. (1). 

A consequence of the main result of this chapter is the following: 

„ . ^ , 1 - P , go 5o , gpypp . 3 
if 0 < p < 1, < s 0 and + T rx < -z 

go 1 -V (1 -P)2 2 

then the zero solution of Eq. (1) is stable. 
In Chapter 3 we prove a result of monotone dynamical systems applicable for 

the differential equation with state-dependent delay 

(2) x(t) = -px(t) + f(x(t - r)), r = r(x(£)), 

where p > 0, / and r are smooth real functions with /(0) = 0 and / ' > 0. 
In the case r = constant the semiflow generated by Eq. (2) satisfies a certain 

monotonicity condition, that is, it is strongly order preserving. Therefore applying 
a result of Smith and Thieme, we conclude that the u-limit set of all points from 
an open dense subset of the phase space is an equilibrium point. 

In the case r = r(x(t)) the semiflow generated by Eq. (2) in the phase space 
X C C of Lipschitz continuous functions is monotone, but it is not strongly order 
preserving. Thus the result of Smith and Thieme is not applicable. We prove a 
convergence result under a weaker monotonicity condition than the strong order 
preserving property, and we show that under certain hypotheses on r the cj-limit 
set of all points from an open dense subset of the phase space is an equilibrium 
point. 

Note that, it is not true in general that the w-limit set of every point of the 
phase space is an equilibrium point. Krisztin, Walther and Wu have shown the 
existence of periodic orbits in the case r = 1 for certain p, / , and r. A similar 
result is proved by Mallet-Paret and Nussbaum, Kuang and Smith, Arino, Hadeler 
and Hbid, Krisztin and Arino, Walther in the state-dependent delay case with a 
negative feedback condition. For the case r = r(x(t)) with a positive feedback 
condition Chapter 4 contains an analogous result. 

In Chapter 4 we show that there is a nontrivial periodic orbit of Eq. (2). First 
an unstable set W of zero is constructed by forward extension of a local unstable 
manifold at zero. Then it is proved that for each nonzero 0 G W, for which the 
solution x4 through 0 oscillates on [0, oo), x^(t) —> 0 as £ —> —oo, and xf tends 
to the periodic orbit as £ —> oo. Moreover, x^ has one or two sign changes on the 
interval [£ - r(a^(£)), £] for all £ G R. 



Összefoglaló 
A retardált funkcionál-differenciálegyenletek olyan folyamatokat modelleznek, 

amelyek változására múltbeli állapotaik is hatással vannak. Az első példák ilyen 
egyenletekre geometriai problémákban jelentek meg mintegy 200 éve. Az utóbbi 
ötven évben rohamosan nőtt az érdeklődés a funkcionál-differenciálegyenletek 
elmélete iránt. Az egyre szélesebb körű alkalmazások hatására szükségessé vált 
az állapotfüggő retardálású funkcionál-differenciálegyenletek elméletének kidolgo-
zása. Az állapotfüggő neutrális differenciálegyenletek, 

diZdiZ az olyan differenciál-
egyenletek amelyekben a derivált is tartalmaz a rendszer állapotától függő re-
tardálást, szintén gyakorlati alkalmazással bírnak, annak ellenére, hogy ezekre az 
egyenletekre még nincs egy általánosan kidolgozott elmélet. 

Tekintsük az 
x(t) = -px(t) + f(x(t - r(x(t)))) 

állapotfüggő retardálású differenciálegyenletet, ahol /x > 0 és / , r sima valós füg-
gvények. Legyen h > 0. A 

C([ -M],M) 3 -luKO) + /(0(-r(0(O)))) G R 

leképezés általában nem differenciálható. Ezért a dinamikus rendszerek elméleté-
nek általános eszközei mint a linearizálás, invariáns sokaságok nem alkalmazhatók 
a szokásos módon. Mindez az állapotfüggő retardálású differenciálegyenletek 
tanulmányozásában felmerülő nehézségekre utal. 

Az értekezésben az állapotfüggő retardálású funkcionál-differenciálegyenletek 
két különböző osztályára bizonyítunk eredményeket. Bevezetjük az alábbi 
jelöléseket: C = C([—h, 0], M); ha x : I —* R az I intervallumon folytonos függ-
vény és t, t — h G / , akkor az Xt G C függvény az xt(s) = x( t+s) képlettel definiált 
minden s G [—h, 0] esetén. 

A 2. fejezetben az alábbi nemlineáris állapotfüggő neutrális differenciálegyen-
letet tekintjük: 

(1) jt [x(£) - px(t - r(t, xt))] = -q(t) x(t - s(t, xt)), 

ahol p G R, q : [0,oo) [qo,oo), r : [0,oo) x C -» [0,ro], s : [0,oo) x C -» 
[0, so], qo > 0 és ro, so < h. Az egyenletben adott paraméterek azon tartományát 
becsüljük, ahol az (1) egyenlet x = 0 megoldása stabil. 

Ha p = 0 és az s retardálás nem függ az Xf-től, akkor Myshkis, Yorké és 
Lillo egy jól ismert eredménye alapján a qoso < | feltétel teljesülése esetén az 



x = 0 megoldás egyenletesen stabil, és § nem helyettesíthető nagyobb számmal. 
Kimutatjuk, hogy az (1) egyenletre is érvényes egy ún. | -es stabilitási tétel. 

A fejezet fő eredményének egy következménye alapján, 

, n . ^ . 1 - V ^ . gpso , Qorop , 3 
ha 0 < p < 1, < s0 es + T ^ < - , 

go 1 ~P (1 -P)2 2 
akkor az (1) egyenlet x = 0 megoldása stabil. 

A 3. fejezetben a monoton dinamikus rendszerekre vonatkozó olyan ered-
ményt bizonyítunk, amely alkalmazható az alábbi állapotfüggő retaxdálású diffe-
renciálegyenletre: 

(2) x(t) = -px(t) + f(x(t - r)), r = r(x(t)), 

ahol p, > 0, / és r sima valós függvények, /(0) = 0 és / ' > 0. 
Az r = konstans esetben a (2) egyenlet által generált szemidinamikus rendszer 

/ 

rendelkezik egy bizonyos monotonitási tulajdonsággal: erősen rendezéstartó. így 
Smith és Thieme egy eredménye alapján a fázistér egy nyitott és sűrű halmazához 
tartozó pontok cj-limesz halmaza egy egyensúlyi helyzetből áll. 

Az r = r(x(t)) esetben a Lipschitz folytonos függvények X C C fázisterén a 
(2) egyenlet által generált szemidinamikus rendszer monoton ugyan, de nem erősen 
rendezéstartó. így Smith és Thieme eredménye nem alkalmazható. Az erős ren-
dezéstartásnál gyengébb monotonitási feltétel mellett bizonyítunk konvergencia 
eredményt, és megmutatjuk, hogy az r függvényre tett bizonyos feltételek tel-
jesülése esetén, a fázistér egy nyitott és sűrű halmazához tartozó pontok a;-limesz 
halmaza egy egyensúlyi helyzetből áll. Megemlítjük, hogy a fázistér minden pontja 
nem rendelkezik azzal a tulajdonsággal, hogy az cj-limesz halmaza egy egyensúlyi 
helyzet. Krisztin, Walther és Wu kimutatta periodikus pályák létezését r = 1 eset-
ben. Hasonló eredményt bizonyított Mallet-Paret és Nussbaum, Kuang és Smith, 
Arino, Hadeler és Hbid, Krisztin és Arino, Walther állapotfüggő késleltetés esetére 
egy negatív visszacsatolási feltétel mellett. Az r = r(x(t)) esetben egy pozitív 
visszacsatolási feltétellel a 4. fejezet tartalmaz hasonló eredményt. 

A 4. fejezetben kimutatjuk a (2) egyenlet egy nemtriviális periodikus pályájá-
nak létezését. Előbb 0-nak egy W-vel jelölt instabil halmazát konstruáljuk meg a 
0 egy lokális instabil sokaságának pozitív irányban való kiterjesztésével. Majd be-
bizonyítjuk, hogy minden olyan 0-tól különböző 0 G W esetén, amelyekből induló 
x* megoldások oszcillálnak a [0, oo) intervallumon, x^(t) —» 0 t —> —oo esetén, és 
xf tart a periodikus pályához t —• oo esetén. Sőt az is igaz, hogy az x^ megoldás 



előjelváltásainak a száma egy vagy kettő a [t - r(x4>(t)),t] intervallumon minden 
t e R esetén. 


