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Chapter 1

Introduction

The theory of functional differential equations deals with differential equations
where the right hand sides depend on delayed arguments of the unknown function.
The first examples appeared about 200 years ago and were related to geometric
problems. The interest in the field grew rapidly in the second half of the 20th
century. The books of Myshkis [64], Bellman and Cooke [9], Krasovskii [33], Hale
[23], Hale and Lunel [24], Dieckmann [14] greatly influenced the developments.
Today new applications [13,29,50,51,52,54,55,58,73] also continue to arise and the
involved interesting mathematical problems require modifications and further de-
velpoments of the theory.

Over the past several years it has become apparent that there is a need for a the-
ory of equations containing delays that are functions of the state of the system be-
cause such equations appear in applications. For example retarded equations with
state-dependent delay are of interest in classical electrodynamics [15,16,17,18,20],
in population models [7], in models of blood cell production [56] and of commodity
price fluctuation [8].

A simple model taken from [11] is as follows: An object moves along a line,
z(t) denotes its position at time ¢. A base located at * = —w < 0 controls the
position of the object. We assume that the base has instantaneous information
on the location of the object, i.e., on z(t), moreover signals controlling the object
travel from the base to the object at a speed ¢ > 0. In addition, we suppose
that z(t) > —w for all ¢, i.e., the object does not collide with the base. For the
base it takes a unit amount of time to produce the control signal for the object.
Therefore, the signal which reaches the object at time ¢ was sent by the base at
the time ¢ — 1 — 1(z(t) + w). This leads to the equation

#(t) = —px(t) +g(x(t— i % & @»

Cc

with positive parameters u, w, ¢ and a response function ¢ : R — R. The
term —px(t) represents an instantaneous damping. Positive (negative) feedback
with respect to the preferred position at 0 € R is expressed by the condition
ug(u) > 0(< 0) for all u # 0. More complicated delay functions for related con-
trol problems are obtained in [71,72].



Let h > 0. The function
3:C(-h B3 6 g(o(-1-2-20) ) er

c C

is in general not smooth enough in order to define well-posed initial value prob-
lems for the above equation on all of an open subset of C([—h, 0], R). This means
that the basic tools of dynamical systems theory, like linearization and local in-
variant manifolds, cannot be applied in a straightforward way. A reason for lack

of differentiability of g is that the evaluation map
C x [-h,0] > (¢,s) — ¢(s) €R

is not Lipschitz continuous. This is the main source of difficulties of the study of
differential equations with state-dependent delay.

Equations with state-dependent delay in the derivative, that is the state-
dependent neutral equations are also used in applications [17,19], though we still
do not have a general theory for such equations. For some interesting results
related to state-dependent neutral equations we refer to [25,26].

In this work we prove results for two different classes of functional differential
equations with state-dependent delay contained in [4,5,6].

In Chapter 2 we consider a class of neutral differential equations with state-
dependent delay. Using the parameters of the equation conditions are given for
the stability, asymptotic stability and attractivity of the zero solution.

In Chapter 3 a monotone semiflow is constructed for a class of differential
equations with state-dependent delay, and it is proved that the w-limit set of all
points from an open dense subset of the phase space is an equilibrium point.

In Chapter 4 for the class of differential equations considered in the previous
chapter, we show the existence of a nontrivial periodic orbit and a homoclinic orbit
connecting 0 to the periodic orbit.

Now let us review the problems studied and the results obtained in every
chapter.

In Chapter 2 we consider the nonlinear one-dimensional neutral differential

equation with state-dependent delay

d

(1) 7 [2(0) = pa(t —r(t,20))] = —q(t) 2(t — s(¢, 2¢))-

For given A\ > 0, let C = C([—Xo,0],R). For given to € Ry,w € Ry,
y € C ([to — Ao, to +w],R) and t € [to, to+w], y¢ € C is defined by y:(7) = y(t+7),

2



for all 7 € [-Xo,0]. Suppose that p € R, ¢ € C(R4,R), r € C(Ry x C,R),
s € C(Ry x C,R), and there exist o, so € [0, Ao] such that r(Ry x C) C [0, o]
and s(Ry x C) C [0, so].

We mention that it is not easy to prove stability results for neutral differential
equations with state-dependent delay since even the basic questions such as the
existence, uniqueness and continuous dependence of solutions are still not clarified.
The stability for (non-neutral) retarded differential equations is well developed. A

classical exemple is the linear equation

&(t) = —a(t)x(t — (1)),

where a and ¢ > 0 are positive constants and a : Ry — [0,a], 7 : Ry — [0, ¢]
are continuous functions. In case ag < % the zero solution is uniformly stable
and 2 is the best possible constant ([64,78,49]). The number 3 also arises as an
upper bound in stability conditions for nonlinear and nonautonomous equations
[78,31,32]. For equations with more delay or distributed delay Krisztin [34,35] has
proved an interesting result which we will use in Section 2.2 to obtain stability
results for Eq. (1).

It is known that in certain cases neutral differential equations are equivalent
to retarded differential equations with infinite delay [70]. This method is used
in [2,21,22,43,44,45,74,75] to study stability problems for neutral equations. Our
purpose in Section 2.2 is not to transform Eq. (1) to a single retarded equation
with infinite delay. Such a transform may not exist here. For each fixed solution
of Eq. (1) we associate a retarded equation with infinite delay, and then use the
results in [34,77,78] to obtain stability conditions for Eq. (1). The main results of
Section 2.2 are the following.

Theorem 2.2.2. Assume that 0 < p < 1 and there exists qo € Ry so that
0<q(t) <qo forallt>0. LetK:{kEN:SO'f‘kTo(lT_OB}.
(i) If the condition

— so — kro)?p* < 3/2

2
S T 1-—
q0 0+ qoToP i 90 Z( p

1-p (Q-p? 20-p)F

holds and z : [to — Ao, 00) — R with to € R is a solution of Eq. (1), then

1
+1765/2

L
el < llt I 72

for all t > tg.



(i) If

2
goSo , qoTop 0 ol 2, k
i + — 80 — kro)p* < 3/2
By e e oL !
and liminf;_, . q(t) > 0 are satisfied, then the zero solution of Eq. (1) is asymp-
totically stable.

Theorem 2.2.3. Assume that 0 < p < 1 and there exists qo € R4 so that
0<q(t) < qo for all t > 0.

(i) If the condition
qo So PP 4

19 o AUERIEL T
holds and z : [to — Ao, 00) — R with to € Ry is a solution of Eq. (1), then

1l
|zl < ||3’3t0||~ﬂes/2 for all t > to.
I#p
(ii) If
qo So qoTop
Lep L it

and liminf;_, . q(t) > 0 are satisfied, then the zero solution of Eq. (1) is asymp-

.l

totically stable.

In Section 2.3 we show the attractivity of the zero solution of Eq. (1) by
extending results of Wu and Yu [76], given for neutral equations with constant
delay to neutral equation with state-dependent delay.

The main result of Section 2.3 is the following.

Theorem 2.3.3. Assume that |p| < 3, q(t) > 0 for all sufficiently large t € R,

/ q(7) dr = o0,
to

t
!
2|p|(2 — |p|) + limsup/ q(r)dr < =
t—o0 t—so 2
and

(2)

for all y € C([—Xo, ), R), the function [0,00) 3 t — t — s(t,y:) € R is increasing.

Then every solution of Eq. (1) converges to zero as t — 0.

Note that condition (2) also plays an important role in nonneutral equations

with state-dependent delay [60,39]. There is a wide class of applications where
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s(t,y:) is defined by a threshold, that is,

t
i K(y(r) dr = ko,
b S(ta yt)
where k(t) is a positive continuous function and ko is a positive real number. In
this case condition (2) holds.
We mention that Theorem 2.3.3 can be extended to the equation

d

a—t- [x(t) — px(t = T(t,wt))] = f(t’ ‘Tt)

with appropriate conditions on f. The extension requires standard techniques.
In Chapter 3 we prove a result for monotone dynamical systems which is apli-

cable for the differential equation with state-dependent delay

(3) £(t) = —pa(t) + f(z(t — 7)), r=r(z(),

where 1 > 0, f and r are smooth real functions with f(0) = 0 and f’ > 0.

The theory of monotone dynamical systems was developed by Hirsch in 1980’s.
The infinite dimensional theory of monotone systems has been heavily influenced
by the results of Matano, Smith and Thieme [66-69]. These results have a good
applicability for ordinary differential equations and also for differential equations
with constant delay.

First let us consider Eq. (3) in the case r = constant. Eq. (3) generates a
semiflow F on the phase space C([—r,0],R). We introduce a closed partial order
relation on C([—r,0],R) in the following way: ¢ < 1) whenever ¢(s) < 1(s) for all
s € [-R,0], ¢ < 1 whenever ¢ < 1 and ¢ # 9, and ¢ < ¥ whenever @(s) < 9(s)
for all s € [-R,0]. The condition f’ > 0 guarantees that F is monotone, that is,
for every ¢, ¢ in C([-r,0],R) with ¢ < ¢, F(t,¢) < F(t,) holds for all t > 0.
It is also true that F is strongly order preserving (SOP), that is, F is monotone,
and for every ¢, ¢ in C([-r,0],R) with ¢ < 1, there exist to > 0 and open
subsets U, V of C([—r,0],R) with ¢ € U and ¢ € V such that F(to,U) < F(to, V).
Then applying a result of Smith and Thieme [65,68,69], we conclude that for all
elements ¢ from an open dense subset of C([—r,0],R) the w-limit set w(¢) of ¢ is
an equilibrium point.

We remark that analogous results were obtained by Smith and Thieme in
[66,67] for non-quasi-monotone functional differential equations, that is, under a

weaker condition than f/ > 0.



In the case r = r(z(t)) the situation becomes more difficult, because it is not
obvious how to choose the phase space. The questions about existence, uniqueness,
and continuous dependence of solutions of Eq. (3) are also not standard, see, e.g.,
[62]. In Section 3.2 we show that for suitable R > 0 and A > 0, the solution of Eq.
(3) defines a semiflow F' on the metric space X containing Lipschitz continuous
functions mapping [—R, 0] into [—A, A] with metric d(¢, %) = sup_g<s<o [#(s) —
1(s)|. The constant R > 0 is the maximum of r on [—A, A]. The result of Smith
and Thieme is not applicable for this semiflow generated by Eq. (3), since it does
not have, in general, the SOP property. Indeed, consider two functions ¢ and
% in the phase space such that ¢(s) < ¥(s) < A for all s in [-R,—R + ¢) and
#(s) = ¢(s) for all s in [-R + ¢,0], where ¢ > 0. Let U be an open subset
of the phase space with ¢ € U. Clearly, there is a function o € U such that
(s) < a(s) for all s € [-R +¢,0]. Let z¥ and = denote the solutions of Eq. (3)
with initial function 9 and o, respectively. If we also have —r(z¥(t)) € [-R+¢, 0]
and —r(z*(t)) € [-R + ¢,0] for all ¢ > 0, then it is easy to see that there exists
to > 0 such that F(to,%) < F(to, «). Therefore, in this case F' cannot be SOP.

We observe that F' satisfies the following property. F' is monotone, and for
every ¢ and 9 in the phase space with ¢ < ¥ and F(t,¢) # F(t,) for all t > 0,
there exist to > 0 and open subsets U/, V of the phase space with ¢ € Y and ¢ € V
such that F(to,U) < F(to,V). This is why our aim is to prove a convergence
result for monotone semiflows having the above property, the so-called mildly
order preserving property (MOP) instead of the SOP property. The following
assumption seems to be crucial in achieving our goal. If ¢ and ¢ are in a compact
invariant subset of the phase space, then ¢ < 9 implies F(t, ¢) # F(t,v) for all
t > 0. This condition is satisfied for the semiflow generated by Eq. (3) as well.

In the proofs of the monotonicity the hypothesis f > 0 can be weakened
like in [66,67], but f’ > 0 seems to be crucial in the verification of the property
F(t, ¢) # F(t,v), t >0, for all ¢, ¥ in a compact invariant subset with ¢ < 1.

Section 3.1 contains a general convergence result, which is a modified version
of the convergence result of Smith and Thieme [65,68]:

Theorem 3.1.1. Consider a metric space X with a closed partial order relation
and a semiflow ® on X. Assume that
(A;) ifz and y are in a compact invariant subset of X, then x < y implies ®(t, z) #
®(t,y), for all t > 0,
(A2) @ is MOP,



(As) each point in X can be approximated either from below or from above in X,

(A4) for each z in X, the orbit O(z) of z has compact closure in X, and

(As) for each z in X and for each sequence (z,)$°, which approximates xz either
from below or from above in X, Up>1 w(z,) has compact closure in X.
Then the w-limit set of all points from an open dense subset of X is contained
in the set of equilibria.

The proof of this result can be found in Section 3.3. Section 3.2 gives explicit
hypotheses on f and r ensuring the applicability of our convergence result for Eq.

(3).
Theorem 3.2.16. If f and r satisfy hypotheses

(>0,

f € CY(R,R), f(0) =0, f'(u) >0 for all u € R,
< there exists A > 0 such that |F(w)| < plu| for all [u| > A,
| r € CY(R,R), 7(0) = 1, 7([—4, A]) C (0, 00).

(H1)

then there is an open dense subset of X such that, for each element ¢ of this
subset, w(@) is an equilibrium point.

Note that, it is not true in general that the w-limit set of every point of the
phase space is an equilibrium point. Krisztin, Walther and Wu [41] have shown
the existence of periodic orbits in the case r = 1 for certain y, f, and r. A similar
result is proved by Mallet-Paret and Nussbaum [60,61], Kuang and Smith [47,48],
and Arino, Hadeler and Hbid [3], Krisztin and Arino [39], Walther [72] in the state-
dependent delay case with a negative feedback condition. For the case r = r(z(t))
with a positive feedback condition Chapter 4 contains an analogous result.

In Chapter 4 we show the existence of a nontrivial periodic orbit and a ho-
moclinic orbit connecting 0 to the periodic orbit for Eq. (3) with state-dependent
delay and positive feedback. The main technical tools we use are: the result of
monotone dynamical systems applicable for Eq. (3) in Chapter 3; a local unstable
manifold at zero for Eq. (3) in [38]; and a discrete Lyapunov functional count-
ing sign changes given analogously to that of [39]. We mention that it is not
clear whether the applied techniques in the proofs of periodic solutions of au-
tonomous differential equations with state-dependent delay and negative feedback
(fixed point theorems, fixed point index) can be applied for the positive feedback
case. Closest to the result presented in Chapter 4 is the work of Krisztin and
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Arino [39], where for the negative feedback case the structure of slowly oscillating
solutions is described.

In Section 4.1 we recall the hypotheses on f and r and the basic results from
Chapter 3. The phase space is considered to be the space of such elements ¢ € X
for which the Lipschitz constant is not greater than

M= (u,v)e[—r.fxl,a,&)](x [—A,A] | — pu+ f(v)l-

We introduce an additional condition on r to guarantee that the function t +
t — r(z(t)) is strictly increasing. For example, the smallness of v’ or concavity of
r are sufficient. This monotonicity property of t — t — r(z(t)) plays an important
role in the proofs. Then we need some results about the associated linear equation

i(t) = —pz(t) + £/ (0)z(t — 1).

The spectrum of the infinitesimal generator of the linear semigroup defined by the
above linear equation consists of a A9 € R and complex conjugate pairs A, Ak, for
all integers k > 1, with (2k — 1) < ImA; < 2k7 and Relg41 < Redr < A for all
integers k > 1, and Re\y — —oo as k — co. We assume that Re\; > 0.

In Section 4.2 we introduce the set S of functions ¢ in the phase space for
which the solution through ¢ oscillates on [0,00). We show that S is positively
invariant, closed and there are not ¢, 9 in S with ¢ < ¥.

In Section 4.3 we use [38,Theorem 4.1] to show the existence of a 3-dimensional
local unstable manifold which is tangent at 0 to the real generalized eigenspace of
the spectral set {\g, A1, A1}. For every element ¢ of this local unstable manifold
sufficiently small there is a solution through ¢ which is defined on (—o0,0] and
stays close to 0. The forward extension of this local unstable manifold denoted by
W is an invariant set. We prove that W and W N S are compact and invariant,
and W N S\ {0} is nonempty and is also invariant.

In Section 4.4 we define a discrete Lyapunov functional which counts the sign
changes of solutions. We show that if ¢ and v are different elements of W N S,
then the difference ¢ — 1 has one or two sign changes on the interval [—r(¢(0)), 0].
This fact guarantees the injectivity of a map from W N S into R? in Section 4.5.

In Section 4.5 we prove the main result of this section:

Theorem 4.5.4.
(i) There is a periodic solution p : R — R of Eq. (3). The minimal period T of p
satisfies T € (1, 2).



(ii) For each ¢ € WN S\ {0}, there is a unique solution z% : R — R of Eq. (3) such
that :z:g’ = ¢, xf —0ast— —oo, w(@) ={p:: t € [0,T]}, and for allt € R, :z:f
has one or two sign changes on the interval [-r(z%(t)), 0].



Chapter 2

3/2 Stability Theorems for Neutral
Differential Equations

2.1 Preliminary results

Let R, Ry, R_ and N be the set of real, nonnegative real, nonpositive real
numbers and nonnegative integers, respectively. For given Ay > 0, C =
C ([-X0,0],R) denotes the Banach space of continuous functions ¢ : [—o,0] — R
with norm ||¢| = sup_,,<,<ol#(7)]. For given tp € Ri,w € Ry,
y € C([to — Ao, to + w],R) and t € [to, to+w], y: € C is defined by y:(7) = y(t+7),
for all 7 € [-Ap,0]. Suppose that p € R with |p| < 1, ¢ € C(R4,R),
r € C(Ry x C,R), s € C(Ry x C,R), and there exist 7o, so € [0, Ao] such that
(R4 x C) C [0,70] and s(R4 x C) C [0, sg].

Consider the nonlinear one-dimensional neutral differential equation with state-
dependent delay

(1.1) 2 60) ~ pa(e — r(t,20)] = —a(9) 3(t — s(t,2))

Note that for every bounded y € C(R,R) the functions R 3 ¢ — r(t,3:) € R and
R >t — s(t,y:) € R are continuous and bounded.

For (to,#) € Ry x C a function z € C ([to — o, to +w), R) is called a solution
of Eq. (1.1) on [to, to +w) through (%o, ¢), and is denoted by z(to, ¢)(:) if z¢, = ¢,
z; € C and the difference z(t) — pz(t — (¢, z,)) is differentiable and satisfies Eq.
(1.1) for t € (to,to +w). We assume the existence of z(to, ¢)(-) on [to — Ao, 00)
for all tp € Ry and ¢ € C, but the uniqueness of z(tp, $)(-) is not necessarily
required. Note that there are some results concerning the existence and uniqueness
of solutions of Eq. (1.1) [25,30].

The zero solution of Eq. (1.1) is said to be stable if for every € > 0 and to > 0
there exists § = (e, tp) > 0 so that

|z(to, #)(t)] <& for allg € C with ||¢|| < dand for allt > to.

The zero solution of Eq. (1.1) is said to be asymptotically stable (AS) if it is
stable and there is do = do(tp) > 0 so that

z(to,#)(t) = 0 as t — co for allg € C with ||¢|| < do.

10



The zero solution is said to be uniformly stable (US) if for every € > 0 there
exists § = &(g) > 0 so that

|z(to, #)(t)| <& for allg € C with ||¢|| < dand for allt > to > 0.

The zero solution is said to be uniformly asymptotically stable (UAS) if it is
US and for every € > 0 there exist do > 0 and T' = T'(¢) > 0 so that

|z(to, @)(t)| < e for allg € C with ||@|| < dpand for all £ > to + T

The zero solution of Eq. (1.1) is said to be attractive if every solution of Eq.
(1.1) tends to zero as t — oo.

In Chapter 2 we investigate the stability and asymptotic stability of the zero
solution of Eq. (1.1). We achieve this in two different ways. On one hand we
associate a family of retarded equations with infinite delay with Eq. (1.1), that is,
for each fixed solution of Eq. (1.1) we associate a retarded equation with infinite
delay. According to a result of Krisztin [34] this retarded equation with infinite
delay gives information about the stability and asymptotic behaviour of the cor-
responding solution of Eq. (1.1). On the other hand we extend results of Wu and
Yu [76] given for neutral equations with constant delay to neutral equations with
state-dependent delay.

Here let us review briefly some results of Krisztin {34], Wu and Yu [76] and Yu
[79]).

Let BC denote the Banach space of bounded and continuous functions ¢ :
(—0,0] — R with norm ||¢| c = sup, <o |¢(7)|. Let a € R and y:(—o00,a] = R
be a bounded, continuous function. For every real ¢ < a the function y§_°°’°] € BC
is defined by yt_°°’°] (1) =y(t+ ), 7 < 0. For the function f : Ry x BC — R we
assume that f(¢,0) = 0 for all ¢ € R, and for every a > 0 and for every bounded,
continuous function y : (—oo,a] — R the function [0,a] 3 t — f(¢, yt(_°°’°]) €ERis
continuous.

Consider the one-dimensional functional differential equation with infinite de-
lay

(1.2) z'(t) = f(t, 20
Define M :R; x BC — R by M(u,¢) = max{0,max_,<r<o ¢(7)}. For a

bounded, nondecreasing, left-continuous and nonconstant function u from R, to
R+ let

0 ) o 1/po 1 2
o = / du, p1 = / Tdu(T), p2 = p1 + —/ (— - 'r) du(r).
0 0 2 Jo Ho

11
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For (tp,#) € R4 x BC and w > 0 a function z € C((—o0, to + w), R) is called
a solution of Eq. (1.2) on [to,to + w) through (¢, ) if z;, = ¢ and Eq. (1.2)
holds on (%o,to + w). The definitions of stability, asymptotic stability, uniform
stability and uniform asymptotic stability of the zero solution of Eq. (1.2) are
analogous to those for Eq. (1.1) replacing ¢ € C, ||4]| <  and ¢ € C, ||¢|| < do
with ¢ € BC, ||¢llsc < 8 and ¢ € BC, ||¢|lsc < do, respectively.

Theorem A (Krisztin [34]). Assume that
(1.3)

- /Ooo M(ua ¢) d/"‘(u) < f(ta ¢) < /(;Oo M(’U,, —¢) dﬂ'(u) for all (ta ¢) € R+ x BC.

(i) If uz < 3/2 holds and z : R — R is a solution of Eq. (1.2) on [tg,00) with
to € Ry, then

(1.4) Iz e < 125N see™?  for all t > to.

(ii) If p < 3/2 and

for all sequences {t,}§° inR, with t, — oo, and {¢, }° in BC,

and for allc € R\ {0}, and B > 0 with|| ¢, ||pc < Bfor all n € N,

and ¢, — cas n — oo uniformly on compact subsets of (—00,0],
the sequence {f(tn, dn)}§does not converge to zero as n — oo,

(1.5)

then the zero solution of Eq. (1.2) is UAS.

Let us mention that the theorem of Krisztin is modified here in the sense that
condition (1.4) does not appear explicitly in [34] but it can be deduced from the
proof of Lemma 2.3 in [34]. On the other hand, the boundedness of the sequence
{#n}§° in condition (1.5) does not appear in [34] either, though it is considered to
be bounded in Lemma 2.2 [34].

It is easy to see that us < u; + % and we have the following corollary of
Theorem A [34].

Corollary B. If the conditions ps < 3, p2 < 2 in Theorem A are replaced by
#1 <1, p1 < 1, respectively, then the statements of Theorem A remain true.

Applying the above results to the equation with distributed delay

(1.6) '(t) = ) ax(t)z(t — r¥(t),
k=0

12



where ay, € C (Ry, [0, k] ) with ax € Ry and 350, o < 00, % € C (R4, [0,¢%])
with ¢* € R, for all k € N, we obtain that

o0
Y g <1
k=0

is a sufficient condition of US for Eq. (1.6) and 1 is the best possible constant (see

[34]).

Wu and Yu [76,79] considered the linear neutral differential equation

(L.7) 2 [6) - palt — )] = ~a(0) s~ 5), £ 0

assuming q : Ry — R is eventually positive, r and s are positive reals, and p € R.
Yu has shown that under the conditions p € [0,1) and

t

2p(2—p)+/ q('r)drsg forallt >0,

t—s

the zero solution of Eq. (1.7) is US (see [79]).
He has also proved that under the conditions p € [0, 1),

/oooq('r)d'r=oo

t
2p(2—-p) + sup/ g(T)dr < 3 for all ¢ > 0,
t>0 Jt—- 8 2

the zero solution of Eq. (1.7) is AS (see [79)).
Investigating the attractivity of the zero solution of Eq. (1.7), Wu and Yu have
shown that the conditions |p| < 1,

/oooq('r)d'r=oo

and .
3
2[p|(2 — [p]) + lim sup / g(r)dr < 3
t>0 Ji—s 2

guarantee that every solution of Eq. (1.7) tends to zero as t — oo (see [76]).
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2.2 3/2 Stability theorems for neutral differential equations

It is known that in certain cases neutral differential equations are equivalent
to retarded differential equations with infinite delay [70]. This method is used
in [2,21,22,43,44,45,74,75] to study stability problems for neutral equations. Our
purpose in this section is not to transform Eq. (1.1) to a single retarded equation
with infinite delay. Such a transform may not exist here. For each fixed solution
of Eq. (1.1) we associate a retarded equation with infinite delay and then apply
Theorem A and Corollary B, which enable us to establish 3/2 stability theorems
for Eq. (1.1) (see [34,77,78]).

Lemma 2.1. Let = : [top — Ao,00) — R be a solution of Eq. (1.1) and define
Y : [to,0) = R by y(t) = z(t) — pz(t — r(t,z;)) for t > to. If y(t) —» cast — oo

for some c € R, then z(t) — as t — oo.

Proof. Extend z to a function from R to R by z(t) = z(to — Ao) for t < to— Ao.
Define the map p: R — R by

'l"(t, m1:), t2 tO’
) =
A(t) {'l"(to,mto), t < to.

Let the sequence {7}, of functions ™ : R — R be given by 7°(t) = ¢ for all
t e R, and

n(t) =n""1(t — p(t))  for all integers n > 1 and t € R,
that is
7 (t) =t — p(t) — p(n(t)) —--- — p(n"~(t))  for all integers n > 1 and t € R.
We extend y to a function from R to R so that
y(t) = z(t) — pz(t — p(t)) = (t) —pz(n(t)) forallzeR.

First we express z with y. For all ¢ € R we have the sequence of equalities

y(t) = z(t) — pz(n(t)),
py(n(t)) = pz(n(t)) — Pz (n?(2)),

p y(m™(t)) = p"z(n"™(t)) — p"Hlz(n™t (1)),
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Summing the above equalities we obtain

(2.1) z(t) = i p*y(n*(t)) forallt € R,
k=0

c
which is convergent since |p| < 1. The convergence of z(t) to 1 ast — oo

follows immediately due to the fact that z(t) is convergent, y(t) — c as t — oo,
and n*(t) — oo as t — co. This completes the proof. O

The main results are the following,.

Theorem 2.2. Assume that 0 < p < 1 and there exists go € R4 so that
0<q(t)<gqoforallt>0.Let K ={k€N:so+kro <2 2}
(i) If the condition

do So qoToD 2.k
+ — 89— kro)°p” < 3/2
1-p (1-p)? 2(1 p) ,Z,:{( ) /

holds and z : [ty — Ao, 00) — R with ty € Ry is a solution of Eq. (1.1), then

1+
Izl < ol =5/ forall ¢ 2 to.

(ii) If

qo So qo7op 2_k
+ — 80— kro)°p* < 3/2
1-p (-pP " 2(1- p,cez,;( © yer <3

and lim inf,_,, g(t) > 0 are satisfied, then the zero solution of Eq. (1.1) is AS.

Proof. (i) Let tp € R, and a solution z : [tp — Ag,00) — R of Eq. (1.1) be
given. Extend z to a function from R to R by z(t) = z(to — o) for ¢t < to — Ao.
Define the maps p: R - Rand 0: R — R by

ot) = {r(t, z:), t>to o(t) = {s(t, ), t>to

r(to, Ts), t<to’ s(to,xt,), t<to’

Let the sequence {n"}$° of functions ™ : R — R be given by 7°(t) = ¢ for all
t € R, and

n"(t) ="~ 1(t — p(t))  for all integers n > 1 and ¢t € R.
Then
" (t) =t — p(t) — p(n(t)) —---— p(n™~*(t))  for all integers n > 1 and t € R.
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Define the function y : R — R by
y(t) = z(t) — pz(t — p(t)) = 2(t) — pz(n(t))  forallteR.
As in Lemma 2.1 expressing = with y, we get
o0
(2.1) z(t) = Zpky(nk‘(t)) for all t € R.
k=0

Then y satisfies

(2.2) y'(t) = —q(t) Zpky(nk(t —o(t))) forallt > t.
=0

Now we define the function F : [tg, 00) X BC — R by

F(t,¢) = —q(t) Y p*o(n*(t — o (1)) — ).
k=0

Consider the retarded functional differential equation with infinite delay

(2.3) Z(t) =Ft, 2%,  t>t.

Clearly, y is a solution of Eq. (2.3). Observe that Eq. (2.3) is a particular case
of Eq. (1.6) with rk(t) = t — #*(t — o(t)) and ax(t) = q(t)p*, k € N. Then
0 < rh(t) =t — [t—o(t) — p(t — o (t)) — p(n(t — o(2))) — -+ - — p(n*~*(t — 0(t)))]
< so + kro and 0 < ak(t) = q(t)p* < qop®, k € N. Clearly, > po,qp* < 00
since 0 < p < 1. In order to apply Theorem A to Eq. (2.3) we need a bounded,

nondecreasing, left-continuous and nonconstant function p from R, to Ry. Define

the sequences {¢*}3° and {ax}§ by ¢* = so + kro and ax = gop”, respectively.

Let
0, te [O’ QO]

ap+ay+--+ak, tE€ (g qrt1]

u) = {

Condition (1.3) becomes

=Y " M(d*, )orx < F(t,6) <Y M(¢5,—¢)ox  for all (£, ¢) € [to, 00) x BC,

k=0 k=0

that is

— Z ay, max{0, :Psaicso ¢(1)} < F(t,¢9) < — Z oy, min{0, —qunsirrlgo (1)}

k=0 k=0
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which can easily be checked. We have

- do
M0=,§ak= 1_p1

o)
k _ d0So0 qoTop
= O = +
H1 ,Z% q 1 —p (1 _p)z’

2 2
g@So ., QoTop 45 kf1—Dp
2 = + + E D (——So—k"'o) ,
I T T 210 & \ @

where K = {k € N : 5o + kro < 1—;)2} Due to the assumption p; < 3/2, from
Theorem A (i) we conclude

(24) v~ o, W)lsc < llus; Ve €¥?  for all £ 2 to.
Using the extension of z and the definition of y we infer
vl = Nse < (1+ Pzl
This inequality and (2.4) combined yield
ly(®)| < (1 +p)l|zeolle”’?  for all t € R.

Applying the last inequality for |y(t)| in (2.1) we obtain

1
TP 52

for all t € R,
1-p

|2(8)] < [l |

wich gives the desired extimation on ||z;||. The proof of assertion (i) is complete.

In order to show assertion (ii) it suffices to verify that every solution z of Eq.
(1.1) tends to zero as t — oo since assertion (i) implies the stability of the zero
solution.

Let z be a given solution of Eq. (1.1) as in the proof for assertion (i). We define
the function y : R — R and Eq. (2.3) with infinite delay as above. We want to
apply Theorem A (ii) since the uniform asymptotic stability of the zero solution
of the linear Eq. (2.3) implies, in particular, y(t) — 0 as t — oo. Using Lemma
2.1 we conclude z(t) — 0 as t — oo. In the proof of (i) we saw that (1.3) holds for
Eq. (2.3). By our assumption in Theorem 2.2 and the formula for s in the proof
of (i) yield p2 < 3/2. So only condition (1.5) remains to be verified.
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Let {t,}5° and {¢,}§° be sequences in R; and BC, respectively, and let
c €R,c#0and B > 0 with ||¢,||pc < B for all n € N, and ¢, — oo, and
¢n — c as n — oo uniformly on compact subsets of R_. Due to the fact that
lim inf;_, o g(t) > 0, there exist a positive real number ! and a positive integer ng
so that g(t,) > [ for all integers n > no.

Select € > 0 so that e le and select a positive integer NV so that
1-p 4(1-p)
N+1 N+1
D l|c| l1-p 3
B d > .
IS ST M T1op T aiop)

Choose n; € N so that n; > ng and
|pn(7) —c| <&  forallT €[—so— Nro,0}and ny <neN.

We want to show that F'(t,, ¢,,) does not converge to zero as n — co. Having

N N
—F(tn, $n) =q(ts) Zpkc + q(tn) Zpk[d’n(nk(tn —o(tn)) —tn) —cl+

k=0 k=0
q(tn) Z Pk¢n(7lk(tn — 0 (tn)) — ta),
k=N+1

we obtain for all integers n > n; that

N N+1
1-p 3lc|
tn ke| > e ,
(t )i Eln (1t — 0(tn)) — ) — ¢]| < qoe—— < —1°
a\ln k=op n\7 \ln n n S q 1—p 4(1_p),
and
haad N+1
P lc|
a(tn) Y. POn(n*(tn — o(tn)) —tn)| < @ B < .
k=N+1 l1-p 4(1-p)
So for all integers n > ng we get
3l|c| l|c| llel 1

= Flm )l > = " 30-p) " H1-p) 30-p %

which means that F(t,,®,) does not converge to zero as n — oo. Therefore,
condition (1.5) holds for Eq. (2.3), and the proof is complete. O

Remark. Since for each solution of Eq. (1.1) we have associated a different
retarded equation with infinite delay, the uniform asymptotic stability of the zero
solution of Eq. (2.3) does not imply the uniform asymptotic stability of the zero
solution of Eq. (1.1).
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Theorem 2.3. Assume that 0 < p < 1 and there exists gg € R4 so that
0<gq(t)<q forallt>0.

(i) If the condition
do So qoToP

+ <1
1-p (1-p)?
holds and z : [to — Ao, 00) — R with to € R, is a solution of Eq. (1.1), then
+
loull < lowll 7= e forallt 2 to.
(i) If
do So + GoToP <1

(1-p)?
and lim inf;_,o q(t) > O are satisfied, then the zero solution of Eq. (1.1) is AS.

The proof is analogous to that of Theorem 2.2, the only difference is that now
we apply Corollary B. All we need is y;, which we have already calculated, and
condition (1.5), which we have verified.

2.3 Attractivity for neutral differential equations

In this section we prove the attractivity of the zero solution of Eq. (1.1) by ex-
tending some results of Wu and Yu [76] to neutral equations with state-dependent
delay. First we give some lemmas concerning boundedness and convergence of
oscillatory solutions. For the proofs see [4].

A solution z : [tp — Ag,00) — R of Eq. (1.1) is said to be oscillatory if z has
arbitrarily large zeros.

Lemma 3.1. Assume that |p| < %, q(t) > 0 for all sufficiently large t € R,

t
3
(3.1) 20pl(2 ~ Ipl) + limswp [ q(r)dr < 3
t—oo t—s8o
and
(3.2)

for all y € C([—Xo, ), R), the function [0,00) 3 t — t — s(t,y:) € R is increasing.

Then every oscillatory solution of Eq. (1.1) is bounded.

Note that condition (3.2) in Lemma 3.1 is the crutial point of the proof.
Such a condition also plays an important role in nonneutral equations with state-
dependent delay [60,39]. There is a wide class of applications where s(t,y.) is
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defined by a threshold that is

t

[ ku)dr=to,
t— S(t, yt)

where k(t) is a positive continuous function and kg is a positive real number. In

this case condition (3.2) holds.

Lemma 3.2. Under the assumptions of Lemma 3.1, every oscillatory solution of
Eq. (1.1) converges to zero ast — oo.

The main result is the following.

Theorem 3.3. Assume that |p| < %, q(t) > 0 for all sufficiently larget € R,

(3.3) / " g(r) dr = oo,

to

t

3
2|p|(2 — |p[) + lim sup g(r)dr < 5
t—o00 t—so 2

and
for all y € C([—Xo, 00), R), the function [0,00) S t — t — s(t,y:) € R is increasing.

Then every solution of Eq. (1.1) converges to zero as t — oo.

Proof. Let tp € R, and a solution z : [to — Ag, 00) — R of Eq. (1.1) be given.
Using the notations p(t) = (¢, z:), o(t) = s(t,z:) and y(t) = z(t) — pz(t — p(t))
for t > tg, we have

(3.4) y'(t) = —q()x(t —o(t))  for all t > to.

Two cases are to be considered:

Case I: z is oscillatory. Then the convergence to zero follows immediately from
Lemma 3.2.

Case II: z is nonoscillatory. We assume that z(t) is positive for all sufficiently
large t. The case when z(t) is negative for all sufficiently large ¢ is similar. Our
assumption implies that y'(¢) < 0 for all sufficiently large ¢, say for all ¢ > Ty, which
means that y(t) is decreasing on [Ty, 00). So the limit ¢ = lim;—,o0 y(t) exists and
we claim that it is finite. Indeed if z is bounded then y is also bounded and thus
¢ € R. In case z is not bounded assume ¢ = —oo. Then there exists T > tg + 7o,
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T1 > Tp so that z(t) < pz(t — p(t)) for all ¢ > Ti. Let M = sup, <;<1, Z(t)
and T, = sup{t > T} : z(1) < M for to < 7 < t}. Observe that M > 0 since
z(T}) < pz(Ty — p(T1)). Using that z is unbounded from above we infer T < oo
and M = z(T3) < pz(Tz — p(T»)) < pM. From M > 0 we conclude p > 1. This
contradiction leads to the conclusion ¢ € R. Applying Lemma 2.1, we obtain the
convergence of z(t) to 7= 8 t — oo. It remains to show that ¢ = 0. Indeed if
¢ # 0 then integrating (3.4) on [to,00) and using (3.3), we get ¢ = —oco which
contradicts ¢ € R, thereby completing the proof. ]

Remark. Theorem 3.3 can be extended to the equation

(35) 2 lo(t) ~pa(s — r(t, )] = £(6,30),

where f : [0,00) x C — R. We assume that there exists a constant H > 0 and a
continuous function q : [tp, 00) — R such that

—q(t)M (), —¢) < f(t, ) < q(t)M (), ¢) for all t > tgand ¢ € C with ||¢|| < H.

Then we can show that in case |p| < %, q(t) > 0 for all sufficiently large t € R and

t

3

2|p|(2 — |p|) + lim sup/ g(r)dr < -
t— t

(] —80 2

there exists h € (0, H) such that for every ¢ € C with ||¢|| < h, the solution of
Eq. (3.5) through (o, ¢) converges to a constant as ¢ — oo. Moreover, if for every
constant mapping ¢ € C with ||c| < H, we have

|1 9lde= oo

to

then every solution of Eq. (3.5) through (¢, ¢) converges to zero as t — co. We
omit the proof because it follows the same technique as the proof of the Theo-
rem 3.3 with appropriate modifications.
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Chapter 3

Convergence of Solutions

3.1 Convergence in monotone dynamical systems

Consider the differential equation with state-dependent delay

(1.1) B(t) = —px(t) + f(z(t— 7)), 7=r(z(t),

where x> 0, f and r are smooth real functions with f(0) =0 and f’' > 0.

In the case r = constant Eq. (1.1) generates a semiflow F on the phase space
C([-r,0],R). The condition f' > 0 guarantees that F is monotone with respect to
the pointwise ordering of the phase space, that is, for every ¢, ¥ in C([-r,0],R)
with ¢ < ¢, F(t,¢) < F(t,9) holds for all ¢t > 0. It is also true that F is strongly
order preserving (SOP), that is, 7 is monotone, and for every ¢, ¥ in C([—r, 0], R)
with ¢ < 1, there exist to > 0 and open subsets U, V of C([-r,0],R) with ¢ € U
and ¥ € V such that F(to,U) < F(to, V). Then applying a result of Smith and
Thieme [65,68,69], we conclude that the omega limit of all points from an open
dense subset of the phase space is an equilibrium point.

We remark that analogous results were obtained by Smith and Thieme in
[66,67] for non-quasi-monotone functional differential equations, that is, under a
weaker condition than f’ > 0.

In the case r = r(z(t)) the situation becomes more difficult, because it is not
obvious how to choose the phase space. The questions about existence, uniqueness,
and continuous dependence of solutions of Eq. (1.1) are also not standard, see, e.g.,
[62]. In Section 3.2 we show that for suitable R > 0 and A > 0, the solution of Eq.
(3) defines a semiflow F' on the metric space X containing Lipschitz continuous
functions mapping [—R, 0] into [—A, A] with metric d(¢, %) = sup_gr<,<o [#(s) —
9(s)|- The constant R > 0 is the maximum of r on [—A, A]. A difficulty arises:
the semiflow generated by Eq. (1.1) is not in general SOP. Thus the result of Smith
and Thieme is not applicable. Our aim is to prove a convergence result which is
applicable for Eq. (1.1).

We give the result of Smith and Thieme first and then the modified version
of this convergence result. In [65,68] a metric space X is considered and a closed
partial order relation < on A. For z and y in X, z < y is written whenever z < y
and z # y.
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A semiflow ® is considered on X, that is a map ® : [0,00) x X — X, which
satisfies: (i) @ is continuous, (ii) #(0,z) = z for all z € X, (iii) ®(¢, 2(s,z)) =
®(t+ s,z) for allt >0, s >0and z € X.

The orbit O(z) of z € X is defined by O(z) = {®(t,z) : t > 0}. A point
z € X is called an equilibrium point if O(z) = {z}. The set of all equilibrium
points of ® is denoted by E. The omega limit set w(z) of z € X is defined
by w(z) = Ni>0Us>:2(s, ). Recall that w(x) is a nonempty, compact, invariant
subset of X and dist(®(t, z),w(z)) — 0 as t — oo provided O(z) is a compact
subset of X. A point z € X is called a quasiconvergent point if w(z) C E. The set
of all such points is denoted by Q. A point z is called a convergent point if w(z)
consists of a single point of E. The set of all convergent points is denoted by C.

It is supposed that ® is monotone, that is, for every z, y in X with z < y,
®(t,z) < B(t,y) holds for all ¢ > 0. It is assumed that ® is strongly order
preserving (SOP), that is, ® is monotone, and for every z, y in X with z < y,
there exist o > 0 and open subsets U, V of X with £ € U and y € V such that
B(to, U) < B(to, V).

Assume that for each z in X, O(z) has compact closure in X.

It is supposed that for every z in X,

(a) there exists a sequence (z,)° in X satisfying z, < Zn+1 < Z (Z < Tp41 < Tp)
for all integers n > 1 and z,, — z as n — o0, and
(b) for the sequence (z,,)$° with the property guaranteed by (a), Un>1w(z») has

compact closure in X.

Then the result of Smith and Thieme [65,68] states that under the above as-
sumptions X = Int QU IntC. In particular Int Q is dense in X.

We observe that the semiflow & generated by Eq. (1.1) has the following prop-
erty. ® is monotone, and for z, y in X with z < y and ®(¢,z) # ®(t,y) for all
t > 0, there exist to > 0, and open subsets U, V of X with £ € Y and y € V such
that @(to,“) < q’(to,V).

We give some notations and definitions. We shall write z <3 y if £ < y and
®(t,z) # ®(t,y) for all t > 0. For two subsets {a} = A and B of X with A < B
or A< Bor A<s B, we shall writea < Bora < Bora<g B.

We say that ® is mildly order preserving (MOP) if it is monotone, and for
every z, y in X with z <g y, there exist ¢, > 0 and open subsets U, V of X with
z € U and y € V such that ®(to,U) < &(to, V).

Note that the difference between the MOP and SOP properties is that we have
one more assumption for the MOP property, that is, ®(¢, z) # ®(t,y) for allt > 0
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and for all z, y in X with z < y. Thus the MOP property is weaker than the SOP
property.

We say that z € X can be approximated from below (above) in X if there
exists a sequence (z,)$° in X satisfying z, <@ Tn+1 <& Z (T <3 Tnt+1 <& Z,) for
all integers n > 1 and z, — z as n — oo.

Since the semiflow generated by Eq. (1.1) is MOP, we are interested in proving
a convergence result for the monotone semiflow being MOP instead of SOP. Thus a
natural question appears: Under what conditions can we prove such a convergence
result? In Section 3.3 we prove the following theorem.

Theorem 1.1. Consider a metric space X with a closed partial order relation
and a semiflow ® on X. Assume that
(A1) ifz and y are in a compact invariant subset of X, then < y implies z <¢ ¥,
(A2) ® is MOP,
(As) each point in X can be approximated either from below or from above in X,
(A4) for each x in X, the orbit O(z) of z has compact closure in X, and
(As) for each z in X and for each sequence (z,)$°, which approximates z either
from below or from above in X, Up>1 w(z,) has compact closure in X.
Then X = Int QU IntC. In particular Int Q is dense in X.

We mention that the differences between Theorem 1.1 and the theorem of
Smith and Thieme are that assumption (A;) in Theorem 1.1, the crutial point
of the proof, does not appear in the result of Smith and Thieme, the semiflow ®
in Theorem 1.1 is MOP instead of SOP, and the definition of approximation in
Theorem 1.1 differs from the one used by Smith and Thieme. An examination of
the proof of the result of Smith and Thieme shows that due to assumption (A1)
the proof of Theorem 1.1 follows more or less the same line as that in [65,68].

3.2 Convergence of solutions for an Equation with
State-Dependent Delay

In this section we apply Theorem 1.1 for the differential equation with state-
dependent delay

(1.1) £(t) = —pax(t) + f(z(t — r(x(t)))).

In order to achieve our goal, we need to establish hypotheses on f and r and
choose an appropriate phase space ensuring that the conditions of Theorem 1.1
are satisfied.
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Consider the hypotheses

(>0,

f € CYR,R), f(0) =0, f'(u) >0 for all u € R,

there exists A > 0 such that |f(u)| < p|u| for all |u| > A,
| 7 € C}(R,R), 7(0) = 1, r([- A4, A]) C (0, 00).

(H1)

Set R = maxye[-a,4)7(v), M = maXpv)e[-4,4)x[-4,4]| — pu + f(v)], C =
C([-R,0],R) and for ¢ € C define

lip(¢) = sup{|¢(s) — #(t)| - [s —t| ™" : 5, t € [-R, 0], s #1}.

Let G be the map defined by the right hand side of Eq. (1.1), that is,
G(¢) = —ud(0) + f(#(—r(#(0)))). Observe that G is not necessary defined for
all ¢ € C. For ¢ € C with ¢(0) & [-A, A], G(¢) may not exist. Therefore
consider the retraction p : C — D defined by C > ¢ — p(¢) € D, where
D={¢peC:—-A<¢t) <Afor—R<t<0}. p(¢) is a function mapping
[-R, 0] into [—A, A] in the following way:

A for ¢(t) > A,

(2.1) p(9)(t) = { ¢(t) for — A< ¢(t) < A4,
—A  for ¢(t) < —A.

Consider the function G o p : C — R defined by G(p(¢)) = —up(¢)(0) +
f(o(d)(—r(p(¢)(0)))) for all ¢ in C and the equation

(2.2) i(t) = G(p(z:)),

where z; € C, t > 0, is defined by z:(s) = z(t + s) for all s € [-R,0].

We say that a function z : [-R,8) — R, 0 < § < o0, is a solution of Eq. (2.2)
if z is continuous on [—R, §), z|[o,s) is differentiable on [0,4), and z satisfies Eq.
(2.2) for all ¢ € [0,8). £(0) denotes the right hand derivative of z at 0.

We say that a function z : [-R, 00) — [—A, A] is a solution of Eq. (1.1) if z is
continuous on [—R, 00), &|[p,c0) is differentiable on [0, 00), and z satisfies Eq. (1.1)
for all ¢t > 0.

First we show existence, uniqueness, and continuous dependence of solutions
of Eq. (2.2) and then of solutions of Eq. (1.1).

We begin with proving the following claim.
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Claim. The function Go p : C — R is continuous and satisfies the following
property: there exist constants a1 > 0 and az > 0 such that for all R; > 0 and for
all ¢, ¢ in C with lip(¢) < Ry,

(2.3) |G(p(#)) — G(p(¥))] < (a1 + a2 R1)||6 — ¥

Proof. It is easy to check that p is continuous; thus G o p is continuous, and
for all ¢, ¥ in C, we have

(2.4) llo(#) — p(¥)Il < ll¢ — 9|
and
(2.5) lip(p(#)) < lip(¢)-

To show (2.3), we make the estimations

g GO~ CEW < M@0 - PO}
|F(p(@)(=r(p(8)(0)))) = F () (=r(p(#)O)))].

The function f is locally Lipschitzian because it is continuously differentiable.
Thus there exists L > 0 such that

|7 (p(6)(—7(p(#)(0)))) — F(p(¥)(=r(p(¥)(0))))| <
Lip(¢)(—7(p(6)(0))) — p(¥)(—(p(¥)(0)))| <
Lip(¢)(—r(p($)(0))) — p(8) (= (p(¥)(0))) |+
Lip(#)(—r(p(#)(0))) — p(#)(—r(p(%)(0)))I.

Using (2.5) and the fact that r is locally Lipschitzian, being continuously differen-
tiable, we obtain that there exists N > 0 such that

lp(¢)( = r(p(¢)(0))) — p(&)(—r(p(¥)(0)))]| <
Ra|r(p(#)(0)) — r(p(¥)(0))| < R1N|p(4)(0) — p(%)(0)-
Combining (2.7) with (2.8) and (2.4), we find

(2.7)

(2.8)

(2.9)  |£(e(8)(=(p(¢)(0)))) — fo(¥) (= (p(¥)(0)))| < (LR1N + L)||¢ — |-
We deduce from (2.6), (2.9), and (2.4) that

1G(n(¢)) — G(o(¥))| <pll¢ — %Il + (LRLN + L)|¢ — ¥
=((u+ L) + LNRy)||¢ — %Il = (a1 + a2 R1)||¢ — 4.
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Observe that the constant a; + azR; depends on ¢ and it is independent of 4.
The proof is complete. a

For local and global existence we refer to Theorem 1.1 of [62]. Consider ¢ € C.
Since Go p : C — R is continuous, by Theorem 1.1 of [62], for some § > 0, there
exists a solution z? : [-R, §) — R of Eq. (2.2) through ¢, that is, ¢ is a solution
of Eq. (2.2) such that z®|_g o) = ¢. As there exist constants c; and c; such that
for all ¢ in C, |G(p(¢))| < c1l|@|| + c2, by Theorem 1.1 of [62], the solution z¢ can
be defined on [—R, 00).

For uniqueness we refer to Theorem 1.2 of [62]. Consider ¢ € C with
lip (¢) < oo, and for some § > 0 two solutions y® : [-R,6) — R and
2% :[-R,6) = R of Eq. (2.2) through ¢. Since G o p is continuous on C and
it satisfies property (2.3), by Theorem 1.2 of [62], we obtain y%#(t) = 2%(t) for
all ¢ in [-R, ). For continuous dependence of solutions of Eq. (2.2) we refer to
Theorem 1.6 of [62].

We define the phase space X as the metric space of all real-valued continuous
functions ¢ : [-R,0] — [—A, A] with lip(¢) < oo, where the metric is obtained
from ||¢|| = max_gr<s<o|P(s)|. We introduce a closed partial order relation on
X in the following way: ¢ < v whenever ¢(s) < 9(s) for all s € [-R,0], ¢ < ¢
whenever ¢ < 9 and ¢ # 9, and ¢ < 9 whenever ¢(s) < 9(s) for all s € [-R,0].

To prove existence, uniqueness, and continuous dependence of solutions of Eq.
(1.1), we need the following proposition.

Proposition 2.1. For every ¢ € X the solution z = z? : [-R,00) — R of Eq.
(2.2) through ¢ satisfies z(t) € [-A, A] for all t > 0.

Proof. Set t; = sup{s : z(t) € [-A,A] forallt € [0,s]}. If ¢; be-
longs to the interval of existence, then either z(t;) = A and (1) > 0 or
z(t1) = —A and z(t;) <0. Suppose z(t;)) = A and %(¢;) > 0. Since r
is positive on [—A, A], we have z(t; — r(z(¢1))) < A. The monotonicity of
f yields f(z(t1 — r(z(t1)))) < f(A). The solution z satisfies Eq. (2.2), that
is 3(t1) = —up(2)(0) + F(p(se)(—r(p(32,)(0)))). As 5,(0) € (A, 4] and
z¢, (—7(z4,(0))) € [—A, A], according to the definiton of p, we obtain p(z, )(0) =
2, (0) and p(zs,)(—7(p(2:,)(0))) = 1, (—7(24,(0))). Thus, &(t1) = —px(ts) +
f(z(t1 — r(z(t1)))). The assumption —uA + f(A) < 0 implies #(¢1) < 0. This is a
contradiction. A similar argument leads to a contradiction in the case z(t;) = —A
and Z(t;) < 0. Therefore z(t) € [-A, A] for all £ > 0. m]
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Proposition 2.2. For every ¢ € X there is a unique solution z = z% : [-R, c0) —
[—A, 4] of Eq. (1.1) such that z|_g o = ¢.

Proof. Let ¢ € X. Then there exists a solution z = 2% : [-R, 00) — R of Eq.
(2.2) through ¢. By Proposition 2.1, z(t) € [-A4, A] for all t > 0. Hence p(z:) = z;
and G(p(z:)) = G(z;) for all t > 0. Thus, z : [-R,00) — [—A, A] is a solution
of Eq. (1.1) with z|_g,g) = ¢. Consider a solution y = y* : [-R,0) — [-4, 4]
of Eq. (1.1) such that y|[—ge = ¢. Since y(t) € [—A4, A] for all £ > 0, by the
definition of p, y: = p(¥:), and G(y:) = G(p(ye)) for all t > 0. Thus y is also a
solution of Eq. (2.2) through ¢; therefore z(t) = y(t) for all ¢ in the interval of
existence. o

Proposition 2.3. Let € > 0,6, 9 € X, z = 2% : [-R,00) — [—A, A] be the
unique solution of equation Z(t) = G(x;) such that z|_ro = ¢, and y = y?
[-R,00) — [—A, A] be the unique solution of equation §(t) = G(y;) + € such that
Yl(-r,0) = ¥. Then there exists a constant ¢ > 0 independent of €, ¢, 1 such that

lz(t) — y(t)| < €|l — ¥l + (e - 1)5 for all t > 0.

Proof. Since z(t) € [-A, A] and y(t) € [-A, A] for all t > 0, G(z:) = G(p(z))
and G(y:) = G(p(y;)) for all t > 0. Thus z is the solution of equation Z(t) =
G(p(z:)) with z|[_r = ¢, and y is the solution of equation §(t) = G(p(y:)) + €
with y|[_g,0) = ¥. By Theorem 1.6 of [62], there exists ¢ > 0 such that we have
the desired estimation for |z(t) — y(¢)|. 0

We define the map F by [0,00) x X 3 (¢, ¢) — z? € X, where % denotes the
solution of Eq. (1.1) through ¢.

Proposition 2.4. The map F is a semiflow on X, that is:
(i) F is continuous,
(ii) F(0,¢) = ¢ for all ¢ € X,
(iii) F(t,F(s,$)) = F(t+s,¢) for allt > 0, for all s > 0 and for all ¢ € X.

Proof. Proof of (i). The continuity of F' in the first variable is obvious. To
prove the continuity of F' in the second variable, consider the solutions z = % and
y = z% of Eq. (1.1) through ¢ and ¢y € X, respectively. Applying Proposition 2.3
with e = 0, we obtain that there exists a constant ¢ > 0 such that |z(t) — y(¢)| <
et||@ — do|| for all t > 0. Hence ||z; — y:|| < e°t||¢ — ¢o|| for all £ > 0, which implies
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the continuity of F' in the second variable. It is easy to see that (ii) and (iii) are
satisfied. O

Proposition 2.5. The semiflow F' is monotone, that is, F(t,¢) < F(t,v) when-
ever¢g <Y andt>0.

Proof. Let ¢, 9 be in X with ¢ < 9, and ¢y > 0 such that —uA+f(A)+€o < 0.
For all € in (0, €p), consider the equation

(2.10) 2(t) = —uz(t) + f(z(t — r(2(t)))) + €.

First we show that the solution of Eq. (2.10) through % exists and it is unique.
Consider the retraction p defined by (2.1), the map G(p(¢)) = —up(4)(0) +
F(p(#)(—r(p(9)(0)))) for all ¢ € C, and the equation

(2.11) #(t) = G(p(z:)) +e.

We mention that the definitions of solutions of Eq. (2.10) and Eq. (2.11) are the
same as those for Eq. (1.1) and Eq. (2.2), respectively. Since the function defined
by the right hand side of Eq. (2.11) is continuous, it satisfies property (2.3), and
there exist constants ¢; and ¢, such that for all ¢ € C, |G(p(¢))+¢€| < ci1]|@||+c2, by
Theorem 1.1 of [62], we obtain that there exists a unique solution 2¢ : [-R,00) — R
of Eq. (2.11) with z§ = 1. We prove that 2¢(t) € [- A, A] for all ¢t > 0. Set t; =
sup{s : 2¢(t) € [ A, A] for all ¢t € [0, s]}. If ¢; belongs to the interval of existence,
then either 2¢(¢1) = A and 2%(¢;) > 0 or 2(¢1) = —4 and 25(¢;) < 0. Suppose
2%(t1) = A and 25(t;) > 0. Since r is positive, we have 2¢(t; —r(2%(¢1))) < A. The
monotonicity of f yields f(2°(t1 — r(2(t1)))) < f(A). As z{ (0) € [-A, 4] and
z;, (—r(2§,(0))) € [-A, A], we infer

£5(t1) = — wo(24,)(0) + f(o(z;,)(—7(p(2£,)(0)))) + €
= — uz*(t1) + f(2°(t1 — 7(25(t1)))) + € < —pA + f(A) + 0.

The assumption —pA+ f(A)+ep < 0 implies 2%(¢1) < 0. This is a contradiction. A
similar argument leads to a contradiction in the case 2¢(t;) = —A and 2¢(¢;) < 0.
Therefore, 2¢(t) € [—A, A] for all t > 0. Hence p(zf) = zf and G(p(2f)) =
G(z5) for all t > 0. Thus, 2¢ : [-R,00) — [—A, 4] is a solution of Eq. (2.10)
through 4. To prove uniqueness, consider a solution y¢ : [-R,00) — [—A, A]
of Eq. (2.10) with y§ = 9. Since y*(t) € [—A, A] for all ¢ > 0, y¢ is a solution

29



of Eq. (2.11) through 1. Therefore 2¢(t) = y*(t) for all ¢t € [-R,00). Thus
2¢ : [-R,00) — [—A, A] is the unique solution of Eq. (2.10) through 4. Denote
by z and y the solutions of Eq. (1.1) with o = ¢ and yo = 9. Proposition 2.3
implies z¢ — y uniformly on compact subsets of [-R,00) as € — 0. Therefore, in
order to conclude the monotonicity of F, it suffices to show that z(t) < 2¢(t) for
all t > 0 and for all € in (0,¢). Fix an e. If ¢(0) = ¥(0) then z(0) = 2¢(0). So
24(0)—2(0) = f(¥(-r(z(0)))) £ (#(—r(z(0))))+e. As ¢(—r(2(0))) < %(-7(z(0))),
the assumption f’ > 0 implies f(¢(—r(z(0)))) < f(¥(—r(z(0)))). Consequently,
#¢(0) — £(0) > e > 0. Hence there exists § > 0 so that z(t) < 2¢(t) for all £ in
(0,0). The existence of such a 4 in the case ¢(0) < (0) follows immediately from
the continuity of 2¢ and z. Therefore, by way of contradiction we can choose s > 0
such that z(t) < 25(t) for 0 < t < s and z(s) = z°(s). Clearly, Z(s) > 2°(s). On
the other hand we have

(2.12) #5(s) = —p2*(s) + f(2°(s — 7(2%(s)))) + €.

As ¢ < ¢ and r is positive on [—A4, 4], z(s — r(z(s))) < 2¢(s — r(z(s))) = 2°(s —
r(2%(s))). The assumption f’ > 0 implies f(z(s — r(z(s)))) < f(z°(s — 7(2°(s)))).
Consequently,

(2.13)  —uz(s) + f(z(s — r(z(5)))) < —p2(s) + f(2°(s — r(2°(s)))) + €.
Combining (2.12) with (2.13), we conclude 2¢(s) > #(s). This contradiction com-
pletes the proof. ]

Our next goal is to prove that if ¢ and ¢ belong to some compact invariant
subset of X and ¢ < 1, then ¢ <p 9. In order to achive this purpose we need the
following two lemmas.

Lemma 2.6. If z : R — [—A, A] and y : R — [—A, A] are two solutions of Eq.
(1.1), then the difference z = z — y satisfies the linear equation

(2.14) 2(t) = a(t)2(t) + b(t)z(t — r(z(2)))

for allt € R, wherea : R — R and b : R — R are continuous and bounded
functions defined by

1
aft) = == [ £lsylt = r(et) + (1= s)ylt - rlu@)ldsx
1
(2.15) |} ¥1ste = r(a)) + - s)e - rtu(e))ldsx
/0 r'[sz(t) + (1 — s)y(t)]d s
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and

1
(2.16) b(t) = /0 f'lsz(t — r(z(®))) + (1 — s)y(t — r(z(t)))lds.

Proof. Consider the solutions z : R — [—A, A] and y : R — [-A, 4] of Eq.
(1.1). For the difference z = z — y, we have

£(t) = —pa(t) + f(z(t - r(z()))) - fy(t - r(¥(®))))
= —pz(t) + fz(t - r(z(t))) — fly(t - r(z(2)))+
ft-r®)) - fly(E-r@®)) foralteR.

Using the equality

1 d
flw)—fw)= | S=flsu+(1-s))ds
(2.17) /° as

=/1f’(su+(1—s)'u)dsx('u,—'u) for all u, v € R,
0

we obtain, for t € R
(2.18)

1 .
&(t) = —pz(t) + /0 f'lsz(t = r(=()) + (1 — s)y(t — r(z()))]d sx

1
2(t —r(z(8)) + /0 flsy(t—r(=(2))) + (1 — s)y(t — r(y(2)))}d sx
[yt — r(z(®))) - y(t - r(w(EN)],

y(t —r(z(®)) —y(t - r(y(®)) =

(2.19) /1 ,
-y [s(t — r(z())) + (1 = 8)(t — r(y()))]d s x [r(z(t)) — r(y(2))],

1

(2.20) r(z(t)) = r(y(t)) = /0 r'[sz(t) + (1 — 8)y(t)]ds x 2(t).

Combining (2.18) with (2.19) and (2.20), it follows that z satisfies Eq. (2.14), where
a(t) and b(t) are continuous, bounded functions defined by (2.15) and (2.16). The
proof is complete. O

Remark 2.7. If z : [-R,00) — [—A,A] and y : [-R,00) — [—A, A] are two
solutions of Eq. (1.1), then the difference z = x — y satisfies Eq. (2.14) for t > R,
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where a : [R,00) — R and b : [R,00) — R are continuous and bounded functions
defined by (2.15) and (2.16).

Lemma 2.8. If z : R — [—A, A] and y : R — [—A, A] are two solutions of Eq.
(1.1) on R and zo = yo, then z(t) = y(t) for all t € R.

Proof. Set z = z —y. By Lemma 2.6, z satisfies Eq. (2.14), with a(t) and b(t)
given by (2.15) and (2.16). Moreover, b(t) > 0 for all ¢t € R since f’ > 0. Define
v(t) = 2(t)e Joetde o an t € R. Multiplying Eq. (2.14) by e~ Js a(s)ds

infer

(2.21) o(t) = b()2(t — r(z()) e~ do ¥ forallteR.

we

The definition of v(t) yields

te—r(z(t

»
ot — (@) = vt —r@@®)) el ¥ fralteR.
Thus v(t) satisfies the linear equation

(2.22) o(t) = c(t)v(t — r(z(t))) forallteR,

where c(t) is defined by c(t) = b(t)e ft-'(w)) for all t € R, and c(t) is
continuous and bounded, and ¢(¢) > 0 for all t € R. In order to show that 2(t) =0
for all ¢ € R, it suffices to prove that v(t) = 0 for all t € R. Note that v(t) =0
for all £ > —R due to the uniqueness of solutions and zo = yp. Set 7 = inf{¢ :
v(s) = 0 for all s > t}. We claim that 7 = —oo. Otherwise —co < 7 < —R.
We have v(t) = 0 for all t > 7. Therefore 9(t) = 0 for all ¢ > 7. Then, by Eq.
(2.22), v(t — r(z(t))) = O for all ¢ > 7, which using the definition of 7, implies
T = inf{t — r(z(t)) : £ > 7}. On the other hand using the assumption r(u) > 0
for all u € [—A, A], we obtain inf{t — r(z(t)) : t > 7} < 7 — r(z(7)) < 7. This
contadiction shows that 7 = —oco. Consequently, v(t) = 0 for all ¢ € R and the

a(s)ds

lemma is proved. a

In the proofs of the above lemmas it is important that the delay r depends
only on z(t) and not on z;. The hypothesis f > 0 seems to be also crucial.

Corollary 2.9. Let B be a compact invariant subset of X, where invariance
means that for any ¢ € B, there exists a solution % of Eq. (1.1) on R with a:g =¢
and zf € B for allt € R. If ¢, 1 € B with ¢ # 9, then z¢ # z¥ for all t € R.

If z : R — R is a solution of Eq. (1.1) with zg = ¢, then we also denote this
solution by z#. This should not cause confusion.
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The semiflow F' has the following property.

Proposition 2.10. If ¢, ¢ € X with ¢ <g v, then there exists to > 0 such that
F(t,¢) < F(t,9) for all t > to.

Proof. Consider ¢, % € X with ¢ <r 9, and the solutions z = z?¢ :
[-R,00) — [-A, A] and y = z¥ : [-R, 00) — [—A, A] of Eq. (1.1) through ¢ and
1, respectively. The monotonicity of F implies z(t) < y(t) for all t > —R. Our
aim is to prove that z(t) < y(t) for all t > 2R. Then it follows that z:(s) < y:(s)
for all s € [-R,0] and for all t > 3R, that is, F(t,¢) < F(t,) for all t > 3R.
Set z = £ — y. By Remark 2.7, z satisfies Eq. (2.14) for ¢t > R with a(t) and b(t)
defined by (2.15) and (2.16) for t > R. We define v(t) = 2(t)e” Jaotds gop an
t > R. Instead of (2.21) here we obtain

(2.23) o(t) = b()2(t — r(z(2) e Jr*@**  foralt>R.
v(t) satisfies the equation

(2.24) 0(t) = c(t)v(t — r(z(t))) forallt> R,

where c(t) is defined by c(t) = b(t)e f:-'(w)) 42 gor all ¢ > R. The assumption
¢ <r ¥ implies zag # YR, that is, zog # 0. By the definition of v, it follows that
var # 0. Since v(t) < 0 for all t > —R, there exists u € [R, 2R] such that v(u) < 0.
Having v(t — r(z(t))) < 0 for all t > R and ¢(t) > 0, by (2.24), we deduce v(t) <0
for all £ > R. Therefore v(t) < v(u) < 0 for all ¢ > u. Hence z(t) < y(t) for all
t > 2R. The proof is complete. ]

Proposition 2.5 and Proposition 2.10 imply that F' is MOP.

Proposition 2.11. The semiflow F is MOP, that is, it is monotone, and for every
¢, ¥ in X with ¢ <p 1, there exist to > 0 and neighbourhoods U of ¢ and V of ¢
such that F(to,U) < F(to, V)

Proof. We have already shown the monotonicity of F' in Proposition 2.5.
Consider ¢, 9 in X with ¢ <g 1. Proposition 2.10 implies that there exists
to > 0 such that F(to,#) < F(to,%). There are neighbourhoods U of F(to,¢)
and V of F(to, ) such that U < V. By the continuity of F(to,-), there exist
neighbourhoods U of ¢ and V of ¥ such that F(to,U) C U and F(ts,V) C V.
Consequently, F(to,U) < F(to, V). Hence F(to,U) < F(to,V) as required. O
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As the proof of Proposition 2.11 shows, we have also proved that for all ¢, ¥
in X with ¢ <pg 1, there exist ¢y > 0 and neighbourhoods U of ¢ and V of ¢ such
that F(to,d) < F(to,V). Since ty can be choosen 3R, by Proposition 2.10, we
conclude the following property of F'.

Remark 2.12. If ¢, v € X with ¢ < 9, then there exist neighbourhoods U of
¢ and V of ¢ such that F(3R,U) < F(3R,V).

Our next goal is to prove that each point in X can be approximated either
from below or from above in X. In order to do this, we need one more property
of the semiflow F'

Proposition 2.13. If ¢, 9 € X with ¢ < ¢ and t > 0, then F(t,¢) < F(t,v).

Proof. Consider ¢, ¥ € X with ¢ < v, and the solutions z = z% : [-R, 00) —
[~A, A] and y = z¥ : [-R,00) — [—A, A] of Eq. (1.1) through ¢ and ¥, re-
spectively. Suppose by way of contradiction that there exists s > 0 such that
z(t) < y(t) for all 0 < t < s and z(s) = y(s). Clearly, (s) > y(s). We have
z(s — r(z(s))) < y(s — r(z(s))) = y(s — r(y(s))) since ¢ K 9 and r is positive on
[-A, A]. The assumption f’ > 0 implies f(z(s — r(z(s)))) < f(y(s — r(y(s))))-
Therefore £(s)—y(s) = f(z(s—r(z(s))))—f(y(s—r(y(s)))) < 0. This contradiction
completes the proof. ]

Proposition 2.14. Each point in X can be approximated either from below or
from above in X.

Proof. Let ¢ be in X. Define ¢n(s) = min{4,¢(s) + 1} and ¥n(s) =
max{—A, ¢(s) — L} for all s € [-R,0] and n € N\ {0}. We prove that ¢ can
be approximated either from below by a subsequence of (¢,){° or from above by
a subsequence of (¢,)$° in X. Clearly, ¢, and 1, are in X for all n € N\ {0},
and ¢, — ¢ and ¥, — ¢ as n — oo. First we show that for every n € N\ {0},
either ¥, <p ¢ or ¢ <p ¢n. As for every n € N\ {0}, ¥ < ¢n, Proposition
2.13 implies that for every n € N\ {0} and ¢t > 0, F(t,¥n) < F(t,¢,). Hence it
follows that for every n € N\ {0}, either ¢, <r ¢ or ¢ <r ¢,. Therefore there
is a subsequence (n)) such that either ¢,, <p ¢ for all k € N\ {0} or ¢ <p ¢n,
for all k € N\ {0}. Without loss of generality assume that ¢ <p ¢,, for all
k € N\ {0}. By Remark 2.12, for all k € N\ {0}, there is a neighbourhood Uy, of ¢
such that F(3R,U;) < F(3R, ¢y, ). Since ¢, — ¢ as k — oo, we obtain that for
all k € N\ {0}, there exists /| € N\ {0} such that ¢,,,, € Ui. Consequently, for all
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k € N\ {0}, there exists [ € N\ {0} such that F(3R, ¢n,,,) K F(3R,¢n,). This
implies that for all k € N\ {0}, there exists [ € N\ {0} such that ¢,,, <F @n,.
Now it is clear how to choose a subsequence (¢nk,.) such that it approximates ¢
from above. a

It remains to show the following.

Proposition 2.15. For each ¢ in X, the orbit O(¢) of ¢ has compact closure in X.
Furthermore, for each ¢ in X and for each sequence (¢, )°, which approximates
¢ either from below or from above in X, Up>1w(¢$n) has compact closure in X.

Proof. The first assertion follows by the Arzéla~Ascoli theorem using the fact
that lip(:l:? ) < M for all t > R. For the second assertion notice that, for all ¢ in
X, w(¢) is a nonempty, compact, and invariant set, and, for all ¢ in X, w(¢) is
contained in the set of all functions 9 in X with lip(3) < M. Thus, for a sequence
(¢n)$°, which approximates ¢ either from below or from above in X, Un>i1w(¢n)
is also included in the set of all functions ¥ in X with lip(¢) < M, which by the
Arzela-Ascoli theorem is compact. Hence U_nzmn—) is compact in X as well. O

The set of equilibrium points of F is E = {¢ € X : ¢(s) = ¢(0) for all s €
[-R,0], and f(¢(0)) = ué(0)}. Note that for all ¢1, ¢ € E with ¢ # ¢2, we
have either ¢; < ¢ or ¢2 < ¢;. According to Claim 2 (Section 3) an omega
limit set cannot contain two points ¢, ¢ such that ¢; < @3 or ¢ < ¢1. Then it
follows that for all ¢ in X, the set w(¢) N E has at most a single point. Therefore
the set of quasiconvergent points @ coincides with the set of convergent points C.
Consequently, Theorem 1.1 states in this special case:

Theorem 2.16. Under hypotheses (H1) on f and r, X = IntC, that is, IntC is
dense in X.

Note that in general X # C. Krisztin, Walther and Wu [41] have shown the
existence of periodic orbits in the case r = 1 for certain y, f, and r. A similar
result is proved by Mallet-Paret and Nussbaum [60,61], Kuang and Smith [47,48],
and Arino, Hadeler and Hbid (3] in the stat-dependent delay case with a negative
feedback condition. For the case r = r(z(t)) with a positive feedback condition
Chapter 4 contains an analogous result. Krisztin and Arino [39] have shown that
there exists a smooth disk of nonquasiconvergent points for the case r = r(z(t))
with negative feedback condition. A similar result is expected for Eq. (1.1) in the
positive feedback case.
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3.3 Proof of the main result

Hereafter we suppose that assumptions (A1)—(As) of Theorem 1.1 are satisfied.
The proof of Theorem 1.1 consists of the following steps.

Claim 1.
(i) If ®(T,z) > z for some T > 0, then w(z) is a T-periodic orbit.
(ii) If ®(t,x) > z for t belonging to some nonempty open subset of (0, c0), then
there exists p € E such that ®(t,z) — p ast — oo.
(iii) If ®(T,z) >& = for some T > 0, then there exists p € E such that ®(t,z) — p
ast — oo.

Proof. The proofs of assertion (i) and (ii) can be found in Smith [65, The-
orem 2.1]. To prove (iii) consider z < ®(T,z). Since ® is MOP, there exist
neighbourhoods U of z, V of ®(T,z), and top > 0 such that ®(to,U) < ®(to,V).
As there exists € > 0 such that ®(t,z) € V for all t € (T — ¢, T +¢), it follows that
®(to, ) < ®(to, ®(t,z)) for allt € (T'—¢, T +¢). Case (ii) implies &(t,z) = p€ E
as t — oo. a

Claim 2. An omega limit set cannot contain two points x and y such that z < y.

Proof. Suppose by way of contradiction that there are z, ¥ in w(z) such
that £ < y. Then z < y because w(z) is a compact, invariant subset of X.
As ® is MOP, there exist neighbourhoods U of z, V of y, and tp > 0 such that
®(to,U) < ®(tp,V). Choose t; > 0 such that ®(¢1,2) € U and t3 > ¢ such
that ®(ty,2) € V. Since ®(t,z) € V for all ¢ € (t2 — ¢,t2 + €) and for some
€ € (0,83 —ty), it follows that O (to+11,2) < B(to, ¥(t,2)) = P(t—t1, ®(to+1t1,2))
for all t € (ta—¢,ta+¢). By Claim 1(ii), ®(t,z) » p€ Fast — oco. Thusw(z) =p
and z = y, which is a contradiction. O

An immediate consequence of Claim 2 is that an omega limit set cannot contain
a maximal (minimal) element.
Claim 3. Ifa € w(z) and w(z) < a (a < w(z)), then w(z) = a.

Proof. Consider a € w(z) and w(z) < a. Suppose that there exits b € w(z)
such that b # a. Then b < a. Since b and a are in w(z), we have obtained a
contradiction to Claim 2. O

Claim 4. Ifz <g y, tx — 0o, ®(tk,z) — p, and P(tk,y) — p as k — oo, then
pEE.
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Proof. Let z < y. Since ® is MOP, there exist neighbourhoods U of z,
V of y and ty > 0 such that ®(to,U) < ®(t9,V). Let § > 0 be so small that
{®(s,2):0<s<d} CU and {®(5,y):0< 5 <8} CV. Then

(3.1) b(to + s,) < ®(to +5,y)  for all s and § in [0, 6].

Consider § = 0 in (3.1). Thus, ®(to + s,z) < B(to,y) for all s in [0,d]. The
monotonicity of ® implies ®(tx — to + to + s,z) < ®(tx — to + to,y) for all s in
[0,0] and for all large k. Thus ®(s, ®(tk,z)) < ®(tk,y) for all s in [0, 6] and for
all large k. Passing to the limit as k£ — oo, we infer ®(s,p) < p for all s in [0, ).
Considering s = 0 in (3.1) and arguing as above, we obtain p < ®(§, p) for all § in
[0,6]. Thus, ®(5,p) =p for all 0 < § < § and therefore, for all § > 0,sop € E. O

Claim 5. Ifz <g y then w(z) Nw(y) C E.

Proof. Consider p € w(z) Nw(y). Then there exists a sequence (£x)$° such
that tx — oo and ®(tx,z) — p as k — o0. (P(tk,¥))5° is a sequence in the
compact set (_)@ By passing to a subsequence if necessary, we can assume that
®(tx,y) — g as k — oo. The monotonicity of ® implies ®(tx, z) < P(tx,y) for all
integers k > 1. Letting k& — oo, we find that p < ¢q. The case p < g contradicts
Claim 2, since p, ¢ € w(y). Hence p = q and by Claim 4, p € E. m]

Claim 6. Let K; and K, be compact subsets of X satisfying K; < Ko. Then
there are open sets U and V, with K, C U and Ko C V, and t; > 0, € > 0 such
that ®(t + s,U) < ®(t,V) for allt > t; and for all0 < s < e.

Proof. Fixan z in K;. Since ® is MOP, for each y € K>, there exist neighbour-
hoods Uy of z, V, of y, and t,, > 0 such that ®(¢,Uy) < ®(¢,V,) forallt > t,. As K,
is compact and{V, },ek, is an open cover of Ky, we may choose a finite subcover,
Ky C Ui Vy,, where y; € K for all 1 < i < n. Set Y= U1 Vais U= nz_lu
and © = max;<i<n ty,. Then &(t,U) C ®(t,U,,) < B(¢, V,,) for all t > t and for
all 1 < i < n. It follows that ®(¢,U) < (¢, V) for all t > £. Denote V, = V
and Llz =U to emphasize the dependence of these open sets on the point z € K;.
Similarly, t, = t. We have obtained that for each z € Kj, there exist neighbour-
hoods U, of z, V;, of K3, and &, > 0 such that ®(t,if;) < ®(¢,V,) for all t > Z,.
Again, as {U;}sck, is an open cover of K;, we may extract a finite subcover,
K1 C U™ Us,,, where z; € K, for all 1 < i < m. Set U = U™ lum,, Y= nz_lv,
and t; = max;<i<m tz,. Since &(t,V) C ®(t,Vs,) and ®(t,Uy,) < ®(t, Vs,) for
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all t > ¢; and for all 1 < ¢ < m, we conclude that ®(t,i;,) < ®(t, V) for all
t >t and for all 1 < i < m. Thus, ®(¢t,U) < ®(¢,V) for all t > t;. In order
to obtain the stronger conclusion of the claim, we observe that, by the continuity
of ®, for each z € K, there exist ¢, > 0 and a neighbourhood W, of z such
that ®([0,ez) x W;) C U. As {W;}zek, is an open cover of K;, we may choose
a finite subcover, K1 C U, W,,. Denote U’ = U2, W,, and € = minj<i<m €z,.
Ifz €U and 0 < s < ¢, then z € W,, for some i. Thus ®(s,z) € U. There-
fore, ®([0,€) x U’') C U and then &(s,U’) C U for all 0 < s < e. It follows that
&(t+s,U') C B(t,U) < B(t,V) forallt >t; and forall 0 < s <e. ]

Claim 7. If z < y, tx — 00, ®(tx,z) — a, ®(tk,y) —» b ask — oo and a < b,
then O(a.) <s b.

Proof. For u € O(z), v € O(y) with u < v, define
J(u,v) =sup{§>0: ®(t,u) <wv, 0<t <5}

Our aim is to prove that J(a,b) = +o0. First we verify two properties of J(u,v).

(P,) J(®(t,u), ®(t,v)) is monotone nondecreasing in ¢.

To show (P), it suffices to establish J(®(t, u), ®(¢,v)) = J(u,v) for all t > 0.
We have ®(s,u) < v for all 0 < s < J(u,v). The monotonicity of & implies
(s, ®(t,u)) < ®(t,v) forall 0 < s < J(u,v) and t > 0. Thus, J(®(t,u), 2(t,v)) >
J(u,v) for all £ > 0.

(P) If ug < vk, ux € m, v € 5@, and up — u, vx — v, then
lim supy_, oo, J (uk, V&) < J(u,v).

If J(u,v) = oo, then the assertion is obvious. Assume J(u,v) < 0o. Suppose
by way of contradiction there exists € > 0 such that limsup_, ., J(uk, vk) — € >
J(u,v). Let (k;) be a sequence in N with k; — oo as i — oo such that
lim supy,_, oo J(k, V) = lim; o0 J (uk,, vk, ). Consequently, J(u,v)+e < J(u,, vk, )
for all large 7. From the definition of J(uk,,vk;) it follows that @(s, uk,) < v, for
0 < s < J(u,v) + € and for all large i. Letting i — 0o, we obtain ®(s,u) < v for
0 < s < J(u,v) + ¢, which contradicts the definition of J(u,v).

Denote o = lim;—,o0 J(®(t, z), ®(t,y)), which exists in [0, 0o] according to (P;).
By (P;), we obtain @ < J(a,b). Suppose J(a,b) < co. For 0 < § < J(a,b),
®(5,a) < b. Moreover, ®(5,a) < b for 0 < § < J(a,b). Otherwise b € w(zx), by the
invariance of w(z), a € w(z), and a < b, in contradiction to Claim 2. We assert that
®(3,a) <p b for 0 < 5 < J(a,b). Indeed, by the invariance of w(z), O(a) C w(z).

38



So &(3,a) is in w(z) Uw(y) for 0 < § < J(a,b) and b is also in w(z) Uw(y). As
w(z) Uw(y) is compact and invariant, we deduce ®(5,a) <s b for 0 < § < J(a, b).
Set K = {®(3,a) : 0 < 5§ < J(a,b)}. K is compact and K <4 b. Thus, Claim 6
implies that there exist £, > 0, ¢ > 0 and open sets U, V with X C U and b € V such
that ®(t+s,U) < ®(¢,V) forallt > t; and 0 < s < €. Since ®(tx,y) = bask — oo,
there exists an integer ko such that ®(tx,y) € V for all k > ko. As ®(tx,z) — a
as k — oo, ®(5, P(tk,z)) — ¥(5,a) uniformly in § € [0,J(a,d)] as k — oo.
Consequently, there exists k; > 0 such that ®(3, ®(tx,z)) € U for all k > k;
and for all § € [0, J(a,b)]. We infer ®(t + s, ®(5, ®(tk,x))) < B(t, ®(tk,y)) for all
t>t, for all 0 < s < ¢, for all k > ky; = max{ko, k1}, and for all 5 € [0, J(a, b)].
On rearranging the arguments, we conclude ®(5 + s, ®(t + tx,z)) < ®(t + tr,y)
for all t > t;, for all kK > ko and for all 0 < s+ § < € + J(a,b). It follows
that J(®(t + tk,z), ®(t + tk,y)) = J(a,b) + € for all ¢t > ¢; and for all k > ko.
Letting £ — oo, we obtain a > J(a,b) + e. But J(a,b) > o, which provides a
contradiction. Hence J(a,b) = co. Then O(a) < b, that is, ®(5,a) < b for all
§ > 0. Otherwise, as we have shown above, we get a contradiction to Claim 2.
Moreover, O(a) <@ b. Indeed, by the invariance of w(z), ®(5,a) € w(z) for all
§ >0, thus, ®(3,a) € w(z) Uw(y) for all § > 0, and b is also in w(z) Uw(y). The
compactness and invariance of w(z) Uw(y) implies the desired assertion. O

Claim 8. If u, v € X and there exists © € w(u) such that £ < w(v), then
w(u) <@ w(v). Similarly, if there exists * € w(u) such that w(v) < z, then
w(v) <a w(uw).

Proof. First note that z € w(u), z < w(v) implies z <3 w(v). Indeed, we have
z € w(u) Uw(v) and y € w(u) Uw(v) for all y in w(v). By the compactness and
invariance of w(u) Uw(v), z < y for all y € w(v), that is, z <@ w(v). Applying
Claim 6, we obtain that there exist t¢ > 0 and neighbourhoods U of z and V
of w(v) such that ®(to,U) < P(to,V). Since w(v) C V and w(v) is invariant,
O(to,U) < w(v). As z € w(u), there exists t; > 0 such that ®(t;,u) € U.
Thus, ®(tp + t1,u) < w(v). The monotonicity of ® and invariance of w(v) imply
O(to + t1 + s,u) < w(v) for all s > 0. Hence w(u) < w(v). We assert that
w(u) < w(v). Suppose that there exists z in w(u) Nw(v). Due to the fact that
z £ w(v) and z € w(v), by Claim 3, we find that z = w(v). Similarly, since
w(u) < z and 2 € w(u), we get 2 = w(u). On the other hand z < w(v) implies
z < z, and z € w(u) implies z = 2, which is impossible. Finally, w(u) <s w(v)
because of the compactness and invariance of w(u) Uw(v). D
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Claim 9. If z < y, tx — o0, ®(tg,z) — a, B(tk,y) — b as k — oo and a < b,
then w(z) < w(y).

Proof. According to Claim 7, O(a) <@ b. Hence w(a) < b. We assert that
w(a) < b. Suppose b € w(a). Then w(a) = b, by Claim 3. Since a < w(a) and
a € w(z), Claim 8 implies w(z) < w(a). This is impossible as w(a) C w(x).
Consequently, w(a) < b. Due to the fact that b is in w(y), by Claim 8, we obtain
w(a) <s w(y). Since every z € w(a) belongs to w(z) as well, Claim 8 gives
w(z) <o w(y). O

Claim 10. Ifz <g y then either

(a) w(z) <3 w(y) or
(b) w(z) =w(y) C E.

Proof. If w(z) = w(y), according to Claim 5, we obtain w(z) = w(y) C E.
If w(z) # w(y), then we may suppose that there exists ¢ € w(y) \ w(z). The
other case is treated similarly. There exists a sequence (tx) such that t; — oo
and ®(tx,y) — q as k — oo. Since (®(tx,x))5° is a sequence in the compact set
O(z), we may assume, by passing to a subsequence if necessary, that ®(tx,z) — p
as k — 0o. The monotonicity of ® implies ®(tx,z) < ®(tk,y) for all k. Letting
k — oo, we get p < q. We assert that p < ¢. Indeed, if p = g, then ¢ € w(z),
which is a contradiction. Thus, by Claim 9, it follows that w(z) <s w(y). D

Claim 11. Ifzo € X can be approximated from below in X by a sequence (%,){°,
then there exists a subsequence (z,)3° of (£,)$° such that =, <@ Tn+1 <@ Zo for
all integers n > 1, with z, — zop as n — oo, satisfying one of the following
properties.

(a) There exists ug € E such that

w(Zn) <@ W(Znt+1) <o uo =w(xg)  for all integersn >1

and
nlingo dist(uo, w(zyn)) = 0.

(b) There exists ug € E such that
w(zn) =up <p w(xo)  for all integers n > 1.

Ifu € E and u < w(zo), then u < uo.
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(¢) w(zyn) = w(zo) C E for all integersn > 1.

An analogous result holds if zo can be approximated from above in X. Claim
11 describes three alternatives for the point zg: zo can be a convergent point by
(a), or zg can be a quasiconvergent point by (c), or 2o can belong to the closure
of the set of convergent points according to (b).

Proof. By Claim 10, there exists a subsequence (z,)$° of (£,)$° such that
either w(z,) = w(Tn4+1) C E for all integers n > 1 or w(z,) <¢ w(Znt+1) for all
integers n > 1.

Consider the case w(z,) <@ w(Zn+1) for all integers n > 1, which is equivalent
to w(zyn) < w(zn41) for all integers n > 1, by the invariance and compactness of
w(Zn) Uw(Zpt1)- It follows that w(z,) < w(zo) for all integers n > 1. Indeed if
there exists ng > 1 such that w(z,,) = w(zo), then w(z,) = w(zo) for all n > ny,
which is a contradiction. Set @ = {y : y = liMn—00 ¥n, ¥n € W(Zn)} C Un>1(n).
Q is nonempty due to the fact that (y,)$° is a monotone sequence in the compact
set Up>1w(Z,). We claim that € consists of a single element, that is, @ = {uo}.
Indeed, if there are y and u in € so that y, — y and u, — u as n — oo, where
Yn,y Un € w(Ty), then w(z,) <3 w(Zpy1) implies yp, < Upt+1 and up < Yn41 for
all integers n > 1. Letting n — oo, we infer y < v and u < y, that is, y = .
We claim that ug € E. Consider y, € w(z,). Then y, — up as n — 00. By the
continuity of ®, ®(t,yn) — ®(t,up) as n — oo. Since ®(t,yn) € w(zy,) by the
invariance of w(z,), we obtain ®(¢,y,) — uo as n — oo. Thus, ®(t,up) = ug for
all t > 0. It follows from the definition of 2 and the compactness of U_nzm
that lim,_,q dist(uo,w(z,)) = 0. Finally, w(z,) <& w(zo) for all integers n > 1
implies ug < w(zo). If up € w(zo), then by Claim 3, we get w(zg) = up, which
is case (a). Suppose ug ¢ w(zo). Then up < w(zg), that is, up <& w(zo) by
the invariance and compactness of {ug} Uw(zp). Claim 6 implies that there is a
neighbourhood W of w(zp) and ¢, > 0 such that ug = ®(¢,up) < ®(t, W) for all
t > to. There exists t; > 0 such that ®(t1,z0) € W. By the continuity of ®(¢;,-),
there is an integer ng > 1 such that ®(t;,z,) € W for all n > ny. Consequently,
uo < B(t — t1,P(t1,2y)) for all t > o + t; and for all n > ng. Letting £ — oo,
we obtain up < w(zy,) for all n > ng. Since w(Zp,+1) <o w(zk) for all large k,
it follows that w(Zne+1) < ug. Thus, up < W(Zny) <& W(Tng+1) < uo, which is a
contradiction.

Consider the case w(z,) = w(zn+1) C E for all integers n > 1. As z, <g Zo,
Claim 10 implies that either w(z,) = w(z¢) C E for all integers n > 1, which is
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case (c), or w(z,) <& w(zo) for all integers n > 1. Suppose w(z,) <¢ w(zo) for
all integers n > 1. Let up € w(z1) = w(z,) C E. Consequently, up <3 w(zo).
Arguing exactly as above, we obtain that there exist an integer ng > 1 and t2 > 0
such that ug < ®(t,z,) for all £ > t; and for all n > ng. Then up < w(z,) for all
n > ng. Since ug € w(zy), by Claim 3, w(z,) = up for all n > 1. Finally, if u € E
and u < w(zo), then arguing as above, we find that u < w(z,) for all n > ng. As
w(Zn) = up, it follows that u < uo. a

The next result gives some information which strengthens the assertion con-
cerning case (b) of Claim 11.

Claim 12. In case (b) of Claim 11 we have in addition the following properties:
(i) There exist a neighbourhood O of ug, to, t1 > 0, and an integer n > 1 such
that
®(t,0) < B(t +t1,zn) for all t > tg.

(ii) There is a neighbourhood U of o with the following property: for each z € U
with £ <@ o, there exist a neighbourhood V of z in U, an integer N, and
T > 0 such that

u < ®(t, V) < ®(t,zn) forallt > T.

(iii) zo € IntC.

Proof. Proof of (i). In case (b), we have up <@ w(zo). Thus Claim 6 implies
that there exist a neighbourhood W of w(zp), O of up, and tp > 0 such that
®(t,0) < &(t, W) for all t > . There exists t; > 0 such that ®(t1,z0) € W. By
the continuity of ®(¢1,-), it follows that there exists an integer n > 1 such that
®(t1,zn) € W. Then 8(¢,0) < O(t + t1,2z5) for all t > t.

Proof of (ii). We choose a neighbourhood U of zg such that ®(¢1,U) C W.
Let £ € U with 2 <3 z. Since ® is MOP, there exist a neighbourhood V of z
with V C U, N of zo, and ¢, > 0 such that &(¢,V) < ®(t,N) for all t > t;. As
there is an integer N such that zx € N, we get ®(¢,V) < ®(t,zn) for all t > t,.
By (i), wo = ®(t,up) € ®(¢,0) < ®(t,W) for all t > tg. Due to the fact that
®(t1,V) C ®(t1,U) C W, we obtain ug € 9(¢,0) < ®(t + t1,V) for all ¢t > tp.
Hence ug < ®(t,V) < ®(t,zn) for all t > T, where T = tg + t; + to.

Proof of (iii). Since w(zy) = uo, B(t,zN) — uo as t — oo. Thus, by (ii), we
obtain w(v) = ug for all v in V. Therefore, for all z € U with z <g zo, we get
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w(z) = up and = € IntC. If we consider the sequence (z,)$°, which approximates
7o from below, then z, € IntC for all large n. Hence zp € IntC. ]

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose zg € X'\Int Q. Then there exists a sequence
(yn)$° such that y, € X\ Q and y, — o as n — oo. By assumption (As) of
Theorem 1.1, for each n, y, can be approximated either from below or from above
in X. Consider the former case as the latter case is similar. Using Claim 11,
we obtain, by passing to a subsequence if necessary, that for each n, there exists
a sequence (z7,)so—; such that z7, <¢ z7,,; <& yn for all integers m > 1 and
z® — yn as m — oo. For each n, y, ¢ Q; therefore case (b) of Claim 11 must
hold. Claim 12(iii) implies that for each n, y, € IntC. Hence zp € IntC, which
completes the proof. O
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Chapter 4

Periodic Solutions and Connecting Orbits

4.1 Basic facts

Consider the differential equation with state-dependent delay

(1.1) E(t) = —pz(t) + f(2(t—7)), r=r(z())

where p > 0, f and r are smooth real functions with 7(0) =1 and f’ > 0.

In this chapter we prove that there are a nontrivial periodic orbit and a homo-
clinic orbit connecting 0 to the periodic orbit. Eq. (1.1) with constant delay, i.e.,
r = 1, was widely studied in the monograph [41] and in the papers [36,37,40,42,46).
In these works the fine structure of the global attractor is described by using recent
results of the geometric theory of infinite dimensional dynamical systems. The sit-
uation considered in the present paper is more complicated. Although most of the
ideas from the above mentioned results can be applied, nontrivial modifications
are necessary in the standard techniques. The main technical tools are as follows:
the result of monotone dynamical systems applicable for Eq. (1.1) in Chapter 3;
a local unstable manifold at zero for Eq. (1.1) in [38]; and a discrete Lyapunov
functional counting sign changes given analogously to that of [39).

The following definitions and notations will be used in this chapter. The sym-
bols N and R, denote the nonnegative integers and reals, respectively. R and Z
stand for the set of all reals and all integers, respectively.

The distance of two sets M and N is defined as

dist(M, N) = sup dist(m,N) = sup inf d(m,n).
meM meMnEN

A trajectory of amap g: M — N, M C N, is a finite or infinite sequence
(zj)jernz, I C R an interval in M, with z;4; = g(z;) for all j € I NZ with
j+lelInZ.

If £ is a Banach space and d > 0, then B;(€) denotes the open ball in £ with
radius ¢ and center at 0.

A simple closed curve is a continuous map ¢ from a compact interval [a, d] C R,
a < b, into R™ so that c|j, ) is injective and c(a) = ¢(b). The set of values of a
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simple closed curve c, or trace, is denoted by |c|. The Jordan curve theorem guar-
antees that the complement of the trace of a simple closed curve ¢ in R? consists of
two nonempty connected open sets, one bounded and the other unbounded, and ||
is the boundary of each of these components. We denote the bounded component
by int(c) and the unbounded one by ext(c).

Spectra of continuous linear maps 7 : £ — & are defined as spectra of their
complexifications. If a decomposition £ = F @ G into closed linear subspaces is
given, then Pry : £ — £ and Prg : £ — &€ denote the associated projection
operators along G onto F and along F onto G, respectively.

For given reals a, b with a < b, C([a, b], R) denotes the Banach space of continu-
ous functions ¢ : [a, 5] — R with the norm given by ||¢|lc((a,t),r) = maxa<i<s [6(2)]-

C'([a, b}, R) is the Banach space of all Cl-maps ¢ : [a,b] — R with the norm
given by

I8l (ta,b1,R) = lIBllcgia,bi®y + Bllc(a.b.r)-
Let @ : Ry x £ — € be a semiflow. A set A C £ is called positively invariant if
®(R4+ xA) C A. It is called invariant (resp. negatively invariant) if for every z € A
there is a complete phase curve, i.e., amap v : R — £ with y(t+s) = ®(¢,v(s)) for
all s € R and t > 0, which satisfies y(0) = z and y(R) C A (resp. y{(—o0,0]) C A).
We recall the hypotheses from Chapter 3:
(>0,
f € CY(R,R), £(0) =0, f'(u) >0 for all u € R,
{ there exists A > 0 such that |f(u)| < p|u| for all |u| > A,
(T € C'(R,R), r(0) =1, r([-A, 4]) C (0, 0).

(H1)

As in the previous chapter set

R= max r(u), M=

= — =C([- R
u€[—A,A] (u,v)e[—ﬂl,aj]cx [(—A,A] | pu + f(’U)I, o C([ R’ 0]7 ),

and for ¢ € C define

lip(¢) = sup{|¢(s) — é(t)| - |s —¢|™* : 5, t € [-R, 0], s #1}.

The set K = {¢ € C : 0 < ¢} is a convex cone in C. We have (0,00)K C K,
KN(~K) = {0}, and K = {¢ € C: ¢(s) > Ofor all s € [~R, 0]} is the interior
of K. We introduce a closed partial order relation on C in the same way as in
Chapter 3, that is:
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¢ < ¢ whenever Y — ¢ € K,

¢ < 1 whenever ¢ <1 and ¢ # ¢, and

6 < ¥ whenever ¥ — ¢ € K.

The relations ¢ > ¥, ¢ > 9 and ¢ > ¢ are defined analogously.

Let the subspace of elements ¢ of C with lip(¢) < M and ¢(s) € [—A4, A],
s € [-R, 0], be denoted by Y. Then Y is a complete metric space. By the Arzéla—
Ascoli theorem, Y is compact.

We recall some basic properties from Chapter 3. Observe that Y C X, where
X is defined in the previous chapter. Clearly the results obtained for X in Chapter
3 remain valid for Y.

Proposition 1.1.
(i) For every ¢ € Y, there is a unique solution z% : [-R,00) — [—A, A] of Egq.
(1.1) through ¢, that is =% is a solution of Eq. (1.1) and z%|;_g o) = ¢.
(ii) The map F: Ry XY 3 (¢,¢) — z? € Y defines a continuous semifiow on Y.
(iii) F is monotone, that is, F(t,$) < F(t,v) whenever ¢ <1 and t > 0.
(iv) If $, ¥ € Y with ¢ < ¢ and F(t,¢) # F(t,¢) for allt > 0, then F(t,¢) <
F(t,¢) for allt > 3R.
(v) If ¢, €Y with ¢ < ¢ and t > 0, then F(t,¢) < F(t, ).
(vi) If ¢, Y € Y with ¢ < v, then there exists ¢* € Y such that ¢ € ¢* € ¢ and
z,%" — e ast — oo, where e € Y is an equilibrium point.
(vii) Ifc € R and z : (¢,00) — [—A, 4], y : (¢c,00) — [—A, A] are two solutions of
Eq. (1.1), then the difference z = x — y satisfies the linear equation

(1.2) 2(t) = a(t)z(t) + b(t)2(t — r(z(t))),

for all t € (c+ 2R, 00), wherea : (c+2R,00) -+ R and b: (c+2R,00) — R are
continuous and bounded functions defined by

1
aft) = =u= [ Flsvlt = r(e(t) + (1 - s)ylt— r(u()ldsx
1
(13) | ¥lste = r(a)) + - s)(e - rtue))ldsx
/0 rlsz(t) + (1 — s)y(t)|ds

and
(L4 b(t)= /0 Flsz(t — r(@(t))) + (1~ syt — r(a(e)))]ds.

46



The statement also holds in case ¢ = —oo0, when we have (—o0, 00) instead of
(c,0) and (c+ 2R, o).

(viii) If £ : R —» [—A, A] and y : R — [—A, A] are two solutions of Eq. (1.1) and
To = Yo, then z(t) = y(t) for allt € R.

If z: R — R is a solution of Eq. (1.1) with zo = ¢, then we also denote this
solution by z?. This should not cause confusion.

Hereafter we need the increasing property of the function ¢ — t—r(z(t)), where
z is a solution of Eq. (1.1) with values in [—~A, A]. Either one of the following two
hypotheses guarantees the desired property of the above function on some interval.

(H2) I (w)] < % for all u € [~ A, A).

(H) r € C%([—A, A],R) and there exists ¢ € (0,1)
with 7 (u) < cu(r’(w))? for all u € [—A, A).

Condition (H2') was introduced by Mallet-Paret and Nussbaum [60]. The advan-
tage of (H2') comparing to (H2) is that it is independent of f. In the remaining
part of the paper we always assume that, in addition to (H1), either (H2) or (H2')
holds.

Lemma 1.2. Let z : R — [—A, A] be a solution of Eq. (1.1). Suppose ¢(p) =0
for some p € R. Then 4(t — r(z(t))) > 0 for all t > p.

The proof is the same as that of [39, Lemma 2.5].
Now consider the space C and the linear equation

(1.5) &(t) = —pz(t) + f/(0)z(t — 1).

Although the map C 3 ¢ — —pu¢(0) + f'(0)¢(—r(4(0))) € R is not, in general,
differentiable, Eq. (1.5) can be considered as the linearization of Eq. (1.1) at 0 (see
Cooke and Huang [12] and also {10,27,71]).

For each ¢ € C, Eq. (1.5) has a unique solution z¢ : [-R,00) — R through
@. Solutions of Eq. (1.5) define the Cp-semigroup T : R, x C — C given by
T(t, ) = ?. The spectrum of the generator of the semigroup (T'(t))e>0 coincides
with the zeros of the characteristic function C 3 A — X + u — f/(0)e™ € C.
According to [14] all zeros are simple. There is one real zero \o; the others form a
sequence of complex conjugate pairs (A, M), k > 1, with (2k —1)7 < Im)\y < 2k7
and ReAg+1 < Relx < Ag for all integers k > 1, and ReAy, — —o00 as k — oo.
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We assume as in [41] that

(H3) F(0) > for 6, € (37”,270 with 6, = ptan6,.

cosf,
According to [41], (H3) is equivalent to ReA; > 0.

Choose 8 with max{0,Rels} < B < Rel;. The real generalized eigenspace
Cp< of the generator associated with Ao, A; and A; is 3-dimensional and it
is given by the segments of solutions R 3 t — e € Rand R 3 ¢t —
eReMt (g cos(Im; )t +bsin(ImA; )t), a, b € R, of Eq. (1.5). Let Cp denote the real
generalized eigenspace of the generator associated with the pairs (Ag, Ax), k& > 2.

We have a decomposition C = Cg< ® Cp into generalized eigenspaces of the
generator of the semigroup given by Eq. (1.5). Cg< and C<g are T(t) invariant
for t > 0. T'(t) can be extended to a group on Ca<.

4.2 The separatrix

Let S denote the set of ¢ € Y such that z? oscillates on [0, 00), that is
S={peY:(z%)"}(0) is not bounded from above}.
Then S is positively invariant. Since
Y\ S = UnoF(t, ) (K U (- K))

is open, it follows that S is closed. The set S is a separatrix for the semiflow F' in
the sense that its complement Y \ S splits into the set of initial data for solutions
which are positive on some unbounded interval, and into the set of initial data for
solutions which are negative on some unbounded interval.

Proposition 2.1. (Nonordering of S). For all ¢, ¢ in Y with ¢ < v and F(t,¢) #
F(t,y) for allt > 0, either ¢ g Sorp ¢ S.

Proof. Assume that S contains elements ¢, 9 with ¢ < ¢ and F(t, ) # F(t, ¥)
for all ¢ > 0. Then the positive invariance of S and Proposition 1.1(iv) yield
o= a:gR LYP= m}fR with ¢, ¢ in S. Using Proposition 1.1(vi), we find ¢*, ¥y* €Y
such that ¢ € ¢* K ¥* K ¥, :1:‘{s -—>e1andxt' — ep ast — 0o, wheree;, e €Y
are equilibrium points. Denote z = z¥",y = z%” and z = £ — y. Proposition
1.1(v) implies 0 < z; for all ¢ > 0. By Proposition 1.1(vii) with ¢ = —R, we find
that z satisfies Eq. (1.2) with a(t) and b(t) defined by (1.3) and (1.4).
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We show that at least one of the w-limit sets of ¢* and ¥* consists of a non-
zero equilibrium point. Suppose that both z and y converge to 0 as ¢ — oo. Then
a(t) » —p and b(t) — f'(0) as t — co. From (H3), we obtain x < f/(0). Hence
there is € > 0 such that f'(0) — e > p + €. It follows that there exists T' > R so
that

(2.1) a(t) > —u—efor allt > T, and b(t) > f'(0) — e for all t > T.
The choice of € ensures the existence of a real number A* > 0 such that
A =—p—e+(f(0)—ee BN,
For all § € R, de*"t is a solution of the equation
9(t) = —(p + €)v(t) + (£'(0) — e)v(t — R).

Fix 6 > 0 so that z(t) > 6"t for all t € [T, T + R). If the assertion z(t) > Je*"t
for all £ > T is not true, then there exists t* > T + R such that 2(¢*) = de*’t" and
z(t) > de*"t for all ¢t € [T,t*). Clearly, 2(t*) — 6A*e*"*" < 0. On the other hand
using (2.1), z(t*) = 6e*"t" and 2(t* —r(z(t*))) > de*” " —r=(EN) 5 5" (" -R) e
find

2(t*) — A Y =[a(t*) + u + €2(t*) + b(t*)z(t* — r(xz(t*)))
— (f'(0) — e)6e* "~ R
=[a(t*) + u + €|2(t") + [b(t*) — (F'(0) — €)]z(t” — r(z(t")))
+[£'(0) - €[2(t* — r(x(2*))) — 6" =R > o,

a contradiction. Therefore 2(t) > de*’t for all t > T, which contradicts the
boundedness of z.

Assume that p € w(¢*) is a non-zero equilibrium point. As the equilibrium
points of F' are constant functions, either 0 €K por p € 0. If 0 < p thereis tg > 0
so that 0 <« a:;/; Proposition 1.1(v) yields :z:;/; < x;/;, and thus 0 < z¥ for all
t > to. Hence ¥ € S in contradiction to ¥ € S. If p <« 0 there is t5 > 0 so that
x;ﬁ & 0. Proposition 1.1(v) implies 372; < :z:;’:;, and thus z? < 0 for all ¢ > t,.
Therefore ¢ € S in contradiction to ¢ € S. Similarly, if p € w(¢*) is a non-zero
equilibrium point, then we obtain a contradiction. m]
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4.3 An unstable set of zero

Recall that we have a decomposition
C - Cp< @ C<ﬁ,

where max{0, ReAs} < 8 < Re);, Cp< is the real generalized eigenspace of the
generator given by the spectral set {\o, A1, A1}, while C<g is the real generalized
eigenspace of the generator for the complementary spectral set {\g, Ax : k > 2}.

According to [38,Theorem 4.1], there exist positive numbers 41, d2, a continu-
ously differentiable map w : Bs, (Cg<) — C<p such that the graph of the map w
(the local unstable S-manifold)

Wp={¢+w(y):v € Bs(Cp<)} cC

has the following properties:

(i) w(0) = 0, w(B5(Cp<)) C Bs(C<p), Dw(0) = 0, Bs(Cp<) C Y,
w(Bs, (Cp<)) CY, WgCY.

(ii) Wp is invariant in the sense that there exists d3 > 0 so that for all ¢ € Wp
with ||@|| < &3, there is a solution z# of Eq. (1.1) on (—o0,0] such that
z8 = ¢, z¥ € Wp for all t < 0, and e~Piz? — 0 as t — —o0.

(iii) There are 84 > 0, d5 > 0 such that if ¢ € B;,(C) and there exists a solution
z% of Eq. (1.1) on (—o0,0] so that e~Ptz? ¢ Bj;,(C) for all ¢t < 0, and
e~Ptz? — 0 as t — —oo, then ¢ € Wp.

Denote Ws = WsN{$p € C: | ¢l < s} and define the set W = F(Ry x Wa).
Clearly, W C Y. Now we establish some properties of W N S, the closure W of W
and the closure WNSof WNS.

Proposition 3.1.
(i) W and W N S are compact and invariant subsets of Y .
(ii) W NS\ {0} is nonempty and invariant.

Proof. The proof of (i). The compactness of W and W N S follows from the
compactness of Y. Consider ¢ € W and a sequence (¢,)° in W such that ¢, — ¢
as n — 0o. By the definition of W and by Proposition 1.1(viii), for each n € N
there exists a unique solution z" : R — R of Eq. (1.1) with 2§ = ¢, and 2} € W
for all £ € R. Since W C Y, and Y is compact, by the diagonalization procedure
there is a subsequence (z™+)%2, of (z™){° such that (z™*)%2; uniformly converges
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to a continuous function y : R — [—A, A] as k — oo on each compact subset of R.
Clearly, yo = ¢. Using Eq. (1.1) it easily follows that y is also differentiable and
satisfies Eq. (1.1) on R. By Proposition 1.1(viii), y is unique. From z{* € W we
find y, € W for all t € R. Therefore, W is invariant.

Now let ¢ € WN S and a sequence (¢,)$° in W N S with ¢, — ¢ as n — co.
The definition of W guarantees the existence of solutions z™ : R — R of Eq. (1.1)
with 2§ = ¢,, and z} € W for all t € R. It also follows that 2z} € S for allt € R
because of the definition of S and the monotonicity of F. A subsequence of (z™){°
converging uniformly on compact subsets of R can be constructed as above. We
obtain a solution y as above. Clearly, y; € WN S for all t € R and yo = ¢. Thus,
W NS is also invariant.

The proof of (ii). Let e**" denote the element [-R,0] 3 s — e*** € R of Cs<.
Obviously, we find ¢g > 0 so that

ee?o + w(ee™) € Wp for |e| < €o.
From Dw(0) = 0 it follows that

| wlee?e )|

Teeroq 0 €70

Hence, for small € > 0
e + w(ee’®) >0 and

— e’ + w(—ee™) € 0.
Fix such an € > 0, and define
P =ee* + w(ee*) and

n=—ee™ +w(—ee™).

There is a continuous curve 7 : [0,1] — C with v(0) = », (1) = ¢, v(s) € Wp for
all s € [0,1], and (s) # 0 for all s € [0,1]. The sets

J*={s€[0,1):27® >0 for all sufficiently large t} and
J ={s€l0,1}: 27®) « 0 for all sufficiently large t}

are open, nonempty and disjoint subsets of [0, 1]. From the connectedness of [0, 1],
it follows that there exists s* € [0,1]\ (JtUJ ™). Clearly, v(s*) € Wp nS\ {0} c
wns\{o}.
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To prove the invariance of W N S\ {0} consider ¢ € W N S\ {0}. By the
definition of W, there is a solution z# : R — R of Eq. (1.1) with :z:g’ = ¢, and
z? € W for all t € R. By the definition of S and the monotonicity of F it is clear
that :z:f € S for all £ € R. Proposition 1.1(viii) gives :z:f #0forallteR. O

Proposition 3.2. Let ¢ and ¢ be in WNS. If ¢(s) = (s) for all s €
[-r(¢(0)),0], then the solution z® : R — R of Eq. (1.1) through ¢ coincides
with the solution z¥ : R — R of Eq. (1.1) through .

Proof. Since ¢ and ¢ are in W NS, there exist the solutions z¢ : R — R
and z¥ : R — R of Eq. (1.1) through ¢ and 4, respectively. By the invariance of
WnNS,zf,z¥ eWNS cWnS ¢ S for all t € R. If &% has no zero on an interval
(—o00, T] then either :1:? >0or :z:gS < 0 for some t < 0. In either case Proposition
1.1(v) and F(-,0) = 0 imply ¢ &€ S, a contradiction. Analogous statement holds
for z¥.

Therefore there are arbitrarily large negative numbers p and o so that £#(p) = 0
and #¥(0) = 0. By Lemma 1.2, the functions ¢ — t — r(z?(t))) and t — ¢ —
r(z¥(t))) are strictly increasing on R. In particular, t — r(z%(t))) > —(¢(0)) and
t—r(z¥(t))) = —r(¥(0)) = —r(¢(0)) follows for all £ > 0. Therefore ¢|[_r(4(0)),0]
and v¥|[—r(y(0)),0] determine the values of z#(t) and z¥(t) for all ¢ > 0 uniquely.
Uniqueness is shown in the same way as in the proof of Proposition 1.1(i). Hence
z®(t) = z¥(¢) for all t € [—r(¢(0)),00). Using Proposition 1.1(viii), we obtain
z®#(t) = z¥(t) for all £ € R. The proof is complete. O

4.4 A discrete Lyapunov functional

In this section first we define a discrete integer-valued Lyapunov functional. For
equations with constant delay Mallet-Paret [57] introduced a discrete Lyapunov
functional. A more general version is contained in [63]. The state-dependent delay
requires a modified version of the functional. We have to count sign changes of
solutions z of Eq. (1.1) on intervals of the form [t—r(z(t)), t] instead of on intervals
with fixed length. For Eq. (1.1) with condition f' < 0, a discrete Lyapunov
functional is introduced in [39). In our case, when f’ > 0, the definition of a
Lyapunov functional is similar to that of [39], and its properties are analogous to
the case f’ < 0.

Let [a,b] be an interval and ¢ be a real valued continuous function defined
on an interval containing [a, b] such that |, 5 # 0. Then the numbers of sign
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changes sc(¢, [a, b]) of ¢ on [a, b] is 0 if either ¢(s) > 0 for all s € [a, b] or ¢(s) <0
for all s € [a, b]; otherwise sc(¢, [a, b]) is given by
sc(@, [a,b]) = sup{k : there is sop < 51 < ... < 8 such that s; € [a, ] for
i=0,1,...,k, and ¢(s;)@(si+1) <0 fori=0,1,...,k—1}.
Define the functional V : C([a, b], R) \ {0} — 2N U {o0} by

V(é:[a,b]) = {

Define the set
H[a.,b] = {¢ € Cl([a‘a b], R) : ¢(b) 7é 0 or ¢(a')¢(b) > 0,
¢(a) # 0 or ¢(a)(b) < 0,

all zeros of ¢in (a, b) are simple}.

sc(¢,[a,b])  if sc(¢, [a, b]) is even or oo,

sc(¢, [a,b]) +1 if sc(®, [a, b]) is odd.

Some useful properties of V are contained in the next two lemmas. With a suitable
modification, the proofs follow closely those of [39, Lemmas 4.1 and 4.2]. Therefore
we omit them.

Lemma 4.1.

(i) V is lower semi-continuous in the following sense. If ¢, ¢,, are nonzero contin-
uous functions on the intervals [a, b], [an, bs], respectively, and

se[a,i?r%n,bn] |#n(s) — &(s)| =0, an —a, by = b asn— oo,

then
V(¢ [a,b]) < li,’fr_l'i‘gfv((bm [an, bn))-
(ii) If ¢ € Ho ) then V(4, [a,b]) < oo.
(iii) If ¢ € C*([a — 6,b + 6], R) for some 6 > 0 and @|o 5 € Hay, then there is
v € (0,6) such that
la—¢ <7, b=dl<v, ¥ € C([c,d], R), | ¥ = 8|l cr(e,a, ) <7
imply
V(¥,[c,d)) = V(¢ [a,b]).
Let o, 8: R — R, 7 : R — R be continuous functions such that S8(t) > 0,
7(R) C [0, R], and the function R 5 t — ¢t — 7(t) € R is strictly increasing on R.

Let v : R — R be a continuous function which is continuously differentiable on R
and satisfies

(4.1) 9(t) = aft)v(t) + B(t)v(t — 7(2))
for all t € R.
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Lemma 4.2. Assume that o, B8, T, v are given as above, moreover for allt € R

v|[¢—r(t),yj is not identically zero. Then

(i) t1, t2 € R, t1 <ty imply V (v, [t1 — T(t1),t1]) = V (v, [tz — r(t2), t2]);

(ii) t e R and V (v, [s —7(s), 8]) = V(v, [t —7(t),t]) < oo for all s € [t— 3R, t] imply
Vit—r(),8] € Hit—r(1),1)-

The aim of this section is to establish the values of the Lyapunov functional
for differences of functions in W N S.

Proposition 4.3. If ¢, € WN S with ¢ # ¢ then V(¢ — 9, [-r(¢(0)),0]) = 2.

Proof. Let ¢,% € WNS with ¢ # 9. It follows that ¢(s) # ¥(s) for
some s € [-r(¢(0)),0], since otherwise, by Proposition 3.2, z? = z¥ on R, a
contradiction.

We have V(¢ — 9, [-7(¢(0)),0]) > 2. Indeed, let V(¢ — 9, [-7(¢(0)),0]) = 0.
The difference 2% — z¥ satisfies Eq. (4.1) with 7(t) = r(z?(t)), a(t) = a(t) and
B(t) = b(t), where a(t) and b(t) are defined by (1.3) and (1.4). Thus, using Lemma
4.2(i), we get V(zf — z¥, [-r(z%(t)),0]) = O for all ¢ > 0. Therefore, ¥ < z¥ or
z? > z¥ for all t > R. Hence z% < z% or 2% > z%. Then, by Proposition 1.1(iv),
xPn < z¥p or 225 > 2%y ByWNS c WS =WnNS and by the invariance of
S, 2, and fo are in S, which contradicts Proposition 2.1.

Let ¢, % € W NS with ¢ # 4. To prove V(¢ — %, [—r(¢4(0)),0]) < 2, by the
monotone property of V it suffices to show that there exists a sequence (¢,)§° with
t, — —00 as n — oo, and V(wfﬂ — m;’:‘, [~r(z%(ts)),0]) < 2 for all n € N. Set
y = 2% — z¥. Using Proposition 1.1(vii) with ¢ = —oco, we obtain that y satisfies
Eq. (1.2) with a(t) defined by (1.3) and b(t) by (1.4).

The definition of W implies y(t) — 0 as t — —oo. Hence, there exists a
sequence (t,,)§° with ¢, —» —oo as n — o0, and

[y(tn)| = sup y(tn + 5)|-
<0

The functions z" : (~00,0] — R, n € N, given by

n — y(tn + t)
0= )
satisfy
(4.2) |2"(t)] < 1=|2"(0)] for allt <O,
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and
£(t) = a(tn + £)2"(t) + b(tn + t)2"(t — r(z®(tn + 1)), forallt<O0.

Clearly, b(t, +t) — f'(0) and a(t, +t) = —u as n — oo uniformly on (—o0,0].
Using the Arzéla-Ascoli theorem and the equations for 2", we obtain a subsequence
(™), of (2™)§ and a C! function Z : (—c0,0] — R such that

2™ (t) — Z(t), 5™ (t) — Z(t) as k — oo
uniformly on compact subsets of (—o0, 0], and Z satisfies
Z(t) = —pZ@t)+ f'(0)Z(t — 1) for all t < 0.

It follows that |Z(t)| < 1 = |Z(0)| for all £ < 0.

We claim that V(Z;,[—1,0]) < 2 for all ¢ < 0. Using the definition of W and
the invariance of Wpg, we obtain that xfn and x;’: are in W for all sufficiently large
n € N. Therefore, for all sufficiently large n € N

é
T, = + wiXn),
(4.3) ta — Xn (X )

T} = + w(nn),

where xn, 7 are in Bs, (Cg<) and w(xn), w(7ns) are in Bs,(C<g). We have zp* =
Pre,. 25* + Pre g 2p*. The definition of 25* and (4.3) imply that

Xni = Tin W(Xni) = W(7n,)
Prg, zok==%__"% and Prg_,zy"* = k k
o< "0 |y(tns)l <0 |y(tn.)l
Note that || Prc,. 2|l # 0, and X, , 7, — 0 as k — oco. Since w is continuously
differentiable and Dw(0) = 0, we infer

| Proes 20"l _ | wixni) = w(mm, )l
" PGC< zgk" ” Xni — ﬂnk”

—0 ask— oo.

From (4.2), we obtain that Prc,_ 25* is bounded. Therefore, we get Prc_, z5* —
0 as k — oo. We conclude that limg_ 20* = limgoo Pros. 25* € Cpc<.
Consequently, Zg € Cp<. Since Cpg< is invariant under T'(t), t > 0, and back-
ward uniqueness holds for the solutions of #(t) = —pz(t) + f(0)z(t — 1), it
follows that Z; € Cg¢ for all ¢ < 0. The definition of Cg< implies that
Z(t) = coeot+c;eRMt gin((Im),; )t+c,) for some (co, ¢1, ¢2) € R? with cB+c2 # 0.
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If c; = 0, then ¢g # 0 and thus V(Z;) = O for all t < 0. If ¢ # 0,
then Z(£) = c;eReMe[sin((ImAy)t + ¢3) + %;‘e('\"Re’\l)t], and for all sufficiently
large negative t the sign changes of Z are determined by the dominant term
sin((ImA; )t + ¢). Using ImA; € (m,2w), we find V(Z;,[-1,0]) = 2 for all suf-
ficiently large negative t. From Lemma 4.2(ii), it follows that there exists T' < 0
such that ZTl[—l,o] € H[_,0- By Lemma 4.1(iii) and r(0) =1,

V(Zr,[-1,0)) = V (25, [-r(x®(tn, + T)),0]) for all sufficiently large k.
Since
V(zg"k’ [_T(x¢(tnk +71)),0]) = V(yt,.k+Ta [_T(z¢(tnk +1)),0),

we find that V(y,, +7,[—7(z%(tn, + T)),0]) < 2 for all sufficiently large
k, which completes the proof of V(¢ — %, [—r(¢(0)),0] < 2. Consequently,

V(6 — %, [=r((0)),0]) = 2 for all ¢, 9 in W N S with ¢ # 1.

Let ¢, ¥ € WN S with ¢ # 9, and choose two sequences of points ¢, ¥ €
wWn§S, neN, with ¢, # ¥n, ¢ — ¢ and ¥, — ¢ as n — oo. We know that
V{(dn — ¥n, [-7(#(0)),0]) = 2. From Lemma 4.1(i), we conclude

V(6 =, [-r(6(0)),0)) < Bminf V(g — P, [~r($n(0)), 0)) = 2

Therefore for all ¢, » € WN S with ¢ # ¥ we have V(¢ — 9, [—7(¢(0)),0]) = 2.
The proof is complete. a

Proposition 4.4. If¢ € WNS\{0} andz = z%, then xt|[_r(z(t)),o] € Hi_r(z(t)),0]
for all t € R, and there exists a sequence (t,)>,, such that for all n € Z we have

tnrl —tn <1, tays —tn > 1,
2(tn) = 0, &(tan) > 0, E(tens1) < O,
z(t) >0 for allt € (t2n,t2n+1),
z(t) <0 for allt € (t2n—1,t2n).

Proof. Let ¢ € WNS \ {0}. By the invariance of WN S, the solution
z=12%:R — R of Eq. (1.1) with zo = ¢ satisfies z; € WNS for all ¢t € R.
By Proposition 1.1(viii) z; # 0 for all t € R. As 0 € WN S, Proposition 4.3
yields V(z, [-r(z(t)),0]) = 2 for all t € R. Using Lemma 4.2(ii), it follows that
Tt|[—r(z(t)),0) € H{-r(z(t)),0] for all ¢ € R. By the definition of H{_r(z(s)),0), all
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zeros of x are simple. Consequently, there is an increasing sequence (t,)>,, so
that for all n € Z, z(t,) = 0, ©(tan) > 0, Z(ten+1) < 0, z(t) > 0 forallt €
(t2n,ton+1) and z(t) < 0 for allt € (t2n_1,t2q). The definition of H{_,(z(1)),0]
and V(z:, [-r(z(t)),0]) = 2 for all t € R imply tnt+1 — 7(z(tn+1)) < tn, that is
tne1 —tn < 1T(T(tny1)) = 1 for all n € Z. Similarly, we have t, 42 —7(z(ths2)) > tn
for all n € Z, that is tp4o — tn > 7(z(tny2)) = 1 for all n € Z. The proof is
complete. 0

4.5 Dynamics on Wn§S

This section contains the main result. Namely, we prove that the w-limit set
of all points in W N S\ {0} is a nontrivial periodic orbit. First, we need some
preparatory results.

We begin with the continuous map

IL: C 3 ¢ — (6(0), 6(—r(¢(0)))) € R®.
Proposition 5.1. The restriction of II to W N S is injective.

Proof. Consider ¢, ¥ € WNS with ¢ # 1. By Proposition 4.3, V(xf -
z¥, [-r(x%(0)),0]) = 2 for all t € R. Lemma 4.2(ii) implies (¢ — ¥)|[—r(s(0)).0] €
H{_r(¢(0)),0]- Therefore, II$ # IIy), and the proof is complete. 0O

As TI is continuous and WN S is compact, Il maps WN S onto its range
II(W N S) € R? homeomorphically. Let II=! : II(W N S) — C be the map given
by the inverse of WN S 3 ¢ +— Il € I(W N 5).

Let xo € II(WNS) and ¥ = II"1(xo). By the invariance of WN 3, z¥ €
W NS for all t € R. The curve

x: Rt Nz? = (2¥(t),z%(t — r(z¥(t)))) € R?

is C'-smooth and has its range in II(WNS). We call this curve the canonical
curve through xo.

Proposition 5.2. The canonical curves through xo € II(WNS\{0}) are injective.

Proof. Consider xo € II{W NS\ {0}). Then 9 € WN S\ {0}. Thus z¥ #0
for all t € R, and by the definition of W, :zf — 0 ast — —oo. We infer that
:1:}”1 # :1:?2 for all t1, to with t; < ta. Otherwise z¥ is a t; — t; periodic solution,

which contradicts x’tp — 0 as t — —oo. The proof is complete. a
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The images of the closed hyperplane
H={¢€C:¢0)=0}

and the subsets

Hy ={¢ € H: ¢(—r(4(0))) = #(-1) > 0},

H_ ={¢ € H: ¢(-r(4(0))) = ¢(-1) < 0}
of H under II are

{(u,v) € R?: u =0},
vy = {(u,v) €ER?:u =0, v >0}, and v_ = {(u,v) e R? : u =0, v < 0},

respectively.

The canonical curves through xo # (0,0) intersects v_ U v4 transversally.
Indeed, for every xo € II(W N S) \ {(0,0)} and 9 = I11(x0), and for every t € R
with Iz?¥ € v, (€ v_), the first component D;IIz¥1, that is 2¥(t), of the tangent
vector of IIz¥ satisfies

i¥(t) = fz¥(t - 1)) > 0(< 0).
We introduce the intersection map
c: (v=Uv ) NII(WNS) = (v_Uvy) NII(WNS)

as follows. For xo € (v_Uv)NII(W N S) and ¢ = I~ (xo) € (H-UHL)NW N S,
Proposition 4.4 shows that there is a smallest zero z; = z;(¢) of z¥:R—>Rin
(0, 0); we set

¢(xo) = Iz}, = (0,2%(z - 1)).
Analogously we can use the largest zero z_; = z_1(%) of z¥ : R — R in (—00,0)
with 9 = II"!(xo), X0 € (v— Uv;) NII(W N S) to define the map

c_:(v—-Uv)NII(WNS) - (v Uwy) NII(W N S)
by c_(xo) = IIz¥__. It follows that c is continuous, and bijective with ¢™! = c_.
Moreover, c(vy NII(WNS)) = v NII(WNS) and c(v- NII(WNS)) = vy N
II(W N S) and the map

p:vy NII(WNS) 3 xo — c(c(xo)) € vy NII(W N S)

is continuous, and bijective with p~!(x0) = ¢~*(c™*(x0))- It is convenient to write
Xo0~<Xo for elements in {(0,) € R? : u € R} if and only if the second components
satify [Xo]2-<[)20]2.

The following results follow closely those in [41] for Eq. (1.1) with constant
delay.
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Proposition 5.3.

(i) For all xo, %o in v4. NII(W N S) with xo~<Xo, ~(X0)<P(Xo)-

(ii) For every trajectory (xn)>. of p in vy NII(W N S), there exist x— and x4 in
. NII(W N S) so that

Xn — X- 8N — —00, Xn — X4 85T — 0O.

In case x—~ # 0(x+ # 0) the solution z : R — R of Eq. (1.1) with o =
II-1(x-) (zo = I71(x+)) is periodic. For

On-1(x-) = {x{l_l(x_) :te R} and Og-1(y,) = {x{I‘l(x+) :te R},

dist(x?'l(Xo),(’)n-x(x_)) 5 0ast— —o0

and
-1
d1'st;(:1:iI (x°), 0H“(x+)) — 0 ast— oo.

Proof. The proof of (i). Assertion (i) follows from c(x0)~<c(xo) for all xo, Xo
in (v~ Uvy) NII(W N S) with xo=<Xo. In order to derive this statement, consider
xo and Xo in (v_ Uvy) NII(W N S) with xo~<xXo. In case xo € v— and %o € v4 we
have ¢(Xo) € v— and ¢(xo) € v+, thus ¢(xo)<c(xo)-

Consider the case xo € v4 and o € v4. Let z : R > Rand Z: R > R
denote the solutions of Eq. (1.1) with zp = II7!(xo) and # = II"!(Xo)-
The canonical curves x and x defined by x(t) = (z(¢),z(t — r(z(t)))) and
%) = (£(t),z(t — r(2(t)))) for all t € R, satisfy x(0) = xo0, X(0) = Xo, and
0 = z(0) = £(0), 0 < z(-1) < #(—1). By Proposition 4.4, zo|[-1,00 € H[-1,]
and Zo|{-1,00 € Hj-1,0- Thus £(0) > 0, #(0) > 0, and for the smallest positive
zero z; and 2; of z and £, respectively, we have 0 < z in (0,21), 0 < Z in (0, 21),
i(21) <0, z(2z1 — 1) <0, £(z) <0, #(3, — 1) < 0.

The restriction x|jp,»,) and the line segment A : [0,1] 3 s — xo0+5(c(Xx0) —Xo0) €
R? from x(0) = xo0 = A(0) to x(21) = c(x0) = A(1) form a simple closed curve ¢.
The set {(u,v) € R?:u <0, or u=0and v < z(2; — 1), or u = 0and z(-1) < v}
belongs to ext({). In particular % (0) € ext(¢).

We show ([0, 21])Nx([0, z1]) = 0. Otherwise there exit £ € (0, 2;] and t € (0, z]
with II#; = X(f) = x(t) = Iz;. By the injectivity of II, Z; = z;, which implies
#(s) = z(s+t—i) forall s € R. Incasef < t, 0 = £(0) = z(t—1), a contradiction to
0<zin(0,21). Incaset < f,0 = z(f—t+t—f) = £(f—t), a contradiction to 0 < &
in (0, 21). Therefore Z = z; in particular £p = zo, and o = Xo, in contradiction to
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X0~<Xo- Using 0 < £ in (0, 21) and %(2 — 1) < 0, we infer %([0, 21]) N A([0,1]) = 0.
Then %([0,21]) N |¢] = 0. Since %o € ext(¢), we obtain x([0, 21]) C ext({). The
injectivity of ¢ yields ¢(xo0) # ¢(xo0). Therefore, we conclude that c(xo)~<c(xo)-

In case xp € v— and Xp € v— one can proceed analogously.

The proof of (ii). Let a trajectory (xn)%, of p in v, NII(W N S) be given. The
statement in (i) implies that the second components form a monotone sequence in
R. AsWN S is compact and II is continuous, the set II(W N S) is compact in R2.
It follows that there exist x— and x4 in 5. NII(W N S) such that

Xn — X— a8 n — —oo0 and X, — X4 as n — 0o.

Observe T4 = vy U {(0,0)}.

If x_ # 0 then p(x_) = x— by the continuity of p. From the definition of p and
the injectivity of II, we conclude that the solution through II(x_) is a nontrivial
periodic solution of Eq. (1.1). The argument in case x4+ # 0 is the same.

Now consider the canonical curve x : R 3 ¢t — Ha:irl(’m) € R% The defi-
nition of p implies that there is a sequence (s,)%%, such that x(s,) = x» and
1 < sp4+1 — Sn < 2 for all n € Z. By the continuity of II, we have

zp 00 =TI (xn) — T (x4) 88 m — co.

n

Let ¢ > 0. By the continuous dependence of solutions of Eq. (1.1) on the ini-

tial data, there is & > 0 such that ¢ € C and || ¢ — I71(x4)|| < & imply

-1
SUP;e(o,7) Infsef0,2) x{l ) _ z?|| < ¢, where T denotes the minimal period of

the solution z1~ *+), That is
dist(Om-1(x4)» {z2:0<s<2}) <e
Choose ng € N so that for ng <n € N,
I T (cn) =T ()l < 6.

Thus, for ng <n €N

dist(On-1(x+), {zg_l(x“) :0<s< 2}) < €, that is

dist(On-10¢y), {21 %P isn <t<2480}) <.
Since 1 < Sp4+1 — s$p < 2 for all n € Z, it follows that

dist (0n—1(x+), xf-l(’“)) <e forallt> sp,.
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The proof is complete. ]

Theorem 5.4.

(i) There is a periodic solution p : R — R of Eq. (1.1) such that p, € WN S for
all t € R. The minimal period w of p satisfies 1 < w < 2.

(ii) For each ¢ € W N S\ {0} the phase curve Ry >t — F(t,§) €Y tends to the
periodic orbit O = {p, : t € [0,w]} ast — oo.

Proof. The proof of (i). Let ¥ € WNS\ {0}. By the invariance of W NS\ {0}
and Proposition 4.4, there is s > 0 with z¥ e H, NWN S.

Let xo = Iz¥ = (0,z¥(s — 1)), and consider the trajectory (xn)% of p in
vy NII(W N S). The definition of W yields :z::,/’ — 0 as t — —oo. This fact implies
Xn — 0 as n — —oo. Note that xo # p(xo). Otherwise the solution z¥ of Eq. (1.1)
is periodic, which contradicts x}b — 0 as t — —o0. Therefore, using Proposition
5.3(i), the sequence (xn)%,, is monotone. Moreover it is strictly increasing since
Xn — 0 as n = —o0. Then x4 = limp_,00 X Satisfies x4+ € vy NII(W N S). From
Proposition 5.3(ii) it follows that the solution p : R — R of Eq. (1.1) with pg =
II-*(x,) is periodic. Let w > 0 be its minimal period. As x4+ € vy NI(WNS)
and WN S is invariant, we obtain po € H, and p, € WNS for all £t € R. The
statement about the minimal period w is a consequence of Proposition 4.4 and
p(X+) = X+

The proof of (ii). Let ¢ € WNS\{0}. Thereis 3 > 0 with z¥ € H, NWNS. Let
X0 = H:z:g’ and consider the trajectory (Xn)%,, of p in v4 NII(W N S). In the same
way as for (xn)>, it follows that X, — 0 as n — —oo0, and (¥»)>,, is a strictly
increasing sequence. The monotonicity of p and lim, oo Xn = liMmy——co Xn =0
imply that there is an integer k such that either

Xn = Xnt+k for allm € Z, or

Xn <Xn+k <Xn+1 <Xn+k+1 foralln € Z.

In both cases limp 00 Xn = liMp—00 Xn = X+ Then Proposition 5.3(ii) yields
F(t,¢) —» O as t — oco. The proof is complete. o
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Summary

The theory of functional differential equations deals with differential equations
where the right hand sides depend on delayed arguments of the unknown function.
The first examples appeared about 200 years ago and were related to geometric
problems. The interest in the field grew rapidly in the second half of the 20th cen-
tury. Over the past several years it has become apparent that there is a need for a
theory of differential equations with state-dependent delay because such equations
appear in several applications (in classical electrodynamics, in population models,
in models of blood cell production).

Equations with state-dependent delay in the derivative, that is the state-
dependent neutral equations are also used in applications though we still do not
have a general theory for such equations.

Consider the differential equation with state-dependent delay

(t) = —pz(t) + f(z(t — r(=(2))),

where f and r are smooth real functions. Let A > 0. The function

C([-h, 0L, R) 3 ¢ — —ug(0) + f($(-7(¢(0)))) € R

is in general not differentiable. Therefore the basic tools of dynamical systems
theory, like linearization and local invariant manifolds, cannot be applied in a
straightforward way. This shows the main source of difficulties of the study of
differential equations with state-dependent delay.

In this work we prove results for two different classes of functional differential
equations with state-dependent delay. We use the notations: C = C([—h, 0], R); if
z : I — R is a continuous function on the interval I and ¢, t —h € I, then z, € C
is defined by z:(s) = z(t + s), s € [—h,0].

In Chapter 2 we consider the nonlinear one-dimensional neutral differential
equation with state-dependent delay

(1 = ()~ pas — r(t,2)] = ~a(t) 2t — s(t,20),

where p € R, ¢ : [0,00) — [go,0), 7 : [0,00) x C — [0,7¢], and s : [0,00) x C —
[0, so) with go > 0 and rp, sp < h. Using the parameters of the equation, conditions
are given for the stability and attractivity of the zero solution of Eq. (1).

When p = 0 and the function s is independent of z; then according to a result
of Myshkis, Yorke and Lillo, the assumption ggsg < % implies the uniform stability



of the zero solution, and -g— is the best possible constant. The number % also arises
as an upper bound in our stability condition for Eq. (1).

A consequence of the main result of this chapter is the following:
1-p 0 So doToP 3

. q
if0<p<1, —P < sgand + <2
P % O T T 1-p)? T 2

then the zero solution of Eq. (1) is stable.
In Chapter 3 we prove a result of monotone dynamical systems applicable for
the differential equation with state-dependent delay

(2) &(t) = —pz(t) + f(z(t—7)), 7 =r(z(t),

where > 0, f and r are smooth real functions with f(0) =0 and f' > 0.

In the case r = constant the semiflow generated by Eq. (2) satisfies a certain
monotonicity condition, that is, it is strongly order preserving. Therefore applying
a result of Smith and Thieme, we conclude that the w-limit set of all points from
an open dense subset of the phase space is an equilibrium point.

In the case r = r(z(t)) the semiflow generated by Eq. (2) in the phase space
X C C of Lipschitz continuous functions is monotone, but it is not strongly order
preserving. Thus the result of Smith and Thieme is not applicable. We prove a
convergence result under a weaker monotonicity condition than the strong order
preserving property, and we show that under certain hypotheses on r the w-limit
set of all points from an open dense subset of the phase space is an equilibrium
point.

Note that, it is not true in general that the w-limit set of every point of the
phase space is an equilibrium point. Krisztin, Walther and Wu have shown the
existence of periodic orbits in the case r = 1 for certain u, f, and r. A similar
result is proved by Mallet-Paret and Nussbaum, Kuang and Smith, Arino, Hadeler
and Hbid, Krisztin and Arino, Walther in the state-dependent delay case with a
negative feedback condition. For the case r = r(z(t)) with a positive feedback
condition Chapter 4 contains an analogous result.

In Chapter 4 we show that there is a nontrivial periodic orbit of Eq. (2). First
an unstable set W of zero is constructed by forward extension of a local unstable
manifold at zero. Then it is proved that for each nonzero ¢ € W, for which the
solution z# through ¢ oscillates on [0, 00), z#(t) — 0 as t — —oo, and z? tends
to the periodic orbit as t — co. Moreover, % has one or two sign changes on the
interval [t — r(z%(t)),t] for all t € R.
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A retardédlt funkciondl-differencidlegyenletek olyan folyamatokat modelleznek,
amelyek véltozdsdra miiltbeli dllapotaik is hatdssal vannak. Az els6 példék ilyen
egyenletekre geometriai problémdkban jelentek meg mintegy 200 éve. Az utdébbi
6tven évben rohamosan nétt az érdekl6dés a funkcional-differencidlegyenletek
elmélete irdnt. Az egyre szélesebb koérli alkalmazisok hatisira sziikségessé vilt
az llapotfiiggd retarddlasd funkcionsl-differencidlegyenletek elméletének kidolgo-
zdsa. Az éallapotfiiggd neutrilis differencidlegyenletek, azaz az olyan differencial-
egyenletek amelyekben a derivilt is tartalmaz a rendszer allapotdtdl fiiggl re-
tard4last, szintén gyakorlati alkalmazéssal birnak, annak ellenére, hogy ezekre az
egyenletekre még nincs egy altaldnosan kidolgozott elmélet.

Tekintsiik az

£(t) = —pz(t) + f(z(t - r(z(t))))

dllapotfiiggd retarddlasu differencidlegyenletet, ahol u > 0 és f, r sima valés fiig-
gvények. Legyen h > 0. A

C([-h,0],R) 3 ¢ — —ud(0) + f(#(-7(4(0)))) € R

leképezés altaldban nem differencidlhaté. Ezért a dinamikus rendszerek elméleté-
nek altalanos eszkézei mint a linearizilas, invarians sokasagok nem alkalmazhaték
a szokdsos mddon. Mindez az illapotfiiggé retardalasu differencidlegyenletek
tanulmanyozdsdban felmeriil6 nehézségekre utal.

Az értekezésben az 4llapotfiiggld retarddlasu funkcional-differencidlegyenletek
két kiilonbozé osztalyara bizonyitunk eredményeket. Bevezetjik az aldbbi
jeloléseket: C = C([—h,0],R); ha z : I — R az I intervallumon folytonos fiigg-
vény és t, t—h € I, akkor az z; € C fiiggvény az z;(s) = z(t+ s) képlettel definidlt
minden s € [—h, 0] esetén.

A 2. fejezetben az alabbi nemlinedris dllapotfiigg6 neutralis differenciilegyen-
letet tekintjiik:

(1 = [8(t) = a6 — r(t,2)] = ~a(t) o — s(t,20),

ahol p € R, ¢ : [0,00) — [go,00), 7 : [0,00) X C — [0,79], s : [0,00) x C —
[0, s0), go = 0 és o, sp < h. Az egyenletben adott paraméterek azon tartoményéat
becsiiljiik, ahol az (1) egyenlet z = 0 megolddsa stabil.

Ha p = 0 és az s retarddldas nem fiigg az z;-t6l, akkor Myshkis, Yorke és
Lillo egy j6l ismert eredménye alapjan a ggsp < % feltétel teljesiilése esetén az



z = 0 megoldds egyenletesen stabil, és % nem helyettesitheté nagyobb szdmmal.
Kimutatjuk, hogy az (1) egyenletre is érvényes egy tn. g-es stabilitasi tétel.
A fejezet f6 eredményének egy kévetkezménye alapjén,

l1-p . 9050 , Qorop _ 3
< —_— < =
ha0<p<li, p” <soes1_p+(1_p)2_2,

akkor az (1) egyenlet z = 0 megoldésa stabil.

A 3. fejezetben a monoton dinamikus rendszerekre vonatkozé olyan ered-
ményt bizonyitunk, amely alkalmazhat$ az aldbbi éllapotfiigg retarddldsi diffe-
rencialegyenletre:

(2 £(t) = —pa(t) + f(z(t—7)), T =r(z(t),

ahol u > 0, f és r sima valés fiiggvények, f(0) =0és f' > 0.

Az r = konstans esetben a (2) egyenlet 4ltal generalt szemidinamikus rendszer
rendelkezik egy bizonyos monotonitdsi tulajdonsdggal: er6sen rendezéstarté. fgy
Smith és Thieme egy eredménye alapjén a fizistér egy nyitott és sliri halmazahoz
tartozé pontok w-limesz halmaza egy egyensilyi helyzetbdl all.

Az r = r(z(t)) esetben a Lipschitz folytonos fiiggvények X C C fazisterén a
(2) egyenlet 4ltal generalt szemidinamikus rendszer monoton ugyan, de nem erdsen
rendezéstarté. Igy Smith és Thieme eredménye nem alkalmazhaté. Az erSs ren-
dezéstartdsndl gyengébb monotonitasi feltétel mellett bizonyitunk konvergencia
eredményt, és megmutatjuk, hogy az r fiiggvényre tett bizonyos feltételek tel-
jesiilése esetén, a fizistér egy nyitott és siirti halmazdhoz tartoz6 pontok w-limesz
halmaza egy egyenstlyi helyzetbdl all. Megemlitjiik, hogy a fazistér minden pontja
nem rendelkezik azzal a tulajdonsiaggal, hogy az w-limesz halmaza egy egyensiilyi
helyzet. Krisztin, Walther és Wu kimutatta periodikus palyak 1étezését r = 1 eset-
ben. Hasonlé eredményt bizonyitott Mallet-Paret és Nussbaum, Kuang és Smith,
Arino, Hadeler és Hbid, Krisztin és Arino, Walther allapotfiiggo késleltetés esetére
egy negativ visszacsatoldsi feltétel mellett. Az r = r(z(t)) esetben egy pozitiv
visszacsatolési feltétellel a 4. fejezet tartalmaz hasonlé eredményt.

A 4. fejezetben kimutatjuk a (2) egyenlet egy nemtrividlis periodikus paly4jé-
nak létezését. El6bb 0-nak egy W-vel jelolt instabil halmazéat konstrudljuk meg a
0 egy lokalis instabil sokasagdnak pozitiv irdnyban valé kiterjesztésével. Majd be-
bizonyitjuk, hogy minden olyan 0-t6l kiilonb6z6 ¢ € W esetén, amelyekbdl indulé
z?® megoldasok oszcilldlnak a [0, co) intervallumon, z#(t) — 0 ¢ — —oco esetén, és

xf’ tart a periodikus palyshoz t — oo esetén. S6t az is igaz, hogy az % megoldés



el6jelvéltdsainak a széma egy vagy kettd a [t — r(z?(t)), t] intervallumon minden
t € R esetén.



