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Sonnet-to Science

Science! true daughter of Old Time thou art!
Who alterest all things with thy peering eyes.
Why preyest thou thus upon the poet’s heart,
Vulture, whose wings are dull realities?
How should he love thee? or how deem thee wise,
Who wouldst not leave him in his wandering
To seek for treasure in the jewelled skies,
Albeit he soared with an undaunted wing?
Hast thou not dragged Diana from her car?
And driven the Hamadryad from the wood
To seek a shelter in some happier star?
Hast thou not torn the Naiad from her flood,
The Elfin from the green grass, and from me
The summer dream beneath the tamarind tree?

/Edgar Allan Poe/



Szonett a Tudomdnyhoz

Tudomdny, te, a vén 1do szulotte,

Ha mire nézel, mds lesz az, sotét.
Szdrnyad a zord vald, mordképu olyv, te,
Miért fosztod ki a kolté szivét?

Hogyan becsuljon téged, hogy szeressen,
Ha nem hagyod, hogy bolygva a merd
Ekkéves égen, kincseket keressen?
Hisz oly batran szdllt az egekre 6!

Nem szdllitottad foldre Diandt,
Nem verted fak kozul ki a driddot,
Hogy kéltozzon egy jobb csillagra dt?

Nem a habok kozil a szép najddot,
A pdzsitrdl a tundért s magamat
Az dlmaimbdl nydri fik alatt?

/forditotta Komlés Aladér/
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Bevezetés

A gazdasagi élet egyre tobb teriiletén van és lesz sziikség az analitikai ké-
miai mérések altal szolgaltatott mingségi és mennyiségi jellemzdk felhasz-
naldsira. A piacokon csak a j6 mindségi arut lehet haszonnal eladni és
ezek elbdllitdsanak folyamatdiban a minGségbiztositas meghatarozd szerepet
kapott [85,86,87,88,89,90,91,92]. A mindség betartdsahoz és ellenérzéséhez
tehdt nagy szamu analitikai meghatdrozas sziikséges, melyeket legtobbszor
automatikus sorozatmérések keretében hajtanak végre. A mintavétel és a
mintael6készités az analitikai mérés legérzékenyebb pontja, de rogtén ezek
utdn a kalibricié helyes végrahajtdsa és alkalmazasa kovetkezik. A nemré-
giben Burger Kdlman akadémikus altal irt ”A mennyiségi analizis alapjai:
kémiai és miiszeres elemzés” cimi igazan nagyszerd konyve kello mélységi
bevezetést ad az alkalmazott mddszerek kémiai, fizikai-kémiai valamint mi-
szertechnikai kivitelezésiik hatterérdl, de sajnilatos médon a nyert adatok
feldolgozdsahoz ill. kiértékeléséhez sziikséges kemometriai médszereket meg
sem emliti.

Bujtds Piroska és Leisztner Laszlé az ” Analitikai mérési eredmények mi-
noségbiztositdsa” cimi munkdjukban az egzakt targyalds mellozésével, a
gyakorlé analitikusok dltaldnos matematikai és statisztikai felkésziiltségé-
hez alkalmazkodva védzoljdk a sziikséges kemometriai mddszereket. Jelen
disszerticié ezen két miu kiegészitojeként a kalibracié kérdéskorében pro-
bal gyakran dj nézdpontbdl szemlélt régi és \j eljardsok bemutatasival az
analitikusok segitségére sietni, hogy a jol elvégzett kémiai kalibracié a leg-
megfelel6bb kemometriai médszerrel keriiljon kiértékelésre. Ezaltal a leheto
legtobb és legmegbizhatébb informdcidk birtokaba juthatunk.

Annak illusztrildsira, hogy miért kell a klasszikus, tobb évtizede elfo-
gadott kiértékeld eljardsokat felilvizsgalni és olykor djakkal helyettesiteni,
vizsgdljuk meg a normalitds (igen gyakran minden ellenérzés nélkiili) elfo-
gadadsanak helyességét.

A normilis vagy Gauss-eloszlas (a kovetkez6kben inkdbb a Gauss-elosz-



l4s elnevezést haszniljuk, mivel mint kideril, a tobbi eloszlds nagyon is nem
abnormdlis) jogos hasznalatanak tamaszdt gyakran a centrdlis hatirelosz-
lastételekben 1atjak biztositottnak. Persze sokan elfelejtik, hogy bizonyos
feltételeknek teljesiilniiik kell a tételek alkalmazdsdhoz. A legegyszeribb
megfogalmazdsban nagyon sok azonos eloszlasi, véges szérdsu véletlen val-
toz6 atlaga lesz Gauss-eloszlasi. Napjaink miiszereinek pontossdga azonban,
egyre inkdbb kis szdmi, eltéro eloszlasi hibatagokbdl tevidik ossze. A tétel
Ljapunov-féle alakja még menthetné a helyzetet, hiszen az a nem azonos
eloszlasbdl szdrmazé adatok atlagaira hatarozza meg a normdlis eloszlast,
ha az eloszlasok elsd, mdsodik és harmadik momentuma létezik, valamint a
harmadik momentumoknak Gsszességiikben egyre kisebbeknek kell lennidk
a szérdsokhoz képest. Nem szabad figyelmen kiviil hagyni azonban az olyan
eloszldsokat sem, melyeknek nincs véges szérdsuk (pld. Cauchy-eloszlas).
A {6 probléma azonban az, hogy a mér6miiszerek altal szolgdltatott jelek
tobbsége is csak néhdny kilonbozé eloszlds kombinacidja, valamint a gya-
korlatban mindig véges mintaszimmal dolgozunk, igy érvényes Cramér ne-
vezetes tétele, mely szerint a normalis eloszlasnak minden faktora normalis
eloszldsi. Ez azt jelenti, hogy véges szamu valdsziniliségi valtozd Osszege
csak akkor lehet Gauss-eloszldsi, ha mar mindegyik eleve Gauss-eloszlasu
volt. Ilyet a gyakorlatban megkévetelni nem lehet, és igy a Gauss-eloszlas
mellett (a gyakorlati tapasztalatokkal egyetértésben) az elméleti megfontola-
sok sem szolgaltatnak kelld tamaszt. Alljon itt Poincaré [108] szarkasztikus
megjegyzése ezzel kapcsolatban:

Mindenk: hisz a normdlis eloszlds univerzalitasdban:

a FIZIKUSOK azért, mert azt hiszik, hogy a matematikusok igazoltdk logi-
kai sziikségszeriségéet,

a MATEMATIKUSOK pedig azért, mert ugy hiszik, hogy a fizikusok labo-
ratériumi méréseikkel bizonyitottdk azt.

A gyakorlatban Clancey [30) csaknem 50000 kémiai analizis eredményét meg-
vizsgalva 250 féle eloszldst tudott azonositani. Ezek 10-15 %-a volt csak
egyértelmien Gauss-eloszlisd és kb. 50 %-ot tettek ki a szimmetrikus el-
oszlisok. fgy a gyakorlatban is cifolni lehetett az a priori meglévé Gauss-
eloszlast.

A kémiai mérések kiértékelésével, a kémiai méréselmélettel a kemometria
(chemometrics), mint ij tudomdnyag foglalkozik. A Chemometrics Society
altal adott meghatdrozas szerint a kemometria



o az optimdlis mérési folyamatok és kisérletek tervezésére, vagy kivdlasz-
tdsara

e kémiai adatok elemzésével maximalis kémial informécid eloallitisara

szolgdlé matematikal és statisztikai modszereket alkalmazdé kémiai elvek
Osszessége.

Ma méar szdmos kemometridval foglalkozé konyv [20,84,116] és Gsszefog-
lalé tanulmdany [1,17,21,22,46,98,129] all rendelkezésiinkre az alapveté mdd-
szerek kozotti eligazodds megkonnyitésére.

Veress [133] monogréfidjdban a 0.1 dbran lathaté médon épiti fel az infor-
macidészerzés folyamatdt. Dolgozatomban az analitikai kémiai ismeretszer-
zésben haszndlt kalibricié témakorével foglalkozom. A kalibracids ismeret
legtobbszor az alkalmazott kalibralé fiiggvény paramétereinek meghataroza-
st jelenti, azonban a regressziés médszer robusztussiga (mely fogalmat a
késdbbiekben részletesen elemziink) dltaldban kivanatos kell legyen, hiszen a
matematikai modellt nem dolgozhatjuk ki az egyelore nem ismeretes altala-
nosabb koriilményekhez, azonban az sziikséges lehet, hogy a feltételektol valéd
kis eltérés csak kis torzitdst okozzon a végeredményekben. Az analitikai ké-
miai mérések kiértékelése jorészt empirikus modellvilasztasokon alapulnak,
igy nagy sziikkség van a modell érzéketlen viselkedésére. Robusztus tulaj-
donsdggal bird eljardsra példaként emlitheté még a kvantummechanikdban
alkalmazott perturbaciészamitas, amit arra az esetre dolgoztak ki, amikor
a vizsgdlt fizikai rendszer Hamilton-operdtora csak kozelitoleg szamithato,
azonban az csak kicsit tér el egy egzaktul megoldhaté probléma Hamilton-
operatoratdl és varhatd, hogy a megoldas is csak kicsit tér el a pontosan
megoldhaté feladat megolddsdtdl.
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1. fejezet

Az irodalom attekintése

A kalibrécié sordn alkalmazhatd paraméterbecslo eljardsok irodalomi atte-
kintése egy djszemponti rendszerezés keretében Bard [9] dtmutatdsainak
tovdbbgondolasa alapjdn torténik. Felhasznaltuk még a Beck és Arnold [14]
altal osszedllitott és részletesen targyalt alapvets statisztikai feltevéseket,
melyeket 8 csoportba sorolhatunk és teljesiilésiik ill. nem teljesiilésiik sze-
rint kapcsolat teremtheté az altalunk elképzelt csoportositdssal:

1. Additiv mérési hiba

0 nem additiv

1 igen, additiv
2. Nulla vdrhatd értéki mérési hiba

0 nem nulla varhatd értéki

1 igen, nulla varhato értéki
3. Allandé variancidji hibak

0 nem allandé variancia

1 igen, dllandé variancia
4. Nem korrelalt hibak

0 korrelalt hibak
1 igen, nem korreldltak a hibdk

5. A hibdk normadlis eloszlasa



0 nem normalis eloszlasd hibak )

1 igen, normdlis eloszlasu hibak
6. A hibak leirhatdk ismert statisztikai paraméterekkel

0 a hibdk kovariancia matrixa csak egy szorzd faktortdl eltekintve is-
mert

1 igen, a hibdk kovariancia matrixa teljesen ismert
7. A fiiggetlen valtozdk hiba nélkiiliek

0 nem, a fiiggetlen valtozok hibdkkal terheltek
1 igen, a fliggetlen vdltozok hiba nélkiiliek

8. A hiba eloszldsok paraméterei nem véletlenszeriiek és nincs rdjuk vo-
natkozd elozetes informaciénk.

0 nem, véletlen paraméterek, de nincs eldzetes informaécid
1 igen, nemvéletlen paraméterek és nincs el6zetes informéacié

2 normdlis eloszlasi paraméterek ismert varhatd értékkel és kovarian-
cia matrixszal, minden mérés ugyanebbodl az eloszlasbdl szarmazik

4 nemvéletlen paraméterek, de ismeretesek bizonyos normdlis szub-
jektiv elozetes informdcidk

1.1 Paraméterbecslési modellek

A kalibrécids fliiggvény paramétereinek meghatirozdsa egy paraméterbecs-
1ési modell felldllitisat igényli:

9(z,p) = 0, (1.1)

ahol a g(.) implicit figgvény teremt kapcsolatot a z véltozdk kozott, a be-
csilendé p paraméterekkel. A z adatok két részre oszthatdk: v melyek
hibamentesen mérhetok és w melyek csak hibaval terhelten mérhetok.

Az ilyen modell pontosabb megfogalmazdsdhoz esetenként azt kell meg-
vizsgalni, mi mindent tudunk a kivalasztott kalibracids rendszerrol. Sokkal
jobban hisziink a kalibricids fiiggvény alakjiban, mint méréseink pontossa-
gaban? Vagy éppen forditva, méréseink pontosak, azonban a fiiggvény nem
irja le tokéletesen a mért folyamatot? Taldn mind a mérés, mind a fiiggvény
terhelt bizonyos eldre nem kalkuldlhaté zavard tényezokkel? Az alkalmazott
modell tipusa fiigg az el6z6 kérdésekre adott valaszoktol.



a, Tételezziik fel, hogy az adatok mérési hibaval terheltek, de az alkalmazott
figgvény pontosan leirja a kalibracids folyamatot:

g(v,w,p) =0, (1.2)
A fenti megfogalmazdson alapulé modellhibat elséfaji modellhibanak

nevezzik.

b, Tegyik fel, hogy a kalibraciés figgvény a bizonytalan szamos hatds fi-
gyelmen kivil hagydsa miatt, ehhez képest a mérések hiba nélkil ki-
vitelezhetoek:

9(v,p) =17, (1.3)
Az igy jelentkez6 modellhiba a masodfaji modellhiba.
¢, Mind a mérés, mind a fiiggvény felallitdsa csak bizonytalansaggal végez-
heto el:
9(v,w,p) =17, (1.4)

Ennek sordn a harmadfaji modellhibat kell kezelniink.

1.1.1 Paraméterbecslés els6faji modellhiba esetén
1.1.1.1 Sztochasztikus modell

Kendall [72,73] adta meg az (1.2) fiiggvény paramétereinek meghatdroza-
sdhoz sziikséges feltételrendszert, feltéve hogy (1.2) az y = f(z, p) explicit
alakra hozhatd:

a. Az y = f(z,p) folytonos fiiggvény hatdros és zart (azaz kompakt) a
B x AD R? x R (g > 0) tartomany felett.

b. Az y = f(z,p) fliggvény Taylor-sorba fejthet a tartomdny minden pont-
jaban, ahol f definialva van.

c. A mérési hibak szuperponaltak (additiv hibak)
y;(megfigyelt érték)= y?(valédi érték)+u(mérési hiba) és
z;(megfigyelt érték)= z2(valédi érték)+u?(mérési hiba).

d. A valddi értékek kielégitik az explicit fiiggvénykapcsolatot, azaz
0 — f£(,0
yj - f(Z] ’ p)

e. A mérési hibdk az U J" folytonos valdsziniiségi valtozék realizacidi, varhaté
értékik F [UJ"] = 0, k itt és a tovabbiakban z-et vagy y-t helyettesiti.

7



Az a.—e. feltételek még mindig nem elegenddek a probléma megoldasahoz.
Tovabbi megszoritisokat kell tenniink U j‘-re vonatkozdan:

f. Az U Jl‘-k sztochasztikusan fiiggetlenek.
g. Az U;‘-k ismert, véges varianciaval rendelkeznek co > D [UJ"] >0. -

Ekkor a (P, Z;,§;) megolddst a kovetkez6 nemlinedris normadl egyenlet-
rendszer adja:

QF = 3~ (v~ flzs,0) D2 [02] + (2 - 85 D7 [13]). - @)

QF minimaliss4 vilasdhoz a kovetkezo egyenleteknek kell teljesiilniiik:

10QF _ 10QF _ _10QF _
- 5__6% =0, 53y, - 5 pr =0. (1.6)

A fenti normdl egyenletrendszer altaldban nemlinedris, igy megolddsd-
hoz numerikus dton juthatunk el, pld. Newton iterdcié segitségével. A
nemlinedris paraméterbecsld eljardsokrdl jé dsszefoglalé taldlhatéd [131,132]
irodalmakban. _

Vizsgaljuk meg a legegyszeriibb esetet, amikor a fiiggvénykapcsolat line-
aris ¥y = ag + a1z. Milyen tovabbi feltételeknek kell teljestilniik?

h. A mérési hibak homoszkedasztikusak, azaz D2 [Uf] = gk

1.7
Go =7 — a1T (1.8)
n L =\2 BY s—n .- 7\2
= - y - x )= ; —Z
iy = Z; 1(3/1 ) 8 E] 1(2; ) (1.9)

23 71(y; —9)(z; — T)
\/4,‘33—: Y = (e — D)2+ Ty — 9)? — & iz — 7)?2)?
25 (v — 9)(z; — T) ’
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n . .
ahol 7=) % & f:i%

a, csak abban az esetben szdmithatd, ha a g ardny ismert. Ha BY = 3%,
akkor ortogondlis regressziés problémdardl beszélink. Ha % = 0, vagyis
az 1. feltétel teljesiilése esetén direkt kalibraciordl, a BY = 0 esetén indirekt
kalibraciérél beszélhetiink. Az irodalomban az indirekt kalibraciéra az inverz
kalibricié elnevezés is elterjedt [76], jelen dolgozatban az inverz kalibricié
terminust a kalibracids fliggvény inverzének haszndlatdra tartjuk fenn, azaz
a mérési jelekhez tartozé koncentréacidk becslését végrehajté eljardsra.

A kovetkezd feltétel teljesiilése esetén a paraméterek meghatirozdsihoz
még egyszeriibb formulakat kapunk.

i. Az z; értékek nem valdsziniiségi valtozok reprezentansai, hanem ismert,
konkrét értékek, azaz z;(megfigyelt érték)= z2(valodi érték)

Gy = PRI D DT D ZZ:I Z;Yj
nZS‘:l m? - (Z?:l xj)
Ny 71T — 2i=1T5 2 y=1 Y
n Z?:l 93? - (Z?:l xj)2

Fokozatosan szigorodé feltételek lincolatan keresztiil jutottunk el a legki-
sebb négyzetek paraméterbecslo eljardssal kapott formuldkhoz, melyek altal
minimélis variancidji (hatdsos) és torzitatlan becslést kapunk a paramé-
terekben linedris fliggvények korében. Fontos megemliteni, hogy az eddigi
eredményeink elérése soran az uf mérési hibak eloszldsait csak az f.,g.,h. (az
elsé és mdsodik momentumokra vonatkozd) és i. feltételekkel rogzitettiik,
igy pld. tipusardl sem rendelkeztiink {74]. Egyértelmiien meg kell adnunk
a mérési hibak eloszldsat leiré Osszefliggést, ha a becsiilt paraméterek va-
lamilyen klasszikus mddszerrel torténé jellemzését is el kell végezniink. Ez
utébbi probléma egy mds tGton térténé megolddsira a késébbiekben még
visszatérink.

Kalibriciés feladatok sordn az y = f(z,p) fiiggvény kovetkezd alakjat
haszndlhatjuk (dttérve a valdsziniségszamitdsban megszokott jelolésrend-
szerre, az f és g betlik ezutdn valdsziniiségi siirliségfiggvényeket jeldlnek):

(1.10)

&1:

(1.11)

n=C(z,p) + 6, (1.12)



2

o

ahol 7 a mérokészilék altal szolgdltatott jel, mint valdsziniségi valtozd, z
a béllitott koncentricié (feltételezetten hibamentes), p a C(.) kalibraciés
fiiggvény meghatdrozandd paramétervektora, § a mérési hibat reprezentdld
valészinliségi valtozé.

Az ismert paraméterbecslési eljarasokat az alabbi 3 kategéria valamelyi-
kébe sorolhatjuk szirmaztatasuk szerint:

e vektornormak minimalizildsa alapjdn eléallitott eljarasok,
o closzlasfiiggvények funkcionaljai alapjin elddllitott eljardsok,
o teszt statisztikdk alapjan elodllitott eljardsok.

Ezen 1jszerii csoportositdsnak megfeleléen fogunk megvizsgdlni néhany
jellemz6 esetet az idevonatkozé irodalomra tdmaszkodva.

Vektornormdk minimalizidldsa alapjdn eldéallitott eljarasok. A
vektornormdk a tavolsag fogalom altalanositdsai. Az elobb levezetett legki-
sebb négyzetek mddszerét példaul az Euklidészi norma segitségével kaptuk
meg. Ez a norma t6bb mds normdval rokonithatd, melyeket Osszefoglaléan
L, norméknak neveziink:

1
, .
L, norma: L, =|| z l,= [;Z | 2 |P]" (1.13)

Mint emlitettiik a vektor normdk a tavolsig fogalom altaldnositasai, igy
vektorok killonbségeire is értelmezhetjik Oket. Minimalizdlva most ezt a
normdt megkapjuk a legkisebb tdvolsdgot a megfigyelési pontok (kalibrdcids
pontok) altal alkotott vektor és azon linedris altér kozott, melynek dimenzi-
4ja a kalibracids fiiggvény paramétereinek szamatdl figg. Ha a kalibracids
fiiggvény nem linedris a paraméterekre vonatkozodan, akkor bonyolultabbd
valik a helyzet, hiszen az altér sem lesz linedaris. Nézziink néhany példat az
L, normékra.

Z(as) ha n pératlan
L, E”&“E()lh:%zlzi—xol medidn : zg
z +z n4
B ha n paros
Ly=lz-zll=\/tT|si-20|?  dtlag: zo=LTa

Lo =|| 2 — 2o o= max; | zi — 2o | sivkozép : zo = Lffn,

10
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\

1.1 dbra: Az L; (a,d), Lz (b,e) és az Ly, (c,f) vektornormdk 2 ill. 3
dimenzids alakjai

ahol z(;) a j. rendezett megfigyelés és z a megfigyelések vektora. Egyval-
tozés esetben zg a josolt helyparaméterbdl alkotott vektor (a vektor Gsszes
eleme egyenld zo-val). Kiilonb6z6 becslok neveit és formuldit is feltiintettiik,
melyeket a normak minimalizalasaval nyertik. Az 1.1 dbran a fenti hirom
norma alakjit vizsgalhatjuk meg, mint 2 ill. 3 dimenzids vektorok hosszat.

Magasabb dimenzidkban az alakjuk hipergémb, hiperoktaéder és hiper-
kocka lesz.

Tobbvaltozds esetben zg egy olyan altér lesz, melyet a kalibracids fiigg-
vény parméterei feszitenek ki. L; minimalizdldsa egy linedris programozasi
feladattal oldhaté meg [119,44]. Az L, probléma a jél ismert legkisebb négy-
zetek médszerét szolgdltatja [113]. Lo, az extrém értékek statisztikdjdban
jatszik fontos szerepet [49], valamint minimaz problémdk esetén [58]. Lo
minimalizdlasa szintén linearis programozdsi feladat.

A kovetkez6 tavolsig mértéket meglepé médon definidljuk, 4gy hogy az
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Osszegzés helyett produktum képzést haszndlunk: [123]

P={I] [52+z?]}#, (1.14)

ahol 2
S )
- = T .
e-t tehat a fenti rekurziv formulaval definidlhatjuk és az adatok egyfajta
szOrtsdgat fejezi ki, a koncentrdlédds mértékét jelzi. A becslo eljards neve,
melyet a P minimalizildsdval nyeriink leggyakoribb érték (most frequent va-
lue) [123].

Végiil megemlitink még egy vektor normat, melyet az L,-t definidld
képletbdl tigy nyerhetiink, hogy az Gsszegzést a median képzés operdtordra

cseréljik:
b}

Mp norm : M, = %median {| z: |”} i (1.15)

Az irodalom csak a p = 2 esettel foglalkozik és az eljards a négyzetek legkisebb
medidnja (least median of squares) nevet viseli [109].

Eloszlasfuggvények funkciondljai alapjan eléallitott eljarasok. A
gyakorlatban legtobbszor feltételezhetjiik, hogy barmely becslés csak a mé-
rési adatok tapasztalati eloszldsatdl fiigg, azaz a becslést az F,, tapasztalati
eloszlasfiggvény funkciondljinak tekinthetjik. A T becslot gyakran valami-
lyen hipotetikusan feltételezett F' valdsziniliségi eloszlasbdl szarmaztatjuk.
Igy T(F,) egy nemparametrikus becsld lesz, de a tulajdonsigait a T(G) vi-
selkedésének tanulmdnyozdsdval kell levezetniink a megvalésulé G sziamdra
F kornyezetében. Ez a probléma az elsofaju modellhiba példdja: vegyiink
egy modellt, amely leirja a mérési jel és a koncentracié kézotti kapcesolatot a
mérési hibik eloszlasdval egyiitt, de ez az eloszlas csak feltételezésen alapul.
Haszndlhatjuk azonban az F eloszlasfiggvényt G helyett.
a becslés robusztus, ha a becslések eloszlasa egyenletesen folytonos funkci-
ondlja az anyaeloszlasnak, azaz kozel fekvé anyaeloszlasokhoz a becslések
kozel fekvo eloszlasai tartoznak

(a Prohorov-tivolsig G és F kozott kicsi).

A robusztussidgot kvantitativan kétféleképpen mérhetjik. Egy becslo
globdlis érzékenységét az Osszeomldsi ponttal (breakdown point) [58,50,37)
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adhatjuk meg (az irodolamban a kvantitativ robusztussag fogalom is haszna-
latos), mely egyszeriien fogalmazva a kiugré értékek (melyek akdir végtelen
nagyok is lehetnek) azon legkisebb hanyaddt jelenti, amelynél a becslé mar
minden hatdron tdli (gyakorlatilag végtelen nagy) értékeket is szolgaltat,
tehdt a jelentGs perturbdcidk hatdsdt képes leirni.

A hatdsfiiggvény (influence function) [51,52], vagy infinitezim4lis robosz-
tussag lokalisan jellemzi a robosztussagot. Leirja, hogy a becslo hogyan
valtozik egyetlen pontban infinitezimadlis perturbdcié hatasira. Egy becs-
16 robusztus, és eképpen az els6faji modellhibat is képes kezelni, ha az
Osszeomldsi pontja elegendden nagy valamint a hatdsfiiggvénye korldtos és
folytonos.

Kovetkezzen néhany példa az el6zéekben részletezett gondolatok alapjan
levezetett paraméterbecsld eljarisokra.

Momentumok mddszere. Legyen a £ véletlen valtozd k paraméteres
eloszlasfiiggvénye a kovetkezo:

P(¢ < z) = F(z;a1,a3,...,a) = / f(t;a1,a2,...,a;)dt.
-0

m;j(€) = E[z?] = [& 27 f(z;a1,a2,...,ar)dz az F eloszlds j. elméleti mo-
mentuma. Tegyiik fel, hogy az Gsszes elméleti momentum kifejezheto az
ismeretlen a; paraméterekkel, azaz m;(€) = m;(as,...,ax). A tapasztalati
momentumokat felhasznalva a kovetkezd egyenletrendszert nyerjik [134]:

1< 50 .
mj(az,---,ak)=;z‘sz, ji=1,2,...,k. (1.16)
i=1

Néha eléfordul, hogy (1.16) megoldasa nem egyértelmi. R. A. Fisher
kimutatta, hogy a momentumokkal valé paraméterbecslés erGsen aszimmet-
rikus eloszldsok esetén kevésbé hatékony. Rdadadsul a magasabb rendi mo-
mentumok egyre érzékenyebbek a mérési hibira a névekvo kitevok miatt,
emiatt a momentumok mdédszerével nem nyerhetiink robusztus becslét.

Legnagyobb valésziniiség (maximum likelihood) elve. Tekint-
stik az z; fiiggetlen megfigyeléseket melyek azonos, ismeretlen § paramétert
eloszlasbdl szirmaznak. Ebben az esetben az egyesitett stiriségfiiggvény az
egyedi z; siriségfiggvényeinek szorzata lesz:

L(z;0) = ﬁ f(zi;8) (1.17)
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Ez a maximum likelihood fiiggvény [134]. Gyakran sokkal egyszeriibb [ =
In £ alakkal dolgozni, mivel a szorzds (1.17)-ben Osszegzésre médosul. Bar-
melyik likelihood fiiggvény maximumat meghatdrozva, a legvaldsziniibb ]
becslést kapjuk 6-ra vonatkozdan. Bar néha kederiil, hogy ez torzitott.

A kovetkez6 példin mutajuk be a maximum likelihood elvének lényegét.
Laplace- és Gauss-eloszldsok T helyparamétereit fogjuk becsiilni és feltéte-
lezzik, hogy az S skdlaparaméterek azonosak.

0.9 - Tl [0t L2521)

28
min —In £L1(T, S) ~ minzlﬁ;—ﬂ (1.18)
1 z; — T)?
Le(T,S)=1]] [5\/2_” eXP(-(_Q—Sg—))]
. 2
min —In Lg(T, 5) ~ minz%f—) (1.19)

Ha S > 0, akkor S nem jdtszik szerepet a minimumok megtaldlasanal,
igy (1.18) és (1.19) ugyanazt az eredmény szolgaltatja T-re mint az L, és
Ly normdk minimalizaldsa. Ez daltaldnosan is igaz. Az f, szupermodell
helyparaméterének maximum likelihood becslése azonos lesz az L, normdk
minimalizalasaval kapott becsléssel:

1-1

P z;-T1 )
max L,(T) = max [| [51“(%) exp (_l_w_l_ﬂ = min L, (1.20)

Ahogy az elézéekben leirtuk a maximum likelihood elvét egy adott f(z)
eloszlis esetén a kovetkezdkben lehet megfogalmazni: max 3" In f(z;,T) vagy
min Y —In f(z;,T). Huber [58] dltaldnositasa a —In f fiiggvénynek egy dif-
ferencidlhaté p fiiggvényre vald kicserélését jelenti:

minZg(z;,T). (1.21)
Sokkal praktikusabb megoldani a
5 $(zi, T) = 0 (1.22)
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egyenletet, ahol ¢¥(z,T) = ﬂ%ﬁ:—n. Mivel T egy helyparaméter becslése, igy

Z Y(z; = T)=0. (1.23)
Y(zi —T)
Plai) = ———7~ (1.24)

felhasznéldsdval Y ¢(z;) - (zi — T') = 0 egyenletet nyerjiik, melynek a meg-
oldasa
7= 2@ 2 (1.25)
2 p(zi)-
Ez a formula meglehetésen hasonlit egy sulyozott atlagra, azonban a
silyok nem fiiggetlenek az adatoktdl, 6k maguk is statisztikdk. Az (1.25)
altal definidlt becsloket M-becsloknek nevezziik.

Minimalis informacié veszteség elve. Az el6z6 levezetések soran
feltételeztiik, hogy a hibaeloszlds tipusa pontosan ismert. A gyakorlatban
nagyon gyakran inkdbb valamilyen helyettesité eloszlasfiiggvénnyel operd-
lunk, mivel vagy nem ismerjik pontosan az el6forduld eloszlast, vagy ké-
nyelmesebb egy egyszerlibb formuldji, de hasonlé tulajdonsigu eloszlassal
szamolnunk.

Ha az adott f(z) stirliségfiggvényt valamilyen g(z) sliriiségfiiggvénnyel
helyettesitiink a relativ informaciét, vagy I-divergenciat definialhatjuk [32,
65,77,106,117,123}:

)= [ feyos L2

A helyettesités utdn az informécié veszteség (az I-divergencia) minima-
lizdldsdval a g alkalmazasdval kapott T helyparaméter és S skdlaparaméter
becsléseket fogadjuk el az f jellemzésére.

Tegyiik fel, hogy g(z;T) (ne felejtsiik el, hogy az elsddleges feladat a
T meghatdrozdsa) szimmetrikus és differencidlhaté fiiggvény T'-re vonatko-
zban, valamint az integrilds és a differencidlds miivelete felcserélhetd. Ekkor
a minimumot a jol ismert feltételek teljesiilése esetén kapjuk:

(1.26)

dIg(f§T) _
—ar !
> 9g(z;T) _f(=)
/_oo s =0 (1.27)
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és

dng(f? T) >

dT? 0

® [99T) _1 ) © 99(x;T) _f(x)
/_oo T 'g(z;T)] f(ﬂﬁ)dﬂc—/_oo 5T -g(x;T)dx>O. (1.28)

(1.28) egyenlet biztosan teljesiil, ha

*© dg(z;T) flz) , _
/_oo S gy e =0 (1.29)

igaz.

Az I-divergencia minimumit az (1.27) és (1.29) egyideji teljesiilésével
érhetjiik el alkalmasan megvdlasztott T és .5 értékekkel.

Két példat tekintsiink, melyekben Gauss- ill. Cauchy-eloszlasokat szere-
peltetiink helyettesitd eloszlasként. A Gauss-eloszlds siriségfliggvénye:

e
g(a:,T)_Ume 22,

Behelyettesitve ezt (1.27) és (1.29) egyenletekbe kapjuk:

o]
T :/ zf(z)dz.
Ez a jolismert F varhatd érték és
[eo]
ot = [ (e~ B f(a)da,

az f(z) variancidja. Cauchy-eloszlas esetén a siirliségfiiggvény:

1 S
9@l = Ty e T
A helyettesitések utdn a kovetkezd kifejezéseket nyerjik:

p_ oo wrremryp f(2) e

% e f@)de

Ez a T az elozéekben mar ismertetett leggyakoribb érték becslot szolgaltatja.
A skédlaparaméter becslése:

16



o0 z—M)?
_ 3 f—oo [52+(2—M)2] f(Z) dCII

§% = — .
JZ% [S2+(z1—M)2]7 f(z)dz

- Errdl a formulardl azt kell tudni, hogy ez mar robusztus, mig a maximum
likelihood elve alapjan szarmaztatott becslés érzékenyebb.

Megemlitjiik még, hogy mds becsloeljarasokat, melyeket az eloszlasfiigg-
vények funkciondljai alapjan nyerhetiink (pld. Bayes mddszer, Kalman-
szUir6 stb.), nem részleteziink, mivel jelen munkdban azzal a feltételezéssel
éltink, hogy a paraméterek idében nem valtoznak.

Teszt statisztikak alapjan el6dllitott eljarasok. A mérés sorédn ka-
pott X1, X2,..., X, minta dlljon figgetlen, azonos F(z —§) eloszlasbdl szdr-
mazd véletlen véltozdkbdl. Vizsgalhatjuk a kovetkezd tesztet, melyben a
nullhipotézist 4llitjuk szembe egy alternativ hipotézissel: az F(z — ) hely-
paraméterére vonatkozdan:

Hy:8=0 versus
Hy:6 #0. (1.30)

A statisztikai teszttel alapvetoen két részre osztjuk a mintateret: az
egyikben elfogadjuk a Hg nullhipotézist, a masikban elvetjik azt. A felosz-
tdst egy alkalmasan vilaszott V statisztika felhasznalasaval valdsitjuk meg.
A nullhipotézisre vonatkozdan V-re egy eloszlast vezethetiink le, melyet fel-
hasznélva konkrét valésziniiséggel vetjilk el illetve fogadjuk el a nullhipoté-
zist.

x? statisztika. Tekintsiink n fiiggetlen, azonos varhaté értéki, de kii-
16nb6z6 szérdsi normadlis eloszlasi véletlen valtozobdl allé mintdt. A kovet-
kez6 statisztikat vezetjik be:

=3 (—‘”;TT)Z- (1.31)

ahol x? chi-négyzet eloszldsu véletlen valtozét jelent n — 1 szabadségi fok-
kal. Minimalizalva x?-et a paraméter siilyozott legkisebb négyzetes becslését
nyerjiik [134]):




Altaldnos pontfiiggvények. Legyen a; az els6 n pozitiv egész pont-
fiiggvénye és legyen értéke nem negativ és nem csokkené: 0 < a; < ... < an.
Definialjuk a kovetkezo statisztikdt

V=> aR) |zi-T]|, (1.32)

ahol R; a | z; — T | sorrendjét jelentia | z;—T|,...,| zn — T | sorban. Mini-
malizdlva V-t T-re egy becslo eljardst nyeriink, melyet R-becslének hivunk
(58,66]. Az a(i) = 1 pontfiggvénnyel az L;-normdval azonos eredményhez
jutunk, azaz a minta medidnhoz. Gyakran alkalmazzdk a Wilcoxon pont-
fiiggvényt, ahol a(z) = 1. '

Sorrend korreldcid. Tételezziik fel, hogy az adataink rendezettek,

21 <z2L ... L .
N = Z | z; — z; |
1<i<jign
a pozitiv z; — z; kiilonbségek szdma. Valamely b valés véltozéra definidljuk
az 7i(b) = y; — bz;, i=1,...,n rezidudlist. Tekintsiik a kovetkezs, sorrend
korreldcion (a Kendall dltal bevezetett tau [71]) alapuld statisztikdt [114]:

Ligicicn | 25— i |- [ 75(0) — 7i(b) |

v(3)

V(b) a 0 érték becsldje lesz és igy alkalmas b vdlasztdsaval kell V(b) értékét
zérushoz minél kozelebb bedllitani. Mivel V (b) nem ndvekszik b szerint, igy
lesz egy intervallum, ahol V(b) egyenlé lesz nullaval. b alkalmas becslésének
ezen intervallum koézepét valasztjuk. Tekintsiik a kovetkezé NV kiillonbozo
par halmazét:

(1.33)

V(b) =

bij = %:—z zj > ;. (1.34)
7 : .

l;,-j vélasztjuk mint b-re vonatkozé becslést, mivel ebben az esetben lesz V' (b)
egyenld nullival. Pontosan ez az algoritmus jelent meg [45])-ban az elébbi
részletes levezetésre vonatkozé hivatkozds nélkil.

U-statisztika. Az U-statisztikdt Hoeffding [55] vezette be. Legyen
Ti,...,Tn egy mintaés ®(z1,...,zm) egy fiiggvény m argumentummal. Te-
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kintsiik a kovetkezd statisztikat:

1

U= > B(Toars- > Tam)s (1.35)
n(n — 1) e (’n -m + 1) (01,...,C¥m)
ahol 37, am) 22 (Q1,...,an) Osszes permutdcidjira vonatkozd dsszegzést

jelent dgy, hogy 1 < a; <n, oa;#«; ha 1#j +4j=1,...,m.
Siegel [118] az U-statisztika robusztus valtozatat vezette le, kicserélve a
szummazast az egymasba agyazott medianokra:

0 = median™{8(z4,, - »Tam)}- (1.36)

1.1.1.2 Fuzzy halmazokon alapulé modell

A halmazelméletben a ko6zonséges halmazokhoz egy karakterisztikus fiigg-
vényt rendelhetiink a {0,1} két elemi halmazbdl vett értékekkel. Zadeh
1965-ben [135] felvetette, hogy a karakterisztikus fiiggvény értékkészlete
legyen a [0,1] zart intervallum és igy a halmazhoz valé tartozdst ezzel a
szubjektiv bizonytalansiggal fejezhetjiik ki. A kiterjesztett karakterisztikus
figgvényt tagsdgi fiiggvénynek, a tagsigi fiiggvénnyel jellemzett halmazokat
fuzzy halmazoknak hivjuk.

A fuzzy halmazok elmélete nagyon gyorsan teret héditott, magyarul
Nagy Csaba [93] foglalta Ossze az elméletre vonatkozé fontosabb ismere-
teket, majd nem sokkal ezutan egy konkrét alkalmazasi példaval is taldlkoz-
hatunk [64]). A hagyomdnyos és a fuzzy valdszintiségi mezok kapcsolatardl
jelenik meg dolgozat [15] az elmélet hazai tovdbb fejlesztdinek mihelyébdl.
A legfrissebb 6sszefoglalé [120] korunk tudoménydban és a mindennapok
technikai vivmdanyaiban éri tetten a fuzzy logikat.

A fuzzy hallmazok elméletének nemzetkozi szakirodalma igen jelenté-
keny, igy arra vdllalkozunk, hogy csak a minket érdekld regressziés felada-
tokkal foglalkozdkat tekintsiik at.

Zadeh 1968-ban koz6lt tanulmanya [136] a fuzzy események valdsziniiség-
mértékét definidlja, ezzel ijabb fejlodési hullimot inditva el. Sorra jelennek
meg a cikkek a fuzzy halmazok és a statisztika kapcsolatdrdl [95,48,67,68,
75,39,60]. Sugeno disszertacigjaban [124] kidolgozza a fuzzy mértékek és
fuzzy integrdlok elméletét, majd egy alkalmazdssal is taldlkozunk [96]). Az
érdeklédSk témaban vald részletes elmélyiilését két alapmi [69,40] segiti.

A fuzzy halmazok elméletének alkalmazdsat a regresszids problémédk meg-
oldésdban Jajuga [62] dolgozta ki a legegyszeriibben, fuzzy halamzokat al-
kalmazott a legkisebb négyzetek mddszerének silyozott viltozatdhoz. Cel-
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min$ [25,26] és Diamond [35,34] dolgoztak ki eljardsokat a legkisebb négy-
zetek mdédszerének fuzzy valtozdkra valé alkalmazdsdra. Elszakadva a legki-
sebb négyzetek moédszerétol mas fuzzy regresszids eljardsokat is bemutattak
(27,28,11,12,13,10,121,63,94,47] ‘

Bandemer dolgozata [4] az analitikai kémidban jelentds fejlédést indi-
tott el a robusztus fuzzy regresszids eljardsok fejlesztése teriiletén, mely a
fuzzy halmazok egyéb felhasznaldsat is elosegitette [103,102,8,97,101,104,99,
100,56,57,79]. A fuzzy halmazok segitségével végzett adatfeldolgozési méd-
szerekr6l a Bandemer 4ltal szerkesztett kiadvdanyokbdl [5,6,7] nyerhetiink
tovabbi ismereteket. ‘

Vizsgdljuk meg részletesen az els6 fuzzy halmazon alapulé robusztus reg-
resszids eljards [102] 1ényegét.

Az analitikai kémiai meghatdrozasok helyessége elsésorban a kalibrédlas
josdgdn muiilik. A kalibraciés folyamat sordn a megfelelé analitikai méro-
gorbe kivalasztdsa, majd alkalmazasa a feladat. Altaldban ismert Sssze-
tételi mintasorozattal elvégzett mérések utan gorbeillesztéssel hatdrozzdk
meg a mérégérbe paramétereit, majd az egyenlet inverzének segitségével az

Altaldban feltételezik, hogy a mintasorozat koncentraciéja pontosan is-
mert és csak a mért jelben mutatkozhat bizonytalansdg. A fuzzy halmazokon
mutatkozé bizonytalansigot is a megfelel6 tagsagi figgvény alkalmazasaval.
A mddszer hasznalata soran feltessziik, hogy a kalibracids fiiggvénykapcsolat
pontosan leirja a kalibraciés folyamatot, pld. mert fizikai térvényszeriségek
teljesilésébol szdrmaztattuk. Ekkor az M; fuzzy halmaz, mellyel egy fuzzy
megfigyelést definidlunk, megadhaté a tagsdgi fiiggvényével (membership
function): m(z,y),z € X,y € Y, ahol z a koncentrici6, y a mérési jel.
Ha egy bizonyos pontban tobb tagsigi figgvény értéke nem nulla, akkor
Osszevonhatjuk Oket:

mum(z,y) = mfmxmi(a:,y). (1.37)

A halmazt amelyben egy my tagsdgi figgvény nulldtdl kilonbozo értéket
vesz fel az N fuzzy halmaz tartéjanak (support) hivjuk:

supp N = {(z,y) € X xY : mn(z,y) > 0} . (1.38)

A tartdék lehetnek korok, vagy ellipszisek és a tagsagi fiiggvények parabolo-
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idok lesznek:

(-2)" (v-w) ¥

1 v‘l,

mi(z,y) = |1 — , (1.39)

ahol u? és v? a tartd ellipszis féltengelyeinek hossza, jellemezve az z és y
véltozékban jelentkezd bizonytalansdgot. [z] = max {z,0}, azaz m;(z,y)
értéke sosem lesz negativ.

A megfigyelések fuzzy jellemzoit a kalibracids fliggvényben szereplo pa-
raméterek terébe a vdrt szdmossdg (expected cardinality) elve alapjan vi-
hetjiik 4t. Vegyiink egy linearis y = ag + a1z fiiggvénykapcsolatot. Egy zo
kivélasztott pontban az y-nak mps(zg,a0 + a12¢) tagsdgi értéke van. Ez az
érték mas és mas lesz kilonbozd g € X értékek esetében. Ezért a paramé-
terek lehetdségégének (possibility) megaddsdhoz a megfelelo értéket vigy kell
szamitanunk, hogy a linearis kapcsolat

G(ag,a1) = {(z,a0 + a12) € X XY;z € X} (1.40)

teljes grifja megfeleljen a mi egyesitett fuzzy megfigyeléseinknek. Integral-
juk a tagsdgi értékeket (1.40) graf mentén:

me(a0,a1) = | oy MU, (1.41)
ap,a1 .

feltéve, hogy az integrdl létezik. Az mpg(ao,a1) az M megfigyelések rela-
tiv szdmossdga (relative cardinality) a G(ap,a;) graf mentén. Az eddigiek

érvényben maradnak, ha az X kornyezetet lesziikitjiik azon pontokra, me-
lyekben van legalabb egy (z,y) € X x Y pont amire mpy(z,y) > 0, azaz

Xo = supp (projxy M) = {z € X : sup mp(z,y) > 0} . (1.42)
yeY

Itt projx M azt jelenti, hogy az M fuzzy megfigyeléseket leképezziik az X-
re a maximumokkal (supremum) szdmolva, az mys tagsdgi fiiggvények édltal
meghatarozott y € Y-ra tekintettel. Az eldzbleg nyert mg értéket Gsszeha-
sonlithatjuk az in. fuzzy helyi legjobb kézelitéssel (fuzzy local (best) appro-
ximation), melyet grafjaval adunk meg (lineéris fiiggvénykapcsolat esetében
X felett: y = ag + a1z;(z,y) € X X Y;(ap,a1) € A, ahol A egy adott
paraméterterilet része):

G(f){(z,f(z)):z € X}. (1.43)
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A gréf az osszes (z,y) € X XY pontbdl 4ll, ahol mps(z,y) maximalis feltéve,
hogy y € Y, azaz
#(z) = arg sup mar(z,v), (1.44)
yeY

az egyenletben az z valtozd mint paraméter szerepel, ezért az egyenlet jelen-
tése: vedd mps y argumentumanak azon értékeit ahol az mps(z,y) fiiggvény
felveszi legnagyobb értékeit. G(f)-et hivjuk az mas(z,y) felilet maximadlis
nyomanak X -en.

Most kiszamithatjuk

me() = |

mM(z,y)dzzf sup mys(z,y)dz. (1.45)
G(f) Xo yeY

o y€
Mivel mg(f) > 0 és mg(ao,a1) < me(f) bevezetjik

mc(ag,a1; f) = m% (1.46)

értéket, amely azon kozelités fokat fejezi ki, melyet a relativ szdmossdg és a
helyi (legjobb) kézelités Gsszevetésébdl nyertiink. Az m; és az mp tagsagi
figgvények az (ag,a1) € A paraméterek fiiggvényei és ezek hatarozzdk meg
az A halmaz felett az A fuzzy halmazt, melyet az ismeretlen paraméterek
fuzzy becslésének hivunk.

A szerzdk a kalibracié eredményeit felhasznalé fuzzy becslést is lefrnak,
majd az elméleti részben targyaltakat egy részletes algoritmus kozlésével
foglaljak Gssze.

Az Otto és Bandemer [102] altal kidolgozott robusztus fuzzy regresszi-
Os eljards tobbvaltozds altalanositasirdl a Kalibrdcids figgvények paramé-
tereinek becslése cimi fejezet Linedris fuzzy regresszié cimi szakaszaban
foglalkozunk.

1.1.2 Paraméterbecslés masodfaji modellhiba esetén

A legszélesebb korben elterjedt mérési modell szerint valamilyen zaj szuper-
pondlédik a valédi értékekre és ebbdl szdrmazdan a becsiilt paraméterek és
a j6solt fiiggvényértékek is hibaval terheltekké valnak. Ennek a modellnek
az alternativajaként allithatjuk, hogy a mérési hibdk az alkalmazott modell
nem adekvit jellegébdl szdrmazik. Ebben az esetben feltessziik, hogy ponto-
san tudunk mérni, de abban mar nem vagyunk biztosak, hogy az alkalmazott
modell j6-e. Mindenképpen vélasztanunk kell valamilyen modellt, a legtobb
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esetben minél egyszeribbet a kezelhetOség szempontja szerint. Valéban, le-
hetetlen az Osszes kapcsolatot matematikailag megformuldzni, némelyiket el
kell hanyagolni. A mérési hibak ekkor abbdl szirmaznak, hogy nem tudjuk
kelloképpen leirni a rendszeriinket. Ezek a hibak tehidt a sohasem ismert
helyes modell és az alkalmazott modell kozotti kiilonbségbol adédnak, azaz
az eltérések a rendszert meghatirozé paraméterek fuzzy jellegével magya-
razhatdk, semmint megfigyelési hibakként. Ez a probléma igy mar nem is
sztochasztikus, hiszen a rendszernek nincsen véletlen jellegili tulajdonsaga, a
megoldés a fuzzy elmélet alkalmazdsdval érhetd el. A linearitds feltételezése
nagyon gyakori az analitikai kémidban, ezért Tanaka és munkatdrsai [126]
nyoman bemutatjuk annak kezelését, amikor ez a feltételezés sériil.

Az analitikai kémidban gyakran taldlkozunk linearis, vagy linearizalt ka-
libraciés figgvényekkel, azonban a haszndlatukhoz sziikséges feltételek rit-
kdn teljesiilnek. fgy elfogadjuk a linearitds teljesiilését tudva azt, hogy ez
nem mindig teljesen korrekt, ezért ez a dontés szubjektiv tartalommal ru-
hézhaté fel.

Ezt a problémadt az F(y) fuzzy fiiggvények haszndlataval oldhatjuk meg.
Ezekben a fiiggvényekben a paraméterek fuzzy szémok [40]: Y = f(z, A).

Most az F(y) az Osszes V-on értelmezett fuzzy részhalmaz halmaza és
Y tagsagi fliggvényét a kovetkezoképpen definidljuk:

maX{aly=1(z,a)} .ué-_(a‘) {a’ | y= f(:l;’a)} # ¢
/,L)-,(y) = (1.47)
0, egyébként.

Az 1.2 4bran ldthatjuk a fuzzy paraméterek fogalmdnak megvilagitasat.
A tagsdgi figvénye:

pi(e) = min [z (a;)] (1.48)

1 — l=eil g lezeil o
) ¢;

pi,(a;) = (1.49)

0, egyébként.
a; a fuzzy szdm centruma és ¢; a terjedelem, a centrum koriili szérédds
mértéke. A hiromszog alaki fuzzy szamok értelmezése a kovetkezd: a cent-
rum leirja a leginkabb lehetséges paraméter értéket, a terjedelem pedig a
pontossigdt hatdrozza meg, vagyis a rendszer hatdrozatlansdgat tiikrozi.
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1.2 dbra: Fuzzy paraméterek, mint haromsz6g alaki fuzzy szamok

Az ? = A1z + ...+ Ajz; +... Apz, fuzzy linearis fiiggvény (hiromszog
alakd A fuzzy paraméterekkel) tagsdgi fliggvénye:

5 = 1.50
sy (y) 1 £=0,5=0 (1.50)
0, z=0, A #0
ahol [z |= (| z1 },-++,] n |)}, és ¢ és a jelenti a paraméterek centrumat és

terjedelmét vektor alakban.

A becsiilt fuzzy linedris modellnek le kell fednie az Gsszes y; adatpontot
bizonyos H kiiszob érték mellett, melyet az eljards alkalmazdja valasztott
kordbban, azaz py(y:) > H (¢ = 1,2,...,n) a nem fuzzy, azaz pontos y;
adatokra vonatkozéan. Ezt az egyenlotlenséget dtirhatjuk felhasznalva az
py (y) tagsigi fiiggvényt (1.50)-bol:

(1-H) |z|-|y-=z'al>0, z#0. (1.51)

Természetes kovetelmény, ha olyan paramétereket vdlasztunk, melyek c;
terjedelmeinek Gsszege a legkisebb, mds szavakkal a megoldas a legkevésbé

24




bizonytalanabb fuzzy linearis fiiggvény kell legyen figyelembe véve a megfi-
gyeléseket és egy jol vdlasztott H értéket.

A fuzzy paraméterek kiszdmitisa igy egy egyszeri linearis programozdsi
feladat lesz:

Minimalizadlandé s=20_1¢
Feltételek (1— H)3h_, ¢jl|zij | +zia > 4, (1.52)
(H-1)3F%0 ¢l zij | +zie < v,
¢ > 0,
1 =1,2,...,n,

ahol s a teljes bizonytalansig.

Tanaka és munkatdrsai [126] dltal kidolgozott fuzzy linedris regresszids
eljards robusztus valtoztat a Kalibrdcios fiiggvények paramétereinek becslése
cimu fejezet Fuzzy linedris regresszié cimi szakaszaban ismertetjiik.

Az eddig elmondottak alapjan talan érdemes mégegyszer felhivni a fi-
gyelmet arra, hogy mi a kilonbség a linedris fuzzy regresszié és a fuzzy
linedris regresszio ko6zott.

Linedris fuzzy regressziérdl beszéliink, ha a feltételezett linearis kalibra-
ciés modell adekvat és a mérési hibak matematikai statisztikai értelmezése
helyett a szubjektiv, el6zetes informdcidkat is magdba foglald fuzzy szdmokat
hasznaljuk a bizonytalansig értelmezésére.

Fuzzy linearis regresszid esetén a linedris modell pontos teljesiilése két-
séges, fuzzy szdmokat hasznialunk a modeliben eléfordulé paraméterek le-
irasdra és ebbdl fakaddan kapunk eltéréseket a mért és szamitott értékek
kozott.

1.1.3 Paraméterbecslés harmadfajii modellhiba esetén

Ebben az esetben a mérési adatok és a kozottik fennalls fiiggvénykapcesolat
egyarant csak bizonytalansdggal adhatdk meg, azonban a feladat sokrétiisé-
-gét tekintve ez a fajta modellhiba jelen dolgozatban nem keriil részletesebb
targyaldsra.
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2. fejezet

Kalibracioés fuggvények -
paramétereinek becslése

2.1 Egyvaltozos kalibracios fuggvények robusz-
tus becslése

Linedaris sszefiiggés alkalmazdsira az egyik legjobb példa az ICP-AES (In-
ductively Coupled Plasma Atomic Emission Spectrometry, induktivan csa-
tolt plazma - atomemissziés spektrometria) mérésekhez hasznalt kalibraci-
6s gorbe. Egy ICP spektrométer a koncentricié tartoményban hat nagy-
sagrendben képes linearis jelet produkalni, igy kivalé példdja az elsofaju
modellhibanak, amikor a fliggvénykapcsolat elozetesen ismert, azonban a
feltételezett hibaeloszlas nem teljesiil.

Olyan valds kalibraciés adatokon mutatjuk be az altalunk vizsgalt pa-
raméterbecsld eljardsok alkalmazdsdt, melyeket talaj- és ivoviz kornyezet-
védelmi vizsgdlatdhoz alkalmaztak. Meg kell jegyezniink, hogy ezeket az
adatokat szamos kalibriciés adatsorbdl vdlogattuk, éppen annak illusztrala-
sara, hogy a felhasznalt paraméterbecslo eljirdsok mennyire érzékenyek az
esetleg el6forduld kiugré értékekre ill. a feltételezett hibaeloszlastél valé el-
térésre. A kiugré értékek létezését a berendezésben ill. a minta elokészités
soran alkalmanként eléfordulé ismeretlen eredetii hibak eredményezik.

A kovetkezokben felsoroljuk a felhasznalt becslé mddszereket, kozoljik
azok angol elnevezését, valamint az azon alapuld roviditéseket, melyekkel a
tovabbiakban hivatkozni fogunk rajuk.

o legkisebb négyzetek [134] (Least Sum of Squares, LS),
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abszolit eltérések legkisebb Gsszege [44,119,128] (Least Sum of Abso-
lute Residuals, LSA),

abszolit eltérések legkisebb maximuma [128] (Least Maximum of Ab-
solute Residuals, LMA),

iterativan djrasilyozott legkisebb négyzetek 6-osill. 9-es hangold kons-
tanssal [107] (Iteratively Reweighted Least Sum of Squares with Tu-
ning Constants 6 and 9, IRLS6, IRLS9),

leggyakoribb érték (123} (Most Frequent Value, MFV),

egyszert medidn vagy kombinatorikus [114,45] (Single Median, SM),
ismételt medidn [118] (Repeated Median, RM),

négyzeték legkisebb mediinja [109]} (Least Median of Squares, LMS).

Ezek utan roviden ismertetjik a paraméterbecslé mdédszerek algoritmu-
sait. (A feltételezett linedris modell y; = ag + a1z; + €;):

Legkisebb négyzetek mddszere (LS)

. XEiyy - Yz ey
R SE R SENT

Bis T T el (D)

(2.1)

Abszolut eltérések legkisebb 6sszege mddszer (LSA)

Minimalizalandé To1 85
Feltételek by — by + a1z, — ax z; + s; > v, (2.3)
by —b2+arz; —axz; — s < ¥y,

al,a2,b17b27si 2 0:

1=1,2,...,n.
G154 = 01 — G2 (2.4)
Go, s, = b1 — b2 (2.5)
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Abszolit eltérések legkisebb maximuma mddszer (LMA)
Minimalizalandé $
Feltételek b, — b+ ay1z; —agz; + s > ¥, (2.6)
b1 —bst+a1zi —axzi — s <y,
a17a27b17b2,s _>. 07

1=1,2,...,n.
Q1ppa = Q1 — Q2 (2~7)
Aoy s = b1 — b2 (2.8)

Iterativan ujrasulyozott legkisebb négyzetek médszere k=6 és k=9
hangolé konstanssal (IRLS)

6l = do, ¢ & = ay,q (2.9)

)y Lwizl Y wiy; — D wiT; Y w;T;y;

LG
an’ = 2.10
° Y wj Y wjz? — (T wjz;)? (210
A Wi L WiT Y — 3 W% ) Wiy, (2.11)
' Y w; Y wizi — (T w;z;)?
) A=(F)H? ifr <kS
wi= { 0 egyébként (2.12)
rj=y—af ) —a s (213)
S = median {|r;|} ha |r;| >0 (2.14)
j
k=6vagy9
~(k) _ ~(k-1) ~(k) _ -(k—1)
R . . . ay ' — @, ., lay —a
@0rpLs = agk) 1@pLs = agk) ha |2 &(k)o <6 & 1 &(k)l <9
0 1
6 = 0.001
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Leggyakoribb érték mdédszere (MFV)
. (0) . (0

o =ag,, 6s a0 =a,, (2.15)

20 _ Wi T wiy; — T wiT; ¥ wiTy; (2.16)
0 Y wj Ywjz? — (T wjz;)?
o) = Wi D WiTY; — 3 WiT; ) WiY; (2.17)
! > wi Ywja? — (T w;z;)?
,
£
rj=y;— a5 —af (2.19)
(eli-1))4r2
((5(1_1))24-7‘2»)
(5(1))2 = (0-1ys : (2.20)
Z ((5((—1))2_*_.,‘;‘?)
(m) _ g(m-1)
m € €
£ =E( ) ha T <é (221)
~(k) _ ~(k—1) ~(k) _ ~(k-1)
. NOTR NG G ' —a 4" —¢a
Qoppy = ag ) 1@y py = a’& ) ha |2 A(k)o <§é |- -(k)l <4
) !
6 = 0.001
Egyszerii medidn vagy kombinatorikus médszer (CM)
ey
Bw = median {“— - } (2.22)
:,-;!zj
Aogpy = mec}ian {yj — @1cp75} (2.23)
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Ismételt medidn (RM)

@1p, = median {medjan {u}} ha z; # z; (2.24)
1 7 :1:_,' — Iy
A0 gy = me(}ian {y; — @14,,7;} (2.25)

Négyzetek legkisebb medianja (LSM)

. . 2 N N
15?21?37» mecglan {rix} = Gopys »811us (2.26)
Tijk = ¥i — Goj, — G1,,T; (2.27)
. TiYk — TkYj
Gop, = —  ha z; 2.28
0];; zJ — 2 # Lk ( )
N Y5 — Yk h
= a z, 2.29
CI.IJ,c z; — zx 23_7 75.’Ek ( )

A 2.1 tabldzat a kalibraciés adatokat tartalmazza, mig a 2.2 tiblizat
a kordbban emlitett becsld eljardsokkal kapott paraméterek értékeit tiinteti
fel.

Az adatok kiértékeléséhez egy un. mindségjellemz6 faktort (Quality Co-
efficient, QC) definidlunk:

a2
QC:lOO-J =1n(_y_§y—) (2.30)

ahol y; a mért, §; az LS moddszer dltal becsiilt fiiggetlen véltozd és n az
adatok szama, kivéve azokat, melyeknél az y; mért érték nulla. Az analitikai
eljards pontossdgdat (ill. pontatlansigdat) figyelembe véve eldzetesen QC-re
egy kritérium értéket lehet megadni. Ha QC ennél a kritérium értéknél na-
gyobb, akkor azt a hipotézist, hogy nincs kiugrd érték elvetjik és robusztus
moédszert kell alkalmaznunk.

A 2.1 tabldzatban kozolt mérésekhez 10 %-os kritérium értéket villasz-
tottunk. A QC értékek 69.2 %, 23.7 %, 497.3 %, 22.9 %, 49.8 % és 13.8 %-
nak adédtak a Mo, Cr, Co, Pb és Ni (221,6 nm és 231.6 nm) elemekre
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A vizsgdlt elemekre vonatkozé mérési jelek (tetszSleges egységben)

Koncentracié (ppm) Mo Cr Co Pb  Ni(221.6 nm) Ni (231.6 nm)
0 8.19 -23.4 -1.83 13.46 6.4 28.33
0 16.05 -19.4 -2.45 6.4 7.47 30.56
0.25 171.9 210.9 261.3 112 223.7 220.8
0.25 180.6 213.7 260.1 119.2 215.6 218.6
0.5 406 4204 430.8 217 ‘ 437.9 410.2
0.5 414.5 4232 431.4 207.7 430.7 407.9
1 810.7 843.2 860.3 419.6 897.3 828.3
1 818.2 840.6 859.6 428.7 886.8 826.1
2.1 tdblazat: A kalibriciés adatok ICP-AES mérésekhez
Mo Cr Co Pb Ni* Ni**
Methods ap ay ap ay Qg ay ag ay - Qg a) ap ay
LS -3.07 814.5 -11.9 858.5 17.2 846.1 9.84 413.0 0.47 886.3 21.9 798.7
LSA 8.19 8025 -2.4 8456 1.3 859.0 13.5 407.1 2.67 884.1 19.0 807.1
LMA -6.29 802.1 -12.8 864.0 21.7 862.1 8.7 412.7 -3.37 889.8 19.8 797.7
IRLS6 11.1 802.3 -11.7 858.0 -1.45 862.1 10.0 4129 0.85 8858 22.2 799.1
IRLS9 -1.88 813.6 -11.8 858.3 15.7 847.2 9.91 4129 0.63 886.1 22.0 798.8
MFV 9.36 8039 1.31 8408 -1.96 862.1 10.3 412.1 6.4 880.4 22.9 801.3
SM 5.25 8084 -9.15 8546 0.39 860.2 9.65 4129 5.1 880.0 26.7 782.7
RM 2.01 813.5 -1.55 844.5 2.25 857.7 10.4 410.8 6.2 870.9 28.9 765.2
LMS 12.1 8025 24 839.6 -1.34 862.0 11.8 407.1 8.98 848.6 29.4 761.1

* 221.6 nm hulldmhosszon mérve
** 231.6 nm hulldimhosszon mérve

2.2 tdblazat: A becsilt paraméterek értékei a szovegben emlitett paramé-
terbecslo mddszerekkel meghatarozva
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vonatkozdan. A kobalt esetében a QC érték meglehetosen nagynak adédott
(497.3 %), melynek magyardzata az, hogy a 0.25 ppm koncentraciénal ka-
pott jel kiugrd érték és ennek kovetkeztében az LS egyenes meglehetdsen
tévolra keriilt a 0 ppm koncentriciénal mért jeltol.

Az adatok elemzésébdl a kovetkezdket allapithatjuk meg. A legjobb
becsléseket az LMS adta. Az MFV is jél szerepelt a Mo, Cr, Pb, Co és Ni
(221.6 nm) esetében. Az RM 4&ltal jésolt kalibralé egyenes elfogadhaté a Cr,
Pb és a Ni esetében mindkét hullimhosszndl, az IRLS6 altal szolgaltatott
pedig a Mo és Co mérésekre. Az SM jénak mutatkozott az Pb és a Ni (231.6
nm) esetében, az LSA csak a Mo esetében. Az IRLS9 és az LS kozel azonosan
szerepeltek, de a mezony végére keriiltek. Egyértelmiien a legtorzitottabb
eredményt az LMA adta, mutatva a kiugrd értékekre vonatkozd kifejezett
érzékenységét.

Ezen gyakorlati és mds elméleti megfontoldsokon nyugodva a 2.3 tabla-
zatban kozoljiik az dltalunk vizsgalt paraméterbecslo eljardsokra vonatkozo
fontosabb tulajdonsigokat és egyben gyakorlati felhasznalasukhoz segitséget
nyijté ajanlisainkat.

Médszerek S24rmazds Osszeomldsi pont Robusztussdg Ajénlis

LMA min Loo 0% egyiltaldn nem robusztus nem ajanlott

LS min Ly 0% egyéltaldn nem robusztus csak nagyszdmi adat esetén
(30-50 mérési pont)

LSA min L 0% modellérzékeny pontok hatfsa® csak jél tervezett kisérleteknél

IRLS9 M-becslé 20 % kissé robusztus csak nagyszAmi adat esetén
(15-30 mérési pont)

IRLS6 M-becsld 25 % robusztus !

MFV M-becsls 25 % robusztus kisszdmu adat esetén is

SM rang-korreldcid 30 % robusztus (8-15 mérési pont)

RM U-statisztika 50 % nagyon robusztus

LMS min My 50 % nagyon robuszlus

* modellérzékeny pontok (leverage points) érzékennyé teszik a becsld eljirdst a nem kiegyensilyozott kisérleti

bedll{t4s miatt

2.3 tablazat: A vizsgdlt paraméterbecsld eljarasok tulajdonsagai

2.2 Tobbvaltozds kalibracios fuggvények robusz-
tus becslése

Ebben a szakaszban a tobbvaltozés kalibracids fliggvények paramétereinek
robusztus becslésérdl lesz sz6. Tekintsiik at a felhasznalasra keriilo alapfogal-
makat. Egy helyparaméter becsld, mely n pontbdl 4llé6 mérésre vonatkozik,
az ,,...,z, vektorfliggvénye lesz:

Ln =L(§1,...,_@_n). (231)
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Hasonléan egy kovariancia becsld (skdlaparaméter becsld):
Qn :Q(gla"'aﬁn)7 (232)

mely mindig egy szimmetrikus, pozitiv definit matrix.
A gyakorlatban csak olyan becsloket alkalmazunk, melyek a véltozdk

c s e s

L(gﬂ(l),...,gﬂ(n)) = L(gl,...,gn) (233)
Q(.@ﬂ(l),"’,ﬁw(n)) = Q(&l,"')ﬁn)’ (234)

azaz a mérési pontok dtszdmozdsa nem véltoztatja meg a becslést.

A becsldk kozétti valasztas fontos kritériuma lehet a kiilonboz6 ekvivari-
anciak teljesiilése. Egy helyparaméter becslo eltolds ekvivaridns (translation
equivariant), ha

tzy + 2,20 +2) =L(21,.--,2,) 2 (2.35)

minden v vektorra. Ez azt jelenti, hogy a mérési adatok eltoldsa esetén az
1) becslés az eredeti adatokra vonatkozd becslés azonos mértékl eltolasdval
nyerheté. Tehdt pld. a nullapont megviltozdsa esetén (homérséklet ada-
tok termodinamikai és Celsius-skéldn) a becslés is az eltoldsnak megfelelden
alakul. .

Egy helyparaméter becslé affin ekvivaridns (affine equivariant), ha

L(Agl_l_g)7A§n+y)=A£(£1’ag;n)+Q (236)

minden nemszinguldris A mdétrixra és barmely v vektorra. Ez azt jelenti,
hogy a helyparaméter becsld az affin transzformacié hatdsara ugyanugy val-
tozik, mint ahogy a vdrhatd érték operdtor hat: F{Az +v] = AFE[z] + v.
Az affin ekvivariancia dgy tlinik természetes kovetelmény a helyparaméter
becslék szdmdra, 4m szamos tobbvaltozds becsld nem elégiti ki ezt a felté-
telt. Ha A csak ortogondlis matrix lehet, akkor ezen gyengébb feltétellel
teljesiild ekvivarianciat ortogondlis ekvivariancidnak (orthogonal equivari-
ance) nevezziik. Ekkor a transzformdcié a merev mozgdsokndl, dgymint
transzlicid, rotdcid, reflexié alkalmazotthoz lesz hasonlatos. A gyakorlatban
pld. a mértékegység valtisok miatt lehet hasznos az affin ill. az ortogonalis
ekvivariancia.
A kovariancia becslé akkor affin ekvivaridns, ha

C(Az,+v,...,Az, +v)=AC(zy,...,2,) A’ (2.37)
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minden nemszinguldris A matrixra és barmely v vektorra. Tehat a kovari-
ancia becsld invaridns az eltoldsra, és ugyanigy valtozik, ahogy a variancia
operator hat: V[Az +v]= AV [z] 4.

Mivel a robusztus becsld nagy (legalabbis nem nulla) 6sszeomldsi pont-
tal és korldtos hatdsfliggvénnyel rendelkezik, vizsgdljuk meg ezen fogalmak
gyakorlatban hasznalhaté matematikai megfogalmazdasat.

Donoho és Huber [37] fogalmazta meg a véges mintdkra definidlhaté
adatromldsok fajtait:

1, e-szennyezett: az eredeti n elemil mintdhoz (X) m tetszdleges értéket
fiziink (X¥). A rossz értékek ardnya: '

m
n+m

E =

2, e-cserélt: az n elemi minta (X) m méreti tetszoleges részhalmazdt tet-
sz6leges értékekre cseréljiik (X"). A rossz értékek ardnya:

£ = —
n

3, e-médositott: tartozzon az X mintdhoz F,, az X! mintdhoz G, ta
pasztalati mérték dgy, hogy

ﬂ-(Fn7Gnu) S E’
ahol 7 tetszéleges tavolsagfiiggvény. n és n! eltérhet egymdstdl.

Az eldz6ek figyelembe vételével véges mintdkra a kovetkezd 6sszeomldsi
pont definidlhaté:

e*(X,t) = inf {e : sup [(X) - #(X)| = oo} (2.38)

Az 6sszeomlési pont a becsld globdlis jellemz6je, az adatok nagyobb mértéki
szennyezettségének hatdsat irja le.

Amennyiben a t, helyparaméter becsl6 funkciondlnak tekintheto az 6sszes
valésziniiségeloszlast tartalmazé tér felett: t, = t(P,), akkor a t, becsld
IF(-) hatdsfiiggvénye bizonyos P eloszlis esetén (a t(-) funkciondl Gateaux
derivéltja a P eloszlasndl, a 6, Dirac mérték irdnyaban):

t((l—s)P+561)—t(P).
€

IF(z;,t,P) = lin}) (2.39)
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A hatésfliggvény a becslé lokalis tulajdonsdga kis mértéku szennyezettség
esetén. Leirja, hogy a becslo infinitezimalis perturbdcié hatdsara hogyan
viselkedik egy pontban.
A fenti hatdsfiggvényen alapulva definidlhaté a durva hiba érzékenység
is:
7*(t, P) = sup [|F(z;2, P)| (2.40)
k2

Az alapfogalmak tdrgyaldsa utdn vegyiik sorra a robusztus tobbvaltozés
paraméterbecsloket. Eldszor tekintsiik az iterativan djrasilyozott legkisebb
négyzetek mddszerének tobbvdltozés és dltalanosabban targyalt varidnsat.
Collins [31] tdrgyalta dltaldnosan a tobbvdltozés M-becsloket, melyek a ko-
vetkezo egyenlet megolddsaként adédnak:

$ izt oo o

Azonban, ha a skdlaparaméter nem rogzitett, a kapott becslo nem lesz affin
ekv1var1ans

Maronna [83], majd Huber [58] mutatott be affin ekvivaridns M -becsl6t
a kovetkezé egyenletrendszer megoldasaként, ahol a helyparaméter és a ko-
variancia becslést szimultan végezzik:

_an v (d(z,8,C)) (2 —8) = 0 ' (2.42)

Z {vy (d(z;,8,C)) (i — t)(z; — t)' — w3 (d(z;,8,C))C} = 0,(2.43)
ahol vy, v, és v3 alkalmasan vélasztott valés figgvények, valamint

d(v,m, M) = \/(v — myM~" (2 ~ m) (2.44)

az Gin. Mahalanobis tivolsdg. Amennyiben M = I, akkor a kozonséges euk-
lideszi tavolsdgot kapjuk. Ahogy emlitettik, igy affin ekvivarians becsloket
kapunk, de az 6sszeomldsi pont mindig

1
< —— 2.45
“p+l (2.45)
lesz.
Toérekvések indultak a nagy Gsszeomldsi ponttal és az affin ekvivarian-
cidval egyarant rendelkezé tobbviltozdés becsiok megalkotdsdra. Egymastdl
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fiiggetleniil Stahel és Donoho PhD dolgozatukban kozoltek egy lehetséges
megoldast. Az z; pont kiugré értékként vald figyelembevételének mértékét
hatdroztdk meg:

. S |’ z; — median(u’' X)|
1 = Su 3
wier  MAD(Y X)

ahol MAD (Median Absolute Deviation) a medidntdl valé abszoldt eltérés:

(2.46)

MAD(v) = median
1<i<n

v; — median vjl . (2.47)

1<5<n

Legyen w; = w(r;), ahol w(r) — 0, ha r — oo és w(r)r korldtos, ekkor a
becslo

Z:".'L_l w; X,
t,(X) = ==—. 2.48
LX) = 5 (2.48)
Donoho megmutatta, hogy ez a becslo affin ekvivaridns és 6sszeomldsi pontja:
ntl| _
£ (tw, X) = L%?, (2.49)

ahol |y| az a legnagyobb egész, mely y-nél kisebb vagy egyenld vele.

Rousseeuw [110] djabb javaslatokat tett nagy Osszeomldsi pontd affin
ekvivarians tébbvaltozds paraméterbecslokre. Ezek egyike a minimalis tér-
fogatu ellipszoid becslo:

th(X) = azon legkisebb ellipszoid kézéppontja, amely az X = (Z1,..-,2n)
pontok koziil legaldbb h pontot tartalmaz (p+ 1 < h < n),

ekkor

Bl _p41
(i, ) = HHL22H]

, hah= ng +1 (2.50)
és +1
n+p+1 =

e*(th, X) = L—T—J, ha h = L—;— (2.51)

Egyviéltozds esetben ez a becsld annak a legrovidebb intervallumnak a hossza-
val és kozéppontjdval lesz azonos, melybe legaldbb h adatpont esik. Sajnos
a helyparaméter becslé gyenge konvergenciaval tart egy olyan hatareloszlas-
hoz, mely nem a normadlis eloszlds.

Ez a gyenge konvergencia javul a minimum kovariancia determinédns
becsl6 esetén:

th(X) = az X = (z1,...,2, mintdbdl azon h pontok atlaga, melyekre a
tapasztalati kovariancia métrix determindnsa minimélis (p + 1 < h < n),
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ekkor

Bl _p41
£*(th, X) = M_nfii_, hah= 7] +1 (2.52)
és +1
n-pyl
£*(th, X) = L”—“Lg*'—lj, ha h= L2 (2.53)

Egyviltozés esetben ez a becslo azon h db adatpont atlagat és variancidjit
szolgdltatja, melyekre ez a variancia a legkisebb. Ez a becslé mar aszimpto-
tikusan normdlis /n-es konvergencia sebességgel.
A t6bbvaltozds 7-becsld (80] azon t, helyparaméter, mely minimalizalja
a n
|C| {Zp2 (d(x,—,t,C’))} ) (2'54)
i=1

figyelembe véve

LS et € = b, (2.55)

i=1

ahol 0 < by < sup pi(-). Az Osszeomldsi pontja:
e (1, X) = 1211l (2.56)
n

ahol ] = #}71—(—5. Ez utébbi becsld rendelkezik a legjobb tulajdonsagokkal,
affin ekvivaridns, nagy osszeomldsi ponty, korldtos hatdsfiggvényi, \/n-es

konvergencia sebességgel normilis eloszlasi és megfelelé mértékben efficiens.

2.3 Linearis fuzzy regresszio

A fuzzy elmélet lényegében Zadeh [135] korszkalkoté dolgozataval kelt é-
letre, amelyben a (c.f.(z) € {0,1}) karakterisztikus fiiggvény fogalmat alta-
lanositotta a (m.f.(z) € [0,1]) tagsdgi fiiggvény definidldsdval. Igy bizonyos
szubjektiv informdcidk rendelheték a halmazhoz valé tartozas megfogalma-
zasahoz.

Otto és Bandemer [102] fejlesztette ki az els6 robusztus fuzzy regresszi-
6s eljardst, melyet szdmos kutaté vizsgdlt [56,57]. Otto és Bandemer [102]
azonban csak az egyvaltozds esetet mutatta be példakon keresztill. Kozolték
ugyan az altaldnositis lehetOségét, melyet tObbszoros integrdlok segitségé-
vel lehet megvaldsitani, de az integrdldsi hatirok meghatdrozdsa sordn a
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magasabb foki (5 vagy a feletti) polinomok gySkeit analitikusan nem tud-
juk megoldani, igy az egyébként is szamitas igényes feladat djabb numerikus
feadattal béviilne. Probléma még az optimadlis paraméterek meghatdrozdsa,
melyre Hu és munkatdrsai [56] javasoltdk a szimplex médszert. Sajnos ezen
moédszer csak a lokdlis maximumokat képes megtaldlni, igy mads, globalis
optimum keres6 eljardst kell keresni.

2.3.1 Az eredeti egyvaltozés linearis fuzzy regresszié médo-
sitasa
Az &ltaldnositds elétt néhany kritikus megjegyzést kell tenniink az eredeti
algoritmus kapcsan. A kovetkezo linedris kalibracids fiiggvényt tételezzik
fel:
y=m1z + ma. (2.57)

Azon ponthalmazt, melyen a tagsdgi fliggvény értéke nem nulla az M
fuzzy halmaz tartéjanak hivjuk:

suppM = {(z,y) € X XY : m.f.pm(z,y) > 0}. (2.58)
Ha a tartd egy ellipszis, a tagsagi fiiggvény:

21+
, (2.59)

m.f.i(z,y) = |1 - z-z)* (¥ _zyi)

2
Uug v

ahol u; és v; jeloli az ellipszis féltengelyeinek hosszat, és [v]t = max {v,0}.
Az M egyesitett megfigyelés tagsigi fiiggvénye:
m.f.om(z,y) = max m.f.i(z,y). (2.60)

A megfigyelések fuzzy jellegét atvihetjik a paraméter térbe a vart sza-
mossag (expected cardinality) [40] alkalmas médositdsdval, amit relativ sz4-
mossagnak (relative cardinality) neveziink:

m.f.g(my, mz) :/ m.f.m(z,y)dz (2.61)
G(m1,m2)
G(mi,mz) = {(z,miz+my) € X xY;z € X}. (2.62)

Az m.f.g(m1, my) nyert értéket 6sszehasonlithatjuk a linedris figgvény-
kapcsolat legjobb helyi fuzzy kozelitésével fuzzy local (best) approximation:

m.f.5(f) = /Gm m.fm(z,y) de (2.63)
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G(f) = {(z,f(z)): 2 € X} (2.64)

f(z) = arg(y) sup m.f.m(z, ). (2.65)
vey
Bevezethetjiik az (mq, m2) paraméterpdr tagsigi fiiggvényét:

m-f~E(m1,m2)

Abrazolva m. f-c(mq,mq; f) értékeit a két paraméter fiiggvényében, meg-
kereshetjiik a vdlaszfiiggvény maximumadt, melyet meghatdrozé két paramé-
ter érték lesz a paraméterek fuzzy becslése.

Az emlitett kritikus észrevételek egyike az el6bb vazolt egyviltozds esetre
vonatkozik. Ha a tarték korok (u; = v; minden i-re), akkor nincs probléma.
Azonban nem természetes, hogy a koncentraciondl (z) jelentkezd mérési hiba
kozel azonos a mért jel (y) hibdjdval. Valds kalibriciés problémék esetében
a kalibraciés standardok bedllitdasi hibaja sokkal kisebb, mint a mérési jel-
hez tartozd hiba. Ez garantdlja az ismeretlen oldatra vonatkozd pontosabb
koncentracié becslést. fgy az a természetesebb, ha tarténak ellipszist va-
lasztunk, z-re vonatkozdan kisebb féltengelytavolsiggal.

Ha a tartdk ellipszisek a kovetkezdé problémdak mertilnek fel. A 2.1 4bran
jol lathatd, hogy ha az Otto és Bandemer dltal javasolt gorbét vilasztjuk a
helyi legjobb fuzzy kozelitéshez, akkor m.f.g(f) értéke sziikségteleniil nagy
lesz csckkentve ezzel m. f..(mq, my; f) értékét, ami bizonytalanabb paramé-
terbecsléshez vezet.

A 2.2 dbran két megolddst javasolunk, melyek kézil mi az elsét alkal-
mazzuk.

A 2.4 tablazatban szimulalt adatokkal hasonlitjuk &ssze a két eljarast,
ahol a FUZZY 1 az Otto és Bandemer &altal levezetett, a FUZZY 2 pedig az
altalunk médositott algoritmus.

A tovdbbiakban vizsgaljuk meg vizes alkoholmintdk gdzkromatogrifia-
san meghatdrozott méréseinek kalibracids eredményét. A 2.5 tibldzatban 9,
a 2.6 tdbldzatban a 9-hez tovabbi 3 mérési eredményt és az adott mddszer
altal kapott paraméterekkel szamitott szdzalékos eltéréseket tiintettik fel. A
tabldzatok végén szerepelnek a két mddszerrel meghatirozott paraméterpar
értékei.

Az els0 9 minta a laboratériumban késziilt, torzsoldat megfelelé higi-
tdsdval, mig az utols6 3 minta az OMH altal kiadott standard minta volt.

m.f..(m1, ma; f) = (2.66)
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2.1 abra: Otto és Bandemer &ltal javasolt grif a helyi legjobb fuzzy kozeli-
téshez

2.2 dbra: Két altalunk javasolt graf, melyekkel elkeriilheto a szovegben em-
litett probléma
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konc. | jel eltérés

z Yy LS FUZZY 1 | FUZZY 2

1 1.1 | 0.32 -0.02 0.00

2 2.0 -0.04 -0.04 0.00

3 3.1 -0.20 0.14 0.20

4 3.8 -0.76 -0.08 0.00

5 6.5 0.68 1.70 1.80
my 1.26 0.92 0.90
Mo -0.48 0.20 0.20

2.4 tablazat: Szimulalt adatokraillesztett egyenes paraméterei és a szamitott
értékek eltérései

Ebben az esetben tgy vehetjik, hogy a higitott mintdk sorozatat szennyez-
tik a standardokkal. A szamitasokbdl jol latszik, hogy a fuzzy regresszid
robusztus tulajdonsdga révén kevésbé volt érzékeny a perturbaciora.

2.3.2 Linedris fuzzy regresszié altalanositasa geometriai iton

Az egyik legtermészetesebb mddja az altalanositdsnak a t6bbszords integra-
lok alkalmazdsa. A madar emlitett okok miatt azonban a tébbvdltozds geo-
metriai ismeretek hasznalata kivitelezhetobb algoritmust szolgdltat. Sajnos
az n-dimenzids geometriai fogalmakkal kell6 mélységben csak két konyvben
[122,70] taldlkozhatunk, igy rengeteg sajit fejlesztést kellett végezniink a
mikddoé algoritmus Osszedllitasahoz.

Az &altaldnositdishoz néhany természetes megszoritdssal kellett élni. A
mérési pontok bizonytalansaganak jellemzéséhez hiperellipszoid tartékat va-
lasztottunk, tehdt a pontokhoz rendelheté tagsigi fiiggvény hiperparaboloid
lett. Felirhatjuk a linedris modellt az y ’figgd’ és az z1,z2,23,...,z4 (Vagy
roviden jelolve z) fiiggetlen’ valtozok kozott. Mivel dltaldban minden valto-
z6 kisebb-nagyobb mérési hibaval terhelt, igy z-et inkabb magyardzé (exp-
lanatory) viltozénak, y-t pedig magyardzott (explained) viltozénak hivjuk.
Tehat a bedllithaté z vdltozé magyardzza a hatdsdra kialakult y véltozét.
Ezekutan a linedris modell:

Yy =miTy + maZT2 + Mm3zTz+ ... + Myg_1Td-1 + Mdy1, (2.67)
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mintaszam | koncentracié | jel (teriilet ardny) szazalékos eltérés
T y LS FUZZY 2

1. 0.244 0.2407 3.88 0.75
2. 0.272 0.2758 5.32 2.61
3. 0.478 0.4781 -0.42 -1.89
4, 0.832 0.8423 -1.68 -2.43
5. 0.928 0.9654 0.72 0.08
6. 0.952 0.9649 -1.98 -2.61
7. 1.976 2.0657 -0.33 -0.52
8. 2.914 3.0819 0.40 0.33
9. 3.698 3.9018 -0.03 -0.05

my 1.063 1.061

Mo -0.028 -0.020

2.5 tablazat: A Biiniigyi Technikai Intézetben el6allitott standardok altal
meghatarozott kalibraciés egyenes paraméterei és a szamitott értékek szaza-
l1ékos eltérései
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mintaszam | koncentricié | jel (teriilet ardny) szazalékos eltérés
z y LS FUZZY 2

1. 0.244 0.2407 2.27 0.75
2. 0.272 0.2758 3.68 2.61
3. 0.478 0.4781 -2.40 -1.89
4. 0.832 0.8423 -3.81 -2.43
5. 0.928 0.9654 -1.38 0.08
6. 0.952 0.9649 -4.14 -2.61
7. 1.976 2.0657 -2.53 -0.52
8. 2.914 3.0819 -1.80 0.33
9. 3.698 3.9018 -2.25 -0.05
10. 1.000 1.0932 3.31 4.77
11. 2.000 2.2382 4.21 6.09
12. 3.000 3.3828 4.49 6.50

m 1.087 1.061

my -0.030 -0.020

2.6 tabldzat: Az elébbi tdbldzatban szerepld standardok és az OMH A&ltal
el6dllitott standardok felhasznéaldsdval kapott kalibracids egyenes paraméte-
rei és a szamitott értékek szazalékos eltérései
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ahol m; az 1. egyiitthaté vagy paraméter és a feladat az Gsszes m; becslése
a kisérleti adatok felhasznaldsdval.

(2.67) &atirhaté két vektor szorzardra egy hipersik egyenletét eredmé-
nyezve:

(1:1, T, X3, ---, Td-1y, Td=Y, 1 )

[ ™
my
ms3 -0
Mmg—1

myg = -1
md41
(2.68)

A (2.68) kifejezés segitségével felirhaté a hipersik normadl egyenlete is,
felhasznalva az n; irdnycosinusokat:

(xl’ Tz, I3, ..., Td-1y, T4 =Y, 1)
([ w
n2
n3 _ 0
. - 9
Nd-1
g
Nd+1 =P /
(2.69)
ahol
ng=cosa; = um; ha i=1,...,d (2.70)
és
|maq1l
Ngy1 =P = Mgy = — ———m—o, (2.71)
V z;'i=1 m‘lz
ahol 1

p = —sign(ma41) —F——=.
z:‘i=l mtz

|p| a hipersik tdvolsdga a Descartes-féle derékszogi koordindta-rendszer ori-
géjatdl. A (2.69) egyenlet altal megadott hipersik vagy metszi, vagy nem
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metszi a d-dimenzids hiperellipszoidot, ami a mért pontok bizonytalansdgat
fejezi ki. A metszet djra hiperellipszoid lesz, de d—1 dimenzids [122]. Ezek a
csokkentett dimenzi6jd hiperellipszoidok lesznek az alapjai annak d dimen-
zibs hiperparaboloidnak, melyet a d + 1 dimenzids hiperparaboloid tagsigi
fiiggvény metszeteként kaptunk. Osszegezve ezen d-dimenzids hiperparabo-
loidok térfogatait kapjuk az m.f.g(m*) relativ szimossag értékét [102] egy
bizonyos mj, m3,m3,...,my,, paraméter halmazt vizsgilva. Az m.f.g(f)
helyi legjobb fuzzy kozelitést [102] azon d-dimenzds hiperparaboloid térfo-
gatok Osszegzésével nyerjiik, melyeket akkor kapunk, ha a hipersikot minden
egyes mérési ponthoz eltoljuk, ezzel a térfogatosszegek lehetséges legnagyobb
értékét szolgdltatva. Mivel m.f.g(f) > 0 és m.f.g(m) < m.f.g(f) minden
m-re, szamolhatjuk fo5(m)
m.f.g(m

értéket, melynek maximdlis értékét meghatdrozé paraméter halmaz lesz a
fuzzy becslés, igy a megfigyelések fuzzy jellegét a paraméter térbe vittiik at.

Minden elméleti vonatkozdst dttekintettiink ahhoz, hogy formdba ont-
hessik a szamitdsokhoz sziikséges algoritmust. Egy d-dimenziés hiperpa-
raboloid térfogatdt, melynek alapja egy d — 1-dimenzids hiperellipszoid (a
levezetések mell6zésével) a kovetkezd két eset megkiilonboztetésével nyerjiik,
ha d — 1 paros, azaz d — 1 = 2n:

h(xh)* 27
(n(+ i)l H (2.73)

és ha d — 1 paratlan, azaz d — 1 = 2n + 1:

h\/ﬁ(ﬂ'h)"(n + 1)!2(2n+3) 2n+41
(2n + 3)! H uj, (2.74)

i=1

ahol h a hiperparaboloid magassiga és u; jelenti a hiperellipszoid féltenge-
lyeinek hosszat. :

45



Az i. méréshez tartozé d-dimenzids hiperellipszoid egyenlete:

R T 0 —zy

Iy ‘U('.)l 1 0 _;;2 T

Ty ;-2; Yi2 I
I : : | =,

0 0 ] —Z '

Td ;?: v?d Td

B A » (E‘f:l vy _1) /

(2.75)

ahol v;; az i. mérésnél a j. viltozé bizonytalansagit jeloli (az <. hiperellip-
szoid j. féltengelyének hossza) és z;; az i. mérésnél a j. valtozd megfigyelt
értéke.

A megfelelé médon vilasztott T transzformdciés matrix (lasd pld. [38]-
ben 4 dimenzids esetre) elemei csak a (2.69)-ben szerepld irdnycosinusok érté-
0-t nyerjik z'V. z = 0-bél.

T'vT jelsljiik M(d)-vel és dltalanos elemekkel felirva kapjuk

a1 a2 ce a1d-1 Qid a1d+1
a1 a2 s a2d-1 a4 a1d41
M@s=| i : o (e
ad—11 Qd-12 *°° QGd-1d-1}ad—1d | @d—-1d+1
ad1q ad2 T add-1 add add41
ad4+11 Qd+12 " Qd41d-1 | Ad+1d | Cd4+1d+1

A hipersik egy olya;n d — 1-dimenzids elforgatott hiperellipszoidot metsz
ki melyet M(d — 1)-el jellemezhetiink:

M(d-1)=
aii a14-1 (paiq + @1d+1)
a3 .- Q24-1 (pazq + @2d+1)
a4-11 e a4-1d-1 (pag—14 + @d-1d+1)
(Pag1 + @ay11) - (Pagd-1 + @as14-1) | (P?ada + P(agat1 + Gay1d) + Gay1d41)

(2.77)
Fétengely-transzformdciéval meghatdrozhatjuk az M(d — 1) matrix A;;
sajatértékeit. Ezen sajitértékek segitségével kiszamolhatjuk a kimetszett
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d—1-dimenzds hiperellipszoid féltengelyeinek hosszat és a k6zéppontjit meg-
hatdrozé z?j koordindtdk értékeit ( az © jelzést hasznaljuk a d — 1-dimenzids
hiperellipszoid kozéppontjinak megkiilonboztetésére a d-dimenzidstdl):

'I.Ll'j =

\/_ (P?ada + p(adat1 + Gat1d) + Gar1d+1) (2.78)
Aij ’ .

D8jd + Q5 nt1

zd = (2.79)

: \/—/\ij (p?agd + p(agds1 + Gdr1d) + Gdr1d41)

A hiperparboloid h magassdgdt (2.79) és az i. méréshez tatozd tagsigi
fliggvényt felhasznalva nyerjik:

+
d (28 _ z*)2
b= {1 DR E (2:80)

j=1 Vij

ahol z* az eredeti mérési pont T dltal transzformdlt koordindtdjat jelenti,
28 = p és [v]* = max{v,0}.

A fentebb vézolt médon kiszdmolhaté a m.f.c(m; f) értéke barmely m
paraméter vektorra. Sajnos nincs direkt 4t m.f..(m; f) maximumanak meg-
hatdrozdsira. A genetikus algoritmus [81] globdlis optimum keresé eljarassal
mar végeztiink néhany biztaté kisérletet, igy a kozel jovoben szandékozunk
egy olyan programcsomagot Osszedllitani, melyben a tobbvaltozés lineéris
fuzzy regresszi6 altal becsiilt optimdlis paramétervektort a genetikus algo-
ritmus segitségével keressik meg.

2.4 Fuzzy linearis regresszio

A Tanaka és munkatdrsai [126] dltal kidolgozott fuzzy linearis regresszids
eljardsrdl kideriilt, hogy nem robusztus, igy kidolgoztuk egy médositott val-
tozatit. A kovetkezd iterativ eljardst haszndljuk. Az y; adatok szamdra
tagsdgi fliggvényeket szirmaztathatunk az el6zéleg kiszamolt paraméterek
a; centrumai és ¢; terjedelmei felhasznéldsdval. Ezeket az értékeket felhasz-
nalva az (y;, e;) fuzzy kimend adatokat hatdrozhatjuk meg, ahol e; terjedel-
meket jelent. Taldn meglepd, de ez utébbi nem forditottan ardnyos az y;
tagsdgi értékével, ami j6l lathaté a 2.3 abrdn.

+
zio |

p

yi -

e; = Zc”z;“———l 11—H (2.81)
1=1
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<€y, X;(X

A

? clx,l

v

2.3 dbra: A fuzzy kimend adatok e; terjedelme és az y; tagsdgi értékek
forditott ardnyt kapcsolatanak illusztralasa

és nagyobb értékéhez y; nagyobb tagsdgi értéke tartozik. Az els6 lépésben
nem fuzzy kimend .adatokkal meghatdrozzuk a fuzzy paramétereket, majd
e;-ket szamitjuk mindig az el6z6 1épés eredményébol.

A fuzzy regressziés paramétereket fuzzy kimend adatokkal a kovetkezo
linearis programozasi feladat megolddsaként adhatjuk meg [127]:

Minimalizalandé s=3" ¢
Feltételek (1— H)Y 5, ¢j|zi; | +ata > i + (1 - H)ei, (2.82)
(H-1)3F ¢l +zia < yi+ (H - 1)e;,
¢ 20,
1=12,...,n.

A médositott eljirds robusztussigit az irodalomban nemrégen kozolt
atomabszorpcids spektrometridsan mért adatsoron [56) szemléltetjiik.
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Adatsor Elem Koncentricié (ppb)  Jel

2. Al 0 0.000
20 0.084
40 0.194
60 0.245
80 0.330
5. Cu 20 0.097
40 0.182
60 0.256
80 0.331
100 0.417
8. Mn 0 0.000
10 0.110
20 0.226
40 0.430
60 0.637
80 0.765
100 0.870

2.7 tablazat: Atomabszorpcids spektrometridsan mért adatsor az irodalom-
bdl atvéve
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Adatok (jelzés az dbrdn)

2. adatsorra (a) 5. adatsorra (b) 8. adatsorra (c)
ag £ co 0.0+ 0.0 0.019 £ 0.0 0.0 £ 0.0
a; £ c1 0.004466 + 0.0004259 0.003988 £ 0.0000972 0.01000 £ 0.001444
BYe 1.0000 0.1000 1.0000
BYs 0.3731 0.1000 0.3077
1. iteracié By 0.1000 0.6143 0.1000
pye 0.1000 0.1000 0.4808
pyge 0.1970 - 0.9228** 0.5731
Byg 0.6971
pys 0.1000
ap * co 0.0 £0.0 0.0 £ 0.0
a; £c; 0.004083 + 0.007758 0.008700 £ 0.01653
pye 1.0000 1.0000
s 0.9850 0.8609
2. iteracid By s 0.9012 0.8427
v 1.0000 0.8760
pyge 0.9946* 0.8840
By g 0.9470
v 1.0000
ag + Co . 0.0 £ 0.0
a1 ¢ 0.01037 £ 0.01056
nye 1.0000
s 0.9619
3. iteracié Hyg 0.9437
e 0.9770
pys 0.9851
Hye 0.9511
pys 0.8990"

* A ledllasi feltétel akkor teljesilt, mikor a mérések tobb mint felének a
tagsagi fliggvény értéke elérte vagy meghaladta a 0.9 (= H) értéket.
** A ledlldsi feltétel akkor teljesiilt, mikor a mérések t6bb mint felének a
tagsagi fiiggvény értéke elérte vagy meghaladta a 0.1 (= H) értéket.

2.8 tdblazat: A fuzzy linedris regresszié eredménye és a mddositott szami-
tismenet illusztraldsa
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2.4 dbra: Fuzzy linearis regressziéval kapott kalibriciés egyenesek dbrai
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A 2.4 4brin megfigyelheté a médositott fuzzy linedris regresszié robusz-
tus tulajdonsiga. A irodalomban nem régen jelent meg egy eljards a li-
naritds tesztelésére [130], de dgy gondoljuk, hogy a mi eljardsunk konnyen
alkalmazhatd tobbviltozds esetben is és nincs korldtozds az adatok szdmadra
vonatkozdéan. Egynél tobb iterdcidés ciklus mar természeténél fogva jelzi
a linearitas sériilését, azonban a robusztus tulajdonsig miatt a kalibracios
adatok felhasznilhaték maradnak.
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3. fejezet

Kalibracié soran nyert
adatok jellemzése

3.1 Konfidencia intervallum Gauss-eloszlas tel-
jesulése esetén

Az y = ag+ a1 z egyvaltozés linedris fiiggvénykapcsolat esetén az egyenes a;
meredekségét és ag tengelymetszetét kell becsiilniink az n db mérési pontbdl:

nzzjyj —Z%’Zw . (3'1)

D VR COENE
G = Yl y; - ZZijjyj’ (3.2)
nEw - (Zzj)?
melyek a késébbi vizsgdléddsokhoz felirhatok masképpen is:
. _ 2z — 7)Y - 9)
T Z(Ej -z)? (33)
=7—-a%, (3.4)

ahol T = Z:_J és Y= ani
Mivel a feltevések miatt Var(y;) = o? minden j-re és Var(y) = zni, a
fenti paraméterek varianciai:

ar(a;) = Var 2z — )y; = Y(z; —T)° ar o’
V. ( l) V ( Z(xj _ '2—;)2 ) (Z(zJ — 5)2)2\/ (y]) Z(III :1:)2
(3.5)
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Var(ao) = Var(7 — @, %) = Var(7) + Var(@;, T) = o2 (% + —i(z_?—_f)?> .

(3.6)

A kalibricidhoz felhasznalt z; értéknél a becsiilt §; variancidjdnak szd-

mitdsdhoz az §; = @g + @; z; helyett a §; = T + a1(z; — T) Osszefiiggést
hasznéljuk, mivel @g és @; nem fiiggetlen becslések.

2(z; —F)?

A kalibraciés figgvényt altaldban a mért jelek alapjan torténé koncent-
racié becslésére hasznaljdk. Tekintsiik a kovetkezo Gsszefiiggést:

Var(4;) = Var(9) + (z; — T)?Var(g,) = o* (l t+ == (zi —3)° ) (3.7)

§y=7+a(s-7)+e, (3.8)

ahol § = %, azaz az ismeretlen koncentriciéji oldatra vonatkozé m mérés
atlaga. Az € mérési hiba variancdja:

Var(e) = Var(§) + Var(g) + Var(as(z — 7)) = o (l + L + (z—_f)z—>
' n X(z;-%)?)
(3.9)
A fenti egyenletekben szerepld o? a gyakorlatban legtobbszor nem ismert,
igy annak becslését alkalmazzuk:

\/72(% _G'O—al "EJ) (3.10)

Amennyiben ¢ Gauss-eloszldsi mérési hibat jelent a kovetkezo hanyados
Student-eloszlasa lesz:

y— y—a1(m—$)

\/ +1 + (z_z)z

(1 — @) biztonséagi szint mellett

(3.11)

t < [tal (3.12)

teljesiil, ahol t, az a szignifikancia szinthez és n—2 szabadségi fokhoz tartozé
Student-eloszlas tdblazatbeli értéke.
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t értékét (3.11) alapjin (3.12)-be helyettesitve, majd négyzetre emelés
utdn a kovetkezd mdsodfoku egyenlStlenséget nyerjik _

*242
2 8Cly N2 oa (N =N (52 *242 (i l) <
(al Sz _T)2> (z-2)" =2 (§-9)(=-2)+(§-9)" ="t ( ~ + ) <0,
(3.13)
melynek megoldasaként kapott konfidencia intervallum [18,134]:
s* [y (1 1) (7 - 79)° ~,. -7
oy | L (=4 =) 4 =¥ L4 3.14
i "7\/&1(m+n M Y Tl (3:14)
ahol -
*t
¥ =iy — e (3.15)

a1y (z; - 7)*
Amennyiben (3.15)-ben a mdasodik tag kozel nulla, azaz v = d; a kovetkezo
elterjedtebb és egyszerlibb formula hasznalhaté

. s* [1 1 (£ — 7)?
ta—y/—+ -+ =— 1|, .16
e<dt al\/m+n+z<zj—f)2 (3.16)
ahol £ a kalibracids egyenes altal becsiilt koncentracio:
t=14+ 29 (3.17)
a1

3.2 Konfidencia intervallumok szerkesztése boot-
strap modszerrel

Az el6z6 szakaszban a legkisebb négyzetek mddszerével meghatarozott para-
méterekkel és a mérési hiba eloszlasara vonatkozdéan a Gauss-eloszlas feltéte-
lezésével konfidencia intervallumot vezettiink le az ismeretlen koncentraci6
becslésének jellemzésére. A mdsodfaji hiba kezelésére bemutatott robusz-
tus eljardsok alkalmazdsa esetén nem haszndlhatjuk ezket az eredményeket,
hiszen a feltételezett eloszldstél (amely nem is mindig a Gauss-eloszlas) kis-
mértéki eltérés megengedett.

Ha bizonyos statisztikai leirds egzakt megolddsa nem létezik, akkor va-
lasztanunk kell a teoretikus approximdcié (pld. sorbafejtés) és a tiszta nu-
merikus approximécié (pld. Monte Carlo médszerek) kozott. A bootstrap
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médszer [42,82] legfontosabb tulajdonsaga, hogy relevans statisztikai jellem-
z6k szimulacidja, dgymint variancia, torzitds, konfidencia intervallum, stb.
minimdlis feltételek betartdsa mellett.

A gyakorlatban a kalibracié elvégzéséhez sziikséges mérések szdma erésen
korldtozott a koltséges vegyszerek haszndlata ill. az idéigényes meghatdro-
zésok miatt. Igy csak csekély szami mérést lehet elvégezni. A kisszamui
minta értékeléséhez nem hasznédlhatjuk a normalitdst megkovetelo statiszti-
kai médszereket. A kisszdmi mintdk jellemzésére alkalmas, sztochasztikus
approximdcién alapuld bootstrap eljaras alkalmazdsa kindlkozik megoldasul.

Az 3.1 4brdn a bootstrap eljaras alkalmazasdnak sémdajit mutatjuk be. A
valédi P valésziniiségi modell E[y, P] virhatd értékét becsiiljiik az Efy*, P]
bootstrap becsléssel. A kritikus lépést kettds nyillal jeleztiik.

A lehetséges Aktualis Becsilt
valdsziniiségi valoszinlseégi Megfigyelt valosziniiségt Bootstrap
modellcsalad modell adatok modell adatok
P ...................... » P—\————-} P \_______’/yo
y,P) E(y',P)
valodi jellemz6 tjramintazassal
kovetkeztetett
jellemzd

3.1 dbra: Séma a bootstrap eljards alkalmazdisara

A regreszidanalizisnél a bootstrap eljardst kétféle djramintdzasi straté-
giaval alkalmazhatjuk:

1. Ujramintdzds rezidudlisokon alapulva

Tekintiik a kovetkezd regreszziés modellt: y; = f(zi,8) +¢;, ahol y; a fiiggd
valtozé (mérési jel), z; a fliggetlen valtozd (koncentricid), e; a mérési hibat
reprezentdlé véletlen valtozé. Elészor a § paramétert kell meghatarozni a
legkisebb négyzetek, vagy mas pld. robusztus paraméterbecsld eljardssal.
Ezutdn az illesztett értékek szamolhatok: §; = f(z;,0). Ha feltételezziik,
hogy az €; hibak homoszkedasztikusak és az F' eloszlas fiiggvényiik becsiil-
heté a rezidudlisok F' tapasztalati eloszlasaval, akkor {(z:,v7),i = 1,...,n}
szimuldlt adatokat allithatunk elé y* = §; + €7 alkalmazdsaval, ahol £-t
visszatevéses mintavétellel vélasztjuk az eredeti {£;,: = 1,...,n} rezidudli-
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sok koziil, ahol természetesen €; = y; — §i. Az 1j adatokkal m alkalommal
elvégezve az illesztést a §* és g7 bootstrap becsléseket kapjuk.

2. I:Tjramintézés adatparokon alapulva

Ezt az eljards ajdnlott, ha a hibdk heteroszkedasztikusak. Ebben az eset-
ben az (z;,y:) adatpirokat tekintjik, melyet az F egyiittes eloszlds ir le. Az
(z¥,y!) bootstrap mintdkat az eredeti {(z;,i),% = 1,...,n} adatparok koziil
véletelnszeriien kivdlasztva nyerjik. Meg kell emliteniink ennak az djramin-
tdzdsi mddszernek néhany hatrinyos tulajdonsdgit. A Var(e;) valtozhat
z; ill. f(zi,B)-val. Néhiny statisztikai jellemzd figg a D = (z1,...,%Zx)
tervezett bedllitdstdl, azonban a szimulalt adatpdrok kiilonbozni fognak D-
tél. Végiil gyakran eléfordul, a sikertelen djramintazas (bizonyos adatparok
til gyakran szerepelnek a mintdban), aminek kovetkeztében a paraméterek
becslése nem vitelezhet ki a szingularitds miatt.

A bootstrap mdédszer regresszids fliggvények paramétereinek jellemzésére
torténd alkalmazdsival a matematikai statisztikai irodalomban szamtalan
példéval taldlkozunk [16,112,41,43,125,115,36,33]. Az analitikai kémidban
torténd felhaszndlasra is torténtek prébdlkozasok [24,54,2], féleg az illesztd
lasdt és konfidencia intervallumaikat hatdroztak meg. Bemutatjuk a 3.2 és a
3.3 dbrikat a bootstrap djramintdzdsi algoritmus dltal nyerheto informacidk
szemléltetésére.

Bonate [19] irta le eldszor a becsiilt koncentracidk jellemzését bootstrap
médszerrel meghatdrozott variancia becslések segitségével.

A kovetkezdkben olyan eljirdst ismertetiink, melynek sordn konfidencia
intervallumok hatdrozhatdk meg a becsiilt koncentrdciékra vonatkozéan. A
kalibricids fliggvény paramétereit killonboz6 robusztus becsldkkel hatdroz-
tuk meg és a bootstrap mdédszer segitségével tapasztalati siirliiségfiggvényiik
felhasznédlasdval nyertiik a kivant konfidencia intervallumokat.

Nézziik meg részletesen ezen kiterjesztett bootstrap technika alkalmaza-
sat.

Az alkalmazott paraméterbecsld eljardsok mindegyikét a 2. fejezetben
mar kordbban ismertettiik, igy csak felsoroljuk 6ket: LS, IRLS6, IRLS9, CM,
RM, LSM. Ezekkel a becslékkel a rezidudlison alapulé bootstrap djraminta-
zéssal 3000 paraméterpart hatdrozunk meg. Ezeket a paraméter becsléseket
hasznaljuk az alkalmas koncentricié becslés' megkeresésére a tapasztalati
maximum likelihood médszer segitségével. Egy bizonyos koncentrdciéhoz
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3.2 abra: 3000 bootstrap mintabdl meghaﬁirozott a™ és b* paraméterek ko-
206tti korreldcié
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gyakorisig

A

5% 5%

I
a 1*

3.3 4bra: 3000 bootstrap mintabdl szadmitott a* paraméter eloszlasa és a
90%-o0s megbizhatésigi szintii konfidencia intervallum
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tartozd mérési jel siiriiségfiiggvénye meghatdrozhaté a nemparametrikus ker-
nel siriiségfiggvény becslével [61)

) ] 3000 t— yB
=— ¢ 1
70 = 5505 22 % (5. (3.15)
felhasznilva, hogy
yP = af + P, (3.19)

.ahol az %W Cauchy-eloszlas stiriségfiiggvényét alkalmaztuk K(-)

kernel fiiggvénynek, h a skdlaparaméter becslése, és af és a.f" a B. bo-
otstrap paraméterpar. Azért kell a Cauchy-eloszlast alkalmazni, mert ezen
eloszlas széles szdrnyaival az esetleg eloforduld extrém értékeket is kelloen
elsimitja. Rdaddsul a Cauchy-eloszlis a Student-eloszlasok csaladjanak 1
szabadsagi fokhoz tartozd tagja, és a Student-eloszlasokat az el6z6 szakasz
tandsdga szerint a klasszikus statisztikai médszerekkel meghatdrozott kon-
fidencia intervallumoknal alkalmazzdik.

A h értékét a kovetkezd robusztus skdlaparaméter becslével szamoljuk
[111):

h = 1.4826 (1 + %‘1-) mr, (320)

ahol 2mr azon legkisebb tartomdny, amely az adatok legalabb felét tartal-
mazza. '

A t, jésolt mérési jelet gy vélasztjuk meg, hogy az f(tj) értékek szorzata
a lehetd legnagyobb legyen:

ma.xﬁ f(t;) = te, (3.21)
=1

I ERA

Felhaszndlva a jésolt t. értékét, a becsiilt koncentraciéra vonatkozdan
nyerhetiink tapasztalati sliriiségfiiggvényt:

R 1 3000 2 1B
= —o ¢ 3.22
felhasznélva, hogy
B _ te— aoB
1
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ahol af és a? ugyanaz mint fentebb, és t. a mért jelek tapasztalati maximum
likelihood becslése.
A konfidencia intervallumot a szokdszos médon szamithatjuk:

/_zolo f(2)dz = %, /z:oo f(z)dz = %, (3.24)

ahol z; és z, a konfidencia intervallum bal ill. jobb oldali értéke és o az elére
megadott szignifikancia szint. Mivel a jésolt koncentracié becslése robusztus
moddszerrel torténik, igy ez az intervallum aszimmetrikus is lehet, jobban
megkozelitve a valds eseteket.

A fentebb vdzolt eljards bemutatdsdra tekintsik a 3.1 tdblazatban 1é-
v6 3 db szimuldlt kalibraciés adatsort, ahol aldhizdssal jeloltik az dltalunk
elhelyezett kiugré értékeket. A tablazatban feltiintettiink még harom szimu-
141t mérési jelsorozatot (mindegyik 3 padrhuzamos mérést tartalmaz), melyek
az ismeretlen koncentraciéjui mintahoz tartoznak. A feladat az ismeretlen
koncentrécidk becslése kiillonb6z6 paraméterbecsld eljardsokkal kiértékelt ka-
libriciés fliggvények segitségével. A 3.4-3.9 dbrakon lathatjuk az eredmsé-
nyeket. Altalinossigban megallapithatjuk, hogy a robusztus tulajdonsiggal
biré paraméterbecslokkel kiértékelt kalibraciéval torzitatlan és kevésbé bi-
zonytalan (a tapasztalati sliriségfiggvény a médusz kozelében keskenyebb
ill. a gyakorisigérték nagyobb) koncentricié jéslast kapunk, mint a legki-
sebb négyzetek mddszerének hasznilata esetében. A robusztus becslok jé
tulajdonsiga a kiugré pont kézelébe esé mérési jel alapjin torténd koncent-
racié becslés esetén mutatkozik meg igazan. J6l lathaté ez a 3.5, 3.7 és 3.8
dbrakon. Erdekes eredmény, hogy ha a nulla pont kdzelében van a kiugré
pont (3.8 és 3.9 4brdk), csak az LMS szolgéltat torzitatlan és kis bizonyta-
lansdgi koncentracié becslést, az origotdl tavolabbi pontokra még az RM és
SM robusztus becslék is igen torzitott jéslast adnak.

Végiil bemutatunk egy gyakorlati példat, ahol talajvizek Mg koncentra-
cidjat kellett ICP-AES mddszerrel meghatdrozni. A 3.2 tabldzatban tiin-
tettlik fel a kalibrdciés adatsort, valamint az ismeretlen Mg koncentraciéji
oldatra kapott mérési jeleket. A 3.10 dbrdn a kiilénb6z6 paraméterbecslok-
kel meghatdrozott kalibracids egyenes dltal jésolt koncentrdcié eloszlasokat
vizsgalhatjuk. A 3.3 tdbldzat a szimitott konfidencia intervallumokat adja
meg 90%-os megbizhatdsdgi szint mellett.
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Kalibricids adatok

X 00 1.0 20 3.0 40 5.0
1. ' Y 00 11 20 3.1 38 6.5
2. Y 00 11 20 45 38 5.1
3. Y 15 11 20 31 38 5.1

Mérések
1. minta 2. minta 3. minta
0.24 2.83 4.51
0.29 2.88 4.56
0.32 2.91 4.59

3.1 tablizat: Szimulalt kalibraciés adatok, valamint a szimulalt mérési jelek

1.
1.5
1 .-
1.3
1.2
5‘ 1.1
¢ 1
{ o.o
J o.s
o
'L. o.s
o.s
O.- /
o.3
o.=
o.1
ol T 1 T L) L) )
- 0.6 ~-O.2 oO.2Z oOo.a 1 1.4 1.8
0D LS v RLSS oc?ai?s;netr?"cérr'\n X FRNA 7 LIS

3.4 dbra: Az 1. mintdra vonatkozé jésolt koncentricid eloszlasa (a kiugré

érték ¢ = 5.0-nél y = 6.5)
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L o.7
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o.= 3
o.= 7
- v
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o 1 T T T T T T
= a4 B8 4 a4 s sS.a s.a

comncantratiormn
o] s + IRLSEe o IRLSS a2 S x [ X,V BN LnMms

3.5 dbra: A 3. mintira vonatkozé jésolt koncentrdcié eloszlasa (a kiugré

érték z = 5.0-nél y = 6.5)

1.8
a7 2]
1.s 3§
1.5
1.4
y 1.3
0 1.2
g 1.1
1
] o0 N
Il o.s
092
* o.e
o.s
o.-
o.3
o.=
o.1
o T ¥ T T T T ¥

-0. 8 -O.2 o.2 oO.s 1 1 .- 1.8

od

concentrationmn
IRLLSeaS o nRLse - = x [ A Ve B —_n\Ns

o
r
0

3.6 dbra: Az 1. mintdra vonatkozé jésolt koncentracié eloszlisa (a kiugrd
érték = 3.0-ndl y = 4.5)
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concentrationm
[=] [ - + IRLLSe o RSO a =mnn x [ 35 & ) Ve BN Lanns

3.7 4bra: A 2. mintdra vonatkozé jésolt koncentrdcié eloszlasa (a kiugrd
érték = = 3.0-ndl y = 4.5)

2. 8

=2.S

2 . -

=2 . =2

A0 ala qadg

1.8

1S

1 -

1.2

.i<l<q<<

freqqueaenrncy

o.8

oO.s . - \

O, - \

o.2

o T Ll Il Ll Ll T 1
-2 1.8 -1.2 -O0.8 -O.= o o4 oO.8

concentratiom
o Ls + IRLsSaes o IRLLS9 A SN X RN v naMNIs

3.8 dbra: Az 1. mintara vonatkozd jésolt koncentracié eloszldsa (a kiugrd
érték z = 0.0-ndl y = 1.5)
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3.9 4bra: A 3. mintara vonatkozé josolt koncentricié eloszldsa (a kiugrd
érték = = 0.0-ndl y = 1.5)

Kalibracids adatok

konc. 1. mérés 2. mérés 3. mérés
ppm mérési jelek (a.u.)

0.0 154.6 156.8 153.6
0.5 2418 2413 2401
1.0 4685 4709 4642
1.5 6951 6887 6917
2.0 9727 9738 9788

Az ismeretlen koncentriciéji oldatra vonatkozé mérések (a.u.)
4894
4935
5003

3.2 tdbldzat: Talajviz Mg koncentrdciéjanak ICP-AES médszerrel torténd
meghatirozdsdhoz hasznalt kalibraciés adatsor
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3.10 dbra: Talajviz jésolt Mg koncentricidéjinak eloszlasa kiilénboz6 para-
méterbecsld eljardsok alkalmazasa mellett

T Te Ty

LS 0.907 1.034 1.162
IRLS6 { 0.914 1.050 1.170
IRLSY { 0.908 1.034 1.162
CM 0.922 1.050 1.176
RM 0.928 1.056 1.182
LSM [0.926 1.056 1.182

3.3 tablazat: Talajviz Mg koncentraciéjinak jésolt értékei 90%-os megbiz-
hatdségi szintii konfidencia intervallummal, kiilonb6z6 paraméterbecslo el-
jardsok alkalmazdisa mellett
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4. fejezet

Karl Fischer titralas
automatikus vezérlése

Ebben a fejezetben egy olyan 4j algoritmust mutatunk be, melyet az auto-
matizalt nedvességtartalom meghatdrozasra, azaz a szamitégéppel vezérelt
Karl Fischer titralasra fejlesztettiink ki. Legyen ez példa egy komplex ana-
litikai probléma kemometriai szemléleti megoldaséra.

4.1 A Karl Fischer titralasrol altalaban

A Karl Fischer-mddszer kémiai vizmeghatarozds. Lényegében az aldbbi re-
akcién alapul [23]:

SO2 +1I; + HO = SOz + 217 + 2HT. (4.1)

A reakci6 reverzibilis, a keletkez6 savas komponensek megkotésével az
egyensily a vizmegkotés irdnyaba tolhaté el. E célra piridint haszndlnak
fel, a reakcié altaldban metanolos kézegben jitszddik le, ahol a metanol
nemcsak oldészerként szerepel, de a kén-dioxid oxidiciéja sordn keletkezo
kén-trioxidot is szolvatilja. igy végeredményben a folyamat a kévetkezo
egyenletekkel irhaté le:

I, + CsHsN - SOq + 2CsHsN + HyO = 2CsHsN - HI 4+ CsHsN - SO4. (4.2)

CsHsN -SO3 + CH30H = CsHsN - HSO4CHs. (4.3)
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A gyakorlatban haszndlt oldatokban az egyensiily eltoldsinak érdekében
alkalmazott Gsszetétel miatt a hatdértéket a jédkoncentricié hatdrozza meg.
A viztartalom meghatdrozdst meghamisitjak a jédtartalmat megvaltoztatd
zavar6 kiséré anyagok (szerves peroxidok, oxidalé anionok, oxidlé kationok,
redukdloszerek, boérsav, aceton stb.), igy azokat a meghatdrozds elott ki
kell nyerni. Ez metanolos, esetleg etilén-glikolos extrakciéval torténhet, pld.
olajok, zsirok viztartalmdnak extrakcidja.

A meghatdrozds sordn az analizdlandé mintdt vizmentes metanolban
(vagy olyan metanolban, amelynek viztartalmat a minta olddsa elott tit-
raltuk le Karl Fischer-oldattal, és igy viztelenitettik) oldjuk, majd a Karl
Fischer méréoldattal titraljuk. A titrdlas végpontjit dltaldban hirom mod-
szer szerint lehet jelezni:

e vizudlisan, a sargdbol barndba vald szinvaltozds észlelésével,
¢ potenciometrikus (biamperometrids (dead stop)),
o fotometrikus dton.

Az elsO esetben a titralast addig kell végezni, amig a barna szin megma-
rad, kb. 20 mdsodpercig. Tultitrdlis esetén mas drnyalatd barna keverékszin
keletkezik, amely jol felismerhetd. A végpont jelzése ezen az titon csak olyan
anyagokndl lehetséges, amelyek nem vagy igen kevéssé szinezettek.

A potenciometrikus titrdlds elénye, hogy pontosabb és sotét szinii anya-
gok is titrdlhaték. Az 6sszehasonlité elektréd alkalmazdsanak problematikus
volta miatt a gyakorlatban a dead stop médszer hasznalatos. Az oldatba
merild két Pt-elektrédot kis fesziiltséggel (15-20 mV) polarizaljdk. A cellin
minaddig nem megy at dram, amig a reagens f6loslegbe nem keriil, vagyis a
katod depolarizalédik. Az dram meginduldsdt ampermér6 jelzi.

A fotometrikus végpontjelzés tiszta és dtlatszo, ill. szinezett anyagok
esetén haszndlhato.

A Karl Fischer-mérdoldat hatdéértéke allas kozben valtozik, igy azt na-
ponta ellendrizni kell. Ez ismert kristdlyviztartalmd sék (pld. bérax) ill.
ismert viztartalmu kalibralé oldatok (pld. HYDRANAL-EICHSTANDARD
5,00) segitségével végezhet6 el.

4.2 Az 4j vezérlo algoritmus leirasa

Karl Fischer titrdlds sordn kapott titraldsi gorbét mutatunk be a 4.1 ab-
ran. A gyakorlatban nem a két egyenes metszésével kapott pontot veszik
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4.1 dbra: Karl Fischer titrdlds sordn kapott tipikus titrdldsi gérbe biampe-
rometrids (dead stop) végpontjelzéssel

végpontnak, hanem elézetes mérések alapjin elore kijelolnek egy pontot és
a tovabbiakban eddig az dramerdsség értékig titrdlnak. Ennél az eljaras-
nal csak a legelsd mérést kell figyelemen kivill hagyni, mivel az esetleges
tiladagolds minden tovdbbi mérésnél kikiiszobolodik. Mivel mindig a tit-
ralé edényben lévé metanolos oldat viztelenitésével kell kezdeni a sorozatos
elemzést, igy hasznos mérés nem megy veszendébe. Ezzel a médszerrel az
értékes titraloszerek mennyiségével lehet takarékoskodni.

A megoldandé feladat tehdt adott végpontig torténd titralds automa-
tikus vezérlése [3,29,78,105,59]. A fejlesztés kezdeti szakasziban a vezérlo
algoritmus lineéris fiiggvény segitségével josolta meg az adagolandd Karl
Fischer-oldat térfogatdit. 5 egymdst koveté mérési pontra egy egyenest il-
lesztettlink a legkisebb négyzetek mddszerével. (A tovdbbiakban minden
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Osszegzés j=1-t0l 5-ig értendd).

i1 5L

Va 1 I,
BB ] (n). e

V4 1 I4 .

Vs 1 Iy

ahol V; a titrdlészer térfogata, I; a j. térfogathoz tartozé dramerdsség, m
és t pedig az egyenes meredeksége és tengelymetszete. A részletes levezetés
mell6zésével a paraméterek legkisebb négyzetes becslése:

p=X'X)" X'y (4.5)
2 : T,
XX = ( XA ) X'y= ( Ak ) (46)
! - -2V
(K l) = 521/]2_1(21/1)2 ( _Zs:vj 221/121 ) (4.7)

S Vili-) Vi) I

m 5 V2(> V;)?
p= ( : ) =| ZwEismivs |- (48)
5L VP-(QoV5)

A t tengelymetszetet felirhatjuk

2 YV
=75 T™s

t =I-mV (4.9)
alakban is.

A regresszids egyenes meredekségét nem befolyadsolja a koordinata ten-
gelyek kezd6pontjainak elhelyezkedése, ezért

m = 2W=V=T)
t ft‘(vj—%)’ (4.10)
= —-—mYy.

(4.10) dinamikus kiszdmitasdhoz, azaz az adatpontok hozzdaddsdnak ill.
elvételének megengedése esetén [53] szdmitsuk ki a

n = Z(VJ — V)Z
I N (4:11)
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rekurziv Osszefiiggéseket. Egyszeru beldtni, hogy tetszéleges V, I hozzdada-
saval ill. elvételével a kovetkezd képletek adddnak:

Gnt1 = gn nn;l(‘/.’ - Vn:i:l)2

- = = 4.12
Tnt1 = T & 228V = Vi1 )T — Trta). (4.12)
Az atlagok rekurziv szamitdsdhoz sziikséges Osszefiiggések:

— nV,tV

Voat1 = —— 4.1
n=tnd (4.13)

- nl,+I

Tpyy = ——. 4.14
b=t 2 (4.14)

Az egyenes paramétereit az elozoek felhasznaldsaval egyszerien szamithat-
juk:
r
m = £ (4.15)
n+1

1= Tn:tl haet mVnﬂ. (416)

Ezekkel a rekurzivan szamithatd paraméterekkel kapott egyenes segitsé-
gével megjdésolhaté a kovetkezd adag Karl Fishcer-oldat, figyelembe véve,
hogy mindig azonos aramerdsség emelkedést kivanatos elérni. A gyakorlat-
ban torténd alkalmazds sordn kideriilt, hogy a vezérlé algortimus gyakran
eredményezett valtozé mértéku tuladagoldst. Ezért at kellett dolgoznunk az
eljarast nemlinedris joslé fliggvény alkalmazasdval. A médsodfokd polinomot
valasztottuk, mivel ardnylag egyszeriien kezelhetd, de mar kelléen Osszetett
ahhoz, hogy a kritikus gorbiiletet kielégité pontossiggal leirja.

A stabilis rekurziv formuldk az el6z6ekkel azonos mddon vezethetdk le.

1ZER ! L
Vi Wy 1 I by :
X=|V? Vs 1| y=| L | p=| & (4.17)
VE Vi 1 I bo
Vi Vs 1 Is
p=(X'X)7 X'y (4.18)
Vi ZVE Zv? LV
XX=| XV} VP 3V X'y=| ZVil; (4.19)
TV TV, 5 21
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' 1
C5(SVISVA-(SVR) - SV + VSV - (S V)

5ZVJ~2—2(ZV;')23 ZW§W2—5Z£‘ EZ;’Z‘?’—(ZW){‘
VLV —52‘;12 5223‘/3' ;((ZVJ‘)) \ 2V; ZZV]';ZVJ'ZS‘;}
VXV (V) VIV ViV EVELVE - (V)
A (4.20)
A levezetések részletezése nélkiil a kordbban vazolt gondolatmenetet ké-
vetve kapjuk:

o=V _Dz
¢ =2(VP-Vv2)?:
a2 = L(V; = V)(V} - V?) (4.21)

@ = S0 = D) (I - Daz = (12 - Phazz)
@ = 2 =D (1 - Par - (L - Darz) -

Tetszoleges V,I hozzdadasa ill. elvétele sordn a paraméterek rekurziv
becsléséhez sziikséges képletek:

G (nt1) = Gi(n) £ 252V = Vaz1)?
Q@ (nt1) = G2(n) E n—;l(vz - V241)? .
Q12(nt1) = Qu2(n) E n;;—l(V - Vn:tl)(vz -V241)
b, (nt1) = Gby(n) + (I - T(n:i:l)) (V- Vn:tl)QZ (n£1) — (V2 - Vi )QIZZ(n:tl)
by (nt1) =  Gby (n) (- T(n:tl)) (V2 - V2u1)q (n1) — (V- Va1 )912(n:t1) )
_ (4.22)
ahol _
Vg1 = 2228V
_z'n.:tl = nV:d:TV2 (423)
Tn:hl = n_.,{i':{:l

Ezen Osszefiiggések felhaszndlasdval a paraméterekre adédo rekurziv becslé-
sek:

g

by = L%EH (4.24)
g

by = "2_‘];*& (4.25)

bo = Ing1—by Va1 —b2V2n41, (4.26)
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ahol D = g1 (n41)%2 (n£1) — i2 (nt1)-

A fentebb levezetett paraméterekkel kapott joslé fiiggvénnyel a tilada-
golas veszélye elhdrult, igy az automatikusan vezérelt titrdldssal a nedves-
ségmeghatdrozds az ISO 9004 [91] eldirdsainak megfeleld mindségbiztositdsi
kovetelményeknek megfeleléen végrehajthatd, ami a kész progam fiiggelék-
ben kozolt kezelési itmutatdjabdl is kitinik.
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5. fejezet

ésszefoglalés

Jelen disszertdcioban ko6z6lt tudomanyos eredményeimet pontokba szedve
foglalom Ossze.

1. A robusztus regresszids eljarasokkal foglalkozé irodalom &ttekintését
egy ujszerd csoportositas szerint végeztem el, definidlva az elsé-, mésod-
és harmadfaji modellhibat

2. Egyvdltozos kalibracids fiiggvények paramétereinek becslésére robusz-
tus regresszios eljarasokat vizsgdltam, felhaszndlva az in. mindségjel-
lemzo faktort (quality coefficient) '

3. Azirodalomban megjelent linearis fuzzy regreszié egyvaltozés valtoza-
tat gy moddositottam, hogy a kapott paraméterekre vonatkozd sziik-
ségteleniil nagymértékil bizonytalansigot csfkkenteni lehetett

4. Az irodalomban megjelent linedris fuzzy regresszié olyan altaldnosi-
tdsdt végeztem el, mely nem a tobbszords integralok alkalmazdsdnak
segitségével tortént (melyek analitikus kezelése gyakran kivitelezhetet-
len), hanem n-dimenzés geometriai megfontoldsok alapjin

5. Az irodalomban megjelent fuzzy linearis regresszids eljarast igy mddo-
sitottam, hogy az robusztus becslévé vilt, igy az a kalibriciés modell
linearitdsanak kismértéki sériilése esetén is biztonsigosan hasznilhatd
marad

6. A bootstrap mddszer segitségével algoritmust dolgoztam ki a robusztus
eljardsokkal kiértékelt kalibricidkkal jésolt koncentraciék konfidencia
intervallummal t6rténé jellemzésére

74



7. Stabil és pontos vezérls algoritmust fejlesztettem a Karl Fischer-méd-
szerrel t6rténé vizmeghatdrozds automatikus irdnyitisira, a kezeld
program elkészitése sordn figyelembe vettem az ISO 9004 mindség-
* biztositdsi eléirdsokat

8. Munkam sordn az 6sszes felvet6dott numerikus problémaéhoz sajat fej-
lesztési, Turbo Pascalban irt programokat hasznaltam:

¢ a robusztus regresszios eljardsok Monte-Carlo médszerrel torténd
vizsgalatdhoz

o regresszioval kapott rezidudlisok grafikus szemléltetéssel t6rténo
statisztikai vizsgdlatdhoz

e a PREGO nevii LOTUS 1-2-3 tdblazatkezel6be integrélt robusz-

tus regresszids eljardsokat és a bootstrap mddszert alkalmazéd
program fejlesztéséhez

e linearis programozdsi feladat megvalésitdsdhoz ill. az abszolit
eltérések legkisebb 6sszege (LSA), az abszolit eltérések legkisebb
maximuma (LMA) és a fuzzy lineéris regresszié alkalmazdsihoz
sziikséges felhaszndldi feliilet kialakitdsdhoz

e robusztus regressziés eljardsok kalibracié soran torténd felhasz-
naldsahoz

e a bootstrap eljards segitségével megvaldsitott konfidencia inter-
vallumok megadasdt végzd program fejlesztéséhez

o Karl Fischer-médszerrel megvaldsitott automatikus vezérlési ned-
vességtartalom meghatdrozdsihoz

e a tobbvdltozds négyzetek legkisebb medidnja (LMS) és a tobbb-
valtozds linearis fuzzy regresszié paramétereinek meghatdrozdsa
globdlis optimumkeres6 (genetikus algoritmus) eljardssal (Unix
alatt C-ben feljlesztve)

Az eddig elért eredmények tovibbfejlesztése tovabbi elméleti és gyakor-
lati vizsgalodasokat igényel. Mdr most koérvonalazddik azonban egy lehet-
séges haladasi irdny, mely a kisérlettervezési médszerek, a kiilonbézé heu-
risztikus eljardsok (genetikus algoritmus, mesterséges neuronhilézatok), a
hipotézisvizsgalatok és a tobbvaltozds regresszié dltaldnosabb alkalmazdsat
(mintafelismerést, osztdlyozast) jeloli ki. Az elkovetkezd idészakban e terii-
leteken szeretnék mélyrehaté tudomdanyos vizsgalatokat folytatni.
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Novel Parameter Estimating Procedures Applied for

Evaluating Analytical Measurements

Summary

I showed the following scientific results in this dissertation.

1.

To sum up the robust regressions in the literature was used a new
concept for the systematization defining the model error of first, second
and third kind

. Some robust procedures were investigated to estimate parameters of

univariate linear calibration function using the quality coefficient

. The univariate version of the linear fuzzy regression was modified to

reduce the inappropriate uncertainty of the predicted parameters

The linear fuzzy regression was generalized not by multiple integration,
but by n-dimensional geometric concepts

. The fuzzy linear regression was modified to become robust, so it can

also use for only nearly fulfilled linear calibration model

. An algorithm was developed using the bootstrap method to characte-

rize the predicted concentrations obtained from calibration evaluated
by robust procedures

. Stable and precise algorithm was developed for automatic controlling

the moisture determination by Karl Fischer method, the program was
written taking into consideration the specifications of ISO 9004

. Developing several computer programs in Turbo Pascal for Dos and in

C for Unix
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Fuggelék

KARL-FISCHER TITRALAS VEZERLESE SZE-
MELYI SZAMITOGEPPEL cimii program keze-
lési utmutatodja

A program inditasa

A programot a kf.bat nevi file futtatdsdval lehet elinditani. A képernyon
bejelentkezik a fomeni a kovetkezo valasztdsi lehetdségeket felkindlva:

e FAKTOROZAS

e MERES

e EREDMENYEK MEGTEKINTESE
e JEGYZOKONYV

e PARAMETEREK BEALLITASA

e VEGE

A meni pontokat a ”Tab” ill. a ”Shift Tab” billentyik alkalmazasdval
tudjuk kijelolni, majd az ”Enter” billentyl lenyomdsdval jutunk a kivédlasz-
tott almeniibe.

A menii pontokat alkalmazdsuk logikai sorrendjében targyaljuk.

PARAMETEREK BEALLITASA

Ebben a menii pontban a titrdlds korilményeit befolyasold legfontosabb pa-
ramétereket lehet beallitani.
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A képerny6n megjelenik a paraméterek listaja, a valtoztathaté paramé-
terek mellett kék mezében sirga szammal ill. piros mezoben sarga szammal
jelenik meg az aktualis érték.

A BURETTA, a DEAD-STOP TITRALO ADAPTER és a pH-MERO
KESZULEK paramétereinek bedllitisa valik lehetové. A paraméterek koziil
megint csak a ”Tab” és ”Shift Tab” billentyilikke] valaszthatunk. A tovabbi
teendoket a megfelelé résznél ismertetjiik, de fehér karakterekkel mindig
megjelenik egy tomor ismerteto a képernyd jobb szélén. Ebbdl a ment
pontbdl az ”Esc” billentyli megnyomadasaval tdvozhat.

BURETTA

A "Maximdlis térfogat adag” cimszé mellett be lehet dllitani a maximadlisan
megengedett kiadagolhaté titralészer mennyiségét ul-ben. Az adat viltozta-
tdsdt négyféleképpen valdsithatjuk meg. Csokkenthetjik az értékét 10ul-rel
a "Kurzor Fel” billentytivel, csékkenthetjiik az értékét 100ul-rel a "Page Up”
billentytivel ill. ndvelhetjiik az értékét 10ul-rel a "Kurzor Le” billentyiivel
és novelhetjik az értékét 100ul-rel a ”Page Down” billentytvel.

A "Monitorozdsnal viarakozasi id6” cimszd mellett a jelstabilitds eléré-
sének megdllapitdsdhoz a jelek egymds utdni beolvasdsa kozott sziikséges
varakozasi idot lehet bedllitani ms-okban. Ezt az értéket a keveredés biz-
tositasdhoz sziikkséges id6 is befolydsolhatja. Az adat valtoztatdsat ismét
négyféleképpen valdsithatjuk meg. Csokkenthetjik az értékét 100 ms-mal a
?Kurzor Fel” billentytivel, csékkenthetjliik az értékét 1000 ms-mal a *Page
Up?” billentyiivel ill. novelhetjik az értékét 100 ms-mal a *Kurzor Le” bil-
lentytivel és novelhetjiik az értékét 1000 ms-mal a ”Page Down” billentyiivel.

A megjeleno értékek azonnal rogzilnek, igy nem kell semmilyen mas
billentyiivel elfogadtatni azt. A ”Tab” vagy a "Shift Tab” billentyik segit-
ségével ijabb paramétert valaszthatunk ki.

DEAD-STOP TITRALO ADAPTER
Végpont kapcsolasi szint

A "Végpont kapcsolasi szint” cimszé mellett azon dramrdsség értéket kell be-
allitani skdlarész egységben, amelynél a titrdlds befejezése szindékunk sze-
rint bekovetkezik. Ehhez dllitsa a dead-stop titrdlé egység mutatds miiszer
izemm6dvalté gombjit ”U Pol” polarizaciés fesziltség méréshez! Ezutdn
a forgatégomb segitségével illitsa be a megfelel6 skdlarész értéket! Ha si-
keriilt, ezt jelezze az "ENTER” billentyl lenyomdsaval, ekkor a képernyon
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is megjelenik a kivalasztott érték. Ezutan a miivelet utan a polarizaciés
fesziiltséget mindig djra be kell dllitani!

Az drammérd végkitérése mindig 50 A lesz, az dramvaltas iranya "INCR..”,
azaz novekvo allapotban legyen, és a kapcsolds "M AN.” azaz manudlis, kézi
vezérlés allapotban legyen.

Polarizalé fesziiltség

A 7Polarizdlé fesziiltség” cimsz6 alatt lehet beallitani a polarizdcids fesziilt-
séget mV-okban. Ehhez éallitsa a dead-stop titrald egység mutatds miszer
uzemmadvalté gombjit U Pol” polarizacids fesziiltség méréshez! Ezutan a
forgatégomb segitségével allitsa be a megfelelo fesziiltség értéket! Az "EN-
TER” billentyi lenyomdsdval a képerny6n is megjelenik a kivilasztott érték.
Ha ebben vagy az el6z6 beallitdsnal a képernyon megjeleno értékek és a ké-
szilék altal mutatott értékek jelentésen eltérnek (jobban mint 1-2%), akkor
a kovetkez6 pontban részletezett médon hitelesitse a pH-mérot.

Ebbdl a menii pontbdl csak akkor tud kilépni, ha utoljira a polarizacios
fesziiltséget dllitotta be!

pH-MERO KESZULEK
pH-méro hitelesitése

A "pH-méré hitelesitése” cimszé alatt kell elvégezni a hitelesitést, ha az eld-
z6 pontban emlitett eltérések adédnak ill. a napi méréskezdés, ujbdli gép
bekapcsolds utdni els6 tevékenységként. Eldszor mindig ellenérizzik, hogy a
Dead-Stop késziilék és a pH-mér6 nullpontja azonos legyen! Ehhez illitsa a
Dead-Stop titrdlé egység mutatés miszer iizemmdédvalté gombjdt ”U-pol”
polarizacids fesziiltség méréshez, majd a forgatégomb segitségével nulizza
ki a miiszert. A pH-mérd késziilék "BUFFER” feliratd gombjaval &llitsa be
a O0mV értéket és ha kész nyomjon "ENTER”-t! A pH-méré hitelesitésénél
allitsa a Dead-Stop titrdlé egység mutatds miiszer izemmddvalté gombjat
”U Pol” polarizacids fesziiltség méréshez! Ezutdn a forgatégomb segitsé-
gével dllitson be 250mV fesziiltség éréket! Ha sikeriilt, nyomjon ENTER-t.
Most a forgatégombbal 500mV fesziiltséget allitson be! Ha ezzel is elkésziilt,
ismét nyomjon ENTER-t, igy egy kétpontos kalibraciét végzett a pH-méro
hitelesitése végett. Ezekutdn djbdl allitsa be az el6z6 pontban emlitett pa-
ramétereket az ott emlitettek alapjin!
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FAKTOROZAS

Naponta ill. bizonyos id6 eltelte utin (ami lehet néhdny é6ra is) a Karl-
Fischer-oldat faktordt ijb6l meg kell hatdroznia. Mindig legyen biztos ben-
ne, hogy elézdleg a parmétereket a megfelels értékekre allitotta!

A faktorozds a metanol oldat viztelenitésével kezdédik, mely a titrald
edényben a tisztitds sordn esetlegesen bent maradt viznyomok eltdvolitdsit
célozza. A metanol-tartalmi biirettabdl toltson a celliba metanolt, majd
a cella razogatdsdval oblitse le a cella belsé falait! Zirja el a metanolt tar-
talmazé biiretta csapjat, majd nyissa ki a Karl-Fischer-oldatot tartalmazé
bliretta csapjdt és nyomja meg az "ENTER” billentit!

Az "ENTER” billentyl lenyomdasdval elinditottuk a titrildst, mely telje-
sen automatikusan megy végbe. A képernyon folyamatosan nyomon kovet-
hetjik az eseményeket.

A "Fogyott mérdoldat térfogata” cimszé mellett a mar kiadagolt Karl-
Fischer-oldat mennyiségét lathatjuk wl-ben.

A "Cellan atfolyé dram” cimszd mellett lathatjuk az eldzéleg bedllitott
végpontot skr. (azaz skdlarész) egységben, valamint az aktudlis dramértéket
szintén skr. egységben. Lathatunk még két értéket melyek a monitorozis
alatt leolvasott értékek itlaga és az atlag szérdsa. Az djabb adagolds nem
kovetkezik be addig, amig a szdrds értéke egy adott érték ald nem csékken.
Ezzel biztositjuk az dramerdsség dlland6sdgit, azaz a teljes elkeveredést.

A "Végpont atcsapidsok szama” cimszé mellett annak maximalis értéke
és aktudlis értéke lathatd.

Az?” Atcsapés utdn eltelt id6” cimszd mellett annak minimalis értéke és
aktualis értéke lathaté masodpercekben. Minden atcsapds utdn a minimalis
értéknek megfeleld ideig varakozik a program, majd ijra leolvassa az ira-
merdsséget, ha az jra a végpont ald esett vissza a titrdlas folytatddik, amig
a maximalisan megengedett végpont dtcsapasok szamat el nem értiik.

A metanol oldat viztelenitése utin a valddi faktorozds kovetkezik. A
képernyén megjelenik a faktorozds sorszdma és az, hogy 6sszesen hény fak-
torozast kell elvégezni, pld. 1. faktorozds a 3-bél. Ezen a képernydn kell
beadni a bemért bérax tomegét is. Figyelem! Minden titrilds elott toltse
fel a Karl-Fischer-oldatot tartalmazé biirettét!

A bérax tomegének beirdsa utdn, majd az "’ENTER” billentyli megnyo-
masaval elkezdédik a titrdlds. A képernyén az eldbb jellemzett cimszdk
jelennek meg, melyek jelentése ugyanaz, mint ahogy mér elmagyardztuk. A
titralas befejezodése soran hirom eset fordulhat el6:
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1. A titrdlds normadlisan befejezddik, az dramerdsség elérte a végpontot,
vagy a végpont atcsapdsok szama elérte maximdlis értékét.

2. Afogyott méréoldat mennyisége til csekély. Ekkor a program nagyobb
mennyiségi anyaggal ismételteti meg a mérést.

3. A fogyott mérboldat mennyisége tul sok. Ekkor a program kisebb
mennyiségii anyaggal ismételteti meg a mérést.

A faktorozdshoz eloirt Osszes titralds sikeres befejezodésével a program
kiirja a Karl-Fischer-oldat faktordt és ezen érték szérdsit. Az eredmény
automatikusan egy faktor dllomanyba keriil.

A faktorszamitas a kovetkezd képletek alapjin torténik:

mys . .0.47238
Foéraxi = bom{/{ (5.1)
n f . 1
Fosrax = . ~2omRx, (5.2)
=1

ahol fysrax @ Karl Fischer-oldat béraxszal meghatarozott hatéértéke (1ml
oldat hiny mg vizet mér), n a faktorozdshoz sziikséges ismételt titraldsok
szdma, mygray. az ¢ titrdldshoz bemért bérax tomege mg-ban, 0.47238
mg(H,0)/1mg(bérax) a béraxban 1évé viz relativ mennyisége és V; az 1.
titrdlas sordn fogyott K-F-oldat térfogata.

A faktorozdst az "Esc” billentytvel lehet abbahagyni valamilyen vész-
helyzet esetén, hacsak nem vagyunk adatbeviteli utasitdsnal. Ekkor irjunk
be egy elfogadhaté adatot és csak ezutdn nyomjuk meg az ”Esc” billentytit.

MERES
A mérés sordn a vizsgilt anyag viztartalmdat hatdrozzuk meg az el6zéleg
faktorozott Karl-Fischer-oldattal. Eloszor a mérendd anyag azonositéjit
kell megadnunk, melyhez az &sszes fehér billentyiin 1évé karaktert felhasz-
ndalhatjuk, szerkeszthetjiik, torélhetiink karaktereket.

Az azonosité beaddsa utdn a mérend6 anyag mértékegységét kell kiva-
lasztanunk, annak fiiggvényében, hogy térfogatdt (ml), vagy témegét (mg)
mértiik. A sz6koz (”Space”) billentyiivel viltogathatjuk a mértékegységet,

amig a megfelelé meg nem jelenik, ezt az "ENTER” billentyiivel fogadjuk
el.
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Ezutdn a program az anyag tomegét/térfogatdt (attdl figgben, hogy mit
véalasztottunk eldzoleg) kéri be. Mdr most jelzi, hogy hanyadik mérésnél
tartunk a sziikségesen elvégzendok koziil, pld. 1. mérés a 3-bdl.

Az "ENTER” billentyl lenyomadsdval elinditottuk a titrdlast, mely telje-
sen automatikusan megy végbe. A képernyon folyamatosan nyomon kovet-
hetjik az eseményeket.

A "Fogyott méréoldat térfogata” cimszo mellett a mar kiadagolt Karl-
Fischer-oldat mennyiségét lathatjuk ul-ben.

A "Cellan atfolyé dram” cimszd mellett lathatjuk az elézéleg bedllitott
végpontot skr. (azaz skdlarész) egységben, valamint az aktudlis dramértéket
szintén skr. egységben. Lathatunk még két értéket melyek a monitorozds
alatt leolvasott értékek atlaga és az atlag szordsa. Az djabb adagolds nem
kovetkezik be addig, amig a szérds értéke egy adott érték ald nem csokken.
Ezzel biztositjuk az dramerosség dllanddsdgat, azaz a teljes elkeveredést.

A "Végpont dtcsapasok szama” cimszé mellett annak maximalis értéke
és aktudlis értéke lathatd.

Az 7 Atcsapés utdn eltelt id8” cimsz6 mellett annak minimalis értéke és
aktudlis értéke lithaté masodpercekben. Minden dtcsapds utdn a minimalis
értéknek megfelel6 ideig varakozik a program, majd djra leolvassa az ara-
merosséget, ha az jra a végpont ald esett vissza a titrdlas folytatddik, amig
a maximadlisan megengedett végpont dtcsapdsok szdmat el nem értik.

A titrdlas befejez6dése sordn hirom eset fordulhat eld:

1. A titrdlds normdlisan befejezodik, az iramerOsség elérte a végpontot,
vagy a végpont atcsapasok szama elérte maximalis értékét.

2. A fogyott mérooldat mennyisége tul csekély. Ekkor a program nagyobb
mennyiségl anyaggal ismételteti meg a mérést.

3. A fogyott méréoldat mennyisége tul sok. Ekkor a program kisebb
mennyiségi anyaggal ismételteti meg a mérést.

A méréshez eldirt Gsszes titrdlds sikeres befejezodésével a program kiirja
a vizsgalt anyag viztartalmat és ezen érték szdrdsat.

Az eredmény automatikusan egy eredmény dllomanyba keriil, melyet az
"EREDMENYEK MEGTEKINTESE” menii pontban nézhetiink meg.

EREDMENYEK MEGTEKINTESE

Ha az adott alkonyvtiarban nem létezik eredmény allomany, akkor a program
figyelmeztetése utdn kiléplink a menii pontbdl.
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Ha léteznek eredmény allomanyok akkor ezeket a képerny6 bal oldaldn
egy oszlopban ldthatjuk. A ”"Kurzor Le” ill. a ”"Kurzor Fel” billentyiikkel
jarhatjuk végig az dllomanyokat, elérve a képernyére nem férteket is. Az
allomanyok havi osztdsban tartalmazzdk az eredményeket, azaz egy adott
hénapban mért értékek egy allomanyba kerillnek. A "Kurzor Jobb” billen-
tytivel betekinthetiink a kivilasztott eredmény dllomanyba.

Az adott eredmény allomany tartalmat kapjuk a képernydre irva. Ha az
adott honapban tobb mérést is taroltunk, akkor azokat a "Kurzor Le” ill.
a "Kurzor Fel” billentyiikkel érhetjik el. Megtudhatjuk, hogy az dllomany
hany mérést tartalmaz, éppen melyik adatot nézziikk. A mérés ditumit, a
mért anyag azonositéjit, a mért anyag viztartalmat és a viztartalom szé-
rasat. A képerny6n megjelend informacidkat bekapcsolt nyomtatd esetén a
?Print Screen” billentyi megnyomdsdval nyomtathatjuk ki tovabbi feldolgo-
zas végett.

U jabb dllomanyok kijeloléséhez a ”Kurzor Bal” billentyii megnyomadsaval
jutunk és ismét az ezen fejezet elején mondottak lépnek érvénybe.

JEGYZOKONYV

Az ISO 9004 iltal megkovetelt jegyzOkonyv formdtumot lehet elédllitani a
meglévs eredmény dllomdanyok tartalmanak felhasznalasdval.

VEGE

Ennél a menii pontndl a program befejezését lehet kérni, melyet egy mege-
rosités utan érhetiink el.
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