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Sonnet-to Science

Science! true daughter of Old Time thou art!
Who alterest all things with thy peering eyes. 

Why prey est thou thus upon the poet’s heart, 
Vulture, whose wings are dull realities?

How should he love thee? or how deem thee wise 

Who wouldst not leave him in his wandering 

To seek for treasure in the jewelled skies,
Albeit he soared with an undaunted wing? 

Hast thou not dragged Diana from her car?
And driven the Hamadryad from the wood 

To seek a shelter in some happier star?
Hast thou not torn the Naiad from her flood, 

The Elfin from the green grass, and from me 

The summer dream beneath the tamarind tree?

/Edgar Allan Poe/
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Szonett a Tudományhoz

Tudomány, te, a vén idő szülötte,
Ha mire nézel, más lesz az, sötét. 
Szárnyad a zord való, mordképü ölyv, te, 
Miért fosztod ki a költő szivét?

Hogyan becsüljön téged, hogy szeressen, 
Ha nem hagyod, hogy bolygva a merő 

Ékköves égen, kincseket keressen?
Hisz oly bátran szállt az egekre ő!

Nem szállítottad földre Dianát,
Nem verted fák közül ki a driádot, 
Hogy költözzön egy jobb csillagra át?

Nem a habok közül a szép najádot, 
A pázsitról a tündért s magamat 

Az álmaimból nyári fák alatt?

/fordította Komlós Aladár/
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Bevezetés

A gazdasági élet egyre több területén van és lesz szükség az analitikai ké­
miai mérések által szolgáltatott minőségi és mennyiségi jellemzők felhasz­
nálására. A piacokon csak a jó minőségű árut lehet haszonnal eladni és 
ezek előállításának folyamatában a minőségbiztosítás meghatározó szerepet 
kapott [85,86,87,88,89,90,91,92]. A minőség betartásához és ellenőrzéséhez 
tehát nagy számú analitikai meghatározás szükséges, melyeket legtöbbször 
automatikus sorozatmérések keretében hajtanak végre. A mintavétel és a 
mintaelőkészítés az analitikai mérés legérzékenyebb pontja, de rögtön ezek 
után a kalibráció helyes végrahajtása és alkalmazása következik. A nemré­
giben Burger Kálmán akadémikus által írt ”A mennyiségi analízis alapjai: 
kémiai és műszeres elemzés” című igazán nagyszerű könyve kellő mélységű 
bevezetést ad az alkalmazott módszerek kémiai, fizikai-kémiai valamint mű­
szertechnikai kivitelezésük hátteréről, de sajnálatos módon a nyert adatok 
feldolgozásához ill. kiértékeléséhez szükséges kemometriai módszereket meg 
sem említi.

Bujtás Piroska és Leisztner László az ’’Analitikai mérési eredmények mi­
nőségbiztosítása” című munkájukban az egzakt tárgyalás mellőzésével, a 
gyakorló analitikusok általános matematikai és statisztikai felkészültségé­
hez alkalmazkodva vázolják a szükséges kemometriai módszereket. Jelen 
disszertáció ezen két mü kiegészítőjeként a kalibráció kérdéskörében pró­
bál gyakran új nézőpontból szemlélt régi és új eljárások bemutatásával az 
analitikusok segítségére sietni, hogy a jól elvégzett kémiai kalibráció a leg­
megfelelőbb kemometriai módszerrel kerüljön kiértékelésre. Ezáltal a lehető 
legtöbb és legmegbízhatóbb információk birtokába juthatunk.

Annak illusztrálására, hogy miért kell a klasszikus, több évtizede elfo­
gadott kiértékelő eljárásokat felülvizsgálni és olykor újakkal helyettesíteni, 
vizsgáljuk meg a normalitás (igen gyakran minden ellenőrzés nélküli) elfo­
gadásának helyességét.

A normális vagy Gauss-eloszlás (a következőkben inkább a Gauss-elosz-
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lás elnevezést használjuk, mivel mint kiderül, a többi eloszlás nagyon is nem 
abnormális) jogos használatának támaszát gyakran a centrális határelosz- 
lástételekben látják biztosítottnak. Persze sokan elfelejtik, hogy bizonyos 
feltételeknek teljesülniük kell a tételek alkalmazásához. A legegyszerűbb 
megfogalmazásban nagyon sok azonos eloszlású, véges szórású véletlen vál­
tozó átlaga lesz Gauss-eloszlású. Napjaink műszereinek pontossága azonban, 
egyre inkább kis számú, eltérő eloszlású hibatagokból tevődik össze. A tétel 
Ljapunov-féle alakja még menthetné a helyzetet, hiszen az a nem azonos 
eloszlásból származó adatok átlagaira határozza meg a normális eloszlást, 
ha az eloszlások első, második és harmadik momentuma létezik, valamint a 
harmadik momentumoknak összességükben egyre kisebbeknek kell lenniök 
a szórásokhoz képest. Nem szabad figyelmen kívül hagyni azonban az olyan 
eloszlásokat sem, melyeknek nincs véges szórásuk (pld. Cauchy-eloszlás). 
A fő probléma azonban az, hogy a mérőműszerek által szolgáltatott jelek 
többsége is csak néhány különböző eloszlás kombinációja, valamint a gya­
korlatban mindig véges mintaszámmal dolgozunk, így érvényes Cramér ne­
vezetes tétele, mely szerint a normális eloszlásnak minden faktora normális 
eloszlású. Ez azt jelenti, hogy véges számú valószínűségi változó összege 
csak akkor lehet Gauss-eloszlású, ha már mindegyik eleve Gauss-eloszlású 
volt. Ilyet a gyakorlatban megkövetelni nem lehet, és így a Gauss-eloszlás 
mellett (a gyakorlati tapasztalatokkal egyetértésben) az elméleti megfontolá­
sok sem szolgáltatnak kellő támaszt. Álljon itt Poincare [108] szarkasztikus 
megjegyzése ezzel kapcsolatban:

Mindenki hisz a normális eloszlás univerzalitásában:

a FIZIKUSOK azért, mert azt hiszik, hogy a matematikusok igazolták logi­
kai szükségszerűségét,

a MATEMATIKUSOK pedig azért, mert úgy hiszik, hogy a fizikusok labo­
ratóriumi méréseikkel bizonyították azt.

A gyakorlatban Clancey [30] csaknem 50000 kémiai analízis eredményét meg­
vizsgálva 250 féle eloszlást tudott azonosítani. Ezek 10-15 %-a volt csak 
egyértelműen Gauss-eloszlású és kb. 50 %-ot tettek ki a szimmetrikus el­
oszlások. így a gyakorlatban is cáfolni lehetett az a priori meglévő Gauss- 
eloszlást.

A kémiai mérések kiértékelésével, a kémiai méréselmélettel a kemometria 
(chemometrics), mint új tudományág foglalkozik. A Chemometrics Society 
által adott meghatározás szerint a kemometria
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• az optimális mérési folyamatok és kísérletek tervezésére, vagy kiválasz­
tására

• kémiai adatok elemzésével maximális kémiai információ előállítására

szolgáló matematikai és statisztikai módszereket alkalmazó kémiai elvek 
összessége.

Ma már számos kemometriával foglalkozó könyv [20,84,116] és összefog­
laló tanulmány [1,17,21,22,46,98,129] áll rendelkezésünkre az alapvető mód­
szerek közötti eligazodás megkönnyítésére.

Veress [133] monográfiájában a 0.1 ábrán látható módon építi fel az infor­
mációszerzés folyamatát. Dolgozatomban az analitikai kémiai ismeretszer­
zésben használt kalibráció témakörével foglalkozom. A kalibrációs ismeret 
legtöbbször az alkalmazott kalibráló függvény paramétereinek meghatározá­
sát jelenti, azonban a regressziós módszer robusztussága (mely fogalmat a 
későbbiekben részletesen elemzünk) általában kívánatos kell legyen, hiszen a 
matematikai modellt nem dolgozhatjuk ki az egyelőre nem ismeretes általá­
nosabb körülményekhez, azonban az szükséges lehet, hogy a feltételektől való 
kis eltérés csak kis torzítást okozzon a végeredményekben. Az analitikai ké­
miai mérések kiértékelése jórészt empirikus modellválasztásokon alapulnak, 
így nagy szükség van a modell érzéketlen viselkedésére. Robusztus tulaj­
donsággal bíró eljárásra példaként említhető még a kvantummechanikában 
alkalmazott perturbációszámítás, amit arra az esetre dolgoztak ki, amikor 
a vizsgált fizikai rendszer Hamilton-operátora csak közelítőleg számítható, 
azonban az csak kicsit tér el egy egzaktul megoldható probléma Hamilton- 
operátorától és várható, hogy a megoldás is csak kicsit tér el a pontosan 
megoldható feladat megoldásától.
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1. fejezet

Az irodalom áttekintése

A kalibráció során alkalmazható paraméterbecslö eljárások irodalomi átte­
kintése egy újszempontú rendszerezés keretében Bard [9] útmutatásainak 
továbbgondolása alapján történik. Felhasználtuk még a Beck és Arnold [14] 
által összeállított és részletesen tárgyalt alapvető statisztikai feltevéseket, 
melyeket 8 csoportba sorolhatunk és teljesülésük ill. nem teljesülésük sze­
rint kapcsolat teremthető az általunk elképzelt csoportosítással:

1. Additív mérési hiba

0 nem additív 

1 igen, additív

2. Nulla várható értékű mérési hiba

0 nem nulla várható értékű 

1 igen, nulla várható értékű

3. Állandó varianciájú hibák

0 nem állandó variancia 

1 igen, állandó variancia

4. Nem korrelált hibák

0 korrelált hibák
1 igen, nem korreláltak a hibák 

5. A hibák normális eloszlása
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0 nem normális eloszlású hibák 
1 igen, normális eloszlású hibák

6. A hibák leírhatók ismert statisztikai paraméterekkel

0 a hibák kovariancia mátrixa csak egy szorzó faktortól eltekintve is­
mert

1 igen, a hibák kovariancia mátrixa teljesen ismert

7. A független változók hiba nélküliek

0 nem, a független változók hibákkal terheltek 
1 igen, a független változók hiba nélküliek

8. A hiba eloszlások paraméterei nem véletlenszerűek és nincs rájuk vo­
natkozó előzetes információnk.

0 nem, véletlen paraméterek, de nincs előzetes információ
1 igen, nemvéletlen paraméterek és nincs előzetes információ
2 normális eloszlású paraméterek ismert várható értékkel és kovarian­

cia mátrixszal, minden mérés ugyanebből az eloszlásból származik 
4 nemvéletlen paraméterek, de ismeretesek bizonyos normális szub­

jektív előzetes információk

Paraméterbecslési modellek1.1

A kalibrációs függvény paramétereinek meghatározása egy paraméterbecs­
lési modell feliállítását igényli:

(1.1)9( z,p) = 0,

ahol a g(.) implicit függvény teremt kapcsolatot a z változók között, a be­
csülendő p paraméterekkel. A z adatok két részre oszthatók: v melyek 
hibamentesen mérhetők és w melyek csak hibával terhelten mérhetők.

Az ilyen modell pontosabb megfogalmazásához esetenként azt kell meg­
vizsgálni, mi mindent tudunk a kiválasztott kalibrációs rendszerről. Sokkal 
jobban hiszünk a kalibrációs függvény alakjában, mint méréseink pontossá­
gában? Vagy éppen fordítva, méréseink pontosak, azonban a függvény nem 
írja le tökéletesen a mért folyamatot? Talán mind a mérés, mind a függvény 
terhelt bizonyos előre nem kalkulálható zavaró tényezőkkel? Az alkalmazott 
modell típusa függ az előző kérdésekre adott válaszoktól.
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a, Tételezzük fel, hogy az adatok mérési hibával terheltek, de az alkalmazott 
függvény pontosan leírja a kalibrációs folyamatot:

p(v,w,p) = 0,

A fenti megfogalmazáson alapuló modellhibát elsőfajú modellhibának 
nevezzük.

(1.2)

b, Tegyük fel, hogy a kalibrációs függvény a bizonytalan számos hatás fi­
gyelmen kívül hagyása miatt, ehhez képest a mérések hiba nélkül ki- 
vitelezhetöek:

9(v,p) = 7,
Az így jelentkező modellhiba a másodfajú modellhiba.

(1.3)

c, Mind a mérés, mind a függvény felállítása csak bizonytalansággal végez­
hető el:

<?(v, w, p) = 7,

Ennek során a harmadfajú modellhibát kell kezelnünk.

(1.4)

Paraméterbecslés elsőfajú modellhiba esetén

Sztochasztikus modell

Kendall [72,73] adta meg az (1.2) függvény paramétereinek meghatározá­
sához szükséges feltételrendszert, feltéve hogy (1.2) az у = /(x, p) explicit 
alakra hozható:

a. Az у = /(x, p) folytonos függvény határos és zárt (azaz kompakt) a
В x А Э R2 x Rq+1(q > 0) tartomány felett.

b. Az у = f(x, p) függvény Taylor-sorba fejthető a tartomány minden pont­
jában, ahol / definiálva van.

c. A mérési hibák szuperponáltak (additív hibák)
í/j(megfigyelt érték)= у ° (valódi érték)-[-^(mérési hiba) és 
Xj(megfigyelt érték)= x°(valódi érték)+uj(mérési hiba).

d. A valódi értékek kielégítik az explicit függvénykapcsolatot, azaz
»? = /(*”> p)-

e. A mérési hibák az Uj folytonos valószínűségi változók realizációi, várható
értékük E ^f/jj = 0, к itt és a továbbiakban x-et vagy y-1 helyettesíti.

1.1.1

1.1.1.1

7



Az a.-e. feltételek még mindig nem elegendőek a probléma megoldásához. 
További megszorításokat kell tennünk Uj-те vonatkozóan:

f. Az Uj-к sztochasztikusan függetlenek.

g. Az Uj-к ismert, véges varianciával rendelkeznek oo > D [uj j > 0.

Ekkor a (pmegoldást a következő nemlineáris normál egyenlet­
rendszer adja:

= ((2/i “ /(*i> P)) [Uj] -f- (xj - xjf [Uj]). (1.5)2 • D~2 ■D-2

i=1

QF minimálissá válásához a következő egyenleteknek kell teljesülniük:

2 dVj

A fenti normál egyenletrendszer általában nemlineáris, így megoldásá­
hoz numerikus úton juthatunk el, pld. Newton iteráció segítségével. A 
nemlineáris paraméterbecslő eljárásokról jó összefoglaló található [131,132] 
irodalmakban.

Vizsgáljuk meg a legegyszerűbb esetet, amikor a függvény kapcsolat line­
áris у = ao + a\x. Milyen további feltételeknek kell teljesülniük?

1«£ = о.
2 dpi

1^=0, 
2 dxj ’

(1.6)

h. A mérési hibák homoszkedasztikusak, azaz D2 = ßk.

ói (yj - ä0) + ßxj
(1.7)ii =

Él + a?ßx T “l

(1.8)a0 — у Qi\x

T.u(y> - (1.9)ái —
2 Е"=х(У1 - y)(xj - x)

Ar - M*Í - *))2 + (£?=i(w - УУ
2Ej=i(Vj - y)(*j - *)
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ahol у = Y^ — és x = Y^ —.4-' n 4n
j=ii=i

ói csak abban az esetben számítható, ha a p- arány ismert. Ha ßy = ßx, 
akkor ortogonális regressziós problémáról beszélünk. Ha ßx = 0, vagyis 
az i. feltétel teljesülése esetén direkt kalibrációról, a ßy = 0 esetén indirekt 
kalibrációról beszélhetünk. Az irodalomban az indirekt kalibrációra az inverz 
kalibráció elnevezés is elterjedt [76], jelen dolgozatban az inverz kalibráció 
terminust a kalibrációs függvény inverzének használatára tartjuk fenn, azaz 
a mérési jelekhez tartozó koncentrációk becslését végrehajtó eljárásra.

A következő feltétel teljesülése esetén a paraméterek meghatározásához 
még egyszerűbb formulákat kapunk.

i. Az Xj értékek nem valószínűségi változók reprezentánsai, hanem ismert, 
konkrét értékek, azaz Xj (megfigyelt érték)= x°(valódi érték)

E?=i Zj E?=i Уj - E?=i xj E?=i XjVj (1.10)űq —

_ n Ej=i хзУ] - E"= 1 x3 Ej=! Уз (1.11)ái =
»£”=i*j - (E”=i*í)2

Fokozatosan szigorodó feltételek láncolatán keresztüljutottunk el a legki­
sebb négyzetek paraméterbecslö eljárással kapott formulákhoz, melyek által 
minimális varianciájú (hatásos) és torzítatlan becslést kapunk a paramé­
terekben lineáris függvények körében. Fontos megemlíteni, hogy az eddigi 
eredményeink elérése során az иmérési hibák eloszlásait csak az f.,g.,h. (az 
első és második momentumokra vonatkozó) és i. feltételekkel rögzítettük, 
így pld. típusáról sem rendelkeztünk [74]. Egyértelműen meg kell adnunk 
a mérési hibák eloszlását leíró összefüggést, ha a becsült paraméterek va­
lamilyen klasszikus módszerrel történő jellemzését is el kell végeznünk. Ez 
utóbbi probléma egy más úton történő megoldására a későbbiekben még 
visszatérünk.

Kalibrációs feladatok során az у = f(x, p) függvény következő alakját 
használhatjuk (áttérve a valószínüségszámításban megszokott jelölésrend­
szerre, az / és g betűk ezután valószínűségi sűrűségfüggvényeket jelölnek):

(1.12)7? = C(x,p) + 6,

9



ahol т] a mérőkészülék által szolgáltatott jel, mint valószínűségi változó, z 
a bállított koncentráció (feltételezetten hibamentes), p a C(.) kalibrációs 
függvény meghatározandó paramétervektora, <5 a mérési hibát reprezentáló 
valószínűségi változó.

Az ismert paraméterbecslési eljárásokat az alábbi 3 kategória valamelyi­
kébe sorolhatjuk származtatásuk szerint:

• vektornormák minimalizálása alapján előállított eljárások,

• eloszlásfüggvények funkcionáljál alapján előállított eljárások,

• teszt statisztikák alapján előállított eljárások.

Ezen újszerű csoportosításnak megfelelően fogunk megvizsgálni néhány 
jellemző esetet az idevonatkozó irodalomra támaszkodva.

Vektornormák minimalizálása alapján előállított eljárások, 
vektornormák a távolság fogalom általánosításai. Az előbb levezetett legki­
sebb négyzetek módszerét például az Euklidészi norma segítségével kaptuk 
meg. Ez a norma több más normával rokonítható, melyeket összefoglalóan 
Lp normáknak nevezünk:

A

i
Lp norma : Lp =|| z ||p= — ^ | z,- |p (1.13)

Mint említettük a vektor normák a távolság fogalom általánosításai, így 
vektorok különbségeire is értelmezhetjük őket. Minimalizálva most ezt a 
normát megkapjuk a legkisebb távolságot a megfigyelési pontok (kalibrációs 
pontok) által alkotott vektor és azon lineáris altér között, melynek dimenzi­
ója a kalibrációs függvény paramétereinek számától függ. Ha a kalibrációs 
függvény nem lineáris a paraméterekre vonatkozóan, akkor bonyolultabbá 
válik a helyzet, hiszen az altér sem lesz lineáris. Nézzünk néhány példát az 
Lp normákra.

P
ha n páratlan*№)

1 Ll =|| z - Zq ||i = I Xi - x0 I médián : xq <
zm+g(T+o ha n páros2

2 L2 =|| x - Xjo ||= I xí - z0 I2 átlag : z0 = £ £ xí

~ _ Il+InX0 —oo Zoo =|| z - Zq ||oo= max, | zt- — xq | sávközép :
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fd e

1.1 ábra: Az L\ (a,d), L2 (b,e) és az L^ (c,/) vektornormák 2 ill. 3 
dimenziós alakjai

ahol :c(j) a j. rendezett megfigyelés és x a megfigyelések vektora. Egyvál­
tozós esetben Хд a jósolt helyparaméterből alkotott vektor (a vektor összes 
eleme egyenlő xo-val). Különböző becslök neveit és formuláit is feltüntettük, 
melyeket a normák minimalizálásával nyertük. Az 1.1 ábrán a fenti három 
norma alakját vizsgálhatjuk meg, mint 2 ill. 3 dimenziós vektorok hosszát.

Magasabb dimenziókban az alakjuk hipergömb, hiperoktaéder és hiper- 
kocka lesz.

Többváltozós esetben хд egy olyan altér lesz, melyet a kalibrációs függ­
vény parméterei feszítenek ki. L\ minimalizálása egy lineáris programozási 
feladattal oldható meg [119,44]. Az L2 probléma a jól ismert legkisebb négy­
zetek módszerét szolgáltatja [113]. Loo az extrém értékek statisztikájában 
játszik fontos szerepet [49], valamint minimax problémák esetén [58]. ioo 
minimalizálása szintén lineáris programozási feladat.

A következő távolság mértéket meglepő módon definiáljuk, úgy hogy az
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összegzés helyett produktum képzést használunk: [123]

Мп И+*?]}’”• (1.14)

ahol
x\3E (g2+z?)£2 = 1E Míf

£-t tehát a fenti rekurzív formulával definiálhatjuk és az adatok egyfajta 
szórtságát fejezi ki, a koncentrálódás mértékét jelzi. A becslö eljárás neve, 
melyet a P minimalizálásával nyerünk leggyakoribb érték (most frequent va­
lue) [123].

Végül megemlítünk még egy vektor normát, melyet az Lp-1 definiáló 
képletből úgy nyerhetünk, hogy az összegzést a médián képzés operátorára 
cseréljük:

" 1 j p
— median {| xí |p} 
n (1.15)Mp norm : Mp =

Az irodalom csak ap = 2 esettel foglalkozik és az eljárás a négyzetek legkisebb 
mediánja (least median of squares) nevet viseli [109].

Eloszlásfüggvények funkcionáljai alapján előállított eljárások, 
gyakorlatban legtöbbször feltételezhetjük, hogy bármely becslés csak a mé­
rési adatok tapasztalati eloszlásától függ, azaz a becslést az Fn tapasztalati 
eloszlásfüggvény funkcionáljának tekinthetjük. A T becslöt gyakran valami­
lyen hipotetikusan feltételezett F valószínűségi eloszlásból származtatjuk, 
így T(Fn) egy nemparametrikus becslö lesz, de a tulajdonságait a T(G) vi­
selkedésének tanulmányozásával kell levezetnünk a megvalósuló G számára 
F környezetében. Ez a probléma az elsőfajú modellhiba példája: vegyünk 
egy modellt, amely leírja a mérési jel és a koncentráció közötti kapcsolatot a 
mérési hibák eloszlásával együtt, de ez az eloszlás csak feltételezésen alapul. 
Használhatjuk azonban az F eloszlásfüggvényt G helyett.

Most már megfogalmazhatjuk a robusztusság kvalitatív definícióját [50]: 
a becslés robusztus, ha a becslések eloszlása egyenletesen folytonos funkci­
onálja az anyaeloszlásnak, azaz közel fekvő anyaeloszlásokhoz a becslések 
közel fekvő eloszlásai tartoznak

(a Prohorov-távolság G és F között kicsi).
A robusztusságot kvantitatívan kétféleképpen mérhetjük. Egy becslö 

globális érzékenységét az összeomlási ponttal (breakdown point) [58,50,37]

A
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adhatjuk meg (az irodolamban a kvantitatív robusztusság fogalom is haszná­
latos), mely egyszerűen fogalmazva a kiugró értékek (melyek akár végtelen 
nagyok is lehetnek) azon legkisebb hányadát jelenti, amelynél a becslö már 
minden határon túli (gyakorlatilag végtelen nagy) értékeket is szolgáltat, 
tehát a jelentős perturbációk hatását képes leírni.

A hatásfüggvény (influence function) [51,52], vagy infinitezimális robosz­
tusság lokálisan jellemzi a robosztusságot. Leírja, hogy a becslö hogyan 
változik egyetlen pontban infinitezimális perturbáció hatására. Egy becs­
lö robusztus, és eképpen az elsőfajú modellhibát is képes kezelni, ha az 
összeomlási pontja elegendően nagy valamint a hatásfüggvénye korlátos és 
folytonos.

Következzen néhány példa az előzőekben részletezett gondolatok alapján 
levezetett paraméterbecslő eljárásokra.

Momentumok módszere. Legyen a £ véletlen változó к paraméteres 
eloszlásfüggvénye a következő:

P(£ < x) = F(x; ai,a2,.. ak) = í f(t
J — OO

, a,\, Ű2 5 • • •) &к )dt.•)

mj(£) = E[xi] = xif(x\ai,a2,..., ak)dx az F eloszlás j. elméleti mo­
mentuma. Tegyük fel, hogy az összes elméleti momentum kifejezhető az 
ismeretlen aj paraméterekkel, azaz rrij(£) = mj(ű2, • • •, ajt). A tapasztalati 
momentumokat felhasználva a következő egyenletrendszert nyerjük [134]:

1 n
Jn f-'

(1.16)nij(^a2, . . . , üfc) — ' = 1,2
i=i

Néha előfordul, hogy (1.16) megoldása nem egyértelmű. R. A. Fisher 
kimutatta, hogy a momentumokkal való paraméterbecslés erősen aszimmet­
rikus eloszlások esetén kevésbé hatékony. Ráadásul a magasabb rendű mo­
mentumok egyre érzékenyebbek a mérési hibára a növekvő kitevők miatt, 
emiatt a momentumok módszerével nem nyerhetünk robusztus becslöt.

Legnagyobb valószínűség (maximum likelihood) elve. Tekint­
sük az X{ független megfigyeléseket melyek azonos, ismeretlen ö paraméterű 
eloszlásból származnak. Ebben az esetben az egyesített sűrűségfüggvény az 
egyedi i,- sűrűségfüggvényeinek szorzata lesz:

£(*;£) = П Я*-*) (1.17)
t'=i
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Ez a maximum likelihood függvény [134]. Gyakran sokkal egyszerűbb l = 
ln£ alakkal dolgozni, mivel a szorzás (1.17)-ben összegzésre módosul. Bár­
melyik likelihood függvény maximumát meghatározva, a legvalószínűbb в 
becslést kapjuk 0-ra vonatkozóan. Bár néha kederül, hogy ez torzított.

A következő példán mutajuk be a maximum likelihood elvének lényegét. 
Laplace- és Gauss-eloszlások T helyparamétereit fogjuk becsülni és feltéte­
lezzük, hogy az S skálaparaméterek azonosak.

£t(r,í) = n[^y«p(-1

I - г Imin — ln Cl(T, S) ~ min У~] (1.18)
5

1 ,Sy/breXP 252 }CG(T,S) = l[

(*.• - Tfmin — ln jCg(T, S) ~ min ^

Ha S > 0, akkor S nem játszik szerepet a minimumok megtalálásánál, 
így (1.18) és (1.19) ugyanazt az eredmény szolgáltatja T-re mint az L\ és 
L,2 normák minimalizálása. Ez általánosan is igaz. Az fp szupermodell 
helyparaméterének maximum likelihood becslése azonos lesz az Lp normák 
minimalizálásával kapott becsléssel:

(1.19)
2 S2

l-A 
p P Xi -T \pП (1.20)max CP{T) — min Lmax exp
2Гф pSp

Ahogy az előzőekben leírtuk a maximum likelihood elvét egy adott f{x) 
eloszlás esetén a következőkben lehet megfogalmazni: max Y In f(xí> T) vagy 
min Y - f(xi,T). Huber [58] általánosítása a - In / függvénynek egy dif­
ferenciálható q függvényre való kicserélését jelenti:

(1.21)

Sokkal praktikusabb megoldani a

5>(z.',T) = 0 (1.22)
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де(т,Т)egyenletet, ahol ф(х,Т) = -Qj,—. Mivel T egy hely paraméter becslése, így

][>(*,•-T) = 0. (1.23)

j>(xi - T) (1.24)¥>(*.-) =
xí — T

felhasználásával ф(х«) • (xí — T) = 0 egyenletet nyerjük, melynek a meg­
oldása

= EyM-gj 
£v>(*0 ' (1.25)

Ez a formula meglehetősen hasonlít egy súlyozott átlagra, azonban a 
súlyok nem függetlenek az adatoktól, ők maguk is statisztikák. Az (1.25) 
által definiált becslöket M-becslöknek nevezzük.

Minimális információ veszteség elve. Az előző levezetések során 
feltételeztük, hogy a hibaeloszlás típusa pontosan ismert. A gyakorlatban 
nagyon gyakran inkább valamilyen helyettesítő eloszlásfüggvénnyel operá­
lunk, mivel vagy nem ismerjük pontosan az előforduló eloszlást, vagy ké­
nyelmesebb egy egyszerűbb formulájú, de hasonló tulajdonságú eloszlással 
számolnunk.

Ha az adott f(x) sűrűségfüggvényt valamilyen g(x) sűrűségfüggvénnyel 
helyettesítünk a relatív információt, vagy /-divergenciát definiálhatjuk [32, 
65,77,106,117,123]:

/(*)f co
Ш)= /(ж) log2

J—oo
(1.26)

$(*)'

A helyettesítés után az információ veszteség (az /-divergencia) minima­
lizálásával a g alkalmazásával kapott T helyparaméter és S skálaparaméter 
becsléseket fogadjuk el az / jellemzésére.

Tegyük fel, hogy g(x;T) (ne felejtsük el, hogy az elsődleges feladat a 
T meghatározása) szimmetrikus és differenciálható függvény T-re vonatko­
zóan, valamint az integrálás és a differenciálás művelete felcserélhető. Ekkor 
a minimumot a jól ismert feltételek teljesülése esetén kapjuk:

dW}T)
dT

r°° dg(x-,T) f{x)
J oo dT g(x',T) (1.27)dx = 0
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és

#W\T) > 0
dT2

%,,, Г d2g(x-,T) f(x)Г Гdg(x;T)
J—oo

1 dx > 0. (1.28)
dT g(x]T)\

(1.28) egyenlet biztosan teljesül, ha

í°° dg(x\T) f(x) 
J- oo dT g(x;T) (1.29)dx = 0

igaz.
Az /-divergencia minimumát az (1.27) és (1.29) egyidejű teljesülésével 

érhetjük el alkalmasan megválasztott T és S értékekkel.
Két példát tekintsünk, melyekben Gauss- Ш. Cauchy-eloszlásokat szere­

peltetünk helyettesítő eloszlásként. A Gauss-eloszlás sűrűségfüggvénye:
x-T)21

g(x\T) = —-=e г*2 . 
а у/2ж

Behelyettesítve ezt (1.27) és (1.29) egyenletekbe kapjuk:
roo

T= xf{x) dx
J — OO

Ez a jólismert E várható érték és
roo

a2 = (x — E)2f{x)dx
J—OO

az f(x) varianciája. Cauchy-eloszlás esetén a sűrűségfüggvény:

S1
5(2:;Г)_ nS2 + (x-T)2'

A helyettesítések után a következő kifejezéseket nyerjük:
roo

T = ^~°° f(x) dxS2+(x-T)2
roo

J— oo f{x) dxS2 + (x-T)2

Ez a T az előzőekben már ismertetett leggyakoribb érték becslöt szolgáltatja. 
A skálaparaméter becslése:
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(x—M)2
[S2+(x-M)2]2зПо f(x) dx

S2 = COO
J —со f(x) dx

[S2 + (x—Aí)2]2
Erről a formuláról azt kell tudni, hogy ez már robusztus, míg a maximum 
likelihood elve alapján származtatott becslés érzékenyebb.

Megemlítjük még, hogy más becslöeljárásokat, melyeket az eloszlásfügg­
vények funkcionáljál alapján nyerhetünk (pld. Bayes módszer, Kálmán- 
szűrö stb.), nem részletezünk, mivel jelen munkában azzal a feltételezéssel 
éltünk, hogy a paraméterek időben nem változnak.

Teszt statisztikák alapján előállított eljárások, 
pott X\,X2,... ,Xn minta álljon független, azonos F(x-6) eloszlásból szár­
mazó véletlen változókból. Vizsgálhatjuk a következő tesztet, melyben a 
nullhipotézist állítjuk szembe egy alternatív hipotézissel: az F(x — в) hely­
paraméterére vonatkozóan:

A mérés során ka-

H0 : в = 0 
HA : в ф 0.

versus
(1.30)

A statisztikai teszttel alapvetően két részre osztjuk a mintateret: az 
egyikben elfogadjuk а Но nullhipotézist, a másikban elvetjük azt. A felosz­
tást egy alkalmasan válaszott V statisztika felhasználásával valósítjuk meg. 
A nullhipotézisre vonatkozóan V-re egy eloszlást vezethetünk le, melyet fel­
használva konkrét valószínűséggel vetjük el illetve fogadjuk el a nullhipoté­
zist.

X2 statisztika. Tekintsünk n független, azonos várható értékű, de kü­
lönböző szórású normális eloszlású véletlen változóból álló mintát. A követ­
kező statisztikát vezetjük be:

(*.• - Tfx2 = £ (1.31)

ahol x2 chi-négyzet eloszlású véletlen változót jelent n — 1 szabadsági fok­
kal. Minimalizálva x2-et a paraméter súlyozott legkisebb négyzetes becslését 
nyerjük [134]:

£3T =
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Általános pontfüggvények. Legyen a, az első n pozitív egész pont­
függvénye és legyen értéke nem negatív és nem csökkenő: 0 < ai < ... < an. 
Definiáljuk a következő statisztikát

(1.32)

ahol Rí а | zt- — T | sorrendjét jelenti a | x\ — T |,..., | xn — T | sorban. Mini­
malizálva У-t T-re egy becslö eljárást nyerünk, melyet Д-becslönek hívunk 
[58,66]. Az а(г) = 1 pontfügg vénnyel az Li-normával azonos eredményhez 
jutunk, azaz a minta mediánhoz. Gyakran alkalmazzák a Wilcoxon pont­
függvényt, ahol а(г) = г.

Sorrend korreláció.
X\ < < • • • < Xn.

Tételezzük fel, hogy az adataink rendezettek

5"! I Xj Xi IN =
\<i<í<n

a pozitív Xj — Xi különbségek száma. Valamely b valós változóra definiáljuk 
az r,-(í>) = yi — bxi, i = 1,..., n reziduálist. Tekintsük a következő, sorrend 
korreláción (a Kendall által bevezetett tau [71]) alapuló statisztikát [114]:

Ei<,<j<n I xi - xi 1 ' 1 rÁb) - ri(b) 1 (1.33)V(b) =
nN

\ 2

V(b) a 0 érték becslője lesz és így alkalmas b választásával kell V(b) értékét 
zérushoz minél közelebb beállítani. Mivel V(b) nem növekszik b szerint, így 
lesz egy intervallum, ahol V(b) egyenlő lesz nullával, b alkalmas becslésének 
ezen intervallum közepét választjuk. Tekintsük a következő N különböző 
pár halmazát:

Vj - Vi (1.34)bij — Xj > Xi.

bjj választjuk mint b-re vonatkozó becslést, mivel ebben az esetben lesz V(b) 
egyenlő nullával. Pontosan ez az algoritmus jelent meg [45]-ban az előbbi 
részletes levezetésre vonatkozó hivatkozás nélkül.

U-statisztika. Az U-statisztikát Hoeffding [55] vezette be. Legyen 
xn egy minta és $(zi,..., xm) egy függvény m argumentummal. Te-* )
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kintsük a következő statisztikát:
1 53 ф(* (1.35)г£»ш)^ п(п — 1) • ■ • (n — m + 1) a !?•••>

aho1 £(<n... От) aZ (Öl."
jelent úgy, hogy 1 < сц < n,

Siegel [118] az [/-statisztika robusztus változatát vezette le, kicserélve a 
szummázást az egymásba ágyazott mediánokra:

в = medianm{0(a:

am) összes permutációjára vonatkozó összegzést 
<*i ф oij ha i^j, =

* 5

■ )
(1.36)Qfl > * •

1.1.1.2 Fuzzy halmazokon alapuló modell

A halmazelméletben a közönséges halmazokhoz egy karakterisztikus függ­
vényt rendelhetünk a {0,1} két elemű halmazból vett értékekkel. Zadeh 
1965-ben [135] felvetette, hogy a karakterisztikus függvény értékkészlete 
legyen a [0,1] zárt intervallum és így a halmazhoz való tartozást ezzel a 
szubjektív bizonytalansággal fejezhetjük ki. A kiterjesztett karakterisztikus 
függvényt tagsági függvénynek, a tagsági függvénnyel jellemzett halmazokat 
fuzzy halmazoknak hívjuk.

A fuzzy halmazok elmélete nagyon gyorsan teret hódított, magyarul 
Nagy Csaba [93] foglalta össze az elméletre vonatkozó fontosabb ismere­
teket, majd nem sokkal ezután egy konkrét alkalmazási példával is találkoz­
hatunk [64]. A hagyományos és a fuzzy valószínűségi mezők kapcsolatáról 
jelenik meg dolgozat [15] az elmélet hazai tovább fejlesztőinek műhelyéből. 
A legfrissebb összefoglaló [120] korunk tudományában és a mindennapok 
technikai vívmányaiban éri tetten a fuzzy logikát.

A fuzzy hallmazok elméletének nemzetközi szakirodalma igen jelenté­
keny, így arra vállalkozunk, hogy csak a minket érdeklő regressziós felada­
tokkal foglalkozókat tekintsük át.

Zadeh 1968-ban közölt tanulmánya [136] a fuzzy események valószínűség- 
mértékét definiálja, ezzel újabb fejlődési hullámot indítva el. Sorra jelennek 
meg a cikkek a fuzzy halmazok és a statisztika kapcsolatáról [95,48,67,68, 
75,39,60]. Sugeno disszertációjában [124] kidolgozza a fuzzy mértékek és 
fuzzy integrálok elméletét, majd egy alkalmazással is találkozunk [96]. Az 
érdeklődők témában való részletes elmélyülését két alapmű [69,40] segíti.

A fuzzy halmazok elméletének alkalmazását a regressziós problémák meg­
oldásában Jajuga [62] dolgozta ki a legegyszerűbben, fuzzy halamzokat al­
kalmazott a legkisebb négyzetek módszerének súlyozott változatához. Cel-
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mips [25,26] és Diamond [35,34] dolgoztak ki eljárásokat a legkisebb négy­
zetek módszerének fuzzy változókra való alkalmazására. Elszakadva a legki­
sebb négyzetek módszerétől más fuzzy regressziós eljárásokat is bemutattak 
[27,28,11,12,13,10,121,63,94,47]

Bandemer dolgozata [4] az analitikai kémiában jelentős fejlődést indí­
tott el a robusztus fuzzy regressziós eljárások fejlesztése területén, mely a 
fuzzy halmazok egyéb felhasználását is elősegítette [103,102,8,97,101,104,99, 
100,56,57,79]. A fuzzy halmazok segítségével végzett adatfeldolgozási mód­
szerekről a Bandemer által szerkesztett kiadványokból [5,6,7] nyerhetünk 
további ismereteket.

Vizsgáljuk meg részletesen az első fuzzy halmazon alapuló robusztus reg­
ressziós eljárás [102] lényegét.

Az analitikai kémiai meghatározások helyessége elsősorban a kalibrálás 
jóságán múlik. A kalibrációs folyamat során a megfelelő analitikai mérő- 
görbe kiválasztása, majd alkalmazása a feladat. Általában ismert össze­
tételű mintasorozattal elvégzett mérések után görbeillesztéssel határozzák 
meg a mérőgörbe paramétereit, majd az egyenlet inverzének segítségével az 
ismeretlen összetételű minta koncentrációjára lehet következtetni.

Általában feltételezik, hogy a mintasorozat koncentrációja pontosan is­
mert és csak a mért jelben mutatkozhat bizonytalanság. A fuzzy halmazokon 
alapuló regressziós eljárás kezelni tudja a mintasorozat koncentrációjában 
mutatkozó bizonytalanságot is a megfelelő tagsági függvény alkalmazásával. 
A módszer használata során feltesszük, hogy a kalibrációs függvény kapcsolat 
pontosan leírja a kalibrációs folyamatot, pld. mert fizikai törvényszerűségek 
teljesüléséből származtattuk. Ekkor az М,- fuzzy halmaz, mellyel egy fuzzy 
megfigyelést definiálunk, megadható a tagsági függvényével (membership 
function): m,i(x,y),x € X,y £ Y, ahol x a koncentráció, у a mérési jel. 
Ha egy bizonyos pontban több tagsági függvény értéke nem nulla, akkor 
összevonhatjuk őket:

тм{х,у) = ma xrrii(x,y).
г

(1.37)

A halmazt amelyben egy mn tagsági függvény nullától különböző értéket 
vesz fel az N fuzzy halmaz tartójának (support) hívjuk:

supp N = {(x,y) € X x Y : m^(x,y) > 0} . (1.38)

A tartók lehetnek körök, vagy ellipszisek és a tagsági függvények parabolo-
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idők lesznek:

(У - Vif 1 +(x - Xj)2
mi(x,y) = 1- (1.39)

ui ?Vi

ahol и} és vj a tartó ellipszis féltengelyeinek hossza, jellemezve az x és у 
változókban jelentkező bizonytalanságot, [z] = max {г, 0}, azaz m,(x,?/) 
értéke sosem lesz negatív.

A megfigyelések fuzzy jellemzőit a kalibrációs függvényben szereplő pa­
raméterek terébe a várt számosság (expected cardinality) elve alapján vi­
hetjük át. Vegyünk egy lineáris у = ao + aii függvénykapcsolatot. Egy xq 
kiválasztott pontban az y-nak тм(хo,ao + 0*1X0) tagsági értéke van. Ez az 
érték más és más lesz különböző xq G X értékek esetében. Ezért a paramé­
terek lehetőségégének (possibility) megadásához a megfelelő értéket úgy kell 
számítanunk, hogy a lineáris kapcsolat

é?(a0,ai) = {(x,ao + aix) e X xF;i£l}

teljes gráfja megfeleljen a mi egyesített fuzzy megfigyeléseinknek. Integrál­
juk a tagsági értékeket (1.40) gráf mentén:

(1.40)

тЕ(а0,а1) = j
JG{ ao.ai)

feltéve, hogy az integrál létezik. Az mE(a,Q,a{) az M megfigyelések rela­
tív számossága (relative cardinality) a G(ao,ai) gráf mentén. Az eddigiek 
érvényben maradnak, ha az X környezetet leszűkítjük azon pontokra, me­
lyekben van legalább egy (x,y) G X x Y pont amire тм{х.,у) > 0, azaz

mM(x,y)dx, (1.41)

x G X : sup тм(х,у) > 0 > . (1.42)A0 “ supp (projxM) =
yeY

Itt proj^-M azt jelenti, hogy az M fuzzy megfigyeléseket leképezzük az X- 
re a maximumokkal (supremum) számolva, az тм tagsági függvények által 
meghatározott у G Y-ra tekintettel. Az előzőleg nyert mE értéket összeha­
sonlíthatjuk az ún. fuzzy helyi legjobb közelítéssel (fuzzy local (best) appro­
ximation), melyet gráfjával adunk meg (lineáris függvény kapcsolat esetében 
X felett: у = do + агх\(х,у) G X x Y;(ao,ai) G A, ahol A egy adott 
paraméterterület része):

(1.43)(?(/){(*,/(*)) :*G X}.
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A gráf az összes (x, y) 6 X x Y pontból áll, ahol тм(х,у) maximális feltéve, 
hogy yeY, azaz

/(x) = arg sup тм(х,у), (1.44)
ye у

az egyenletben az x változó mint paraméter szerepel, ezért az egyenlet jelen­
tése: vedd тм У argumentumának azon értékeit ahol az тм{х,у) függvény 
felveszi legnagyobb értékeit. G(f)-et hívjuk az тм(х,у) felület maximális 
nyomának X-en.

Most kiszámíthatjuk

mE(f) — / mM{x,y)dx= I 
JG(f) J>

sup тм(х,у)с1х. 
Xo y€Y

(1.45)

Mivel ше(/) > 0 és m£(a0,ai) < ше(/) bevezetjük

m£(a0,ffli)
(1.46)mc(ao,ai, /) —

гпеЦ)

értéket, amely azon közelítés fokát fejezi ki, melyet a relatív számosság és a 
helyi (legjobb) közelítés összevetéséből nyertünk. Az mc és az tagsági 
függvények az (ßo,ai) G A paraméterek függvényei és ezek határozzák meg 
az A halmaz felett az Ä fuzzy halmazt, melyet az ismeretlen paraméterek 
fuzzy becslésének hívunk.

A szerzők a kalibráció eredményeit felhasználó fuzzy becslést is leírnak, 
majd az elméleti részben tárgyaltakat egy részletes algoritmus közlésével 
foglalják össze.

Az Otto és Bandemer [102] által kidolgozott robusztus fuzzy regresszi­
ós eljárás többváltozós általánosításáról a Kalibrációs függvények paramé­
tereinek becslése című fejezet Lineáris fuzzy regresszió című szakaszában 
foglalkozunk.

Paraméterbecslés másodfajú modellhiba esetén

A legszélesebb körben elterjedt mérési modell szerint valamilyen zaj szuper- 
ponálódik a valódi értékekre és ebből származóan a becsült paraméterek és 
a jósolt függvényértékek is hibával terheltekké válnak. Ennek a modellnek 
az alternatívájaként állíthatjuk, hogy a mérési hibák az alkalmazott modell 
nem adekvát jellegéből származik. Ebben az esetben feltesszük, hogy ponto­
san tudunk mérni, de abban már nem vagyunk biztosak, hogy az alkalmazott 
modell jó-e. Mindenképpen választanunk kell valamilyen modellt, a legtöbb

1.1.2
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esetben minél egyszerűbbet a kezelhetőség szempontja szerint. Valóban, le­
hetetlen az összes kapcsolatot matematikailag megformulázni, némelyiket el 
kell hanyagolni. A mérési hibák ekkor abból származnak, hogy nem tudjuk 
kellőképpen leírni a rendszerünket. Ezek a hibák tehát a sohasem ismert 
helyes modell és az alkalmazott modell közötti különbségből adódnak, azaz 
az eltérések a rendszert meghatározó paraméterek fuzzy jellegével magya­
rázhatók, semmint megfigyelési hibákként. Ez a probléma így már nem is 
sztochasztikus, hiszen a rendszernek nincsen véletlen jellegű tulajdonsága, a 
megoldás a fuzzy elmélet alkalmazásával érhető el. A linearitás feltételezése 
nagyon gyakori az analitikai kémiában, ezért Tanaka és munkatársai [126] 
nyomán bemutatjuk annak kezelését, amikor ez a feltételezés sérül.

Az analitikai kémiában gyakran találkozunk lineáris, vagy linearizált ka­
librációs függvényekkel, azonban a használatukhoz szükséges feltételek rit­
kán teljesülnek. így elfogadjuk a linearitás teljesülését tudva azt, hogy ez 
nem mindig teljesen korrekt, ezért ez a döntés szubjektív tartalommal ru­
házható fel.

Ezt a problémát az у) fuzzy függvények használatával oldhatjuk meg. 
Ezekben a függvényekben a paraméterek fuzzy számok [40]: Y = f(x,Ä).

Most az Т(у) az összes У-on értelmezett fuzzy részhalmaz halmaza és 
У tagsági függvényét a kővetkezőképpen definiáljuk:

max{a|y=/(r,a)} Mü) {° I У = f(x>a)} Ф Ф
(1.47)Му) =

egyébként.0

Az 1.2 ábrán láthatjuk a fuzzy paraméterek fogalmának megvilágítását. 
A tagsági fügvénye:

M°) = mjn [/%(“*')] (1.48)

ha i2i=2ií|orT—oy I < 11 -
CJci (1.49)l*Äj(ai) = '

egyébként.

aj a fuzzy szám centruma és Cj a terjedelem, a centrum körüli szóródás 
mértéke. A háromszög alakú fuzzy számok értelmezése a következő: a cent­
rum leírja a leginkább lehetséges paraméter értéket, a terjedelem pedig a 
pontosságát határozza meg, vagyis a rendszer határozatlanságát tükrözi.

0,
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1.2 ábra: Fuzzy paraméterek, mint háromszög alakú fuzzy számok

Az Y = Ä1X1 + ... + ÄjXj +... ÄpXp fuzzy lineáris függvény (háromszög 
alakú Ä fuzzy paraméterekkel) tagsági függvénye:

ly-s'gl x Ф о1 - IHIÍ
(1.50)

x = 0, у = 0 
i = 0, уф 0

1,
0,

ahol I x |= (I x 1 I, • • •, I xn |){, és c és a jelenti a paraméterek centrumát és 
terjedelmét vektor alakban.

A becsült fuzzy lineáris modellnek le kell fednie az összes yj adatpontot 
bizonyos H küszöb érték mellett, melyet az eljárás alkalmazója választott 
korábban, azaz ßy(yi) > Я (г = 1,2,...,n) a nem fuzzy, azaz pontos у,- 
adatokra vonatkozóan. Ezt az egyenlőtlenséget átírhatjuk felhasználva az 
ßy(y) tagsági függvényt (1.50)-böl:

(1 - Я)с‘ I x I - I у - х*а |> 0, x ф 0. (1.51)

Természetes követelmény, ha olyan paramétereket választunk, melyek Cj 
terjedelmeinek összege a legkisebb, más szavakkal a megoldás a legkevésbé
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bizonytalanabb fuzzy lineáris függvény kell legyen figyelembe véve a megfi­
gyeléseket és egy jól választott H értéket.

A fuzzy paraméterek kiszámítása így egy egyszerű lineáris programozási 
feladat lesz:

- = £j=i
Feltételek (1 - H)Y?j=i Cj I I > yx,

(Я - 1) Ej=1 ej I Xij I +х*а < yit 
Ci > 0,

i = 1,2,... ,n,

Minimalizálandó
(1.52)

ahol s a teljes bizonytalanság.
Tanaka és munkatársai [126] által kidolgozott fuzzy lineáris regressziós 

eljárás robusztus változtát a Kalibrációs függvények paramétereinek becslése 
című fejezet Fuzzy lineáris regresszió című szakaszában ismertetjük.

Az eddig elmondottak alapján talán érdemes mégegyszer felhívni a fi­
gyelmet arra, hogy mi a különbség a lineáris fuzzy regresszió és a fuzzy 
lineáris regresszió között.

Lineáris fuzzy regresszióról beszélünk, ha a feltételezett lineáris kalibrá­
ciós modell adekvát és a mérési hibák matematikai statisztikai értelmezése 
helyett a szubjektív, előzetes információkat is magába foglaló fuzzy számokat 
használjuk a bizonytalanság értelmezésére.

Fuzzy lineáris regresszió esetén a lineáris modell pontos teljesülése két­
séges, fuzzy számokat használunk a modellben előforduló paraméterek le­
írására és ebből fakadóan kapunk eltéréseket a mért és számított értékek 
között.

Paraméterbecslés harmadfajú modellhiba esetén

Ebben az esetben a mérési adatok és a közöttük fennálló függ vény kapcsolat 
egyaránt csak bizonytalansággal adhatók meg, azonban a feladat sokrétűsé­
gét tekintve ez a fajta modellhiba jelen dolgozatban nem kerül részletesebb 
tárgyalásra.

1.1.3
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2. fejezet

Kalibrációs függvények 

paramétereinek becslése

Egyváltozós kalibrációs függvények robusz­
tus becslése

2.1

Lineáris összefüggés alkalmazására az egyik legjobb példa az ICP-AES (In­
ductively Coupled Plasma Atomic Emission Spectrometry, induktívan csa­
tolt plazma - atomemissziós spektrometria) mérésekhez használt kalibráci­
ós görbe. Egy ICP spektrométer a koncentráció tartományban hat nagy­
ságrendben képes lineáris jelet produkálni, így kiváló példája az elsőfajú 
modellhibának, amikor a függvénykapcsolat előzetesen ismert, azonban a 
feltételezett hibaeloszlás nem teljesül.

Olyan valós kalibrációs adatokon mutatjuk be az általunk vizsgált pa- 
raméterbecslő eljárások alkalmazását, melyeket talaj- és ivóvíz környezet- 
védelmi vizsgálatához alkalmaztak. Meg kell jegyeznünk, hogy ezeket az 
adatokat számos kalibrációs adatsorból válogattuk, éppen annak illusztrálá­
sára, hogy a felhasznált paraméterbecslö eljárások mennyire érzékenyek az 
esetleg előforduló kiugró értékekre ill. a feltételezett hibaeloszlástól való el­
térésre. A kiugró értékek létezését a berendezésben ill. a minta előkészítés 
során alkalmanként előforduló ismeretlen eredetű hibák eredményezik.

A következőkben felsoroljuk a felhasznált becslő módszereket, közöljük 
azok angol elnevezését, valamint az azon alapuló rövidítéseket, melyekkel a 
továbbiakban hivatkozni fogunk rájuk.

• legkisebb négyzetek [134] (Least Sum of Squares, LS),
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• abszolút eltérések legkisebb összege [44,119,128] (Least Sum of Abso­
lute Residuals, LSA),

• abszolút eltérések legkisebb maximuma [128] (Least Maximum of Ab­
solute Residuals, LMA),

• iteratívan újrasúlyozott legkisebb négyzetek б-os ill. 9-es hangoló kons­
tanssal [107] (Iteratively Reweighted Least Sum of Squares with Tu­
ning Constants 6 and 9, IRLS6, IRLS9),

• leggyakoribb érték [123] (Most Frequent Value, MFV),

• egyszerű médián vagy kombinatorikus [114,45] (Single Median, SM),

• ismételt median [118] (Repeated Median, RM),

• négyzetek legkisebb mediánja [109] (Least Median of Squares, LMS).

Ezek után röviden ismertetjük a paraméterbecslö módszerek algoritmu­
sait. (A feltételezett lineáris modell у,- = üq + a\Xi +

Legkisebb négyzetek módszere (LS)

E *} E vs - E gj E xjyj (2.1)á0 LS = " E*ME*;)2
n E xiVi - E xj E Уз (2.2)“Us - »E*M£*;)a

Abszolút eltérések legkisebb összege módszer {LSA)

E"=i
Feltételek b\ — 62 + — 0,2 + st- > Vi,

b\ b2 + Q-l 3*1 U2 — Vii

a\, Ü2, Ь\,Ь2,5,- > 0, 
i = 1,2 ,...,n.

Minimalizálandó
(2.3)

(2.4)®1lsa ~ ®1 ®2

(2.5)“0 LSA —b\~b2
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Abszolút eltérések legkisebb maximuma módszer (LMA) 

Minimalizálandó
Feltételek &i — Ö2 + £»' — 02 + s > yi,

í>2 "i- 02 ^ yi,

ai,02,öi,62,0 > 0, 
i = 1,2,..

s
(2.6)

n.• >

(2.7)®liMA — d2

(2.8)äoLMA = öi - ö2

Iteratívan újrasúlyozott legkisebb négyzetek módszere k=6 és k=9 
hangoló konstanssal (IRLS)

А(О) A / «*

«0 = a0LS eS Ű1 = “US (2.9)

E Wjxj X) Wj2/j - E WjZj E
*(•■) - a0 — (2.10)

Y^wj52wjxj - (£>jZj)2

E E wjXjyj - E WjXj E wjyj№ (2.11)1 ЕщЕщх] - {HwjXj)2

(1 '-(Й)2)2 *W<*s
egyébként 

- о£_1) - ő[*_1)Zj

(2.12)Wj = 0

(2.13)Tj = yj

S = median {|r_,|} ha I ry I > 0 (2.14)
i

к = 6 vagy 9

~{k)
ao Qo g[k) - a^"1*A A Í/í) Л A Í A) 1

a0lRLS = % iahRLS = Ű1 ha < <5< S és
a(*>
“0

«<*>

6 = 0.001
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Leggyakoribb érték módszere (MFV)

-(o) . , .(o)
a0 ~ a0LS eS al — alLS (2.15)

.(.) _ E wjx] E w3Vj - E wjXj E wjXjvj 
a° " E Wj E WjX2j - (E WjXj)2 (2.16)

E wj E wjXjyj - E wjXj E wjVj«1« = (2.17)E V)j E Wjx) - (E WjXj)2

£2
(2.18)Wj =

£2 + r2j

- őj-1) - (2.19)rj = yj

3E ((«(‘-■ччг;)2(£(0)2 = (2.20)(e(‘-l))4E ((£«-D)2+r2)2

£(m) _ £(m-1)
£ = £(m) ha (2.21)< <5£(m)

-(k)
a<‘> ha 2ü_

— á^-1^ Qo áf1 - áifc~X)» -s (/с) Л

q0mfv = a0 >a < 6 és < 61 MFV ä{k)ao a[k)

6 = 0.001

Egyszerű médián vagy kombinatorikus módszer (CM)

Уз - Ух (2.22)= median
xi*xi

®0см — median {yj Q-Icmxj } (2.23)
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Ismételt médián (RM)

Уз - Vi= median < median“1ям ha it- ф Xj (2.24)

«одм = median {yj - dlRMx3} (2.25)
i

Négyzetek legkisebb mediánja (LSM)

1<Й<П mefanírb^ =>• ®0 LMS >“lLMS (2.26)

(2.27)Гijk — 2/i

'EjVk ^kUj ha Xj ф xjs (2.28)jk -
Xj — Xk

 Vi - У к (2.29)ha Xj ф xkа
Xj — X к

A 2.1 táblázat a kalibrációs adatokat tartalmazza, míg a 2.2 táblázat 
a korábban említett becslö eljárásokkal kapott paraméterek értékeit tünteti
fel.

Az adatok kiértékeléséhez egy ún. minőségjellemző faktort (Quality Co­
efficient, QC) definiálunk:

( Vi-М \ 2
QC = 100- ^ (2.30)

71—1

ahol yi a mért, у,- az LS módszer által becsült független változó és n az 
adatok száma, kivéve azokat, melyeknél az yi mért érték nulla. Az analitikai 
eljárás pontosságát (ill. pontatlanságát) figyelembe véve előzetesen QC-re 
egy kritérium értéket lehet megadni. Ha QC ennél a kritérium értéknél na­
gyobb, akkor azt a hipotézist, hogy nincs kiugró érték elvetjük és robusztus 
módszert kell alkalmaznunk.

A 2.1 táblázatban közölt mérésekhez 10 %-os kritérium értéket válasz­
tottunk. A QC értékek 69.2 %, 23.7 %, 497.3 %, 22.9 %, 49.8 % és 13.8 Jó­
nak adódtak a Mo, Cr, Со, Pb és Ni (221,6 nm és 231.6 nm) elemekre
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A vizsgált elemekre vonatkozó mérési jelek (tetszőleges egységben) 
Mo Сг Со Pb Ni (221.6 nm) Ni (231.6 nm)Koncentráció (ppm)

0 8.19 -23.4 -1.83 13.46
16.05 -19.4 -2.45 6.4
171.9 210.9 261.3 112
180.6 213.7 260.1 119.2
406 420.4 430.8 217

414.5 423.2 431.4 207.7
810.7 843.2 860.3 419.6
818.2 840.6 859.6 428.7

28.336.4
0 7.47 30.56

220.8
218.6
410.2 
407.9
828.3 
826.1

0.25 223.7
215.6 
437.9
430.7 
897.3
886.8

0.25
0.5
0.5

1
1

2.1 táblázat: A kalibrációs adatok ICP-AES mérésekhez

Cr СоMo Pb Ni* Ni**
Methods ao a\ CLq а га о dQ di dp di do di

LS -3.07 814.5 -11.9 858.5 17.2 846.1 9.84 413.0 0.47 886.3 21.9 798.7
8.19 802.5 -2.4 845.6 1.3 859.0 13.5 407.1 2.67 884.1 19.0 807.1
-6.29 802.1 -12.8 864.0 21.7 862.1 8.7 412.7 -3.37 889.8 19.8 797.7
11.1 802.3 -11.7 858.0 -1.45 862.1 10.0 412.9 0.85 885.8 22.2 799.1
-1.88 813.6 -11.8 858.3 15.7 847.2 9.91 412.9 0.63 886.1 22.0 798.8
9.36 803.9 1.31 840.8 -1.96 862.1 10.3 412.1 6.4 880.4 22.9 801.3
5.25 808.4 -9.15 854.6 0.39 860.2 9.65 412.9 5.1 880.0 26.7 782.7
2.01 813.5 -1.55 844.5 2.25 857.7 10.4 410.8 6.2 870.9 28.9 765.2
12.1 802.5 2.4 839.6 -1.34 862.0 11.8 407.1 8.98 848.6 29.4 761.1

LSA
LMA
IRLS6
IRLS9
MFV
SM
RM
LMS

* 221.6 nm hullámhosszon mérve 
** 231.6 nm hullámhosszon mérve

2.2 táblázat: A becsült paraméterek értékei a szövegben említett paramé- 
terbecslö módszerekkel meghatározva
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vonatkozóan. A kobalt esetében a QC érték meglehetősen nagynak adódott 
(497.3 %), melynek magyarázata az, hogy a 0.25 ppm koncentrációnál ka­
pott jel kiugró érték és ennek következtében az LS egyenes meglehetősen 
távolra került a 0 ppm koncentrációnál mért jeltől.

Az adatok elemzéséből a következőket állapíthatjuk meg. A legjobb 
becsléseket az LMS adta. Az MFV is jól szerepelt a Mo, Cr, Pb, Со és Ni 
(221.6 nm) esetében. Az RM által jósolt kalibráló egyenes elfogadható a Cr, 
Pb és a Ni esetében mindkét hullámhossznál, az IRLS6 által szolgáltatott 
pedig a Mo és Со mérésekre. Az SM jónak mutatkozott az Pb és a Ni (231.6 
nm) esetében, az LSA csak a Mo esetében. Az IRLS9 és az LS közel azonosan 
szerepeltek, de a mezőny végére kerültek. Egyértelműen a legtorzítottabb 
eredményt az LMA adta, mutatva a kiugró értékekre vonatkozó kifejezett 
érzékenységét.

Ezen gyakorlati és más elméleti megfontolásokon nyugodva a 2.3 táblá­
zatban közöljük az általunk vizsgált paraméterbecslö eljárásokra vonatkozó 
fontosabb tulajdonságokat és egyben gyakorlati felhasználásukhoz segítséget 
nyújtó ajánlásainkat.

Összeomlást pont AjánlásMódszerek Származás Robusztusság
nem ajánlott
csak nagyszámú adat esetén 
(30*50 mérési pont) 
csak jól tervezett kísérleteknél 
csak nagyszámú adat esetén 
(15-30 mérési pont)

egyáltalán nem robusztus
egyáltalán nem robusztus

LMA min Loo 
min Lj

0%
0 %LS

modellérzékeny pontok hatása* 
kissé robusztus

min Lj 
M-becslö

0 %LSA
1RLS9 20 %

25 % 
25 % 
30 % 
50 % 
50 %

IRLS6
MFV

M-becslö 
M-becslö 

rang-korreláció 
U-statisztika 

min M*}

robusztus 
robusztus 
robusztus 

nagyon robusztus 
nagyon robusztus } kisszámú adat esetén is 

(6-15 mérési pont)SM
RM
LMS

* modellérzékeny pontok (leverage points) érzékennyé teszik a becslo eljárást a nem kiegyensúlyozott kísérleti 
beállítás miatt

2.3 táblázat: A vizsgált paraméterbecslö eljárások tulajdonságai

Többváltozós kalibrációs függvények robusz­
tus becslése

2.2

Ebben a szakaszban a többváltozós kalibrációs függvények paramétereinek 
robusztus becsléséről lesz szó. Tekintsük át a felhasználásra kerülő alapfogal­
makat. Egy helyparaméter becslő, mely n pontból álló mérésre vonatkozik, 
az Xj,... ,xn vek tor függ vénye lesz:

ín = í(®i>.••,*«)• (2.31)
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Hasonlóan egy kovariancia becslö (skálaparaméter becslö):

<2n — <2 (зь) • • •) £n) > (2.32)

mely mindig egy szimmetrikus, pozitív definit mátrix.
A gyakorlatban csak olyan becslöket alkalmazunk, melyek a változók 

permutációjára invariánsak:

t(í ■'.b(n)) =t(x

= c(x

azaz a mérési pontok átszámozása nem változtatja meg a becslést.
A becslök közötti választás fontos kritériuma lehet a különböző ekvivari- 

anciák teljesülése. Egy helyparaméter becslő eltolás ekvivariáns (translation 
equivariant), ha

(2.33)

(2.34)

7Г(1)1 ' 1) •

1) '

í(x 1 +V,...,xn+v) -t{xl,...,xn) + v (2.35)

minden v vektorra. Ez azt jelenti, hogy a mérési adatok eltolása esetén az 
új becslés az eredeti adatokra vonatkozó becslés azonos mértékű eltolásával 
nyerhető. Tehát pld. a nullapont megváltozása esetén (hőmérséklet ada­
tok termodinamikai és Celsius-skálán) a becslés is az eltolásnak megfelelően 
alakul.

Egy helyparaméter becslő affin ekvivariáns (affine equivariant), ha

(2.36)í(líi + v,.. .,Axn + v) = At(x1}.. ,,xn) + v

minden nemszinguláris A mátrixra és bármely v vektorra. Ez azt jelenti, 
hogy a helyparaméter becslő az affin transzformáció hatására ugyanúgy vál­
tozik, mint ahogy a várható érték operátor hat: E [Ax + u] — A E[x] + v. 
Az affin ekvivariancia úgy tűnik természetes követelmény a hely paraméter 
becslők számára, ám számos többváltozós becslő nem elégíti ki ezt a felté­
telt. Ha A csak ortogonális mátrix lehet, akkor ezen gyengébb feltétellel 
teljesülő ekvivarianciát ortogonális ekvivarianciának (orthogonal equivari- 
ance) nevezzük. Ekkor a transzformáció a merev mozgásoknál, úgymint 
transzláció, rotáció, reflexió alkalmazotthoz lesz hasonlatos. A gyakorlatban 
pld. a mértékegység váltások miatt lehet hasznos az affin ill. az ortogonális 
ekvivariancia.

A kovariancia becslő akkor affin ekvivariáns, ha

C_(Axx + v,...,Axn + v) = AC(xlt...,xn) A' (2.37)
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minden nemszinguláris A mátrixra és bármely v vektorra. Tehát a kovari­
ancia becslö invariáns az eltolásra, és ugyanúgy változik, ahogy a variancia 
operátor hat: V [Ax + u] = A V [z] A'.

Mivel a robusztus becslö nagy (legalábbis nem nulla) összeomlási pont­
tal és korlátos hatásfüggvénnyel rendelkezik, vizsgáljuk meg ezen fogalmak 
gyakorlatban használható matematikai megfogalmazását.

Donoho és Huber [37] fogalmazta meg a véges mintákra definiálható 
adatromlások fajtáit:

1, £-szennyezett: az eredeti n elemű mintához (X) m tetszőleges értéket 
füzünk (X1*). A rossz értékek aránya:

m
£ = n + m

2, £-cserélt: az n elemű minta (X) m méretű tetszőleges részhalmazát tet­
szőleges értékekre cseréljük (X11). A rossz értékek aránya:

m
n

3, £-módosított: tartozzon az X mintához Fn, az Xй mintához Gnt ta­
pasztalati mérték úgy, hogy

K(Fn,Gnt) < £,

ahol 7Г tetszőleges távolságfüggvény, n és eltérhet egymástól.

Az előzőek figyelembe vételével véges mintákra a következő összeomlási 
pont definiálható:

|i(X«)-í(X)| = oo}£*(X, í) = inf { (2.38)£ : sup

Az összeomlási pont a becslö globális jellemzője, az adatok nagyobb mértékű 
szennyezettségének hatását írja le.

Amennyiben a tn helyparaméter becslö funkcionálnak tekinthető az összes 
valószínüségeloszlást tartalmazó tér felett: tn — t(Pn), akkor a tn becslö 
IF(-) hatásfüggvénye bizonyos P eloszlás esetén (a í(-) funkcionál Gateaux 
deriváltja a P eloszlásnál, a őx Dirac mérték irányában):

t((l-e)P + £6x)-t(P) (2.39)IF(z;, í, P) = lim
e—tO £
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A hatásfüggvény a becslö lokális tulajdonsága kis mértékű szennyezettség 
esetén. Leírja, hogy a becslö infinitezimális perturbáció hatására hogyan 
viselkedik egy pontban.

A fenti hatásfüggvényen alapulva definiálható a durva hiba érzékenység
is:

7 *(t,P) = sup||IF(*;í,P)|| (2.40)

Az alapfogalmak tárgyalása után vegyük sorra a robusztus többváltozós 
paraméterbecslöket. Először tekintsük az iteratívan újrasúlyozott legkisebb 
négyzetek módszerének többváltozós és általánosabban tárgyalt variánsát. 
Collins [31] tárgyalta általánosan a többváltozós M-becslőket, melyek a kö­
vetkező egyenlet megoldásaként adódnak:

Mfllfc-tll) 
IIíí-HlE (2.41)(x.i - t) = 0.

;=i

Azonban, ha a skálaparaméter nem rögzített, a kapott becslö nem lesz affin 
ekvivariáns.

Maronna [83], majd Huber [58] mutatott be affin ekvivariáns M-becslöt 
a következő egyenletrendszer megoldásaként, ahol a helyparaméter és a ko­
variancia becslést szimultán végezzük:

E (d(ü.<>£)) (®i - í) = o (2.42)
t=i

E {^2 (<%,■>£,£)) fe - i)(x.i - í)' - v3(d(xi,t,C))C} = 0,(2.43)
i=i

ahol vi, V2 és v3 alkalmasan választott valós függvények, valamint

d(v, m, M) = y/(v-щ)'М_ 1 (v — m) (2.44)

az ún. Mahalanobis távolság. Amennyiben M = /, akkor a közönséges euk­
lideszi távolságot kapjuk. Ahogy említettük, így affin ekvivariáns becslöket 
kapunk, de az összeomlási pont mindig

1 (2.45)£* <
P+ 1

lesz.
Törekvések indultak a nagy összeomlási ponttal és az affin ekvivarian- 

ciával egyaránt rendelkező többváltozós becslők megalkotására. Egymástól
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függetlenül Stahel és Donoho PhD dolgozatukban közöltek egy lehetséges
megoldást. Az xt- pont kiugró értékként való figyelembevételének mértékét 
határozták meg:

\u' X,- — mediantV X)|
(2.46)г,- = sup 

1Ы1=1
ahol MAD (Median Absolute Deviation) a mediántól való abszolút eltérés:

MAD (и'2Q

MAD(v) = median и,- — median Ujj. (2.47)

Legyen го, = го(г,), ahol w(r) —» 0, ha г —оо és w(r)r korlátos, ekkor a 
becslö

E"=i WiZi
E?=i wi '

Donoho megmutatta, hogy ez a becslö affin ekvivariáns és összeomlási pontja:

tw(X) = (2.48)

(2.49)em(tw,X) = n

ahol [yj az a legnagyobb egész, mely y-nál kisebb vagy egyenlő vele.
Rousseeuw [110] újabb javaslatokat tett nagy összeomlási pontú affin 

ekvivariáns többváltozós paraméterbecslőkre. Ezek egyike a minimális tér­
fogatú ellipszoid becslö:

th(X) = azon legkisebb ellipszoid középpontja, amely az X = (xi,.. 
pontok közül legalább h pontot tartalmaz (p + 1 < h < n),

xn)* )

ekkor
LfJ -p+i , ha h = [|j + 1

L^J

(2.50)£m(th,X) = n
és

n + p + 1 (2.51)e*(th,X)=[ 2 J, ha h =
n

Egyváltozós esetben ez a becslö annak a legrövidebb intervallumnak a hosszá­
val és középpontjával lesz azonos, melybe legalább h adatpont esik. Sajnos 
a helyparaméter becslö gyenge konvergenciával tart egy olyan határeloszlás­
hoz, mely nem a normális eloszlás.

Ez a gyenge konvergencia javul a minimum kovariancia determináns 
becslő esetén:

th(X) = az X = (xi,... ,xn mintából azon h pontok átlaga, melyekre a 
tapasztalati kovariancia mátrix determinánsa minimális (p + 1 < h < n),
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ekkor
LfJ-p+i ha h = L^J + 1

L^J

£*(th,X) = (2.52)
n

és
n + p+ 1e*(th,X)=[ 2 J, ha h = (2.53)n

Egyváltozós esetben ez a becslö azon h db adatpont átlagát és varianciáját 
szolgáltatja, melyekre ez a variancia a legkisebb. Ez a becslö már aszimpto­
tikusan normális y/n-es konvergencia sebességgel.

A többváltozós r-becslö [80] azon tn helyparaméter, mely minimalizálja
a

\c\l^2p2(d(xt,t,c)) (2.54)
i—1

figyelembe véve

(d(xitt,C)) = b (2.55)í)
«=1

ahol 0 < < sup pi(-). Az összeomlási pontja:

fnri]
(2.56)£*(tn,X)=^-

n

ahol T\ = —^ , ч.1 suppi(-) Ez utóbbi becslő rendelkezik a legjobb tulajdonságokkal, 
affin ekvivariáns, nagy összeomlási pontú, korlátos hatásfüggvényű, y/n-es 
konvergencia sebességgel normális eloszlású és megfelelő mértékben efficiens.

Lineáris fuzzy regresszió

A fuzzy elmélet lényegében Zadeh [135] korszkalkotó dolgozatával kelt é- 
letre, amelyben a (c.f.(x) G {0,1}) karakterisztikus függvény fogalmát álta­
lánosította a (m.f.(x) G [0,1]) tagsági függvény definiálásával. így bizonyos 
szubjektív információk rendelhetők a halmazhoz való tartozás megfogalma­
zásához.

Otto és Bandemer [102] fejlesztette ki az első robusztus fuzzy regresszi­
ós eljárást, melyet számos kutató vizsgált [56,57]. Otto és Bandemer [102] 
azonban csak az egyváltozós esetet mutatta be példákon keresztül. Közölték 
ugyan az általánosítás lehetőségét, melyet többszörös integrálok segítségé­
vel lehet megvalósítani, de az integrálási határok meghatározása során a

2.3
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magasabb fokú (5 vagy a feletti) polinomok gyökeit analitikusan nem tud­
juk megoldani, így az egyébként is számítás igényes feladat újabb numerikus 
feadattal bővülne. Probléma még az optimális paraméterek meghatározása, 
melyre Hu és munkatársai [56] javasolták a szimplex módszert. Sajnos ezen 
módszer csak a lokális maximumokat képes megtalálni, így más, globális 
optimum kereső eljárást kell keresni.

Az eredeti egyváltozós lineáris fuzzy regresszió módo­
sítása

Az általánosítás előtt néhány kritikus megjegyzést kell tennünk az eredeti 
algoritmus kapcsán. A következő lineáris kalibrációs függvényt tételezzük

2.3.1

fel:
(2.57)у = m\ x 4- m2.

Azon ponthalmazt, melyen a tagsági függvény értéke nem nulla az M 
fuzzy halmaz tartójának hívjuk:

suppM = {(ж, г/) G X x Y : m.f.M(x,y) > 0} . (2.58)

Ha a tartó egy ellipszis, a tagsági függvény:

(x — x,)2 {У - 2/t)21 +
m.f.i(x,y)= 1- (2.59)2 vf

ahol щ és ví jelöli az ellipszis féltengelyeinek hosszát, és [u]+ = max{u,0}. 
Az M egyesített megfigyelés tagsági függvénye:

m.f.M(x,y) = maxm.f.i(x,y).
t

A megfigyelések fuzzy jellegét átvihetjük a paraméter térbe a várt szá­
mosság (expected cardinality) [40] alkalmas módosításával, amit relatív szá­
mosságnak (relative cardinality) nevezünk:

(2.60)

m.f.E(m1,m2) = /
J G(t71i ,7712 )

G(mi,m2) = {(x,77ix x + m2) € X x Y;x G X} .

Az m./.£(mi, m2) nyert értéket összehasonlíthatjuk a lineáris függvény­
kapcsolat legjobb helyi fuzzy közelítésével fuzzy local (best) approximation:

m.f.jif(x, у) dx (2.61)

(2.62)

) = [ Jc
m.f.M(x,y)dx (2.63)

G(f)
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G(f) = {(xJ(x)):xeX} (2.64)

f(x) = arg(y) sup m.f.M(x,y). 
yeY

Bevezethetjük az (mi, m2) paraméterpár tagsági függvényét:

(2.65)

т./.д(тьт2)
m./.c(mbm2;/) = (2.66)

m. f.E{f)

Ábrázolva m./.c(mi, m2; /) értékeit a két paraméter függvényében, meg­
kereshetjük a válaszfüggvény maximumát, melyet meghatározó két paramé­
ter érték lesz a paraméterek fuzzy becslése.

Az említett kritikus észrevételek egyike az előbb vázolt egyváltozós esetre 
vonatkozik. Ha a tartók körök (щ = ví minden г-re), akkor nincs probléma. 
Azonban nem természetes, hogy a koncentrációnál (x) jelentkező mérési hiba 
közel azonos a mért jel (у) hibájával. Valós kalibrációs problémák esetében 
a kalibrációs standardok beállítási hibája sokkal kisebb, mint a mérési jel­
hez tartozó hiba. Ez garantálja az ismeretlen oldatra vonatkozó pontosabb 
koncentráció becslést. így az a természetesebb, ha tartónak ellipszist vá­
lasztunk, x-re vonatkozóan kisebb féltengelytávolsággal.

Ha a tartók ellipszisek a kővetkező problémák merülnek fel. A 2.1 ábrán 
jól látható, hogy ha az Otto és Bandemer által javasolt görbét választjuk a 
helyi legjobb fuzzy közelítéshez, akkor m./.£;(/) értéke szükségtelenül nagy 
lesz csökkentve ezzel m./.c(mi,m2;/) értékét, ami bizonytalanabb paramé­
terbecsléshez vezet.

A 2.2 ábrán két megoldást javasolunk, melyek közül mi az elsőt alkal­
mazzuk.

A 2.4 táblázatban szimulált adatokkal hasonb'tjuk össze a két eljárást, 
ahol a FUZZY 1 az Otto és Bandemer által levezetett, a FUZZY 2 pedig az 
általunk módosított algoritmus.

A továbbiakban vizsgáljuk meg vizes alkoholminták gázkromatográfiá­
sán meghatározott méréseinek kalibrációs eredményét. A 2.5 táblázatban 9, 
a 2.6 táblázatban a 9-hez további 3 mérési eredményt és az adott módszer 
által kapott paraméterekkel számított százalékos eltéréseket tüntettük fel. A 
táblázatok végén szerepelnek a két módszerrel meghatározott paraméterpár 
értékei.

Az első 9 minta a laboratóriumban készült, törzsoldat megfelelő hígí­
tásával, míg az utolsó 3 minta az OMH által kiadott standard minta volt.
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y=miX+m2
Vi

2.1 ábra: Otto és Bandemer által javasolt gráf a helyi legjobb fuzzy közelí­
téshez

y=mi(x-Xi)+yi
y=miX+m2 =mix+m2

Vivi 7
ШYí f—u*

/

Xi

2.2 ábra: Két általunk javasolt gráf, melyekkel elkerülhető a szövegben em­
lített probléma
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jel eltéréskonc.
LS FUZZY 1 FUZZY 2x У
0.32 -0.021.1 0.001

2.0 -0.042 -0.04 0.00
-0.20 0.143 3.1 0.20
-0.763.8 -0.08 0.004

6.5 0.68 1.70 1.805

1.26 0.92 0.90ТП\

-0.48 0.20 0.20m2

2.4 táblázat: Szimulált adatokra illesztett egyenes paraméterei és a számított 
értékek eltérései

Ebben az esetben úgy vehetjük, hogy a hígított minták sorozatát szennyez­
tük a standardokkal. A számításokból jól látszik, hogy a fuzzy regresszió 
robusztus tulajdonsága révén kevésbé volt érzékeny a perturbációra.

Lineáris fuzzy regresszió általánosítása geometriai úton

Az egyik legtermészetesebb módja az általánosításnak a többszörös integrá­
lok alkalmazása. A már említett okok miatt azonban a többváltozós geo­
metriai ismeretek használata kivitelezhetöbb algoritmust szolgáltat. Sajnos 
az n-dimenziós geometriai fogalmakkal kellő mélységben csak két könyvben 
[122,70] találkozhatunk, így rengeteg saját fejlesztést kellett végeznünk a 
működő algoritmus összeállításához.

Az általánosításhoz néhány természetes megszorítással kellett élni. A 
mérési pontok bizonytalanságának jellemzéséhez hiperellipszoid tartókat vá­
lasztottunk, tehát a pontokhoz rendelhető tagsági függvény hipérpáraboloid 
lett. Felírhatjuk a lineáris modellt az у ’függő’ és az 11,2:2,2:3, ■ • ■ ,Xd (vagy 
röviden jelölve x) ’független’ változók között. Mivel általában minden válto­
zó kisebb-nagyobb mérési hibával terhelt, így x-et inkább magyarázó (exp­
lanatory) változónak, у-t pedig magyarázott (explained) változónak hívjuk. 
Tehát a beállítható x változó magyarázza a hatására kialakult у változót. 
Ezekután a lineáris modell:

2.3.2

(2.67)У — TYl\X\ “t” 77l2X2 “i” ПГ3Х3 “b • * • -f" ПТ,(1—i Xd—i -f- TTtd-\-\ ,
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jel (terület arány)mintaszám koncentráció százalékos eltérés
LS FUZZY 2x У

0.244
0.272
0.478
0.832
0.928
0.952
1.976
2.914
3.698

0.2407
0.2758
0.4781
0.8423
0.9654
0.9649
2.0657
3.0819
3.9018

1. 3.88 0.75
2. 5.32 2.61
3. -0.42

-1.68
-1.89
-2.434.

5. 0.72 0.08
6. -1.98

-0.33
-2.61
-0.527.

8. 0.40 0.33
9. -0.03 -0.05

1.063
-0.028

1.061
-0.020

m 1
m2

2.5 táblázat: A Bűnügyi Technikai Intézetben előállított standardok által 
meghatározott kalibrációs egyenes paraméterei és a számított értékek száza­
lékos eltérései
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jel (terület arány) százalékos eltérésmintaszám koncentráció
LS FUZZY 2Уx
2.27 0.750.2407

0.2758
0.4781
0.8423
0.9654
0.9649
2.0657
3.0819
3.9018
1.0932
2.2382
3.3828

0.244
0.272
0.478
0.832
0.928
0.952
1.976
2.914
3.698
1.000
2.000
3.000

1.
3.68 2.612.

-2.40
-3.81
-1.38
-4.14
-2.53

-1.89
-2.43

3.
4.

0.085.
-2.61
-0.52

6.
7.

0.33-1.808.
-2.25 -0.059.
3.31 4.7710.
4.21 6.09И.

6.504.4912.

1.087
-0.030

1.061
-0.020

ГП\

m2

2.6 táblázat: Az előbbi táblázatban szereplő standardok és az OMH által 
előállított standardok felhasználásával kapott kalibrációs egyenes paraméte­
rei és a számított értékek százalékos eltérései

43



ahol mi az i. együttható vagy paraméter és a feladat az összes mi becslése 
a kísérleti adatok felhasználásával.

(2.67) átírható két vektor szorzarára egy hipersík egyenletét eredmé­
nyezve:

( xd = y, 1 )Xi, X2 %3, • ■ • ) Xd—1

( mi
m2
m3

= 0.

md-1 
md = -1 

md+1
(2.68)

A (2.68) kifejezés segítségével felírható a hipersík normál egyenlete is, 
felhasználva az щ iránycosinnsokat:

y, 1 )( . . , Xd—1) Xd —Xl, X2, X3

ni
n2
ПЗ = 0,

Tíd—\
nd

\ nd+1 = P /
(2.69)

ahol
(2.70)ha i = 1,..., dщ - cos a,- = pmi

és
Hd+il (2.71)rid+i — P — P> md+i —

\!EU ">?
ahol

1
p, = -sign(md+i)

\/E?=i mf
|p| a hipersík távolsága a Descartes-féle derékszögű koordináta-rendszer ori­
gójától. A (2.69) egyenlet által megadott hipersík vagy metszi, vagy nem
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metszi a d-dimenziós hiperellipszoidot, ami a mért pontok bizonytalanságát 
fejezi ki. A metszet újra hiperellipszoid lesz, de d — 1 dimenziós [122]. Ezek a 
csökkentett dimenziójú hiperellipszoidok lesznek az alapjai annak d dimen­
ziós hiperparaboloidnak, melyet a d + 1 dimenziós hiperparaboloid tagsági
függvény metszeteként kaptunk. Összegezve ezen d-dimenziós hiperparabo- 
loidok térfogatait kapjuk az m./.^m*) relatív számosság értékét [102] egy 
bizonyos ml, m%,... ,m^+1 paraméter halmazt vizsgálva. Az m.f.g(f) 
helyi legjobb fuzzy közelítést [102] azon d-dimenzós hiperparaboloid térfo­
gatok összegzésével nyerjük, melyeket akkor kapunk, ha a hipersíkot minden 
egyes mérési ponthoz eltoljuk, ezzel a térfogatösszegek lehetséges legnagyobb 
értékét szolgáltatva. Mivel m./.£(/) > 0 és m./.£(m) < minden
m-re, számolhatjuk

m.f.E(rn) (2.72)
m.f.E{f)

értéket, melynek maximális értékét meghatározó paraméter halmaz lesz a 
fuzzy becslés, így a megfigyelések fuzzy jellegét a paraméter térbe vittük át.

Minden elméleti vonatkozást áttekintettünk ahhoz, hogy formába önt­
hessük a számításokhoz szükséges algoritmust. Egy d-dimenziós hiperpa­
raboloid térfogatát, melynek alapja egy d — 1-dimenziós hiperellipszoid (a 
levezetések mellőzésével) a következő két eset megkülönböztetésével nyerjük, 
ha d - 1 páros, azaz d — 1 = 2n:

hjirh)71 £ 
(n + 1)! ГК (2.73)

j=i

és ha d — 1 páratlan, azaz d — 1 = 2n + 1:

hVh(nh)n(n + 1)!2(2п+3)
П 1 (2.74)

(2n + 3)!
i=1

ahol h a hiperparaboloid magassága és щ jelenti a hiperellipszoid féltenge­
lyeinek hosszát.
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Az i. méréshez tartozó d-dimenziós hipereüipszoid egyenlete:

( 4- 0 Xj_0vfl\' ( X\ \( Zi 1 -E£00
Vi2 *2X2

= 0
í _ EuL0 0 V?.

id dXd vid

-% (ö= V 1 /V 1 / _££L _Ц2. : ! -1 1 vhKi vi2

(2-75)
ahol Vij az i. mérésnél a j. változó bizonytalanságát jelöli (az i. hiperellip- 
szoid j. féltengelyének hossza) és az i. mérésnél a j. változó megfigyelt 
értéke.

A megfelelő módon választott X_ transzformációs mátrix (lásd pld. [38]- 
ben 4 dimenziós esetre) elemei csak a (2.69)-ben szereplő iránycosinusok érté­
keitől függ. Alkalmazva ezt a transzformációs mátrixot (2.75)-re, x!T!Y_X.x = 
0-t nyerjük x'V_x = 0-ból.

TYJL jelöljük M(d)-vel és általános elemekkel felírva kapjuk

ald+l ^

«1 d+l
/ Oil ald0-12 al d—1 

02d-l 02d021 022

(2.76)K{d) =
Od—1 d Od-1d+lttrf-11 Od-12 ' Od-1 d—1

Od d Od d+lOd d—1Od 1 Od 2
ad+1d+l /\ ad+ll ad+12 ' űd+l d—1 Od+1 d

A hipersík egy olyan d — 1-dimenziós elforgatott hiperellipszoidot metsz 
ki melyet M(d — l)-el jellemezhetünk:

K(d - 1) =

ÍPaid + öld+l) 
(P02d + 02 d+l)

011 ald-l 
02 d—1021

(P0d-1d + Od-1d+l)Od-11 Od-ld-1
(p2add+p(odd+1 + Od+ld) + Od+ld+l) /

(2.77)
' (Padd-1 + Od+ld-l)\ (Padl + O-td+l 1)

Főtengely-transzformációval meghatározhatjuk az M.(d — 1) mátrix А,у 
sajátértékeit. Ezen sajátértékek segítségével kiszámolhatjuk a kimetszett
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d— 1-dimenzós hiperellipszoid féltengelyeinek hosszát és a középpontját meg­
határozó ж® koordináták értékeit ( az 0 jelzést használjuk a d— 1-dimenziós 
hiperellipszoid középpontjának megkülönböztetésére a d-dimenzióstól):

- (p2a-dd + pja-dd+i + a-d+id) + Qd+irf+i) (2.78)Uij =
\ij

P&jd "I" dj n+1e = (2.79)x?i
(P2add + P (O-d.d+1 + ad+1 d) + Orf+1 d+1)

A hiperparboloid h magasságát (2.79) és az i. méréshez tatozó tagsági 
függvényt felhasználva nyerjük:

d

hi = 1 - Y, (2.80)vhi=i

ahol x* az eredeti mérési pont T által transzformált koordinátáját jelenti, 
xfd = p és [u]+ = max{t), 0}.

A fentebb vázolt módon kiszámolható a m./.c(m; /) értéke bármely m 
paraméter vektorra. Sajnos nincs direkt út m./.c(m; /) maximumának meg­
határozására. A genetikus algoritmus [81] globális optimum kereső eljárással 
már végeztünk néhány bíztató kísérletet, így a közel jövőben szándékozunk 
egy olyan programcsomagot összeállítani, melyben a többváltozós lineáris 
fuzzy regresszió által becsült optimális paramétervektort a genetikus algo­
ritmus segítségével keressük meg.

Fuzzy lineáris regresszió

A Tanaka és munkatársai [126] által kidolgozott fuzzy lineáris regressziós 
eljárásról kiderült, hogy nem robusztus, így kidolgoztuk egy módosított vál­
tozatát. A következő iteratív eljárást használjuk. Az у,- adatok számára 
tagsági függvényeket származtathatunk az előzőleg kiszámolt paraméterek 
aj centrumai és ej terjedelmei felhasználásával. Ezeket az értékeket felhasz­
nálva az (y,-,et) fuzzy kimenő adatokat határozhatjuk meg, ahol e,- terjedel­
meket jelent. Talán meglepő, de ez utóbbi nem fordítottan arányos az у,- 
tagsági értékével, ami jól látható a 2.3 ábrán.

2.4

+p 1 У. - x\ql ICj I Xij I
.■»=1

(2.81)e:- = 1 - H
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2.3 ábra: A fuzzy kimenő adatok е,- terjedelme és az у,- tagsági értékek 
fordított arányú kapcsolatának illusztrálása

és nagyobb értékéhez у,- nagyobb tagsági értéke tartozik. Az első lépésben 
nem fuzzy kimenő .adatokkal meghatározzuk a fuzzy paramétereket, majd 
e,-ket számítjuk mindig az előző lépés eredményéből.

A fuzzy regressziós paramétereket fuzzy kimenő adatokkal a következő 
lineáris programozási feladat megoldásaként adhatjuk meg [127]:

- = T.U ч
Feltételek (1 - H) EU ej \ хц | +хЦа > у,- + (1 - Я)е,-, (2.82) 

(Я - 1) EU Cj I хц I +xja < Vi + (H- 1)е„
Ci > О,

г = 1,2,..., тг.

A módosított eljárás robusztusságát az irodalomban nemrégen közölt 
atomabszorpciós spektrometriásan mért adatsoron [56] szemléltetjük.

Minimalizálandó
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Adatsor Elem Koncentráció (ppb) Jel
A12. 0 0.000

0.084
0.194
0.245
0.330
0.097
0.182
0.256
0.331
0.417
0.000
0.110
0.226
0.430
0.637
0.765
0.870

20
40
60
80

Cu 205.
40
60
80
100

8. Mn 0
10
20
40
60
80
100

2.7 táblázat: Atomabszorpciós spektrometriásan mért adatsor az irodalom­
ból átvéve
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Adatok (jelzés az ábrán) 
5. adatsorra (b)2. adatsorra (a) 8. adatsorra (c)

ŰO ± Co
oi ± ci 0.004466 ± 0.0004259 0.003988 ± 0.0000972 0.01000 ± 0.001444

0.0 ± 0.0 0.019 ± 0.0 0.0 ± 0.0

1.0000
0.3731
0.1000
0.1000
0.1970

0.1000
0.1000
0.6143
0.1000

0.9228**

1.0000
0.3077
0.1000
0.4808
0.5731
0.6971
0.1000

МУ/
МУ/

1. iteráció
МУ/
PY*
МУ/
МУ/

do ± Со 
dl ± Cl

pyc

МУ/
VY‘
МУ/
МУ5С
МУ/
МУ/

0.0 ± 0.0
0.004083 ± 0.007758 

1.0000 
0.9850 
0.9012 
1.0000 

0.9946*

0.0 ± 0.0
0.008700 ± 0.01653 

1.0000 
0.8609 
0.8427 
0.8760 
0.8840 
0.9470 
1.0000

2. iteráció

0.0 ± 0.0
0.01037 ± 0.01056 

1.0000 
0.9619 
0.9437 
0.9770 
0.9851 
0.9511 
0.8990*

do ± Со 
d\ ± Cl 

МУ/ 
МУ/

3. iteráció МУ3С
МУ/
МУ/
МУ/
МУ/

* A leállási feltétel akkor teljesült, mikor a mérések több mint felének a 
tagsági függvény értéke elérte vagy meghaladta a 0.9 (= H) értéket.
** A leállási feltétel akkor teljesült, mikor a mérések több mint felének a 
tagsági függvény értéke elérte vagy meghaladta a 0.1 (= H) értéket.

2.8 táblázat: A fuzzy lineáris regresszió eredménye és a módosított számí­
tásmenet illusztrálása
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a

b
0.45

0.4 -

0.35 -

0.3 "

0.25 “

02 -
0.15 -

0.1 *

0.05 -
0

0 20 60 80 10040

C

2.4 ábra: Fuzzy lineáris regresszióval kapott kalibrációs egyenesek ábrái

51



A 2.4 ábrán megfigyelhető a módosított fuzzy lineáris regresszió robusz­
tus tulajdonsága. A irodalomban nem régen jelent meg egy eljárás a li- 
naritás tesztelésére [130], de úgy gondoljuk, hogy a mi eljárásunk könnyen 
alkalmazható többváltozós esetben is és nincs korlátozás az adatok számára 
vonatkozóan. Egynél több iterációs ciklus már természeténél fogva jelzi 
a linearitás sérülését, azonban a robusztus tulajdonság miatt a kalibrációs 
adatok felhasználhatók maradnak.
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3. fejezet

Kalibráció során nyert 

adatok jellemzése

Konfidencia intervallum Gauss-eloszlás tel­
jesülése esetén

3.1

Az у = ao + ai x egyváltozós lineáris függvény kapcsolat esetén az egyenes ái 
meredekségét és áo tengelymetszetét kell becsülnünk az n db mérési pontból:

» E XjVj - E E Vj (3.1)ái = n Zxj-iZzj?
ExjEvj-E xj E xjVj (3.2)Őo -

»E*j - (E*j)2
melyek a későbbi vizsgálódásokhoz felírhatok másképpen is:

E(gj - х)(.Уз - У) (3.3)ŐX =
E(Zj - x)2

(3.4)äo = у - ál X,

ahol x = Efi és у = ^ v-!.
П * TI

Mivel a feltevések miatt Var(yj) = a2 minden у-re és Var(y) = a 
fenti paraméterek varianciái:

a2Uxj-x)2E(»j - x)ví Var (j/,-) =Var(ői) = Var
(E(*i - *)2)2 E(X,-X)2E(*j - *)2

(3.5)
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x21Var(á0) = Var (у - áx x) = Var (у) + Var(ax x) = а2 [ - + _ _y , ■

(3.6)
A kalibrációhoz felhasznált x,- értéknél a becsült y; varianciájának szá­

mításához az у,- = áo + ái xí helyett а у,- = у + äi(xt- — x) összefüggést 
használjuk, mivel áo és ä\ nem független becslések.

Var(yt) = Var(y) + (xt- - x)2Var(á!) = ex2 ( ^ + _^2

A kalibrációs függvényt általában a mért jelek alapján történő koncent­
ráció becslésére használják. Tekintsük a következő összefüggést:

у = у + ax(x -x) + £,

ahol у = , azaz az ismeretlen koncentrációjú oldatra vonatkozó m mérés
átlaga. Az e mérési hiba variancája:

(3.7)

(3.8)

Var(e) = Var(y) -(- Var(y) + Var(äx(x - x)) = a2 [^ ^ *j_y2-j .

(3.9)
A fenti egyenletekben szereplő a2 a gyakorlatban legtöbbször nem ismert, 
így annak becslését alkalmazzuk:

E (Vj - QQ - °icr2 и s*2 = (3.10)
n — 2

Amennyiben £ Gauss-eloszlású mérési hibát jelent a kővetkező hányados 
Student-eloszlású lesz:

У - У - úi(x - x) (3.11)t =
I Ilii (z-g)~

Vm n E(*j-*)2s*

(1 — a) biztonsági szint mellett

(3.12)t < |ía|

teljesül, ahol ta az a szignifikancia szinthez és n—2 szabadsági fokhoz tartozó 
Student-eloszlás táblázatbeli értéke.
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t értékét (3.11) alapján (3.12)-be helyettesítve, majd négyzetre emelés 
után a következő másodfokú egyenlőtlenséget nyerjük

-2 S*2tl
1 £(*j - *)2 (x-x)2-2a1{y-y)(x-x)+(y-y)2-s*2t2a

\ TTL Tí J
<o,

(3.13)
melynek megoldásaként kapott konfidencia intervallum [18,134]:

(y-y)2s* ■± + !U , _ , У - У~ + X +------2 7
7 (3.14)x < ta —

ü? £(*,- - Юäi \m7 n

ahol
s*H2a (3.15)ttl а.Пъ-х)2’7 =

Amennyiben (3.15)-ben a második tag közel nulla, azaz 7 « ä\ a következő 
elterjedtebb és egyszerűbb formula használható

(x - x)2s* 1 1x < x + ta —,/---- ha\\j m

ahol i a kalibrációs egyenes által becsült koncentráció:

(3.16)n + £(** - xf

х = х+У-^. (3.17)
Öl

3.2 Konfidencia intervallumok szerkesztése boot­
strap módszerrel

Az előző szakaszban a legkisebb négyzetek módszerével meghatározott para­
méterekkel és a mérési hiba eloszlására vonatkozóan a Gauss-eloszlás feltéte­
lezésével konfidencia intervallumot vezettünk le az ismeretlen koncentráció 
becslésének jellemzésére. A másodfajú hiba kezelésére bemutatott robusz­
tus eljárások alkalmazása esetén nem használhatjuk ezket az eredményeket, 
hiszen a feltételezett eloszlástól (amely nem is mindig a Gauss-eloszlás) kis­
mértékű eltérés megengedett.

Ha bizonyos statisztikai leírás egzakt megoldása nem létezik, akkor vá­
lasztanunk kell a teoretikus approximáció (pld. sorbafejtés) és a tiszta nu­
merikus approximáció (pld. Monte Carlo módszerek) között. A bootstrap
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módszer [42,82] legfontosabb tulajdonsága, hogy releváns statisztikai jellem­
zők szimulációja, úgymint variancia, torzítás, konfidencia intervallum, stb. 
minimális feltételek betartása mellett.

A gyakorlatban a kalibráció elvégzéséhez szükséges mérések száma erősen 
korlátozott a költséges vegyszerek használata ill. az időigényes meghatáro­
zások miatt. így csak csekély számú mérést lehet elvégezni. A kisszámú 
minta értékeléséhez nem használhatjuk a normalitást megkövetelő statiszti­
kai módszereket. A kisszámú minták jellemzésére alkalmas, sztochasztikus 
approximáción alapuló bootstrap eljárás alkalmazása kínálkozik megoldásul.

Az 3.1 ábrán a bootstrap eljárás alkalmazásának sémáját mutatjuk be. A 
valódi P valószínűségi modell E[y,P] várható értékét becsüljük az E[y*,P} 
bootstrap becsléssel. A kritikus lépést kettős nyíllal jeleztük.

Aktuális 
valószínűségi 
modell

Becsült
valószínűségi
modell

A lehetséges
valószínűségi
modellcsalád

Bootstrap
adatok

* /

Megfigyelt
adatok

P► PP У

E(y,P)

valódi jellemző újramintázással
következtetett

jellemző
3.1 ábra: Séma a bootstrap eljárás alkalmazására

A regreszióanalízisnél a bootstrap eljárást kétféle újramintázási straté­
giával alkalmazhatjuk:

1. Újramintázás reziduálisokon alapulva

Tekintük a következő regreszziós modellt: yi = /(a:,-,/?) + £,-, ahol г/,- a függő 
változó (mérési jel), xí a független változó (koncentráció), £,• a mérési hibát 
reprezentáló véletlen változó. Először a ß paramétert kell meghatározni a 
legkisebb négyzetek, vagy más pld. robusztus paraméterbecslö eljárással. 
Ezután az illesztett értékek számolhatók: у,- = f(x{,ß). Ha feltételezzük, 
hogy az £,■ hibák homoszkedasztikusak és az F eloszlás függvényük becsül­
hető a reziduálisok F tapasztalati eloszlásával, akkor {(a:,-, y*), i = 1,..., n) 
szimulált adatokat állíthatunk elő y* = yi + £* alkalmazásával, ahol £*-t 
visszatevéses mintavétellel választjuk az eredeti (£;,i = l,...,n} reziduáli-
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sok közül, ahol természetesen £,• — yi — yi- Az új adatokkal m alkalommal 
elvégezve az illesztést a ß* és y* bootstrap becsléseket kapjuk.

2. Ujramintázás adatpárokon alapulva
Ezt az eljárás ajánlott, ha a hibák heteroszkedasztikusak. Ebben az eset­
ben az (aadatpárokat tekintjük, melyet az F együttes eloszlás ír le. Az 
(x*,y*) bootstrap mintákat az eredeti {(а;,-, у,), г = 1,..., n) adatpárok közül 
véletelnszerüen kiválasztva nyerjük. Meg kell említenünk ennak az újramin- 
tázási módszernek néhány hátrányos tulajdonságát. A Var(si) változhat 

ill. f(xi, /?)-val. Néhány statisztikai jellemző függ a D = (a^,... ,xn) 
tervezett beállítástól, azonban a szimulált adatpárok különbözni fognak D- 
töl. Végül gyakran előfordul, a sikertelen újramintázás (bizonyos adatpárok 
túl gyakran szerepelnek a mintában), aminek következtében a paraméterek 
becslése nem vitelezhető ki a szingularitás miatt.

A bootstrap módszer regressziós függvények paramétereinek jellemzésére 
történő alkalmazásával a matematikai statisztikai irodalomban számtalan 
példával találkozunk [16,112,41,43,125,115,36,33]. Az analitikai kémiában 
történő felhasználásra is történtek próbálkozások [24,54,2], főleg az illesztő 
függvények paramétereinek korrelációját vizsgálták ill. a paraméterek elosz­
lását és konfidencia intervallumaikat határoztak meg. Bemutatjuk a 3.2 és a 
3.3 ábrákat a bootstrap újramintázási algoritmus által nyerhető információk 
szemléltetésére.

Bonate [19] írta le először a becsült koncentrációk jellemzését bootstrap 
módszerrel meghatározott variancia becslések segítségével.

A következőkben olyan eljárást ismertetünk, melynek során konfidencia 
intervallumok határozhatók meg a becsült koncentrációkra vonatkozóan. A 
kalibrációs függvény paramétereit különböző robusztus becslökkel határoz­
tuk meg és a bootstrap módszer segítségével tapasztalati sűrűségfüggvényük 
felhasználásával nyertük a kívánt konfidencia intervallumokat.

Nézzük meg részletesen ezen kiterjesztett bootstrap technika alkalmazá­
sát.

Az alkalmazott paraméterbecslő eljárások mindegyikét a 2. fejezetben 
már korábban ismertettük, így csak felsoroljuk őket: LS, IRLS6, IRLS9, CM, 
RM, LSM. Ezekkel a becslökkel a reziduálison alapuló bootstrap újramintá- 
zással 3000 paraméterpárt határozunk meg. Ezeket a paraméter becsléseket 
használjuk az alkalmas koncentráció becslés megkeresésére a tapasztalati 
maximum likelihood módszer segítségével. Egy bizonyos koncentrációhoz
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b* t

>

a*

3.2 ábra: 3000 bootstrap mintából meghatározott a* és b* paraméterek kö­
zötti korreláció
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gyakoriság
A

5% 5% >
л а*а

3.3 ábra: 3000 bootstrap mintából számított a* paraméter eloszlása és a 
90%-os megbízhatósági szintű konfidencia intervallum
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tartozó mérési jel sűrűségfüggvénye meghatározható a nempa.ra.metrikus ker­
nel sűrűségfüggvény becslövel [61]

i_ У'0
3000 h \ h Jm = (3.18)

felhasználva, hogy
yB = clq + af x, (3.19)

h. ahol az - Cauchy-eloszlás sűrűségfüggvényét alkalmaztuk К(■) 
kernel függvénynek, h a skálaparaméter becslése, és aB és af a B. bo­
otstrap paraméterpár. Azért kell a Cauchy-eloszlást alkalmazni, mert ezen 
eloszlás széles szárnyaival az esetleg előforduló extrém értékeket is kellően

■nh2 + (t-yiy

elsimítja. Ráadásul a Cauchy-eloszlás a Student-eloszlások családjának 1 
szabadsági fokhoz tartozó tagja, és a Student-eloszlásokat az előző szakasz 
tanúsága szerint a klasszikus statisztikai módszerekkel meghatározott kon­
fidencia intervallumoknál alkalmazzák.

A h értékét a következő robusztus skálaparaméter becslövel számoljuk
[111]:

4 = L4826 (j + ^i) (3.20)mT,

ahol 2 mx azon legkisebb tartomány, amely az adatok legalább felét tartal­
mazza.

A te jósolt mérési jelet úgy választjuk meg, hogy az /(íj) értékek szorzata 
a lehető legnagyobb legyen:

m

П f(tj) -- ^ > (3.21)max
i=1

ahol tj jelzi az ismeretlen koncentrációjú mintára vonatkozó j. mérési jelet.
Felhasználva a jósolt te értékét, a becsült koncentrációra vonatkozóan 

nyerhetünk tapasztalati sűrűségfüggvényt:

3000 (z-xB\£'1 (3.22)/(*) = 3000 h

felhasználva, hogy в
te - «0 (3.23)«?
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ahol űq és af ugyanaz mint fentebb, és te a mért jelek tapasztalati maximum 
likelihood becslése.

A konfidencia intervallumot a szokászos módon számíthatjuk:

a ff a
ГХ1 _/ f(z)dz

J —со
(3.24)

ahol xi és xr a konfidencia intervallum bal ill. jobb oldali értéke és a az előre 
megadott szignifikancia szint. Mivel a jósolt koncentráció becslése robusztus 
módszerrel történik, így ez az intervallum aszimmetrikus is lehet, jobban 
megközelítve a valós eseteket.

A fentebb vázolt eljárás bemutatására tekintsük a 3.1 táblázatban lé­
vő 3 db szimulált kalibrációs adatsort, ahol aláhúzással jelöltük az általunk 
elhelyezett kiugró értékeket. A táblázatban feltüntettünk még három szimu­
lált mérési jelsorozatot (mindegyik 3 párhuzamos mérést tartalmaz), melyek 
az ismeretlen koncentrációjú mintához tartoznak. A feladat az ismeretlen 
koncentrációk becslése különböző paraméterbecslö eljárásokkal kiértékelt ka­
librációs függvények segítségével. A 3.4-3.9 ábrákon láthatjuk az eredmé­
nyeket. Általánosságban megállapíthatjuk, hogy a robusztus tulajdonsággal 
bíró paraméterbecslőkkel kiértékelt kalibrációval torzítatlan és kevésbé bi­
zonytalan (a tapasztalati sűrűségfüggvény a módusz közelében keskenyebb 
ill. a gyakoriságérték nagyobb) koncentráció jóslást kapunk, mint a legki­
sebb négyzetek módszerének használata esetében. A robusztus becslök jó 
tulajdonsága a kiugró pont közelébe eső mérési jel alapján történő koncent­
ráció becslés esetén mutatkozik meg igazán. Jól látható ez a 3.5, 3.7 és 3.8 
ábrákon. Érdekes eredmény, hogy ha a nulla pont közelében van a kiugró 
pont (3.8 és 3.9 ábrák), csak az LMS szolgáltat torzítatlan és kis bizonyta- 
lanságú koncentráció becslést, az origótól távolabbi pontokra még az RM és 
SM robusztus becslők is igen torzított jóslást adnak.

Végül bemutatunk egy gyakorlati példát, ahol talajvizek Mg koncentrá­
cióját kellett ICP-AES módszerrel meghatározni. A 3.2 táblázatban tün­
tettük fel a kalibrációs adatsort, valamint az ismeretlen Mg koncentrációjú 
oldatra kapott mérési jeleket. A 3.10 ábrán a különböző paraméterbecslők­
kel meghatározott kalibrációs egyenes által jósolt koncentráció eloszlásokat 
vizsgálhatjuk. A 3.3 táblázat a számított konfidencia intervallumokat adja 
meg 90%-os megbízhatósági szint mellett.
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Kalibrációs adatok
1.0 2.0 3.0 4.0 5.0 
1.1 2.0 3.1 3.8 (L5 
1.1 2.0 4J> 3.8 5.1

X 0.0
1. Y 0.0
2. Y 0.0
3. Y L5 1.1 2.0 3.1 3.8 5.1

Mérések
1. minta 2. minta 3. minta

4.512.830.24
4.562.880.29
4.592.910.32

3.1 táblázat: Szimulált kalibrációs adatok, valamint a szimulált mérési jelek

1 .O
-1 . S
-I

t . 3
-I .2

0
-1c 5C 0.0 

0.0 
* o.^
3

0
l 0.0

о. s
о

A0.0

0.2 ><á\О . *1

о
-1 -0.0 -0.2 0.2 0.0 -I -1 .-Ф *1 . О

coooentration
SM□ ? L.MSо д X

3.4 ábra: Az 1. mintára vonatkozó jósolt koncentráció eloszlása (a kiugró 
érték x = 5.0-nél у = 6.5)
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1 .6 
-I .0
-I . T
-1 - &
1 .s
-1 . -**■>1
1 . 30
-1 .2c
-I . -1c

*13и о. e
c о. &
L o.r

o.e
о. s
0.-4
О . 3
0.2 -

О. 1

□

3.5 ábra: A 3. mintára vonatkozó jósolt koncentráció eloszlása (a kiugró 
érték x = 5.0-nél у = 6.5)

"I . в
-I .Г
-I .в
1 . S
*1 .-4
1 . 3*

0 -1 .2
c -1 . -1

í *1
3 o.o
ff 0.3c
v 0.6

О . 6
О .-*•
О . 3
0.2-

O . 1

О

3.6 ábra: Az 1. mintára vonatkozó jósolt koncentráció eloszlása (a kiugró 
érték x = 3.0-nál у = 4.5)
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2.8 дг.-<
X

X
X

2

У X
-1 . во

х*>Iс *1 - в
(I -I .-43 $7 -I .2в 1L

о.в
о. в
О.-Ф

о.г
о

1 . -1 .0 2.2 .в 3 З.-Ф 3.8

со n centretlon
SMО F4.M V L.Í4/1 S+ О д X

3.7 ábra: А 2. mintára vonatkozó jósolt koncentráció eloszlása (a kiugró 
érték x = 3.0-nál у = 4.5)

2.8

2.в 9*'
9 У2.-4 1Г
9 72.2 Г9

9О 9
-I .0 -9-С 9

С “I .0
3 -1 . -4и

1 .2С
L 1

0.8

0.8

0.4

0.2

О
— 2

соr~iGe rttratlon□ 4 I FtLS©О д

3.8 ábra: Az 1. mintára vonatkozó jósolt koncentráció eloszlása (a kiugró 
érték x = O.O-nál у = 1.5)
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2 . & 12 .&
У

2 .-4
У

> - - У Уо У2 "У"с У. & У У] Ч 0 
а -1

? —
У
У
р
У
У

■у*• -1

0.0

0.0

О .-4
0.2

О
3 3.-4 3.0 -4.2 -4.0 S О . -4 о . О

concentration
ЗГЧ/1□ F4.IV1 У L.IV1S+ О д х

3.9 ábra: А 3. mintára vonatkozó jósolt koncentráció eloszlása (a kiugró 
érték x = O.O-nál у = 1.5)

Kalibrációs adatok
konc. 1. mérés 2. mérés 3. mérés

mérési jelek (a.u.)
0.0 154.6 156.8 153.6
0.5 2418 2413 2401
1.0 4685 4709 4642

PPm

6917688769511.5
9788973897272.0

Az ismeretlen koncentrációjú oldatra vonatkozó mérések (a.u.)
4894
4935
5003

3.2 táblázat: Talajvíz Mg koncentrációjának ICP-AES módszerrel történő 
meghatározásához használt kalibrációs adatsor
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-I &
1 5 К-1 Аф

-1 з Щ
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Ü О

] 8
(Г
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L в
V
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э

-1

0.8 I -1 .2
concentration

t R.L.S0 О IF4.L.SQ Д SM X R.M 9 LMS□

3.10 ábra: Talajvíz jósolt Mg koncentrációjának eloszlása különböző para- 
méterbecslö eljárások alkalmazása mellett

X fxeX,

LS 0.907 1.034 1.162
0.914 1.050 1.170
0.908 1.034 1.162
0.922 1.050 1.176
0.928 1.056 1.182
0.926 1.056 1.182

IRLS6
IRLS9

> CM
RM►

LSM

3.3 táblázat: Talajvíz Mg koncentrációjának jósolt értékei 90%-os megbíz­
hatósági szintű konfidencia intervallummal, különböző paraméterbecslö el­
járások alkalmazása mellett
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4. fejezet

Karl Fischer titrálás 

automatikus vezérlése

Ebben a fejezetben egy olyan új algoritmust mutatunk be, melyet az auto­
matizált nedvességtartalom meghatározásra, azaz a számítógéppel vezérelt 
Karl Fischer titrálásra fejlesztettünk ki. Legyen ez példa egy komplex ana­
litikai probléma kemometriai szemléletű megoldására.

4.1 A Karl Fischer titrálásról általában

A Kari Fischer-módszer kémiai vízmeghatározás. Lényegében az alábbi re­
akción alapul [23]:

S02 + I2 + H20 ^ S03 + 2Г + 2H+. (4.1)

A reakció reverzibilis, a keletkező savas komponensek megkötésével az 
egyensúly a vízmegkötés irányába tolható el. E célra piridint használnak 
fel, a reakció általában metanolos közegben játszódik le, ahol a metanol 
nemcsak oldószerként szerepel, de a kén-dioxid oxidációja során keletkező 
kén-trioxidot is szolvatálja. így végeredményben a folyamat a következő 
egyenletekkel írható le:

I2 + C5H5N • S02 + 2C5H5N + H20 = 2C5H5N • HI + C5H5N • S03. (4.2)

(4.3)C5H5N • S03 + CH3OH = C5H5N • HSO4CH3.
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A gyakorlatban használt oldatokban az egyensúly eltolásának érdekében 
alkalmazott összetétel miatt a hatóértéket a jódkoncentráció határozza meg. 
A víztartalom meghatározást meghamisítják a jódtartalmat megváltoztató 
zavaró kísérő anyagok (szerves peroxidok, oxidáló anionok, oxidáló kationok, 
redukálószerek, bórsav, aceton stb.), így azokat a meghatározás előtt ki 
kell nyerni. Ez metanolos, esetleg etilén-glikolos extrakcióval történhet, pld. 
olajok, zsírok víztartalmának extrakciója.

A meghatározás során az analizálandó mintát vízmentes metanolban 
(vagy olyan metanolban, amelynek víztartalmát a minta oldása előtt tit- 
ráltuk le Kari Fischer-oldattal, és így víztelenítettük) oldjuk, majd a Kari 
Fischer mérőoldattal titráljuk. A titrálás végpontját általában három mód­
szer szerint lehet jelezni:

• vizuálisan, a sárgából barnába való színváltozás észlelésével,

• potenciometrikus (biamperometriás (dead stop)),

• fotometrikus úton.

Az első esetben a titrálást addig kell végezni, amíg a barna szín megma­
rad, kb. 20 másodpercig. Túltitrálás esetén más árnyalatú barna keverékszín 
keletkezik, amely jól felismerhető. A végpont jelzése ezen az úton csak olyan 
anyagoknál lehetséges, amelyek nem vagy igen kevéssé színezettek.

A potenciometrikus titrálás előnye, hogy pontosabb és sötét színű anya­
gok is titrálhatók. Az összehasonlító elektród alkalmazásának problematikus 
volta miatt a gyakorlatban a dead stop módszer használatos. Az oldatba 
merülő két Pt-elektródot kis feszültséggel (15-20 mV) polarizálják. A cellán 
minaddig nem megy át áram, amíg a reagens fölöslegbe nem kerül, vagyis a 
katód depolarizálódik. Az áram megindulását ampermérő jelzi.

A fotometrikus végpontjelzés tiszta és átlátszó, Ш. színezett anyagok 
esetén használható.

A Kari Fischer-méröoldat hatóértéke állás közben változik, így azt na­
ponta ellenőrizni kell. Ez ismert kristályvíztartalmú sók (pld. bórax) ill. 
ismert víztartalmú kalibráló oldatok (pld. HYDRANAL-EICHSTANDARD 
5,00) segítségével végezhető el.

Az új vezérlő algoritmus leírása

Fischer titrálás során kapott titrálási görbét mutatunk be a 4.1 áb- 
A gyakorlatban nem a két egyenes metszésével kapott pontot veszik

4.2

Kari
rán.
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1 +•

► 3ekv. cm

4.1 ábra: Karl Fischer titrálás során kapott tipikus titrálási görbe biampe- 
rometriás (dead stop) végpontjelzéssel

végpontnak, hanem előzetes mérések alapján előre kijelölnek egy pontot és 
a továbbiakban eddig az áramerősség értékig titrálnak. Ennél az eljárás­
nál csak a legelső mérést kell figyelemén kívül hagyni, mivel az esetleges 
túladagolás minden további mérésnél kiküszöbölődik. Mivel mindig a tit- 
ráló edényben lévő metanolos oldat víztelenítésével kell kezdeni a sorozatos 
elemzést, így hasznos mérés nem megy veszendőbe. Ezzel a módszerrel az 
értékes titrálószerek mennyiségével lehet takarékoskodni.

A megoldandó feladat tehát adott végpontig történő titrálás automa­
tikus vezérlése [3,29,78,105,59]. A fejlesztés kezdeti szakaszában a vezérlő 
algoritmus lineáris függvény segítségével jósolta meg az adagolandó Kari 
Fischer-oldat térfogatát. 5 egymást követő mérési pontra egy egyenest il­
lesztettünk a legkisebb négyzetek módszerével. (A továbbiakban minden
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összegzés j=1-től 5-ig értendő).

/ Vl 1 \ 
V2 1
v3 1
V4 1

\V5 1 J

/ M
h m (4.4)X = hy = p = tи

\ h
ahol Vj a titrálószer térfogata, Ij a j. térfogathoz tartozó áramerősség, m 
és t pedig az egyenes meredeksége és tengelymetszete. A részletes levezetés 
mellőzésével a paraméterek legkisebb négyzetes becslése:

= (х!Ю~1х!у (4.5)P

EV/ EV,- 
EVj 5

E Vj íjx' x = X!y = (4.6)E4
_____________ 5 -EVj
5EVj2-(EV,)2 V "EV, EV/

/ syvjii-TViVJi \ 
5E^2-(E^

E v? E 7-E V E V h ■
V sEv/-(Eví)a /

1(A'X)“1 = (4.7)

m (4.8)P = t

A t tengelymetszetet felírhatjuk

Е-Г» ^=7 (4.9)— mVt = — m
5 5

alakban is.
A regressziós egyenes meredekségét nem befolyásolja a koordináta ten­

gelyek kezdőpontjainak elhelyezkedése, ezért

m _ E(Vj-V)(W)
£(v>-V)2 

t = I — mV.
(4.10)

(4.10) dinamikus kiszámításához, azaz az adatpontok hozzáadásának ill. 
elvételének megengedése esetén [53] számítsuk ki a

чп = E(Vj_- v)2 _ 
rn = E(Vj - V)(7j - 7)

(4.11)
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rekurzív összefüggéseket. Egyszerű belátni, hogy tetszőleges V, I hozzáadá­
sával ill. elvételével a következő képletek adódnak:

?n±l = ?n ± ^0 - Vn±lf_
Гп± 1 = rn ± - Vn±1 )(/,• - Jn±1).

Az átlagok rekurzív számításához szükséges összefüggések:

(4.12)

nVn±V
(4.13)Vn±1 = n ± 1

nln±l
(4.14)1 — n±l

Az egyenes paramétereit az előzőek felhasználásával egyszerűen számíthat­
juk:

T n±l (4.15)m =
<7n±l

t — fn± 1 777. n±l •

Ezekkel a rekurzívan számítható paraméterekkel kapott egyenes segítsé­
gével megjósolható a következő adag Kari Fishcer-oldat, figyelembe véve, 
hogy mindig azonos áramerősség emelkedést kívánatos elérni. A gyakorlat­
ban történő alkalmazás során kiderült, hogy a vezérlő algortimus gyakran 
eredményezett változó mértékű túladagolást. Ezért át kellett dolgoznunk az 
eljárást nemlineáris jósló függvény alkalmazásával. A másodfokú polinomot 
választottuk, mivel aránylag egyszerűen kezelhető, de már kellően összetett 
ahhoz, hogy a kritikus görbületet kielégítő pontossággal leírja.

A stabilis rekurzív formulák az előzőekkel azonos módon vezethetők le.

(4.16)

/ Vj2 Vj 1 \
V,2 V2 1
Vi Vz 1
v/ v4 1

\V52 V5 l)

( h \
( b2 \h

(4.17)X = h biP =y =
\bo JU

\ h )

P=(x!x)~1x!y
/ EV/ EV/ £v/ \

EVf EV/ Evj 
\ EVf EVj

(4.18)

( E v/ íj \ 
E Vj íj

V Eli )
Гу =x'x = (4.19)

5 /
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(x'x)-1 =
1

5 (EV/EV/- (E v/y) - (E VjY E vf + E v?(2 e vá EV/-(E vff)

l 5EE--(S^)2
■ EViEV/-bEvf 
\EVjEVf-{EV/)2 EV/EVf-EVjEV/ EV/EV/ - (E^/)2

(4.20)
A levezetések részletezése nélkül a korábban vázolt gondolatmenetet kö­

vetve kapjuk:

EVjEvf-bEvf 
5 ЕУМ(Е^)2)2

E Vj E vf - (E v/)2 
EV/Evf - EVjEV/

<7i = E(E-Z)2
92 = E(V^-V2)2_

912 = E(y;--F)(v,?-F2)_
?6i = £№ --О ((/; -Л92 - (J2 - /_2)?i2)

= EVj - 7) ((íj - i2)qi - (/,- - 7)?12) •
Tetszőleges F, I hozzáadása ill. elvétele során a paraméterek rekurzív 

becsléséhez szükséges képletek:

(4.21)

= ft (n)±
= 92(n)±^(F2-F2n±1)2 _
= 9l2(n)±^(F-Fn±1)(F2_-F2n±1) _

ib\ (n) i (/ — /(nil)) f (^ — ^n±l )<?2 (n±l) — (^ ^2n±l )<7l2 (n±l)

<h (n±l) 
?2(n±l) 
<712 (n±l) 
4b\ (n±l) 

Qbí (n± 1) *7Ьг (n) i (/ -f(n±l)) ((^ ^2n±l)?l (nil) (V krn±l)9l2(n±l)J >

(4.22)
ahol

nV„±V
_n±l

n V2„±V2
Vn±i =

V\±i =

In±l =
Ezen összefüggések felhasználásával a paraméterekre adódó rekurzív becslé­
sek:

(4.23)_П± 1
п /п±/

П±1

 4b\ (n±l) (4.24)

(4.25)

(4.26)

h D
 Qbz (n±l)

í>2
D

fn±l ^1 ^2^Г2п±1)bo
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ahol D — 9i (n±i)92 (n±i) _ Q\2 (n±i)■
A fentebb levezetett paraméterekkel kapott jósló függvénnyel a túlada­

golás veszélye elhárult, így az automatikusan vezérelt titrálással a nedves­
ségmeghatározás az ISO 9004 [91] előírásainak megfelelő minőségbiztosítási 
követelményeknek megfelelően végrehajtható, ami a kész progam függelék­
ben közölt kezelési útmutatójából is kitűnik.
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5. fejezet

Összefoglalás

Jelen disszertációban közölt tudományos eredményeimet pontokba szedve 
foglalom össze.

1. A robusztus regressziós eljárásokkal foglalkozó irodalom áttekintését 
egy újszerű csoportosítás szerint végeztem el, definiálva az első-, másod- 
és harmadfajú modellhibát

2. Egyváltozós kalibrációs függvények paramétereinek becslésére robusz­
tus regressziós eljárásokat vizsgáltam, felhasználva az ún. minőségjel­
lemző faktort (quality coefficient)

3. Az irodalomban megjelent lineáris fuzzy regreszió egyváltozós változa­
tát úgy módosítottam, hogy a kapott paraméterekre vonatkozó szük­
ségtelenül nagymértékű bizonytalanságot csökkenteni lehetett

4. Az irodalomban megjelent lineáris fuzzy regresszió olyan általánosí­
tását végeztem el, mely nem a többszörös integrálok alkalmazásának 
segítségével történt (melyek analitikus kezelése gyakran kivitelezhetet­
len), hanem n-dimenzós geometriai megfontolások alapján

5. Az irodalomban megjelent fuzzy lineáris regressziós eljárást úgy módo­
sítottam, hogy az robusztus becslövé vált, így az a kalibrációs modell 
linearitásának kismértékű sérülése esetén is biztonságosan használható 
marad

6. A bootstrap módszer segítségével algoritmust dolgoztam ki a robusztus 
eljárásokkal kiértékelt kalibrációkkal jósolt koncentrációk konfidencia 
intervallummal történő jellemzésére
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7. Stabil és pontos vezérlő algoritmust fejlesztettem a Kari Fischer-mód- 
szerrel történő vízmeghatározás automatikus irányítására, a kezelő 
program elkészítése során figyelembe vettem az ISO 9004 minőség- 

' biztosítási előírásokat

8. Munkám során az összes felvetődött numerikus problémához saját fej­
lesztésű, Turbo Pascalban írt programokat használtam:

• a robusztus regressziós eljárások Monte-Carlo módszerrel történő 
vizsgálatához

• regresszióval kapott reziduálisok grafikus szemléltetéssel történő 
statisztikai vizsgálatához

• a PREGO nevű LOTUS 1-2-3 táblázatkezelőbe integrált robusz­
tus regressziós eljárásokat és a bootstrap módszert alkalmazó 
program fejlesztéséhez

• lineáris programozási feladat megvalósításához Ш. az abszolút 
eltérések legkisebb összege (LSA), az abszolút eltérések legkisebb 
maximuma (LMA) és a fuzzy lineáris regresszió alkalmazásához 
szükséges felhasználói felület kialakításához

• robusztus regressziós eljárások kalibráció során történő felhasz­
nálásához

• a bootstrap eljárás segítségével megvalósított konfidencia inter­
vallumok megadását végző program fejlesztéséhez

• Kari Fischer-módszerrel megvalósított automatikus vezérlésű ned­
vességtartalom meghatározásához

• a többváltozós négyzetek legkisebb mediánja (LMS) és a többb- 
változós lineáris fuzzy regresszió paramétereinek meghatározása 
globális optimumkereső (genetikus algoritmus) eljárással (Unix 
alatt C-ben feljlesztve)

Az eddig elért eredmények továbbfejlesztése további elméleti és gyakor­
lati vizsgálódásokat igényel. Már most körvonalazódik azonban egy lehet­
séges haladási irány, mely a kísérlettervezési módszerek, a különböző heu­
risztikus eljárások (genetikus algoritmus, mesterséges neuronhálózatok), a 
hipotézisvizsgálatok és a többváltozós regresszió általánosabb alkalmazását 
(mintafelismerést, osztályozást) jelöli ki. Az elkövetkező időszakban e terü­
leteken szeretnék mélyreható tudományos vizsgálatokat folytatni.
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Novel Parameter Estimating Procedures Applied for 
Evaluating Analytical Measurements

Summary

I showed the following scientific results in this dissertation.

1. To sum up the robust regressions in the literature was used a new 
concept for the systematization defining the model error of first, second 
and third kind

2. Some robust procedures were investigated to estimate parameters of 
univariate linear calibration function using the quality coefficient

3. The univariate version of the linear fuzzy regression was modified to 
reduce the inappropriate uncertainty of the predicted parameters

4. The linear fuzzy regression was generalized not by multiple integration, 
but by n-dimensional geometric concepts

5. The fuzzy linear regression was modified to become robust, so it can 
also use for only nearly fulfilled linear calibration model

6. An algorithm was developed using the bootstrap method to characte­
rize the predicted concentrations obtained from calibration evaluated 
by robust procedures

7. Stable and precise algorithm was developed for automatic controlling 
the moisture determination by Karl Fischer method, the program was 
written taking into consideration the specifications of ISO 9004

8. Developing several computer programs in Turbo Pascal for Dos and in 
C for Unix

76



Függelék

KARL-FISCHER TITRÁLÁS VEZÉRLÉSE SZE­
MÉLYI SZÁMÍTÓGÉPPEL című program keze­
lési útmutatója

A program indítása
A programot a kf.bat nevű file futtatásával lehet elindítani. A képernyőn 
bejelentkezik a főmenü a következő választási lehetőségeket felkínálva:

• FAKTOROZÁS

• MÉRÉS

• EREDMÉNYEK MEGTEKINTÉSE

• JEGYZŐKÖNYV

• PARAMÉTEREK BEÁLLÍTÁSA

• VÉGE

A menü pontokat a ’’Tab” ill. a ’’Shift Tab” billentyűk alkalmazásával 
tudjuk kijelölni, majd az ’’Enter” billentyű lenyomásával jutunk a kiválasz­
tott almenübe.

A menü pontokat alkalmazásuk logikai sorrendjében tárgyaljuk.

PARAMÉTEREK BEÁLLÍTÁSA

Ebben a menü pontban a titrálás körülményeit befolyásoló legfontosabb pa­
ramétereket lehet beállítani.
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A képernyőn megjelenik a paraméterek listája, a változtatható paramé­
terek mellett kék mezőben sárga számmal ill. piros mezőben sárga számmal 
jelenik meg az aktuális érték.

# A BÜRETTA, a DEAD-STOP TITRÁLÓ ADAPTER és a pH-MÉRŐ 
KÉSZÜLÉK paramétereinek beállítása válik lehetővé. A paraméterek közül 
megint csak a ”Tab” és ’’Shift Tab” billentyűkkel választhatunk. A további 
teendőket a megfelelő résznél ismertetjük, de fehér karakterekkel mindig 
megjelenik egy tömör ismertető a képernyő jobb szélén. Ebből a menü 
pontból az ’’Esc” billentyű megnyomásával távozhat.

BURETTA

A ’’Maximális térfogat adag” címszó mellett be lehet állítani a maximálisan 
megengedett kiadagolható titrálószer mennyiségét ///-ben. Az adat változta­
tását négyféleképpen valósíthatjuk meg. Csökkenthetjük az értékét 10/z/-rel 
a ’’Kurzor Fel” billentyűvel, csökkenthetjük az értékét 100/z/-rel a ’’Page Up” 
billentyűvel ill. növelhetjük az értékét 10/íZ-rel a ’’Kurzor Le” billentyűvel 
és növelhetjük az értékét 100/i/-rel a ’’Page Down” billentyűvel.

A ’’Monitorozásnál várakozási idő” címszó mellett a jelstabilitás eléré­
sének megállapításához a jelek egymás utáni beolvasása között szükséges 
várakozási időt lehet beállítani ms-okban. Ezt az értéket a keveredés biz­
tosításához szükséges idő is befolyásolhatja. Az adat változtatását ismét 
négyféleképpen valósíthatjuk meg. Csökkenthetjük az értékét 100 ms-mal a 
’’Kurzor Fel” billentyűvel, csökkenthetjük az értékét 1000 ms-mal a ’’Page 
Up” billentyűvel ill. növelhetjük az értékét 100 ms-mal a ’’Kurzor Le” bil­
lentyűvel és növelhetjük az értékét 1000 ms-mal a ’’Page Down” billentyűvel.

A megjelenő értékek azonnal rögzülnek, így nem kell semmilyen más 
billentyűvel elfogadtatni azt. A ”Tab” vagy a ’’Shift Tab” billentyűk segít­
ségével újabb paramétert választhatunk ki.

DEAD-STOP TITRÁLÓ ADAPTER

Végpont kapcsolási szint

A ’’Végpont kapcsolási szint” címszó mellett azon áramrősség értéket kell be­
állítani skálarész egységben, amelynél a titrálás befejezése szándékunk sze­
rint bekövetkezik. Ehhez állítsa a dead-stop titráló egység mutatós műszer 
üzemmódváltó gombját ”U Pol” polarizációs feszültség méréshez! Ezután 
a forgatógomb segítségével állítsa be a megfelelő skálarész értéket! Ha si­
került, ezt jelezze az ’’ENTER” billentyű lenyomásával, ekkor a képernyőn
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is megjelenik a kiválasztott érték. Ezután a művelet után a polarizációs 
feszültséget mindig újra be kell állítani!

Az árammérő végkitérése mindig 50/M lesz, az áramváltás iránya ”INCR.” 
azaz növekvő állapotban legyen, és a kapcsolás ”MAN.”, azaz manuális, kézi 
vezérlés állapotban legyen.

Polarizáló feszültség

A ’’Polarizáló feszültség” címszó alatt lehet beállítani a polarizációs feszült­
séget mU-okban. Ehhez állítsa a dead-stop titráló egység mutatós műszer 
üzemmódváltó gombját ”U Pol” polarizációs feszültség méréshez! Ezután a 
forgatógomb segítségével állítsa be a megfelelő feszültség értéket! Az ’’EN­
TER” billentyű lenyomásával a képernyőn is megjelenik a kiválasztott érték. 
Ha ebben vagy az előző beállításnál a képernyőn megjelenő értékek és a ké­
szülék által mutatott értékek jelentősen eltérnek (jobban mint 1-2%), akkor 
a következő pontban részletezett módon hitelesítse a pH-mérőt.

Ebből a menü pontból csak akkor tud kilépni, ha utoljára a polarizációs 
feszültséget állította be!

pH-MÉRŐ KÉSZÜLÉK

pH-mérö hitelesítése

A ”pH-mérő hitelesítése” címszó alatt kell elvégezni a hitelesítést, ha az elő­
ző pontban említett eltérések adódnak ill. a napi méréskezdés, újbóli gép 
bekapcsolás utáni első tevékenységként. Először mindig ellenőrizzük, hogy a 
Dead-Stop készülék és a pH-mérő nullpontja azonos legyen! Ehhez állítsa a 
Dead-Stop titráló egység mutatós műszer üzemmódváltó gombját ”U-pol” 
polarizációs feszültség méréshez, majd a forgatógomb segítségével nulázza 
ki a műszert. A pH-mérő készülék ’’BUFFER” feliratú gombjával állítsa be 
a 0mV értéket és ha kész nyomjon ”ENTER”-t! A pH-mérő hitelesítésénél 
állítsa a Dead-Stop titráló egység mutatós műszer üzemmódváltó gombját 
”U Pol” polarizációs feszültség méréshez! Ezután a forgatógomb segítsé­
gével állítson be 250toF feszültség éréket! Ha sikerült, nyomjon ENTER-t. 
Most a forgatógombbal 500mU feszültséget állítson be! Ha ezzel is elkészült, 
ismét nyomjon ENTER-t, így egy kétpontos kalibrációt végzett a pH-mérő 
hitelesítése végett. Ezekután újból állítsa be az előző pontban említett pa­
ramétereket az ott említettek alapján!
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FAKTOROZÁS
Naponta ill. bizonyos idő eltelte után (ami lehet néhány óra is) a Karl- 
Fischer-oldat faktorát újból meg kell határoznia. Mindig legyen biztos ben­
ne, hogy előzőleg a parmétereket a megfelelő értékekre állította!

A faktorozás a metanol oldat víztelenítésével kezdődik, mely a titráló 
edényben a tisztítás során esetlegesen bent maradt víznyomok eltávolítását 
célozza. A metanol-tartalmú bürettából töltsön a cellába metanolt, majd 
a cella rázogatásával öblítse le a cella belső falait! Zárja el a metanolt tar­
talmazó büretta csapját, majd nyissa ki a Karl-Fischer-oldatot tartalmazó 
büretta csapját és nyomja meg az ’’ENTER” billentüt!

Az ’’ENTER” billentyű lenyomásával elindítottuk a titrálást, mely telje­
sen automatikusan megy végbe. A képernyőn folyamatosan nyomon követ­
hetjük az eseményeket.

A ’’Fogyott mérőoldat térfogata” címszó mellett a már kiadagolt Karl- 
Fischer-oldat mennyiségét láthatjuk /i/-ben.

A ’’Cellán átfolyó áram” címszó mellett láthatjuk az előzőleg beállított 
végpontot skr. (azaz skálarész) egységben, valamint az aktuális áramértéket 
szintén skr. egységben. Láthatunk még két értéket melyek a monitorozás 
alatt leolvasott értékek átlaga és az átlag szórása. Az újabb adagolás nem 
következik be addig, amíg a szórás értéke egy adott érték alá nem csökken. 
Ezzel biztosítjuk az áramerősség állandóságát, azaz a teljes elkeveredést.

A ’’Végpont átcsapások száma” címszó mellett annak maximális értéke 
és aktuális értéke látható.

Az ” Átcsapás után eltelt idő” címszó mellett annak minimális értéke és 
aktuális értéke látható másodpercekben. Minden átcsapás után a minimális 
értéknek megfelelő ideig várakozik a program, majd újra leolvassa az ára­
merősséget, ha az újra a végpont alá esett vissza a titrálás folytatódik, amíg 
a maximálisan megengedett végpont átcsapások számát el nem értük.

A metanol oldat víztelenítése után a valódi faktorozás következik. A 
képernyőn megjelenik a faktorozás sorszáma és az, hogy összesen hány fak­
torozást kell elvégezni, pld. 1. f&ktorozás a 3-ból. Ezen a képernyőn kell 
beadni a bemért bórax tömegét is. Figyelem! Minden titrálás előtt töltse 
fel a Karl-Fischer-oldatot tartalmazó bürettát!

A bórax tömegének beírása után, majd az ’’ENTER” billentyű megnyo­
másával elkezdődik a titrálás. A képernyőn az előbb jellemzett címszók 
jelennek meg, melyek jelentése ugyanaz, mint ahogy már elmagyaráztuk. A 
titrálás befejeződése során három eset fordulhat elő:
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1. A titrálás normálisan befejeződik, az áramerősség elérte a végpontot, 
vagy a végpont átcsapások száma elérte maximális értékét.

2. A fogyott mérőoldat mennyisége túl csekély. Ekkor a program nagyobb 
mennyiségű anyaggal ismételteti meg a mérést.

3. A fogyott mérőoldat mennyisége túl sok. Ekkor a program kisebb 
mennyiségű anyaggal ismételteti meg a mérést.

A faktorozáshoz előírt összes titrálás sikeres befejeződésével a program 
kiírja a Karl-Fischer-oldat faktorát és ezen. érték szórását. Az eredmény 
automatikusan egy faktor állományba kerül.

A faktorszámítás a következő képletek alapján történik:

_ mbórax,0-47238 (5.1)Люгах; — Vi

_ ДюгаХг 
“ ^ n ’ (5.2)Люrax

í=i

ahol /b(5
oldat hány mg vizet mér), n a faktorozáshoz szükséges ismételt titrálások 
száma, ^bóraxt az i. titráláshoz bemért bórax tömege mg-ban, 0.47238 
mg(H2Ö)/lm<7(bórax) a bóraxban lévő víz relatív mennyisége és Vj- az i. 
titrálás során fogyott K-F-oldat térfogata.

A faktorozást az ’’Esc” billentyűvel lehet abbahagyni valamilyen vész­
helyzet esetén, hacsak nem vagyunk adatbeviteli utasításnál. Ekkor írjunk 
be egy elfogadható adatot és csak ezután nyomjuk meg az ’’Esc” billentyűt.

a Kari Fischer-oldat bóraxszal meghatározott hatóértéke (1 mlrax

MÉRÉS
A mérés során a vizsgált anyag víztartalmát határozzuk meg az előzőleg 
faktorozott Karl-Fischer-oldattal. Először a mérendő anyag azonosítóját 
kell megadnunk, melyhez az összes fehér billentyűn lévő karaktert felhasz­
nálhatjuk, szerkeszthetjük, törölhetünk karaktereket.

Az azonosító beadása után a mérendő anyag mértékegységét kell kivá­
lasztanunk, annak függvényében, hogy térfogatát (ml), vagy tömegét (mg) 
mértük. A szóköz (’’Space”) billentyűvel váltogathatjuk a mértékegységet, 
amíg a megfelelő meg nem jelenik, ezt az ’’ENTER” billentyűvel fogadjuk
el.
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Ezután a program az anyag tömegét/térfogatát (attól függően, hogy mit 
választottunk előzőleg) kéri be. Már most jelzi, hogy hányadik mérésnél 
tartunk a szükségesen elvégzendők közül, pld. 1. mérés a 3-ból.

Az ’’ENTER” billentyű lenyomásával elindítottuk a titrálást, mely telje­
sen automatikusan megy végbe. A képernyőn folyamatosan nyomon követ­
hetjük az eseményeket.

A ’’Fogyott mérőoldat térfogata” címszó mellett a már kiadagolt Karl- 
Fischer-oldat mennyiségét láthatjuk ///-ben.

A ’’Cellán átfolyó áram” címszó mellett láthatjuk az előzőleg beállított 
végpontot skr. (azaz skálarész) egységben, valamint az aktuális áramértéket 
szintén skr. egységben. Láthatunk még két értéket melyek a monitorozás 
alatt leolvasott értékek átlaga és az átlag szórása. Az újabb adagolás nem 
következik be addig, amíg a szórás értéke egy adott érték alá nem csökken. 
Ezzel biztosítjuk az áramerősség állandóságát, azaz a teljes elkeveredést.

A ’’Végpont átcsapások száma” címszó mellett annak maximális értéke 
és aktuális értéke látható.

Az ” Átcsapás után eltelt idő” címszó mellett annak minimális értéke és 
aktuális értéke látható másodpercekben. Minden átcsapás után a minimális 
értéknek megfelelő ideig várakozik a program, majd újra leolvassa az ára­
merősséget, ha az újra a végpont alá esett vissza a titrálás folytatódik, amíg 
a maximálisan megengedett végpont átcsapások számát el nem értük.

A titrálás befejeződése során három eset fordulhat elő:
1. A titrálás normálisan befejeződik, az áramerősség elérte a végpontot, 

vagy a végpont átcsapások száma elérte maximális értékét.

2. A fogyott mérőoldat mennyisége túl csekély. Ekkor a program nagyobb 
mennyiségű anyaggal ismételteti meg a mérést.

3. A fogyott mérőoldat mennyisége túl sok. Ekkor a program kisebb 
mennyiségű anyaggal ismételteti meg a mérést.

A méréshez előírt összes titrálás sikeres befejeződésével a program kiírja 
a vizsgált anyag víztartalmát és ezen érték szórását.

Az eredmény automatikusan egy eredmény állományba kerül, melyet az 
’’EREDMÉNYEK MEGTEKINTÉSE” menü pontban nézhetünk meg.

EREDMÉNYEK MEGTEKINTÉSE
Ha az adott alkönyvtárban nem létezik eredmény állomány, akkor a program 
figyelmeztetése után kilépünk a menü pontból.
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Ha léteznek eredmény állományok akkor ezeket a képernyő bal oldalán 
egy oszlopban láthatjuk. A ’’Kurzor Le” ill. a ’’Kurzor Fel” billentyűkkel 
járhatjuk végig az állományokat, elérve a képernyőre nem férteket is. Az 
állományok havi osztásban tartalmazzák az eredményeket, azaz egy adott 
hónapban mért értékek egy állományba kerülnek. A ’’Kurzor Jobb” billen­
tyűvel betekinthetünk a kiválasztott eredmény állományba.

Az adott eredmény állomány tartalmát kapjuk a képernyőre írva. Ha az 
adott hónapban több mérést is tároltunk, akkor azokat a ’’Kurzor Le” Ш. 
a ’’Kurzor Fel” billentyűkkel érhetjük el. Megtudhatjuk, hogy az állomány 
hány mérést tartalmaz, éppen melyik adatot nézzük. A mérés dátumát, a 
mért anyag azonosítóját, a mért anyag víztartalmát és a víztartalom szó­
rását. A képernyőn megjelenő információkat bekapcsolt nyomtató esetén a 
’’Print Screen” billentyű megnyomásával nyomtathatjuk ki további feldolgo­
zás végett.

Újabb állományok kijelöléséhez a ’’Kurzor Bal” billentyű megnyomásával 
jutunk és ismét az ezen fejezet elején mondottak lépnek érvénybe.

JEGYZŐKÖNYV
Az ISO 9004 által megkövetelt jegyzőkönyv formátumot lehet előállítani a 
meglévő eredmény állományok tartalmának felhasználásával.

VÉGE
Ennél a menü pontnál a program befejezését lehet kérni, melyet egy mege­
rősítés után érhetünk el.
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