
гадг

József Attila Tudományegyetem

Heurisztikus algoritmusok 

legrosszabb-eset vizsgálata

Ph.D. értekezés

Készítette: Békési József 
Témavezető: dr. Galambos Gábor 

főiskolai tanár

Szeged
1996



Tartalomjegyzék

1. Bevezetés 4

2. Az adattömörítés

2.1. Bevezetés.................................. .......................

2.2. Alapvető definíciók, megjegyzések.............

2.3. Statisztikai tömörítő eljárások....................

2.4. Szöveghelyettesítésen alapuló algoritmusok

7

7

8

9

15

3. Statikus szótárkódoló algoritmusok elemzése

3.1. Bevezetés és definíciók...................................................

3.2. A leghosszabb illesztés módszere (Longest Matching)

3.3. A különbségen alapuló greedy algoritmus.................

3.4. A hányadoson alapuló greedy algoritmus.................

3.5. A leghosszabb szelet algoritmus..................................

19

19

24

30
41

. 57

4. Ládapakolási algoritmusok elemzése

4.1. Bevezetés ............................................

4.2. A Martel eredmény...........................

4.3. Az 5/4-es algoritmus........................

71

. 71

. 73
77

2



Köszönetnyilvánítás

Nagyon sok embernek tartozom köszönettel azért, hogy ez a dolgozat elkészül­

hetett. Elsőként témavezetőmnek, Galambos Gábornak szeretném megköszönni, 

hogy megismertetett a legrosszabb-eset analízis alapelveivel és az ezen a területen 

használt legfontosabb technikákkal. Lehetőséget teremtett számomra hogy kap­

csolatba kerüljek a kombinatorikus optimalizálás több jeles nemzetközi képviselő­

jével, akikkel közös kutatómunkát végezhettünk. Ez meghatározó volt a dolgozat 

anyagának elkészítésében. Hálás vagyok témavezetőmnek a dolgozatommal kap­

csolatos tanácsaiért, esetenkénti kritikájáért, amelynek nagy szerepe volt a végső 

forma kialakításában.

Köszönettel tartozom további szerzőtársaimnak, Hans Kellerernek, Ulrich 

Pferschynek, Timo Raitanakés Gerhard Woegingernek is. A velük végzett munka 

fontos szerepet játszott szakmai fejlődésemben. Nagy segítség volt számomra, 

hogy néhány napot tölthettem a Graz-i Műszaki Egyetemen. Az egyetem kombi­

natorikus optimalizálással foglalkozó csoportjában színvonalas és hatékony mun­

kának voltam tanúja.

A fenti látogatáson túl az OTKA, az OAD és a FEFA pénzügyi támogatásának 

köszönhetően részt vehettem nemzetközi konferenciákon is, ahol lehetőségem volt 

előadásokat tartani. Ügy érzem ez is fontos része volt szakmai fejlődésemnek.

Végül, de nem utolsósorban köszönettel tartozom kollégáimnak, munkatársa­

imnak, akiknek támogató ötleteiből, tanácsaiból sokat merítettem.

3



1. fejezet

Bevezetés

A gyakorlati életben gyakran szembe találjuk magunkat azzal a problémával, 

hogy hogyan oldjunk meg egy feladatot optimális módon. Ilyen lehet például ha 

egy számítógép merevlemezéről minimális számú hajlékony lemezre szeretnénk 

lemásolni néhány állományt. Más esetben az előző háttértároló tartalmát sze­

retnénk úgy tömöríteni, hogy a lehető legkevesebb helyet foglalja el a tömörített 

változat. Előfordulhat az is, hogy bizonyos nyersanyagból kell levágnunk vala­

mekkora méretű darabokat úgy, hogy a veszteségünk a lehető legkisebb legyen. 

Általában ezen problémák mindegyike valamilyen optimalizálási feladatra ve­

zethető vissza. Legáltalánosabban úgy fogalmazhatunk, hogy optimalizáláson 

valamilyen tartományon értelmezett függvény minimumának vagy maximumának 

meghatározását értjük.

Az optimalizálás klasszikus matematikai elmélete azt feltételezi, hogy ez a 

tartomány végtelen. A gyakorlati problémák esetében azonban általában csak 

véges számú lehetőség van, így ebben az esetben a fent említett tartomány véges. 

Az ilyen jellegű optimalizálást kombinatorikus optimalizálásnak nevezzük.

Klasszikus matematikai szempontból a kombinatorikus optimalizálás nem tűn­

het túl érdekesnek, mivel ha felsoroljuk az összes esetet, akkor ezek közül mindig 

ki tudjuk választani a legjobbat. Azonban nagyméretű problémák esetén olyan

4



sok lehetőség van, hogy még a leggyorsabb számítógépek sem képesek elfogadható 

időn belül ezeket mind megvizsgálni.

Bonyolultságelméleti szempontból azt tekintjük elfogadhatónak, ha az opti­

mum meghatározásához szükséges lépésszám a bemenő adatok számának poli- 

nomiális függvénye. Ezen belül is gyakorlati szempontból sok esetben csak akkor 

megfelelő az eljárás, ha a polinom fokszáma kicsi, például lineáris, vagy másod­

fokú. Gyakran azonban a célfüggvény túl bonyolult, vagy a probléma mérete 

túl nagy, ezért nem lehetséges a problémát polinomiális időben megoldani. A 

matematika, illetve a számítástudomány külön elméletet dolgozott ki az ilyen 

problémákra. Ez az NP-teljesség elmélete [12].

Azokban az esetekben, amikor az optimumot túl nehéz megtalálni, sokszor 

használnak közelítő algoritmusokat, úgynevezett heurisztikákat. Nagyon fontos, 

hogy ezek a heurisztikák jók legyenek, azaz az esetek többségében minél jobban 

megközelítsék az optimumot. Természetes módon vetődik fel a kérdés, hogy 

miként lehet mérni a közelítő algoritmus jóságát. Erre több lehetőség van. Álta­

lában hármat szoktak alkalmazni: a tapasztalati becslést, az átlagos-eset analízist 

és a legrosszabb-eset elemzést.

Tapasztalati becslés esetén több inputon lefuttatjuk az algoritmust, majd a 

számítógép segítségével kiszámítjuk, hogy a kapott eredmények mennyire térnek 

el az optimális megoldástól. Sok esetben azonban az optimumot nehéz megtalálni, 

ezért ezzel a módszerrel nem mindig lehet meghatározni, milyen távol vagyunk 

az optimumtól. így a módszer inkább heurisztikák gyakorlati összehasonlítására 

alkalmazható.

Az átlagos-eset analízis elegánsabb matematikai módszer. Miután a be­

menő adatokat valamilyen valószínűségi eloszlás szerint választjuk, az optimális 

megoldás és a heurisztika eredménye véletlen változók lesznek, amelyekből átla­

gos-eset viselkedést lehet számolni. Az eltérést különböző statisztikai mértékekkel 

jellemezzük (pl. átlag, szórás, stb.).

Legrosszabb-eset elemzés esetén olyan viselkedés jellemzést adunk meg, amely

5



bármilyen bemenő adatra teljesül. Ezzel a módszerrel tehát az algoritmus szem­

pontjából kritikus adatokat vizsgáljuk, és megadjuk, hogy a legrosszabb esetben 

mekkora lehet az eltérés az optimális megoldástól. COFFMAN és LUEKER könyve 

[8] részletes elemzést ad a különböző technikákról.

A dolgozat heurisztikus algoritmusok legrosszabb-eset viselkedését vizsgálja. 

Szerkezetét tekintve két fő részre osztható. Az első részben az adattömörítés elmé­

letéről szóló általános ismertető után különböző, szótárkódoláson alapuló adattö­

mörítési heurisztikák legrosszabb-eset elemzését tárgyalja. Ezen belül a dolgozat 

választ ad néhány ismert heurisztikára vonatkozó eddig nyitott problémára, majd 

egy új heurisztikát mutat be. A dolgozat második részében egy új ládapakolási 

algoritmus, és annak analízise található. Az értekezés nagy része publikált, illetve 

közlésre leadott cikkeken alapszik.

6



2. fejezet

Az adattömörítés

Bevezetés2.1.

Tömörítésen általában olyan eljárást értünk, amelynek segítségével valamilyen 

információt kevesebb bit, illetve byte segítségével adhatunk meg. Információ 

többféle formában létezhet, beszélhetünk szöveges, kép, illetve hang jellegű in­

formációról. Tömörítési szempontból a szövegeknél figyelembe kell venni azt, 

hogy az eredeti változatnak mindig pontosan rekonstruálhatónak kell lenni a 

tömörített formából. Kép, illetve hang rekonstruálásakor keletkező apróbb elté­

rések még elfogadhatóak lehetnek. A dolgozatban adattömörítési eljáráson olyan 

módszert értünk, amely biztosítja a pontos visszaállíthatóságot.

Annak ellenére, hogy napjainkban a számítógépes tárkapacitások nagyarányú 

növekedést mutatnak, a tömörítésnek mégis nagy jelentősége van. A fő ok talán 

az, hogy az emberek mindig szívesebben veszik, ha viszonylag alacsony költséggel 

sikerül ’’megnövelni” a tárolók kapacitását, mintsem hogy újabb beruházásokat 

kelljen végezniük. Fontos szerepe van a tömörítésnek az információ átvitelénél 

is. A kommunikációs vonalak sebessége napjainkban még nem olyan jó, hogy na­

gyobb mennyiségű információt gyorsan lehessen továbbítani. Ezért lényeges időt 

és költséget lehet megtakarítani, ha egy adott mennyiségű információt rövidebb

7



formában viszünk át. Mindezek jól indokolják azt a fejlődést, amelyen a tömörítő 

eljárások az utóbbi néhány évtizedben átmentek.

Alapvető definíciók, megjegyzések2.2.

2.2.1. DEFINÍCIÓ. Tömörítésen olyan eljárást értünk, amely egy D információ 

mennyiséget egy kisebb A (D) információ mennyiséggé kódol. Veszteség nélküli 

tömörítő eljárásnak nevezzük azt az eljárást, amelynél a A(D)-ből az eredeti 

D pontosan visszanyerhető. Veszteséges tömörítő eljárásnak nevezzük az olyan 

eljárást, amelynél az eredeti információ csak közelítőleg nyerhető vissza a tömö­

rített formából.

Ebben a dolgozatban csak veszteség nélküli eljárásokkal foglalkozunk, ezért a 

továbbiakban mindig feltételezzük, hogy célunk a pontos visszaállíthatóság. Ál­

talában ezeket az eljárásokat alkalmazzák adatbázisok, szövegfile-ok, egyéb adat- 

állományok tömörítésére. A tömörítés olyan eljárás, amelynek hatékonyságát 

jelentősen befolyásolja a tömörítendő információ jellege, és természetesen az al­

kalmazott módszer is. Ezzel kapcsolatban már itt fontosnak tartunk megemlíteni 

egy közismert, lényeges állítást.

2.2.2. TÉTEL. [2] Nem létezik olyan eljárás, amely minden adatot képes tömö­

ríteni.

□
A tömörítéssel kapcsolatban a legalapvetőbb kérdés, hogy egy adatállomány 

mekkora információtartalommal rendelkezik. Általában ugyanis az általa tényle­

gesen elfoglalt tárterület nem tükrözi ezt jól. Azt mondhatjuk, hogy az ada­

tok sokszor redundánsak, valódi információtartalmuknál nagyobb tárterületet 

igényelnek. A tömörítés célja ezen redundanciák megszüntetése. A tömörítő

8



eljárás a gyakorlatban legtöbbször úgy történik, hogy kapunk egy karaktersoroza­

tot, és a szimbólumokat kódokká alakítjuk. Az, hogy egy szimbólumhoz mi­

lyen kódot rendelünk, függ az alkalmazott modelltől. A modell a kódolandó 

szimbólumsorozatra vonatkozó adatokat, szabályokat tartalmazza. A modellezés 

célja, hogy felismerjük a karaktersorozat tömörítés szempontjából lényeges tulaj­

donságait.

Az eddig ismert veszteség nélküli tömörítő eljárásokat két nagy csoportra oszt­

hatjuk. Az egyikbe tartoznak a statisztikai, a másikba pedig a szótárkódoláson 

alapuló eljárások. Bár a dolgozatban saját eredmények csak a második témából 

vannak, mégis a teljesség kedvéért mindkét csoporttal részletesebben foglalko­

zunk.

2.3. Statisztikai tömörítő eljárások

A statisztikai kódoló eljárásoknál a modellezés alapja az egyes szimbólumok 

előfordulási valószínűségének meghatározása. A következő ábra a tömörítés folya­

matát mutatja:

Valószínűségek
Input

karaktersorozat

Output
karaktersorozat

Model► Kódolás
►

1. ábra

A statisztikai kódolások elméleti alapjait az információelmélet néhány fontos 

eredménye adja. (Az információelmélet a matematika egyik ága, mely CLAUDE 

SHANNON munkája nyomán alakult ki az 1940-es években [23]. Később nagyon

9



sok publikáció, könyv jelent meg ebben a témában [1],[9],[15].) Az elmélet az in­

formációval kapcsolatos kérdéseket vizsgálja, beleértve az üzenetek tárolását, és 

a kommunikációt. Egyik legfontosabb alkalmazási területévé a tömörítés vált. A 

leglényegesebb fogalom az entrópia, amely azt méri, hogy egy karaktersorozat 

mekkora információtartalommal rendelkezik. A fogalom a termodinamikából 

ered, ott is hasonló jelentése van. Minél nagyobb egy üzenet entrópiája, annál 

több információtartalommal bír. A következőkben áttekintjük az adattömörítés 

során használt legfontosabb fogalmakat és fontosabb tételeket.

2.3.1. DEFINÍCIÓ. Ábécének nevezünk egy A véges, nem üres halmazt. Az ábécé 

elemeit karaktereknek, vagy szimbólumoknak nevezzük. Az ábécé elemszámát 

|A| jelöli. Karaktersorozaton az ábécé karaktereiből alkotott sorozatot értünk. 

Általában feltételezzük, hogy egy karaktersorozat véges.

2.3.2. DEFINÍCIÓ. Legyen A = {öl, ...,a„} ,n > 1 egy ábécé. Forrásnak nevezünk 

egy olyan F eljárást, amely A karaktereit bocsátja ki. A forrást elsőrendűnek ne­

vezzük, ha A karaktereihez független p\,..., pn(pi > 0 , г = l,...,n) valószínűségek 

rendelhetők, amelyek az egyes karakterek kibocsátási valószínűségét jelentik.

2.3.3. DEFINÍCIÓ. Legyen A = {öl, ...,an} ,n > 1 tetszőleges ábécé, továbbá 

legyen К = {ai,...,an} véges hosszúságú bináris sorozatoknak valamilyen n 

elemű halmaza. A sorozatok lehetnek különböző hosszúak is. Betű szerinti kó­

dolásnak nevezzük azt az eljárást, amely az ábécé minden betűjének egy olí € К 

bináris sorozatot feleltet meg. LL-t kódnak, aza\,...,an elemeket kódszavaknak 

nevezzük.

2.3.4. DEFINÍCIÓ. Két bináris sorozat, illetve karaktersorozat szorzatán a soroza­

tok egymásután írásával kapott sorozatot értjük. Ennek megfeleően egy sorozat n. 

hatványán a hagyományos hatvány fogalmat értjük a fenti szorzással.

2.3.5. DEFINÍCIÓ. А К = {а1?..., an} kódot felbonthatónak nevezzük, ha tetsző­

leges bináris sorozat legfeljebb egyféleképpen bontható fel kódszavak szorzatára.

10



2.3.6. DEFINÍCIÓ. А К = {ai,...,an} kódot prefix kódnak nevezzük, ha egyetlen 

kódszó sem valódi kezdőszelete (prefixuma) egy másik kódszónak.

A prefix kódoknak azért van nagy jelentősége, mert ha ilyen kódot használunk, 

akkor a tömörített formából történő dekódolás egyértelműen végrehajtható. Ezt 

mutatja a következő tétel.

2.3.7. TÉTEL. [9] Minden prefix kód felbontható.

□
Tegyük fel, hogy adott egy F elsőrendű jelforrás, ami az A = {ab ...,an} , n > 1, 

ábécé betűit bocsátja ki. Jelölje рг- annak a valószínűségét, hogy az F által
П

kibocsátott jel аг-. Ekkor pi > 0, és Y) Pi = 1-
г=1

Tegyük fel továbbá, hogy az F jelforrás által kibocsátott jelek A ábécéjét a К 

an} kóddal kódoltuk, és jelölje , ..., ln az a\,..., an kódszavak hosszát.

П

2.3.8. DEFINÍCIÓ. Az L(K) = jP рг 1,г számot а К kód F jelforrás melletti költ-
i=1

ségének nevezzük.

2.3.9. DEFINÍCIÓ. A K° felbontható kódot az F jelforrásra nézve optimálisnak 

mondjuk, ha bármely К felbontható kódnak az F mellett számított L(K) költsége 

kisebb L (K°)-nál.nem

A célunk, hogy olyan kódrendszert találjunk, amely az adott valószínűségeket 

figyelembe véve optimális, azaz a legkisebb költséggel rendelkezik. (Ezenkívül 

persze szeretnénk biztosítani a visszaállíthatóságot is.) A következő tételek azt bi­

zonyítják, hogy ilyen kódrendszer létezik, és az is látható, hogy az egyes kódszavak 

hosszát hogyan kell megválasztani, hogy optimális kódot kapjunk.

11



2.3.10. TÉTEL. [9] Tetszőleges F jelforráshoz létezik optimális prefix kód.

□

2.3.11. Definíció. A H (F) =J2 pi lógd- számot
i=1

nevezzük.

F forrás entrópiájánakaz

2.3.12. TÉTEL. [9] Egy F forráshoz tartozó tetszőleges К felbontható kódra 

L(K) > H (F) teljesül.

□
A statisztikai kódoló eljárások az előbbiekben ismertetett elméleti eredménye­

ken alapulnak. Az eljárások olyan felbontható kódot igyekeznek meghatározni, 

amelynek költsége optimális, vagy azt jól közelíti. A 2.3.10. tétel szerint ilyen 

létezik. A 2.3.12. tétel alapján az egyes szimbólumokhoz tartozó kódokat úgy kell 

megválasztani, hogy azok hossza a szimbólum valószínűsége reciprokának loga­

ritmusát minél jobban megközelítse. Erre több eljárást is kifejlesztettek. A legis­

mertebbek a ShaNON-FaNO [10], a HUFFMAN [14] és az aritmetikai kódolás [20]. 

Ezek a módszerek mindig feltételezik, hogy adottak a szimbólumok előfordulási 

valószínűségei. A gyakorlatban a valószínűségek becslése legegyszerűbben az 

egyes szimbólumok relatív gyakoriságának meghatározásával történhet. Ebben 

az esetben ez jelenti a modellezést.

A következőkben a két legismertebb és leggyakrabban használt statisztikai tömö­

rítő eljárást ismertetjük.

Huffman kódolás [14]: 

A módszer a következő:

• Határozzuk meg a karakterek előfordulási gyakoriságát.

12



• Listázzuk az összes szimbólumot valószínűségeik szerint növekvő sorrend­

ben.

• Tekintsük a két legkisebb valószínűségű szimbólumot.

• Helyettesítsük ezeket a szimbólumokat egy őket tartalmazó halmazzal, amely­

nek valószínűsége a két szimbólum valószínűségének összege. Az egyik szim­

bólum kódjához egy 0 bitet, a másikéhoz 1-es bitet rendeljünk.

• Ismételjük az előző három lépést, amíg el nem jutunk egy olyan a listához, 

amely egy elemet tartalmaz. Később a szimbólumok helyett a keletkezett 

halmazokat kell tekintenünk.

Tekintsük a következő példát, a halmazokat fával reprezentrálva. 

Az input adatok:

b dszimbólum / ae c

valószínűség 0.05 0.09 0.12 0.13 0.16 0.45

A keletkezett HUFFMAN kód:

(1:0.16

e:0.09



Aritmetikai kódolás [20]:

Ennél a kódolásnál az input szöveget egy 0 és 1 közötti számmal reprezentáljuk. 

A módszer legnagyobb problémája, hogy amint a szöveg hossza, növekszik, a 

hozzá tartozó szám egyre kisebbé válik, ezáltal egyre több bit szükséges az 

ábrázolásához. Az egymást követő szimbólumok az előző intervallumot a va­

lószínűségeknek megfelelően osztják tovább. A kevésbé valószínű szimbólumok 

jobban csökkentik az intervallumot, ezáltal több bitet adva az ábrázoláshoz, míg 

a valószínűbb szimbólumok kevésbé csökkentik az intervallumot.

Az eljárás menete a következő:

• Legyen a kezdő intervallum a [0,1).

• Osszuk fel a megfelelő intervallumot az egyes szimbólumok valószínűségeinek 

arányában.

• Vegyük a szöveg következő szimbólumát, és tekintsük új intervallumként a 

hozzá tartozó részintervallumot.

• Ismételjük az előző két lépést, amíg a szöveg végére nem érünk. A szöveg 

reprezentálására a végső intervallum egy tetszőleges eleme alkalmas.

Tekintsük ismét az előzőekben említett példát. Tegyük fel, a kódolandó karak­

tersorozat daac. Az intervallumok az alábbiak szerint alakulnak:

kezdetben [0,1)

[0.45,0.61)
[0.45,0.522)
[0.45,0.4824)
[0.469764,0.473652)

d után

a után

a után

c után

14



A következő ábra a kódolási eljárás egy másik reprezentációját mutatja:

3. ábra

Az aritmetikai kódolás implementációjánál általában egész aritmetikát szokás 

használni. A túlcsordulások elkerülése végett a kódoláshoz már nem szükséges 

biteket egyből továbbítani kell az outputra. Az aritmetikai kódolás egy C nyelvű 

implementációja megtalálható [2]-ben.

Dolgozatunk további részében a szöveghelyettesítésen alapuló eljárásokat tár­

gyaljuk.

Szöveghelyettesítésen alapuló algoritmu­

sok

2.4.

A szöveghelyettesítésen alapuló kódolás, vagy más néven szótárkódolás alapelve, 

hogy a szövegben egymás után következő karaktercsoportokat egy kóddal, vagy 

egy szótárra vonatkozó index-szel, esetleg mutatóval helyettesíti. A szótár olyan 

szavak, vagy szótöredékek listája, amelyek várhatóan gyakran tódulnak elő az 

adott szövegben. A szótárkódolások három fő csoportba oszthatók:

* statikus

• szemiadaptív,

15



* adaptív eljárások.

A statikus kódoló eljárás a kódolandó szövegtől függetlenül mindig ugyanazzal 

a szótárral dolgozik. E modell hátránya, hogy amennyiben a rendelkezésre álló 

szótár nem illeszkedik a kódolandó szöveghez, akkor rossz eredmény születhet. Ha 

a szótárba sok szót, vagy szótöredéket felveszünk, akkor túl nagy lesz a mérete, 

ezáltal a tárolás illetve a keresés nehézkessé válik. A dolgozat következő fe­

jezetében ezekkel az eljárásokkal részletesen foglakozunk.

A szemiadapti'v eljárások már jobban alkalmazkodnak a kódolandó szöveghez, 

ugyanis a szótárat ez alapján állítják össze. Egy adott szöveghez az optimális 

szótár meghatározása a szöveg hosszát tekintve NP-teljes probléma. Az erre 

vonatkozó algoritmus megtalálható [2]-ben.

Az adaptív kódolás ötlete egy 1967-es cikkből származik. A gondolat lényege, 

hogy egy ismétlődő karaktersorozatot egy korábbi, már kódolt előfordulására 

vonatkozó hivatkozással helyettesítjük. A hivatkozás megvalósítása általában 

mutatókkal történik. Ezt az eljárást részletesen JACOB ZlV és ABRAHAM Lem- 

PEL dolgozta ki 1977-ben [25]. Azóta is az egyik legismertebb tömörítő eljárás, 

amelynek nagyon sok változata keletkezett. Lássuk most az eredeti, LZ77-nek 

nevezett eljárást részleteiben.

Az LZ77 algoritmus [25]:

Az LZ77 eljárásnál a mutatók a kódolandó szövegrésznek az őt megelőző fix 

méretű ” ablakban” történő előfordulására mutatnak. Egy Ls paraméter jelzi a 

maximális rész hosszát, ami helyettesíthető mutatóval. Ez lehetővé teszi, hogy 

az eljárást egy n karakterből álló ’’ablakban” folytassuk, ami mindig a kódolandó 

szöveg egy részét tartalmazza. Ebből n — Ls már kódolt, a maradék alkotja a 

vizsgálandó buff ért. A következő lépésnél az ’’ablakban” megkeressük a leghosz- 

szabb szövegrészt, amely megegyezik a már kódolt szöveg egy részével. A két 

illeszkedő sorozat között lehet átfedés is, de nem egyezhetnek meg teljesen. Ezt 

azután egy (i,j,a) hármassal kódoljuk, ahol i az indexe a megtalált karakter-

16



sorozatnak a buff erben, j a hossza, míg a az első olyan karakter, ami már nem 

egyezik meg a lekódolt sorozattal. Ezután az ’’ablakot” jobbra toljuk a szövegen 

j + 1 karakterrel, és az eljárást folytatjuk tovább. Az a karakter hozzáillesztése 

hez biztosítja, hogy a módszer akkor is működik, ha nincs illeszkedés. 

Következzék ezután a módszer formális leírása. Először bevezetünk néhány 

jelölést.

Legyen n az alkalmazott buffer hossza, A az alap ábécé, és S' a kódolandó

karaktersorozat. Jelölje Ls a már említett paramétert, és legyen Le = 1 +

Ls)1 + flog(-Ls)], ahol a logaritmus alapja \A\. Itt Le a kódok fix

hosszát jelenti, amelyek szintén az A ábécéből képződnek. Legyen S(l,j) az

S karaktersorozat valódi kezdőszelete, és legyen i, 1 < i < j adott egész szám.

Legyen továbbá L (i) = max {/ : S (i, i + l — 1) = S (j + 1, j + /)}, és L (p) =max
l<i<j

L(i). Az S (j, j + L (p)) karaktersorozatot az S (l,i) prefix S'-re való helyettesít­

hető kiterjesztésének nevezzük.

Például S = 00101011, j = 3 esetén L(l) = 1,L(2) = 4,L(3) = 0. így 

S (3 + 1, 3 + 4) = 0101 az S' (1,3) helyettesíthető kiterjesztése S'-re p = 2-vel. 

Ezek után az LZ77 algoritmus a következő:

[dog (n

• Legyen Вг — 0” L“S (1, Ls), ahol 0" Lsn — Ls darab 0-t jelent, legyen 

továbbá i — 1.

• Tekintsük aői,i > 1 buff ért, és legyen Sí = Bi (n — Ls + L n — Ls + h),

l)-reLs) prefix Bi (1, nahol S'j-nek az h — 1 hosszú prefixe a Bt (1, n 

való helyettesíthető kiterjesztése.

• Ha pi az Sí meghatározásánál használt mutató, akkor az S'.,-hez tartozó Cí 

kód Cí = Cí\Cí2C{3, ahol Сц ap,-l, Сц az /,• —1 szám |A| számrendszerbeli 

előállítása, míg Сщ az Sí utolsó szimbóluma.

• Módosítsuk a Bt buffer tartalmát úgy, hogy elhagyjuk az első 1г karaktert, 

majd a bufferbe töltjük a következő U darabot. Növeljük i értékét l-gyel,

17



és folytassuk az algoritmust a második lépéstől.

Példa:

Tekintsük az alábbi hármas számrendszerbeli sorozatot. (|A| = 3)

S = 001010210210212021021200.

Ls = 9, n = 18 =Ф- Le = 1 + log3 (18 — 9) + log3 9 = 5.

000000000|001010210 p1=9,h=3 Cx = 22|02|1

C2 = 2111012 

C3 = 20|21|2

Bi =

B2 = 000000001|010210210 

B3 = 000010102| 102102120

ZlV és LEMPEL bebizonyította [25], hogy az LZ77 eljárással legalább olyan jó 

kódolási eredményt kapunk, mint bármely más, speciálisan a szöveghez illesztett 

szótár segítségével, ha a buffer hossza elég nagy. A legnagyobb problémát az 

jelenti, hogy ha a buffer hosszát megnöveljük, akkor a keresés lassúvá válik, 

így a tömörítési folyamat nem lesz elég hatékony. Ezt a problémát megfelelő 

adatstruktúrák használatával küszöbölhetjük ki, ekkor azonban megnövekedhet 

a tárigény. Erről részletesebb információk találhatók [2]-ben.

18



3. fejezet

Statikus szótárkódoló

algoritmusok elemzése

Bevezetés és definíciók3.1.

Ahogy az előzőekben láttuk, egy adott karaktersorozat tömörítésének egy lehet­

séges módja a szótár segítségével történő tömörítés. A szótár nem más, mint 

(forrásszó, kódszó) rendezett párok halmaza, ahol a forrásszó és a kódszó egy-egy 

véges ábécé betűiből képzett karaktersorozat, és a kódszavakat arra használjuk, 

hogy a tömörítendő karatersorozat megfelelő részeit, ti. a forrásszavakat a hozzá­

juk tartozó kódszavakkal helyettesítsük. A továbbiakban csak olyan eljárásokat 

fogunk tekinteni, amelyek statikus szótárakat használnak.

A statikus szótárak kifejezetten hasznosak olyan esetekben, amikor egy adat­

bázis rekordjait kell külön-külön tömöríteni, és ugyanaz a szó, vagy szótöredék a 

rekordokban gyakran előfordul. Például, ha egy könyvtári katalógus bejegyzéseit 

szeretnénk tömöríteni, ahol szinte minden rekordban szerepelnek a szerző, cím, 

ISBN, könyv, stb. szavak. Feltéve, hogy statikus szótárat alkalmazunk, az 

adatbázis bármely rekordjával kezdhetjük a tömörítést. A célunk az, hogy az 

adott szótár segítségével a tömöríteni kívánt karaktersorozatot optimális módon

19



tömörítsük, azaz úgy, hogy a minimális hosszúságú kódot kapjuk.

A fenti probléma ekvivalens egy megfelelően megválasztott, irányított, súlyo­

zott gráfban történő legrövidebb út keresési feladattal (SCHUEGRAF és HEAPS [22]). 

Egy adott S = S1S2 ■. -sn karaktersorozatra definiáljuk a,z N = (V, A) irányított

vn} csúcshalmazon. A gráfban definíció szerint pon-gráfot a V — {v0,vi,.. 

tosan akkor van egy (и,-, и,-+<*) G Л él, ha létezik olyan (forrásszó, kódszó) pár,

* ?

ahol a forrásszó d olyan karakterből áll, amelyek megegyeznek az eredeti karak­

tersorozatban az г + 1,..., г + d pozíciókon álló karakterekkel. Egy ilyen él súlya 

a megfelelő kódszó bitjeinek számával egyezik meg. Látható, hogy az N gráfban 

a legrövidebb út u0-tól nn-ig éppen az S karaktersorozat optimális tömörítését 

adja.

Tekintsünk most egy példát a fentiek illusztrálására. Vegyük az

5 = SÁRGA_BÖGRE,_GÖRBE_BÖGRE!

karaktersorozatot és a következő szótárat:

Á G 0 R Sforrásszó A В E

hb d fkódszó 9 гa c e

súly XX X X X X X X X

SÁRÁR BÖGREВО OR RGARBEforrásszó

к lkódszó rm n о P qj

súly XX XX X X XX X

20



Ebben az esetben a megfelelő gráf

SÁRGA BÖGRE, GÖRBE BÖGRE!

4. ábra

Látható, hogy a legrövidebb út u0-ból n25-be például a

V0V3V4V5V6V11V12V-í3V14V-l5V-ísVl9V24V25

út, feltéve, hogy az egyes élek súlya - ahogy a szótár definíciójánál is látható - 

azonos.

A fenti modellt alkalmazva a probléma megoldása egyszerűvé válik, mivel al­

kalmazhatjuk az irányított, súlyozott gráfokra vonatkozó, minimális hosszúságú 

utat kereső, polinomiális időbonyolultságú algoritmusokat. Amennyiben a gráfnak 

sok vágóéle van (azaz olyan él, amely az eredeti problémát független részprob­

lémákra osztja) és a keletkezett részfeladatok kicsik, a problémát az optimális 

algoritmus használatával megoldhatjuk. Sajnos a gyakorlatban sokszor nem ez 

az eset áll fenn, és előfordulhat, hogy az optimális algoritmus nem megfelelő 

sebességű nagyon hosszú karaktersorozatok esetén. Ezért több heurisztikus algo­

ritmust fejlesztettek ki, amelyek az optimumhoz közeli megoldást adnak.

Már az 1970-es években voltak hatékony heurisztikus algoritmusok (például a 

longest fragment first heurisztika (LFF), ld. SCHUEGRAF és HEAPS [22]), azon­

ban ezeket nem vizsgálták elméleti szempontból, csupán tapasztalati eredmények 

léteztek.

Sokszor előfordul, hogy olyan nagy adatállományt kell tömöríteni, amelyet 

egyben nem, vagy csak nehezen lehet vizsgálni, ugyanakkor szeretnénk az ilyen

21



adatokat is viszonylag gyorsan kódolni. Az ilyen esetekben kifejezetten hasznos 

lehet az úgynevezett on-line technika. Ennek segítségével nagyon gyors heurisz­

tikákat lehet kifejleszteni. Egy on-line adattömörítő algoritmus mindig a v0 

csúcsból indul, megvizsgálja az ebből kiinduló összes élt, és egy bizonyos szabály 

alapján választ közülük egyet. Ezután az algoritmus a kiválasztott él másik 

végénél található csúcstól folytatja tovább a kódolást. Nincs lehetőség azonban 

arra, hogy egy döntést a későbbiek ismeretében az algoritmus megváltoztasson.

Természetesen az on-line heurisztikák általában nem szolgáltatnak optimális 

megoldást. Ha szeretnénk meghatározni, mennyire lehet rossz egy heurisztika, a 

legkézenfekvőbb módszer, hogy összehasonlítjuk az optimum által kapott ered­

ménnyel. Az összehasonlítás történhet átlagos-eset analízissel, vagy pedig legrosz- 

szabb-eset vizsgálattal. Dolgozatunkban ez utóbbival foglalkozunk részletesebben.

Egy heurisztika legrosszabb-eset viselkedésétáltaláhhn az úgynevezett aszimp­

totikus legrosszabb-eset hányadossal szokás mérni, amelyet a következőképpen 

definiálnak: Legyen D = {(wj,Cj) : i = l,...,k} egy statikus szótár, ahol Wi a 

megfelelő forrásszót, сг pedig a hozzátartozó kódszót jelenti. Tekintsünk továbbá 

egy tetszőleges A adattömörítő algoritmust. Legyen A(D,S) illetve OPT(D, S) 

S'-пек az A illetve az optimális algoritmus által kapott tömörített kódja. Ezen

kódok hosszát jelölje ||A(T),S')|| illetve ||OPT(D, S)\\. Ekkor az A algoritmus

aszimptotikus legrosszabb-eset hányadosa

1KAS)II
\\OPT(D,S)\\ •

: 5 6 S(n)Ra(D) = lim sup
V ' 71—XX)

ahol S(n) az összes n karakterből álló, a megfelelő ábécéből képzett karakter- 

sorozatot jelenti.

Az irodalomban négy paramétert használnak az aszimptotikus legrosszabb­

eset vizsgálatok során:

Bt(S) = S egyes szimbólumainak hossza bitekben

Irnax(D) ■■= max{|roí| i — 1,..., k}

22



min{IIсгИ г = 1,..., к}

cmax(D) = тах{||сг-|| г = 1,. . . , к},

cmin(D)

ahol |гог| a ид karaktersorozat hosszát jelenti karakterekben, ||с^|| pedig а сг- kódszó 

hossza bitekben. A következőkben az egyes input karakterek hosszát egyszerűen 

Bt-ve\ jelöljük, és elhagyjuk a szótárra történő hivatkozást, azaz például Imax-ot 

használunk lmax(D) helyett. Az Imax = 1 eset itt nem érdekes, mert ekkor a 

már korábban vizsgált betűkódolásról van szó, ezért mindig feltételezhetjük, hogy 

Imax > 2.

Mint látható, a fenti definícióknál feltételeztünk néhány, a gyakorlati életben 

megszokott dolgot. Ilyen például az, hogy a kód ábécé bináris, vagy hogy a forrás 

ábécé karaktereit binárisan kódoljuk valahány biten. A tételek bizonyítása során 

ezeket a feltevéseket nem használjuk ki, így azok általánosabb definíciók esetén is 

igazak. (Például ||c,j| tekinthető általánosan a c, kódszó súlyának.) Viszont ezzel 

is szerettünk volna utalni arra, hogy a tételek gyakorlati problémákból erednek.

Nem meglepő, hogy egy heurisztika legrosszabb-eset viselkedése erősen függ 

az adott szótár tulajdonságaitól. Dolgozatunkban a következő típusú szótárakat 

fogjuk vizsgálni:

Egy szótárt általánosnak nevezünk, ha az input ábécé minden szimbólumát 

tartalmazza mint forrásszót (ez biztosítja, hogy a heurisztika minden forrásszö­

vegre el fogja érni az adott gráf nyelőjét, és ezzel minden esetben befejeződik az 

eljárás). Ebben a dolgozatban csak általános szótárakkal foglalkozunk.

Egy általános szótár

1. egyenlő kódhosszúságú, ha minden kódszó hossza azonos, (||c;|| = ||с,-||, 1 < 

hJ < к),

2. nemhosszító, ha egy kódszó hossza sohasem haladja meg a megfelelő forrásszó

hosszát (IIQU < \Wi\Bl, 1 < i < k),

3. suffix, ha minden w forrásszó mellett tartalmazza annak minden hátsó

23



szeletét (azaz ha w = U\üj2 • • • coq forrásszó uj^h+i • • • uq szintén forrásszó 

minden 2 < h < q-ra),

4. prefix ha minden w forrásszó mellett tartalmazza annak minden első szeletét 

(azaz ha w = Ш1Ш2 • coq forrásszó => u>\u>2 • ■ ■ u)h szintén forrásszó minden 

1 < h < q— 1-ra). Megjegyezzük, hogy ez a prefix tulajdonság nem egyezik 

meg a kódokra már korábban definiált prefix tulajdonsággal. Szótárak 

forrásszavaira éppen ellenkező értelemben használjuk a prefix jelzőt.

A következő részben rátérünk a dolgozat lényegi részére és bemutatjuk a legis­

mertebb heurisztikus algoritmusokat, illetve elemezzük ezek legrosszabb-eset vi­

selkedését különböző típusú szótárakra.

A leghosszabb illesztés módszere (Longest 

Matching)

3.2.

A leghosszabb illesztés (Longest Matching, továbbiakban LM) módszere az egyik 

legismertebb és legegyszerűbb on-line heurisztika, amely az adott gráfban az 

éppen aktuális csúcsból kiinduló élek közül mindig a leghosszabbat választja 

ki, és ezzel folytatja a kódolást. Egyenlő hosszúságú élek esetén bármelyiket 

választhatja az algoritmus.

KATAJAINEN és RAITA [17] elemezte az LM algoritmus legrosszabb-eset visel­

kedését különböző típusú szótárakra és éles korlátokat bizonyított ezen tulaj­

donságok minden lehetséges kombinációjára. A legérdekesebb tételek a követke­

zők.

24



3.2.1. TÉTEL. (Katajainen-Raita [17]) Tetszőleges D általános szótárra

стах
Rlm (D) = (Imax — 1)

cmm

□
Ebből a tételből is látható, hogy az általános esetben az LM heurisztika megle­

hetősen rossz eredményt is szolgáltathat. Közvetlen következményként adódik az

alábbi tétel.

3.2.2. TÉTEL. (Katajainen-Raita [17]) Legyen D egy egyenlő kódhosszúságú 

szótár. Ekkor

Rlm {D) = Imax — 1.

□
Felmerül a kérdés, vajon létezik-e olyan szótártípus, amelyre jobb eredményt 

kapunk. Erről szólnak a következő tételek.

3.2.3. Tétel. (Katajainen-Raita [17]) Legyen D egy suffix szótár. Ekkor

стах
Rlm (R) = cmm

□

3.2.4. Tétel. (Katajainen-Raita [17]) Egyenlő kódhosszúságú suffix szótár­

ra az LM algoritmus által kapott kód optimális bármilyen karaktersorozatra.

□

3.2.5. Tétel. (Katajainen-Raita [17]) Legyen D egy nemhosszító szótár és 

S egy karaktersorozat. Ekkor az aszimptotikus legrosszabb-eset hányadosra igaz

25



a következő:

' (Imax — l)cmax
ha стах < Bt

стгп

(Irnax — 2)Bt -f стахRlm(D) — < ha Bt < стах < 2Bt
стгп

Imax ■ Bt
ha 2Bt < стах

стгп

□
KATAJAINEN és RaiTA [17] sejtése az volt, hogy a prefix szótárakra vonatkozó 

tömörítési eredmények gyengébbek mint a suffix szótárakra bizonyítottak, ezt 

azonban nem sikerült igazolniuk. Mint azt látni fogjuk, sejtésük igaznak bi­

zonyult.

Dolgozatunkban éles legrosszabb eset korlátokat fogunk bizonyítani prefix 

szótárak minden lehetséges kombinációjára más típusú szótárakkal. Belátjuk, 

hogy a leghosszabb illesztés módszere a lehető legrosszabb módon is viselkedhet 

prefix típusú szótárak esetén. Minden prefix és valamilyen további V tulajdonság­

gal bíró szótárra a megfelelő korlátok megegyeznek a V tulajdonsággal rendelkező 

általános szótárra vontakozó korlátokkal; más szóval a prefix tulajdonság semmit 

sem javít az algoritmus legrosszabb-eset viselkedésén.

3.2.6. TÉTEL. [4] Legyen D egy prefix szótár. Ekkor

(Imax — l)cmax
Rlm(D) <

стгп

és a fenti korlát éles.

BIZONYÍTÁS. A felső korlát közvetlenül adódik a 3.2.1. tételből. Az alsó korlát 

helyességét a következő, az {u,v,w} 3-elemű ábécé betűiből képzett prefix szótár 

segítségével igazolhatjuk:

26



vwlmax 2Uforrásszó vw1и V w uv

j=l,...,lmax—2

b d fkódszó a c 4
súly стахстах стах стах стах стгп

1тах—2u)\ i[lmax + 1) + 1 hosszúLegyen i > 0, és tekintsük az Sí = u(vw 

karaktersorozatokat. A hozzátartozó gráfot megvizsgálva ellenőrizhető, hogy

OPT(D,Si) = af és LM{D:Si) = (delmax-2ya_ Ekkor

\\LM(D,Si)\\ i(lmax — 1 )cmax + стах
Rlm(D) > lim

71—KX)
lim
Í—7 00

(Imax — 1 )cmax
\\OPT(D,Si)\\ i ■ cmin + стах

сгпгп

teljesül LM-re.

□

u v

5. ábra

A 3.2.6. tételben definiált Sí illusztrációja Imax = 4 esetén. Az optimális út a 

vizszintes vonal alatt, míg az LM-út a vonal felett halad.

27



3.2.7. TÉTEL. [4] Legyen D egy prefix és nemhosszító szótár. Ekkor

' (Imax — 1 )cmax
ha стах < Bt

cmvn

2) Bt + стах(ImaxRlm{D) < < ha Bt < стах < 2Bt
cmm

Imax ■ Bt
ha 2Bt < стах

cmm
és a fenti korlát éles.

Bizonyítás. A felső korlát következik a 3.2.5. tételből.

Az alsó korlátot igazoló példához vegyük a következő szótárat, az egyes esetekre 

különböző súlyokat alkalmazva:

vwlmax 2Uforrásszó vw-1uvи V w

j=l 2

d fbkódszó a c ej

súly (стах < Bt) стах стах стгпcmm стах стах

súly (Bt < < 2Bt) Bt Bt стах стах cmmcmvnстах

súly(2Bt < стах) 2 BtBt Bt cmmcmm Я

ahol q = min (стах, (j + 1) Bt).

Ebből a kívánt eredmény egyszerű számolással adódik. Például a 2Bt < стах 

esetben

\\LM(D,Si)\\ i ■ Imax ■ Bt + cmin Imax ■ Bt
= lim -

i—»oo
Rlm(D) > lim

n—KX) (г + l)cmm\\OPT(D,Si)\\ cmm

□

3.2.8. TÉTEL. [4] Legyen D egy prefix es egyenlő kódhosszúságú szótár. Ekkor

Rlm(D) < Imax — 1

és a fenti korlát éles.

28



BIZONYÍTÁS. A felső korlát közvetlenül adódik a 3.2.1. tételből. Legyen amin = 

стах a 3.2.6. tétel bizonyításában, és ekkor az alsó korlát is adódik.

□

Ellenőrizhető, hogy a fenti korlát igaz prefix, nemhosszító és egyenlő kódhosszú­

ságú szótárakra is.

A következő táblázat összefoglalja a leghosszabb illesztés módszerére vonatkozó 

eredményeket:

D szótár

Rlm {D)Egyenlő kódhosszúságú NemhosszítóSuffixPrefix
(lmax—\)cmax

X cmin

Irnax — 1xx
lmax-BtXX cmin

Irnax — 1x xX

стахX стгп

IX X

стахXX cmin

IX X X

(Imax—1) стах
стгп

Imax — 1x
Imax-Bt [стах > 2Bt)x стгп

Imax — 1x x

29



A különbségen alapuló greedy algoritmus3.3.

A GONZALEZ-SMITH és Störer [13] által definiált greedy heurisztika, amelyet 

különbségen alapuló (differential greedy, továbbiakban DG) algoritmusnak fo­

gunk nevezni, minden egyes pozícióban a lehetséges (гог-,с;) szótárelemek közül 

azzal fog kódolni, amelyre a legnagyobb “helyi tömörítést” éri el, azaz amelynél 

a \wi\Bt — ||q|| különbség maximális. Egyenlőség esetén bármelyiket választhatja 

az algoritmus.

Nyilvánvaló, hogy bár a heurisztika lokálisan optimális, globálisan igen gyenge 

eredményt is adhat. Másrészt elképzelhető, hogy a greedy heurisztika optimális 

eredményt ad olyan inputra, amelyre a leghosszabb illesztés módszere a lehető 

legrosszabb kódolást hozza létre. A dolog fordítva is igaz lehet. Intuitív módon 

nyilvánvalónak tűnik, hogy a DG heurisztika az LM heurisztika javított változata. 

Azokban az esetekben, amikor a két algoritmus megegyezik, alkalmazhatjuk az 

LM heurisztikára az előzőekben igazolt korlátokat. A DG heurisztikát KATA- 

JAINEN és RAITA vizsgálta néhány szótártípusra, és a következő eredményeket 

kapta:

3.3.1. TÉTEL. (Katajainen-Raita [17]) A DG és az LM heurisztikák meg­

egyezőkódolási eredményt adnak, azaz, DG(D,S) = LM(D, S), tetszőleges egyen­

lő kódhosszúságú D szótárra és S karaktersorozatra.

□

30



3.3.2. TÉTEL. (Katajainen-Raita [17]) Legyen D egy általános szótár. Ekkor

ha (Imax — 1 )2cmax ■ Bt < cmin•?
' cmin + (Imax — 1 )cmax

cmin + (Imax — 1 )Bt

Rdg(D) < стах—cminés > Imax — 1Bt

(Imax — 1 )cmax
különben

cmm
(3.1)

és a fenti korlátok élesek.

□

3.3.3. TÉTEL. (Katajainen-Raita [17]) Legyen D egy nemhosszító szótár. 

Ekkor
' (Imax — 1 )cmax

ha стах < Bt
cmm

2 )Bt + стах(ImaxRdg{D) < < ha Bt < стах < 2Bt
cmm

Imax ■ Bt
ha 2 Bt < стах

cmm
és a fenti korlátok élesek.

□
Prefix szótárt a fenti szerzők nem vizsgáltak.

3.3.4. TÉTEL. [3] Legyen D egy prefix szótár. Ekkor

' cmin + (Imax — l)cmai ha (Imax — 1 )2cmax ■ Bt < cmin2
cmin + (Imax — 1 )Bt

стах—cmin j > lmax _ ]Rdg{D) < < es

(Imax — 1 )cmax különben
cmm

és a fenti korlátok élesek.

31



BIZONYÍTÁS. A 3.3.2. tétel miatt csupán azt kell igazolnunk, hogy a fenti korlátok 

elérhetők prefix szótárakkal. Két esetet különböztetünk meg:

A eset: Tegyük fel hogy (Imax — l)2cmax • Bt < cmin2 és 

A következő D szótárat alkalmazhatjuk:

стах—cmin > Imax — 1.Bt

jforrásszó v uvи

j=l,...,lmax—l

bkódszó a cj

cmin + j Btsúly cmin стах

imax 1 ^ ^ . imax hosszú karaktersoroza-Legyen i > 0, és tekintsük az Sí — (uv

tokát. Látható, hogy OPT(D, Sí) = R\max-\ és LM(D,Sí) = (ab1 max’—1 )y Éhkor

i(cmin + (Imax — 1 )crnax)\\DG(D,St)\\
Rdg(D) > lim

n—KX)
lim
'-*oo i(cmm + (Imax - 1 )Bt) 
cmin + (Imax - 1 )cmax

\\OPT(D,Sí)\\

cmin + (Imax — 1 )Bt

teljesül DG-re. Megjegyezzük, hogy a DG algoritmus a fenti szótárra a feltételtől 

függetlenül mindig ezt az eredményt adja, azonban ez a korlát csak a feltétel 

teljesülése esetén lesz nagyobb а В esetben vizsgált korlátnál.

В eset: Tegyük fel, hogy (Imax — 1 )2cmax ■ Bt > cmin2 vagy 

Imax — 1. Ebben az esetben a 3.2.6. tétel bizonyításában használt szótár adja a 

kívánt eredményt.

стах—cmin <Bt

□

3.3.5. TÉTEL. [3] Legyen D egy prefix és nemhosszító szótár. Ekkor

' (Imax — 1 )cmax
ha стах < Bt

cmm

(Imax — 2 )Bt + стахRdg(D) < < ha Bt < стах < 2Bt
crnin

Imax ■ Bt
ha 2Bt < стах

cmm

32



és a fenti korlátok élesek.

BIZONYÍTÁS. A felső korlát a 3.3.3. tételből következik. Ahhoz, hogy belássuk a 

korlát élességét, ugyanazon szótárt és súlyokat használhatjuk, mint a 3.2.7. tétel 

esetén.

□

Nemhosszító, suffix szótárakra KATAJAINEN és RAITA a következő tételben meg­

fogalmazott eredményt látta be.

3.3.6. TÉTEL. (KATAJAINEN-RAITA [17]) Legyen D egy nemhosszító, suffix szó­

tár. Ekkor
min{Imax ■ Bt, 2стах — Bt}

Rdg(D) <
cmm

□
A legrosszabb-eset hányados pontos értéke azonban nyitott probléma volt. A 

következő tétel erre a kérdésre ad választ. Lényegében azt mondja ki, hogy a 

fenti tételben megadott korlát éles.

3.3.7. TÉTEL. [3] Pozitív egész számok végtelen sok Bt, Imax, cmin és стах 

négyesére a cmin < Bt, cmin < стах és стах < Imax ■ Bt feltételek teljesülése 

esetén létezik olyan nemhosszító, suffix D szótár, amelyre

min {Imax ■ Bt,2cmax — Bt}
Rdg{D) >

cmm

BIZONYÍTÁS. Két esetet különböztetünk meg:

A eset: Ha Imax ■ Bt < 2стах — Bt, akkor tekintsük a következő szótárat:

wlmax-luvjiforrásszó w3uuwи

j=\,...,lmax—2j=l ,...,lmax—1

djbjkódszó eca

(.3 + l)Bt2 BtjBtBtsúly cmm

33



Imax—1 и)г , г • Imax + 1 hosszú karakter-begyen i > 1, definiáljuk az Sí = u(tu 

sorozatokat. Ekkor kapjuk, hogy DG(D,Si) = (cbimax^2ya és OPT(D, Sí) = аег.

A legrosszabb-eset hányadost kiszámítva,

\\DG(D,Sj)\\ 
||ОРГ(А 5.011 <—>

i ■ Imax ■ Bt + Bt Imax ■ Bt
Rdg{D) > lim

n—KX) Bt + i ■ amin cmin

В eset: Ha Imax ■ Bt > 2стах — Bt + 1, tegyük fel, hogy стах = aBt, ahol 

a = 1,Imax. Ebből következik, hogy 2a — 1 < Imax. Vegyük a következő 

szótárat:

forrás szó uwJ WJи3 ua

j=I,-,« —1

b djkódszó cjaj

(.3 + l)Bt jBt2 BtBtsúly

W2(a 1)u 3 wa 1 иa—1forrásszó WJ иw

j=l,..,2a—3

зФ<х—1

hfkódszó 9je

стах — Btsúly стахcmin crmn

bf és DG(D, Sí) =Sí = ua(w2G ^и)г esetén kapjuk, hogy OPT(D, Sí)

da-l(ca-le) a\-

Vannak olyan pontok, ahol a DG által választott él nem egyértelmű. Amikor DG 

ua~x-1 választja, egy másik lehetséges jelölt is van, mégpedig ua. A két különbség, 

amelyet a DG kiszámít (a — 1 )Bt — Bt illetve aBt — 2Bt. Feltételezzük azonban,

-t választja и ésCX — 1hogy a DG ua-1-t választja. Hasonlóan az algoritmus uw 

uV-1-1 wa~1u helyett. Ebben az esetben a legrosszabb-eset hányadosra kapjuk,

34



hogy

I|£G'(A5')||
Rdg(D) > lim

TI—>oo \\OPT(D,S.)\\ 
i(2cmax — Bt) 4- 2Bt

lim
i—*oo

2 стах — Bt
i ■ cmin + 2Bt

cmin

□

A DG heurisztika suffix szótárakra történő elemzését illetően, a szerzők megem­

lítik [17], hogy a heurisztika viselkedését ebben az esetben meglehetősen nehéz 

analizálni. Az egyetlen ismert felső korlát azonos volt az általános szótárakra 

vonatkozóval:

3.3.8. TÉTEL. (KaTAJAINEN-RaITA [17]) Legyen D egy suffix szótár. Ekkor

cmin + (Imax — 1 )cmax
ha (Imax — l)2 стах Bt < cmin2 és 

[(стах — cmin)/Bt\ > Irnax — 1
cmin + (Imax — 1 )Bt

Rdg(D) < <

(Irnax — l)cmax
különben.

cmm
□

Ebben az esetben éles korlát nem volt ismert. GALAMBOS GÁBORRAL, ULRICH 

Pferschyvel és Gerhard Woegingerrel közösen sikerült éles korlátokat 

bizonyítanunk a DG heurisztika legrosszabb-eset viselkedésére suffix szótárak 

esetén. (Vegyük észre, hogy ha Imax — 2, akkor minden szótár prefix tulaj­

donságú.)

35



3.3.9. TÉTEL. [3] Legyen D egy suffix szótár és tegyük fel hogy Imax > 3. Ekkor

2 стах — Bt
ha стах < 3/2 Bt

cmin

(2 стах + Bt)2 < (Imax — 3/2)Bt (3-2)Rdg(B) < < ha 3/2 Bt < стах
8Bt ■ cmin

ha (Imax — 3/2)Bt < стах,L

ahol
(Imax — 1)(2 стах — (Imax — 2 )Bt)

L =
2cmin

A fenti korlátok élesek.

BIZONYÍTÁS. Legyen N = (V, A) az S karaktersorozatból képzett irányított 

gráf, és legyen D a bevezetésben megadott módon definiálva. Legyen w,- és Vj két 

egymásutáni vágóéle ÍV-nek. Ez maga után vonja, hogy mindketten rajta, vannak 

mind az optimum, mind a DG által megadott úton is.

Először a felső korlátot fogjuk bebizonyítani Rdg(D)-re vonatkozóan. Feltéte­

lezhetjük, hogy az optimumnak csupán egyetlen maximális, azaz Imax hosszú éle 

van иг-Ь01 Vj-be mimimális, azaz cmin súllyal. Bevezetjük a következő jelöléseket.

Vj) sorozatból áll. A (u;p, i>íp+1)Feltételezzük, hogy a DG-út a (u4-, u4l, V{2,.. 

él hosszát, illetve súlyát tp illetve cp jelöli, 1 < p < k.

Mivel a szótár prefix tulajdonságú, a u,p csúcsban a DG algoritmus a (uIp, u;p+1) 

és a (Vip,Vj) élek közül fog választani. Az utóbbi súlya legfeljebb стах. Mivel a 

DG heurisztika a u,p csúcson átmenő utat választ, ezért

* 1 fc + 1 ’

к
tpBt - Cp > ^ ti + 1 \ Bt - стах

l=p

teljesül. Ezt minden p-re összegezve kapjuk, hogy

к к к
+ Bt tP - Bt k Bt.

к
(3.3)стах

P=ll=pP=1p=1

36



Először a jobb oldal harmadik tagját fogjuk becsülni.

к к к
= X>v (3.4)

p=1P=1 l=p

Vezessük be a T = Xüf=i ti + 1 jelölést. Nyilvánvaló, hogy

T < /max — 1.

Ellenőrithető, hogy (3.4) a minimumát pontosan akkor éri el, ha ti = T — к és

tp = 1, p = 2,..., k. Ebből kapjuk, hogy

min ££*, = (Г-*) + Е*
* p=l í=2

(* + !)(*-2)= T +
2

Ezt behelyettesítve (3.3)-ba adódik, hogy

к
J2cp

{k+l)(k-2)
к стах — Bt(k + 1) — Bt< max

1<к<.1тах—2 2p=i

1
{2к стах — (к2 + k)Bt}. (3.5)— max

2 1<к<1тах—2

2стах—В tA jobboldali kifejezés konkáv függvénye k-nak és maximumát к — 

veszi fel. Ezután három esetet különböztetünk meg:

-nél2 Bt

1. На стах < |Bt, a maximum к = 1-re adódik.

2 стах—Bt< (/max — |)5/, a maximum к2. На |5/ < -re adódik.стах 2 Bt

3. Ha (/max — |)Bt < стах, a maximum к = /max — 2-re adódik.

A megfelelő к értékeket (3.5) jobb oldalába helyettesítve, és a végső Uj-n áthaladó 

csúcshoz стах nagyságú súlyt rendelve kapjuk a kívánt felső korlátot.

A bizonyítás második részében azt fogjuk belátni, hogy a fenti korlátok valóban 

élesek.

A eset: стах < |Bt esetén tekintsük a következő szótárat.

37



wlmax-\u w3forrásszó w3uи w uw

j=l,...,lmax—lj=l,...,lmax—2

b dj dlmax—1kód eja c

стах — Bt стах — Btsúly стах стах стах стгп

lmax—1 и)Az Si = u(w 

OPT(D, Si) = adÍ

i Imax + 1 hosszú karaktersorozatokat tömörítjük. Mivel

es DG(D, Si) — (c&lmax—2) út,Imax— 1

\\DG(D,Si)\\
Rdg(D) > lim

n—KX) \\OPT(D, Sí) II
i(2cmax — Bt) + стах — Bt 2 стах — Bt

lim
г—>00 (стах — Bt) + г • cmin стгп

В eset: Ha |Bt < стах < (Imax — |)Bt, feltételezzük, hogy Bt páratlan, és 

cmin < Щ továbbá стах — (2a + \)~ valamely a, 1 < a < Irnax — 4 egész 

számra. Egy Irnax betűből álló ábécéből képzett szótárat tekintünk. Az ábécé 

betűit u, v, wi,..., го;таж_2-vel jelöljük. Legyen к — 2 стах —Bt
2 Bt

ylmax—l—kviforrásszó uvи

j=l,...,lmax—2 — k

dobkód ca

\Btsúly стахстахстах

vlmax kw_í _ _ _ Wk-\Uforrásszó V3W\ . . . Wk-\U Wj . . . Wk_iUWj

j=1 ,...,lmax— 1j=l ,...,lmax—1 — к

fidjkód ^lmax—kез

(2 j + l)fsúly стахстгпстах

w\ ... wk-\u)\ Ellenőrizhető, hogy 

k. A DG-utat tekintve látható, hogy először az uv élt 

választja az algoritmus. Ezen él végénél több él is található. Ezek közül egy átlépi

Imax —кés a kódolandó karaktersorozat Sí = u(v

OPT(D, Sí) = ae\max—

38



a v karaktert, a többi pedig a v\ : j = 1,..., Imax — 1 — к karaktersorozatokat. 

Ezért a DG a vlmax-1~k élt választja. A karaktersorozat maradék részén (amíg 

ismét az и karakterher ér) a DG algoritmusnak a wj ... Wk-\u, : j = 1,... ,k — 1 

élek, és a Wj karakter között kell dönteni. Az egyenlőséget az algoritmus úgy 

oldja fel, hogy minden egyes esetben a Wj-t választja. Ily módon kapjuk, hogy

DG(D,Si) = (bd0di ...dk-iYa, amiből

\\DG(D,Si) II
\\OPT(D,St)\\

i (стах + Щ Ej=o(2Í + O) +

Rdg{D) > lim
71—KX)

стах
lim
г—>oo стах + i ■ crnin

i (стах + f i2cmax~^)2 ) + стахABC*lim
i-too

(2 стах + Bt)2
стах + г • стгп

8Bt ■ cmin

C eset: Végül (Imax — | )Bt < стах esetén ismét egy Imax betűből képzett 

szótárak tekintünk, a betűk jele ezúttal is u, w\,..., wimax-\.

forrásszó BJlrnax—l ■ ■ ■ W\UWj . . .W\UWju

j=lmax—1 ,...,1j = l ,...,lmax— 1

bi djkódsszó eca

стах — j Btsúly crninстах стах стах

.. w-iu)1 ,г • Imax +1 hosszú karaktersorozatokra kapjuk, hogyAz Sí — ic(wimax

GBT(D1 S{) — ac es DG)D, Sí) — (cwimax—2'tuimax—3 • • • ) a. így

-í •

\\DG(D,Sj)\\ 
\\OPT(D, 5,)|| 

i (стах + E

Rdg(D) > lim
71—^OO

(стах — jBt)^ +Imax—2
j=1 стах

lim
Í—KX) стах + г • стгп

i{lmax — 1) (2 стах — (Imax — 2)Bt) + стах
lim
i—кх>

(Imax
2стах + 2г • стгп 

1)(2стаж — (Imax — 2)Bt)
2cmin

39



amiből a bizonyítandó állítás következik.

□
Végül foglaljuk össze ismét egy táblázatban a különbségen alapuló greedy 

algoritmusra vonatkozó eredményeket:

D szótár

Rdg {D)NemhosszitóEgyenlő kódhosszúságúSuffixPrefix

lásd 3.1 formulax

Imax — 1xx
lmax-BtXX стгп

Irnax — 1xxx

lásd 3.2 formulax

1xX

min{ Imax - В t, 2 cm ах—В t}
XX стгп

lX XX

lásd 3.1 formula

Imax — 1x
lmax-Bt (стах > 2Bt)x стгп

Imax — 1xx

40



A hányadoson alapuló greedy algoritmus3.4.

Az előző fejezetekben láthattuk, hogy az XM-heurisztika egyáltalán nem fog­

lalkozik a kódszavak hosszával, míg a .DG-algoritmus az abszolút különbséget 

próbálja maximalizálni, és ezáltal figyelmen kívül hagyja a rövid, de relative jó 

tömörítési arányt biztosító éleket. Az alábbi eljárás más szempont alapján dönti 

el, melyik élet választja.

A hányadoson alapuló greedy algoritmus (fractional greedy, továbbiakban FG 

[6]) a minden aktuális pozícióban a legnagyobb hányadossal rendelkező élet vá­

lasztja, azaz, ha 1 az adott csúcsból kiinduló élek indexhalmaza, akkor azt az г0 

indexű élet fogja választani az algoritmus, amelyre

INI*o = arg min*e/ \wi\Bt

Nyilvánvaló, hogy sok esetben ez a heurisztika jobb eredményt fog adni, mint az 

LM vagy a DG heurisztika.

Ezt illusztrálja a következő példa (legyen a1 = a,aí+1 = aa\i E IN, tetszőleges a 

karakterre):

Példa:

Tekintsük a következő nemhosszító szótárat а стах = 4, crnin — 1 

feltételekkel, és ahogy az ASCII kódolásnál megszokott, legyen Bt =

8.

forrásszó и v uv

010 1101 1100kódszó

súly 12 4 4

41



и)г 8(Imax • i + 1) bitből álló karaktersorozatokat 

tömörítve az LM- vagy a DG-algoritmusokkal, mindkét esetben a 

lmax—2'y kódsorozatot kapjuk, amelynek hossza 4(/maa:- 

l)i + 2 bit. Az TG-heuriszikát alkalmazva ugyanerre az esetre az 

10(0)* kódsorozatot kapjuk, ami csupán i + 2 bit hosszú.

lmax—lAz Sí = u(v

(1100(1101)

Bár a példa nagyon speciális szótárral készült, ez is mutatja a hányadoson 

alapuló greedy algoritmus esetleges előnyeit.

Ebben a fejezetben felső korlátokat fogunk bizonyítani a hányadoson alapuló 

greedy heurisztika legrosszabb-eset viselkedésére, különböző típusú szótárakat 

tekintve, ahogy azt a bevezetőben definiáltuk. Belátjuk továbbá, hogy ezek a 

korlátok élesek abban az értelemben, hogy vannak olyan szótárak illetve karak­

tersorozatok, amelyek a adott korlátokat elérik. (Suffix szótárakra egy kis eltérés 

adódik az aszimptotikus technikák miatt.)

3.4.1. TÉTEL. [6] Legyen D egy általános szótár. Ekkor

(Imax — 1 )cmax
Rfg(D) <

cmin

és a fenti korlát éles.

BIZONYÍTÁS. Legyent S egy karaktersorozat. A felső korlát bizonyításához ele­

gendő A-nek egy olyan részsorozatát tömörítenünk, amelynél az FG

és az ОРТ-út közös pontjai a Vi és a Vj csúcsok. Legyen az FG-út ViVp...Vj, az 

OPT-út pedig ViVt...Vj. A megfelelő kódsorozatokat c0ci...c9-val, illetve c0c1...cq- 

vel jelöljük. Az vp és vt legelső csúcsok relatív helyzetétől függően két esetet 

különböztetünk meg.

A eset: Tegyük fel, hogy i < p < t < min {г + lmax,j} ■ Mivel az FG algoritmus 

a legkisebb hányadossal bíró élet választja Uj-ből indulva, teljesül a

(p — i) Bt (t — i) Bt
>INI có

42



egyenlőtlenség.

Ebből következik, hogy

t — i-INI-г
' >co

P -

Az élekre vonatkozóan igazak a következők:

i-tq + r < j — p and r > Imax ’

amiből adódik, hogy

(Imax — 1) (j — t)J - t
q<j-p-r<j-p- = t — p +

IrnaxImax

Mivel
x + ax

- >
У У + ca

minden a, c > O-га, ha xc > у > 0, és

1t-p
>

p — i Imax — 1

kapjuk, hogy

I cq + q стах
Rfg(D) <

Cq + r cmin
(Imax—\)(j — t) стахIIСоII + (t — p) стах + Imax<

(jH + 0 Hc°ll + (j—t)cmin
Imax

(lmax — l)(j — t)cmaxcmin + (t — p) стах + Imax< (j — t)cminImax cmin + ImaxImax—1

Legyen x = t — p,y = j — t, a fenti hányadost pedig jelölje f (x,y). Tudjuk, 

hogy teljesülnek az 1 < x < Imax — 1 és az у > 0 feltételek. Láthatjuk, hogy a

1, oo) pontban veszi fel. Ebből adódik a kívánthányados maximumát az (Imax 

felső korlát.

43



В eset: Tegyük fel, hogy i < t < p < min {г T Imax, j). Az FG-út éleire 

vonatkozóan ismét adódik, hogy

(Imax — 1) (j — t)
q < j — t — r <

Imax

Ekkor

I co II + q стах
Rfg{D) <

cQ + r cmin
(Imax—\)(j — t) стах1Ы + Imax< (j-t)cminc0 + 

стах +
Imax

(Imax—\)(j — t) стах
Imax< (j-t)cmincmin +

amiből ismét megkapjuk a megfelelő korlátot.
Imax

Ezután már csak azt kell bizonyítanunk, hogy az felső korlátot az FG-heurisztika 

eléri. Tekintsük a következő szótárat:

uwlmax 2Uu2forrásszó и w

b dkódszó a c

súly стах cminстах стах

Az Sí = (u2wlmax~2y, г • Imax hosszú karaktersorozatokat tömörítjük. Az op­

timális algoritmus az OPT(D, Sí) = adl~labl 

FG-algoritmus eredménye FG(D,Si) = (cbl

max—2 kódszavakat generálja, míg az 

raBI"2)'a, amiből

i(lmax — 1 )cmax + стахI1fg(f>,£)H
— hm , .. v

t-+oo Imax ■ стах + (г — 1)стгпRfg{D) > lim sup ||OFT(F, 5,-) Кn—>oo

(Imax — 1 )cmax
cmin

□

3.4.2. TÉTEL. [6] Legyen D egyenlő kódhosszúságú szótár. Ekkor

Rfg(E) G Imax — 1

és a fenti korlát éles.

44



BIZONYÍTÁS. А стах — cmin feltételt használva a fenti alsó korlát példában 

kapjuk a kívánt eredményt.

□
Az előzőekben bizonyított korlátok azt sejtetik, hogy az Fór-algoritmus legrosz- 

szabb-eset viselkedése azonos az LM- és a Z)6r-heurisztikákra vonatkozóan akkor 

is, ha más típusú szótárakat alkalmazunk. Ez valóban igaz nemhosszító szótárakra.

3.4.3. TÉTEL. [6] Legyen D nemhosszító szótár. Ekkor

' (Imax — 1 )cmax
ha стах < Bt

cmm

(Imax — 2 )Bt + стахRdg{D) < < ha Bt < стах < 2Bt
cmm

Imax ■ Bt
ha 2Bt < стах

cmm

és a fenti korlát éles.

BIZONYÍTÁS. А стах és a Bt közötti kapcsolat alapján három esetet különböz­

tetünk meg:

A eset: стах < Bt:

Ekkor minden szótár nemhosszító, és a 3.4.1. tétel változtatás nélkül alkalmazható 

erre az esetre (beleértve a legrosszabb-eset példát is).

В eset: Bt < стах < 2 Bt:

Először vegyük észre, hogy Imax = 2 esetén a korlát megegyezik a 3.4.1. tételben 

bizonyított, általános esetre vonatkozó korláttal. így a bizonyítás során feltéte­

lezzük, hogy Imax > 3.

A 3.4.1. tételben alkalmazott modellt részletesebben ki kell dolgoznunk. Ismét 

abból indulunk ki, hogy a hányadoson alapuló greedy algoritmus és az optimális 

algoritmus összehasonlításához csupán azokat a forrásszavakat kell tekintenünk, 

amelyeken az FG-út és az OPT-út csúcsfüggetlen és közös végpontjaik vannak.

45



Ezeket az útvonalakat Pfg — v, v\, v2,..., vq, v illetve Popt = v, v[, v'2,..., v'r, v- 

sal jelöljük. Legyen p illetve p' karakter a v és v-i illetve a v[ között és j karakter 

a v és a v között. A (v,vi) és a (u,wj) élekhez tartozó kódszavak legyenek c0 

illetve c'0.

Amikor az FG algoritmus eléri a v csúcsot a kódolási eljárás során, a következő 

lépésnél a “legjobb hányadossal bíró” kimenő élet fogja választani, amiből követ­

kezik, hogy
JM< JML
p ■ Bt p' ■ Bt ’

és így

Ml >-IMI-
p

Másrészt mivel Pp^-nek és Popt-nak nincsen közös csúcsa, és így minden egyes 

él “elfogyaszt” legalább egy karaktert, a v és v között lévő élekre igaz, hogy

q + r + 2<j + l- (min {p,p'} - 1)

és így

q <j ~r - min{p, p'}.

Tudjuk, hogy
J - Pr >
Imax

Az PG-úton lévő éleket két részre bontjuk. Tartalmazza Qj az összes 1 hosszú 

élet és Q2 a többit. Ezen halmazok számosságát jelölje q\

\Q2\. így kapjuk, hogy

IQil és q2 = q-qi -

11c011 + q\Bt + q2 стах
(3.6)B-fg(D) < llcóll +r • cmm

Két esetet különböztetünk meg:

B.l. eset: 0 < p < p' < min{j, Imax):

Egy felső korlátot fogunk megadni az FG-úton lévő élek súlyaira vonatkozóan. 

Nemhosszító szótár esetén a legrosszabb-eset akkor áll fenn, ha minden karaktert 

Bt bittel kódol az algoritmus. Mivel r csúcs van az optimális algoritmus által

46



definiált úton, amelyeket az .EG-heurisztikának el kell kerülni, ezért r csúcsot 

mindenképpen át kell lépni Q2-beli élekkel. На стах <2 Bt a, lehető legrosszabb 

eset az, ha q2 = r és Q2 minden éle 2 hosszú és стах súlyú. A fenti korlátokat 

alkalmazva r-re és q-ra kapjuk, hogy

q\Bt + q2crnax < {j — p — 2r)Bt + г стах

= (j — p)Bt + r{cmax — 2 Bt) 

pl— (стах — 2 Bt)
pf

—-{стах + (Irnax — 2 )Bt).

< (j - p)Bt + -
Imax
J -{p' - p)Bt +
Imax

Ezt (3.6)-ba helyettesítve, és а Цс^Ц-ге és r-re vonatkozó korlátokat használva

adódik, hogy

j-p'II со И + {pr — p)Bt + {{Imax — 2)Bt + стах) ImaxRfg{D) - 'jIMI + ü-p') cmzn
Imax

Ellenőrizhető, hogy az egyenlőtlenség jobb oldala j-nek növekvő függvénye, kivéve

oo határértéket véve kapjuk az {{Imax —a p' — Imax és p = 1 esetet. A j 

2)Bt + стах)/cmin korlátot.

A p' = Imax és p = 1 esetet külön kell kezelnünk. Egyszerű számítással adódik,

hogy a fenti kifejezés szintén növekvő j-ben Imax > 3 esetén, amiből kapjuk 

ugyanezt a felső korlátot.

B.2. eset: 0 < p' < p < min{j, Imax}:

Ebben az esetben igaz, hogy

q\Bt + q2 стах < {j — p' — 2r)Bt + г стах

< {j—p')Bt + -----—(стах — 2 Bt).
Imax

A B.l. esethez hasonlóan (3.6)-ból kapjuk, hogy

.7 -P1||co|| + {j — p')Bt + {стах — 2 Bt) ImaxRfg{D) < ?Ы1 + (j-p1) cmm
Imax

47



Legyen ж = j — p', ekkor a fenti egyenlőtlenség jobb oldalát tekinthetjük úgy, 

mint egy háromváltozós függvényt, ahol a változókat ж, p és p' jelöli:

IMI + ((Irnax - 2) Bt + стаж)~s
f(x,p,p’) :=

Nyilvánvaló, hogy / monoton függvény ж-ben. Az ж szerinti parciális deriváltja

)- > pdf _ ||co|| ((lmax-2)Bt + стах — стгп
ж)'dx Imax (£1Ы1 + стгп

Imax

A derivált pozitív minden lehetséges ж, p és pl értékre, kivéve a p1 = 1, p = Imax 

és 2 cmin > стах esetet. Ha a derivált pozitív, és így a függvény növekvő ж-Ьеп, 

a kívánt korlát adódik, ha vesszük a j 

Különben (ha p' = 1, p = Imax és 2 cmin > стах) egy másik becslést használunk 

IICq11-ra, nevezetesen

oo határértéket.

IMIстах11411 > cmin > 2 >
2

Ebben az esetben (3.6)-ből adódik, hogy

IMI + (i - l)Bt + (cmax -Rfg(D) < cmin
Imax

ami ismét növekvő függvény j-ben. A j —» oo határérték adja a kívánt korlátot. 

Annak a bizonyítása, hogy a B.2. esetben igazolt korlát a lehető legjobb, ugyana­

zon szótár segítségével történik, mint amit az általános esetben is használtunk, 

csupán a súlyokat módosítjuk a következőképpen:

uwlmax-2Uи2forrásszó и w

b dkódszó a c

Bt Btsúly стгпстах

C eset: 2Bt < стах:

Mivel az adott felső korlát triviális felső korlát minden nemhosszító szótárra 

(lásd [17]) elegendő megmutatni, hogy elérhető ugyanazzal a szótárral, más sú­

lyokat alkalmazva.

48



uwlmax-2uU2forrásszó и w

bkódszó da c

súly Bt Bt 2 Bt cmm

□

A következő tétel azt állítja, hogy a prefix tulajdonság nem javít a felső és az alsó 

korlátokon.

3.4.4. TÉTEL. [6] Legyen D\ egy általános, prefix szótár, D2 egy prefix és egyenlő 

kódhosszúságú szótár és legyen D3 egy prefix és nemhosszító szótár. Ekkor

(Imax—1) стах 
cminRfg{Di) <

Rfg{D2) < Imax — 1

' (Imax — 1 )cmax
ha стах < Bt

cmm

(Imax — 2 )Bt + стахRfg{D3) < < ha Bt < стах < 2Bt
cmm

Imax ■ Bt
ha 2Bt < стах

cmm

és a fenti korlátok elérhetőek.

BIZONYÍTÁS. Annak bizonyításához, hogy az előző tételekben már igazolt felső 

korlátok prefix szótárakra is élesek, a következő, három szimbólumos {u,v,w} 

ábécéből képzett szótárat alkalmazhatjuk:

vwlmax-2Uforrásszó VWJV w uvи

j=ly...,lmax—2

d fbkódszó eia c

súly cmmстах стах стахстах стах

49



Imax—2 и)г ,i(lmax-\-1) + 1 hosszú karaktersorozatokat.i > 0-ra vegyük az Sí = u(vw
lrnax—2^ji^ ígyNyilvánvaló, hogy OPT(D, Sí) = afl és FG(D,Si) = (de

\\RG(D,S<)\\ i(lmax — 1 )cmax + стах
Rfg(D) > lim

v ' П—>00
lim
i—+oo

(Imax — 1 )cmax
\\OPT(D,Sí)\\ г ■ стгп + стах

emui

Egyenlő kódhosszúságú és nemhosszító szótárakra vonatkozó példák hasonló mó­

don konstruálhatok.

□
Összefoglalva, az általános, egyenlő kódhosszúságú, nemhosszító és prefix il­

letve ezen tulajdonságok összes értelmes kombinációjának megfelelő jellemzőjű 

szótárak esetén az LM- és az Fő-heurisztikák legrosszabb-eset viselkedése azo­

nos. A Fő-heurisztika egy kicsit különbözik ezektől az általános esetben, egyéb­

ként azonos korlátokkal rendelkezik.

A következőkben suffix szótárakra fogunk tételeket bizonyítani. Mindvégig 

feltételezni fogjuk, hogy Imax > 3, mivel Imax = 2 esetén minden szótár egyben 

prefix tulajdonságú is, így az előző tételek alkalmazhatók. A következő tétel azt 

mutatja, hogy suffix szótárakraa hányadoson alapuló greedy algoritmus egészen 

másképpen viselkedik, mint más heurisztikák.

3.4.5. TÉTEL. [6] Legyen D egy sufhx szótár. Ekkor

cmax(\n(lmax — 1) + 1)
Rfg(D) <

стгп

és létezik olyan Dq suffix szótár, amelyre

cmax(\n(lmax — 1) + 1 — In 2)
< Rfg(Dq)-

стгп

BIZONYÍTÁS. Ismét olyan karaktersorozatokat tekintünk, amelyre az Fő-út és 

az ОРТ-út diszjunkt, és közös kezdő, illetve végpontjaik vannak. Jelölje az 

Fő-utat tetszőleges két va,va+i csúcsa között az ОРГ-útnak z\,Z2,.. 

Feltételezzük, hogy létezik olyan él az Fő-úton, amely z\-et a ua-t megelőző

Zk+1-* 5

50



csúccsal köti össze és egy olyan él, amely Zk+i-ből egy ua+1utáni csúcsba vezet 

(úgynevezett “átlépő élek”), kivéve természetesen a karaktersorozat elejét és 

végét.

Az FG-nton található (z;,z;+1) él hosszát illetve súlyát jelölje ti illetve c;. To­

vábbá, a Zk+1 és a ua+1 közötti karakterek száma legyen ß.

A következőkben két egyszerű megfigyelést használunk:
к

ti < /таж — ß — 1 (3.7)
г'=1

Ci стах
(3.8)Уг

и - zLGs+ ß
A jelölés egyszerűsítésére legyen T := ELi A + ß- Ekkor

T < Imax — 1.

Tekintsük a (3.8) összefüggést, és adjuk össze minden г-ге, 1 < г < k, így egy 

felső korlátot kapunk a súlyok összegére:
к к UJ2ci < £ < стах ln Tстах г-1 J

S=1г=1 Г - Ег=1

A második egyenlőtlenség a 3.4.6. lemmából következik.

A kettőt összerakva, és figyelembe véve hogy a Zk+i-höl induló, és i>0+1-t átlépő

él hossza legfeljebb стах, azt kapjuk, hogy

Ег=1 °i + стаж In (Imax — 1)стаж + стах
Ffg(D) < <

cmm cmm

A következő konstrukció megadja a Do szótárat és a kívánt alsó korlátot. Te­

kintsünk egy Imax betűből álló ábécét, legyenek a betűk u,v,wi,..., го;таж_2 és 

vegyük a következő Do szótárat:

forrás­ ig Wj . . . Wlmax—2U VW\ . . . Wlmax-2Uи V UV

szó j=l,...,lmax—2j=1 r..,lmax—2

b d fkódszó a cj ei

súly стах cmmстах стах стахстах lmax—j

51



u(vwi . . .w\max-2u)’ a tömöríteni kívántLegyen стах = (Imax — 1)! cmin és Sí 

karaktersorozatok, amelyek hossza n = i ■ Imax + 1. Látható, hogy ha az FG 

algoritmus egyenlőség esetén a Cj élt választja, akkor OPT(Do, Sí) = a/8 és

FG(D0,Si) = {dcí .. .clmax-2)га- Ebből adódik, hogy

i {стах + Y2 Imax—j) "EImax—2 стах
i=i\\FG(D0,S{)\\ 

Zr'\\OPT(D0iSi)\\
I 1 I \^lmax—1 1

+ Ej=2

стах
Rfg(Do) > limsup - lim

i—kx> стах + i ■ cminП —

) +г • стах стахilim
i-too стах + г • cmin

+ 1п(/таж — 1) — ln 2^1стах lmax—1> • )стгп

Az utolsó egyenlőtlenségnél felhasználtuk, hogy

^2 T - Mn + 1) - In 2.
k=2

(3.9)

□
Be kell még látnunk a fenti bizonyításban említett lemmát.

3.4.6. LEMMA. [6] Tetszőleges ,Sk, b S{ > 1, b > 1 egész számokra és S =

EÍi sí + b-re
S-bк 1E <E?
i=l ^

< In 5s - e;=i a- - i + 1;=i

teljesül.

BIZONYÍTÁS. Az első egyenlőtlenség bizonyításához megmutatjuk, hogy a baloldal 

S{ = 1-re, i — 1 ,...,&, veszi fel a maximumát.

Ha valamelyik .s,-, például sm nagyobb vagy egyenlő mint 2, akkor helyettesíthetjük 

két értékkel, mégpedig az smi = sm — 1 és az sm2 = 1 értékekkel.

Ekkor a baloldal változása

sm2 $m$m\

S - ЕГЕ1 *i'5 - EfE1

Legyen S S ~ EjLf1 áj> és így a változás

S - EjLi1 Sj - smí

1 1- - > o
S — sm -j-1 s

52



ami ellentmond a feltevésnek, hogy a baloldal növelhető azzal, ha valamely s,-t 

1-nél nagyobbra választunk.

A lemma második egyenlőtlensége a harmonikus sorra vonatkozó korlátból adódik:

s-b 5 1 5 1

E 7<Eí<in5
i=b-\-1 i=2

1E S-i + 1i=1

□
Ha szeretnénk összehasonlítani az FG heurisztika legrosszabb-eset viselkedé­

sét az LM és a DG algoritmusokéval suffix szótárakra, a 3.2.3., 3.3.9. és 3.4.5. 

tételeket kell megvizsgálnunk.

Látható, hogy az TM-algoritmus jobb legrosszabb-eset hányadossal rendel­

kezik mint az FG-heurisztika, amely a fontosabb esetekben jobb mint a DG- 

módszer. Hogy pontosak legyünk, ha стах < 3/2Bt, akkor Rdg kisebb mint 

Rfg• На стах 3/2Bt és (Imax — 3/2)Bt között van, akkor nincs jelentős 

különbség, (vagyis ha стах = (Imax — 2)Bt, akkor FG jobb Irriax > 7-re, 

ha стах = 2 Bt, akkor DG jobb minden Imax > 3-ra.) Az utolsó esetben, 

vagyis ha (стах > (Imax — 3/2)Bt), akkor elemi számításokkal ellenőrizhető, 

hogy az FG mindig jobb, mint a DG.

A kombinált, suffix és nemhosszító szótárakra vonatkozóan bonyolultabb ana­

lízis szükséges.

3.4.7. TÉTEL. [6] Legyen D egy nemhosszító, suffix szótár. Ekkor

) + 3) - Bt}min {Imax ■ Bt, стах (in ( Imax Bt
стахRfg(D) <

cmm

Bizonyítás. A minimum zárójelben található kifejezés triviális felső korlát 

bármely nemhosszító szótárra, amely jobb mint a második korlát, ha стах közel

van Imax ■ Bt-hez.

A második kifejezés bizonyításához ugyanazt a jelölést használjuk, mint a 3.4.5. 

tételben. Továbbá feltételezzük, hogy стах — a Bt valamilyen a > 0-ra. Ha az 

FG algoritmus a Z{ csúcsnál egy L hosszú és сг súlyú élt választ, akkor ennek az

53



élnek “jobbnak” kell lenni, mint a közvetlenül ua+1-be futó suffix él, amelynek 

súlya стах is lehet. Ebből következik, hogy

( i стах

и - eLt* + ß'
továbbá a nemhosszító tulajdonság miatt

(■l

- < Bt.
ti “

Jelölje Zj a legkisebb indexű olyan csúcsot a zi,...,Zk közül, amelyre Bt < 

стах/(J2s=its + ß) és legyen Тг = £ks=its + ß. Ekkor Bt < aBt/Tj és így

Tj < a.

Összeadva az összes súlyra kapjuk, hogy

j—1 к
+ UBt

к
Ec« - иE —стах

Ti i=ji=1 Í=1

j-1 T — T+1 1£ + -№-« a
стах

Tt=í

J-2 E+i T3 1
(j-i)-E + 1--< стах

Ti Ti-1 ai=1

(Az utolsó egyenlőtlenségnél a /9 > 1 és a Tj < a egyenlőtlenségeket alkalmaztuk.) 

A számtani és a mértani középre vonatkozó összefüggésekből adódik, hogy

j-2 E-iE+iE ^2( (3.10)> (i - 2) > (i - 2)i=í E

Az x — x^fy < ln(l/y) egyenlőtlenségből x,y > 0-ra kapjuk, hogy

Ti

к
Ec* (ü - 2) - (i - 2) 1+ 2--< стах

ai — 1
Ti 1

(3.11)< стах (In + 2--
aa

/max Bt
-f 2 стах — Bt.< стах In

стах

54



Ha hozzáadjuk ehhez az átlépő él súlyát, és elosztjuk cmin-nel, megkapjuk a 

kívánt korlátot.

□
Annak igazolására, hogy a fenti korlát csaknem a legjobb, megadunk egy általános 

alsó korlátot suffix, nemhosszító szótárakra. Pontos korlátot nem sikerült kon­

struálni a fenti bizonyításban alkalmazott becslések miatt. Természetesen a 

triviális, Imax ■ Bt/cmin érték elérhető (lásd [17]).

3.4.8. TÉTEL. [6] Létezik olyan nemhosszító, suffix D\ szótár, amelyre

K MImax-Btстах стахRfg(D\) >
cmin

BIZONYÍTÁS. Ugyanazt a D\ szótárat tekintjük, amit a 3.4.5. tétel bizonyításában 

alkalmaztunk. A szótár Imax betűs ábécéből épül fel, ezek az u, v, w-i,..., wimax_2 

karakterek, de ezúttal más súlyokat használunk. Legyen стах — (Imax — 1)! cmin 

és стах = a Bt, a £ IN esetén.

forrás­ úi; Wj . . . 'U)lrnax—2'Uj VW\ . . . Wimax-2Uи V wj

szó j=l,...,lmax—2 j=l}...,lmax—2

d fbkódszó eía C3

^(Imax — j)Bt Bt 2 Btsúly 7i cmin

ahol
7cmax . j = 1,..., Imax — almax—j J

Bt j = Imax — a + 1,..., Imax — 2
7; =

iLegyenek Sí = u(vw\ ... wimax-2u) 

karaktersorozatok. Ahogy a 3.4.5. tételnél, ha az FG algoritmus egyenlőség esetén 

a Cj élet választja, akkor OPT(D\, Sí) = a/1 és FG(D1, Sí) = (dc\ ... cimax-2)'«.

= i ■ Imax + 1 hosszú, tömörítendőaz n

55



A példából következik, hogy

||FG(D1,Si)llRfg(D\) > limsup
oo \\OPT(Di,Sí)\\n—►

стах I s~^lmax—2 R+\ ПI
lmax—j ' L^j-lmax-cx-V 1 ) ~r

lmax—cx
j=1lim

г—kx> Bt + г • cmin 
2Bt + стах Е£Г_1 7 + (a - 2)Bt

cmin
In (^) +aBtстах

>
cmin

Imax Bt ) + 0кстах стах

стгп

felhasználva a (3.9) egyenlőtlenséget.

□
Az FG más heurisztikákkal való összehasonlításához suffix és nemhosszító 

szótárak esetén a 3.2.3., 3.3.6. és a 3.4.8. tételeket használhatjuk. Meglepő módon 

ilyen típusú szótárakra mind az LM, mind a DG algoritmusok egy kicsit jobb 

eredményt adnak mint az FG.

56



A hányadoson alapuló greedy algoritmusra vonatkozó összes eredményt a kö­

vetkező táblázat foglalja össze:

D szótár

Rfg {D)Egyenlő kódhosszúságúSuffix NemhosszitóPrefix
[Imax—1) стах

X стгп

Imax — 1xx
Imax BtXX cmin

Irnax — 1x xx
cmax(ln(lmax—1)+1)

X emm

lX X

H lm.ax-BtШcm aj- стахXX cmin

1XX X

jlmax—l)cmax
стгп

Imax — 1x
Imax Bt [стах > 2Bt)x стгп

Irnax — 1x x

A leghosszabb szelet algoritmus3.5.

Több mint 12 évvel ezelőtt SHUEGRAF és HEAPS [22] vezette be a leghosszabb 

szelet (longest fragment first, továbbiakban LFF) heurisztikát. Azt feltételezték, 

hogy a tömöríteni kívánt adatok azonos hosszúságú rekordokból épülnek fel. Az 

ötlet a következő: az aktuális rekordon belül az algoritmus kiválasztja a leghosz- 

szabb olyan karaktersorozatot, amely pontosan megegyezik valamely szótárbeli 

szóval, majd ezt kódolja. Egyenlőség esetén bármelyiket választhatja az algo­

ritmus. Ezután a maradék részt valamilyen on-line algoritmussal tömöríti az

57



eljárás (például használható az LM heurisztika). Ha a lile nem rekord struktúrájú, 

tekinthetünk helyette egy buff ért, ami mindig a file aktuális részét tartalmazza 

(ezért a továbbiakban rekord helyett bufferröl fogunk beszélni). Mielőtt, az algo­

ritmus a következő részt a bufferbe olvassa, annak teljes tartalmát kódolnia kell. 

A teljes buffer kódolási eljárást lép esnek fogjuk nevezni. Dolgozatunkban csak az 

LM heurisztikával kombinált LFF algoritmussal foglalkozunk. Ezt az eljárást 

LFFLM~me 1 jelöljük. A kétszeres indexelés elkerülése érdekében Rlfflm{F>) 

helyett Ripp(LM, D)-1 fogunk írni.

Látható, hogy az LFFlm algoritmus feladja a szigorú értelemben vett on-line 

tulajdonságot, mivel előre néz a bufferben, és ezzel több információt szerez annak 

tartalmáról, mint amivel az on-line algoritmusok rendelkeznek. Az az érzésünk 

támadhat: minél több információnk van a tömöríteni kívánt szövegről, annál 

jobb legrosszabb eset hányadost kaphatunk. Ez azt sejteti számunkra, hogy az 

LFFlm algoritmus jobban viselkedik, mint az on-line algoritmusok. A tapaszta­

lati eredmények azt mutatták [22], hogy az LFF típusú eljárások jobb tömörítési 

eredményeket adnak, mint a leghosszabb illesztés módszere, vagy a különbségen 

alapuló greedy algoritmus. Ez látható az alábbi táblázatban, amely három külön­

böző szótárra (Dl, D2, D3) mutatja be a kapott tömörítési arányokat az optimális 

algoritmus (ОРТ), a leghosszabb illesztés módszere (LM) és a leghosszabb szelet 

algoritmus(LFF) esetén. Az adatok a Shuegraf és HEAPS által elvégzett elem­

zésekből származnak [21], [22].

ОРТ LMLFF

0,617 0,65Dl 0,628

0,678D2 0,646 0,653

0,679 0,687 0,707D3

58



A táblázat adatai grafikus formában megjelenítve a következőképpen néznek ki:

6. ábra

Mostanáig azonban nem léteztek egzakt bizonyítások az LFFlm algoritmus 

legrosszabb-esetére vonatkozóan. GALAMBOS GÁBORRAL és TlMO R.AITÁVAL 

közösen éles korlátokat bizonyítottunk különböző típusú szótárakra. A kő vet ke 

zők ben ezen eredményeket mutatjuk be részletesen.

Tegyük fel, hogy az eljárás során t ■ Imax hosszú buff ért használunk, ahol t > 2 

egy paraméter. Először általános szótárakra vonatkozó tételeket bizonyítunk.

3.5.1. TÉTEL. [5] Legyen D egy általános szótár. Ekkor az LFFlm algoritmusra

(t — 1 )lmax — (t — 3) стах
Rlff(LM, D) <

t cmin

teljesül.

59



BIZONYÍTÁS. Legyen S egy tetszőleges karaktersorozat a D által megadott ábé­

céből. Legyen a buffer hossza t ■ Imax ahol t > 2 egy paraméter. Mivel az aszimp­

totikus legrosszabb eset hányados érdekel bennünket, elegendő olyan szövegekkel 

foglalkozni, amelyre |,5| = s • t ■ Irnax, ahol s > 1. Ekkor s = 

goritmus által végrehajtott lépések száma. Mivel t > 2, a buffer minden lépésben 

tartalmaz legalább egy élt az S optimális kódolásából. Jelölje az optimális kódolás 

leghosszabb éleinek hosszát az egyes bufferekben, illetve az LFFlm algoritmus 

által kiválasztott leghosszabb éleket a lépések során illetve t\, t2, •••, ts-

Nyilvánvaló, hogy U > U, i — 1,..., s, így kapjuk, hogy

■1—^— az LFFlm al-t-lmax

ISI - É /Л\s\ - E k ISIi=1 i=lOPT(D,S) > s + amin = crnin.
Imax t ■ Imax Imax

A t ■ Imax hosszú buffer tartalma a legrosszabb esetben az г-edik lépésben legfel­

jebb

(t ■ Imax — ti — (t — 2) + 1) стах < (t ■ Imax U - (í - 2) + 1) (3.12)стах

bittel kódolható, így

s + s ■ t ■ Imax — ^2 l{ — s (t — 2)LFFlm(D:S) < стах
г=1

|S| |S|(í-2)+ |s|-E/* стах.
t ■ Imax t ■ Imaxi=1

Vezessük be az L(s,t) =QT) /,-)/ l^l jelölést. Ekkor
i=i

|sr|(t-3)J3-+|5|-|5|L(j,<) стахt-lmaxt-lmaxRlff{LM, D) < lim
\S\—>oo |g| + |g|-|g|i>(»,t) crriin

Imaxt - l ттъ ax
(t~2)1 + 1 - L(s,t) - стахt-lmaxt-lmax

1 -L(s,t)1 cmin
t-lmax Imax

60



< L(s,t) < j, és az előző kifejezés a maximumátíNyilvánvaló, hogy 

L(s,t) = j-nél veszi fel. Ebből adódik, hogy
t'lmax

(t — 1 )lmax — (t — 3) стах
Rlff{LM, T>) <

cmm

□

3.5.2. TÉTEL. [5] A 3.5.1. tételben megadott korlát éles LFFlm-гс vonatkozóan.

BIZONYÍTÁS. A korlátot a következő konstrukcióval tudjuk elérni. Legyen D az 

alábbi szótár:

ylmax ylmax yylmax ylmax—1 уforrásszó и v w uw wv

b d f hkódszó c e 9a J

súly стах стах стах стах стах стах стах стах стгп

Vegyük a következő karaktersorozatokat:

i\ *~2ImaXyjlmax \ 2 ^Imax(ulmax (v ha t páros,

Si={
\ t~1 \ Imaxyj.max \ 2 \(ulmax (v ha t páratlan.

Sí optimális kódolása a következő:

*{a{gh)^2 g^j ha t páros,

OPT(D, Sí) =
i(a{gh ha t páratlan.

Az LFFlm algoritmus 51,-1 a következőképpen kódolja:

\ Í ,
) ha t pá(ф xV dbImax — 1Imax—2 Imax—2

de ros,

LFFLM(D,St) =
t-3 \ i

2 Cj(■ajbImax—2 Imax—2
ha t páratlan,de

61



lm ax—2 Imax—2ahol x = db de

A fentiekben azt feltételeztük, hogy egyenlőség esetén az algoritmus bármely 

lehetséges élet választhatja. Ekkor

\\LFFlm(D,Sí)\\ 
\\OPT(D,Si)\\ 

i ((f — 1) Imax — (t — 3)) 
i ■ t ■ cmin

(t — 1 )lmax — (t — 3)

Rlff{LM, D) A lim

стах
lim
i—+oo

стах
t emm

□

3.5.3. TÉTEL. [5] Legyen D egy egyenlő kódhosszúságú szótár. Ekkor

(t — 1 )lmax — (t — 3)
Rlff{LM, D) <

t

és a fenti korlát éles.

BIZONYÍTÁS. Feltéve, hogy стах = cmin a 3.5.1. és a 3.5.2. tételekből adódik a 

kívánt eredmény.

□

3.5.4. TÉTEL. [5] Legyen D egy nemhosszító szótár. Ekkor

(t — 1 )lmax — (t — 3) стах
ha стах < Bt

t emm

Rlff(LM, D) < T ha Bt < стах < 2Bt

(t — 1 )lmax Bt + стах
ha 2Bt < стах

t ■ cmin

ahol
T (t — 1 )lmax Bt — t(f2Bt — стах) + 4Bt

t ■ cmin
— стах

és a fenti korlát éles.
. ‘ ■>

4ГЧ
62 ■>



BIZONYÍTÁS. Három esetet különböztetünk meg а стах és a Bt közötti kapcsolat 

alapján.

A eset: Tegyük fel, hogy стах < Bt. Ezen feltételek mellett minden szótár 

nemhosszító, és a 3.5.1. illetve 3.5.2. tételek vátoztatás nélkül alkalmazhatók.

В eset: Tegyük fel, hogy Bt < стах < 2 Bt. Ugyanazt a technikát használjuk, 

mint a 3.5.1. tétel bizonyításánál, de 3.12 helyett ezúttal a következőt írhatjuk: 

Az LFF úton található élek teljes súlya az i. lépésben legfeljebb

(t ■ Imax — ti — 2 (t — 2)) Bt + (í — 2) стах + стах.

Hasonlóan mint a 3.5.1. tételnél, kapjuk, hogy

(f — 1)/шаж Bt — t(2Bt стах) + 4 Bt — стах
Rlff{LM, D) <

t ■ cmin

C eset: Legyen 2Bt < стах < Imax ■ Bt. Ebben az esetben az élek teljes súlya

az LFF-úton az i. lépésben legfeljebb (t ■ Imax — ti) Bt + стах. Ebből adódik, 

hogy
('t — 1 )lmax Bt + стах

Rlff(LM, D) <
t ■ cmin

Ahhoz, hogy belássuk a fenti korlátok élességét, módosítanunk kell a 3.5.2. tételben 

használt szótár súlyait úgy, hogy ha стах > l ■ Bt, akkor стах helyett mindig 

/ • Bt-1 írunk, ahol / a megfelelő forrásszó hossza.

□

3.5.5. TÉTEL. [5] Legyen D egy egyenlő kódhosszúságú és nemhosszító szótár.

Ekkor
(t — 1 )lmax — (t — 3)

Rlff{LM, D) <
t

és a fenti korlát éles.

BIZONYÍTÁS. Azt használjuk ki, hogy az egyenlő kódhosszúságú és nemhosszító 

szótárak esetén minden kódszó hossza azonos.

□

63



A következő tételek azt bizonyítják, hogy prefix szótárak esetén a legrosszabb­

eset viselkedés ennél az algoritmusnál is azonos az általános szótárakra vonatko­

zóval.

3.5.6. TÉTEL. [5] Legyen D egy prefix szótár. Ekkor

(t — 1 )lmax — (t — 3) стах
Rlff{LM, D) <

t cmin

és a fenti korlát éles.

BIZONYÍTÁS. Mivel a 3.5.1. tételben megadott korlát érvényes bármilyen szótárra, 

csupán egy olyan prefix szótárat kell konstruálnunk, ami a megadott korlátot eléri.

td гijI ylmax—lyforrásszó wvV w uwи

hj lb d fikódszó 9jc ea

súly стах стах стгпстах стах стах стахстах стах

ahol j = 1,.., Irnax.

Mivel ez a szótár a fentitől csupán néhány ’’extra” élben különbözik, és ellenőriz­

hető, hogy az LFFlm algoritmus ugyanazokat az éleket választja, ezért a 3.5.2. 

tétel bizonyítását szóról szóra megismételhetjük.

□

3.5.7. TÉTEL. [5] Legyen D egy prefix, nemhosszító szótár. Ekkor

(t — 1 )lmax — (t — 3) стах
ha стах < Bt

t стгп

Rlff{LM, D) < T ha Bt < стах < 2Bt

(■t — 1 )lmax Bt + стах
ha 2Bt < стах

t ■ cmin

ahol
(t — 1 )lmax ■ Bt — t(2Bt — стах) + 4Bt — стах

T =
t ■ cmin

és a fenti korlátok élesek.

64



BIZONYÍTÁS. Ha kombináljuk а 3.5.6. és а 3.5.4. tételeket, kapjuk a kívánt ered­

ményt.

□

3.5.8. TÉTEL. [5] Legyen D\ egy prefix, egyenlő kódhosszúságú és D 2 egy prefix, 

egyenlő kódhosszúságú és nemhosszító szótár. Ekkor

(t — 1 )lmax — (t — 3) . 
------------------------------ гElff{LM, Dí) < = 1, 2-re.

t

és a fenti korlát éles.

BIZONYÍTÁS. A 3.5.3., 3.5.4. és 3.5.6. tételekből, valamint abból a tulajdonságból, 

hogy ha a szótár egyenlő kódhosszúságú és nemhosszító akkor minden kódszó 

hossza azonos, következik a tétel állítása.

□
A következőkben suffix szótárakra vonatkozó tételeket bizonyítunk.

3.5.9. TÉTEL. [5] Legyen D egy suffix szótár. Ekkor

2 (Imax — 1) стах ha t > 31 + t cmm
Elff(LM, D) < <

Irnax + 1 стах hat — 2
2 cmm

és a fenti korlátok élesek.

BIZONYÍTÁS. Tudjuk, hogy suffix szótárak esetén az LM algoritmusnál az op­

timális úton található élek száma nem lehet kevesebb mint az ÁM-úton.( Lásd 

Katajainen and Raita [17]). Sajnos elképzelhető, hogy a buffer végén az LEFlm 

algoritmus nem ”lát” egy élt, és annak hátsó szeleteit. Ez azt jelenti, hogy a 

legrosszabb esetben kapunk Imax — 1 plusz élt, amelyek súlya стах is lehet. Az 

is elképzelhető, hogy az LFFlm által az adott bufferből először kiválasztott él 

’’levág” egy élt, a hátsó szeleteivel. Ez a legrosszabb esetben további Imax — 1

65



стах hosszú élt jelenthet. Mindkét eset előfordulhat, ha t > 3, de csak egyik, ha 

t = 2. Tegyük fel, hogy az optimális algoritmus n élt használ az S karaktersorozat 

kódolásához. Ez azt jelenti, hogy az LFFlm legfeljebb n + 2 (Irnax — l)-ot, ha 

t > 3, és n + (Imax — l)-ot, ha t = 2. Definiáljuk p-t a következőképpen:

1 ha t = 2
P =

2 ha t > 3.

Ekkor
n-j-ps(lma37—1) стахRlff(LM,D) < lim

|<S'|—KX) aminn

(1+ J-l— (Imax—1)t-irnax v (3.13)Vlim стах< |S| cmin\S\-*oo 
= (1 +

Most olyan példákat adunk, amelyek elérik a fenti korlátokat. Két esetet külön­

böztetünk meg.

A eset: Tegyük fel, hogy t = 2. Legyen D a következő suffix szótár:

Imax

)p(lmax—1) стах
cmin *t

к к wi lmax—\ ylma ж—1 yjlmax-lvforrásszó U V W V l'Wи V

dk f hbkódszó ej 9a Ck

súly стах стах стах стах стах стгп стгпстах

ahol к = 1,..., Irnax — 2 és j = 1,..., Imax — 1. 

Tekintsük a következő karaktersorozatokat:

vJSi = (u lmax—1Imax—1 t > 1.

fbj és OPT (D, Sí) = (gü)*. Ebből kapjuk,

ига

Ekkor LFFlm (D,Si) = (a 

hogy

lmax—1

\\LFFLU(D,S,n
\\OPT(D,S,)\\

i (Imax + 1) стах

Rlff{LM,D) > lim
i—* oo

lim
i—►OO

(Imax + 1) стах
2 г • mm

2 стгп

В eset: Legyen most t > 3. Legyen D a következő suffix szótár:

66



к Imax— 1 wlmax-\uк ylmax—luforrásszó w и uwи V V и

dk f hbkódszó ej 9a Ck

súly стах стах стах стах сгпгп стгпстахстах

ahol к = 1,Imax — 2 és j = 1,Imax — 1.

Tekinstük a következő karaktersorozatokat:

Si = и (а1гпах-'и ( t—2и)Imax—1 vlmax~lu , ha i > 1.

У a és OPT (D, Sí) = a (/r/í_2/)\^ablmax-\ft-2ablmax—1Ekkor LFFim (A Sí) 

Ebből kapjuk, hogy

\\LFFlm(D,Sí)\\
Rlff(LM,D) > lim ||0jPT(b>Si))|

i (2Imax Ft — 2) стах + стах
lim
i—+ OO i ■ t • cmin -f cmin 

2 (Imax — 1) стах
1 + í стгп

□

3.5.10. TÉTEL. [5] Legyen D egy suffix, nemhosszító szótár. Ekkor

2 (Imax — 1) стах
ha t > 3 és стах < Bt1 + t стгп

Imax + 1 стах
ha t = 2 és стах < Bt

2 стгп
Rlff(LM, D) < <

2 (Imax — 1) Btстах
ha t > 3 és стах > Bt— + t стгпстгп

Imax — 1 Btстах
ha t = 2 és стах > Bt- + 2стгп стгп

és a fenti korlátok élesek.

67



BIZONYÍTÁS. На стах < Bt akkor а 3.5.9. tétel bizonyítása változtatás nélkül 

alkalmazható. На стах > Bt, akkor a legrosszabb esetben az extra élek súlya az 

LFF-úton legfeljebb 2 (Imax — 1) Bt ha t > 3, és (/max — 1) Bt ha t = 2. Ebből 

adódik a tétel állítása.

□

3.5.11. TÉTEL. [5] Legyen D\ egy egyenlő kódhosszúságú, suffix és D2 egy egyenlő 

kódhosszúságú, suffix és nemhosszító szótár. Ekkor

2(lmax—\) ha t > 31 + tRlff{LM, Di) < < > i — 1,2-re.
/maa7+1 /га t = 2.2

BIZONYÍTÁS. А стах = cmin feltételt kihasználva a 3.5.9. és a 3.5.10. tételekből 

kapjuk az állítást.

□

68



A következő táblázat összefoglalja a leghosszabb szelet módszerére vonatkozó 

eredményeket:

D szótár

Rlff(LM, D)Suffix Egy.k. Nemh.Prefix
(t—l)lmax— (t—3) стах

X cmint

(t — l)lmax—(t—3)
XX t

(t-l)lmax jBt+cmax (стах > 2Bt)xx t'cmin

(t—l)lmax—(t—3)
XXX t

(l± )2(lmax—1) ((>3)стахX cmint

2{lmax—\) (í>3)1 +XX t
2(lmax—\) Bt (t > 3 és > 2Bt)стах +X стахx cmin cmint

2(lmax—\) (í>3)1 +X XX t

(t—\)lmax—(t—3) стах
t cmin

(t — \)lmax—(t—2>)
X t

(t-l)lmax Bt-\-cmax (■стах > 2Bt)x t-cmin

(t—\)lmax—(t—3)
X X t

Végezetül mindenképpen érdemes megemlíteni, hogy amint a fenti táblázatból 

jól látható, amennyiben a buffer hossza a végtelenbe tart, eredményeink kon­

vergálnak a megfelelő, LM algoritmusra vonatkozó korlátokhoz. Pontosabban a 

következőt kaptuk a legrosszabb-eset hányadosra:

lim Rlff{LM, D) = Rlm(D).
t—too

Ez az eredmény nyilvánvaló, mivel minél hosszabb a buffer, annál kevesebb 

hatása van az első él kiválasztásának. Másrészt az is nyilvánvaló, hogy az LM 

kiválasztása teljesen véletlenszerű volt. Ugyanígy használhattuk volna a DG vagy 

más on-line algoritmust. Többé kevésbé az is nyilvánvalónak látszik, hogy ha A

69



egy tetszőleges on-line algoritmus és D egy adott szótár, akkor

lim D) = Ra{D)1
t—ЮО

de hogyan kellene ezt bizonyítani?

Másodsorban megfigyelhetjük, hogy a határértéket alulról közelítjük. Ez azt 

jelenti, hogy a legjobb eredményt a legkisebb bufferhosszra kapjuk, azaz ha t = 

2. Ebben az esetben az LM heursztikára vonatkozó korlátnál egy 2-es faktorral 

kapunk jobbat, és minden hosszabb buffer esetén az eredmény romlik a hossz 

függvényében. A kérdés nyilvánvaló: tudunk-e mondani az LFF algoritmusnak 

egy olyan változatát, amely a bufferhossztól független konstans faktorral javítja 

meg az LM-ve vonatkozó eredményt? Javaslatunk a következő:

Használjuk először az LFF algoritmust a buffer kódolásához. Az első választás 

után - az LM helyett - kódoljuk a megmaradó részét a buffernek iteratív módon 

magával az LFF-fel. Ezt az algoritmust iterált leghosszabb szelet (ILFF) eljá­

rásnak nevezzük. Sejtésünk az, hogy ha D egy a korábbi tulajdonságoknak eleget 

tevő szótár, akkor
1

Rilff(LM, D) = -Rlm(D).

További kérdések merülhetnek fel. Egy közülük: Ha azokat az algoritmu­

sokat tekintjük, amelyek korlátozott bufferméretet használnak- ezeket tárkorlátos 

eljárásoknak nevezhetjük - akkor kérdés, létezik-e olyan tárkorlátos algoritmus, 

amely jobb eredményt ad, mind az ILFF-re vonatkozó sejtés?

70



4. fejezet

Ládapakolási algoritmusok 

elemzése

Bevezetés4.1.

Az egyik leggyakrabban vizsgált kombinatorikai probléma az egydimenziós lá­

dapakolási feladat: Adott valós számoknak egy L = x2,..., xn] listája a

[0,1) intevallumból, és végtelen sok egységnyi kapacitású láda. Minden egyes 

Xi számot egyértelműen hozzá kell rendelnünk egy ládához, úgy hogy a ládához 

rendelt elemek összege nem haladhatja meg az 1-et. Célunk a felhasznált ládák 

számának minimalizálása. Jól ismert, hogy egy optimális megoldás megkeresése 

ACP-teljes probléma. Következésképpen nagyon sok olyan publikáció jelent meg, 

amelyek hatékony, polinomiális futási idejű közelítő algoritmusokat kerestek. Az 

algoritmusok egy része on-line tulajdonságú. Ezen eljárások úgy helyezik el az 

éppen soron következő elemet a megfelelő ládába, hogy a később jövő elemekről 

semmilyen információval nem rendelkeznek (nem ismerik sem a méretüket, sem 

a számukat). Az úgyenevezett off-line algoritmusoknak több információra van 

szükségük: Legtöbbjük a teljes listát ismeri, mielőtt ’’pakolni” kezd.

Az algoritmusok hatékonyságának mérésére itt is az előzőekben már bevezetett

71



legrosszabb-eset hányadost fogjuk alkalmazni. Ládapakolási algoritmusok esetén 

a hányados a következőképpen definálható: Jelöljük a H heurisztika által az L 

lista elpakolása során elhasznált ládák számát H(L)-lel, illetve egy megfelelő op­

timális pakolásnál szükséges ládák számát Z*-gal. Ha

jR#(&) :== max

jelöli a maximumát a H(L)/L* hányadosnak tetszőleges olyan listára, amelyre 

L* = к, akkor a H heurisztika _ß# aszimptotikus legrosszabb-eset hányadosa: 

Rh — limsup^^ Rn{k). Egy másik, ezzel ekvivalens definíció adható meg Rjj- 

ra, ha észrevesszük, hogy Rh < Ki, ha létezik két olyan Кi és I\2 konstans,

hogy

H(L) < I<i • L* + K2

minden L listára. Nyilvánvalóan a legkisebb ilyen Кi megegyezik i?#-val.

Időrendi sorrendben az első off-line algoritmust D. S. JOHNSON definiálta 

[16]. A legtöbb publikált algoritmus legalább 0(n log n)-es időbonyolultsággal 

rendelkezik (lásd például a First Fit Decreasing, Best Fit Decreasing heurisztiká­

kat). A lineáris időbonyolultságú algoritmusok mindig ’’üdítő kivételt” képeztek. 

Az első ilyen algoritmus a Group Fit Group, amelyet D. S. JOHNSON definiált[16], 

és 1.5-ös aszimptotikus legrosszabb-eset hányadossal rendelkezett. R.AMANAN és 

társai [19] egy 1.612-es aszimptotikus legrosszabb-eset hányadossal bíró heurisz­

tikát adtak meg. Hosszú ideig a JOHNSON algoritmust nem sikerült felülmúlni, de 

F. DE LA VEGA és G. S. LUEKER bebizonyította híres cikkében [24], hogy min­

den e > 0-ra létezik olyan A algoritmus, hogy A(L) < (1 +e)A* + Ce, és A futási 

ideje 0{n) + De. Fontos, hogy a De és Ce konstansok csak e-től függenek, n-től 

nem. LUEKER és DE LA VEGA nem számította ki pontosan ezeket a konstan­

sokat, de azt sejtették, ’’meglehetősen nagyok” lehetnek, egész pontosan azt is 

tudták, hogy 1/e-tól exponenciálisan függenek. Néhány évvel később C. U. MAR­

TEL [18]-ban észrevette: e — 1/3 esetén a cikkben szereplő De nagyobb mint (479).

72



Ennek van egy fontos következménye: Az elméleti szempontból kiváló algoritmus 

nem használható a gyakorlatban.

A fent idézett cikkben MARTEL egy rendkívül szellemes lineáris idejű algorit­

must publikált. A lista elemeit “kupacokba” gyűjtötte, és az egyes osztályokban 

lévő elemek számától függően intelligens módon kombinálta őket (lásd a következő 

szakaszt). Martel algoritmusa 4/3-os aszimptotikus legroszszabb-eset hányados­

sal rendelkezik. A cikk záradékában Martel megemlítette, hogy lehetséges, hogy 

a technika segítségével az algoritmus megjavítható 0(n) időbonyolultságú, 5/4-es 

aszimptotikus legrosszabb-eset hányadosává. Azt javasolta, hogy a kis elemeket 

ügyesebben kellene kezelni.

Bár a gondolat könnyen megvalósíthatónak tűnt, eddig nem született eredmény. 

A dolgozat következő részében egy lineáris idejű heurisztika kerül bemutatásra, 

amelyet GALAMBOS GÁBORRAL és HANS IvELLERERREL közösen találtunk. 

Az eljárás MARTEL ötletén alapszik és 5/4-es aszimptotikus legrosszabb-eset 

hányadossal rendelkezik. Bebizonyítjuk, hogy az algoritmusra (amelyet H7-tel 

fogunk jelölni) teljesül a H7(L) < |L* -f 5 egyenlőtlenség, bármely L listára.

A dolgozat következő része MARTEL eredményeit tárgyalja. Az utána követ­

kező szakaszban kerül sor a H7 heurisztika ismertetésére és analizálására.

A Martel eredmény4.2.

Mint az előzőekben már említettük, erősen kihasználjuk a [18]-ban található ered­

ményeket. Ezért most röviden ismertetjük MARTEL algoritmusát. Az eljárás az 

adott lista elemeinek egy egyszerű osztályozásán alapszik, amely az alábbi módon 

definált:

Со = {ж;|1 > Xi > 1} , 

Gi = {ж;|§ > Xi > i} ,

G2 = [xi\\ > Xi > i j ,

73



Сз = {zi|| > Xi > ,

С4 = (®i|^ > Xi > 0} .

Legyen сг- = | С7г-1 , г = 0,..., 4. Egy х G (7; elemet Cj-elemnek fogunk nevezni. 

Amint MARTEL említette, ezen osztályozás motivációja, hogy lehetővé tegyük 

az elemeknek azon halmaz alapján történő elhelyezését, amelyhez tartoznak. Az 

algoritmust H4-gyei jelöljük. Az eljárás a következő:

1. Alakítsuk ki a Ci, i = 0,... ,4 halmazokat.

2. Legyen к = |~minLi’C2jj Vágjuk szét C\-et két részhalmazra: C( tartal­

mazza a legkisebb к elemét GVnek, és C\ a maradék elemeket. Hasonló 

módon bontsuk fel а C2 halmazt а és részhalmazokra. Vegyünk ki 

tetszőlegesen egy-egy elemet a C{ és a halmazokból. Ha beleférnek egy 

ládába, akkor nyissunk egy új ládát, és helyezzük el őket benne. Ha nem 

férnek el egy ládába, tegyük a Cf-elemet egy üres ládába.

3. Tegyünk minden egyes Со-elemet és (7j-elemet külön ládába.

4. Tegyük a maradék ^-elemeket ((7f és C^-elemek) párosával külön ládákba.

5. Amíg el nem fogynak a Сз-elemek, tegyük a Сз-elemeket olyan ládákba, 

amelyek egy egyedülálló Cj-elemet tartalmaznak.

6. A maradék Сз-elemeket tegyük hármasával külön ládákba.

7. Pakoljuk el a C^-elemeket a Next-Fit szabály segítségével (a Next-Fit szabály 

leírását többek között [11] tartalmazza).

A fő tétel bizonyításához MARTEL egy fontos lemmát alkalmazott, amelyet most 

általánosabb formában ismertetünk.

4.2.1. LEMMA. (Martel, [18]): Két tetszőleges Ci, Cj diszjunkt elem halmazra 

legyen к = . Legyen H tetszőleges heurisztika, amely kettévágja Ci-t és

74



Cj-t két részhalmazra, úgy hogy C- tartalmazza а к legkisebb elemét Ci-nek, és Cj 

a maradék elemeket. Hasonló művelet történik Cj-re. Ekkor H véletlenszerűen 

kivesz két elemet a Cj és a Cj halmazokból. Ha beleférnek egy ládába, akkor elhe­

lyezi őket abban. Tegyük fel, hogy H rn (< к) elemet párosít össze ilyen módon. 

Ekkor a C{ és Cj elemekből egy optimális pakolásban legfeljebb m + к olyan ládát 

tudunk képezni, amelyek egy-egy elemet tartalmaznak a két halmazból.

BIZONYÍTÁS. Ha m — к, akkor az állítás nyilvánvaló. Tegyük fel, hogy m < k. 

Ekkor vannak olyan x; G Cj és Xj G Cj elemek, hogy Xj + x3 > 1. A legjobb 

lehetséges párosítási technika, hogy összerakunk legfeljebb m elemet Cj-bői Cs­

elemet C/-böl Cj-beli elemekkel, és a Cj maradékbeli elemekkel, legfeljebb 

к — rn elemét Cj-beli elemekkel. Ilyen módon legfeljebb 2m + (k — rn) = m + к

m

párt képezhetünk.

□
Az alábbi ábra a 4.2.1. lemma bizonyításának lényegét mutatja be egy példa 

segítségével.

□Cseleinek
71т Л ЛА ж

|/ 5 ж.жк. □ □C5-elemek

С2 7,сз 8 т=2

к
7. ábra

A következőkben ismertetjük MARTEL tételét, amelyre GALAMBOS GÁBOR 

egy egyszerűbb bizonyítást talált. Most ezt mutatjuk be az eredeti helyett.

75



4.2.2. TÉTEL. (Martel, [18]): Tetszőleges L listára H4 (L) < |L* + 2.

BIZONYÍTÁS. [11] Tegyük fel, hogy állításunk nem igaz. Ekkor létezik egy mini­

mális ellenpélda, azaz egy olyan L lista, amelyre H4(L) > |T + 2 és L számossága 

minimális. Nyilvánvalóan ez a lista nem tartalmazhat CVelemet. Két esetet 

különböztetünk meg:

A eset: Tegyük fel, hogy a 6. lépés létrehoz legalább egy ládát. Ebben az esetben

(C2 + C3) — (cq + Cl)
LŐ > cq + ci +

3

és így

C3 —Rí-m)H4 (L) — Cq + Cl + c?—m I
2 '

< C0 + |ci + -|c2 + |c3 — jr + 2

< r- + \ cc + icj-f + 2

< L* + I ^Co + 2^') “k 2

< |T* + 2

ami ellentmondás.

В eset: Tegyük fel, hogy a 6. lépés nem hoz létre új ládákat. Alkalmazva a 4.2.1. 

lemmát a 2. lépésre kapjuk, hogy

r* . , . c2 - (k + m)L > c0 + ci + -------- —

Mivel m < к — min azt kapjuk, hogy

kI in
>C0 + C1 +-c2--~-

H4{L) = Co + Ci+[^'

< Со + Ci + |c2 — тг T 1

< L* + 1 + 1
< L* -\-\ c\ \

< |T* + 1.

ami ismét ellentmondás.

76



□
Sok olyan lista van, amely bizonyítja, hogy a fenti korlát éles. Például vegyük 

a következő Ln listát n = 2m-re és m £ IN-re. Ln tartalmazzon rn darab (fő­

elemet és rn darab Сз-elemet, amelyek nagysága legyen 3/4 — e illetve 1/4 + e. 

Ekkor H4(Ln) = m + Щ = |m, és L* = m. Ebből következik, hogy —

minden ra-re.

4/3

Az 5/4-es algoritmus4.3.

Megfigyelhetjük, hogy a H4 algoritmus sokszor jobb eredményt ad mint a legrosz- 

szabb esetben (lásd а В eset bizonyítását). MARTEL megemlítette, hogy ha a 

C3 és a C4 elemeket jobban tudnánk kezelni (esetleg a C4 halmaz két részre 

bontásával, amelyek a (/), |J 

máznák), akkor megjavíthatnánk a legrosszabb-eset hányadost.

Annak ellenére, hogy ez az ötlet meglehetősen egyszerűnek tűnt, csaknem 

10 év telt el, és a probléma megoldatlan maradt. A következőkben megadunk 

egy új lineáris futási idejű algoritmust, amely |-es legrosszabb-eset hányadossal 

rendelkezik. A heurisztikát jelöljük. Mielőtt ismertetnénk az eljárást,

osztályozzuk az elemeket az alábbiak szerint:

intervallumba eső elemeket tártálés az

Cq = {Xi\l >Xi> f}, 

Cl = {xí\-5 > Xi > |}, 

c2 = {Xi\\ > Xi > |},

c3 = {xt\\ > xí >!},
C4 = {x,-|| > Xi > I}, 
C5 = {ж;|| > Xi > |}, 
C6 = {xí\\ >x{> |}, 

cv = {xi\l > Xi > 0}.

Legyen с; = |(7г|, i = 0,...,7. Az algoritmus ismertetése során azonban c;

77



mindig azon (7t-elemek számát fogja jelölni, amelyeket még nem rendelt hozzá az 

algoritmus valamely ládához.

A Hr algoritmus:

1. Alakítsuk ki a (7,-, i = 0,..., 7 halmazokat.

2. Tegyük a Co-elemeket külön ládába.

3. Légyénél := [minj £l cs+cs j~|. Vágjuk szét CJ-et két részhalmazra: tar­

talmazza a legkisebb k\ elemét Ci-nek, és C\ a maradék elemeket. Hasonló 

módon bontsuk fel a C^,e, '■= C5 U Cg halmazt a 6 és C$6 részhalmazokra. 

Vegyünk ki tetszőlegesen egy-egy elemet a C[ és a C

2 ’

halmazokból. Ha

beleférnek egy ládába, akkor nyissunk egy új ládát, és helyezzük el őket 

benne. Ha nem férnek el egy ládába, tegyük a C^-elemet egy üres ládába. 

Továbbá rakjuk a C^-elemeket is üres ládákba.

5,6

4. Legyen k2 := [min j

talmazza a legkisebb k2 elemét CVnek, és C\ a maradék elemeket. Hasonló 

módon bontsuk fel а Сз,4 := C3IJ (74 halmazt а (7|i4 és 4 részhalmazokra. 

Vegyünk ki tetszőlegesen egy-egy elemet a C2 és a C|4 halmazokból. Ha 

beleférnek egy ládába, akkor nyissunk egy új ládát, és helyezzük el őket 

benne. Jelöljük C2-m&\ a ^-elemeket és a maradék (7|-elemeket. Legyen 

c5 := mindül, c5} és C5 a legnagyobb c5 eleme (Ts-nek. Helyezzük C2 

elemeit C5 -beli elemekkel párosítva üres ládákba. На (C5 = 0) akkor 

párosítsuk C2 elemeit C^-beli elemekkel, illetve ha (65,6 = 0) tegyük őket 

egyedül üres ládákba.

ci |~j _ Vágjuk szét C2-t két részhalmazra: (7| tar-
2 ’

5. Legyen q min{c4,2c6}. Legyen C\ a C4 halmaz q legnagyobb eleme, 

illetve legyen (7| a C6 halmaz |JJ legnagyobb eleme. Tegyünk két Cs­

elemet és egy Cß-elemet egy üres ládába, amíg c4 < 1 vagy c6 = 0 nem 

teljesül.

78



6. Tegyünk egy C3-elemet és két Сб-elemet egy üres ládába, amíg c3 = 0 vagy 

c6 < 1 nem teljesül.

7. Párosítsunk össze két C3-elemet, amíg c3 < 1 nem teljesül.

8. Legyen k3 := ("min . Vágjuk szét Cs-öt két részhalmazra: C| tar­

talmazza a legkisebb k3 elemét Cs-nek, és a maradék elemeket. Vágjuk 

szét C4-et is két részhalmazra: C| tartalmazza a legkisebb 2&3 elemét C4- 

nek, és C4 a maradék elemeket. Vegyünk ki tetszőlegesen egy elemet a C{ 

és két elemet a C4 halmazokból. Ha beleférnek egy ládába, akkor nyissunk 

egy új ládát, és helyezzük el őket benne. Ha nem férnek el egy ládába, 

tegyük a két C|-elemet egy üres ládába. Továbbá rakjuk a C^-elemeket is 

párosával üres ládákba, amíg c4 < 1 nem teljesül.

9. Helyezzük a megmaradó Cs-elemeket hármasával üres ládákba, amíg C5 < 2 

nem teljesül.

10. Helyezzük a megmaradó Сб-elemeket négyesével üres ládákba, amíg c6 < 3 

nem teljesül.

11. A megmaradó C3, C4, C5, C& elemeket rakjuk optimális módon üres ládákba.

12. A Crelemeket rakjuk el a Next-Fit szabály szerint.

Az algoritmus működést egy példán keresztül is illusztráljuk. Legyen adott az 

alábbi L lista.

0.25, 0.33,0.34,0.36, 0.68, 0.5, 0.53,0.9, 0.21, 0.65,0.65, 0.29, 0.75, 0.82 

0.45,0.36, 0.3, 0.22, 0.4, 0.72, 0.7, 0.36,0.3,0.24,0.3, 0.25, 0.23,0.36
L =

79



Az egyes lépések a L esetén a következők:

1. lépés:

Со = {0.9,0.82}

Сг = {0.68,0.75,0.72,0.7}

C2 = {0.53,0.65,0.65}

C3 = {0.5,0.45,0.4}

C4 = {0.34,0.36,0.36,0.36,0.36}

C5 = {0.33,0.29,0.3,0.3,0.3}

C6 = {0.25,0.21,0.22,0.24,0.25,0.23}

cv = 0

2. lépés:
0.820.9

0.220.21
3. lépés:

0.75 0.720.68 0.7

0.33 0.30.34
4. lépés:

0.650.53 0.65

0.25 0.25
5. lépés: 0.360.36

0.360.36

80



0.23
0.246. lépés:

0.5

0.47. lépés:

0.45

8. lépés: 0

0.3
9. lépés: 0.3

0.29

10., 11., 12., lépés: 0.

A következőkben belátjuk, hogy Ht(L) < |A* + 3 tetszőleges L listára. Ehhez 

az alábbi jelöléseket fogjuk használni:

• Azt mondjuk, hogy а В láda (Аг2... A) típusú, ha pontosan к elemet tar­

talmaz, méghozzá úgy, hogy az első elem a halmazból, a második a Ci2 

halmazból van, stb. (im = in, 1 < m,n < к lehetséges).

• Jelölje í/ibi2,...,ú L egy optimális pakolásában az (A, A,..., A) típusú ládák 

számát.

• Jelölje mis azon CJ-elemek számát, amelyeket a 3. lépésben Cs-elemmel 

pakolt össze а H7 algoritmus. Hasonlóan, mi6, m23, m24, m25, m26 és m445 

jelölje a 3., 4., és 8. lépésben képzett különböző párok, illetve hármasok 

számát.

81



• Azokat az elemeket, amelyeket a 11. lépésben pakol el az algoritmus, 

nevezzük megmaradt elemeknek. Vegyük észre, hogy legfeljebb egy Ch-elem, 

két Cs-elem és a 6. lépés miatt legfeljebb egy Сз-elem és egy Сб-elem vagy 

nulla Сз-elem és legfeljebb három Сб-elem maradhat. Következésképpen 

legfeljebb két láda mindig elegendő a maradék elemek elpakolásához.

Az összes lehetséges kombinációt figyelembe véve, egy optimális pakolásban a 

ládák száma a következőképpen írható fel:

L* 2/l + У\5 + 2/16 + 2/2 + 2/23 + 2/24 + 2/25 + 2/26 + 2/256 + 2/266 +

+2/3 + 2/33 + 2/34 + 2/35 + 2/36 + 2/336 + 2/345 + 2/346 + 2/355 +

+ 2/356 + 2/366 + 2/3666 + 2/4 + 2/44 + 2/45 + 2/46 + 2/445 + 2/446 +

+ 2/455 + 2/456 + 2/466 + 2/4566 + 2/4666 + 2/5 + У 55 + У56 + 2/555 + 

+ 2/556 + 2/566 + 2/5556 + 2/5566 + 2/5666 + 2/6 + 2/66 + 2/666 + 2/6666-

(4.1)

Az egyes osztályokban lévő elemeket a következő módon adhatjuk meg:

(4.2)2/1 + 2/15 + 2/16Cl

(4.3)2/2 + 2/23 + 2/24 + 2/25 + 2/26 + 2/256 + 2/266C2

2/23 + 2/3 + 2i/33 + 2/34 + 2/35 + 2/зб + 2г/ззб + 2/345 + 2/346 + 2/355 + 2/356 +С3

(4.4)+2/366 + 2/3666

2/24 + 2/34 + 2/345 + 2/346 + 2/4 + 2//44 + 2/45 + 2/46 + 2j/445 + ^У446 + 2/455 +с4

(4.5)+ 2/456 + 2/466 + 2/4566 + 2/4666 

2/15 + 2/25 + 2/35 + 2/45 + 2/256 + 2/345 + 2?/355 + 2/356 + 2/445 + 2//455 + 2/456 + 

+ 2/4566 + 2/5 + 22/55 + 2/56 + 31/555 + 2l/556 + 2/566 + 3//5556 + 22/5566 + 2/5666

С5

(4.6)

2/16 + 2/26 + 2/36 + 2/46 + 2/56 + 2/256 + 2l/466 + 2?/266 + 2/336 + 2/346 + 2/356 + 

+ 22/366 + 2/446 + 2/456 + 2/556 + 21/566 + З2/З666 + 31/4666 + 22/4566 + 2/5556 + 

+2i/5566 + З2/5666 + 2/6 + 2//бб + З2/666 + 42/6666

С6

(4.7)

82



Mielőtt hozzákezdenénk a legrosszabb-eset viselkedésre vonatkozó tétel bi­

zonyításhoz, két lemmát kell igazolnunk, amelyeket a későbbiekben alkalmazni

fogunk.

4.3.1. LEMMA. [7] Jelölje c'3 azon C^-elemek számát, amelyeket a 6., 1., illetve 

10. lépésben pakol el a Hj algoritmus, illetve Cg az ugyanilyen Се-elemek számát. 

Ekkor a heurisztikának legfeljebb Cg/2 + Cg/4 ládára van szüksége ezen elemek 

elpakolásához.

BIZONYÍTÁS. Két esetet különböztetünk meg. Ha feltesszük hogy 2c'3 < Cg, akkor 

a 7. lépés üres, és így

„ . cf — 2 có có cf < c' + — —3 = -2 + -Ё.
- 3 4 2 4

Cg 2 Cg
Hz(L) < сз + 4

Ha Cg < 2cg, akkor a 10. lépés üres, és

£e ,4 Lf J < £з ,
2+2 2 ~ 2 ' 4 '

4 - l4JCeад< f <+ 2

amiből adódik az állítás.

□

4.3.2. LEMMA. [7] Tegyük fel, hogy a Hr heurisztika 8. lépése legalább egy olyan 

hármast képez, amelyik nem fér el egy ládában. Ekkor,

c4 - 77124 — 2 (c6 - m\f)
-f 2772.445 + 772 ^5 + 77224 L7/345 + 7/445 < 4

BIZONYÍTÁS. A feltétel szerint 772445 < fc3. Ezért vannak olyan x;, Xj G C4 és x^ G 

Cf elemek, hogy x; + Xj + Xk > 1. Következésképpen, ha x;, Xj G C4 és Xk G C5, 

akkor xi + Xj + Xk > 1. Tekintsük az összes olyan Cf és Cf-elemet, amelyet nem 

pakolt el а H7 algoritmus hármasával. Jelöljük ezeket a halmazokat Cf1-vei illetve 

Cfb-vel. Jelöljük azon Cs-elemek halmazát amelyek ^-elemekkel kerültek párba 

a 4. lépésben Cb2-ve 1, illetve azon C4-elemek halmazát amelyek Сб-elemekkel

83



kerültek párba az 5. lépésben C\6-tál. Az algoritmus definíciója szerint a Cs­

eleinek mérete nem lehet kisebb mint a C| és Cfb halmazokban található elemeké. 

Hasonló állítás igaz a Ch-elemekre. Vegyük észre, hogy ha G C\ U C46 U C3 

és G Cg U Cg2 akkor жг- + жу + Xk > 1. Most belátjuk, hogy az olyan (445) vagy 

(345) típusú ládák száma, amelyeket a C4b U C$b U C\ U Cg U C\6 U Cg2 U C3 halmaz 

elemeiből képezünk legfeljebb k3 — 777445 — 1 lehet. Tegyük fel az ellenkezőjét, 

vagyis hogy T > k3 — 777.445 ilyen típusú ládát tudunk képezni. Feltehetjük, hogy 

az összes C^ U C|6-beli elem szerepel a pakolásban, mert különben egy nagy elem 

helyettesíthető lenne egy hiányzó elemmel a C^U Cf6 halmazból, anélkül hogy 

bármi változna. Jelöljük az ezen ládákban levő elemek méretének összegét éí-sel. 

Mivel a pakolások jók, ezért T > S. Másrészt az elemeket csoportosítani tudjuk 

úgy hármasával, hogy minden egyes hármasban az elemek összege nagyobb mint 

1. így kapunk T hármast. Ebből S > T következik, ami ellentmondás.

Eddig nem vettük figyelembe azokat а C5 és Cj-elemeket, amelyek a 8. lépésben 

hármasával kerültek elpakolásra, illetve C\ vagy ÚVelemekkel rakta őket össze az 

algoritmus a 3. vagy a 4. lépésben. Az ilyen elemek száma Зт445 + т4ъ + 77724. А 

lehető legjobb pakolás az, ha minden ilyen elemet két C^UCg UC^U Cg2 U Сз-beli 

elemmel pakol össze az eljárás, feltéve hogy van elegendő számú ilyen elem. Ily 

módon legfeljebb Зт445 + m15 + m24 további ládát kaphatunk. Mivel definíció

az állítás adódik.ej— TO24— 2(сб— Годе)alapján k:i <

□
Ezek után következhet a fő tétel.

4.3.3. TÉTEL. [7] i/7(L) < |L* + 3 tetszőleges L listára. Továbbá végtelen sok 

olyan Ln lista létezik, amelyre = 5/4.

BIZONYÍTÁS. Először csupán olyan olyan listákat fogunk tekinteni, amelyek nem 

tartalmaznak sem C7 sem C0-elemeket. Legyen L egy ilyen lista. Az egyenlőtlenség 

bizonyításához különböző eseteket fogunk tekinteni. Aszerint fogunk különbséget 

tenni, hogy a 4. és az 5. lépésben elfogynak-e vagy sem а C5 és a Сб-elemek.

84



Jelölje c5 azon Cs-elemek számát, amelyek nem fogynak el az 6. lépés kezdetéig 

(eltekintve a megmaradt elemektől), és c6 az ugyanilyen Ce-elemek számát.

A eset: c5 = 0, c6 = 0 

Könnyen kiszámítható, hogy ebben az esetben

C4 — m-24 C3 — m23 , C4 — rn24C3 - m23
< C1 + C2 + + 2 < ej + C2 4 + 2.í+ 2 2 22

A 4.2.1. lemmát alkalmazva a (72 és a 63,4 halmazokra adódik, hogy

c3 + c4 — “ rrt23 — m24+* > Сг + C2 +
2

és így
H7(L) <L* + ~+ 2<L* + ^-+2< yA* + 2. 

2 4 4

В eset: c5 = 0, c6 > 0

A 4.3.1. lemma segítségével kiszámíthatjuk a H7 által felhasznált ládák számát

C 4 —1П 24
C6 — П7-16 — Ш26 “C4 — m 24C3 - ra23 2

Hj^L) < ej + C2 + + 2
42 2

3 L13 11
< Cl + C2 + -C3 + — C4 + -c6 — -m.i6 — 2

1
— 'ГП 26 + 3. 
4

“™23 - vm24 -н

A (4.2) - (4.7) egyenletek segítségével kapjuk, hogy

/ г\ 5 3 11 5
HjyL) < yi + У\5 +-yi6 + У2 +-У23 +—У24 + У25 + ^У26 +

7 3 5i3 15
+ -2/256 + -2/266 + — 2/3 + 2/33 + -2/34 + — 2/35 + “2/36 + -2/336 +

7 9 1 3 5 3 3
+ “2/345 + “2/346 + “2/355 + ^2/356 + 2/366 + ^2/3666 + — 2/4 + “2/44 +

3 5 3 3 5 7 7
+ “2/45 + g 2/46 + ^ 2/445 + 2/446 + g 2/455 + g 2/456 + “2/466 + g 2/4566 +

9 1 1 1 1 ,1 3 1
+ “2/4666 + —2/56 + ^ 2/556 + 2?/566 + “2/5556 + “2/5566 + “2/5666 + ^2/6 +

~ПТ'26 + 3.
4

33 i 1i
+“ 2/66 + “2/666 + 2/6666 — ~ 2-m23 - -m24 -

8

85



Ha elhagyunk illetve növelünk néhány negatív együtthatót, és hozzáadunk néhány 

nemnegatív értéket a jobb oldalhoz, a (4.1) egyenlet segítségével kapjuk, hogy 

1 Г 3
H7(L) < L* + — 2(í/23 + £/266) + 2 1/24 + 2/16 + 2/2 + £/26 + 2/256 + 2/336 + 2/3666 +

+ Г/115 + — (2/346 + 2/466б) — 7^ (2/З45 + 2/4566) — (™-23 + m24 + ^2б) ~ 

~{y35 + 2/356 + 2/45 + 2/445 + 2/456 + У 5 + 2/56 + 2/566 + 2/5666 —

— 2(2/355 + 2/455 4- 2/556 + 2/55 + 2/556б) — 3(2/555 + 2/5556) + 3.

Mivel c5 = 0 és c6 > 0, m26 = c2 — m23 — m24 — (cs — m15) teljesül, és így

1 Г
H7(L) < L* + - 2/15 + 2/16 + 2/23 + 2/256 + 2/266 + 2/ззб + 2/3666 +

1 15
+— (2/24 + 2/345 + 2/346 + 2/4566 + 2/4ббб) + 3 < — L* + 3.

C eset: ős > о, a6 > 0

A 4.3.1. lemma alapján kapjuk H7(L)-re hogy
j^C4 —77124 jСб — rn16 —C4 — m24c3 - m23

H7(L) < Ci + c2 + 2 2 4
C5 - m 15 - m25 + 2+ 3

13 111
< Cl + C2 + -c3 + — C4 + —C5 + — Сб — ^m15 — ^

-~m23 - jjm24 - 7^25 + 3.

1
T^16 -

1

Egyszerűsítve

, 4 5 3 11 4 5 19 3
H7{L) < 2/1 + 2 2/15 + — 2/16 + 2/2 + 2 2/23 + -^2/24 + 0 2/25 + ^ 2/26 + —2/256 + -2/266 +

1 7
+ 2 2/3 + 2/33 + g 2/34 + —2/35 + ^2/36 + — 2/ззб + 7^2/345 + g 2/346 + g 2/355 +

13
+ ^2/356 + 2/366 + ^2/3666 + g 2/4 + ^2/44 + —

25 23 7
+ 7^2/455 + -2/456 + g 2/466 + ^2/4566 + “2/4666 + g 2/5 + g 2/55 + 2/555 +

7 11 5 5
+ Y^2/56 + —2/556 + g 2/566 + “2/5556 + “2/5566 + —£/5666 + ”2/6 + ”2/66 +

3 1 1
+^2/666 + 2/6666 — ß717,15 — ,j

795 2935

1317 53 35
2/45 + 772/46 + 2/445 + 2/446 +8 12

9 1 229

L7 13 i

3 11
-rn25 + 377^16 - 77^-23 - 77m24 ~2 8

86



és így

У 256 + 2(?/23 + 2/266) + “2/24 ß(^15 + 2/2 + 2/25 + 2/2б) +

+ 2/16 + 2/336 + 2/3666 + 2/5556 + g (2/345 + 2/4566) + “(2/355 + 2/5566) + 

+ 2(2/346 + 2/4666) + — (2/445 + 2/356 + 2/566б) + g 2/455 —

4
— (1TI15 + ^1б) — “(”1-23 + ^24 + m 25) + 3.

Mivel m23 + ra24 + m25 = c2, (4.3)-ból adódik, hogy

1 Г7
Я7(Х) < L* +

4 L3

1 Г4
H7(L) < L* + 7 2/15 + 2/16 + 2/2 56 + 2/336 + 2/З666 + 2/5556 +4 L3

5 2
+ g (2/345 + 2/4566) + ^(2/23 + 2/266 + 2/355 + 2/5566) + 

+ 2(2/346 + 2/4666) + 2(2/356 + 2/445 + 2/5666) +

+ g(?/24 + 2/455) — (w-15 + í^lö) +3.

A 4.2.1. lemmát alkalmazva C^-re és C5j6-ra adódik, hogy 2/15 + 2/ie < \c\ + т\ъ + 

m16. Ekkor

I í
H7{L) < +* + — 2/256 + 2/336 + 2/3666 + 2/5556 +

5 2
+ 7(2/15 + 2/345 + 2/4566) + 7(2/23 + 2/266 + 2/355 + 2/5566) +

6 3

+ 2 (s/i + 2/16 + 2/346 + 2/4ббб) +

+ 2 (2/356 + 2/445 + 2/566б) + g(?/24 + 2/455) + 3

V + 3.
4

<

Ebből adódik a tétel állítása erre az esetre is.

D eset: h > 0, c6 = 0

A H7 számára szükséges ládák száma ebben az esetben

87



C3 - т2з С4 — 777 24 — 777 15 — Г/Т-25 - 777445+ íiHj{L) < Ci + с2 +

< ci + с2 + ^(с3 + с4 - m23 - то24) + ^(с5 - mis - m25 - rn445) + 3.

(4.2) - (4.6)—ból könnyen igazolható, hogy

rr/r^ ^ 4 3 3 4
Ht{L) < У1+ — 2/15 + J/16 + 2/2 + —2/23 ^ 2^24 3^25 ^26

4 1 5 1
+ 2 J/256 + J/266 + ~ J/3 + J/33 + J/34 + -J/35 + J/36 + J/336 +

4 7 5 1 Г 1
+ -J/345 + J/346 + - J/355 + - J/356 + - J/366 + - J/3666 + - J/4 + J/44 +

5 1 4 7 5 1 5
+ у J/45 + - J/46 + - J/445 + J/446 + - J/455 + - J/456 + - J/466 + - J/4566 +6 2 3 6 6 2 6
112 1 2 1

+ 2 J/4666 + gJ/5 + —J/55 + 7^ J/56 + J/555 + -J/556 + -J/566 + J/5556 +

2 1 11111 
+ ^ J/5566 + ^ 2/5666 — 3mi5 ~ 2Ш23 ~ 2Ш24 ~ 3Ш25 ~ g 771445 ^

A (4.1) egyenlet segítségével adódik Hj-re, hogy 

1 Г 4
Ht(L) < A* + — 2 (?/23 + J/24) + 2 (J/15 + J/25 + J/256 + J/345 + J/445 ) +

2 2
+ - (j/355 + J/455) — 2 (j/35 + J/356 + J/45 + J/456 + J/4566) -

4
— - (j/55 + J/556 + J/5566) — 2 (j/3 + У36 + J/366 + J/3666 + J/4 + J/46+(4.8)

g
+ J/466 + J/4666) — - (j/5 + J/56 + J/566 + J/5666) “ 4 (l/б + J/66 + 2/666 +

4
+ 2/б66б) —' 2 (m23 + 7П24) — — (777-15 + 777 2 5 + 777445) + 3.

+ 2+2 2 3
I

Ha a 4.2.1. lemmát alkalmazzuk Ci-re és Cs^-ra kapjuk, hogy y45 + j/16 < vj- + 

777i5 + mi6 ami ekvivalens az |j/i — \у\ъ~|j/i6 + §777i5 + f tt7i6 > 0 egyenlőtlenséggel. 

A (4.8) egyenlőtlenség a következőképpen írható fel:

!1
7/7(71) < L* + — 2 (7/23 + J/24) + g (J/25 + J/256 + J/345 + J/445) + 3/15 +

+ - (j/355 + J/455) + g J/l — 2 3/16 — g (J/35 + J/356 + J/45 + J/456 + 2/4566) —

88



4
— - (У55 + У 556 + У5566) — 2 (уз + г/36 + Узбб + У3666 + У4 + У46+ (4-9)

О
+У466 + У466б) — ~ {У5 + У56 + У566 + Убббб) ~ 4 (у6 + Убб + У666 +

2 2 4
+Уб66б) + ßm16 ~~ 3Ш15 ~ 3 (т25 + 772445) — 2 (77223 + 7/224) + 3.

A D esetben nem fogynak el a С5-elemek а 4. lépésben, és így

(4.10)77223 + 77224 + 77225 ~ C2 — 0.

Nyilvánvaló, hogy

(4.11)77216 < C6

Ha van legalább egy olyan hármas a 8. lépésben amely elhelyezhető egy ládában, 

akkor használhatjuk a 4.3.2. lemmát. A megfelelő egyenlőtlenséget |-dal megszo­

rozva, (4.11)-gyel együtt adja, hogy

2
“У445 > 0

1 4 2 I 2 (4.12)-C4 + -772445 + ^77215 + -77224 ~ ~У345 ~

Ezután megszorozzuk (4.10)-et |-dal, és (4.12)-vel együtt beszúrjuk (4.9)-be. Fel­

használva (4.11 )-et, a kívánt egyenlőtlenség adódik. Vegyük észre, hogy az összes 

negatív együtthatójú tagot elhagytuk.

1 Г 5
Ht{L) < L* + - У15 + У445 + — (У24 + У345 + У346 + У446 +

+ У455 + У456б) + ~ (У23 + У256 + У336 + У355 + Уб55б) +

1 1 1
+ “(у 1 + У16 + УАа) + ^(У34 + У456 + У466б) + 3.

Ezután feltehetjük, hogy az összes a 8. lépésben összeillesztett hármas belefér a 

hozzátartozó ládába. Ez azt jelenti, hogy 722445 = k3. Két esetet különböztetünk

akkor ezt átírvameg. Ha 222445 = f - ^ - f + ^

11 2 2 
7:772445 — -C4 + — 72224 + gC6 — 7^T22J6 > 0.
4 (4.13)
3

89



Ezúttal (4.10)-et |-dal szorozzuk és (4.13)-mal együtt hozzáadjuk (4.9)-hez. 

A másik eset a következőképpen formalizálható:

1 1 1
3ГП445 - 2Cs + ^mi5 + ^rn25 > 0.
2

(4.14)

Ekkor (4.10)-et és (4.14)-et adjuk hozzá (4.9)-hez. mi6-ot szintén helyettesítjük, 

(4.11)-nek megfelelően. Felhasználva (4.5)-öt, (4.6)-ot és (4.7)-et ellenőrizhető, 

hogy H7(L) < |T* + 3 teljesül mindkét esetben. Ezzel az utolsó eset bizonyítását 

is befejeztük.

Tételünk tehát igaz minden olyan listára, amely nem tartalmaz Со és C7- 

elemeket. Tegyük fel most, hogy L egy olyan lista, amely tartalmaz C0-elemeket, 

de nem tartalmaz CV-elemeket. Ekkor L bármely pakolásában minden egyes C0- 

elem egyedül van egy ládában. Legyen L0 = L \ Со- Kapjuk, hogy H7 (L0) = 

H7(L) — c0, és Lq = L* — c0. Az előzőek alapján, H7(L0) < |L* + 3. Ezért, 

H7(L) = H7(Lo) + Co < |Tq + 3 + cq < IL* + 3.

így a tétel igaz az olyan listákra is, amelyek Co-elemeket is tartalmaznak. 

Tekintsünk most egy olyan L listát, amely CV-elemeket is tartalmaz. Ekkor két 

lehetőség van:

Ha a H7 nyit új ládákat a 12. lépésben, akkor minden egyes láda - kivéve eset­

leg az utolsót - legalább | részig tele kell hogy legyen. így, L* < | (H7 (L) — 1), 

amiből adódik a kívánt eredmény. Következésképpen feltehetjük, hogy a H7 

algoritmus nem nyit új ládákat a 12. lépésben. Legyen L7 — L\C7. Nyilvánvaló, 

hogy H7 (L7) = H7 (L), és Ly < L*. Mivel az L7 lista nem tartalmaz CV-elemet, 

ezért az egyenlőtlenség teljesül tetszőleges listára is.

Most már csak azt kell belátnunk, hogy van végtelen sok olyan lista, amelyre 

egyenlőség teljesül. Ezt az alábbi egyszerű konstrukcióval tehetjük meg:

Legyen n — 3m és m £ IN. Tekintsük azon Ln listákat, amelyek 2m darab 

CV-elemet és m darab Сб-elemet tartalmaznak, melyek mérete 3/8 + £ illetve

90



Y + = |m, és L* = m. Ebből következik, hogy1/4 — 2e. Ekkor, H7(Ln)
H7(Ln) 5/4 minden ün listára.

□
Lueker és DE LA VÉG A eredményei miatt nyilvánvaló, hogy az eredmény 

megjavítható, és megadható olyan lineáris időbonyolultságú algoritmus, ami 

vagy annál is jobb aszimptotikus legrosszabb-eset hányadossal rendelkezik. Úgy 

véljük, hogy bár az algoritmus lineáris marad (mint a DE LA VEGA, LUEKER 

algoritmus), azonban nagyon bonyolulttá válhat és lehet, hogy az esetek nagy 

száma miatt a bizonyítás hosszúsága ’’exponenciálisan” fog növekedni.

6
5’

91



Irodalomjegyzék

[1] N. ABRAMSON, Information theory and coding, McGraw-Hill, New York, 

(1963).

[2] T. C. Bell, J. G. Cleary, I. H. Witten, Text compression, Prentice 

Hall, Englewood Cliffs NJ, (1990).

[3] Békési J., Galambos G., U. Pferschy, G.J. Woeginger, Greedy 

algorithms for on-line data compression, Operations Research Proceedings 

1994, Selected Papers of the International Conference on Operations Re­

search, Berlin, Eds.: Ulrich Derigs, Achim Bachem, Andreas Drexl, 

(1994).

[4] Békési J., Galambos G., U. Pferschy, G. J. Woeginger, Worst- 

case analysis for on-line data compression, Lecture Notes in Computer Sci­

ence, Combinatorics and Computer Science, 8th Franco-Japanese 

Franco-Chinese Conference on Combinatorics and Computer Science, Brest, 

France, Selected Papers, Eds.: MICHEL DEZA, REINHARDT EULER, IOAN- 

nis Manoussakis (1995).

4th

[5] BÉKÉSI J., Galambos G., T. Raita, The Longest Fragment First algo­

rithm for data compression, Proceedings of the XIII. International Confer­

ence on Mathematical Programming, Mátraháza, közlésre elfogadva, (1996).

92



[6] Békési J., Galambos G., U. Pferschy, G.J. Woeginger, The frac­

tional greedy algorithm for data compression, Computing 56:29-46, (1996).

[7] Békési J., Galambos G., H. Kellerer, A 5/4 Linear Time Bin-Packing 

Algorithm, SIAM Journal on Computing, közlésre benyújtva, (1996).

[8] E. G. COFFMAN Jr., G. S. Lueker, Probabilistic Analysis of Packing 

and Partitioning Algorithms, John Wiley & Sons, New York, (1991).

[9] DEMETROVICS J., J. Denev, R. Pavlov, A számítástudomány matema­

tikai alapjai, Tankönyvkiadó, Budapest, (1984).

[10] R. M. Fano, The transmission of information, Techninal report 65, Re­

search Laboratory of Electronics, MIT, Cambridge,MA, (1949).

[11] GALAMBOS G., Ládapakolási feladatok közelítő algoritmusainak leg- 

rosszabb-eset vizsgálata, Kandidátusi értekezés, (1993).

[12] M. R. Garey, D. S. JOHNSON, Computers and Intractability: A Guide 

to the Theory of NP-completeness, W. H. Freeman & Co., San Francisco, 

(1979).

[13] M. E. Gonzalez-Smith, J. A. Störer, Parallel algorithms for data 

compression, Journal of the ACM, 32:344-373, (1985).

[14] D. A. HUFFMAN, A method for the construction of minimum-redundancy 

codes, Proc. Institute of Electrical and Radio Engineers, 40(9):1098-1101, 

(1952).

[15] F. JELINEK, Probabilistic information theory, McGraw-Hill, New York, 

(1968).

[16] D. S. JOHNSON, Fast algorithms for bin packing, J.Comput. Syst. Sei, 8:272- 

314 (1974).

93



[17] J. IvATAJAINEN, T. Raita, An analysis of the longest matching and the 

greedy heuristic in text encoding, Journal of the ACM 39:281-294, (1992).

[18] C. U. MARTEL, A linear time bin-packing algorithm, Op. Res. Lett, 4:189- 

192 (1985).

[19] P. Ramanan, D. Brown, C. C. Lee and D. T. Lee, On-line bin packing 

in linear time, J. of Algorithms, 10:305-326 (1989).

[20] J. J. RlSSASSEN,G. G. LangDON, Arithmetic coding, IBM J. Research 

and Development, 23(2):149-162, (1979).

[21] E. J. SCHUEGRAF, H. S. HEAPS, Selection of equifrequent word fragments 

for information retrieval, Inf. Stor. Ret. 9:697-711, (1973).

[22] E. J. SCHUEGRAF, H. S. HEAPS, A comparison of algorithms for data 

base compression by use of fragments as language elements, Inf. Stor. Ret.

10:309-319, (1974).

[23] С. E. SHANNON, A mathematical theory of communication, Bell System 

Technical J., 27:398-403, (1948 ).

[24] W. Fernandez de la Vega, G. S. Lueker, Bin packing can be solved 

within 1 + e in linear time, Combinatorica, 1:349-355 (1981).

[25] J. ZlV, A. LEMPEL, A universal algorithm for sequential data compression, 

IEEE Trans, on Information Theory, IT-23(3):337-343, (1977).

94



Summary

This dissertation deals with two different topics of combinatorial optimization. 

The first one is data compression, the second one is bin packing. In this thesis 

we are concerned with a worst-case analysis of some on-line or off-line heuristics 

for the above mentioned problems.

Usually optimizing means finding the maximum or minimum of a certain 

function, defined on some domain. Classical theories of optimization deal with 

the case when this domain is infinite. In case of combinatorial optimization typical 

problem instances consist of the maximization or minimization of some objective 

function over a finite feasible set.

Often, when the objective function is too ’’wild”, constraints are too compli­

cated, or the problem size is too large it is impossible to find an optimal solution. 

Mathematicians and computer scientists have developed theories to make intu­

itive assertions about the difficulty of certain problems. This is the theory of 

NP- completeness.

In cases when the optimal solutions are too hard to find, algorithms (so called 

heuristics) can often be designed that produce approximately optimal solutions. 

It is important that these suboptimal solutions have a guaranted quality; e.g., for 

a given maximization problem, the value of the heuristic solution is at least 90% 

of the optimum for every input.

To measure the efficiency of a heuristic, we can use worst-case analysis. Using 

this technique we can derive results, which hold for every individual problem

95



instance. To give the exact value of the behaviour of a heuristic, we can use the 

asymptotic worst-case ratio, i.e. the limes superior of the ratios of the solution 

values given by the heuristic and the optimal algorithm, while the size of the 

problems goes to infinity.

Another important aspect is the on-line solution of combinatorial optimization 

problems. In many practical situations data come in one by one and decision must 

be made before the next piece of data arrives. This kind of heuristics are called 

on-line algorithms. When all data are known before the optimization algorithm 

is called we talk about off-line algorithms.

The second chapter of the dissertation gives a detailed introduction to data 

compression. It presents the basic definitions, the most important theorems and 

compression methods.

Compression means making things smaller by applying pressure. Data com­

pression is not about physically squashing data, but about finding ways to rep­

resent it in fewer bits or bytes. In this thesis we deal only with those case, where 

the original data can be exactly reconstitute from the compressed form. There 

are many other kinds of data reduction, such as voice and picture coding, where 

some degradation of quality may be tolerable if a more compact representation 

is thereby achieved.

In the second chapter we introduce fundamental concepts from information 

theory. We peresent the probabilistic models that are used for data compression. 

The well-known Huffman’s algorithm and the arithmetic coding are among the 

topics of this of this chapter.

A different approach from statistical methods of modeling and coding is dic­

tionary encoding. This kind of coding uses a dictionary to translate the original 

string to a shorter one. The dictionary consists of ordered pairs (source-word, 

code-word), which are used to replace a substring in the original string. In the 

second chapter we describe the very popular Ziv-Lempel algorithm, which uses 

dictionary encoding.

96



In the third chapter we are concerned with a worst-case analysis of some on­

line heuristics for data compression. These algorithms are based on dictionary 

encoding.

In this dissertation we consider only methods which use a static dictionary, 

i.e. a fixed dictionary, that cannot be changed or extended during the encoding­

decoding process. Our aim is to translate (encode) the source string with the 

help of dictionary strings into a code-text with minimal length. The problem 

defined by the above setup is equivalent to the problem of finding a shortest-path 

in a related directed, edge-weighted graph. It is straight forward to see that the 

problem of hnding an optimal compression is equivalent to the computation of a 

shortest-path in a suitable graph.

If the graph has many cut vertices (i.e. vertices which divide the original 

problem into independent subproblems) and in case that these subproblems are 

reasonably small, we can solve the problem efficiently and compute the optimal 

encoding. Unfortunately, in practice this will not be the case and an optimal 

algorithm cannot be applied as dealing with very long strings would take too 

much time and storage capacity. Therefore, many on-line heuristics have been 

developed to derive near optimal solutions.

The third chapter of the thesis deals with the worst-case analysis of four dif­

ferent on-line heuristics. It solves some open problems for well-known heuristics 

(Longest Matching and Differential Greedy) using different type of dictionaries. 

Based on experimental reasults a new heuristic (Fractional Greedy) is defined and 

analysed for those types of dictionaries.

The results show that these algorithms have similar behaviour except some 

special cases. We can conclude that the type of a dictionary plays an important 

role in the behaviour of a heuristic. An algorithm can be optimal for some type 

of dictionaries and very bad for other ones.

Because on-line algorithms have only very restricted information about the 

string to be compressed, we analysed an algorithm (Longest Fragment First),

97



which has not been strictly on-line. This algorithm were analysed experimentally 

before, but theorectical results have not been known since now. In the last section 

of this chapter we prove some results for this heuristic. In this case we use more 

information to compress a string, so the results are obviously better.

The fourth chapter of the dissertation deals with 1-dimensional bin packing 

problem. In this problem we are given a list L = {x\, ж2,..., xn} of real numbers 

from [0,1) and an infinite list of unit capacity bins. Each number X{ has to be 

assigned to a unique bin such that the sum of the elements in each bin does not 

exceed 1. Our aim is to minimize the number of used bins. It is well-known 

that finding an optimal packing is .ЛЛР-hard. Consequently, a lot of papers have 

been published which look for polynomial time algorithms with an acceptable 

behaviour. As we mentioned before algorithms can be on-line and off-line. In 

this dissertation we deal with off-line algorithms. The off-line algorithms know 

the whole list before they apply their strategy to pack the items. For measuring 

the efficiency we use the asymptotic worst-case ratio.

Most of the published algorithms have at least 0(n log n) time-complexity 

(see for example the First Fit Decreasing, Best Fit Decreasing heuristics). Linear 

time complexity algorithms were always ”refreshing exceptions” among the other 

experiments. It is well-known that for every e > 0 there is an algorithm A such 

that A(L) < (1 + e) L* + C£, and A runs in time О (n) + D€. Here A(L) means 

the number of bins used by algorithm A, and L* means the number of bins in 

an optimal packing. It is remarkable that the constants De and Ce depend on e 

only but not on n. Unfortunately these constants may be very large, namely they 

grow exponentially in 1/e. This has a consequence: The theoretically excellent 

algorithm is not usable in practice. The best linear time algorithm, which could 

be used in practice, have had 4/3 asymptotic worst-case ratio until now.

In the last chapter we present a linear time off-line bin packing algorithm, 

which has a 5/4 asymptotic worst-case ratio. The algorithm is based on a clas­

sification of the elements and a pairing technique originally due to MARTEL.

98



Large parts of the dissertation draw upon publications that appeared ear­

lier or are accepted for publication. These papers are joint works with GÁBOR 

Galambos, Hans Kellerer, Ulrich Pferschy, Timo Raita and Ger­

hard WOEGINGER.

99


