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Koszonetnyilvanitas

Nagyon sok embernek tartozom koszonettel azért, hogy ez a dolgozat elkésziil-
hetett. Elscként témavezetomnek, Galambos Gabornak szeretném megkoszonni,
hogy megismertetett a legrosszabb-eset analizis alapelveivel és az ezen a tertileten
hasznalt legfontosabb technikdkkal. Lehetoséget teremtett szamomra hogy kap-
csolatba kertiljek a kombinatorikus optimalizalas tobb jeles nemzetkozi képviselo-
jével, akikkel k6zos kutatéomunkat végezhettiink. Ez meghatarozé volt a dolgozat
anyaganak elkészitésében. Hélas vagyok témavezetomnek a dolgozatommal kap-
csolatos tanacsaiért, esetenkénti kritikajaért, amelynek nagy szerepe volt a végso
forma kialakitasaban.

Koszonettel tartozom tovabbi szerzotarsaimnak, Hans Kellerernek, Ulrich
Pferschynek, Timo Raitanak és Gerhard Woegingernekis. A veliik végzett munka
fontos szerepet jatszott szakmai fejlodésemben. Nagy segitség volt szamomra,
hogy néhany napot tolthettem a Graz-i Miiszaki Egyetemen. Az egyetem kombi-
natorikus optimalizalassal foglalkozo csoportjaban szinvonalas és hatékony mun-
kanak voltam tanuja.

A fentil4togatason tiil az OTKA, az OAD és a FEFA pénziigyi tdmogatasanak
koszonhetoen részt vehettem nemzetkozi konferenciakon is, ahol lehetéségem volt
eloadasokat tartani. [’ng érzem ez is fontos része volt szakmai fejlodésemnek.

Végiil, de nem utolsésorban koszonettel tartozom kollégaimnak, munkatarsa-

imnak, akiknek tamogaté otleteibdl, tanacsaibdl sokat meritettem.



1. fejezet

Bevezetés

A gyakorlati életben gyakran szembe taldljuk magunkat azzal a problémaval,
hogy hogyan oldjunk meg egy feladatot optimalis médon. Ilyen lehet példaul ha
egy szamitégép merevlemezérol minimalis szamu hajlékony lemezre szeretnénk
lemasolni néhany alloméanyt. Maés esetben az elozo hattértarold tartalmat sze-
retnénk ugy tomoriteni, hogy a leheto legkevesebb helyet foglalja el a tomoritett
valtozat. Elofordulhat az is, hogy bizonyos nyersanyaghdl kell levagnunk vala-
mekkora méretii darabokat gy, hogy a veszteségiink a leheto legkisebb legyen.
Altaldban ezen problémak mindegyike valamilyen optimalizalasi feladatra ve-
zetheto vissza. Legaltalanosabban ugy fogalmazhatunk, hogy optimalizadlason
valamilyen tartomanyon értelmezett fiiggvény minimumanak vagy maximumanak
meghatarozasat értjik.

Az optimalizalds klasszikus matematikai elmélete azt feltételezi, hogy ez a
tartomany végtelen. A gyakorlati probléméak esetében azonban altalaban csak
véges szamu lehetoség van, igy ebben az esetben a fent emlitett tartomany véges.
Az ilyen jellegli optimalizalast kombinatorikus optimalizdldsnak nevezzik.

Klasszikus matematikai szempontbdl a kombinatorikus optimalizalds nem tiin-
het tul érdekesnek, mivel ha felsoroljuk az 6sszes esetet, akkor ezek kozil mindig

ki tudjuk valasztani a legjobbat. Azonban nagyméretii problémak esetén olyan



sok lehetdség van, hogy még a leggyorsabb szamitégépek sem képesek elfogadhaté
idon belil ezeket mind megvizsgalni.

Bonyolultsigelméleti szempontbdl azt tekintjiik elfogadhaténak, ha az opti-
mum meghatarozasahoz szikséges 1épésszam a bemeno adatok szaméanak poli-
nomialis figgvénye. Ezen belil is gyakorlati szempontbdl sok esetben csak akkor
megfelel6 az eljaras, ha a polinom fokszama kicsi, példaul lineéris, vagy masod-
foki. Gyakran azonban a célfiiggvény tiul bonyolult, vagy a probléma mérete
tul nagy, ezért nem lehetséges a problémat polinomialis idoben megoldani. A
matematika, illetve a szamitastudomany kilon elméletet dolgozott ki az ilyen
problémékra. Ez az NP-teljesség elmélete [12].

Azokban az esetekben, amikor az optimumot til nehéz megtalalni, sokszor
hasznalnak kozelito algoritmusokat, igynevezett heurisztikakat. Nagyon fontos,
hogy ezek a heurisztikak jok legyenek, azaz az esetek tobbségében minél jobban
megkozelitsék az optimumot. Természetes mddon vetodik fel a kérdés, hogy
miként lehet mérni a kozelito algoritmus josagat. Erre tobb lehetoség van. Alta-
laban harmat szoktak alkalmazni: a tapasztalati becslést, az atlagos—eset analizist
és a legrosszabb—eset elemzést.

Tapasztalati becslés esetén tobb inputon lefuttatjuk az algoritmust, majd a
szamitogép segitségével kiszamitjuk, hogy a kapott eredmények mennyire térnek
el az optimalis megoldastol. Sok esetben azonban az optimumot nehéz megtaldlni,
ezért ezzel a mddszerrel nem mindig lehet meghatarozni, milyen tavol vagyunk
az optimumtdl. fgy a modszer inkabb heurisztikak gyakorlati osszehasonlitasara
alkalmazhato.

Az atlagos—eset analizis elegansabb matematikai médszer. Miutan a be-
meno6 adatokat valamilyen valdszintliségi eloszlas szerint valasztjuk, az optimalis
megoldas és a heurisztika eredménye véletlen valtozok lesznek, amelyekbdl atla-
gos-cset viselkedést lehet szamolni. Az eltérést kulonbozo statisztikai mértékekkel
jellemezzik (pl. atlag, szoras, stb.).

Legrosszabb-eset elemzés esetén olyan viselkedés jellemzést adunk meg, amely



barmilyen bemené adatra teljesiil. Ezzel a mddszerrel tehat az algoritmus szem-
pontjabdl kritikus adatokat vizsgaljuk, és megadjuk, hogy a legrosszabb esetben
mekkora lehet az eltérés az optimalis megoldastél. COFFMAN és LUEKER konyve
[8] részletes elemzést ad a kiillonb6zé technikakrdl.

A dolgozat heurisztikus algoritmusok legrosszabb—eset viselkedését vizsgalja.
Szerkezetét tekintve két {6 részre oszthatd. Az elso részben az adattomorités elmé-
letérol szolo altalanos ismerteto utan killonbozo, szotarkodolason alapulé adatto-
moritési heurisztikak legrosszabb—eset elemzését targyalja. Ezen beliil a dolgozat
valaszt ad néhany ismert heurisztikara vonatkozo eddig nyitott problémara, majd
egy uj heurisztikat mutat be. A dolgozat masodik részében egy 1) ladapakolasi
algoritmus, és annak analizise talalhato. Az értekezés nagy része publikalt, illetve

kozlésre leadott cikkeken alapszik.



2. fejezet

Az adattomorités

2.1. Bevezetés

Tomoritésen altalaban olyan eljarast értiink, amelynek segitségével valamilyen
informaciét kevesebb bit, illetve byte segitségével adhatunk meg. Informacié
tobbféle formaban 1étezhet, beszélhetiink szoveges, kép, illetve hang jellegii in-
formaciérol. Tomoritési szempontbdl a szovegeknél figyelembe kell venni azt,
hogy az eredeti véltozatnak mindig pontosan rekonstrualhaténak kell lenni a
tomoritett formabol. Kép, illetve hang rekonstrualasakor keletkezo aprébb elté-
rések még elfogadhatdak lehetnek. A dolgozatban adattomoritési eljarason olyan
modszert értink, amely biztositja a pontos visszaallithatésagot.

Annak ellenére, hogy napjainkban a szamitégépes tarkapacitasok nagyaranyu
novekedést mutatnak, a tomoritésnek mégis nagy jelentosége van. A {6 ok talan
az, hogy az emberek mindig szivesebben veszik, ha viszonylag alacsony koltséggel
sikertil "megnovelni” a tarolok kapacitasat, mintsem hogy tjabb beruhazasokat
kelljen végezniiik. Fontos szerepe van a tomoritésnek az informacié atvitelénél
1s. A kommunikécios vonalak sebessége napjainkban még nem olyan jo, hogy na-
gyobb mennyiségii informaciét gyorsan lehessen tovabbitani. Ezért lényeges idot

és koltséget lehet megtakaritani, ha egy adott mennyiségli informaciot révidebb



forméaban visziink at. Mindezek jol indokoljak azt a fejlodést, amelyen a tdmoritd

eljarasok az utobbi néhany évtizedben atmentek.

2.2. Alapveto definicidk, megjegyzések

2.2.1. DEFINICIO. Tomoritésen olyan eljdardst értink, amely egy D informdcio
mennyiséget egqy kisebb A (D) informdcio mennyiséggé kodol. Veszteség nélkili
tomorito eljardsnak nevezzik azt az eljardst, amelynél a A (D)-bol az eredeti
D pontosan visszanyerheto. Veszteséges tomorito eljardsnak nevezzik az olyan
eljardst, amelynél az eredeti informdcio csak kozelitoleg nyerheto vissza a tomo-

ritett formabol.

Ebben a dolgozatban csak veszteség nélkiili eljarasokkal foglalkozunk, ezért a
tovabbiakban mindig feltételezzik, hogy célunk a pontos visszaéllithatésag. Al-
talaban ezeket az eljarasokat alkalmazzak adatbazisok, szovegfile-ok, egyéb adat-
allomanyok tomoritésére. A tomorités olyan eljaras, amelynek hatékonysagat
jelentosen befolyasolja a tomoritendo informacio jellege, és természetesen az al-
kalmazott modszer is. Ezzel kapcsolatban mar itt fontosnak tartunk megemliteni

egy kozismert, lényeges allitast.

2.2.2. TETEL. [2] Nem létezik olyan eljirds, amely minden adatot képes tomo-

riteni.

O

A tomoritéssel kapcsolatban a legalapvetobb kérdés, hogy egy adatallomany
mekkora informaciétartalommal rendelkezik. Altalaban ugyanis az altala tényle-
gesen elfoglalt tartertilet nem tikrozi ezt jol. Azt mondhatjuk, hogy az ada-
tok sokszor redundansak, valédi informaciétartalmuknal nagyobb tartertiletet

igényelnek. A tomorités célja ezen redundancidk megsziintetése. A tomorito



eljaras a gyakorlatban legtobbszor gy torténik, hogy kapunk egy karaktersoroza-
tot, és a szimbdlumokat kédokka alakitjuk. Az, hogy egy szimbdlumhoz mi-
lyen kédot rendeliink, fiigg az alkalmazott modelltol. A modell a kdédolandé
szimbdlumsorozatra vonatkozo adatokat, szabalyokat tartalmazza. A modellezés
célja, hogy felismerjiik a karaktersorozat tomorités szempontjabdl 1ényeges tulaj-
donsagait.

Az eddig ismert veszteség nélkiili tomorito eljarasokat két nagy csoportra oszt-
hatjuk. Az egyikbe tartoznak a statisztikai, a masikba pedig a szétarkodolason
alapuld eljarasok. Bar a dolgozatban sajat eredmények csak a masodik témabdl
vannak, mégis a teljesség kedvéért mindkét csoporttal részletesebben foglalko-

zunk.

2.3, Statisztikai tomorito eljarasok

A statisztikai kédold eljarasoknal a modellezés alapja az egyes szimbdlumok
elofordulasi valészintiségének meghatarozasa. A kovetkezo abra a tomorités folya-

matat mutatja:

roa

Valosziniiségek

Model Kédolas OQutpus
karaktersorozat karaktersorozat

Input

1. 4dbra

A statisztikai kédoldsok elméleti alapjait az informaciéelmélet néhany fontos
eredménye adja. (Az informaciéelmélet a matematika egyik aga, mely CLAUDE

SHANNON munkdja nyoman alakult ki az 1940-es években [23]. Késobb nagyon



sok publikacié, konyv jelent meg ebben a témaban [1],[9],[15].) Az elmélet az in-
formacioval kapcsolatos kérdéseket vizsgélja, beleértve az tizenetek tarolasat, és
a kommunikaciot. Egyik legfontosabb alkalmazasi teriletévé a tomorités valt. A
leglényegesebb fogalom az entropia, amely azt méri, hogy egy karaktersorozat
mekkora informaciétartalommal rendelkezik. A fogalom a termodinamikabdl
ered, ott is hasonl6 jelentése van. Minél nagyobb egy tizenet entrépiaja, annal
tobb informaciotartalommal bir. A kovetkezokben attekintjiik az adattomorités

soran hasznalt legfontosabb fogalmakat és fontosabb tételeket.

2.3.1. DEFINICIS. Abécének neveziink eqy A véges, nem tres halmazt. Az dbécé
elemeit karaktereknek, vagy szimbolumoknak nevezzik. z abécé elemszdmdl
|A| jeloli. Karaktersorozaton az dbécé karaktereibdl alkotott sorozatot értink.

Altaldban feltételezzuk, hogy egy karaktersorozat véges.

2.3.2. DEFINICIO. Legyen A = {ay,...,a,},n > 1 egy dbécé. Forrdsnak nevezink
eqy olyan F' eljardst, amely A karaktereit bocsdtja ki. A forrdst elsorendinek ne-
vezzik, ha A karaktereihez figgetlen py,...,pn (pi > 0,1 = 1,...,n) valdsziniségek

rendelhetok, amelyek az egyes karakterek kibocsdtast valosziniségét jelentik.

2.3.3. DEFINICIO. Legyen A = {ay,...,a,},n > 1 tetszbleges dbécé, tovibbd
legyen K = {aq,...,an} véges hosszisdgi bindris sorozatoknak valamilyen n
elemi halmaza. A sorozatok lehetnek kilonbozé hossziuak ts. Beti szerinli ko-
doldsnak nevezzik azt az eljdrast, amely az dbécé minden betijének eqy o; € K
bindris sorozatot feleltet meg. K-t kodnak, az oo, ..., «, elemeket kodszavaknak

nevezzik.

2.3.4. DEFINICIO. Két binaris sorozat, illetve karaktersorozat szorzatan a soroza-
tok eqymdsutdn irdsdval kapott sorozatot értjik. Ennek megfeleden egy sorozatn.

hatvanyan a hagyomanyos hatvanyfogalmat értjik a fenti szorzdssal.

2.3.5. DEFINICI6. A K = {ay,...,an} kddot felbonthatonak nevezzik, ha tetszo-

leges bindris sorozat legfeljebb egyféleképpen bonthato fel kodszavak szorzatdra.
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2.3.6. DEFINICIO. A K = {o, ..., a,} kddot prefiz kodnak nevezzik, ha egyetlen

kodszo sem valodi kezddszelete (prefizuma) egy mdsik kodszonak.

A prefix kédoknak azért van nagy jelentosége, mert ha ilyen kédot hasznalunk,
akkor a tomoritett formabdl torténo dekddolas egyértelmiien végrehajthato. Ezt

mutatja a kovetkezo tétel.

2.3.7. TETEL. [9] Minden prefiz kod felbonthato.

]
Tegyiik fel, hogy adott egy F elsérendii jelforrds, ami az A = {aq,...,a,},n > 1,
abécé betiiit bocsatja ki. Jelolje p; annak a valdszintuségét, hogy az F' altal

kibocsatott jel a;. Ekkor p; > 0, és > p; = 1.
=1

Tegylik fel tovabba, hogy az F' jelforras altal kibocsatott jelek A abécéjet a K =

{ay, ..., a,} kéddal kédoltuk, és jeldlje Uy, ..., [, az oy, ..., a;, kédszavak hosszat.

2.3.8. DEFIN{CIO. Az L(K) :i pil; szamot a K kod F' jelforras mellette kolt-
t=1

segének nevezzik.

2.3.9. DEFINIcIO. A K° felbonthaté kddot az F jelforrdsra nézve optimdlisnak
mondjuk, ha bdrmely K felbonthaté kédnak az F' mellett szamitott L(K) koltsége
nem kisebb L (K°)-ndl.

A célunk, hogy olyan kédrendszert talédljunk, amely az adott valdszintiségeket
figyelembe véve optimalis, azaz a legkisebb koltséggel rendelkezik. (Ezenkiviil
persze szeretnénk biztositani a visszaallithatésagot is.) A kovetkezo tételek azt bi-
zonyitjak, hogy ilyen kédrendszer 1étezik, és az is lathatd, hogy az egyes kodszavak

hosszat hogyan kell megvalasztani, hogy optimalis kodot kapjunk.
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2.3.10. TETEL. [9] Tetszdleges F' jelforrdshoz létezik optimdlis prefiz kod.

O

2.3.11. DEFINICIO. A H(F) =% p; log;} szamot az F' forrds entropiajinak
=1 4

nevezzuk.

2.3.12. TETEL. [9] Egy F forrdshoz tartozo tetszéleges K felbonthato kodra
L(K) > H (F) teljesul.

&=
A statisztikai kodold eljarasok az elobbiekben ismertetett elméleti eredménye-
ken alapulnak. Az eljarasok olyan felbonthaté kédot igyekeznek meghatarozni,
amelynek koltsége optimalis, vagy azt jol kozeliti. A 2.3.10. tétel szerint ilyen
létezik. A 2.3.12. tétel alapjan az egyes szimbdlumokhoz tartozé kodokat ugy kell
megvalasztani, hogy azok hossza a szimbolum valdszintisége reciprokanak loga-
ritmusat minél jobban megkozelitse. Erre tobb eljarast is kifejlesztettek. A legis-
mertebbek a SHANON-FANO [10], a HUFFMAN [14] és az aritmetikai kédolas [20].
Ezek a mddszerek mindig feltételezik, hogy adottak a szimbdlumok elofordulasi
valdszintliségei. A gyakorlatban a valdszinuségek becslése legegyszeriibben az
egyes szimbdlumok relativ gyakorisiganak meghatarozasaval torténhet. Ebben
az esetben ez jelenti a modellezést.
A kovetkezékben a két legismertebb és leggyakrabban hasznalt statisztikai tomo-

rit6 eljarast ismertetjuk.

HUFFMAN kédolas [14]:

A modszer a kovetkezo:

e Hatéarozzuk meg a karakterek elofordulasi gyakorisagat.

12



o Listazzuk az oOsszes szimbdlumot valdsziniségeik szerint novekvo sorrend-

ben.

e Tekintsiik a két legkisebb valdszinuségi szimbdlumot.

e Helyettesitsiik ezeket a szimbdlumokat egy oket tartalmazé halmazzal, amely-

nek valdszintisége a két szimbdlum valészinuségének osszege. Az egyik szim-

bolum kédjahoz egy 0 bitet, a masikéhoz 1-es bitet rendeljink.

e [smételjiik az el6zé harom lépést, amig el nem jutunk egy olyan a listahoz,

amely egy elemet tartalmaz. Késobb a szimbdlumok helyett a keletkezett

halmazokat kell tekintentink.

Tekintstik a kovetkezo példat, a halmazokat faval reprezentralva.

Az input adatok:

A keletkezett HUFFMAN kdd:

szimbdlum

foe

c

b d a

valdszinuség 0.05 0.09 0.12 0.13 0.16 0.45

a:0.45

c:0.12

b:0.13

£:0.05

2. abra

13



Aritmetikai kédoléas [20]:

Ennél a kédolasnal az input szoveget egy 0 és 1 kozotti szammal reprezentaljuk.
A médszer legnagyobb problémaja, hogy amint a széveg hossza novekszik, a
hozza tartozdé szam egyre kisebbé valik, ezaltal egyre tobb bit sziikséges az
abrazolasahoz. Az egymaést kovetd szimbolumok az el6zo intervallumot a va-
l6szintiségeknek megfeleloen osztjak tovabb. A kevésbé valdszint szimbdlumok
jobban csokkentik az intervallumot, ezaltal tobb bitet adva az abrazolashoz, mig
a valészintibb szimbdélumok kevésbé csokkentik az intervallumot.

Az eljaras menete a kovetkezo:

e Legyen a kezdd intervallum a [0, 1).

e Osszuk fel a megfelel6 intervallumot az egyes szimbdlumok valészintiségeinek

aranyaban.

o Vegytk a szoveg kovetkezo szimbdlumat, és tekintsik 1) intervallumként a

hozza tartozé részintervallumot.

o [smételjik az elozd két 1épést, amig a szoveg végére nem ériink. A széveg

reprezentalasara a végso intervallum egy tetszoleges eleme alkalmas.

Tekintstk ismét az elozoekben emlitett példat. Tegytk fel, a kédolandé karak-

tersorozat daac. Az intervallumok az alabbiak szerint alakulnak:

kezdetben [0,1)

d utan [0.45,0.61)

a utan [0.45,0.522)

autén  [0.45,0.4824)

¢ utan [0.469764,0.473652)

14



A kovetkezo abra a kodolasi eljards egy masik reprezentaciojat mutatja:

kezdetben d utdn autdn autin cutin

0.61— ¢ 0.522 — 0.4824 — _/ 0.473652 —
— ] — ]

c

o

A o

a T o aom
a o o o™
a o o6 o=

—] — ]
a \ a a a a
045 — el S = s A= 0.469764 —

3. abra

Az aritmetikai kodolas implementaciojanal altalaban egész aritmetikat szokas
hasznalni. A tulcsorduldsok elkerilése végett a kddolashoz mar nem szukséges
biteket egybol tovabbitani kell az outputra. Az aritmetikai kédolas egy C nyelvi
implementacidja megtalalhaté [2]-ben.

Dolgozatunk tovabbi részében a szoveghelyettesitésen alapulo eljarasokat tar-

gyaljuk.

2.4. Szoveghelyettesitésen alapuld algoritmu-

sok

A széveghelyettesitésen alapulé kédolds, vagy més néven szétarkédolas alapelve,
hogy a szovegben egymads utan kovetkezo karaktercsoportokat egy koddal, vagy
egy szétarra vonatkozd index-szel, esetleg mutatdval helyettesiti. A szétar olyan
szavak, vagy szétoredékek listdja, amelyek varhatéan gyakran fodulnak elo az

adott szovegben. A szétarkodolasok harom {6 csoportba oszthatok:

e statikus,

e szemiadaptiv,
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e adaptiv eljarasok.

A statikus kodolé eljaras a kédolandé szovegtol fuggetlentl mindig ugyanazzal
a szotarral dolgozik. E modell hatranya, hogy amennyiben a rendelkezésre allo
szotar nem illeszkedik a kédolandé szoveghez, akkor rossz eredmény sziilethet. Ha
a szotarba sok szot, vagy szétoredéket felvesziink, akkor til nagy lesz a mérete,
ezaltal a tarolas illetve a keresés nehézkessé valik. A dolgozat kovetkezo fe-
jezetében ezekkel az eljarasokkal részletesen foglakozunk.

A szemiadaptiv eljardsok mar jobban alkalmazkodnak a kédolandé szoveghez,
ugyanis a szotarat ez alapjan allitjak ossze. Egy adott szoveghez az optimalis
szétar meghatarozasa a szoveg hosszat tekintve NP-teljes probléma. Az erre
vonatkozd algoritmus megtalalhaté [2]-ben.

Az adaptiv kédolds otlete egy 1967-es cikkbdl szarmazik. A gondolat lényege,
hogy egy ismétlédd karaktersorozatot egy korabbi, mar kédolt elofordulasara
vonatkozd hivatkozassal helyettesitjiik. A hivatkozas megvaldsitasa altalaban
mutatokkal torténik. Ezt az eljarast részletesen JACOB Z1v és ABRAHAM LEM-
PEL dolgozta ki 1977-ben [25]. Azdta is az egyik legismertebb tomorito eljaras,
amelynek nagyon sok valtozata keletkezett. Lassuk most az eredeti, LZ77-nek

nevezett eljarast részleteiben.

Az LZ77 algoritmus [25]:

Az LZT77 eljarasnal a mutatdk a kddolandé szévegrésznek az 6t megelozo fix
méretii "ablakban” torténd eléfordulasara mutatnak. Egy Ls paraméter jelzi a
maximalis rész hosszat, ami helyettesitheté6 mutatoval. Ez lehetové teszi, hogy
az eljarast egy n karakterbdl allé "ablakban” folytassuk, ami mindig a kédolando
szoveg egy részét tartalmazza. Ebbél n — Lg mar kédolt, a maradék alkotja a
vizsgalandé buffert. A kovetkezd 1épésnél az "ablakban” megkeressiik a leghosz-
szabb szovegrészt, amely megegyezik a mar kdédolt szoveg egy részével. A két
illeszkedd sorozat kozott lehet atfedés is, de nem egyezhetnek meg teljesen. Ezt

azutan egy (7,7,a) harmassal kédoljuk, ahol ¢ az indexe a megtalalt karakter-

16



sorozatnak a bufferben, j a hossza, mig a az els6 olyan karakter, ami mar nem
egyezik meg a lekddolt sorozattal. Ezutan az ”ablakot” jobbra toljuk a szévegen
7 + 1 karakterrel, és az eljarast folytatjuk tovabb. Az a karakter hozzaillesztése
(2,7)-hez biztositja, hogy a mddszer akkor is mikodik, ha nincs illeszkedés.

Kovetkezzék ezutan a modszer formalis leirasa. Eloszor bevezetiink néhany
jelolést.

Legyen n az alkalmazott buffer hossza, A az alap abécé, és S a kdodolando
karaktersorozat. Jelolje Lg a mar emlitett paramétert, és legyen Lo = 1 +
[log (n — Ls)] + [log(Ls)], ahol a logaritmus alapja |A|. Itt Lo a kédok fix
hosszat jelenti, amelyek szintén az A abécébdl képzodnek. Legyen S (1,7) az
S karaktersorozat valodi kezdoszelete, és legyen ¢,1 < ¢ < j adott egész szam.
Legyen tovabba L (1) = max{l: S (i,i+1—-1)=S{G+1,7+01}, és L(p) =max
L (7). Az S (7,7 + L (p)) karaktersorozatot az S (1,7) prefix S-re valé helyettesit-
heto kiterjesztésének nevezzik.

Péld4ul S = 00101011,5 = 3 esetén L(1) = 1,L(2) = 4,L(3) = 0. Igy
S(341,3+4)=0101 az S (1,3) helyettesitheto kiterjesztése S-re p = 2-vel.

Ezek utan az LZ77 algoritmus a kovetkezo:

o Legyen B; = 0" 1S(1,Lg), ahol 0" %sn — Lg darab 0-t jelent, legyen

tovabba ¢ = 1.

e Tekintsik a B;,7 > 1 buffert, és legyen S; = B;(n — Ls + 1,n — Ls + 1;),
ahol S;-nek az l; — 1 hosszi prefixe a B; (1,n — Ls) prefix B; (1,n — 1)-re

valé helyettesitheto kiterjesztése.

e Ha p; az S; meghatdrozasanal hasznalt mutato, akkor az S;-hez tartozo C;
kéd C; = C;1C;3C;3, ahol Ciy a p;—1, Cip az [;—1 szam | A| szamrendszerbeli

eloallitasa, mig Cj3 az S; utolsé szimboluma.

e Moddositsuk a B; buffer tartalmat gy, hogy elhagyjuk az elsé [; karaktert,

majd a bufferbe toltjiikk a kovetkezs [; darabot. Noveljik 7 értékét 1-gyel,

17



és folytassuk az algoritmust a masodik lépéstol.

Példa:

Tekintsiik az aldbbi hdrmas szamrendszerbeli sorozatot. (|A| = 3)
S =001010210210212021021200.

Ls=9,n=18= Lo =1+log; (18 —9) + log;9 = 5.

B; = 000000000/001010210 p; =9, =3 C; = 22|02|1
B, = 000000001{010210210 C, = 21|10|2
B; = 000010102|102102120 Cs = 20|21|2

Z1v és LEMPEL bebizonyitotta [25], hogy az LZTT7 eljarassal legalabb olyan j6

kédolasi eredményt kapunk, mint barmely mas, specialisan a szoveghez illesztett

szotar segitségével, ha a buffer hossza elég nagy. A legnagyobb problémat az

jelenti, hogy ha a buffer hosszat megnoveljik, akkor a keresés lassuva valik,

igy a tomoritési folyamat nem lesz elég hatékony. Ezt a problémat megfelelo

adatstruktiarak hasznalataval kuszobolhetjik ki, ekkor azonban megnovekedhet

a tarigény. Errdl részletesebb informacidk taldlhaték [2]-ben.
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3. fejezet

Statikus szotarkodolo

algoritmusok elemzése

3.1. Bevezetés és definiciok

Ahogy az elézoekben lattuk, egy adott karaktersorozat tomoritésének egy lehet-
séges modja a szdtar segitségével torténd tomorités. A szotar nem mas, mint
(forrdsszo, kédszo) rendezett parok halmaza, ahol a forrasszo és a kddszo egy-egy
véges abécé betiiibol képzett karaktersorozat, és a kddszavakat arra hasznaljuk,
hogy a tomoritendd karatersorozat megfelelo részeit, ti. a forrasszavakat a hozza-
juk tartozé kdédszavakkal helyettesitsiik. A tovabbiakban csak olyan eljarasokat
fogunk tekinteni, amelyek statikus szotdrakat hasznalnak.

A statikus szétarak kifejezetten hasznosak olyan esetekben, amikor egy adat-
bézis rekordjait kell kiilon-kiilon tomoriteni, és ugyanaz a szo6, vagy szotoredék a
rekordokban gyakran eléfordul. Példaul, ha egy konyvtari katalégus bejegyzéseit
szeretnénk tomoriteni, ahol szinte minden rekordban szerepelnek a szerzo, cim,
ISBN, konyv, sth. szavak. Feltéve, hogy statikus szétarat alkalmazunk, az
adatbazis barmely rekordjaval kezdhetjiik a témoritést. A célunk az, hogy az

adott szotar segitségével a tomoriteni kivant karaktersorozatot optimalis médon
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tomoritsuk, azaz ugy, hogy a minimalis hosszusagu kodot kapjuk.

A fenti probléma ekvivalens egy megfeleloen megvalasztott, iranyitott, silyo-
zott grafban torténd legrovidebb ut keresési feladattal (SCHUEGRAF és HEAPS [22]).
Egy adott S = sys;...s, karaktersorozatra definidljuk az N = (V| A) iranyitott
grafot a V = {vg,vy,...,v,} cstcshalmazon. A grafban definicié szerint pon-
tosan akkor van egy (v;,virqs) € A él, ha létezik olyan (forrasszo, kédszo) par,
ahol a forrasszo d olyan karakterbol all, amelyek megegyeznek az eredeti karak-
tersorozatban az 1 +1,...,2 + d pozicidkon allé karakterekkel. Egy ilyen él sulya
a megfelelo kodszo bitjeinek szamaval egyezik meg. Lathato, hogy az N gratban
a legrovidebb Ut vo-t6l v,-ig éppen az S karaktersorozat optimalis tomoritését
adja.

Tekintsiink most egy példat a fentiek illusztralasara. Vegyik az
S = SARGA_BOGRE,_.GORBE_BOGRE!

karaktersorozatot és a kovetkezo szétarat:

forrdsszé |A|A| B | E | G| O R S _
kédsz6 |a|b| ¢ | d | e | f g h i
suly zlxz| = z x x x x x
forrasszé | , | ! | AR | BO | OR | RBE | RGA | SAR | BOGRE
kédsz6 | j | k| I | m | n| o P q r
suly Z|m| & x x x 2 & &
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Ebben az esetben a megfelelé graf

it

vﬂ vl VI v! vl vs V‘ v1 vl V, vlﬂ vII vu Vn VM vli vli Vl‘l vll vl9 Vzl VZI vu vﬂ Vu vlS
$ ArRG6A _ BOGRE, GORBE _ BOGRE.:!

4. abra
Lathato, hogy a legrévidebb 1t vo-bdl ves-be példaul a
VoV3V4V5V6V11V12V13V14V15V18V19V24 V25

ut, feltéve, hogy az egyes élek silya — ahogy a szétar definicidjanal is lathato —
azonos.

A fenti modellt alkalmazva a probléma megoldasa egyszeruvé valik, mivel al-
kalmazhatjuk az irdanyitott, stilyozott grafokra vonatkozd, minimalis hosszusaga
utat kereso, polinomialis idobonyolultsagt algoritmusokat. Amennyiben a grafnak
sok vdgoéle van (azaz olyan él, amely az eredeti problémat fiiggetlen részprob-
lémakra osztja) és a keletkezett részfeladatok kicsik, a problémat az optimdlis
algoritmus hasznalataval megoldhatjuk. Sajnos a gyakorlatban sokszor nem ez
az eset all fenn, és eléfordulhat, hogy az optimalis algoritmus nem megfelelo
sebességli nagyon hosszi karaktersorozatok esetén. Ezért tobb heurisztikus algo-
ritmust fejlesztettek ki, amelyek az optimumhoz kozeli megoldast adnak.

Mar az 1970-es években voltak hatékony heurisztikus algoritmusok (példaul a
longest fragment first heurisztika (LFF),1d. SCHUEGRAF és HEAPS [22]), azon-
ban ezeket nem vizsgaltdk elméleti szempontbdl, csupan tapasztalati eredmények
léteztek.

Sokszor eléfordul, hogy olyan nagy adatdlloméanyt kell tomoriteni, amelyet

egyben nem, vagy csak nehezen lehet vizsgdlni, ugyanakkor szeretnénk az ilyen
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adatokat is viszonylag gyorsan kédolni. Az ilyen esetekben kifejezetten hasznos
lehet az tgynevezett on-line technika. Ennek segitségével nagyon gyors heurisz-
tikakat lehet kifejleszteni. KEgy on-line adattomorito algoritmus mindig a v
csticsbol indul, megvizsgalja az ebbdol kiinduld Osszes élt, és egy bizonyos szabély
alapjan valaszt kozulik egyet. Ezutan az algoritmus a kivéalasztott él masik
végénél talalhato csicstol folytatja tovabb a kédolast. Nincs lehetoség azonban
arra, hogy egy dontést a késobbiek ismeretében az algoritmus megvaltoztasson.

Természetesen az on-line heurisztikak altalaban nem szolgaltatnak optimalis
megoldast. Ha szeretnénk meghatdrozni, mennyire lehet rossz egy heurisztika, a
legkézenfekvobb mddszer, hogy Osszehasonlitjuk az optimum éltal kapott ered-
ménnyel. Az 6sszehasonlitds torténhet atlagos—eset analizissel, vagy pedig legrosz-
szabb—eset vizsgalattal. Dolgozatunkban ez utébbival foglalkozunk részletesebben.

Egy heurisztika legrosszabb—eset viselkedésétaltalaban az ugynevezett aszimp-
totikus legrosszabb—eset hdnyadossal szokas mérni, amelyet a kovetkezoképpen
definidlnak: Legyen D = {(w;,¢;) : ¢ = 1,...,k} egy statikus szétar, ahol w; a
megfeleld forrasszot, ¢; pedig a hozzatartozé kédszot jelenti. Tekintsiink tovabba
egy tetszbleges A adattomorité algoritmust. Legyen A(D,S) illetve OPT (D, S)
S-nek az A illetve az optimalis algoritmus altal kapott tomoritett kodja. Ezen
kédok hosszét jelolje ||A(D, S)| illetve |OPT(D,S)||. Ekkor az A algoritmus

aszimptotikus legrosszabb—eset hdnyadosa

v A, S
R4(D) = lim SUP{HOPT(D,S)H 1S € S(n)}

ahol S(n) az osszes n karakterbdl &llo, a megfelelé abécébol képzett karakter-
sorozatot jelenti.
Az irodalomban négy paramétert hasznalnak az aszimptotikus legrosszabb-

eset vizsgalatok soran:

Bt(S) = S egyes szimbdlumainak hossza bitekben

Imaz(D) = max{|lw|i=1,...,k}
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gran(l)) =" min{llell 2= 1;. .58}

cmaz(D) = max{||¢|i=1,...,k},

ahol |w;| a w; karaktersorozat hosszat jelenti karakterekben, ||¢;|| pedig a ¢; kddszd
hossza bitekben. A kovetkezokben az egyes input karakterek hosszat egyszeriien
Bt-vel jeloljiik, és elhagyjuk a szétarra torténé hivatkozast, azaz példaul Imax-ot
haszndlunk lmaxz(D) helyett. Az lmaxz = 1 eset itt nem érdekes, mert ekkor a
mar korabban vizsgalt betiikédolasrdl van szé, ezért mindig feltételezhetjik, hogy
lmax > 2.

Mint lathatd, a fenti definicioknal feltételeztiink néhany, a gyakorlati életben
megszokott dolgot. Ilyen példaul az, hogy a kéd abécé binaris, vagy hogy a forras
abécé karaktereit binarisan kédoljuk valahany biten. A tételek bizonyitasa soran
ezeket a feltevéseket nem hasznaljuk ki, igy azok altalanosabb definicidk esetén is
igazak. (Példaul ||¢;|| tekinthetd altalanosan a ¢; kédszo stlyanak.) Viszont ezzel
is szerettiink volna utalni arra, hogy a tételek gyakorlati problémakbédl erednek.

Nem meglepo, hogy egy heurisztika legrosszabb—eset viselkedése erésen figg
az adott szotar tulajdonsagaitol. Dolgozatunkban a kovetkezo tipusi szétarakat
fogjuk vizsgalni:

Egy szétart altalinosnak nevezink, ha az input abécé minden szimbdlumat
tartalmazza mint forrasszot (ez biztositja, hogy a heurisztika minden forrasszo-
vegre el fogja érni az adott graf nyel6jét, és ezzel minden esetben befejezodik az
eljards). Ebben a dolgozatban csak altalanos szétarakkal foglalkozunk.

Egy altalanos szotar

1. egyenld kédhosszisdgi, ha minden kédszd hossza azonos, (||c:|| = ||¢jll, 1 <

1,7 < k),

2. nemhosszito, ha egy kédszo6 hossza sohasem haladja meg a megfelel6 forrasszo

hosszat (||| < |wi|Bt, 1 <1 < k),
3. suffiz, ha minden w forrasszé mellett tartalmazza annak minden hatsé
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szeletét (azaz ha w = wyw; - - - w, forrasszé = wywh41 - - - Wy szintén forrasszé

minden 2 < h < g-ra),

4. prefiz ha minden w forrasszé mellett tartalmazza annak minden elso szeletét
(azaz ha w = wyw; - - - w, forrasszé = wyw; - - - wy szintén forrasszé6 minden
1 < h < q—1-ra). Megjegyezzik, hogy ez a prefix tulajdonsag nem egyezik
meg a kdédokra mar korabban definialt prefix tulajdonsaggal. Szétarak

forrasszavaira éppen ellenkezo értelemben hasznaljuk a prefix jelzot.

A kovetkezo részben ratériink a dolgozat lényegi részére és bemutatjuk a legis-
mertebb heurisztikus algoritmusokat, illetve elemezziik ezek legrosszabb—eset vi-

selkedését kilonbozo tipusa szotarakra.

3.2. A leghosszabb illesztés mdédszere (Longest
Matching)

A leghosszabb illesztés(Longest Matching, tovabbiakban LM) mddszere az egyik
legismertebb és legegyszeriibb on-line heurisztika, amely az adott gratban az
éppen aktudlis cstcsbdl kiinduld élek koziil mindig a leghosszabbat vélasztja
ki, és ezzel folytatja a kodolast. Egyenlé hosszisagu élek esetén barmelyiket
valaszthatja az algoritmus.

KATAJAINEN és RAITA [17] elemezte az LM algoritmus legrosszabb—eset visel-
kedését kiilonbozé tipusi szétarakra és éles korlatokat bizonyitott ezen tulaj-
donsdgok minden lehetséges kombindcidjara. A legérdekesebb tételek a kovetke-

zok.
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3.2.1. TETEL. (KKATAJAINEN-RAITA [17]) Tetsziéleges D altalanos szdtdrra

cmax

Royv (D) = (Imaz — 1)

cmin’
O
Ebbol a tételbaol is lathatd, hogy az altalanos esetben az LM heurisztika megle-

hetosen rossz eredményt is szolgaltathat. Kozvetlen kovetkezményként adodik az

alabbi tétel.

3.2.2. TETEL. (KATAJAINEN-RAITA [17]) Legyen D egy egyenlo kédhosszisagt
szotar. Ekkor

Riym (D) = lmazx — 1.

O
Felmertil a kérdés, vajon létezik—e olyan szotartipus, amelyre jobb eredményt

kapunk. Errdl szolnak a kovetkezo tételek.

3.2.3. TETEL. (KATAJAINEN-RAITA [17]) Legyen D egy suffix szotdr. Ekkor

cmax

Rim (D) =

cmin

O

3.2.4. TETEL. (KATAJAINEN-RAITA [17]) Egyenlé kédhosszusagt suffix szotdr-

ra az LM algoritmus dltal kapott kod optimalis barmilyen karaktersorozatra.

|

3.2.5. TETEL. (KATAJAINEN-RAITA [17]) Legyen D egy nemhosszité szotdr és

S eqy karaklersorozat. Ekkor az aszimptotikus legrosszabb—eset hanyadosra igaz
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a kovetkezd:

(Imaz — 1)emaz

- ha cmazr < Bt
cman

—2)Bt
Rrm(D) = Limas )B & ha Bt < cmax < 2Bt
cmin

lmax - Bt

cmin

ha 2Bt < cmax

0

KATAJAINEN és RAITA [17] sejtése az volt, hogy a prefix szétarakra vonatkozo
tomoritési eredmények gyengébbek mint a suffix szétarakra bizonyitottak, ezt
azonban nem sikertult igazolniuk. Mint azt latni fogjuk, sejtésik igaznak bi-
zonyult.

Dolgozatunkban éles legrosszabb eset korlatokat fogunk bizonyitani prefiz
szotarak minden lehetséges kombinaciéjara mas tipusi szotarakkal. Belatjuk,
hogy a leghosszabb illesztés médszere a leheto legrosszabb maédon is viselkedhet
prefix tipust szotarak esetén. Minden prefiz és valamilyen tovabbi P tulajdonsag-
gal bird szdétarra a megfelelo korlatok megegyeznek a P tulajdonsaggal rendelkezo
dltaldnos szdétarra vontakozo korlatokkal; mas szoval a prefix tulajdonsag semmit

sem javit az algoritmus legrosszabb—eset viselkedésén.

3.2.6. TETEL. [4] Legyen D egy prefix szdtar. Ekkor

(Imaz — 1)cmax

Rrm(D) <

cmain
€s a fenti korldt éles.
Bi1zoNYITAS. A fels6 korlat kozvetlenil adédik a 3.2.1. tételbol. Az alsé korlat

helyességét a kovetkezs, az {u, v, w} 3-elemii 4bécé betiiibol képzett prefix szétar

segitségével igazolhatjuk:
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forrasszé u v w uv v’ pw!mar=2y,

3=1slman—2

kodszo a b c d &; f
suly cmaz | cmax | emaz | cmaz cmax cman
Legyen ¢ > 0, és tekintsik az S; = u(vw™®*=2u)' i(lmax + 1) + 1 hosszi

karaktersorozatokat. A hozzatartozé grafot megvizsgalva ellenorizheto, hogy

OPTID, S, = af s LM(D, 8;) = (dé™= %4, Ekkor

. |ILM (D, S;)|| . t(lmaz — 1)emax + emazx
R D) > 1 = 1
Lm (D) 2 e |OPT (D, S;)| b 2] 1 - cman + cmazx

(Imaz — 1)cmax

. )
crman

teljesul L M-re.

5. abra
A 3.2.6. tételben definialt S; illusztracidja lmax = 4 esetén. Az optimalis ut a

vizszintes vonal alatt, mig az LM-1it a vonal felett halad.
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3.2.7. TETEL. [4] Legyen D egy prefix €s nemhosszité szdtar. Ekkor

(Imaz — 1)emax ha emaz < Bt

cmin

(Imaz — 2) Bt 4+ cmax

cmin

Rrm(D) < ha Bt < cmaz < 2Bt

lmaz - Bt

cman

ha 2Bt < cmax
€s a fenti korldat éles.
BizONYITAS. A felsé korlat kovetkezik a 3.2.5. tételbdl.

Az alsé korlatot igazolé példahoz vegyiik a kovetkezo szotarat, az egyes esetekre

kulonbozo sulyokat alkalmazva:

forrasszo u v w ) vw? vw'meT=2y
J=1,...lmaz—2

kodszo a b ¢ d &4 f

suly(cmax < Bt) crmin | cmaz | emax | cmax cmax crman

suly(Bt < cmaz < 2Bt) | crmun | Bt Bt | cmaz cmax cmin

suly(2Bt < cmaz) cmin | Bt Bt 2Bt q cmin

ahol ¢ = min (e¢mmaz, (5 + 1) Bt).

Ebbdl a kivant eredmény egyszerii szamolassal adédik. Példaul a 2Bt < cmax

esetben

. |LM(D,S;)|  ¢-lmax - Bt+ cmin  lmaz - Bt
> = == - !
Rim(D) > n]l—{{.lo |OPT(D,S;)|| e (i + 1)emin crmimn

O
3.2.8. TETEL. [4] Legyen D egy prefix és egyenlo kodhosszusagn szotdar. Ekkor
Rryv(D) < limaz — 1

€s a fenti korldt éles.



B1zONYITAS. A felso korlat kozvetlentil adédik a 3.2.1. tételbdl. Legyen emin =
cmax a 3.2.6. tétel bizonyitasaban, és ekkor az also korlat is adodik.

£
Ellenérizhetd, hogy a fenti korlat igaz prefiz, nemhosszito és egyenld kodhosszu-
sdgu szotarakra is.

A kovetkezo tablazat osszefoglalja a leghosszabb illesztés mddszerére vonatkozo

eredményeket:
D szétar
Prefix | Suffix | Egyenl6 kédhosszisagti | Nemhosszito Ry (D)
Imaz—1)cmax
e - - —- :
cmain
X - X - Imax — 1
Ilmax-Bt
X X cman
X - X X Imax — 1
cmaxr
i X cmin
-~ X X - 1
cmax
X X cman
- X X X 1
_ . o . !lma.a;—l!cmaa:
cman
— - X - lmaz — 1
— - - X maz Bt (emaz > 2Bt)
cmman
— - P X Imaz — 1
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3.3. A kulonbségen alapulé greedy algoritmus

A GONZALEZ—SMITH és STORER [13] altal definialt greedy heurisztika, amelyet
kilonbségen alapuld (differential greedy, tovabbiakban DG') algoritmusnak fo-
gunk nevezni, minden egyes poziciéban a lehetséges (w;, ¢;) szétarelemek koziil
azzal fog kédolni, amelyre a legnagyobb “helyi tomoritést” éri el, azaz amelynél
a |w;| Bt —||¢;|| kiilonbség maximalis. Egyenloség esetén barmelyiket valaszthatja
az algoritmus.

Nyilvanvald, hogy bar a heurisztika lokalisan optimalis, globalisan igen gyenge
eredményt is adhat. Madsrészt elképzelhetd, hogy a greedy heurisztika optimalis
eredményt ad olyan inputra, amelyre a leghosszabb illesztés médszere a leheto
legrosszabb kédolast hozza létre. A dolog forditva is igaz lehet. Intuitiv médon
nyilvanvalénak tiinik, hogy a DG heurisztika az L M heurisztika javitott valtozata.
Azokban az esetekben, amikor a két algoritmus megegyezik, alkalmazhatjuk az
LM heurisztikdra az el6zoekben igazolt korlatokat. A DG heurisztikat KATA-
JAINEN és RAITA vizsgalta néhany szétartipusra, és a kovetkezé eredményeket

kapta:

3.3.1. TETEL. (KATAJAINEN-RAITA [17]) A DG és az LM heurisztikdk meg-
egyezd kodoldsi eredményt adnak, azaz, DG (D,S) = LM(D,S), tetszoleges egyen-

16 kédhossziusagtt D szotarra és S karaktersorozatra.
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3.3.2. TETEL.

Rpa(D) <

(KATAJAINEN-RAITA [17]) Legyen D egy altalanos szdtdar. Ekkor

crman + (Imaz — 1)emaz )

ha (Imaz — 1)?cmaz - Bt < ema
crmin + (Imaz — 1) Bt a (lmaz — 1)*cmaa < crman

€s [—cm“lgtcmmj > lmax — 1

(lmaz — 1)cmax bilinben

cman

(3.1)

‘s a fenti korldtok élesek.

3.3.3. TETEL.

Ekkor

Rpa(D) <

a

(KATAJAINEN-RAITA [17]) Legyen D egy nemhosszité szdtdr.

—1
i, Jonas ha cmax < Bt

crmin

(Imaxz — 2)Bt + cmax

cman

ha Bt < cmazx < 2Bt

Imazx - Bt

> ha 2Bt < cmazx
cman

€s a fenti korlatok élesek.

O
Prefix szétart a fenti szerzok nem vizsgaltak.
3.3.4. TETEL. [3] Legyen D egy prefix szotar. Ekkor
cemin + (Imaz — 1)emaz "

Rpe(D) <

ha (Imaz — 1)*cmaz - Bt < ecmin

emin + (Imaz — 1) Bt

éS lcmaa;B—tcminJ 2 ZmCLfE =

(Imax — 1)ecmax

. kilonben
cman

€s a fenti korlatok élesek.
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BIZONYITAS. A 3.3.2. tétel miatt csupan azt kell igazolnunk, hogy a fenti korlatok
elérhetok prefix szotarakkal. Két esetet killonboztetiink meg:
A eset: Tegyiik fel hogy (Imax —1)%cmaz - Bt < cmin? és lﬂ%ﬂ@j > lmaz —1.

t

A kovetkezé D szétarat alkalmazhatjuk:

forrasszo U v uv?

1=1,...,lmaz—1

kodszo a b &

suly cmin | emax | cman + ) Bt

Legyen 1 > 0, és tekintsik az S; = (uwv'™*®=1)' i . lmax hosszi karaktersoroza-
tokat. Lathaté, hogy OPT(D,S;) = ¢, ... és LM (D, S;) = (ab™==1):. Ekkor

. ||DG(D, S;)]|| . i(emin + (Imaz — 1)cmaz)
> 1 = |
Boo(D) 2 im 2o rD 8l = 5 " i(omin + (imaw — 1) BY)

cmin + (Imaz — 1)emazx
cmin + (Imax — 1) Bt

7

teljesil DG-re. Megjegyezziik, hogy a DG algoritmus a fenti szétarra a feltételtol
fiiggetlentl mindig ezt az eredményt adja, azonban ez a korlat csak a feltétel
teljesiilése esetén lesz nagyobb a B esetben vizsgalt korlatnal.

B eset: Tegyiik fel, hogy (lmaz — 1)?cmaz - Bt > cmin? vagy [(-@iB_fMJ <

Imax — 1. Ebben az esetben a 3.2.6. tétel bizonyitasaban hasznalt szétar adja a

kivant eredményt.

3.3.5. TETEL. [3] Legyen D egy prefix €s nemhosszité szotdar. Ekkor

(Imaz — 1)cmazx

, ha cmax < Bt
cmin

(Imazxz — 2)Bt + cmax

cmin

Rpa(D) < ha Bt < emax < 2Bt

Imaz - Bt

- ha 2Bt < cmax
cman
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€s a fenti korlatok élesek.

B1zoNYITAS. A felsd korldt a 3.3.3. tételbol kovetkezik. Ahhoz, hogy belassuk a
korlat élességét, ugyanazon szétart és sulyokat hasznalhatjuk, mint a 3.2.7. tétel

esetén.

O

Nembhosszitd, suffix szétarakra KATAJAINEN és RAITA a kovetkezo tételben meg-

fogalmazott eredményt latta be.

3.3.6. TETEL. (KATAJAINEN-RAITA [17]) Legyen D egy nemhosszito, suffix szo-

tar. Ekkor

min{lmaz - Bt,2cmax — Bt
Rpa(D) < { . }
cman
E]
A legrosszabb—eset hanyados pontos értéke azonban nyitott probléma volt. A

kovetkezd tétel erre a kérdésre ad valaszt. Lényegében azt mondja ki, hogy a

fenti tételben megadott korlat éles.

3.3.7. TETEL. [3] Pozitiv egész szdmok végtelen sok Bt, lmazx, cmin és cmax
négyesére a cmin < Bt, ecmin < cmaz és cmax < lmax - Bt feltételek teljesilése

esetén létezik olyan nemhosszito, suffix D szdtar, amelyre

min{lmaz - Bt,2cmaz — Bt}

cman

Rpg(D) P

BI1ZONYITAS. Két esetet kiilonboztetiink meg:

A eset: Ha lmax - Bt < 2cmaz — Bt, akkor tekintsiik a kévetkezo szétarat:

forrasszo | u w’ uw wlu wimas—1y
j=1,...lmaz—1 j=1,...,lmaz—2

kédszo a b; c d; e

suly Bt ) Bt 2Bt | (7+1)Bt crmin

33



Legyen i > 1, definialjuk az S; = u(w'™*®~1u)* | 7 - lmaz + 1 hosszi karakter-
sorozatokat. Ekkor kapjuk, hogy DG(D, S;) = (cbimaz—2)'a és OPT(D, S;) = ae.

A legrosszabb—eset hanyadost kiszamitva,

. IIDG(D, S| . t-lmaz - Bt+ Bt lmax - Bt
R D) > 1 — = .
po(D) 2 im 255D 5l = A " Bt 1 - omin cmin
B eset: Ha lmax - Bt > 2cmaz — Bt 4 1, tegyik fel, hogy ¢maz = aBt, ahol
a = 1,...,lmaz. Ebbdl kovetkezik, hogy 2a0 — 1 < lmax. Vegyiik a kovetkezo

szotarat:

forrasszo u? u® uw? w’

1=1,..,a—1 j=1,..,a—1 7=1,..,0—2
kodszo a; b G d;
stly Bt 2Bt (J+1)Bt| jBt
forrasszé w1 w2y, wu w* y

i=1,.,20—3
i#a-1

kodszo e f g; h
suly cmax — Bt | cmin cman cmax

S; = u(w2@=Dy)¢ esetén kapjuk, hogy OPT(D,S;) = bf* és DG(D,S;) =
da—1(cac1€)'ay.

Vannak olyan pontok, ahol a DG éltal valasztott él nem egyértelmi. Amikor DG
u®~1-t valasztja, egy masik lehetséges jeldlt is van, mégpedig u®. A két killonbség,
amelyet a DG kiszdmit (o — 1) Bt — Bt illetve a Bt — 2Bt. Feltételezziik azonban,
hogy a DG u®~'-t vélasztja. Hasonléan az algoritmus uww®*~'-t valasztja u és

w1t w* 'y helyett. Ebben az esetben a legrosszabb-eset hanyadosra kapjuk,
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hogy

i IDG(D, 5]
im
e ||OPT(D, 5}

. 1(2¢maz — Bt) 4+ 2Bt
= lim - -
i—00 1 - cman + 2Bt
2cmazr — Bt

Rpa(D)

IV

cmin

O

A DG heurisztika suffiz szotarakra torténo elemzését illetoen, a szerzok megem-
litik [17], hogy a heurisztika viselkedését ebben az esetben meglehetésen nehéz
analizalni. Az egyetlen ismert fels6 korlat azonos volt az dltalanos szotarakra

vonatkozdval:

3.3.8. TETEL. (KATAJAINEN-RAITA [17]) Legyen D egy suffix szotdr. Ekkor

emin + (Imax — 1)emaz

eman + (Imaz — 1) Bt

ha (Imaz — 1)? cmaz Bt < cmin? és

BoalD) < |(emaz — eman)/Bt] > lmaz — 1
DG <

(Imaz — 1)emaz

kilonben.

cmin

O
Ebben az esetben éles korldt nem volt ismert. GALAMBOS GABORRAL, ULRICH
PFERSCHYVEL és GERHARD WOEGINGERREL kozosen sikeriilt éles korlatokat
bizonyitanunk a DG heurisztika legrosszabb—eset viselkedésére suffix szotarak
esetén. (Vegyiik észre, hogy ha lmaxr = 2, akkor minden szotar prefix tulaj-

donsagu.)



3.3.9. TETEL. [3] Legyen D egy suffix szotar és tegyik fel hogy lmax > 3. Ekkor

— Bt
S ha emaz < 3/2 Bt

cman

Bt)?
Rpa(D) < (2emma + - ) ha 3/2 Bt < cmaz < (Imax — 3/2)Bt (3.2)
8Bt - crman

L ha (Imaz — 3/2)Bt < ecmax,

ahol

I - (Imaz — 1)(2cmaz — (Imaz — 2)Bt)

2cman

A fenti korldtok élesek.

BizONYITAS. Legyen N = (V,A) az S karaktersorozatbdl képzett iranyitott
graf, és legyen D a bevezetésben megadott médon definialva. Legyen v; és v; két
egymasutani vdgdéle N-nek. Ez maga utan vonja, hogy mindketten rajta vannak
mind az optimum, mind a DG altal megadott aton is.

Elészor a fels6 korldtot fogjuk bebizonyitani Rpg(D)-re vonatkozéan. Feltéte-
lezhetjiik, hogy az optimumnak csupan egyetlen maximalis, azaz max hosszu éle
van v;-bol v;-be mimimalis, azaz cman sillyal. Bevezetjiik a kovetkezo jeloléseket.
Feltételezziik, hogy a DG-t a (vi, viy, iy, - . ., Vi, , v;) sorozatbol all. A (vi,,vi,,,)
él hosszat, illetve stlyat t, illetve ¢, jeloli, 1 < p < k.

Mivel a szétar prefix tulajdonsagi, a v;, csiicsban a DG algoritmus a (Vi) Uz‘,,H)
és a (vi,,v;) élek koziil fog valasztani. Az utébbi stlya legfeljebb crnaz. Mivel a

DG heurisztika a v;, csiicson atmend utat valaszt, ezért

k
tpbit — oy =& (Z t + 1) Bt — cmax

l=p

teljesiil. Ezt minden p-re osszegezve kapjuk, hogy

k k k k
ZcpSkcmaa}—i—Btth—BtZZtl——kBt. (3.3)
p=1 p=1

p=11=p
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Eloszor a jobb oldal harmadik tagjat fogjuk becsilni.
k

k
Zztl = Zptp. (34)

p=Lll=p p=1

Vezessiik be a T = S5, t; + 1 jelélést. Nyilvanvald, hogy

T <lmaz — 1.
Ellenéritheto, hogy (3.4) a minimumat pontosan akkor éri el, ha t; =T — k és
t,=1, p=2,...,k Ebbdl kapjuk, hogy

kk k .
min 330 = (@ - B+ 3 =74 R E=D

p=1l=p 1=2

Ezt behelyettesitve (3.3)-ba adddik, hogy

k o
Ecp < max {kcma:c—Bt(k+1)_Bt(k+l)(k 2)}
p=1 1<k<lmaz—2 9
L 2
= 5 1§krgr}gl§x—2{2k cmaz — (k* + k)Bt}. (3.5)
A jobboldali kifejezés konkav fiiggvénye k-nak és maximumdt k = 2me=Bt ng]

veszi fel. Ezutan harom esetet kulonboztetiink meg:

1. Ha ecmax < %Bt, a maximum k = I-re adodik.

2. Ha 2Bt < emaz < (Imaz — 2)Bt, a maximum k = 282=Bt_re adédik.

3. Ha (Imaz — 2)Bt < cmaz, a maximum k = Imaz — 2-re adédik.
A megfelelo k értékeket (3.5) jobb oldalaba helyettesitve, és a végso v;-n athalado
csticshoz cmaz nagysagu sulyt rendelve kapjuk a kivant felso korlatot.

A bizonyitds masodik részében azt fogjuk belatni, hogy a fenti korlatok valéban

élesek.

A eset: cmax < %Bt esetén tekintsiik a kovetkezo szotarat.
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forrésszo U w uw w’u wimez=1y w’

F=1ye;lmazx—2 7=1,....lmaz—1
kéd a b C d]' dlmax—l €5
suly cmazx — Bt | cmax | cmaz cmazx crman cmax — Bt

Az S; = u(w'™** =)' 4 lmaz + 1 hosszi karaktersorozatokat tomoritjik. Mivel

OPT(D, S;) = adi,,,._, és DG(D, S;) = (ceimar—2)'a,

. IDGD, S
Rpa(D) > 1
pelP) = 2 oPT (Do)
lim i(2cmazx — Bt) + cmax — Bt 2cmax — Bt
— 1 — .

im0 (cmaz — Bt) + ¢ - crun cmin

B eset: Ha %Bt < emaz < (Imaz — 3)Bt, feltételezziik, hogy Bt paratlan, és

cmin < % tovabba cmaz = (2« + 1)% valamely «, 1 < a < lmaz — 4 egész

szamra. Egy [max betiibol allo abécébol képzett szotarat tekintiink. Az abécé

2cmaz—Bt

bettiit u, v, w, ..., Wimae—2-Vel jeloljik. Legyen k = =22

forrasszo u uv oI plmaz—1-k

7=1,...,lmaz—2—k

kod a b é dy

suly cmax cmazx cmaz 2Bt

forrasszo w; viwy ... wp—qu | VMR wp_u | wj .. we—u
J=1uessk=1 71=1,..,lmaz—1—k 1=1,..,lmaz—1

kéd d]' 6]' Clmaz—k f7

suly (27 +1)8! cmazx cman cmax

és a kédolandé karaktersorozat S; = u(v'™*® =k, . . .wi_iu)'. Ellenérizhetd, hogy
OPT(D,S;) = ae}, .- A DG-utat tekintve lathat6, hogy eloszor az uv élt

valasztja az algoritmus. Ezen él végénél tobb él is talalhato. Ezek kozil egy atlépi
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a v karaktert, a tobbi pedig a v’,: j = 1,...,lmax — 1 — k karaktersorozatokat.

Ezért a DG a v'™*@=1-F gt vélasztja. A karaktersorozat maradék részén (amig

ismét az u karakterher ér) a DG algoritmusnak a w; ... wrp—qu,: j=1,...,k—1

élek, és a w,; karakter kozott kell donteni. Az egyenloséget az algoritmus ugy

oldja fel, hogy minden egyes esetben a w;-t valasztja. Ily médon kapjuk, hogy
DG(D, S;) = (bdody . ..dg—1)'a, amibdl

Rpg(D)

. |IDG(D, Sl
>  lim
— n—e |OPT(D, S|

7 (cma:c + % f;(l,(Qj + l)) + cmazx

= Hm . :

1—00 cmax + 1 - cman

v —Bt)?
g (cmaa: + %%—‘Lgpﬁ—L) + cmax

= lim : .

1—00 cnmaxr + 1 - cman

(2ecmaz + Bt)2

8Bt - cmin

C eset: Végil (lmaz — %)Bt < cmax esetén ismét egy lmax betiubol képzett

szotarak tekintiink, a betiik jele ezuttal is u, wy, ..., Winaz—1-

forrasszé U w; Wilnapy || W 0 | Winaw—q - -2 W%
1=1,..,lmaz—1 j=lmiaz=1..1

kodsszo a b; c d; e

suly crmaz | emaz — jBt | emag cmazx cman

AZ Sz = u(wlmuz_l o e

wyu)' i+ Imaz + 1 hosszi karaktersorozatokra kapjuk, hogy

OPT(D, S;) = ae* és DG(D, S;) = (cWimaz—2Wimaz—3 - .owy)a. igy

Rpa(D) >

L IDG(D, 5]
=% |OPT(D, 51

0 (cmax + Yimer=2(emar — ]Bt)> + crmax

lim = : :
i—00 cmnazr + 1 - cman
. i(lmaz — 1)(2¢cmaz — (Imax — 2) Bt) 4+ cmax
e 2cmaz + 21 - cman
(Imax — 1)(2¢maz — (lmax — 2)Bt)
2cman '
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amibol a bizonyitandé allitas kovetkezik.
O
Végiil foglaljuk 6ssze ismét egy tablazatban a kilonbségen alapulé greedy

algoritmusra vonatkozé eredményeket:

D szotar

Prefix | Suffix | Egyenlé kédhosszusagt | Nemhosszito Rpe (D)
X - = - lasd 3.1 formula
b 4 - X - Imax — 1
s _ X X lmaz — 1
_ X - - lasd 3.2 formula
- B N B |
- N B « min{lmaz-Bt,2cmaz—Bt}
e X X % 1
. - » - lasd 3.1 formula
_ _ X - lmaz — 1
- - ~ % Imaz Bt (crpaz > 2Bt)
_ . X X lmaz — 1
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3.4. A hanyadoson alapul6 greedy algoritmus

Az elézé fejezetekben lathattuk, hogy az LM-heurisztika egyaltalan nem fog-
lalkozik a kdédszavak hosszaval, mig a DG-algoritmus az abszolut kulonbséget
probalja maximalizalni, és ezaltal figyelmen kivil hagyja a rovid, de relative jé
tomoritési aranyt biztosité éleket. Az alabbi eljaras mas szempont alapjan donti
el, melyik élet valasztja.

A hanyadoson alapulo greedy algoritmus (fractional greedy, tovabbiakban FG
[6]) a minden aktudlis pozicioban a legnagyobb hanyadossal rendelkez6 élet va-
lasztja, azaz, ha [ az adott cstcsbdl kiindulé élek indexhalmaza, akkor azt az ¢
indexti élet fogja valasztani az algoritmus, amelyre

19 = arg min ledl .
i€l |w;| Bt

Nyilvanvald, hogy sok esetben ez a heurisztika jobb eredményt fog adni, mint az
LM vagy a DG heurisztika.
1

Ezt illusztralja a kovetkezd példa (legyen a! = a, a'*! = aa’,i € IN, tetszéleges a
J g ) g

karakterre):

Peélda:

Tekintstik a kovetkezo nemhosszité szotarat a cmaz = 4, cman = 1

feltételekkel, és ahogy az ASCII kédolasnal megszokott, legyen Bt =

8.
forrasszo | u v up | vimes—1y
kédszéd 10 | 1101 | 1100 0
suly 2 4 4 1
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Az S; = u(v™==1y)! 8(Imaz - i + 1) bitbdl 4llé6 karaktersorozatokat
tomoritve az LM~- vagy a DG-algoritmusokkal, mindkét esetben a
(1100(1101)mae=2)i1() kédsorozatot kapjuk, amelynek hossza 4(lmaz—
1) + 2 bit. Az FG-heuriszikat alkalmazva ugyanerre az esetre az

10(0)* kédsorozatot kapjuk, ami csupan 7 + 2 bit hosszu.

Béar a példa nagyon specialis szotarral készilt, ez is mutatja a hanyadoson
alapul6 greedy algoritmus esetleges elonyeit.

Ebben a fejezetben felso korlatokat fogunk bizonyitani a hanyadoson alapuld
greedy heurisztika legrosszabb—eset viselkedésére, kiilonbozé tipusi szoétarakat
tekintve, ahogy azt a bevezetoben definialtuk. Belatjuk tovabba, hogy ezek a
korlatok élesek abban az értelemben, hogy vannak olyan szétarak illetve karak-
tersorozatok, amelyek a adott korlatokat elérik. (Suffix szotarakra egy kis eltérés

adddik az aszimptotikus technikdk miatt.)

3.4.1. TETEL. [6] Legyen D egy altalanos szétar. Ekkor

(Imaz — 1)emax

Rra(D) <

cman

€s a fenti korlat éles.

Bi1zONYITAS. Legyent S egy karaktersorozat. A felsé korlat bizonyitasahoz ele-
gend6 S-nek egy olyan s;41, ..., s; részsorozatat tomoritentink, amelynél az F'G
és az O PT-t kozos pontjai a v; és a v; csiucsok. Legyen az F'G-iat vv,...v;, az
OPT-it pedig v;v;...vj. A megfelelo kédsorozatokat cocy...cp-val, illetve cé,c'l...c;—
vel jeloljitk. Az v, és v, legels6 csicsok relativ helyzetétol fiiggben két esetet
kiilonboztetink meg.

A eset: Tegyiik fel, hogy ¢ < p <t < min {¢ + lmaz, 7} . Mivel az F'G; algoritmus

a legkisebb hanyadossal biré élet valasztja v;-bol indulva, teljesiil a

(p—i) Bt _ (t—i)Bt

ol =[]
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egyenlotlenség.

Ebbol kévetkezik, hogy

6] = = el

Az élekre vonatkozdan igazak a kovetkezok:

g+r<j—pandr> it

lmaz’
amibol addédik, hogy
. ; — (lmax — 1) (5 — 1
§=j=p=-rzj—p— =t- ) )
Imaz Imax
Mivel
_;15 5 T+ a
Y Yy + ca
minden a,c > 0-ra, ha zc > y > 0, és
t—p 1

-
p—1t  Ilmaxr—1

kapjuk, hogy

lcoll + g emaz

Rra(D)

“cb“ +r cman

||CO|I + (t - p) cemaz + (Imax—1)(j—t)cmax

Imaz

= (% 1 l) ||Co” ok (1=t)cman

Imaz

eman + (t — p) emaz + (tmaz—1)(j—t)cmaz

Imaz

- - CEp
Imax cman + LI]__ML

Imaz—1 Imax

<

Legyen © = t — p,y = j — t, a fenti hdnyadost pedig jelolje f(z,y). Tudjuk,
hogy teljesiilnek az 1 < z < lmaz — 1 és az y > 0 feltételek. Lathatjuk, hogy a
hanyados maximumat az (lmaz — 1, c0) pontban veszi fel. Ebbol adédik a kivant

felso korlat.
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B eset: Tegyiik fel, hogy i < t < p < min{i+ lmaz,j}. Az FG-it éleire
vonatkozdan ismét adodik, hogy

(Imaz — 1) (y —t)'

e j—~i=r%s
Imax

Ekkor

RFG(D) < ”CU” + q cmax

> p 5
”00’ +r cman

(lmaxz—1)(j—t)cmaz
+ - lmax
‘C:)H . (7—t)eman

lmazx

l<oll

IN

cmazx + (lmaa:—llr)n(i;t)cma:c

&
= . y— s )
cma !] t!cmm

lmaz

amibol ismét megkapjuk a megfelelo korlatot.

Ezutédn mar csak azt kell bizonyitanunk, hogy az felso korlatot az F'G—heurisztika

eléri. Tekintsik a kovetkezo szotarat:

forrasszo u w u? uw!mer=2y,
kédszo a b c d
suly cmazx | cmazx | cmax cmin

Az S; = (vPw!me@=2)i ¢ . lmaz hossz karaktersorozatokat tomoritjitk. Az op-
timalis algoritmus az OPT(D, S;) = ad*~'ab'™**=? kédszavakat generdlja, mig az
FG-algoritmus eredménye F'G(D, S;) = (cb'™e==2)iq  amibdl

i |FG(D, S:)|| . i(lmaz — 1)cmax + emaz
> =
Rra(D) 2 hgl—igp |OPT (D, S:)|| Do Imaz - cmaz + (i — 1)eman

(Imaz — 1)cmax

cman

3.4.2. TETEL. [6] Legyen D egyenlé kédhosszusagu szotdar. Ekkor
Rpa(D) < lmaz — 1
€s a fenti korlat éles.
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BI1ZONYITAS. A cmaxz = cmin feltételt hasznalva a fenti alsé korlat példaban

kapjuk a kivant eredményt.
O
Az elézoekben bizonyitott korlatok azt sejtetik, hogy az F'G-algoritmus legrosz-
szabb—eset viselkedése azonos az L M— és a DG-heurisztikakra vonatkozoan akkor

is, ha mas tipusu szotarakat alkalmazunk. Ez valéban igaz nemhosszito szétarakra.

3.4.3. TETEL. [6] Legyen D nemhosszité szotar. Ekkor

(Imaz — 1)cmaz

- ha cmax < Bt
cman

(Imax — 2)Bt + cmax

- ha Bt < cmaz < 2Bt
cmin

Rpa(D) <

Imaz - Bt

, ha 2Bt < crmax
cmin

€s a fenti korlat éles.

BIZONYITAS. A cmaz és a Bt kozotti kapcesolat alapjan harom esetet kiilonboz-
tetink meg:

A eset: cmaz < Bt:

Ekkor minden szétar nemhosszitd, és a 3.4.1. tétel valtoztatas nélkiil alkalmazhato
erre az esetre (beleértve a legrosszabb—eset példat is).

B eset: Bt < cmaz < 2 Bt:

Elészor vegylik észre, hogy lmaz = 2 esetén a korlat megegyezik a 3.4.1. tételben
bizonyitott, adltalanos esetre vonatkozé korlattal. igy a bizonyitas soran feltéte-
lezziik, hogy lmax > 3.

A 3.4.1. tételben alkalmazott modellt részletesebben ki kell dolgoznunk. Ismét
abbdl indulunk ki, hogy a hanyadoson alapulé greedy algoritmus és az optimalis
algoritmus 6sszehasonlitdsdhoz csupan azokat a forrasszavakat kell tekintentink,

amelyeken az F'G-ut és az O PT—at csucsfliggetlen és k6zos végpontjaik vannak.
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7 =

Ezeket az utvonalakat Prg = v,v1,v2,...,vq,0 llletve Popr = v, vy, v}, ... v, -

b
sal jeloljik. Legyen p illetve p’ karakter a v és vy illetve a v] kozott és j karakter
avésav kozott. A (v,v1) és a (v,v]) élekhez tartozé kédszavak legyenek ¢
illetve c;.

Amikor az F'G algoritmus eléri a v csticsot a kddolasi eljaras soran, a kovetkezo

lépésnél a “legjobb hanyadossal biré” kimeno élet fogja valasztani, amibol kévet-

kezik, hogy

leoll _ ol
p-Bt ~ p- Bt’

és 1
gy ”
llcoll = ;HCo“-

Mésrészt mivel Prg-nek és Popr-nak nincsen kozos csucsa, és igy minden egyes

él “elfogyaszt” legalabb egy karaktert, a v és v kozott 1évo élekre igaz, hogy
¢+r+2<j+1—(min{p,p'} —1)

és 1gy
q <j—r—min{p,p'}.

> [J —p'] .
| lmax

Az FG-iton 1évo éleket két részre bontjuk. Tartalmazza ()1 az 6sszes | hossza

Tudjuk, hogy

élet és (), a tobbit. Ezen halmazok szamossagat jelolje ¢; = |Q1]| és ¢o = ¢—q1 =
Q2] gy kapjuk, hogy

llcol| + g1 Bt + q2 crmazx
lleoll + 7 - cman

Rra(D) <

(3.6)

Két esetet kiilonboztetink meg:

B.1. eset: 0 < p < p' < min{y, lmaz}:

Egy felsé korldtot fogunk megadni az F'G—iton lévo élek stlyaira vonatkozéan.
Nemhosszité szétar esetén a legrosszabb—eset akkor all fenn, ha minden karaktert

Bt bittel kédol az algoritmus. Mivel r cstics van az optimalis algoritmus altal

46



definialt uton, amelyeket az F'G-heurisztikanak el kell keriilni, ezért r csicsot
mindenképpen at kell 1épni ()2-beli élekkel. Ha crmaa < 2 Bt a lehetd legrosszabb
eset az, ha q; = r és (Yo minden éle 2 hosszu és cmax stulyid. A fenti korlatokat

alkalmazva r-re és ¢-ra kapjuk, hogy

@Bt + gaemaz < (j —p—2r)Bt 4 r cmax

= (j—pBt+ r(cmax — 2 Bt)

/

< (—pBt+ - (¢cmaz — 2 Bt)
l max
/
= (p'—p)Bt -I- (cmax + (Imaz — 2)Bt).
lmazx

Ezt (3.6)-ba helyettesitve, és a ||c||-re és r-re vonatkozé korlatokat hasznélva

adodik, hogy

llcol| + (p" — p)Bt + ((Imax — 2)Bt + cma:r)lmf;
E el + (f —p/ )

Rra(D) <

Ellenérizheto, hogy az egyenlotlenség jobb oldala j-nek novekvo figgvénye, kivéve
ap = lmazx és p =1 esetet. A j — oo hatarértéket véve kapjuk az ((lmaz —
2)Bt + c¢maz ) /cmin korldtot.
A p' = lmaz és p = 1 esetet kiillon kell kezelniink. Egyszerti szamitassal adodik,
hogy a fenti kifejezés szintén novekvo j-ben lmaxz > 3 esetén, amibol kapjuk
ugyanezt a felso korlatot.
B.2. eset: 0 < p’ < p < min{y, lmaz}:
Ebben az esetben igaz, hogy

@Bt + qggemaz < (j —p' —2r)Bt + r cmazx

/

. (cmax — 2 Bt).
max

< (j-p)Bt+2

A B.1. esethez hasonléan (3.6)-bol kapjuk, hogy

llecoll + (j = p') Bt + (cmazx — 2Bt)i=
||C0” + ] e p )cmmn

Imaz

RFG(D) < lmal
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Legyen @ = j — p/, ekkor a fenti egyenlotlenség jobb oldalat tekinthetjik gy,
mint egy haromvaltozds figgvényt, ahol a valtozékat z, p és p’ jeloli:
llcoll + ((Imaz — 2) Bt 4+ cmax )=
f(‘T?p’p,) S p’ cmin -
Elleoll + frez =

Ilmaz

Nyilvanvald, hogy f monoton figgvény z-ben. Az x szerinti parcialis derivaltja
af . Ilcol] ) ((Imaz — 2)Bt + Cmal")%l — cman

e T . 2
dl' Imaz (%HCO” 4 lc;r;z;z $)

A derivalt pozitiv minden lehetséges z, p és p’ értékre, kivéve a p’ = 1, p = lmax
és 2 cmin > cmax esetet. Ha a derivalt pozitiv, és igy a fliggvény novekvo z-ben,
a kivant korlat adddik, ha vesszik a j — oo hatarértéket.

Kilénben (ha p’ =1, p = lmaxz és 2 cmain > cmaz) egy masik becslést hasznalunk
llcpl|-ra, nevezetesen

cmaz || coll
- 2

lleoll > emin >

Ebben az esetben (3.6)-bol adédik, hogy

Rra(D) < ||c0||—!—(j—l)Bt—}—(cmaw—QBt)li;L
RS = Teoll & (7 — 1)emin
o (7= 1)

Imax

ami ismét novekvo fliggvény j-ben. A j — oo hatarérték adja a kivant korlatot.
Annak a bizonyitasa, hogy a B.2. esetben igazolt korlat a leheto legjobb, ugyana-
zon szotar segitségével torténik, mint amit az altalanos esetben is hasznaltunk,

csupan a sulyokat médositjuk a kovetkezoképpen:

forrasszo | v | w u? ™ =2y,
kédszé a b & g
saly Bt | Bt | cmax cmin

C eset: 2Bt < cmaz:
Mivel az adott fels6 korlat trivialis felso korlat minden nemhosszité szétarra
(lasd [17]) elegendé megmutatni, hogy elérheté ugyanazzal a szétarral, mas si-

lyokat alkalmazva.
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forrasszé | u | w | u? | uw'mer—2y
kédszd a b c d
suly Bt | Bt | 2Bt cmain

a

A kovetkezo tétel azt allitja, hogy a prefiz tulajdonsag nem javit a felso és az also

korlatokon.

3.4.4. TETEL. [6] Legyen D1 egy éltalanos, prefix szdtar, Dy egy prefix és egyenld

kédhosszisaga szotdr €s legyen D3 egy prefix és nemhosszité szotdr. Ekkor

RFG(Dl) < (lmaz—1)cmaz

cman

Rpa(Dy) < lmazx —1

[ -1
i o ha cmaz < Bt

cmin

(Imaxz — 2)Bt 4+ cmax

cman

Rrc(D3) < ha Bt < cmaz < 2Bt

Imazx - Bt
\ cmin

€s a fenti korldtok elérhetiek.

ha 2Bt < cmax

Bi1zoNYITAS. Annak bizonyitdsdhoz, hogy az el6zo tételekben mar igazolt felsé
korldtok prefix szétdrakra is élesek, a kovetkezs, harom szimbdlumos {u,v,w}

abécébol képzett szotarat alkalmazhatjuk:

forrasszo u v w uv vw? vw!meT—2y,
1=1,....,lmax—2

kédszo a b ¢ d €; f

suly cmazx | cmaz | cmaz | cmax cmazx cman
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i > 0-ra vegyiik az S; = u(vw!™*®=2y)" i(Imaz+1)+1 hosszt karaktersorozatokat.
Nyilvanvald, hogy OPT(D, S;) = af' és FG(D, S;) = (dcdm==2)iq. Igy
. || FG(D, S)| . t(lmaz — 1)emaz + cmax
Rpa(D) > 1 = 1
ralD) 2 Rt |OPT (D, S;)|| e 1 - cmin + cmax

(Imaz — 1)cmaz

cman
Egyenlo kédhosszsagu és nemhosszité szotarakra vonatkozo példak hasonlé mo-
don konstrualhatok.
O

Osszefoglalva, az altaldnos, egyenld kédhossziisagi, nemhosszité és prefix il-
letve ezen tulajdonsdgok oOsszes értelmes kombinacigjanak megfeleld jellemzoju
szotarak esetén az L M- és az F'G-heurisztikak legrosszabb—eset viselkedése azo-
nos. A DG-heurisztika egy kicsit kiillonbozik ezektol az altalanos esetben, egyéb-
ként azonos korlatokkal rendelkezik.

A kovetkezokben suffix szétarakra fogunk tételeket bizonyitani. Mindvégig
feltételezni fogjuk, hogy lmax > 3, mivel Imax = 2 esetén minden szoétar egyben
prefix tulajdonsagn is, igy az elozo tételek alkalmazhatok. A kovetkezo tétel azt
mutatja, hogy suffiz szétdrakraa hanyadoson alapulé greedy algoritmus egészen

masképpen viselkedik, mint mas heurisztikak.

3.4.5. TETEL. [6] Legyen D egy suffix szdtdr. Ekkor

emaz(In(lmaz — 1) + 1)

cman

Rpa(D) <

€s létezik olyan Dq suffix szotdar, amelyre

cemaz(In(lmaz — 1) +1 —1n2)

crmin

< RFG(DQ).

BI1ZONYITAS. Ismét olyan karaktersorozatokat tekintiink, amelyre az F'G-ut és
az OPT—at diszjunkt, és kozos kezdd, illetve végpontjaik vannak. Jelolje az
FG-utat tetszdleges két v,,v,41 cstcsa kozott az OPT—atnak z,za, ..., Zkt1.

Feltételezziik, hogy létezik olyan él az F'G—iton, amely z;-et a v,-t megel6zo
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csuccsal koti ossze és egy olyan él, amely zp41-bdl egy v,y qutani csticsba vezet
(Ggynevezett “atlépo élek”), kivéve természetesen a karaktersorozat elejét és
végét.
Az F'G—iton talalhaté (z;, zi41) €l hosszét illetve silyat jeldlje ¢; illetve ¢;. To-
vabba, a zp41 és a v,41 kozotti karakterek szama legyen /3.
A kovetkezokben két egyszeru megfigyelést hasznalunk:
k
Zti <lmaz -5 -1 (3.7)
1=1
c; cmazx
2L
ti s=1 ts + ﬂ
A jeldlés egyszertisitésére legyen T := Y% ¢, + . Ekkor

(3.8)

T <lmazx — 1.
Tekintsik a (3.8) Osszefliggést, és adjuk Ossze minden i-re, 1 < i < k, igy egy
felso korlatot kapunk a silyok 6sszegére:

k k

t.
E ¢ < emax E T_—%lt— < cmazx InT
=1 =1

s=1 Ys

A masodik egyenlotlenség a 3.4.6. lemmabdl kovetkezik.
A kettot osszerakva, és figyelembe véve hogy a zpy1-bol induld, és v,41-t atlépo
él hossza legfeljebb c¢maxz, azt kapjuk, hogy

¥ ¢+ cmaz = In(lmaz — 1)emax 4+ ermax

Rra(D) <

cmin T cmin
A kovetkezo konstrukciéo megadja a Dy szotarat és a kivant alsé korlatot. Te-

kintsiink egy lmaz betubdl allé6 abécét, legyenek a bettik w, v, w1, ..., Winap—2 €s

vegylk a kovetkezo Dy szotarat:

forras— u v w; uv W5+« « Winaa—gl | VWL ;o . Winap—ath
Sz0 7=1,...,lmaz—2 7=1,...,lmaz—2

kodszo a b Gy d e; f

suly cmax | cmax 1_7:%5—7 cmax cmax cman
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Legyen cmaz = (Imax —1)! emin és S; = u(vw; ... Winaz—ou)' a tomoriteni kivant
karaktersorozatok, amelyek hossza n = 1 - lmaa 4+ 1. Lathatd, hogy ha az FG
algoritmus egyenléség esetén a c; élt valasztja, akkor OPT (Do, S;) = af*t és

FG(Do, S;) = (dey . . . Cimaz—2)'a. Ebb8l adédik, hogy

_ | FG(Do, )|l O (cma:c 3 lm‘{“’ 2 1—7%’;‘;‘—1) + emazx
Rpa(D > 1 = j
ro(Do) 2 iy |IOPT (Do, S:)|| s cmax + 1 - emin

1. cmax (1 + lm‘”’ 1 1) + cmax

= lim
i—00 cmazx + L. cman
cmax (1 + = +In{lmaz — 1) — In 2)

2

cmain 7

Az utolsé egyenlotlenségnél felhasznaltuk, hogy

L |
ZEZIn(n-{—l)—an. (3.9)
k=2

Be kell még latnunk a fenti bizonyitasban emlitett lemmat.

3.4.6. LEMMA. [6] Tetszdleges sq,...,8k,b 8; > 1, b > 1 egész szdimokra és S =
Yiiq Si+ b-re
k S—b
s 1
e S M R
i=1s_zj:1‘sj i:l‘S’_—Z—*_1

teljesil.

BIZONYITAS. Az elsé egyenlStlenség bizonyitasahoz megmutatjuk, hogy a baloldal
s; =1-re, 1 =1,...,k, veszi fel a maximumat.

Ha valamelyik s;, példaul s, nagyobb vagy egyenl6 mint 2, akkor helyettesithetjik
két értékkel, mégpedig az s, = S — 1 és az s, = 1 értékekkel.

Ekkor a baloldal valtozasa

Sy bm2 S

S —ynqts; S Yt 85 = Sy C F= p Il TN
Legyen S := S — Z] 1 8;, és 1gy a valtozas

L l>0
g—sm+1 S
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ami ellentmond a feltevésnek, hogy a baloldal névelheté azzal, ha valamely s;-t

1-nél nagyobbra valasztunk.

A lemma masodik egyenlotlensége a harmonikus sorra vonatkozé korlatbél adodik:

S—b 1 S
;S—i—l—l:‘z

= Z - <InS
0O

Ha szeretnénk Osszehasonlitani az F'G heurisztika legrosszabb-eset viselkedé-
sét az LM és a DG algoritmusokéval suffix szétarakra, a 3.2.3.; 3.3.9. és 3.4.5.
tételeket kell megvizsgalnunk.

Lathato, hogy az L M-algoritmus jobb legrosszabb—eset hanyadossal rendel-
kezik mint az F'G-heurisztika, amely a fontosabb esetekben jobb mint a DG-
moédszer. Hogy pontosak legytink, ha emaz < 3/2Bt, akkor Rpg kisebb mint
Rpg. Ha cmaz 3/2Bt és (lmax — 3/2)Bt kozott van, akkor nincs jelentds
killonbség. (vagyis ha emaz = (Imaz — 2)Bt, akkor F'G jobb lmaz > T-re,
ha cmax = 2 Bt, akkor DG jobb minden lmaz > 3-ra.) Az utolsé esetben,
vagyis ha (¢cmaz > (Imax — 3/2)Bt), akkor elemi szamitasokkal ellendrizheto,
hogy az F'G mindig jobb, mint a DG.

A kombinalt, suffix és nemhosszito szotarakra vonatkozéan bonyolultabb ana-

lizis szuikséges.

3.4.7. TETEL. [6] Legyen D egy nemhosszitd, suffix szotdr. Ekkor

min{lmaz - Bt, cmax (ln (M> - 3) — Bt}

cmax

Rpa(D) <

cman

BIZONYITAS. A minimum zaréjelben taldlhaté kifejezés trivialis felsd korlat
barmely nemhosszité szétarra, amely jobb mint a masodik korlat, ha cmaz kozel
van [lmaz - Bt-hez.

A masodik kifejezés bizonyitasdhoz ugyanazt a jelolést hasznaljuk, mint a 3.4.5.
tételben. Tovabba feltételezzik, hogy cmaz = a Bt valamilyen « > 0-ra. Ha az

F @ algoritmus a z; csucsnal egy t; hosszu és ¢; silyu élt valaszt, akkor ennek az
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élnek “jobbnak” kell lenni, mint a kozvetlenul v,y1-be futd suffix él, amelynek
silya cmazx is lehet. Ebbdl kovetkezik, hogy

¢ cmaz

ti N Z]::its_i-ﬂ)

tovabba a nemhosszité tulajdonsag miatt

— < Bt.
b

Jelolje z; a legkisebb indexli olyan csicsot a zi,...,z; kozil, amelyre Bt <
cmaz /(Y t, + B) és legyen T; = YF_.t, + B. Ekkor Bt < a Bt/T; és igy
Tj S (6N

Osszeadva az dsszes stilyra kapjuk, hogy

=1

= cmax (X_: T T‘L+1

i—1 z

k J=1

Zci < (Z%cmax-{—ZtBt)
Ll
«

o)

=5 T; 1
< cemazx|()—1)— e ot +1—-——.
< ((J ) ; T T a)

(Az utolsé egyenldtlenségnél a f > 1 ésa T; < a egyenldtlenségeket alkalmaztuk.)

A szadmtani és a mértani kozépre vonatkozo osszeftiggésekbol adodik, hogy

2 Ty

S I s ooyl s (-9 2 (3.10)
: T; Ty Ty

=1

Az x — z gy <1In(1/y) egyenldtlenséghdl x,y > O-ra kapjuk, hogy

- / 1
Zci < cmaz ((j——Q)_(]'_Q);—z% +2_#>
1=1 1 (07

< cmaz (ln (T> +2—l> (3.11)
o o

< cmaz In (M> + 2cemaz — Bt.
cmax
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Ha hozzaadjuk ehhez az atlépo él sulyat, és elosztjuk crmin-nel, megkapjuk a
kivant korlatot.

O
Annak igazolasara, hogy a fenti korlat csaknem a legjobb, megadunk egy altalanos
alsé korlatot suffix, nemhosszito szotarakra. Pontos korlatot nem sikertilt kon-
strualni a fenti bizonyitasban alkalmazott becslések miatt. Természetesen a

trivialis, lmaz - Bt/cmin érték elérhetd (lasd [17]).

3.4.8. TETEL. [6] Létezik olyan nemhosszitd, suffix Dy szdtdar, amelyre

cmazx (ln (”Z;—Z?) + 1)

Rpa(Dy) > .

cmin

Bi1zONYITAS. Ugyanazt a Dy szétarat tekintjik, amit a 3.4.5. tétel bizonyitasaban
alkalmaztunk. A szotar lmaz betiis abécébol épiil fel, ezek az u, v, wq, ..., Winaws—2
karakterek, de eziittal mas silyokat hasznalunk. Legyen crmaz = (Imax—1)! cman

és cmax = o Bt, a € [N esetén.

forrds—| uw | v w; WO | Wy oo Dhap=3t | DWL » 0 . Winigm—olh
Sz i=1,...,lmaz—2 71=1,...,lmaz—2
koédszé | a | b T d 84 ki
suly Bt | Bt % 2Bt | ~;(lmaz — ) cman
ahol
- l;:g;‘f] 7=1,...,lmazx — «
Y=

Bt j=lmar—a+1,...,Ilmax —2

Legyenek S; = u(vw; .. .wlmw_Qu)é az n = 1 - lmaz + 1 hosszi, tomoritendo
karaktersorozatok. Ahogy a 3.4.5. tételnél, ha az F'G algoritmus egyenloség esetén

a c; élet valasztja, akkor OPT(Dy, S;) = af* és FG(D1,S;) = (dey ... i) 0
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A példabdl kovetkezik, hogy

_ FG(Dy, S;
Rra(Dy) = llglsol:p |||lOP1£(D11 S)illl

i (2Bt + yimge-a omez 4 slmes-2 | Bt) + Bt

. 7=1 lmax—j Jj=lmar—a+1

= lim : .

i—00 Bt +1-cmin

2Bt + cmaz et % + (o —2)Bt
B cmin

Imax

i cmaz In (T) + o Bt
= cman

cmazx (ln (%‘;‘—‘i—f—t) 4+ 1)
o cman

felhasznalva a (3.9) egyenlotlenséget.
a
Az FG mas heurisztikakkal valo osszehasonlitasahoz suffix és nemhosszito
szétarak esetén a 3.2.3., 3.3.6. és a 3.4.8. tételeket hasznalhatjuk. Meglepé médon
ilyen tipusi szétarakra mind az LM, mind a DG algoritmusok egy kicsit jobb

eredményt adnak mint az F'G.
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A hényadoson alapulé greedy algoritmusra vonatkozo osszes eredményt a ko-

vetkezo tablazat foglalja ossze:

D szétar
Prefix | Suffix | Egyenlé kédhossztsagi | Nemhosszito Rra (D)
x 5 . - (lmal:—l')cmax
cmain
X - X - Ilmaz — 1
X _ _ X lmu,a:'Bt
cman
X - X b4 Imax — 1
_ " B _ cmaz(In(lmaz—1)+1)
cman
B < & - |
- < B X (;maa;(ln(———————h’;’frf‘;ft )+1)
cman
- X p’e X 1
- o . - (Ilmaxz—1)cmax
cman
- - X - lmax — 1
- = - % maz Bt (o gy > 2 Bt)
cman i
- - X X lmax — 1

3.5. A leghosszabb szelet algoritmus

Tobb mint 12 évvel ezeldtt SHUEGRAF és HEAPS [22] vezette be a leghosszabb
szelet (longest fragment first, tovabbiakban LFF) heurisztikat. Azt feltételezték,
hogy a tomoriteni kivant adatok azonos hosszisagu rekordokbdl épiilnek fel. Az
otlet a kovetkezo: az aktualis rekordon beliil az algoritmus kivélasztja a leghosz-
szabb olyan karaktersorozatot, amely pontosan megegyezik valamely szétarbeli
széval, majd ezt kédolja. Egyenléség esetén barmelyiket valaszthatja az algo-

ritmus. Ezutdn a maradék részt valamilyen on-line algoritmussal tomoriti az
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eljaras (példaul hasznalhaté az LM heurisztika). Ha a file nem rekord struktiraji,
tekinthetink helyette egy buffert, ami mindig a file aktudlis részét tartalmazza
(ezért a tovabbiakban rekord helyett bufferrdl fogunk beszélni). Mielétt az algo-
ritmus a kovetkezo részt a bufferbe olvassa, annak teljes tartalmat kddolnia kell.
A teljes buffer kédolasi eljarast lépesnek fogjuk nevezni. Dolgozatunkban csak az
LM heurisztikaval kombinalt LI F' algoritmussal foglalkozunk. Ezt az eljarast
LF Fry-mel jeloljik. A kétszeres indexelés elkeriilése érdekében Rppp,,, (D)
helyett Rppp(LM, D)-t fogunk irni.

Lathato, hogy az LF Frp algoritmus feladja a szigoru értelemben vett on-line
tulajdonsdgot, mivel elore néz a bufferben, és ezzel tébb informacidt szerez annak
tartalmarol, mint amivel az on—line algoritmusok rendelkeznek. Az az érzésiink
tamadhat: minél tobb informaciéonk van a tomoriteni kivant szovegrol, annal
jobb legrosszabb eset hanyadost kaphatunk. Ez azt sejteti szamunkra, hogy az
LF Fppp algoritmus jobban viselkedik, mint az on—line algoritmusok. A tapaszta-
lati eredmények azt mutattak [22], hogy az LF F tipusi eljarasok jobb témoritési
eredményeket adnak, mint a leghosszabb illesztés médszere, vagy a kiulonbségen
alapulé greedy algoritmus. Ez lathato az alabbi tablazatban, amely harom kilon-
b6z6 szétarra (D1, D2, D3) mutatja be a kapott tomoritési aranyokat az optimalis
algoritmus (OPT), a leghosszabb illesztés médszere (LM) és a leghosszabb szelet
algoritmus(LFF) esetén. Az adatok a SHUEGRAF és HEAPS altal elvégzett elem-

zésekbdl szarmaznak [21], [22].

OPT | LFF | LM
D1 0,617 | 0,628 | 0,65
D2 | 0,646 | 0,653 | 0,678
D3| 0,679 | 0,687 | 0,707




A tablazat adatai grafikus formaban megjelenitve a kovetkezoképpen néznek ki:

6. abra

Mostandig azonban nem léteztek egzakt bizonyitasok az LI Fpp algoritmus
legrosszabb-esetére vonatkozéan. GALAMBOS GABORRAL és TIMO RAITAVAL
kozosen éles korlatokat bizonyitottunk kiillonb6zo tipust szétarakra. A ko vet ke

z6k ben ezen eredményeket mutatjuk be részletesen.

Tegytik fel, hogy az eljards soran t - Imaz hosszu buffert hasznalunk, ahol ¢ > 2

egy paraméter. Elészor altalanos szétarakra vonatkozo tételeket bizonyitunk.

3.5.1. TETEL. [5] Legyen D egy altalanos szdtdr. Ekkor az LF Fyy algoritmusra

(¢t —1)lmaz — (t —3) cmaz

t cmin

Rrprp(LM,D) <
telyesul.
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B1zONYITAS. Legyen S egy tetszoleges karaktersorozat a D &ltal megadott dbé-
cébol. Legyen a buffer hossza t-lmaz ahol t > 2 egy paraméter. Mivel az aszimp-

totikus legrosszabb eset hanyados érdekel benniinket, elegendd olyan szovegekkel

foglalkozni, amelyre |S| = s -t - lmaz, ahol s > 1. Ekkor s = tll | — az LF Fpp al-
goritmus altal végrehajtott lépések szama. Mivel t > 2, a buffer minden lépésben
tartalmaz legalabb egy élt az .S optimalis kodolasabol. Jelolje az optimalis kédolas
leghosszabb éleinek hosszat az egyes bufferekben, illetve az LF Fpp; algoritmus
altal kivalasztott leghosszabb éleket a 1épések soran ly, lo, ..., s illetve t1,to, ..., ts.
Nyilvanvald, hogy t; > I;, + = 1, ..., s, igy kapjuk, hogy

51— o T
OPT(D,S) > | s+ ——=1 | emin = + il cman.

Imax t-lmax Imax

A t-lmax hosszu buffer tartalma a legrosszabb esetben az i-edik 1épéshen legfel-

s
(t-lmaz—t; — (t—2)+ 1)cmaz < (t-lmaz — ; — (t —2) + 1) cnaz (3.12)
bittel kédolhaté, igy
LFFm(D,S) < (s +s-t-Ilmaz — ili —s(t— 2)) cmaz

=1

( 151 +|5] - Zl |51 >cmaa:.

t-lmaz t-Ilmax

Vezesstik be az L(s,t) =(3 1;)/|S] jelolést. Ekkor
1=1

RLFF(LM D) < lim tlma:z;-l_lSl |51L(‘* i) — M('ma:r

00 151 4 181= ISIL(SJ cmin
t-lmaz Imax
E2) ..
- tlmaa: i) ] o= L(Q,t) ~ tlmaz cmalr
o 1-Llet) cmin
t- lma,z Ilmaz
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Nyilvdnvald, hogy —— < L(s,t) <

t-lmax —

1
R

L(s,t) = 1-nél veszi fel. Ebbdl adédik, hogy

(t — 1)lmaz — (t — 3) crmaz

t cemin

Rirr(LM,D) <

és az elézo kifejezés a maximumat

O

3.5.2. TETEL. [5] A 3.5.1. tételben megadott korldt €les LF Fyp-re vonatkozéan.

BI1ZONYITAS. A korldtot a kovetkezo konstrukcidval tudjuk elérni. Legyen D az

aldbbi szétar:

forrasszé U v w uw wy | wlmer | plmaz | 4 lmaz | 4 Imaz—1,,
kédszo a b e d e k| g h 7
stly cmazx | emaz | emazx | emaz | emaz | emazx | emaz | emazx cmin

Vegyiik a kovetkezo karaktersorozatokat:

2

t 7
(ulmaz (vlmua:wlmua:> 2 vlmax) ha # pé,ros,

t—1y 7
<ulm“$ (vlm”wlm”> : ) ha t paratlan.
S; optimalis kddolasa a kovetkezo:

t

(a (gh)%2 g)i ha t paros,
QPTID,S:) =
(a (gh)%)i Y 5 prbailban,
Az LF Fry algoritmus S;-t a kovetkezoképpen kodolja:

t—4

<a,j blma:r—2 dclman:—2 v dblmam-—] ) 2 ha, " pé’I-OS’
L B (D, B =

(ajblmm_zalclmm-z:vt—;g c) i ha ¢ paratlan,
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l x—2 l x—2
ahol z = db™ " "de ™",

A fentiekben azt feltételeztiik, hogy egyenloség esetén az algoritmus barmely

lehetséges élet valaszthatja. Ekkor

. |[ILFFLu(D, S))||
Rppp(LM,D) > lim
( ) 2 I P, 5]

i ((t = 1) lmaz — (t — 3)) cmax

= lm : :

1—00 1-1-cman
_ (t=1)lmaz — (t — 3) cmax
- t cmin’

3.5.3. TETEL. [5] Legyen D egy egyenls kédhosszusagt szotar. Ekkor

(t — D)lmaz — (t — 3)

Rrpr(LM,D) < ;

€s a fenti korlat éles.

B1ZONYITAS. Feltéve, hogy cmax = cmin a 3.5.1. és a 3.5.2. tételekbdl addodik a

kivant eredmény.

3.5.4. TETEL. [5] Legyen D egy nemhosszité szdtdr. Ekkor

(t — )lmaz — (t — 3) cmax

- ha cmaz < Bt
t cman

Rrpp(LM,D) <4 T ha Bt < crmaz < 2Bt

(t — 1)lmaz Bt + cmax
t-cmain

ha 2Bt < cmax

ahol
(t = 1)lmaz Bt —t(2Bt — cmaz) + 4Bt — cmax

t-cmin

T =

b}

€s a fenti korlat éles.
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Bi1zONYITAS. Harom esetet kiillonboztetiink meg a crmaxz és a Bt kozotti kapcsolat
alapjan.

A eset: Tegyiik fel, hogy cmax < Bt. Ezen feltételek mellett minden szétar
nemhosszito, és a 3.5.1. illetve 3.5.2. tételek vatoztatas nélkiil alkalmazhatok.

B eset: Tegyiik fel, hogy Bt < ecmaz < 2 Bt. Ugyanazt a technikat hasznaljuk,
mint a 3.5.1. tétel bizonyitasanal, de 3.12 helyett ezittal a kovetkezot irhatjuk:

Az LFF uton taldlhato élek teljes stlya az ¢. 1épésben legfeljebb
(t-Imaz —t; —2(t — 2)) Bt 4+ (t — 2) cmaz + cmaz.

Hasonléan mint a 3.5.1. tételnél, kapjuk, hogy

(t — 1)lmax Bt — t(2Bt — cmaxz) + 4Bt — cmax

t-cmin

Riprp(LM,D) <

C eset: Legyen 2Bt < cmaz < lmaz - Bt. Ebben az esetben az élek teljes stulya

az LF F-uton az i. 1épésben legfeljebb (¢ - lmaxz — t;) Bt + cmax. Ebbél adddik,
hogy
(t — 1)lmaz Bt 4 cmax

t-cmin

Rirr(LM,D) <

Ahhoz, hogy belassuk a fenti korlatok élességét, médositanunk kell a 3.5.2. tételben
hasznalt szotar sulyait ugy, hogy ha ecmaz > [ - Bt, akkor emaxz helyett mindig

[ - Bt-t {frunk, ahol [ a megfelel6 forrasszé hossza.

3.5.5. TETEL. [5] Legyen D egy egyenld kédhossztisagn €s nemhosszité szotdr.
Ekkor
(t — )lmaz — (t — 3)

L

Rrrr(LM, D) <

€s a fenti korldt éles.

B1ZONYITAS. Azt hasznaljuk ki, hogy az egyenld kédhossziisagti és nemhosszité

szotarak esetén minden kdédszdé hossza azonos.
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A kovetkezo tételek azt bizonyitjak, hogy prefix szotarak esetén a legrosszabb—
eset viselkedés ennél az algoritmusnal is azonos az altalanos szétarakra vonatko-

zéval.

3.5.6. TETEL. [5] Legyen D egy prefix szotar. Ekkor
(t — 1)lmaz — (t — 3) cmax

t cmin

Rirr(LM, D) <

€s a fenti korlat éles.

Bi1ZzONYITAS. Mivel a 3.5.1. tételben megadott korlat érvényes barmilyen szétarra,

csupan egy olyan prefix szotarat kell konstrualnunk, ami a megadott korlatot eléri.

forrasszo u v w Uw wo ul vl wi | wimez—1y
kddszo a b c d e £ g h; l
suly cmaz | emaz | emaz | emax | cmaz | emaz | emaz | cmax | cman

ahol 7 =1, .., lmaz.
Mivel ez a szétar a fentitdl csupan néhany ”extra” élben kiilonbozik, és ellenoriz-
hetd, hogy az LF Fpy algoritmus ugyanazokat az éleket valasztja, ezért a 3.5.2.

tétel bizonyitasat szordl szora megismételhetjuk.

3.5.7. TETEL. [5] Legyen D egy prefix, nemhosszité szotar. Ekkor
(t — D)lmaz — (t — 3) cmaz

t cman

ha cmaz < Bt

Ripp(LM,D) << T ha Bt < crmax < 2Bt

(t = 1)lmaz Bt 4 cmax

. ha 2Bt < cmaz,
t-cman

ahol
(t — 1)lmaz - Bt — t(2Bt — cmaxz ) + 4Bt — cmax

t-cmin

T =

b

€s a fenti korlatok élesek.
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BizoNYITAS. Ha kombindljuk a 3.5.6. és a 3.5.4. tételeket, kapjuk a kivant ered-
ményt.

O

3.5.8. TETEL. [5] Legyen Dy egy prefix, egyenld kédhosszisagi és Dy egy prefix,
egyenlo kodhosszisagi €s nemhosszitoé szotdr. Ekkor

(t — 1)lmaz — (t — 3)

Rrrpr(LM, D;) < ;

t=1,2-re
€s a fenti korldt €les.

B1zONYITAS. A 3.5.3., 3.5.4. és 3.5.6. tételekbdl, valamint abbdl a tulajdonsédgbdl,
hogy ha a szétar egyenlo kodhosszisagu és nemhosszité akkor minden kédszo

hossza azonos, kovetkezik a tétel allitasa.

A kovetkezokben suffix szotarakra vonatkozo tételeket bizonyitunk.

3.5.9. TETEL. [5] Legyen D egy suffix szétar. Ekkor

( 2(1 -
<1+ (Imax l)) cmc.t:c hat>3

t cmin

RLFF(LM,D) <

5 ha t =2

cmin

(lma:c + 1) cmazx

€s a fenti korlatok élesek.

Bi1zoNYITAS. Tudjuk, hogy suffix szotarak esetén az LM algoritmusndl az op-
timalis titon taldlhaté élek szama nem lehet kevesebb mint az LM-tton.( Lasd
Katajainen and Raita [17]). Sajnos elképzelhetd, hogy a buffer végén az LF Firp
algoritmus nem ”"lat” egy élt, és annak hatso szeleteit. Ez azt jelenti, hogy a
legrosszabb esetben kapunk lmaz — 1 plusz élt, amelyek stlya cmax is lehet. Az
is elképzelhetd, hogy az LF Fprp altal az adott bufferbol elészor kivalasztott él

"levag” egy élt, a hatsé szeleteivel. Ez a legrosszabb esetben tovabbi lmaz — 1
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cmax hosszu élt jelenthet. Mindkét eset eléfordulhat, ha ¢ > 3, de csak egyik, ha
t = 2. Tegytik fel, hogy az optimalis algoritmus n élt hasznal az S karaktersorozat
kédolasahoz. Ez azt jelenti, hogy az LF Fryr legfeljebb n + 2 (lmaxz — 1)-ot, ha
t >3, és n+ (lmax — 1)-ot, ha t = 2. Definialjuk p-t a kovetkezéképpen:

1 hat=2
2 hat>3.
Ekkor

RLFF(LM,D) < lim n+ps(lmazr—1) cmaaz

|S]— 00 n cmain

il— mar— -
< 1im <1 + pt»lmul(éj— l)> cmax (3-13)

lmax

_ lmaz—1)\ cmazx

- (1 + 2 t )) cmain
Most olyan példakat adunk, amelyek elérik a fenti korlatokat. Két esetet kiilon-
boztetink meg.

A eset: Tegytk fel, hogy ¢t = 2. Legyen D a kovetkezo suffix szétar:

forrasszo u v ukv | wkov w | pptee-l | g lmen—ly | gplieE-]
kodszo a b Ck dy, e; f g h
suly cmazx | emaz | emax | emax | cmazx | cmazx cman cmain

ahol k =1,...,lmax —2és j=1,...,lmax — 1.

Tekintstik a kovetkezo karaktersorozatokat:

s lmaz—1 lmaz—1 ¥ ;S
S =m VW B) 42 1

Ekkor LFFyy (D,S;) = (amee=! fb)i és OPT (D, S;) = (gh)'. Ebbdl kapjuk,

hogy

. |ILFFum(D, S))||
>
Rppr(LM,D) = zl_lglo |OPT(D, S;)|

i (Imaz + 1) emax

= lim

i—00 21 cman
(Imaz + 1) cmax

2 cmin

B eset: Legyen most t > 3. Legyen D a kovetkezo suffix szotar:
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forrasszo U v vFu wku w’? yw!maz=1 | ylmaz=1, | 4,lmaez—1
kédszé a b Ck d &; f g h
stly cmaz | emax | emax | emax | emax cmax cman cman

ahol k =1,...,lmax —2és j=1,...,lmazx — 1.

Tekinstiik a kovetkezd karaktersorozatokat:

Si —— (vlmaa:—lu (wlmaa:—-lu)

=2 lmaz—1 ‘ S
v u) ,haz>1.

Ekkor LFFiy (D, S:) = (abtme=~! ft""’ab’m“‘l)i a és OPT (D, S;) = a(hlt=21)'.

Ebbol kapjuk, hogy

Rrrr(LM, D)

. NLEFm(D, Si)|l
lim
im0 ||OPT(D, Si)||

i (2lmaz 4+t — 2) cmaz + cmax

IV

= lim

1—00

1-1-cman + cmin

_ (1 n 2(lmatm - l)> cmaz

cmn

0
3.5.10. TETEL. [5] Legyen D egy suffix, nemhosszité szotdr. Ekkor
2 (1 -1
(1 4 s )> cmq:): hat >3 és crmax < Bt
7 cman

hat =2 és cmax < Bt

Ripr(LM, D) <

(lma:c + 1) cmaz

2

cman

€s a fenti korlatok élesek.

z 2(lmax—1) Bt
cmc’z ( ) , hat > 3 és cmax > Bt
cman t cman
maxr [ —1 Bt
¢ - i - hat =2 és cmax > Bt
\ cmin 2 cman
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B1zONYITAS. Ha cmax < Bt akkor a 3.5.9. tétel bizonyitdsa valtoztatas nélkiil
alkalmazhaté. Ha emaxz > Bt, akkor a legrosszabb esetben az extra élek silya az
LF F-iton legfeljebb 2 (Imaxz — 1) Bt hat > 3, és (Imax — 1) Bt ha t = 2. Ebbdl
adodik a tétel allitasa.

O

3.5.11. TETEL. [5] Legyen Dy egy egyenld kédhosszusag, suffix és Dy egy egyenld

kédhosszusagn, suffix €s nemhosszité szotdar. Ekkor

1+ 2mee=l) pg g >3

=1, 2-re.

Rrrpr(LM,D;) <
sl hat =2

BIZONYITAS. A cmax = cman feltételt kihasznalva a 3.5.9. és a 3.5.10. tételekbdl

kapjuk az allitast.
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A kovetkezo tablazat osszefoglalja a leghosszabb szelet moddszerére vonatkozd

eredményeket:

D szotar

Prefix | Suffix | Egy.k. | Nemh. Rrpr(LM, D)

(t—1)lmaz—(t—3) cmax
i cmin

X s = -

t—1)lmaz—(t—3)
i
% _ B % (t—1)lmaz Bt+cmaz (cmax p ZBt)

t-cmin
X . X X t—1)lmaz—(t—3)

t

_ X B _ (1 + 2(lmz:$—l)) cmax (t > 3)

cman

- X = - 1+Amj$2(t23)

X = X =

- X - X emds y 2jmag—1) By (t > 3 és emaz > 2Bt)

cmin t cmin

- X X X 1 o Rlimasl) (3 > 3)

(t=1)lmaz—(t—3) cmax
1 cman

(t—1)lmaz—(t—3)
t

. . . X (t=1)lmaxz Bt4+cmaz (CTI’LCL.Q? 2 2B11)

t-cmin

i =1 X X (t=1)lmaz—(t—3)

t

Végezetiil mindenképpen érdemes megemliteni, hogy amint a fenti tablazatbol
jol lathatd, amennyiben a buffer hossza a végtelenbe tart, eredményeink kon-
vergalnak a megfelelo, LM algoritmusra vonatkozo korlatokhoz. Pontosabban a

kovetkezot kaptuk a legrosszabb—eset hanyadosra:
Jim Rrrr(LM,D) = Rpm(D).

Ez az eredmény nyilvanvald, mivel minél hosszabb a buffer, annal kevesebb
hatdsa van az elsé él kivalasztasanak. Masrészt az is nyilvanvald, hogy az LM
kivalasztasa teljesen véletlenszert volt. Ugyanigy hasznalhattuk volna a DG vagy

mas on-line algoritmust. T6bbé kevésbé az is nyilvanvalonak latszik, hogy ha A
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egy tetszoleges on—line algoritmus és D egy adott szotar, akkor
lim Rppp(A, D) = Ra(D),

de hogyan kellene ezt bizonyitani?

Maésodsorban megfigyelhetjik, hogy a hatarértéket alulrdl kozelitjik. Ez azt
jelenti, hogy a legjobb eredményt a legkisebb bufferhosszra kapjuk, azaz ha t =
2. Ebben az esetben az LM heursztikara vonatkozé korlatnal egy 2-es faktorral
kapunk jobbat, és minden hosszabb buffer esetén az eredmény romlik a hossz
figgvényében. A kérdés nyilvanvalé: tudunk-e mondani az LIF'F' algoritmusnak
egy olyan valtozatat, amely a bufferhossztol fiiggetlen konstans faktorral javitja
meg az L M-re vonatkozd eredményt? Javaslatunk a kovetkezo:

Hasznaljuk eldszor az LFF algoritmust a buffer kédolasdhoz. Az elsé valasztas
utdn - az LM helyett - kédoljuk a megmaradé részét a buffernek iterativ modon
magéval az LF F-fel. Ezt az algoritmust iteralt leghosszabb szelet (ILFF) elja-
rasnak nevezzik. Sejtésuink az, hogy ha D egy a korabbi tulajdonsagoknak eleget

tevo szotar, akkor

1
Riprpr(LM,D) = =Rpm(D).
2

Tovabbi kérdések mertilhetnek fel. Egy kozulik: Ha azokat az algoritmu-
sokat tekintjiik, amelyek korlatozott bufferméretet hasznalnak- ezeket tarkorldtos
eljdrdsoknak nevezhetjik - akkor kérdés, létezik-e olyan tarkorlatos algoritmus,

amely jobb eredményt ad, mind az [ LF F-re vonatkozo sejtés?
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4. fejezet

Ladapakolasi algoritmusok

elemzése

4.1. Bevezetés

Az egyik leggyakrabban vizsgalt kombinatorikai probléma az egydimenzids la-
dapakolasi feladat: Adott valds szamoknak egy L = {xy,zq,...,2,} listdja a
[0,1) intevallumbdl, és végtelen sok egységnyi kapacitasi ldda. Minden egyes
z; szamot egyértelmiien hozza kell rendelntink egy ladahoz, tgy hogy a ladahoz
rendelt elemek 6sszege nem haladhatja meg az 1-et. Célunk a felhasznalt ladak
szamanak minimalizalasa. Jol ismert, hogy egy optimalis megoldas megkeresése
N P-teljes probléma. Kovetkezésképpen nagyon sok olyan publikicié jelent meg,
amelyek hatékony, polinomialis futasi ideji kozelito algoritmusokat kerestek. Az
algoritmusok egy része on-line tulajdonsagi. Ezen eljarasok tgy helyezik el az
éppen soron kovetkezo elemet a megfelelé ladaba, hogy a késébb jovo elemekrol
semmilyen informacioval nem rendelkeznek (nem ismerik sem a méretiiket, sem
a szamukat). Az ugyenevezett off-line algoritmusoknak tobb informaciéra van
sziikségiik: Legtobbjiik a teljes listat ismeri, mielott ”pakolni” kezd.

Az algoritmusok hatékonysaganak mérésére itt is az elozoekben mar bevezetett
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legrosszabb—eset hanyadost fogjuk alkalmazni. Ladapakolasi algoritmusok esetén
a hanyados a kovetkezoképpen definalhato: Jeloljiik a H heurisztika altal az L
lista elpakoldsa soran elhasznalt ladak szamat H(L)-lel, illetve egy megfelelé op-
timalis pakolasnal sziikséges ladak szamat L*-gal. Ha
Ry (k) := max {E(k_L—)w* = k}
jeloli a maximumat a H(L)/L* hanyadosnak tetszoleges olyan listara, amelyre
L* = k, akkor a H heurisztika Ry aszimptotikus legrosszabb—esel hdanyadosa:
Ry = limsup,_, Ru(k). Egy masik, ezzel ekvivalens definicié adhaté meg Ry-
ra, ha észrevessziik, hogy Ry < Kj, ha létezik két olyan K; és K, konstans,
hogy
H(L)<K,-L"+ K,

minden L listara. Nyilvanvaloan a legkisebb ilyen K megegyezik Rp-val.

Idérendi sorrendben az els6 off-line algoritmust D. S. JOHNSON definialta
[16]. A legtébb publikalt algoritmus legalabb O(nlogn)-es idébonyolultsaggal
rendelkezik (1asd példaul a First Fit Decreasing, Best Fit Decreasing heurisztika-
kat). A linearis idébonyolultsdgt algoritmusok mindig "udit6 kivételt” képeztek.
Az elsé ilyen algoritmus a Group Fit Group, amelyet D. S. JOHNSON definialt[16],
és 1.5-0s aszimptotikus legrosszabb—eset hanyadossal rendelkezett. RAMANAN és
tarsai [19] egy 1.612-es aszimptotikus legrosszabb-eset hanyadossal biré heurisz-
tikat adtak meg. Hosszi ideig a JOHNSON algoritmust nem sikertilt feliilmilni, de
F. DE LA VEGA és G. S. LUEKER bebizonyitotta hires cikkében [24], hogy min-
den & > 0-ra létezik olyan A algoritmus, hogy A(L) < (1 +4¢)L* + (., és A futasi
ideje O(n) + D.. Fontos, hogy a D, és C. konstansok csak e-tdl fiiggenek, n-tol
nem. LUEKER és DE LA VEGA nem szamitotta ki pontosan ezeket a konstan-
sokat, de azt sejtették, "meglehetosen nagyok” lehetnek, egész pontosan azt is
tudtak, hogy 1/e-t6l exponencialisan fliggenek. Néhany évvel késobb C. U. MAR-

TEL [18]-ban észrevette: € = 1/3 esetén a cikkben szereplé D. nagyobb mint (479>.
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Ennek van egy fontos kovetkezménye: Az elméleti szemponthdl kivalé algoritmus
nem hasznalhato a gyakorlatban.

A fent idézett cikkben MARTEL egy rendkivil szellemes linearis ideji algorit-
must publikalt. A lista elemeit “kupacokba” gytjtotte, és az egyes osztalyokban
1év6 elemek szamatdl fliggden intelligens médon kombinalta oket (lasd a kévetkezd
szakaszt). Martel algoritmusa 4/3-os aszimptotikus legroszszabb—eset hanyados-
sal rendelkezik. A cikk zaradékaban Martel megemlitette, hogy lehetséges, hogy
a technika segitségével az algoritmus megjavithaté O(n) idébonyolultsagi, 5/4-es
aszimptotikus legrosszabb—eset hanyadosiva. Azt javasolta, hogy a kis elemeket
ligyesebben kellene kezelni.

Bér a gondolat konnyen megvalésithatonak tiint, eddig nem sziiletett eredmény.
A dolgozat kovetkezd részében egy linearis idej heurisztika kertil bemutatasra,
amelyet GALAMBOS GABORRAL és HANS KELLERERREL ko6zosen talaltunk.
Az eljards MARTEL oOtletén alapszik és 5/4-es aszimptotikus legrosszabb—eset
hanyadossal rendelkezik. Bebizonyitjuk, hogy az algoritmusra (amelyet Hz-tel
fogunk jelolni) teljesiil a H7(L) < 2L* + 5 egyenlétlenség, barmely L listara.

A dolgozat kovetkezo része MARTEL eredményeit targyalja. Az utana kovet-

kez6 szakaszban kertl sor a Hr heurisztika ismertetésére és analizalasara.

4.2. A Martel eredmény

Mint az elézéekben mér emlitettiik, erésen kihasznaljuk a [18]-ban talalhat6 ered-
ményeket. Ezért most réviden ismertetjiilk MARTEL algoritmusat. Az eljaras az

adott lista elemeinek egy egyszerii osztalyozasan alapszik, amely az alabbi médon

definalt:
Co = {$i|1 >z > %},

Ch ={$¢l§ > Wi > %},

Cy = {561[% >z > :—13}7
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Y,

1
03:{.%1]% .’Iii>z},
04 = {:EA% > By > 0}

Legyen ¢; = |Cy],1 = 0,...,4. Egy o € C; elemet C;-elemnek fogunk nevezni.
Amint MARTEL emlitette, ezen osztalyozas motivacidja, hogy lehetévé tegytik
az elemeknek azon halmaz alapjan torténo elhelyezését, amelyhez tartoznak. Az

algoritmust Hy-gyel jeloljik. Az eljaras a kovetkezo:

1. Alakitsuk ki a C;, 2 = 0,...,4 halmazokat.

2. Legyen k = [ml—n(-%g)‘l Vagjuk szét Ci-et két részhalmazra: O tartal-
mazza a legkisebb k elemét Cj-nek, és C? a maradék elemeket. Hasonld
médon bontsuk fel a Cy halmazt a C§ és C% részhalmazokra. Vegyiink ki
tetszolegesen egy-egy elemet a C7 és a C3 halmazokbol. Ha beleférnek egy
ladaba, akkor nyissunk egy 1j ladat, és helyezziik el oket benne. Ha nem

férnek el egy ladaba, tegyik a C5-elemet egy tires ladaba.
3. Tegyiink minden egyes Cp-elemet és CP-elemet kiilon 1ddaba.
4. Tegyiik a maradék Cy-elemeket (C3 és Cé-elemek) parosaval kiilon 1adékba.

5. Amig el nem fogynak a Cs-elemek, tegylik a Cjs-elemeket olyan ladakba,

amelyek egy egyediilallo C-elemet tartalmaznak.
6. A maradék Cs-elemeket tegylik harmasaval kilon ladakba.

7. Pakoljuk el a C4-elemeket a Next-Fit szabaly segitségével (a Next-Fit szabaly

leirasat tobbek kozott [11] tartalmazza).

A 16 tétel bizonyitasahoz MARTEL egy fontos lemmat alkalmazott, amelyet most

altaldnosabb formaban ismertetink.

4.2.1. LEMMA. (MARTEL, [18]): K¢t tetszéleges C;, C; diszjunkt elem halmazra

legyen k = [%(;”CJ—)‘I . Legyen H tetszbleges heurisztika, amely kettévagia C;-t és
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C;-t két részhalmazra, igy hogy C; tartalmazza a k legkisebb elemét Ci-nek, és C?
a maradek elemeket. Hasonlo mivelet torténik Cj-re. Ekkor H véletlenszerien
kivesz ket elemet a CF és a CF halmazokbdl. Ha beleférnek egy liddba, akkor elhe-
lyezi Sket abban. Tegyik fel, hogy H m (< k) elemet parosit dssze ilyen mddon.
Ekkor a C; és C; elemekbdl egy optimdlis pakoldsban legfeljebb m + k olyan ldddt

tudunk képezni, amelyek egy-eqy elemet tartalmaznak a két halmazbol.

Bi1zONYITAS. Ha m = k, akkor az allitas nyilvanvald. Tegyiik fel, hogy m < k.
Ekkor vannak olyan z; € C} és z; € Cf elemek, hogy z; + z; > 1. A legjobb
lehetséges parositasi technika, hogy osszerakunk legfeljebb m elemet C?-bél Cs-
beli elemekkel, legfeljebb m elemet C7-bél Cl-beli elemekkel, és a 7 maradék
k —m elemét C?-beli elemekkel. Ilyen médon legfeljebb 2m + (k —m) = m + k

part képezhetiink.

a

Az aldbbi 4dbra a 4.2.1. lemma bizonyitasanak lényegét mutatja be egy példa

segitségével.
C,-elemek Lvr‘
-
W Y N
C,-elemek
| I c=7,c~8 m=2
k -

7. abra

A kovetkezokben ismertetjiik MARTEL tételét, amelyre GALAMBOS GABOR

egy egyszerlibb bizonyitast talalt. Most ezt mutatjuk be az eredeti helyett.
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4.2.2. TETEL. (MARTEL, [18]): Tetszéleges L listira Hy (L) < ZL* + 2.

Wik

BizONYITAS. [11] Tegyiik fel, hogy allitdasunk nem igaz. Ekkor 1étezik egy mini-
malis ellenpélda, azaz egy olyan L lista, amelyre Hy(L) > 4L +2 és L szdmosséga
minimalis. Nyilvdnvaldan ez a lista nem tartalmazhat Cj-elemet. Két esetet

kilonboztetink meg:

A eset: Tegytik fel, hogy a 6. 1épés létrehoz legalabb egy ladat. Ebben az esetben

U2@+q+rq+®*@“”ﬂ,

3
és gy
Ha(D) = oo+ [ogm] + [stgen]
< C0+%Cl+%c2+%c3_%+2
< [*43c0+ge—2+2
< L+ (cotie)+2
< 31+ 42

ami ellentmondas.
B eset: Tegyiik fel, hogy a 6. lépés nem hoz létre 1) ladakat. Alkalmazva a 4.2.1.

lemmat a 2. 1épésre kapjuk, hogy

——“—CZ_(];+m)] ZCO+CI+102_E—E-

L*Zco+01+lr 5 5 5

Mivel m < k = min {%, < ¢, azt kapjuk, hogy

Hy (L)

co + 1 + [252]

< cotatie—241
< L*+E241

S DX+ ge1 +1

< 2L +1.

ami ismét ellentmondas.
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Sok olyan lista van, amely bizonyitja, hogy a fenti korlat éles. Példaul vegyik

a kovetkezo L, listat n = 2m-re és m € IN-re. L, tartalmazzon m darab Cj-
elemet és m darab Cs-elemet, amelyek nagysaga legyen 3/4 — ¢ illetve 1/4 + €.
Ekkor Hy(L,) =m + 2 = 2m, és L = m. Ebbdl kovetkezik, hogy ﬂ"Lg—”) =4/3

minden n-re.

4.3. Az 5/4-es algoritmus

Megfigyelhetjiik, hogy a H, algoritmus sokszor jobb eredményt ad mint a legrosz-
szabb esetben (ldsd a B eset bizonyitasat). MARTEL megemlitette, hogy ha a
C3 és a C4 elemeket jobban tudnank kezelni (esetleg a C4 halmaz két részre
bontasaval, amelyek a (O, %], és az (%,}J intervallumba eso elemeket tartal-
maznak), akkor megjavithatnank a legrosszabb-eset hanyadost.

Annak ellenére, hogy ez az otlet meglehetosen egyszertinek tint, csaknem
10 év telt el, és a probléma megoldatlan maradt. A kovetkezokben megadunk
egy 4j linearis futasi ideju algoritmust, amely g-es legrosszabb—eset hanyadossal

rendelkezik. A heurisztikat Hr-tel jeloljuk. Mielott ismertetnénk az eljarast,

osztalyozzuk az elemeket az alabbiak szerint:

Co= {2l = = > 2},
Cr = {zil2 = z: > 2},
Cy = {zi|2 > z: > 3},
Cs = {zi|l1 = = > 2},
Gy ={mll 2m> 2},
Cy ={milz = 2 » b
G ={zilz =z > gh
Cy = {z;]3 = «; > 0}.
Legyen ¢; = |C;|, 1+ = 0,...,7. Az algoritmus ismertetése soran azonban c¢;
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mindig azon C;-elemek szamat fogja jelolni, amelyeket még nem rendelt hozza az

algoritmus valamely ladahoz.
A Hr algoritmus:

1. Alakitsuk ki a C;, 2 = 0,...,7 halmazokat.
2. Tegyiik a Cy-elemeket kiilon ladaba.

3. Legyen ky := [min { %, 5%@}] Végjuk szét Cy-et két részhalmazra: C§ tar-
talmazza a legkisebb k; elemét Cy-nek, és C? a maradék elemeket. Hasonlé
médon bontsuk fel a Cs g := C5 U Cg halmazt a Cf ¢ és C? ; részhalmazokra.
Vegytink ki tetszolegesen egy-egy elemet a (7 és a Cf ¢ halmazokbdl. Ha
beleférnek egy ladaba, akkor nyissunk egy 0j ladat, és helyezzik el oket
benne. Ha nem férnek el egy ladaba, tegyiik a C7-elemet egy tires ladaba.

Tovébbé rakjuk a Cl-elemeket is tires lddakba.

4. Legyen ky := [min {2, 9%“}1 Vagjuk szét Cy-t két részhalmazra: C3 tar-
talmazza a legkisebb k, elemét Cy-nek, és C a maradék elemeket. Hasonlé
médon bontsuk fel a C3 4 := C5U Cy halmazt a C5, és C%, részhalmazokra.
Vegytink ki tetszolegesen egy-egy elemet a 5 és a (5, halmazokbdl. Ha
beleférnek egy laddba, akkor nyissunk egy 1j ladat, és helyezzik el oket
benne. Jeloljiik Cy-mal a Cl-elemeket és a maradék Cj-elemeket. Legyen
& = min{|Cy], cs} és Cs a legnagyobb & eleme Cs-nek. Helyezziik C,
elemeit (5 -beli elemekkel pérositva iires laddkba. Ha (C5 = 0) akkor
parositsuk C, elemeit Cg-beli elemekkel, illetve ha (Cs = 0) tegyiik ket

egyediil tires ladakba.

5. Legyen ¢ := min{cy,2¢s}. Legyen Cf a C4 halmaz ¢ legnagyobb eleme,
illetve legyen C¢ a Cg halmaz %] legnagyobb eleme. Tegyiink két Cj-
elemet és egy Cg-elemet egy tires ladaba, amig ¢4 < 1 vagy ¢ = 0 nem

teljesul.
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. Tegyiink egy Cs-elemet és két Cg-elemet egy tires ladaba, amig ¢3 = 0 vagy

ce < 1 nem teljesil.
. Parositsunk 6ssze két Csz-elemet, amig c3 < 1 nem teljestl.

. Legyen k; := [min {%, 54‘1}] Vagjuk szét Cs-ot két részhalmazra: CF tar-
talmazza a legkisebb k3 elemét Cs-nek, és C? a maradék elemeket. Vagjuk
szét Cy-et is két részhalmazra: C3 tartalmazza a legkisebb 2k3 elemét C4-
nek, és C? a maradék elemeket. Vegytink ki tetszélegesen egy elemet a Cf
és két elemet a C'j halmazokbol. Ha beleférnek egy ladaba, akkor nyissunk
egy uj ladat, és helyezzik el cket benne. Ha nem férnek el egy ladaba,

tegyiik a két C3-elemet egy tires ladaba. Tovabba rakjuk a C%-elemeket is

parosaval tres ladakba, amig ¢4 < 1 nem teljesiil.

. Helyezziik a megmaradé Cs-elemeket harmasaval tires ladakba, amig ¢s < 2

nem teljesul.

. Helyezziik a megmaradé Cg-elemeket négyesével tures ladakba, amig c¢g < 3

nem teljestl.

. A megmaradé C, Cy, C5, Cs elemeket rakjuk optimalis médon tires ladakba.

12. A Cr-elemeket rakjuk el a Next-Fit szabaly szerint.

Az algoritmus miikodést egy példan keresztil is illusztraljuk. Legyen adott az

alabbi L lista.

0.25,0.33,0.34,0.36,0.68,0.5,0.53,0.9,0.21, 0.65, 0.65, 0.29,0.75, 0.82,
0.45,0.36,0.3,0.22,0.4,0.72,0.7,0.36,0.3,0.24,0.3,0.25,0.23,0.36
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Az egyes lépések a L esetén a kovetkezok:

1. 1épés:

Co = {0.9,0.82)

C; = {0.68,0.75,0.72,0.7}

Cy = {0.53,0.65,0.65}
Oy = {0.5,0.45,0.4}
Oy = {0.34,0.36,0.36, 0.36,0.36 }

Cs = {0.33,0.29,0.3,0.3,0.3}
Ces = {0.25,0.21,0.22,0.24,0.25,0.23}

Cr=10
2. lépés:
PEL 09 0.82
0.21 0.22
3. lépés:
0.68 0.7 0.75 0.72
0.34 0.33 03
4. lépés:
0.53 0.65 0.65
0.25 0.25
5. lépés:|  0.36 0.36
0.36 0.36




6. lépés:

7. 1épés:

9. lépés:

10., 11., 12., 1épés: 0.

0.23

0.24

0.5

0.4

0.45

0.3

0.3

0.29

A kovetkezékben belétjuk, hogy Hr(L) < 2L* + 3 tetszdleges L listara. Ehhez

az alabbi jeloléseket fogjuk hasznalni:

e Azt mondjuk, hogy a B ldda (i175...1;) tipusi, ha pontosan k elemet tar-

talmaz, méghozza gy, hogy az elso elem a C;, halmazbdl, a masodik a C;,

halmazbdl van, stb. (i, = 1,,1 < m,n < k lehetséges).

o Jeldlje v, 4,...i, L egy optimalis pakolasaban az (u1,1,,...,1;) tipusu ladak

szamat.

e Jelolje mys azon Ch-elemek szamat, amelyeket a 3. lépésben (-elemmel

pakolt 6ssze a Hy algoritmus. Hasonloan, mye, mas, mag, mos, mag €s Mags

jelolje a 3., 4., és 8. lépésben képzett kilonbozo parok, illetve harmasok

szamat.
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Az

o Azokat az elemeket, amelyeket a 11. I1épésben pakol el az algoritmus,
nevezzik megmaradt elemeknek. Vegyik észre, hogy legfeljebb egy Cy-elem,
két Cs-elem és a 6. 1épés miatt legfeljebb egy Cs-elem és egy Cg-elem vagy
nulla Cs-elem és legfeljebb harom Cg-elem maradhat. Kovetkezésképpen

legfeljebb két lada mindig elegendo a maradék elemek elpakolasahoz.

osszes lehetséges kombinaciét figyelembe véve, egy optimalis pakolasban a

ladak szama a kovetkezoképpen irhatoé fel:

L* = yi1+yis + Y16 + Y2 + Y23 + Y24 + Y25 + Y26 + Y256 + Y266+
+Y3 + Y3z + Y3a + Y35 + Y36 + Y3ze + Y345 + Y346 1+ Y355+
+y3s6 + Yses + Yaess + Y4 + Yaa + Yas5 + Yae + Yaas + Yass+ (4.1)
+Yass + Yase + Yacs + Yasee + Yases + Ys + Ys5 + Yse + Ysss+
+Yss6 + Yse + Yssse + Yssee + Ysees + Y6 1+ Yoo T+ Yeos T Yeoes-

Az egyes osztalyokban 1évo elemeket a kovetkezo modon adhatjuk meg:

(&1

Co

C3

Cq

Cs

Ce

= Y1+ Y15 T Y6 (4.2)
= Y2 + Y23+ Yoa + Y25 + Y26 + Y256 + Y266 (4.3)
= Yoz + Y3+ 2yss + Yaa + Y35 + Y36 + 2ya36 + Y345 + Yzas + Y355 + Y356 +
+Y3e6 + Y3666 (4.4)
= Yoq + Y34 + Y345 + Y346 + Ya + 2Yaa + Yas5 + Yae + 2y4a5 + 2yaa6 + Yass +
+Yas6 + Yaes T Yas66 + Yaee6 (4.5)
= Y15 + Y25 + Y35 + Yas + Yas6 + Y345 + 2y3s5 + Yase + Yaas + 2Yass + Yase +
+Yyase6 + Ys + 2yss + Yse + 3Ysss + 2ysse + Yses T 3Yssse + 2Ysses + Ysess
(4.6)
= Y16 + Y26 + Y36 + Ya6 + Yse + Y256 + 2Yae6 + 2Y266 + Y336 + Y346 + Y356 +
+2y366 + Yaas + Yas6 + Ysse + 2Yses + 3Ysess + 3Yaee6 + 2Yase6 + Yssse +

+2yss66 + 3Ysees + Ys + 2Ye6 + 3Yees + 4Ysess (4.7)
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Mielott hozzakezdenénk a legrosszabb—eset viselkedésre vonatkozo tétel bi-
zonyitashoz, két lemmat kell igazolnunk, amelyeket a késobbiekben alkalmazni

fogunk.

4.3.1. LEMMA. [7] Jelolje ¢ azon Cs-elemek szamat, amelyeket a 6., 7., illetve
10. lépésben pakol el a Hy algoritmus, illetve ¢ az ugyanilyen Cg-elemek szamat.
Ekkor a heurisztikdnak legfeljebb c4/2 + /4 laddra van sziksége ezen elemek

elpakoldsdhoz.

BIZONYITAS. Két esetet kiilonboztetiink meg. Ha feltessziik hogy 2¢f, < ¢f, akkor
a 7. lépés tures, és igy
/ /

c. — 2¢c ¢k — 2¢ c c
R e e

Ha cf < 2¢4, akkor a 10. lépés iires, és

SJEsS

2

Hy(L) < [5@} 1 : :

amibol adddik az allitas.

4.3.2. LEMMA. [7] Tegyik fel, hogy a Hy heurisztika 8. lépése legaldbb egy olyan

hdrmast képez, amelyik nem fér el egy ldddban. Ekkor,

Cqg — Tigg — 2 (Ce . mls)

4

Yza5 + Yaas < + 2myygs + mas + mag — 1.

BI1ZONYITAS. A feltétel szerint myys < k3. Ezért vannak olyan z;,z; € C§ és x;, €
C¢ elemek, hogy z; + z; + z; > 1. Kovetkezésképpen, ha z;,z; € C} és x), € ct,
akkor x; + z; + z; > 1. Tekintsiik az sszes olyan Cf és (Cf-elemet, amelyet nem
pakolt el a Hy algoritmus harmaséaval. Jeloljiik ezeket a halmazokat C';-vel illetve
Czb-vel. Jeloljiik azon Cs-elemek halmazat amelyek Cs-elemekkel keriiltek parba

a 4. lépésben C2-vel, illetve azon Cy-elemek halmazdt amelyek Cg-elemekkel
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keriiltek parba az 5. lépésben Cl6-tal. Az algoritmus definiciéja szerint a C¢2-
elemek mérete nem lehet kisebb mint a C¢ és C¢* halmazokban taldlhaté elemeké.
Hasonlé allitds igaz a Cy-elemekre. Vegyiik észre, hogy ha x;,z; € C5 U Ct U Oy
és x), € CLUCE? akkor x; +z; 4z > 1. Most belatjuk, hogy az olyan (445) vagy
(345) tipusu ladak szama, amelyeket a C3*UCUCLUCEUCY U U Cy halmaz
elemeibdl képeziink legfeljebb ks — myss — 1 lehet. Tegyik fel az ellenkezojét,
vagyis hogy T' > ks — mys ilyen tipust ladat tudunk képezni. Feltehetjik, hogy
az osszes C5PUCEt-beli elem szerepel a pakoldsban, mert kiilénben egy nagy elem
helyettesithet lenne egy hidnyzé elemmel a C3*U Cg% halmazhdl, anélkiil hogy
barmi valtozna. Jeloljik az ezen ladakban levo elemek méretének osszegét S-sel.
Mivel a pakolasok jok, ezért T' > S. Masrészt az elemeket csoportositani tudjuk
tgy harmasaval, hogy minden egyes harmasban az elemek 0sszege nagyobb mint
i fgy kapunk 7" harmast. Ebbol S > T' kovetkezik, ami ellentmondas.

Eddig nem vettiik figyelembe azokat a C5 és Cy-elemeket, amelyek a 8. lépésben
harmasaval kertiltek elpakoldsra, illetve Cy vagy Cs-elemekkel rakta oket ossze az
algoritmus a 3. vagy a 4. lépésben. Az ilyen elemek szama 3muyqs + mys +maq. A
lehetd legjobb pakoléds az, ha minden ilyen elemet két CtUCEUCSU CL2UCs-beli
elemmel pakol Gssze az eljaras, feltéve hogy van elegendé szamu ilyen elem. Ily
moédon legfeljebb 3myys + mqs + mos tovabbi ladat kaphatunk. Mivel definicio

alapjén ks < S=mau—2ce=me) a7 3]l{tds adédik.

Ezek utan kovetkezhet a {6 tétel.

4.3.3. TETEL. [7] H7(L) < %L* + 3 tetszdleges L listara. Tovabbd végtelen sok

: s Hy(Ln
olyan L, lista létezik, amelyre JL,—) = 5/4.

Bi1zoNYITAS. El6szor csupan olyan olyan listakat fogunk tekinteni, amelyek nem
tartalmaznak sem C7 sem Cp-elemeket. Legyen L egy ilyen lista. Az egyenlotlenség
bizonyitdsahoz kiilonbozd eseteket fogunk tekinteni. Aszerint fogunk kilonbséget

tenni, hogy a 4. és az 5. lépésben elfogynak-e vagy sem a Cj és a (s-elemek.
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Jelolje ¢s azon Cs-elemek szamat, amelyek nem fogynak el az 6. lépés kezdetéig

(eltekintve a megmaradt elemektol), és ¢s az ugyanilyen Cs-elemek szamat.

Aeset: ¢5=0,¢=0
Konnyen kiszamithato, hogy ebben az esetben

C3z — a3 Cq4 — T4

2 2

H:;(L) < ¢ +Cz+[

€3 — msz Cq — Moy
+

5 5 J+2§01+02+

+2.

A 4.2.1. lemmat alkalmazva a C és a Cs4 halmazokra adédik, hogy

¢34 ¢4 — kg — Moz — Mgy
L*ch+02+ 2 9

és gy
k
HﬂmgLﬁ+§+2§Ltﬁf+2§§U+z

Beset: ¢ =0,¢6>0

A 4.3.1. lemma segitségével kiszamithatjuk a H; altal felhasznalt ladak szamat

€3 — Mas e [c‘i - mu} 1 Ce — M1e — Mo — [3——27"21J
2 2 4

1 1 1 3
5 g b eg TEts ey e = <Mis = g 1Mag— Mg = 77 +3.

2 3 4 + 2 8

H/(L) € ateca+ + 2

A (4.2) - (4.7) egyenletek segitségével kapjuk, hogy

5 3 11 5
Hz(L) < yi+yis+ Y16+ Y2+ Y23+ —Y2a + Y25 + Y26 +

4 2 8 4
+5 + - + : + + i + - + ¢ + 0 +
— — — 1 — — —1 —
4 Y256 2 Y266 5 Y3 T Y33 3 Y34 5 Y3s 1 Y36 1 Y336
+7 + g = l + 3 + + § + } + 3 +
3 Y345 3 Y346 ) Y355 1 Y356 T Y366 1 Y3666 3 Ya 1 Ya4
—I—3 + 2 + : + + 2 + 51 + 71 + J +
— _’l s wa— pe——- P —
3 Y45 3 Yae 1 Yaa5 T Y446 ) Y455 3 Y456 R Y466 3 Y4566
+9 i 1 + - <= L + l + l + E + ll +
8?/4666 4y56 4y556 2y566 43/5556 2y5566 4y5666 4./6
+ k 4+ 3 + . L m : m +3
— - — —Mig — — — —Migg — —Miyg ;
9 Yee P Yee6 T Y6666 1 16 9 23 3 24 1 2



Ha elhagyunk illetve noveliink néhdany negativ egyiitthatot, és hozzaadunk néhany

nemnegativ értéket a jobb oldalhoz, a (4.1) egyenlet segitségével kapjuk, hogy

1 3
H,(L) < L*+- 1 2(ya3 + Y2e6) + 2?/24 + Y16 + Y2 + Y26 + Y256 + Y336 + Y3666 T+

1 1
+mqs + 5 (Y346 + Yases) — -2‘(21345 + yases) — (1maz + Mo + mige) —

— (Y35 + Ysse + Yas + Yaas + Yase + Ys + Yse + Yses + Yseee —

—2(y3s5 + Yass + Ysse + Yss + Ysses) — 3(Ysss + Yssse)| + 3.

Mivel ¢s = 0 és ¢g > 0, mge = ¢y — Mgz — Moy — (c5 — mys) teljesil, és igy

1
H,(L) < L™+ 1 Y15 + Y16 + Y23 + Y256 + Y266 + Y336 + Y3666 +

1 9
+§ (Y24 + Y345 + Y36 + Yases + y4666)] +3= ZL* + 3.

Ceset: ¢ >0,¢>0

A 4.3.1. lemma alapjan kapjuk H7(L)-re hogy

c3 — 4 — M Cg — Mg — | A=5E2
Hz(L) < ci14ca+ S =+ [(4 24J + l - J SE
2 2 4
il lcs —mls—m%J 19
3
£ o b st ot : !
c —c —c —c —Cg — —M15 — —1M16 —
> 1 C2 ) 3 3 4 3 5 1 6 3 15 1 16
1 3 1 43
——M93 — —Mlgg — =1 ’
5 23 3 24 3 25
Egyszertusitve
BAL) € - Spns 4 Sm -3 - et =g =gosh tiae -+ g asi o+
— — — — pa— __’[ ————
7( ) > U 33/15 43116 Y2 2y23 3 Y24 3yzs 4./26 12J256 2y266
-|-1 -+ +7 +5 +3 +§ +29 +9 +7 +
23,/3 Y33 8y34 63/35 Yse 43/336 2 Y345 8y546 6y355
13 56 + yes + L g e e b v g g
12y356 Y366 4y3666 8?/4 4y44 24y45 8?!46 12J445 Yaa6
% +23 el +§ b et Bk et
24 Y455 Yase 8y466 Y4566 8y4666 3J5 3Jss Ys55
oo+ E 2 ys + § % L g Akl +
123/56 12y556 6y566 43;/5556 6y5566 12J5666 4J6 2y66
1 1 It 3
+Zy666 + Yee66 — 5”715 = Zm16 = §m23 = §m24 = gmzs + 3;
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és 1gy

1. [FF 3 4
H;(L) L™ + = | =y2s6 + 2(y23 + Ya266) + 5 Y2 + = (y15 + y2 + Y25 + y26)+

. 3
5 2
+Y16 + Y336 + Y3666 T Yssse + 6(‘%45 + Yases) + §(y355 + Ysses) +
1 1 1
+§(y346 + Yaees) + §(y445 + Y356 + Ysess) + gy455 —

4
—(ms + mae) — g(mzs + moq + mos)| + 3.

Mivel mogs + may + mos = cg, (4.3)-bdl adddik, hogy

1

4
< - 1139 + Y16 + Y256 + Y336 + Y3666 T Ysss6T

Bs
*

H7(L)

2
(Y345 + Yases) + g(y23 + Y266 + Ysss + Ysses) +

1
(y3a6 + Yaces) + -3-(?/356 + Yaas + Ysess) +

(Y24 + Yass) — (mas + m]g)] + 3.

+

+

+

|~ N =] L

A 4.2.1. lemmat alkalmazva Cj-re és (s g-ra adodik, hogy y15 + y16 < %cl +mqs+

mqe. Ekkor

1
H;(L) < L+ 7 |Y258 ~+ Y336 + Y3666 + Ys556 T+

2 ‘
+—=(y15 + Y345 + Yases) + = (Y23 + Y266 + Ysss + Ysses) +

3
(y1 + Y16 + Y346 + Yaees) +

+

1
(y3s6 + Yaas + Ysees) + 6(1/24 + Yas5)| + 3

+
N Wl —=o

o}
&

*

<

W= | Ot

Ebbol adddik a tétel allitasa erre az esetre is.

Deset: ¢ >0,¢=0

A H; szamara szikséges ladak szama ebben az esetben
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H,(L) < ¢14c+ [

c3 — ngJ {64 = m24J I [Cs — Mys — M5 — Mags

2 2 3 J+2

1 1
< o +e+ 5(63 + cq — Mgz — mog) + g(cs — M5 — Mas — Mags) + 3.

(4.2) — (4.6)-bdl konnyen igazolhatd, hogy

4 3 3 4
H:(L) < w1+ gyls + Y16 + Y2 + ZY23 + =Y24 + Y25 + Y26 +

2 2 3
4 1 5 1
+§y256 + Y266 + §y3 + Y33 + Y34 + 63/35 + §y36 + Y336 +
2 yaas + o + ~yass + —yass + =yase + =yssas + =¥a + Yaa +
— — — — —1 —1
3 Y345 T Y346 6 Y355 6 Y356 5 Y366 5 Y3666 5 Ya T Yaa
2 a5+ 2 a0 + 2Yaas + Yaso + <ass + yass + = Yass + 2 thases +
— — — — _rl 3 — ] o
6 Yas 5 Y46 3 Y445 T Ya46 6 Y455 6 Y456 9 Y466 6 Y4566
s g 4 e - 16 e s - Fass b
2y4666 3 Ys 3y55 33/56 Ys55 3 Ysse 39566 Y5556
n 2 n 1 1 1 1 1 13
— — — =M1 — —Mo3 — — Moy — — - — .
3 Y5566 3 Ys666 3 15 2 23 5 24 3 mys 3 T 445

A (4.1) egyenlet segitségével adédik Hr-re, hogy
M=y 4
Hyld). £ LT+ 1 2 (y23 + yaa) + 3 (Y15 + Y25 + Yase6 + Y3as + Yass) +

2 2
+§ (yass + Yas5) — 3 (yas5 + Yase + Yas + Yase + Yases) —

4
3 (ys5 + Ysse + Ysses) — 2 (Y3 + Yae + Yses + Ysess + Ya + yas+(4.8)

8
+ Y466 + Ya666) — 3 (ys + yse + Yses + Ysess) — 4 (Y6 + Yes + Yees+

4
+Yes66) — 2 (mas + maq) — 3 (mas + mas + maas )| + 3.

Ha a 4.2.1. lemmat alkalmazzuk Cj-re és Cs¢-ra kapjuk, hogy y15 + y16 < 3 +
mys+mqe ami ekvivalens az %yl —%Jls—%ym-}-%mls%-%mm > 0 egyenldtlenséggel.

A (4.8) egyenldtlenség a kovetkezoképpen irhato fel:

1 4
H,(L) < L™+ 1 2 (Y23 + y2a) + 3 (yas + Y256 + Y3as + Yaas) + Y15+

2 1 1

2
+§ (Y355 + Yass) + gyl = gyle 3 (y35 + Ysse + Yas + Yase + Yases) —
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4
—= (ys5 + Yss6 + Ysses) — 2 (Y3 + Yse + Yses + Ysees + Y4 + yas+ (4.9)

3
8
+Ya66 + Yaoos) — 3 (ys + yse + Yses + Ysess) — 4 (s + Yes + Ysss+
2 2 .
+Yee66) + §m16 . gmls 3 (mas + maas) — 2 (mas + mag) | + 3.

A D esetben nem fogynak el a Cs-elemek a 4. lépésben, és igy

Ma3 + Mag + Mmas — c2 = 0. (4.10)

Nyilvanvalo, hogy

mie S Cg (411)

Ha van legalabb egy olyan harmas a 8. lépésben amely elhelyezheto egy ladaban,
akkor hasznalhatjuk a 4.3.2. lemmat. A megfelelo egyenlotlenséget %-dal megszo-
rozva, (4.11)-gyel egyitt adja, hogy

4 2 1 2 2

1
6 : 3/t ' 37Ms i s 524 — 3Y3a5 — 3Yaas >0 (4.12)

Ezutdn megszorozzuk (4.10)-et 2-dal, és (4.12)-vel egyiitt beszirjuk (4.9)-be. Fel-
hasznalva (4.11)-et, a kivant egyenlotlenség adodik. Vegyiik észre, hogy az osszes
negativ egyttthatoju tagot elhagytuk.

H,(L) < L+ i Y15 + Yaas + %(y% + Y345 + Y346 + Yaae +

2
+Yas5 + Yases) + g(ym + yas6 + Ysze + Yass + Yssse) +

1 1
+§(y1 + Y16 + Yaa) + 6(.@34 + Yase + Yases)| + 3.

Ezutén feltehetjiik, hogy az 0sszes a 8. 1épésben Osszeillesztett harmas belefér a
hozzatartozé ladaba. Ez azt jelenti, hogy my4s = k3. Két esetet killonboztetink

meg. Ha myqs = [% — A 2 ﬂzlﬁ], akkor ezt atirva

4 1 I 2

§7n445_§c4+§m24+566“§m16 > 0. (4.13)
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Ezittal (4.10)-et 3-dal szorozzuk és (4.13)-mal egyiitt hozzdadjuk (4.9)-hez.

A masik eset a kovetkezoképpen formalizalhato:

—m C "I‘ —m m . .

Ekkor (4.10)-et és (4.14)-et adjuk hozza (4.9)-hez. mqg-ot szintén helyettesitjiik,
(4.11)-nek megfeleléen. Felhasznalva (4.5)-6t, (4.6)-ot és (4.7)-et ellendrizhetd,
hogy Hr7(L) < 2L*+3 teljesiil mindkét esetben. Ezzel az utolsé eset bizony{tdsat
is befejeztiik.

Tételiink tehat igaz minden olyan listara, amely nem tartalmaz Cy és Cr-
elemeket. Tegytik fel most, hogy L egy olyan lista, amely tartalmaz Cy-elemeket,
de nem tartalmaz Cr-elemeket. Ekkor L barmely pakoldsaban minden egyes Cy-
elem egyediil van egy lddaban. Legyen Lo = L\ Cy. Kapjuk, hogy Hr (Lo) =
H; (L) — ¢, és Ly = L* — ¢y. Az elozdek alapjan, H7(Lg) < EL* + 3. Ezért,
H7(L) = Hr(Lo) 4+ co < L5434 co < SL* +3.

fgy a tétel igaz az olyan listakra is, amelyek Cy-elemeket is tartalmaznak.
Tekintsink most egy olyan L listat, amely Cr-elemeket is tartalmaz. Ekkor két
lehetoség van:

Ha a H7 nyit uj ladakat a 12. lépésben, akkor minden egyes lada - kivéve eset-
leg az utolsét - legalabb 2 részig tele kell hogy legyen. fgy, L* < 2 (H7(L) - 1),
amibdl adddik a kivant eredmény. Kiivetkezésképpen feltehetjiik, hogy a H;
algoritmus nem nyit 4j ladakat a 12. 1épésben. Legyen L; = L\ C;. Nyilvanvalo,
hogy H; (L) = H; (L), és L3 < L*. Mivel az L7 lista nem tartalmaz Cr-elemet,
ezért az egyenlotlenség teljestil tetszoleges listara is.

Most mar csak azt kell belatnunk, hogy van végtelen sok olyan lista, amelyre
egyenloség teljesiil. Ezt az alabbi egyszeru konstrukcioval tehetjitk meg:

Legyen n = 3m és m € IN. Tekintsiik azon L,, listakat, amelyek 2m darab

Cs-elemet és m darab Cg-elemet tartalmaznak, melyek mérete 3/8 + ¢ illetve
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1/4 — 2e. Ekkor, H7(L,) = 2 + 2 = 2m, és L} = m. Ebb8l kovetkezik, hogy
-Hi](-}ﬁ = 5/4 minden L, listara.
a

LUEKER és DE LA VEGA eredményei miatt nyilvanvalo, hogy az eredmény
megjavithatd, és megadhaté olyan lineéris idébonyolultsagi algoritmus, ami £,
vagy annal is jobb aszimptotikus legrosszabb-eset hanyadossal rendelkezik. Ugy
véljiik, hogy bar az algoritmus linedris marad (mint a DE LA VEGA, LUEKER
algoritmus), azonban nagyon bonyolultta véalhat és lehet, hogy az esetek nagy

szama miatt a bizonyitas hosszisaga "exponencialisan” fog novekedni.
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Summary

This dissertation deals with two different topics of combinatorial optimization.
The first one is data compression, the second one is bin packing. In this thesis
we are concerned with a worst-case analysis of some on—line or off-line heuristics
for the above mentioned problems.

Usually optimizing means finding the maximum or minimum of a certain
function, defined on some domain. Classical theories of optimization deal with
the case when this domain is infinite. In case of combinatorial optimization typical
problem instances consist of the maximization or minimization of some objective
function over a finite feasible set.

Often, when the objective function is too "wild”, constraints are too compli-
cated, or the problem size is too large it is impossible to find an optimal solution.
Mathematicians and computer scientists have developed theories to make intu-
itive assertions about the difficulty of certain problems. This is the theory of
NP-completeness.

In cases when the optimal solutions are too hard to find, algorithms (so called
heuristics) can often be designed that produce approximately optimal solutions.
It is important that these suboptimal solutions have a guaranted quality; e.g., for
a given maximization problem, the value of the heuristic solution is at least 90%
of the optimum for every input.

To measure the efficiency of a heuristic, we can use worst-case analysis. Using

this technique we can derive results, which hold for every individual problem
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instance. To give the exact value of the behaviour of a heuristic, we can use the
asymptotic worst-case ratio, i.e. the limes superior of the ratios of the solution
values given by the heuristic and the optimal algorithm, while the size of the
problems goes to infinity.

Another important aspect is the on-line solution of combinatorial optimization
problems. In many practical situations data come in one by one and decision must
be made before the next piece of data arrives. This kind of heuristics are called
on-line algorithms. When all data are known before the optimization algorithm
is called we talk about off-line algorithms.

The second chapter of the dissertation gives a detailed introduction to data
compression. It presents the basic definitions, the most important theorems and
compression methods.

Compression means making things smaller by applying pressure. Data com-
pression is not about physically squashing data, but about finding ways to rep-
resent it in fewer bits or bytes. In this thesis we deal only with those case, where
the original data can be exactly reconstitute from the compressed form. There
are many other kinds of data reduction, such as voice and picture coding, where
some degradation of quality may be tolerable if a more compact representation
is thereby achieved.

In the second chapter we introduce fundamental concepts from information
theory. We peresent the probabilistic models that are used for data compression.
The well-known Huffman’s algorithm and the arithmetic coding are among the
topics of this of this chapter.

A different approach from statistical methods of modeling and coding is dic-
tionary encoding. This kind of coding uses a dictionary to translate the original
string to a shorter one. The dictionary consists of ordered pairs (source-word,
code—word), which are used to replace a substring in the original string. In the
second chapter we describe the very popular Ziv-Lempel algorithm, which uses

dictionary encoding.
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In the third chapter we are concerned with a worst—case analysis of some on—
line heuristics for data compression. These algorithms are based on dictionary
encoding.

In this dissertation we consider only methods which use a static dictionary,
i.e. a fixed dictionary, that cannot be changed or extended during the encoding—
decoding process. Our aim is to translate (encode) the source string with the
help of dictionary strings into a code-text with minimal length. The problem
defined by the above setup is equivalent to the problem of finding a shortest—path
in a related directed, edge—weighted graph. It is straight forward to see that the
problem of finding an optimal compression is equivalent to the computation of a
shortest—path in a suitable graph.

If the graph has many cut vertices (i.e. vertices which divide the original
problem into independent subproblems) and in case that these subproblems are
reasonably small, we can solve the problem efficiently and compute the optimal
encoding. Unfortunately, in practice this will not be the case and an optimal
algorithm cannot be applied as dealing with very long strings would take too
much time and storage capacity. Therefore, many on-line heuristics have been
developed to derive near optimal solutions.

The third chapter of the thesis deals with the worst—case analysis of four dif-
ferent on—line heuristics. It solves some open problems for well-known heuristics
(Longest Matching and Differential Greedy) using different type of dictionaries.
Based on experimental reasults a new heuristic ( Fractional Greedy) is defined and
analysed for those types of dictionaries.

The results show that these algorithms have similar behaviour except some
special cases. We can conclude that the type of a dictionary plays an important
role in the behaviour of a heuristic. An algorithm can be optimal for some type
of dictionaries and very bad for other ones.

Because on-line algorithms have only very restricted information about the

string to be compressed, we analysed an algorithm (Longest Fragment First),
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which has not been strictly on-line. This algorithm were analysed experimentally
before, but theorectical results have not been known since now. In the last section
of this chapter we prove some results for this heuristic. In this case we use more
information to compress a string, so the results are obviously better.

The fourth chapter of the dissertation deals with I-dimensional bin packing
problem. In this problem we are given a list L = {z1, 23, ..., 2, } of real numbers
from [0,1) and an infinite list of unit capacity bins. Each number z; has to be
assigned to a unique bin such that the sum of the elements in each bin does not
exceed 1. Our aim is to minimize the number of used bins. It is well-known
that finding an optimal packing is NP-hard. Consequently, a lot of papers have
been published which look for polynomial time algorithms with an acceptable
behaviour. As we mentioned before algorithms can be on-line and off-line. In
this dissertation we deal with off-line algorithms. The off-line algorithms know
the whole list before they apply their strategy to pack the items. For measuring
the efficiency we use the asymptotic worst—case ratio.

Most of the published algorithms have at least O(nlogn) time—complexity
(see for example the First Fit Decreasing, Best Fit Decreasing heuristics). Linear
time complexity algorithms were always "refreshing exceptions” among the other
experiments. It is well-known that for every e > 0 there is an algorithm A such
that A(L) < (1+4+¢)L*+ C., and A runs in time O (n) + D.. Here A(L) means
the number of bins used by algorithm A, and L* means the number of bins in
an optimal packing. It is remarkable that the constants D. and C. depend on ¢
only but not on n. Unfortunately these constants may be very large, namely they
grow exponentially in 1/e. This has a consequence: The theoretically excellent
algorithm is not usable in practice. The best linear time algorithm, which could
be used in practice, have had 4/3 asymptotic worst—case ratio until now.

In the last chapter we present a linear time off-line bin packing algorithm,
which has a 5/4 asymptotic worst—case ratio. The algorithm is based on a clas-

sification of the elements and a pairing technique originally due to MARTEL.

98
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