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CHAPTER 1

Introduction

1.1 Optical Cavity Quantum Electrodynamics

The past decade saw an amazing development in the field of optical resonators and that
of cold atoms. Recently, by the fusion of these two fields, a new microscopic system has
been created: a tiny optical resonator (cavity) embedding an atom, which is trapped for
a long time and is strongly coupled to the electromagnetic field of the resonator. Here
the light-matter coupling allows us to study the fundamental features of interacting
systems in general. The atom-cavity interaction can be tuned very precisely, and the
system eventually realizes a controllable coupled dissipative quantum dynamics on a
quite generic level.

Previously, when dealing with light-matter interaction, one of the components could
be utterly simplified to render it a parameter in the dynamics of the other component.
On one hand there is optics, where matter is used to manipulate light: matter is put in
parametric form (refractive index) into the Maxwell equations to describe the propa-
gation of light. On the other hand, there is also a plethora of examples for the com-
plementer case when light is used to manipulate atoms. When treating these phenom-
ena, the amplitude of the light field is given as a prescribed function in the Newton or
Schrodinger equation governing the behaviour of matter.

In a cavity, however, light-matter interaction is realized on a more general level
since both the light and the matter components are dynamic. Cavity QED — CQED —
[for reviews see 1, 2], though at first sight only a very special case in quantum optics,
can therefore also be looked on as a generalisation of both optics, and matter manipu-
lation by light, because of the introduction of a new dynamical element. These latter
can in principle be obtained as certain limiting cases of CQED, cases when either the
dynamics of the atom or that of the field can be omitted.

The origins of CQED can be traced back to the 1940s, when it was discovered [3]

that the radiation properties of an atom are determined not only by its electronic struc-



ture, but also by the mode density of the surrounding electromagnetic field. This latter
can be modified by boundary conditions, which allows us to manipulate the radiation
properties of atoms. Indeed, in the 1980s it has been demonstrated experimentally that
for excited atoms traversing a cavity the excited state’s lifetime differs from the one
measured in free-space [4, 5, 6, 7].

In these experiments the cavity was present as a passive element merely to tailor
the mode density of the electromagnetic field surrounding the atom. The dynamics of
the cavity field was irrelevant. It must be accounted for only in the regime of strong
atom-field coupling. The parameter describing the atom-cavity coupling is the single-
photon Rabi frequency: This is the frequency of the oscillation between atomic and
cavity excitation (Rabi oscillation) when there is only one excitation quantum (atomic
excitation or photon — hence the name “single-photon” Rabi frequency) in the system.

Let us overview the characteristic frequencies of the system:
e single-photon Rabi frequency g,
e spontaneous emission rate v,
e cavity decay rate &,
e inverse of the atom-cavity interaction time (atomic flight time through the cavity).

Strong coupling is achieved when the first one dominates all the rest. This clearly
means that the atom and the cavity exchange the excitation several times before it is
dissipated into the environment via either dissipation channels (cavity decay or spon-
taneous emission) or the atom leaves the cavity. In a sense, the identities of atom and
field are lost and we are left with a single new object.

Strong coupling was first achieved in the micro-wave regime in the 1990s. With
this system a series of very fundamental quantum mechanical experiments were per-
formed such as the direct proof of field quantisation [8] and decoherence of quantum
superpositions [9]. Reaching strong coupling in the optical domain is a much more
challenging task, since due to the short wavelength very short cavity length (10um —
100pm) is needed. Since the cavity length is short, photons are reflected more often,
therefore to obtain small x extremely good mirrors are needed (with transmission co-
efficient < 107°).

Hence, strong coupling can be interpreted as one single photon making several
round trips in the cavity, each time impinging on the atom. An interesting consequence
is that the optical resolution, which in free space equals the half of the wavelength is
improved by a factor of the square root of the number of round trips. This has lead to

the creation of the so called atom microscope: the trajectory of atoms in a cavity can be



reconstructed from the time-resolved analysis of the light intensity escaping the cavity
[10,11, 12].

Entering the optical domain yields a substantial difference as compared to the micro-
wave regime since the momentum of optical photons is big enough to significantly act
on the atomic centre-of-mass, making it a part of the dynamics. In an optical resonator
even a very weak field, in fact, a single photon agitates the atom considerably, which
was first experimentally demonstrated by Hood et al. [13]. Hence, in optical CQED we
have three degrees of freedom: the atomic internal one (electronic configuration), the
atomic CM motion, and the state of the cavity-field.

When an optical field impinges on a fixed atom, two types of forces emerge [14]:

Dipole force originates from photon absorption from the field followed by stimulated

emission into the populated laser mode.

Radiation pressure arises from photon absorption from the field followed by sponta-

neous emission into a vacuum mode.

Their duality on the microscopic level clearly corresponds to the duality of the real part
(phase shift) and imaginary part (absorption) of a macroscopic dielectric’s complex re-
fraction index. The dipole force is conservative and can be rendered by an optical po-
tential. The radiation pressure is dissipative: the stochasticity of the emitted photon’s
direction yields momentum diffusion via atomic recoil (recoil diffusion).

When the atom moves, light forces depend not only on its position, but also on
its velocity. In the simplest case this dependence is via the Doppler effect. Suppose a
counter-propagating pair of laser beams red-detuned from the atomic resonance im-
pinge on the atom. In this case a moving atom is more likely to absorb a photon with
momentum opposite to its direction of motion since the counter-propagating mode is
Doppler shifted nearer to resonance. The spontaneous re-emission of the photon, on
the other hand, is isotropic and yields no momentum transfer on average. The momen-
tum of the atom is therefore damped on average, which means cooling for an ensem-
ble of atoms. This simplest method of laser cooling is called Doppler cooling [15, 16].
When applied in three dimensions, it resembles the atom moving in a viscous medium,
hence the field of three pairwise orthogonal counter-propagating pair of red-detuned
laser beams is often called “optical molasses”. Similarly to classical Brownian motion,
the final temperature is determined by the contest of the above described friction and
recoil-induced diffusion, the lowest achievable temperature scaling with the sponta-
neous emission rate.

More elaborate laser cooling schemes include polarisation-gradient cooling, where

the limiting temperature is determined by the stochasticity of the last spontaneously



emitted photon, so that it scales with the recoil frequency [17]. For certain atomic tran-
sitions even this recoil limit can be penetrated eg by velocity-selective coherent popula-
tion trapping [18]. Here the temperature is already in the nano-Kelvin regime. Prepara-
tion of ultra-cold atoms and molecules has allowed for the study of many phenomena
stemming from the quantum nature of matter (just think of eg atomic Bose-Einstein
condensates [19, 20]), and has already yielded many applications such as atomic clocks,
atomic interferometers, and lithography. Quantum objects absent from thermal noise
and prepared in their ground state are vital for quantum information processing. Eg
with laser-cooled ions in ion traps, quantum teleportation and multi-bit quantum op-
erations have been performed [21].

In the above cooling schemes spontaneous emission is of paramount importance.
At first sight it may seem that it merely heats the atoms via the recoil noise, and it
may not be as transparent that this alone is responsible for cooling. Indeed: cooling is
irreversible damping of the kinetic energy, and a dissipative channel must be inherent.
In the laser-based cooling schemes the only irreversible process is light scattering from
the laser into surrounding vacuum modes, that is, spontaneous emission.

Recognition of the central role of spontaneous emission calls the Purcell effect into
our mind, that is, the possibility of modifying spontaneous emission by a cavity. This
must have some impact on laser cooling properties. Based on the prohibition or in-
crease of spontaneous emission on certain frequencies many cooling methods have
indeed been developed [22, 23, 24, 25]. In a general form it has been pointed out by
Vuleti¢ et al. [26] that in inelastic scattering processes — that is, when the scattered
photon’s frequency differs from the incoming one due to atomic recoil — the resonator
as a spectral filter prefers converting the photon frequency upwards. The necessary
energy must be taken from the atomic kinetic energy. Let us emphasise again that in
this approach the resonator is a passive element to tailor the mode density of the sur-
rounding vacuum field.

Laser cooling methods based on spontaneous emission have a very serious common
barrier: Since a single spontaneously emitted photon carries away only very little en-
ergy, a closed optical cycle is necessary to be able to repeat the scattering process. Now
in general an excited atom can end up in many different final states after spontaneous
emission. For a special class of atoms by applying repumping lasers for the incidental
dark states it can be achieved that the atoms remain in a closed subspace. However,
there is no mean to develop a general method to cool arbitrary atoms or molecules. For
the latter, the situation is even more complicated because the rotational and vibrational
states are so abundant that they form an almost continuous band in which the popu-
lation is spread after a few scattering cycles. In fact, cooling of molecules by optical

means is an unsolved problem.
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Partly there lies the significance of dynamical cavity cooling. It was first proposed
by Horak et al. [27] and studied theoretically in detail in Refs. [28, 29, 30]. Experimen-
tally it was first observed by Maunz et al. [31]. The effect is an important motivation
for the present work as well, the basic mechanism we shall overview in Sec. 5.1. The
name “dynamical” refers to that here the role of the cavity is more than the passive
role it plays in the Purcell effect. It introduces a new dynamical element to the system
and with it a new dissipation channel — the cavity field and the cavity loss channel. In
the strong coupling regime, the subsystems share all the available dissipation channels:
The atomic kinetic energy can transform into the cavity field’s energy and leak into the
environment via cavity loss. As a result it can be achieved that the limiting temperature
scale with the cavity decay rate, instead of the spontaneous emission rate as in Doppler
cooling. The former can be much lower than the latter for a good cavity.

Ultimately, spontaneous emission is not even necessary, all the cooling relies on
the cavity loss channel, which makes that the mechanism is free from the limitations
mentioned above for the spontaneous-emission based methods. Indeed, the method is
in principle applicable to general polarisable particles, ie even to molecules. Note that
dynamical cavity cooling outlines a very general cooling concept: to the object to be

cooled we couple another object and a new dissipation channel via this one.

1.2 Outline of the work

The following Subsections correspond to further Chapters of the work giving its outline
and the motivation for each Chapter. Most of the material to be presented in the work
is published in different journals, the references to the corresponding articles are given
here just after the title of each Subsection.

Part I of the work presents some preliminary material, most of which is not our
own work. The material of Part II is, on the contrary, mostly the result of our own

work performed during our PhD years since 2003.

1.2.1 The system we consider

Throughout but in the last Chapter we consider a prototype optical CQED system
which consists of a single mobile atom interacting with the field of an open (Fabry-Perot
like) optical resonator consisting of two opposing mirrors. When the atomic internal
structure is considered at all, we assume the simplest: A two-level atom, where the
upper level (excited state) can decay towards the lower (ground state), but the lower
has no spontaneous decay. We also assume that incidental degeneracies in the cavity’s

mode structure are fully resolved so that the atom is coupled only to one single mode



of the cavity field.

In Chap. 8 we consider many atoms interacting with the very same cavity mode.
Though direct (dipole-dipole) interaction between the atoms is neglected, the prob-
lem is inherently a many-body problem because of the cavity-mediated interaction.
The strength of this interaction does not even depend on the distance on the atoms,
only the distance modulo the cavity wavelength is important. The interaction has been

thoroughly studied in the simplest case of two atoms by Asbéth et al. [32].

1.2.2 Theoretical models

In Chap. 3 we describe four models that are used throughout the work depending on
the parameter regime under consideration. To facilitate further reference we assign

shorthand names for the different models

Model 0 is the standard quantum optical model for the atom-cavity system. It is
a fairly straightforward model consisting of two Jaynes-Cummings like terms
which describe the interaction of the atom with the cavity field and a driving
laser field (atomic pump). The cavity driving is a simple coherent one. Note that
in the Jaynes-Cummings approach some nontrivial approximations are already

inherent:

Dipole approximation assumes that the atom interacts with the electromagnetic

field only via its dipole moment.

Rotating-wave approximation consists of dropping very rapidly oscillating terms

which is justified as long as one is interested in much slower processes.

Dissipative processes are accounted for by the Lindblad approach with the Mar-
kov approximation inherent. Note that Model 0 gives full account of an optical
CQED system’s three degrees of freedom: the atomic internal and motional ones
and the state of the cavity field. Model 0 is not used for actual calculations in the

work, it is presented because it is the origin of all the further models

Model Osc [30, 33, 34] consists of the elimination of the atomic internal dynamics and
the cavity field leaving us with only one degree of freedom: the atomic CM mo-
tion. Even this is utterly simplified since we consider the atom as a classical point-
like particle. The elimination of the other two degrees of freedom is certainly not
adiabatic but in first order of the atomic velocity. This makes that their dissipative
dynamics is fully transferred to the atomic motion, which therefore resembles a
classical Brownian motion and must be described by a Langevin equation. The
noise stems directly from the quantum noise of the eliminated degrees of free-

dom, which explains the fact that this model is usually termed as “semiclassical”



in the literature, although the equations we actually solve are fully classical. A
great conceptual advantage of the model is that it yields closed expressions for
the coefficients of the Langevin equation, which allows for many analytic calcu-

lations.

Model 1 [30] consists of the adiabatic elimination of the atomic internal degree of free-
dom. With this we certainly lose eg the possibility of Doppler type cooling since
this relies on the non-adiabaticity of the internal degree of freedom. The atomic
dipole now becomes proportional to the electric field at the atom’s position. This
is just equivalent to a linearly polarisable particle, so that all results we derive
from Model 1 are not specific to a two-level atom but valid for general linearly
polarisable but possibly quantum mechanical particles, such as molecules or mi-
croscopic silicon balls. This model is valid in the regime where the driving is
far detuned from the atomic resonance since in this case the atomic excitation is
small, and the atomic internal structure is hardly perceived at all. In the present
work we mostly consider this regime because this is most interesting from the
point of view of cavity cooling: In this regime the conventional laser cooling
methods fail, but the cavity cooling effect survives. Since the atomic excitation
is small, spontaneous emission is suppressed, and the relevant dissipation chan-
nel is the cavity decay. It is with Model 1 that we demonstrate cavity cooling and
trapping therefore this method indeed should be applicable to cool molecules,
which is a major motivation for our work. In Sec. 3.3 we fully exhibit the cor-
respondence between a two-level atom in the far-detuned regime and a general
linearly polarisable particle, and we also show how the parameters of one trans-

form into that of the other and vice versa.

Model 1sc [29, 30] is such a restriction of Model 1 in which both the atomic motion
and the cavity field are described classically, but just as in Model Osc, the corre-
lated noise in their coupled dissipative dynamics is of fully quantum mechanical
origin. A significant difference as compared to Model Osc is that here the cav-
ity field’s dynamics is not eliminated, although in Sec. 5.3.3 we quite marginally
use such a version of this model in which we make the elimination similarly to
Model Osc. The coupled dissipative dynamics of atomic CM and cavity field is
described by a set of classical Langevin equations. Model 1sc is just about the
simplest model that has any chance for seizing the basic physics of optical CQED
with moving atoms. It is simple enough to be applicable to many atoms (even
of the order of thousands) and was indeed successfully applied in the discovery
of collective effects in many-atom optical CQED [35]. As shown in Sec. 3.4, a di-

mensionless version of the Model 1sc equations reveals us the real parameters



of the system. For one atom moving in one dimension we have to deal with six

parameters while in the very far detuned regime five parameters remain.

1.2.3 The quantum simulation

[36] In Chap. 4 we consider a possible approximative but fully quantum mechanical
solution of Model 1, based on the Monte Carlo Wave-Function (MCWF) method [first
proposed in 37, but worked out later in 38, 39, 40]. Our motivation is to explore the
quantum effects in the atom-cavity interaction, especially in such parameter regimes
which are available with current experimental techniques, but where Model 1sc is sup-
posed to be not reliable any more. At the same time we certainly outline the regimes
where the latter model may be effective.

There are basically two regimes which cannot be accessed by the semiclassical ap-

proach Model 1sc:

e The regime where the mean photon number is very low. This is the quantum
field limit, and as it will become transparent in Chap. 5, it manifests most of the

effects related to the strong-coupling regime of cavity QED.

e The regime where the kinetic energy of atoms is damped down to so low tem-
peratures that the quantisation of the atomic motion becomes necessary. This is
especially true in such experiments where a Bose-Einstein condensate (BEC) or
an atomic laser is made to interact with the cavity [as done mainly by 41]. In this
regime both degrees of freedom has to be quantised to give account of eventual
quantum correlations between the coupled degrees of freedom. Indeed, there
arises a number of questions concerning the overall quantum state of the sys-
tem. For example, quantum correlations pertain to any proposed scheme using
the strongly coupled interaction of cold atoms and the cavity as a single-photon

source [42, 43] or for quantum information processing [44].

Modelling an open quantum system with nonlinear dynamics as defined by Model
1 is a highly nontrivial task. Ab initio solution, ie a direct numerical integration of the
Master equation was tried, but is hopeless because of the large dimension of the Hilbert
space. The MCWF method reduces the problem of dimensionality with the help of a
proper sampling of the density operator by random wave functions.

While in the original proposition of this method the idea was to evolve several trajec-
tories to sample the density operator, here we find that to decipher certain measurable
physical quantities, it is enough to evolve one single trajectory for longer times. This is of
course the ergodic hypothesis, which we show to be practically applicable to the given

system. This allows us to further reduce the computational requirements.



A significant novelty of our simulation is that using the peculiar form of the Model
1 Hamiltonian, everything is calculated in momentum space, so that during the actual
simulation no numerical Fourier transformation is needed. This is a huge gain in both
computational time and accuracy as compared to conventional methods for solving
partial differential equations.

We note that Model 0 was simulated in [27, 45], and indeed, a priori, keeping the
atomic internal degree of freedom is an increment by just a small factor in the dimen-
sion of the Hilbert space. In the physically significant far detuned regime, however,
the simulation of Model 0 breaks down, due to the big frequency. Here with the effec-
tive dynamics of Model 1 gaining immensely on computational time, one can go much
deeper into the physics of the problem.

In our approach there is no peculiar geometrical restriction for the atomic CM mo-
tion, though a cutoff in momentum space is of course necessary, which translates to a
certain limitation for the fine structure of the wave function in real space. In a sense, we
consider more “real” atomic motion than in several proposals where the atoms move
quantum mechanically in a fixed external harmonic trap and interacts with a cavity
[46, 47] or the potential generated by the cavity field is so strong that it can be consid-
ered harmonic [48, 49, 50]. In these proposals the atomic motional state is expanded
in the eigenbasis of the corresponding harmonic oscillator and a cutoff is introduced in
the number of oscillator excitations. The problem there is how to take into account the
dynamical nature of the cavity-generated potential, which in their language translates
to a varying oscillator frequency and therefore varying basis states. As we shall see
in Chap. 8, a very similar problem arises when one tries to apply lattice models to the
atom-cavity system in the many-atom case.

In the future our simulation can be also used to describe a BEC interacting with the
cavity field. In the Gross-Pitaevski approximation this necessitates simply the addition
of a nonlinear term to the Schrodinger equation while in a first approach spontaneous

emission can be omitted, which is fairly justified in the far-enough detuned regime.

1.2.4 Quantum regime of cavity cooling

[36, 51] In Chap. 5 we enter such regimes of the atom-cavity interaction which can-
not be described by the semiclassical approach Model 1sc for each of the two reasons
mentioned above.

In Sec. 5.2 our main motivation is the work presented by Domokos et al. [29]. There
the authors studied the properties of cavity cooling as a function of the linewidth of
the relevant dissipation channel, that is, cavity decay. They used Model 1sc. It was

proved that the limiting temperature indeed scales with the cavity decay rate. Now



armed with our quantum simulation we justify their results in a regime where both
approaches are expected to work. We extend their work in two direction: we show that
even when there is on average only one photon in the cavity, it still fully exhibits the
cavity cooling effect. On the other hand, by decreasing the cavity decay rate we reach
so low temperatures where the number of excitation quanta in the atomic motion is

about 3. This is no semiclassical motion any more.

The authors of the above Reference also studied trapping time of the atom. This
we also try to check, but find a substantial deviation. We conclude that the difference
originates not solely from the quantum nature of the atomic motion since tunnelling
is negligible with our parameters. A possible explanation, rather, lies in the quantum
nature of the trapping cavity field. The potential it creates is not a classical one, but is
proportional to the photon number operator. In particular, the Oth Fock state creates no
potential. In a sense, the atom can escape via this Oth photon component. The effect
can be significant as a proof for the “graininess” of the field. For this it is important to
note that unlike in free space, in the atom-cavity system the average photon number
and the potential depth are independently controllable, since the latter depends also

on the atom-cavity coupling.

Sec. 5.3 is maybe the most significant part of the work. Here the role of the cavity
is studied from another point of view: We vary the coupling constant, but in such a
way that the Rabi frequency is kept constant. As we show this can be considered as
transforming from a free-space far-off-resonance dipole trap (FORT) to the dynamical
cavity cooling regime. In the strongly coupled regime very few photons yield the same
Rabi frequency, so that at the same time we also enter the quantum field regime. We

use Model 1sc and the MCWF solution of Model 1 in a complementary way.

We show that the dynamical cavity cooling mechanism unlike Doppler cooling does
not vanish in the very-far detuned regime. This regime when the spontaneous photon
scattering rate is kept constant is associated with deep optical traps. This, together
with cavity cooling allows for trapping in steady state, which was not possible in the
free-space FORT scheme. There, long time trapping is due to the fact that the atoms are

heated very slowly, but in steady state they are not trapped.

By studying trapping times we show that trapping (embedding cooling) is most ef-
fective when the detuning between the cavity resonance and the driving approximately
equals the cavity decay rate. This means a marked deviation from the previously pro-
posed cavity sideband cooling schemes, and proves that dynamical cavity cooling is of

a very different origin.
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1.2.5 Polariton cooling

[52] The Doppler shift is a fundamental effect ubiquitous in wave phenomena [53]. In
optics, an atom with resonance frequency ws moving in free space with velocity v along
a monochromatic plane-wave laser field with wave number k shows resonant absorp-
tion at the Doppler shifted frequency w = k/c = wa + kv. The shifted resonance forms
the basis of the above mentioned Doppler cooling mechanism. In Chap. 6 we revisit the
velocity-dependence of the atom-field interaction in the presence of a strongly coupled
cavity, and find that the very Doppler effect in the atomic absorption is modified.

This “anomalous” Doppler effect appears in the standard Doppler cooling geome-
try when a cavity is coupled to the atom with its axis orthogonal to the atomic motion.
In this case the atom-field coupling is basically constant and the resonator field exerts
no force in the direction of the atomic motion. On the other hand, here cavity loss plays
only a minor role in the dynamics. Surprisingly, the somewhat weird modification of
the atomic dynamics by the presence of the cavity still leads to a significant improve-
ment of Doppler cooling in the direction orthogonal to its axis. Its physical origin can
be traced back to the velocity-dependent delayed reflection of the light emitted by the
atom back on the atom. We emphasise that the geometry of the cavity hardly enters
the problem at all, so instead a cavity we can imagine various sorts of resonant systems
coupled to the atom, such as rings, waveguides or microspheres.

Although atomic spontaneous emission is the only effective dissipation channel,
owing to the anomalous Doppler effect, the temperature drops below the Doppler
limit. This property is reminiscent of the polarisation-gradient cooling, where dynam-
ical time lag of the population of the magnetic Zeeman-sublevels with respect to the
momentary light polarisation is responsible for the low temperature. Analogy can be
drawn also to the ground-state cooling of trapped particles by electromagnetically in-
duced transparency [54], where an intense laser field is used to produce a Fano-like
resonance in a A-atom. In the present case, it is the role of the passive cavity to mod-
ify the internal structure of the electronic degrees of freedom, producing the polariton
resonance with a complex profile. The role of the cavity as an additional dissipation
channel is not so essential here. Hence the cooling mechanism can be called “polariton
cooling”.

We note that the enhanced cooling in the Doppler geometry by a coupled cavity as

anticipated by us was recently observed experimentally by Nussmann et al. [55].

1.2.6 The atom-cavity system as a quantum seesaw

[56] A spatially modulated laser field far red detuned from an atomic resonance cre-

ates a designable optical potential to trap and manipulate ultra-cold atoms [57]. For
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a periodic lattice potential this enables tailored implementations of the Bose-Hubbard
Hamiltonian [58] to study quantum phase transitions [59] or ideas of quantum infor-
mation processing [44]. Our atom-cavity system can also be regarded as a dynamical
optical lattice where the atomic configuration acts back on the lattice potential due
to the coupled atom-field dynamics. In the regime of strong light-matter interaction
(strong-coupling CQED), which is experimentally accessible nowadays [31, 60], even a
single-photon cavity field exerts significant forces on atoms and the quantum proper-
ties of the field can no longer be ignored [36, 61].

One striking consequence of the lattice potential’s dynamical nature is the spatial
self-organisation of a laser-illuminated atomic ensemble first anticipated by Domokos
and Ritsch [35]. Above a threshold pump intensity, the atoms, spontaneously breaking
the continuous translational symmetry of the cloud, form one of two regular patterns in
a phase transition [62]. These patterns scatter the maximum field from the pump into
the cavity, which has one of the two possible phases, as observed experimentally by
[63]. The atoms find their stable configuration by a feedback mechanism: the potential
is created or at least modified by the cavity field which is composed of the interference
of components scattered from the pump by different atoms. Accumulating around
every other antinode the scattering into the cavity mode is enhanced by constructive
interference (superradiance), and the potential at the lattice sites occupied by atoms is
maximally deepened. In the present work the self-organisation process is overviewed
more in detail in Appendix C.

In Chap. 7 we describe an effect which may have deep impact on the self-organising
process when the atoms have a kinetic energy less than the recoil energy, ie their wave
function is flat on the wavelength scale, eg when using a BEC as an initial state [41].
For a “classical”, or mean-field description of the field no self-organisation would occur
because of the destructive interference of the field amplitudes scattered into the cavity
by different parts of the atomic wave function. However, this conclusion is invalid
since the cavity field realizes a quantum feedback [64] for the atomic motion, in which
entanglement is a crucial element. Scattered field amplitudes with opposite phases do
not cancel but entangle to different atomic wave functions [65]. The quantum aver-
age of the field amplitude is still zero, but the photon number is not, which is clearly
incompatible with the mean-field description. Field components of the superposition
create different forces, which pull the atomic wave functions towards the correspond-
ing self-organised configurations. Hence self-organisation is started immediately even
at 7' = 0 and without measurement induced projections [66] — in fact, no spontaneous
symmetry breaking occurs. The effect can be generic for a wide class of quantum phase
transitions whenever the quantum state acts back on its control.

Ultimately, this system is an experimentally accessible implementation of a “quan-
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tum seesaw”. The seesaw is a generic example of a system where the particle is subject
to a dynamically varying potential (feedback). In its unusual quantum version, the see-
saw undergoes an entanglement-assisted decay from the unstable equilibrium towards
the left- and right-tilted positions. In Chap. 7 we concentrate on the analogy between
the one-atom-in-a-cavity system and a quantum seesaw since this stems from our own
work with the MCWF simulation, while its possible impact on self-organisation was
studied in a cooperation [56]. This study, however, is by no means complete because
strictly speaking we have not yet been able to go to a thermodynamic limit with the
coupled quantum atom-field dynamics taken into full account, where a quantum phase
transition could be expected. This will be a major direction of our future work, and an
outlook on the fully quantum mechanical version of self-organisation with some pre-

liminary results is displayed in Chap. 8:

1.2.7 Many-body aspects — Outlook

In this Chapter after displaying the general framework for describing quantum me-
chanically many atoms interacting with the cavity field we continue with a negative
result: we argue that a standard Hubbard-type description of the atoms [58, 61, 67, 68]
cannot give account for quantum self-organisation. This is because this latter heav-
ily relies on the dynamical nature of the cavity-generated lattice potential, while the
Hubbard approach may work in the limit when this is only a perturbation.

In fact, the cavity-mediated interaction between the atoms is a strong one, with no
chance to be accounted for by some perturbative treatment. As we have seen it in itself
can result in a phase transition. This calls into our mind the possibility of a treatment
by some renormalisation method. We show that in momentum space the system can
be mapped to a lattice model where the cavity plays the role of a bosonic impurity: it
allows for scattering between certain lattice sites. The density matrix renormalisation
group (DMRG) method developed recently has been applied with great success for
such impurity models [69, 70], though in solid state physics both impurity and lattice
sites are usually fermionic. As an outlook of the work, we outline the possibility of a

DMRG calculation for the system.

1.2.8 Appendices

In the Appendices we discuss such material connected to our work, which is not our
own work, or if it is, it is not fully worked out and published, so that it cannot be incor-
porated into the main stream of the work or appear in the Theses. The hydrodynamic
approach for self-organisation displayed in Sec. C.1 is particularly interesting since it

yields analytic expression for the critical point of the phase-transition. A version of this
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has been published in Ref. [62].
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CHAPTER 2

System

In most of what follows we shall consider one single two-level atom moving in one
dimension in a strongly coupled high-finesse single-mode cavity field as depicted in
Fig. 2.1. We shall see that in most cases no reference is made as to the internal struc-
ture of the atom and we may as well consider an arbitrary linearly polarisable particle.
Eventually, in Chap. 8 we shall consider a set of such atoms (particles), which do not in-
teract with each other. x is the direction of the cavity axis and z is one transverse direc-
tion. In the actual numerical calculations 8°Rb were considered with the 52S; 2, F =3

— 52P4 /5, F = 4 transition since this is most widely used in optical CQED experiments.
3/2 y p p

2.1 System parameters

In the general case we may use two lasers to drive the system. The first one is the
cavity pump, a laser beam injected directly to the cavity via one of its mirrors. It yields
an effective pumping strength 7 for the given mode. The second one is a standing wave
laser field, a 1D optical lattice, which is perpendicular to the cavity axis, and hits the
atom directly. It will be often referred to as the atomic or transverse pump. It yields a

position-dependent effective pumping strength 7(r) for the given atomic transition.

A theoretically important nuance is that the frequency of the two pumps be the
same because we shall want eliminate their time dependence simultaneously by trans-
forming to a rotating frame (interaction picture). The atomic and cavity detunings are
defined as Ay = w — wa, Ac = w — wc, wa and wc being the resonance frequency
of the atom and the cavity, respectively. Dissipation channels are atomic spontaneous

emission with rate 2 and cavity decay with rate 2.

A crucial parameter is the single-photon Rabi frequency g of the atom-mode inter-

action, often termed as the coupling constant between the two. With more fundamental
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Figure 2.1: Scheme of the system atom-cavity.

parameters it can be expressed as

9=/ 5ecy (el dlo)e: @1)

V is the volume of the cavity mode. |g) and |e) are the ground and excited state of

the atom, respectively. d is the atomic dipole moment operator and e the polarisation
vector of the mode. We see for example that one way to increase the coupling between
atom and mode is to decrease the mode volume V.

In the actual applications of the model, the transverse profile of both cavity mode
and atomic pumping laser is neglected, so that they depend only on coordinate  and

z, respectively. They are straightforwardly taken to be sine modes:
f(x) = sin(K,x), (2.2a)
(the mode function of the cavity mode)
e (z) = mesin(K,z). (2.2b)

We note that one of the complex g, 1, and 7 can be chosen real and the phases
of the remaining two then describe relative phases. While Vukics et al. [34] discussed
the possibility of tuning one of the three relative phases, the one between the atomic
and cavity pump, and they did discover some interesting related effects, these will not
make part of the present work. Therefore, to make it simple, in all what follows all
three of g, 1, and 7 will be chosen real.

For the considered atomic transition v = 27 x 3MHz. Optical driving means a

wavelength of about 780 nm corresponding to a frequency w = 27 x 4 - 108 MHz.
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cavity pumped, atom

moving in direction :

NN

Configuration CX

atom pumped, moving

in direction z:

| N

Configuration AZ

atom pumped, moving

in direction z:

3

[

o
N

[
bo | 3

Configuration AX

Table 2.1: System configurations.

2.2 Configurations

While models are developed for the full system as described above, in the actual appli-
cations we always make some restrictions. In particular, we consider only such cases
when either the cavity or the atom is pumped.

When only the cavity is pumped then there is no force acting on the atom in the z
direction, so this need not be considered. This simplest will be referred to as Configu-
ration CX in the following.

When the atom is pumped, however, it scatters field from the pump into the cavity
mode, so forces will act in both directions. In Ref. [34] it has been proved, however, that
cross effects between the two directions have no impact on the statistical properties of
the system. Therefore, in the atom pumping case as well, we shall consider the two
directions separately.

The system configurations considered in this work are summarised in Tab. 2.1.
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CHAPTER 3

Models

In this Chapter we first introduce the “standard” model, Model 0, for the atom-cavity
system, which is the origin of all the further models. In the low atomic saturation
regime the atomic inner degree of freedom can be eliminated yielding Model 1. Both
models have a respective semiclassical approximation Models Osc and 1sc, in which the

atoms are considered as classical point-like particles, and the field is classical.

3.1 Full model — Model 0

Time evolution of this dissipative quantum system is in principle governed by the Mas-
ter equation:

p= = [H. + Lo (3.1)
We give the two terms in dipole and rotating-wave approximations and in the frame
rotating with the frequency of the pumps in terms of cavity field operator a and atomic
lowering, raising, and population inversion operators o, o, and o,. The Hamiltonian
term describing coherent evolution reads

2
= _ hAA 0., — ihn(r) (07 — o) — hAcala — il (a - aT) —ihgf(r) (aTa - CLTO') ,

24
(3.2a)
where the terms describe atomic external and internal degrees of freedom (free and
pumped), free field, pumping of the mode, and atom-mode interaction, respectively.

The Liouvillean term governing dissipative processes reads

Lp=k <2apaJr — [aTa,p} > + v (2/d2u N (u) ge~kaur gikaur 5 _ |:O'TO', p} > )

’ +(3.2b)
where the first term describes cavity decay and the second one atomic spontaneous
emission. f is the atomic mass; r = (x, z) and p are atomic position and momentum
operators. The model defined by these two equations is the root of all approaches to

the atom-cavity system presented in this Chapter.
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The second term of Eq. (3.2b) contains momentum recoil due to spontaneous emis-
sions: when the atom spontaneously emits a photon, it gets a momentum opposite to
that of the photon to fulfil momentum conservation. The unit vector u is the direction
of the spontaneously emitted photon, and N (u) the direction distribution characteristic
to the given atomic transition: this is taken to be isotropic for the sake of simplicity.!

ka = wa/c occurring in the same term is the wave number corresponding to the
atomic transition. We have two other wave numbers defined by the mode functions
(2.2). Note that for each pair of the frequencies w, wc, and wa the rotating wave
approximation to be valid, it is required that the difference of the two be much smaller
than the sum of the two. We can therefore neglect the difference between the three
wave numbers and choose kp = K, = K,. We then have one single length scale in the

system (until it is much less than the length of the cavity).

3.2 Semiclassical approach to Model 0 — Model 0sc

In a possible approximative approach to the model (3.2), the atomic centre-of-mass mo-
tion is approximated by Brownian motion, and the corresponding Langevin equation
is constructed from approximate solutions of the Heisenberg-Langevin equations for
cavity-mode amplitude and atomic polarisation [30, 33, 34, 52]. This approach we term
as “semiclassical” because the atom is a classical point-like particle and the field is also
classical (it is in a coherent state), but the origin of noise in their dynamics is purely

quantum mechanical.

3.2.1 Langevin equation for the atomic motion

In the limit of cold atoms, but with a temperature well above the recoil limit k7ve =
hK?/(2u), the atomic wave packet has a coherence length well below optical wave-
lengths. Accordingly, its position and momentum can be characterised by expectation
values of the corresponding operators [14]. As the atoms are slow, the motion can be
well approximated by a Brownian motion described by a set of Langevin equations
including the force to first order in velocity:

p

P ==, (3.3a)
n

p=f+8p+E, (3.3b)

where f is a conservative force, 3 is a linear friction tensor (a 2 x 2 matrix in the 2D

case), and Z is a noise term supposed to be white noise:

(B(t1) 0o BE(t2)) = Do(t1 — ta2), (3.4)

'For an S « P transition this means that the atomic dipole points into the y direction.
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where D is the diffusion tensor. The central issue is to calculate the coefficients of the
Langevin equations, that certainly depend on position r of the atom.
Coeftficients of the Langevin equation (3.3) all originate from expectation values of

the force operator, which, in turn, is derived from the Hamiltonian (3.2a):
F = —-VH =ihVn(r) (O’T - a) +ihgV f(r) (aTa - aTo> : (3.5)

The first term describes the force exerted by the pump laser directly impinging on
the atom. The second force term stems from the atom-cavity field interaction. The
conservative part of the force can be found from the steady-state quantum average of
this operator, f = (F). The friction coefficient 3 can be calculated as the linear response
of the force f to a time-dependent perturbation caused by the atomic motion [for details
of the calculation see 30, 33].

In this approach the classical noise is linked directly to the quantum noise of the
internal variables. Its correlations has been shown to vanish exponentially with a char-
acteristic time of y~! or k7! [33]. Hence, if in Eq. (3.3) the shortest characteristic time of

1

the evolution of r and p is much longer than =1 and x 7, it is well justified to replace

the coloured classical noise = with a white noise, as we have already done in Eq. (3.4).

This is fulfilled for slow atoms, that is, when the velocity Kv < y~1, k1.

3.2.2 Heisenberg-Langevin equations

Many techniques can be applied to obtain approximations for the coefficients of Eq. (3.3).
In each case, however, first the internal atom-field dynamics has to be solved somehow,
which contains the atomic motion in a parametric form. In the Heisenberg picture the

internal variables satisfy the following quantum Langevin equations:

i =3 [Hya] ~ ra+ €= (ibc — R)a+ gf(F)o +n+E, (3.6a)
g = % [H,0] —y0 + (= (iAx —7) 0 +29f(r) 020 + 2m(r)o. + (3.6b)
i 1
O'Z—g[ ,O'Z]_'Y<Uz+§>+<z

= ~af@) (la-+ale) = n) (o +0) =7 (04 5 ) + 6. 660

The noise operators describe white noise, so that their two-time correlation func-
tions are proportional to the delta function and the rate of the corresponding dis-

sipation channel (atomic spontaneous emission or cavity decay), conforming to the
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fluctuation-dissipation theorem:

(et €l (t2)) = 266(t1 — t2), (37a)
(Clt1) ¢ (1)) = 290(t1 — ), (3.7b)
(G(t1) G:(t2)) = 2v <<az> + %) §(ty — ta). (3.7¢)
The only non-vanishing cross-correlations are
(Gt ¢ (k) = 2y (o) (1 — t2), (37d)
(C(t1) Co(t2)) = 2v (o) 6(t1 — t2). (3.7¢)

All other correlations vanish.
The system (3.6) cannot be solved explicitly in its exact form, therefore we resort to

approximations.?

3.2.3 Bosonisation of the atomic dipole

In most of the cases of interest the so called bosonisation technique can be applied to
simplify the equations of motion [72]. In this approximation the population inversion
operator is replaced by its expectation value (o). Since the commutator of the o oper-
ators becomes a c-number: [0,0'] = =20, — — (20.), the atomic dipole operator can
be considered as a bosonic annihilation operator, hence the name. Egs. (3.6a,b) then
become linear in the operators and contain the average population inversion merely as
a parameter to be determined from Eq. (3.6¢) in a self-consistent manner. In this way
difficulties stemming from the quantum correlation term ao, disappear.

The use of this approximation is particularly useful in the limit of low saturation,
when the population is mostly in the ground state, and the two-level system can be
extended to an infinite latter (boson mode) without significantly altering the outcome
[72]. The population inversion then can be further approximated by constant —1/2,

disregarding its dynamics, and for the amplitude a of the resonator mode and the po-

larisation o of the atom we are left with two linear Heisenberg-Langevin equations:®
a=(iAc—r)a+gf(r)o+n+E, (3.8a)
o= (iAa =)o —gf(r)a—n(r) + ¢ (3.8b)

2We note that for a single atom moving in 1D, the Langevin equation has been numerically constructed
by Doherty et al. [71] in such a way that the internal dynamics was simulated while putting the atomic
motion on an appropriately dense spatial grid. What we do here is different: we want a model which

yields explicit expressions for the coefficients of Eq. (3.3).
*In the limit of extremely weak excitations when the dynamics can be restricted to the subspace of one

single (atomic or photonic) excitation, (c.a) = —1/2 (a) is exactly fulfilled [28].
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Further progress is made by solving the system (3.8) in different orders of the atomic
velocity. For this the time derivation on the LHS is replaced by the hydrodynamic
derivation

d

0
E — 5 + vV, (3.9)

while on the RHS variables are cast in the form

a=a® +val) + 0(?), (3.10a)
o =09 +vel +O@?), (3.10b)

where a(l) and o) are 2D vectors, which express the impact of atomic motion on the
cavity field and atomic polarisation up to first order in the atomic velocity, ie the non-
adiabatic response of the two to the atomic motion. The first-order expansion is a good
approximation as long as Kv < 7, k.

Putting these expressions back to Eq. (3.5), taking expectation values, and keeping
terms up to first order in velocity we obtain the Langevin force, that is, the coefficients
f and 3 of Eq. (3.3).

3.2.4 Adding the recoil diffusion

Since for the internal degrees of freedom the Heisenberg-Langevin approach is used,
the recoil diffusion has to be added to the diffusion matrix by hand — in the Lindblad
approach it was inherent, cf Eq. (3.2b). The recoil-induced part of the diffusion we
shall consider to be proportional to identity, which is in equivalent to the assumption
that in the Liouvillean (3.2b) the N(u) direction distribution is isotropic. The recoil
contribution reads:

Drec = 21212~ <0—Ta> . (3.11)

5

The diffusion originating from the quantum noise of the internal variables we call

dipole diffusion and is denoted by D;,. Hence, the diffusion matrix in Eq. (3.4) reads

D = Dyip + Drecl. (3.12)

3.2.5 Semiclassical field & polarisation

Important results of Model Osc, which are often referred to throughout this work are
the expectation values of the cavity field operator a and atomic lowering operator ¢ for
a point-like immobile atom at point r. These expressions are gained from the system

(3.8) by taking expectation values and solving for (a) and (o):

_ n(As—7) +gf(r) m(r)
(a) = (iAx =) (A — k) + g2 f3(r) (3.13a)
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(The first term stands for the field directly injected to the cavity by the cavity pump,

the second one is the field scattered by the atom from the atomic pump into the cavity.)

_ m(r) (Ac — k) —gf(r)n
<U> B (ZAA — 'y)(iAC — K',) + ngQ(I‘) : (3.13b)

When there is no coupling (¢ = 0), we get the well-known expressions of Lorentzian

resonances for both expectation values. With g # 0 another type of resonance arises:
The real part of the denominator vanishes at a given atomic position r under the reso-
nance condition yx — AAAc + g2 f2(r) = 0. A necessary condition for this resonance to

occur is that the sign of the detunings be the same.

3.3 Eliminated model — Model 1

In the case of relatively high atomic detunings, any direct simulation of the full problem
defined by Egs. (3.2) requires very small time steps, making the simulation a fruitless
tiptoeing.*

Since in this case the atomic saturation is low (Eq. 3.13b), we can simplify the prob-
lem by adiabatically eliminating the upper atomic level (the internal atomic dynamics).
In this approximation we are left with a moving linearly polarisable particle with in-

duced polarisation expressed from Eq. (3.8b):

g&(r)
~ 298 14
77 AN — 7 (.14)

E(r) = f(r)a+ m(r)/g is the dimensionless total electric field at point r.

*Naturally, this problem cannot be solved by using interaction picture as it is easy to see starting from

a Jaynes-Cummings part of the Hamiltonian (3.2a):
H = —hApo. —ili(r) (67 — o).

We can change to interaction picture using the first term (A is the big frequency): Ur(t) = e~ **4*7=. The

interaction-picture Hamiltonian then reads

Hi(t) = Ur(t) H U (t) + z’hd%(t)Uf(t) = —ihm(r) (o7 e AT — g BTy,
where we have used the operator expansion theorem [see eg 73] and [0, 0] = —0, [az, JT} =ot. We see

that the big frequency survives, now in the time dependence of the Hamiltonian.

Note also that this survival of the big frequency is due to the fact that two neighbouring levels coupled
by the non-diagonal part of the Hamiltonian are separated by the big energy gap AA 4. On the other hand,
it is of course possible to get rid of eg the big frequency nAc of the free evolution of the nth Fock state
component, since here the separation hAc of neighbouring levels coupled by the interaction is small. The
same is true for the kinetic part of the Hamiltonian where with the interaction picture we gain that the

frequency grows proportionally to k instead of k*. This will indeed be exploited in Sec. 4.1.3, see Eq. (4.6).

5 The physical electric field reads
[ hwe
E =i/ Y (e€ —h.c).
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We put this expression back into the Hamiltonian and Liouvillean as expressed
in Egs. (3.2) to obtain effective operators governing the coupled atomic CM and field
dynamics:

2

Heg = g_u — hAcala —ihn (a — CLT) + Wy £ (r) E(r)

2
= 5— + hnegs sin®(Kz) — h (Ac — Uy sin®(Kx)) a'a —ihn (a - aT)
W
+ hi/Up et sin(Kz) sin(Kz) (a' + a), (3.15a)

. _ n2Aa
(with et = 2575)
Lefip =k (2apaT — [aTa, p} )
+

+ Ty <2/d2u N(u) E(r) e Hurp eiluret(p) [ET(r)E(r),p}+> . (3.15b)

Here the internal atomic dynamics is incorporated into the light-shift coefficient

92 Ap

Uop = AZ 42 (3.16a)
and the incoherent scattering rate
9>y
Iy= A2 (3.16b)

In this model the atomic pump creates a classical potential for the atom in the z direc-
tion. There is a potential in the z direction, too, but it being proportional to a'a, it is
more than a normal potential. As we shall see later, its (quantum) dynamical nature
leads to many interesting phenomena, including the dynamical cavity cooling effect
(cf Sec. 5.1) or a reduction of trapping times (Sec. 5.2.5). The corresponding term can
also be interpreted as the cavity resonance shifted by the atom, at most at an antinode
by Up. The last term of the Hamiltonian is an interference term between cavity mode
and atomic pump, which also yields both pumping for the mode and potentials for the
atom in both directions.

For further reference we now quote the Hamiltonians corresponding to the three

system configurations treated in this work:
P
Hex = 22 = 1 (Ac — Upsin® (Ka)) ata — i <a —at ) : (3.17a)
W

2
Hpz = ]2?—; + hege sin?(Kz) — h(Ac — Up) a'a + hy/Ug nee sin(K z) (a +a), (3.17b)
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2
Hax = ]29—; — h(Ac — Upsin®(Kz)) a'a + hy/Ug nee sin(Kx) (o' + a). (3.17¢)

We see that Haz and Hax are intimately connected, the only difference being that in
the AZ case there is a classical lattice potential generated by the atomic pump, which
in the AX case is replaced by the dynamical potential mentioned above.

It is important to note that after the elimination (3.14), the problem is not specific to
a two-level atom any more. The system (3.15) describes a general linearly polarisable
(but possibly quantum mechanical) particle such as a molecule or a microscopic silicon
ball. The interaction of such systems with the electromagnetic field has been a field
of intense interest [74, 75, 76]. Cooling of molecules by optical means is an unsolved
problem [77, 78, review: 79]. Their interaction with a cavity field may provide a viable
alternative for cooling.®

For an arbitrary linearly polarisable particle the polarisation is proportional to the
electric field: P = ¢oxE, the only parameter being the complex susceptibility. The
parameters A, v and g defined in Sec. 2.1 make no sense, since here is no definite
atomic transition any more. In the present model, however, these three parameters
occur only in the combinations Uy and I'y. It is easy to see that their connection with x
is

W = ~"CRixy, Ay = ~"C g1y, (3.18)

To derive these equations we have used Egs. (2.1), (3.14) and the fact that for a two-level
atom the polarisation P = d = ((e|d |g) ¢ + h.c.). Turning this calculation around we

obtain the complex susceptibility for a two-level atom:

(g de)[?

~heoBat i) (3.19)

X:

3.4 Semiclassical approach to Model 1 — Model 1sc

Finally, starting from Model 1, we describe the simplest possible model that seizes the
coupled dynamics of a moving linear dipole and the single-mode field in the resonator.
This approach was developed in [29].

Owing to its simplicity, the model can be solved even for several independent par-
ticles. In this case, though there is no direct interaction between the particles, they
interact with the very same cavity mode, which, in turn, acts back on the atoms. This

can create interesting collective phenomena, and indeed, the model proved to be very

®Note that standard laser cooling schemes cannot be applied to molecules: Molecules do not have
closed optical transition cycles, therefore the electronic transitions should not be saturated. Standard laser

cooling schemes do not work in the limit of vanishing saturation.
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useful, for example, in predicting the effect of collective cooling of an atomic ensemble
by self-organisation [35], which has been observed experimentally by Black et al. [63].

Besides giving a physical insight into the nonlinear dynamics, this semiclassical
model is expected to give quantitatively good estimates for various physical observ-
ables in its well-defined range of validity, ie for relatively large photon numbers (2 4)
and for broad enough momentum distribution.

The eliminated model (3.15) is solved by a semiclassical approach, and the resulting
equations describe the fluctuating, Brownian-like motion of the atom and the photon
field taking into account the correlation between the different noise terms consistently
with quantum theory. The labelling “semiclassical” here is for the same reason as for
the approach presented in Sec. 3.2.5: both particle and field are classical, but the corre-
lated noises in their dynamics are of quantum mechanical origin.

In the present approach an equation for the joint atom-mode Wigner function is

derived from the effective Master equation

. 1
P = E [Heffa p] + ['eff P (320)

(cf Egs. 3.15) and truncated to obtain a Fokker-Planck equation, which is classical in
form, but the origin of the noise terms is purely quantum mechanical. Thereafter, the

equivalent Langevin equations are solved:

P = " (3.21a)
p = AUV |€(r)|? + 21T S {E* (r)VE(r)} + &, (3.21b)
&= (iAc — k) a — (iUy +To) f(r) €E(r) +n+ (. (3.21¢)

Here o = (a) is the amplitude of the coherent cavity field, and &(r) = (£(r)) = f(r) a+

ne(r)/g. The noise terms obey second-order correlation laws:

(ICP) =+ f3(x) To, (3.22a)
(§¢) = ihly f(r) VE(r), (3.22b)
(€ &) = 2R KT |€(r)|* u2 8;j + 2h°To R {9;€* (r) 9;€(r)} . (3.22¢)

Here u? = [d?uN(u)u?. In the RHS of the last row, the first term stands for recoil dif-
fusion (cf Sec. 3.2.4), while the second one is the diffusion originating from dipole force
fluctuations. The efficient way to simulate these noise processes is given by Domokos
and Ritsch [30].

It is interesting to look at the dimensionless version of the deterministic part of
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Egs. (3.21):

dF

7P (3.23a)
% = Grec (—UN (&) + 200 S {e*(f)?e(f«)}) : (3.23b)
% — (il — 1) a — (il + To) f(F) E(F) + 7. (3.230)

where the dimensionless variables are:

_Kp

, (3.24)
Fop

t=kt, T=Kr, P

and all the frequency-like parameters have been made dimensionless by «. Note that
the recoil frequency wrec = KK 2/ has appeared as the relevant parameter instead of K
and y, and so there are six parameters in the full system: wyec, Ac, 7, nt/g, Uy, T'o. In
the very far detuned regime I'( is much smaller than all the rest, so that in this case we

are left with only five parameters.
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PART II

Achievements & Results
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CHAPTER 4
The quantum simulation

In Sec. 4.1 we describe how we have adapted the MCWF method for the atom-cavity
system. We note that for practical considerations we simulate one dimension at a time.
In Sec. 4.2 we overview the proper quantities characterising the statistical and quantum
properties of the system, which we will use later when producing numerical results.
Here, for convenience, we use Configuration CX. As an example the same configura-
tion is used in Sec. 4.4 where we check the validity of the ergodic hypothesis for the

system by studying transient behaviour (relaxation).

4.1 The MCWF method for the system

4.1.1 Discrete momentum basis

The method we shall describe for one dimension (x), but here this stands for either the
cavity or the transverse direction because at this level they are completely equivalent.

We consider the joint state vector of the atom-cavity system:

() =Y W(t,n.k) [n) |K), (4.1)
n.k
where |n) is the nth Fock state of the mode. The state of the atomic CM motion is most
conveniently expanded in momentum basis (|k) stands for the basis element). The
effect of the kinetic-energy operator should certainly be calculated in this basis, besides
the (3.15) operators contain only sine functions of the operators x and z, which are also
very easily represented in momentum basis.

For the simulations one certainly needs to discretize the momentum basis for the
expansion (4.1). Suppose that during the whole time evolution, the atom is confined
in some region of length L, an integer multiple of the cavity wavelength. Then the
smallest wave number to be considered is Ak = 27 /L.

The evolution (3.20), however, couples only momentum components separated by

K or 2K, since in the system (3.15) the position operator is contained only in the form
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sin(Kx), sin?(Kx), and exp(i K x) — and the same for z. This means that the momentum
part of the Hilbert space can be separated to subspaces containing momentum compo-
nents with increment K, and the time evolution does not mingle these subspaces.

In state-vector language the above arguments can be translated as the expansion

K/Ak K/Ak oo

) =3 ’\IJ(“)(t)> -y ¥ ‘ngu>(t)>|vK+uAk>
u=0

u=0 v=-—00
K/Ak

_ Z iUl i ‘q/g“)(t)>|vK>, (4.2)
u=0

V=—00

where ‘\Ifg,u) (t)> is still a vector in the mode’s Fock space. Expanding the initial con-
dition |¥(0)) as above, the time evolution of different |\I!(“)(0)> components can be
calculated independently, and the solution reassembled at the end.

Since et Ak

does not commute with the kinetic part of the Hamiltonian, the evo-
lution of each component will be slightly different. In the present work we shall not

consider the implications of this feature since we always restrict ourselves to only one

component, say, [ (¢)). Hence, in the actual simulations our momentum basis is
{vK}yez. Since our smallest momentum is 7K, it is easy to see that in real space this
basis translates to considering a space of one cavity wavelength —7 < Kz < 7 with
periodic boundary condition.

In Sec. 8.3 we shall see that using the reflectional symmetry of the Hamiltonian in
momentum space, even the {|vK)},cz subspace falls into two independently evolving
subspaces. Obviously, ergodicity in its exact sense cannot hold for such a system. This
is, however, not a concern here, since the time evolution in the two subspaces is very

similar, so that ergodicity holds to a very good approximation.

4.1.2 Jump operators

The operator (3.15b) being in the canonical form (A.2), with the index m running over
the continuum of directions u with one supplementary point for the cavity decay, we
can readily determine the jump operators needed for the MCWF simulation of the
(3.15) system. In the second term of (3.15b) it is sufficient to replace the directional
integration by a sum of only three terms with u, = —1,0, 1, the 0 term having double
weight. This change we make not only for the sake of simplicity, but it is also nec-
essary because the projection of an arbitrary direction vector u on the z axis being a
non-integer number in general would invoke wave numbers that are not included in
our discrete momentum basis.

We then obtain four jump operators, the first one corresponding to cavity decay
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with operator:

Jo =V2ka, (4.3a)

the rest are the atomic spontaneous emission operators with three different recoil di-

rections:

Ja(ugy = —1,0,1) = /2T e~ KU £(g), (4.3b)

the u,=0 jump having double probability. The probability of cavity decay is propor-

tional to the photon number

Pc =2k <aTa> At, (4.4a)
while the total probability of atomic decays reads

Pp = <JI\JA> At = 2T <5T(x) 5(:c)> At. (4.4b)

4.1.3 Some technical aspects

The Hamiltonian part of the time evolution is integrated by an adaptive step-size Run-
ge-Kutta method. In particular, we used the rkgs routine from Numerical Recipes [80],
which relies on the Cash-Karp algorithm. The time step At is chosen by this routine so
that the relative error in each step be less than a prescribed value (10~ in our case). The
time step we bounded from above as well so that the total (cavity and atom) probability
of jumps remain small (Pc + Pa ~ 0.1), which is an important condition for the MCWF

method to give good statistics.

An important technical detail is that the kinetic part of the Hamiltonian (3.15a) may
contribute arbitrary big frequencies depending on the resolution of the atomic motion,
which results in instability in the stepper routine. The effective way to evade this prob-
lem is to adopt interaction picture defined by the diagonal part of the Hamiltonian. The

unitary operator transforming between the two pictures reads:

Ui(t) = ei@”“m)t, (4.5)

where Z = (iUy 4+ TI'9)/2 — iAc + k. For reference we quote the non-Hermitian Hamil-

tonian part of the wave function’s evolution in interaction picture in Fourier space (for
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2D including both cavity and atomic pumps):

U+ Ty
2

\III(n, k, + 2K, kz))

U1(n, k) =7 (e?'v/n¥i(n — 1,k) — e “'V/n+1U(n+ 1,k)) +

n i 2(kz —K) _;j2(kz+K)
><{§(eZ W (ke — 2K k) +e o !

2 2(ky —K) _2(kz+K)
—|—n—t (eZ 7 t\III(n,kI,k:Z—ZK)—Fe Tt

2g2 \Ill(n,kw,kzz + QK))

(2 —K)
it m (el o 2 Ur(n —1,ky, k, — K)
g

L2k, +K)
—z;—ut-i-Zt

—e \Ifl(n—l,kz,kz—i—K))

(2k—K),
i%vn+1<€Z T (A 1 kg b — K)

—i GOy 7y
—e 2n

Wi(n+ 1, ko, ks + K)) } . (4.6)

At the beginning of each time step we accord the two pictures, and come back from
interaction picture after each one to monitor whether there must be a jump or not. If
yes, the jump operator in normal picture is applied. In this, the idea is not to put too
big numbers into the arguments of exponential functions, which would be the case if
we were constantly in interaction picture and evolved a trajectory for long times, and

which could result in numerical problems.

Note that since the entire Hamiltonian is implemented in Fourier space, during
the actual evolution of the system, no FFT is needed, which is a huge gain in both
computational time and accuracy. This is different from the case when one tries to solve
a general Schrodinger equation where the kinetic part must be implemented in Fourier
space while the potential in normal space. In that case one needs a quite intricate fourth
order method reminiscent of the Runge-Kutta method with 8 (!) embedded FFTs per
time step [81]. In this method the kinetic part is implemented with interaction picture,

but there is no possibility of implementing adaptive time step.

With the MCWF simulation we can simulate one dimension for the atomic motion
at a time, which can be either the cavity direction = or the transverse one z. Indeed:
since we usually use about 100 momentum components to resolve the atomic motion,
taking the additional dimension would invoke an increase by the same factor in the
dimension of the Hilbert space. This would render the problem too big for nowadays
computers. In practice we have three different programs for Configurations CX, AZ,
and AX.
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4.2 Statistical & quantum properties

In the remaining part of this Chapter, for the sake of simplicity, we consider Configu-
ration CX.

4.2.1 Density operator

A significant novelty in our approach is that we are able to calculate and numerically
treat the density operator of the system to decipher statistical and quantum properties.
This we may do in two different ways giving the same result according to the ergodic

hypothesis — which is certainly to be verified for the system:

e When interested in steady-state properties of the system we run only one trajec-
tory |U(¢)) for along time 7" and take the steady-state density operator as the time

average
T

/ 0t [ W (8)) (B(2)] 47)

rel

_ 1
Pss = T— T
where T, is an appropriately chosen relaxation time.

e When studying time dependence (relaxation) we run several (JV, tra]-) trajectories

|W;(t)) to calculate the time dependent

Niraj
PO = o 3 100 (i) @8

Having obtained the density operator we may verify whether and how much it de-
scribes a steady state by substituting it into the RHS of (3.20) and checking whether it
vanishes. Note that though it is not possible to simulate (3.20) directly since it would
necessitate very many evaluations of the RHS, evaluating it once with a given p is pos-

sible. A good measure is the trace norm of the operator

Ipll = Tr {p?} . (4.9)
Monitoring this quantity is the proper way to determine whether we have already av-
eraged enough trajectories or for sufficiently long times.
4.2.2 Characterising statistical properties in steady state

From the steady-state density operator we can calculate steady-state averages and
probability distributions of observables. From the cavity-cooling point of view a cen-

tral quantity is the number of excitation quanta (n) in the atomic motion. This quantity
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is related to the phase-space volume occupied by the atom as

_ AzAp

my= =228 _

(4.10)

The calculation of Ap = 1/ (p?) — (p)? is straightforward, for the momentum dis-
tribution examples are plotted in Fig. 4.1 along with fitted Gaussians (Maxwell-Boltz-
mann distribution). We see that though the distribution is not exactly thermal, the fit
is quite good, so it makes quite good sense to define a , kinetic temperature” via the
equipartition theorem as

kT = @. (4.11)

A strong argument for using this quantity is that it is actually measured in ,destruc-
tive” measurements when the cavity pump is switched off abruptly and the expansion

of the atomic cloud is monitored.?

About the calculation of Az = y/(22) — (z)? some remarks are necessary. Our po-
tential in (3.15a) being proportional to f?(z) = sin?(Kx) and since we use red atomic
detuning so that Uy is negative (high-field seeker atoms), we have two potential wells
(antinodes of the mode) at Kz = +m/2 as depicted by the solid line in Fig. 4.2. As
expected, in such a potential a two-peak distribution establishes as steady-state prob-
ability distribution of x. Examples for this are plotted by dashed lines in Fig. 4.2. We
immediately see that in steady state () = 0. To see how close the atom is to the
ground state of one well, the Az = /(22) should be calculated for one well. This
is straightforwardly done as follows: Suppose we have a two-peak probability dis-
tribution py(z) = apep (v — 7/2) + bpep (x + 7/2) with a + b = 1 then the two-peak

expectation value of 22 is

(Pl a5 ot = [ o0 (s o= ) b (- )

~ [ae(a(e+3) +0(:-3)") et

2

= (2%)p+ T+ (@= )7 (2)g,, (412)

op’

that is, if @ = b or (x)_,, = 0 (in our case both conditions happen to be satisfied) the

op
desired one-peak average is calculated by subtracting 72 /4 from the two-peak average.

If not otherwise stated, in what follows (z?) is always meant in the one-peak sense.

'Note that the temperatures in the orthogonal directions are not necessarily the same, T, # .. It is
because of the external driving, which renders the system out of equilibrium: there is no thermalisation
between the two directions.
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Figure 4.1: Simulated steady-state momentum distributions (points) along with fit-

ted Maxwell-Boltzmann distributions (lines), with M denoting the mean
value. For parameters refer to Tab. 4.1 — the narrow peak @ (k, ) =
(0.025, 0.025)~; the wide one @ (k, n) = (0.3, 0.6)~.
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Figure 4.2: Solid line: potential felt by the atom in arbitrary units (calculated). Dashed
lines: steady-state probability distributions of  (simulated), M = 1/(2n)
denoting the mean. Parameters as in Tab. 4.1 — the narrow peaks @ (x, n) =
(0.025, 0.05)~; the wider ones @ (k, n) = (0.1, 0.1)~.
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4.2.3 Characterising entanglement and other quantum properties

It is an interesting question and one which is to be answered only by a quantum me-
chanical simulation whether the steady state is a coherent or incoherent mixture of the
two peaks or, more generally, what are the coherence properties of the steady-state
atomic distribution. To study this, we calculate the reduced density operator for the

atomic motion:

n

p(x1, x2) = (21 (Z (n] Pn>> |2) , (4.13)

and define the coherence function as

x(@) = / d(KE) |p(E.€ + o). (4.14)

Examples for the coherence function are plotted in Fig. 4.3. The most important charac-
teristics derived from this function are the coherence length L of one peak, which is the
width of the main peak around zero, and the value x(7) which is indeed a characteristic
of the coherence between the two peaks. However, our simulations has shown that to
obtain x(7) nicely enough, huge statistics is needed, so it is better to perform one more
integration and characterise the coherence between the two peaks by the average:

c=2 / d(Kz) x(x). (4.15)

™

[NE]

Another important point concerning the quantum nature of the atom-cavity system
is whether in steady state there is some entanglement between the atomic motion and
the cavity field. For mixed bipartite states as the one we have here, this question is a
hard one and there has been a remarkable effort in the literature devoted to the prob-
lem of establishing computable measures of entanglement. Since by proper algebra
packages the full eigenvalue problem of p can be fairly solved, in our case the most ap-
propriate entanglement measure is clearly the negativity [82, 83], calculated from the

partial transpose of the density operator
(n, k| 7 g, ko) = (n1, kol plna, k1) (4.16)

as the sum

negativity = 4.17)

S

of the negative eigenvalues \; of pFT. For the eigenvalue problem, we used the zgeev

routine from the Linear Algebra PACKage [84], which is capable of finding the full
eigensystem of even an 1000 x 1000 matrix in almost no time at all.
The other question addressed appropriately by a quantum simulation is whether

the state of the cavity field is classical (coherent state) as it is assumed in most of the
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Figure 4.3: Typical behaviour of the coherence function x(x) on logarithmic scale. The

42

width of the main peak gives the coherence length of the wave packet in one
potential well. The function falls rapidly from = 0 then up to Kz = 7 it
grows again slightly, indicating small but non-vanishing coherence between
the wave packets in the two wells. Parameters as in Tab. 4.1 but x = 0.025y
— solid line @ nn = 0.025+; dashed line @ n = 0.05~.



semiclassical models. Instead of addressing the full problem, here we shall treat a
weaker one: whether the photon statistics is Poissonian, that is, whether the state is an
incoherent mixture of coherent states with different phases. For Poissonian statistics
the variance equals the mean, so a good measure of nonclassicality is the Mandel Q
parameter [73] defined as:
o0 A(a*zim;aw__ (4.18)
Note that the Hamiltonian (3.15a) containing afa as the only higher order term in
the field operator a, for an immobile atom or even a separable atom-mode state there
would be no way for the field to become else than a coherent state, the driving 7 being
coherent. Therefore, if we observe nonclassicality (Q) # 0) it must be due to atom-mode

entanglement, whence this quantity is certainly intimately connected to the negativity.

4.3 System parameters for the MCWEFS

In what remains from this Chapter and also in Chap. 5 we consider Configuration CX.
Besides studying the quantum regime of the system, our aim is also to compare the
newly developed MCWF solution of Model 1 for the case of cavity cooling of one single
atom with the predictions of Model 1sc as presented by Domokos et al. [29].

Since for the MCWES photon number is a crucial quantity, we quote the expecta-
tion value of the field here again from Eq. (3.13a) for Configuration CX and with the
parameters of Model 1 — recall that this is for a fixed point-like atom situated at point

i

_ U
= (iU 4 Tg) sin?(Kz) — (iAc — k)’ (4.19)

We shall use mostly the same work point for parameters as the authors of the above
Reference: A, should be big enough ensuring small saturation (< 0.05) so that we can
use Model 1. Good cavity (small ) and strongly coupled atom (big g) are considered.
Ac = Uy is taken, fulfilling the resonance condition and making that the maximum
of the semiclassically expected field (4.19) sets in when the atoms are situated at the

antinodes of the field, and its value reads

m n n n
<(1>( v 2) WU +Tyg—iAc+k k+ T K’ ( )

the third equality holding unless & is so small that it becomes comparable with the
incoherent scattering rate: I'g = 0.015y with our parameters.

We take rubidium 85 atom. For reference, the parameters used in this Section are
summarised in Tab. 4.1.

In the semiclassical case there is a lower bound on the photon number (2 4) for

the model to be valid, thus, roughly, n/x 2 2 had to be considered. Here there is no
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Ap —20vy

Ac | Uyp = —0.312y
K 0.1v

i K, 2K

g 2.5v

m 41575

Table 4.1: Parameters used throughout Chap. 4 and in Sec. 5.2.

limit in principle, however, there is a practical upper bound because too big photon
numbers would lead to a very high dimensional Hilbert space, making the problem
intractable. Therefore n/x = 1 and 2 are considered with 1 and 4, respectively, for
the semiclassically expected photon number. In the /s = 2 case the Fock basis is
truncated already at as high as the 10th element, which, together with the roughly
100 discrete momentum components results in a 10? dimensional Hilbert space — 10°
complex numbers for the density matrix. This being still feasible, the two approaches

can be compared in this case.

4.4 Relaxation & ergodicity

First we study relaxation of an ensemble of systems started from zero cavity field
and incoherent mixture of wave packets evenly distributed in space, corresponding to
Doppler temperature, no entanglement, and C' = 0 — no coherence in the atomic dis-
tribution. This is, on one hand, to determine the relaxation time of the system needed
in (4.7), on the other hand, to practically verify the ergodic hypothesis. Time depen-
dence of statistical averages and quantum characteristics calculated from the ensemble
averaged density operator are plotted in Fig. 4.4. Along with the relaxation the steady
state value is also indicated by a constant solid line calculated by averaging one single
trajectory for a very long time (about 2 - 109 /v in this case).

What we observe here is that statistical averages fairly relax to the steady-state
value: the kinetic temperature and the localisation on a scale of about 1000/, the pho-
ton number on a much faster scale of 100/~. Quantum characteristics: negativity, coher-
ence, and ||p||, however, do not relax to the steady-state but to some higher value. This
value certainly tends to the steady-state value with increasing number of trajectories
as we also demonstrate in Fig. 4.4(d-f). The conclusion to be drawn is therefore that to
obtain the off-diagonal elements of the density operator (phase of wave function) much

bigger statistics is needed than for the diagonal elements (modulus of wave function)
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Figure 4.4: Relaxation of the system started from the zero-photon state and incoherent

mixture of Doppler-temperature wave packets evenly distributed in space.
Average of 500 trajectories. Steady-state values are indicated by solid lines.
Quantum characteristics (negativity, C') of the system do not relax to the
steady state value (—oo for the latest one on a logarithmic scale), but the
value they relax to tends to the steady state as we increase the number of

trajectories. Parameters: Tab. 4.1.
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— quantum characteristics are the only that actually rely on off-diagonal elements.
This huge statistics is not practical any more, that is the reason why in the following
we shall be using time averaging whenever possible. The fact that the steady-state co-
herence and negativity is smaller than the values finite numbers of trajectories relax to,
is definitely what we expect by intuition: individual trajectories naturally exhibit these
properties while more and more incoherent averaging deteriorates them.

An interesting fact in itself is, however, that the dissipative atom-mode dynamics
is able to create coherence even from a completely incoherent initial condition as we
observe in Fig. 4.4(f). The fact that the steady state exhibiting low temperature and
weak but non-vanishing coherence between the two trapping sites is reached even from
a relatively hot and completely incoherent initial condition is a good indication of its

robustness and the justness of the ergodic hypothesis.

4.5 Thesis

Thesis I

Based on the Monte Carlo Wave Function method we have created a simulation to
study one atom moving in a single-mode cavity field with the atomic internal degree
of freedom eliminated. It takes into account the whole coupled atom-field dynamics
on a fully quantum mechanical basis. Exploiting the special form of the potentials, the
whole evolution of the wave function could be implemented in momentum space with
adaptive time step which is a huge gain both in terms of CPU time and accuracy as
compared to conventional methods for solving Schrodinger equations. We are able to
calculate and numerically treat the full joint atom-field steady-state density operator
to decipher quantum properties of the system pertaining to coherence, entanglement,

and nonclassicality.
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CHAPTER 5

Quantum regime of cavity cooling

Throughout this Chapter we consider Configuration CX. First we describe shortly the
mechanism of the so called dynamical cavity cooling occurring in this simplest configu-
ration [27]. In Sec. 5.2 we shall examine the dependence of system observables on the
bandwidth of the relevant dissipation channel. Here, to enter the quantum regime, we
decrease the cavity photon number, while in the high-enough photon number regime
accessible also with Model 1sc, we shall compare results of Model 1sc and the MCWF
solution of Model 1. As we shall see, the correspondence is remarkable in Model 1sc’s
expected range of validity. In Sec. 5.3 by increasing the atom-field coupling g with the

Rabi frequency kept constant, we enter the quantum regime of cavity cooling.

5.1 Dynamical cavity cooling — mechanism

Cavity cooling owes to the friction force exerted by the cavity field on the atom. The
resulting temperature is eventually determined by the ratio of the friction and the diffu-
sion coefficients. In a cavity, diffusion stems not only from recoil, but also from dipole
force fluctuations.

In Configuration CX the friction force is due to the dynamic potential term propor-
tional to sin?( K'z) a'a in Hamiltonian (3.17a). Suppose that Ac, Uy < 0 and the atom is
initially moving fast along the cavity axis.

The condition Ac, Uy < 0 makes that an antinode of the field is both a potential
minimum and an atom situated here maximises the cavity field, since it pulls the cavity
towards resonance (cf Eq. 4.19). For a moving atom, however, due to the dissipative
dynamics of the field, it adapts itself only on a timescale x~! to the atomic motion.
Therefore, the field reaches its maximum value every time shortly after the atom has
passed an antinode of the mode (potential minimum), and when it starts climbing the
ramp, it is already becoming steeper than the previous slope it has rolled down on.

On average it climbs higher hills than the slopes on which it rolls down, hence losing
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Figure 5.1: Capturing an initially fast atom by the cavity cooling mechanism: time evo-
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lution of the field intensity (dotted line), particle position (solid line) and
particle momentum (dashed lines). The dotted vertical lines mark the time
instants when the atom crosses the field antinodes (horizontal dotted lines).
The field intensity reaches its maximum value always shortly afterwards.
@ (wrec, Uy, Ac, ) = (51073, =3, —4, 1.5)x.



kinetic energy.!

Eventually the atom gets stopped and oscillates in a single well around an antinode,
where the kinetic energy slowly further decreases. The described process is visualised
in Fig. 5.1 where we have used Model 1sc without noise to calculate the trajectory.

Note that all this is without spontaneous emission and the energy is carried away
by the cavity damping. The philosophy here is that in strongly coupled systems, all
subsystems share all available dissipation channels, the final temperature scaling with
the decay rate of the dominating channel. Since in the far atomic detuning regime
spontaneous emission is strongly suppressed (I'y < k), the final temperature will scale
with x, which can be much smaller than ~.

Recall that in free-space Doppler cooling the limiting temperature reads [14]:

— % for |Aa| >y

by (Aa | 7

kETp= — | — + — 5.1

b= (224 4 SR
> hy equality for Ap =7

that is, the minimum temperature is v, while in the far detuned regime (low saturation)

the cooling is quite inefficient. In the following, the limiting temperature 2y will be

often referred to as the “Doppler temperature”.

5.2 Role of the cavity

The basic idea behind cooling atoms in a resonator is that the kinetic energy can be
dissipated via the cavity loss channel because of the strongly-coupled atom-field dy-
namics. Therefore, the dependence of observables on the bandwidth & of the relevant

dissipation channel must manifest the cavity cooling mechanism.

5.2.1 Scaling of parameters

To distill this effect, the local electromagnetic field intensity should be invariant. There-
fore, in the following we keep 71/ constant, cf semiclassically expected field (4.20),
while studying steady-state properties of the system as a function of the cavity decay
rate x. Since the photon number is constant, unlike in the next Section we can simulate
the whole « range with the MCWF simulation.

The semiclassical equations (3.21) of Model 1sc serve as a good starting point. Here,

for reference, we quote them for Configuration CX. The atom moves under the action

'From the above discussion it follows that the smaller the » the smaller the capture range of the cooling
mechanism: Indeed atoms with a velocity 2 /K will pass the field node before the cavity field adapts

itself, and instead of a ramp find themselves again on a slope.
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of the field as

i=1L (5.2)
7

p=—hKU|a*sin(2Kz) + &, (5.3)

where |a|? is the cavity photon number. It is kept closely constant by the assumption
n/k = const. This means that the magnitude of the mechanical forces acting on the
atom is kept invariant. This action can be achieved with few photons making many
round-trips and hitting the atom many times (small x limit), or with many photons
making only a few round-trips (large « limit). One can view this situation as with
increasing « the role of the cavity is gradually switched off and the free-space Doppler
cooling scheme is rendered.

Results are plotted in Figs. 5.2, 5.3, 5.4, and 5.5 at two different pump strengths
n/k = 1and n/x = 2. Stars indicate Model 1sc results in the /s = 2 case, which fairly
fit on the quantum data in the range « 2 0.17. Semiclassical data cannot be produced
for smaller values of x, nor for the n/k = 1 setting, because of the too low photon
numbers involved, shown in Fig. 5.2. Note also that the simulated photon numbers,
plotted by points, are always below the line representing the expected ones calculated
from the formula (4.20). The reason is that in the simulation there is a finite extension
of the atomic distribution (regardless whether it is incoherent as in the semiclassical
model or has some coherence as in the quantum-mechanical one) while in (4.20) we

have assumed a point-like atom fixed at an antinode.

5.2.2 Temperature, motional excitation quanta

With increasing « the system tending to the free-space Doppler cooling scheme, the
temperature increases as k7' ~ hx (see Fig. 5.3(a)). This numerical result verifies that
the final achievable temperature scales with the bandwidth of the dominating loss
channel. In the limit of k — 0, the temperature is fairly low and tends to the other
decay rate of the system, k7" — RI'.

In a harmonic potential, which sets in close to the attractive antinodes of the cav-
ity mode, the virial theorem makes a connection between the localisation (%) and the
mean kinetic energy (p*) (proportional to the temperature T'). Both are appropriate
measures for characterising the thermal properties of the system. However, for weak
enough intensities, in particular in the limit of ~ =~ 0, the optical potential vanishes.
Therefore, the fact that how much the atomic motion is quantised (how close we are to
an eventual BEC) should be expressed not in terms of the temperature but rather the
number of excitation quanta which is related to the phase-space volume AzAp occu-
pied by the ensemble as (4.10). It is plotted in Fig. 5.3(b) and is valid for the full range
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Figure 5.2: Photon number of the field as a function of kK @ = k and n = 2x. Fur-
ther parameters: Tab. 4.1. Points correspond to MCWF simulations, stars to
Model 1sc ones while lines are the predictions (4.20) calculated for a point-
like atom fixed at an antinode. Difference is due to finite extension of the

atomic distribution.

of the variation of « since it does not rely on any assumption about the harmonicity of
the potential. The number of excitation quanta in the atomic motion goes down to as

low as about three where the behaviour of the system is hardly semiclassical any more.

5.2.3 Localisation

The localisation of the atom exhibits a non-trivial behaviour. For £ 2 0.1 the width of
the position distribution (z?) increases in accordance with the Model 1sc results, as we
see in Fig. 5.4(a). Owing to the quantum solution, we learned that the increasing degree
of delocalisation is an incoherent effect because at the same time the coherence length
L of the wave packet in one well decreases (Fig. 5.4(b)). Large & is therefore indeed the
limit of the atom becoming a classical point-like particle (corresponding to coherence
length L = 0) which results in the semiclassical simulation working well.

Now with the fully quantum mechanical simulation the regime ~ < 0.17 can also
be explored. In this limit, due to the decreasing photon number resulting in decreased
average potential strength, <x2> grows again (Fig. 5.4(a)), but now together with in-
creasing L and C (Fig. 5.4(b) and (c)) giving a wide coherent distribution: coherent
wave packet in one well, and considerable amount of coherence between the two wells

as well.
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Figure 5.3: Same as in Fig. 5.2 for (a) kinetic temperature and (b) number of excitation

quanta in the atomic motion. Stars correspond to Model 1sc simulations.
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Figure 5.4: Same as in Fig. 5.2 for (a) localisation of the atom, (b) coherence length, and

(c) coherence between adjacent trapping sites. The scale of ((Kx)?) is such
that 0 corresponds to delta distributions in both wells, while E = 72/12
corresponds to even distribution. Stars correspond to Model 1sc simula-
tions. The correspondence is remarkable, save that the semiclassical model
is certainly unable to reproduce the increase in ((Kx)?) for very small s

values.
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5.2.4 Quantum measures

Finally, Fig. 5.5 is devoted to the important stationary quantum properties of the cou-
pled system. In Fig. 5.5(a) the negativity of the simulated steady-state density oper-
ator’s partial transpose has been plotted as a function of . For comparison we have
also plotted (lines without points) the negativity of such a highly entangled pure ref-
erence state in which every photon number component of the wave function is in the
ground state of the potential iUy f%(z) a'a, and the photon number distribution is Pois-
sonian with mean equalling the semiclassically expected photon number. For small x —
though the entanglement in the reference state is certainly much stronger in general —
these curves follow roughly the same behaviour as the simulated ones: the amount of
entanglement decreases due to decreasing photon number. This is evident, since with
very low photon numbers the weight of Fock state components higher than zero being
negligible, the state of the system is very close to the separable state |0) |D)

mode atom*

For increasing ~ 2 0.1+, the negativity monotonically decreases. The picture that
can be adopted here is that while coherent time evolution tends to increase the entan-
glement, jumps destroy it. This is because the potential in the Hamiltonian (3.15a) is
proportional to the photon number operator a'a, and therefore each photon number
component of the wave function feels different potential strength and evolves differ-
ently in time making an entangled state even from an initially separable one. If jumps
are too frequent (increasing ~), however, there is no time for a given photon number
component to evolve according to its own potential because it is readily shifted to a

lower level.

The Mandel Q parameter of the cavity field (Fig. 5.5(b)) follows roughly the same
behaviour as the negativity, proving our former assertion that the source of nonclassi-

cality of the field is entanglement between the atomic motion and the cavity field.

In the K — 0 “quantum” regime of very low temperature, wide coherent atomic
distribution, and maximum atom-mode entanglement and nonclassicality of the cavity
field, cooling time certainly becomes a crucial question: whether the steady state char-
acteristically exhibiting quantum features can be reached in a reasonable time from
a relatively hot and essentially “classical” atomic cloud. For this we again refer to
Fig. 4.4(a) where we have already dealt with an example of the relaxation of both the
statistical and quantum features of the system at x = 0.1y being on the very limit of the
”semiclassical” and “quantum” regimes. The dependence of trapping and relaxation

times on x will be systematically studied in the next Subsection.
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Figure 5.5: Same as in Fig. 5.2 for (a) negativity (of the partial transpose) and (b) Man-
del Q parameter of the field. In (a) data plotted with lines without points
correspond to negativity calculated for such a highly entangled reference
state in which we assume that each photon number component is in the
ground state of the corresponding potential and the photon number dis-
tribution is Poissonian with mean calculated from the semiclassical model.
The entanglement of the actual state is certainly very low compared to the

reference.
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Figure 5.6: Trapping time of the atom as a function of k @ ) = & (solid line) and n = 2.5+
in the MCWEF case (dashed line) and Model 1sc case (stars without line).

5.2.5 Trapping & cooling times

Trapping time of the atom at a given trapping site (antinode of the field) is an important
quantity that can also be accessed in experiments. It has been thoroughly studied in
Model 1sc by Domokos et al. [29] since, as a function of the cavity decay rate «, it
exhibits a maximum. This behaviour was attributed to the role of the cavity, ie it is a
manifestation of the role of atom-cavity correlations in the dynamics. Here we revisit
this problem using the quantum model, and in the following set of results we simulate

the transient dynamics of an ensemb]e.

The atom being a quantum mechanical particle, it is not altogether obvious how
we define the atom being trapped. Still, if we start with a wave packet confined in
one well then we observe that the probability of finding the atom in the other well is
zero at the beginning and grows in time. From the time dependence of this probability,
though it is not simply exponential, a characteristic time can certainly be extracted.
This characteristic time will be identified with the trapping time.

We note that since we consider two trapping sites situated at Kz = +7/2 and pe-
riodic boundary condition, the probability of finding the atom in a given well is un-
ambiguously linked to the expectation value of the position (z), so that we only have

to monitor this latter during the simulation. Our results are plotted in Fig. 5.6 with
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n/k =1 and n/k = 2.5 together with Model 1sc data for the latter case. Trapping times
were determined by fitting on the average of about 300 trajectories.

Both the quantum and semiclassical models exhibit a peak in the trapping time as
a function of « in the n/x = 2.5 case, while there is no peak for n/x = 1. There are
three effects underlying these results. For very small , the photon number is low, see
Fig. 5.2, resulting in a shallow potential well and fast escapes, accordingly. In the range
of k where the photon number is about (1/x)? the trapping time depends on the cavity
cooling mechanism. The larger the photon loss rate x, the shorter the atom is captured
at its initial site. The drastic drop of trapping times at about x > 0.1y outlines the role
of the number of photon round-trips, hence that of the atom-photon correlations.

Finally, the slowly increasing trapping times for very large x is an artifact of the
present approach starting from a state of a well-trapped atom. In this regime the cavity
field becomes closely adiabatic making the dipole-force diffusion and cavity cooling
slow. Transient relaxation becomes longer, and this is why it takes also longer for the
atom to reach its steady temperature.

In general, trapping times predicted by the Model 1sc are always longer than the
ones predicted by the quantum solution of Model 1. One is immediately tempted to
explain the difference by the atom penetrating the average potential barrier Uy (a'a),
but this explanation turns out to be false since due to the big mass, the Gamow factor
is very big making the probability of tunnelling negligible. Rather, a possible expla-
nation originates from the graininess of the electromagnetic field. The potential being
proportional to the photon number operator, the lower Fock state a component of the
wave function corresponds to, the weaker potential it feels. In particular, the Oth Fock
state component does not feel any potential at all, wherefore it simply spreads being a
free wave packet.

From this consideration we may readily imagine a way for the atom to escape (at
least partly) from its actual trap other than being thrown over the potential barrier by
an appropriate fluctuation (this latter is the only way in the semiclassical model): Let
us restrict ourselves to 0- and 1-photon components. Suppose that the system starts
from the 1 photon state where the atom feels a potential of strength U, and is confined
in one well. After some while a jump occurs, so that the wave packet trapped by the
1-photon potential falls to the O0-photon level where there is no potential any more.
Therefore it starts to spread, so that there appears some portion of the wave function
also in the other well. It may happen that before an other jump takes place (which
would simply erase the 0-photon component), the 0-photon component gets pumped
up to the 1-photon level where after a while the portion of the wave function in the
other well also becomes a small trapped wave packet.

Cooling time of the system is certainly an other important time scale from both theo-
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Figure 5.7: Cooling time of the kinetic temperature as a function of Kk @ n/k = 1.

retical and experimental point of view: Whether, the system started from a warm cloud
of essentially classically behaving atoms, the cold steady-state exhibiting quantum fea-
tures can be reached before the system is heated out by environmental noise sources.
To study this as a function of the cavity decay rate x we start from evenly distributed
wave packets of short coherence length whose width correspond to Doppler temper-
ature. An example for this situation was already presented in Sec. 4.4 where we have
shown that the relaxation of the kinetic temperature is fairly exponential (see Fig. 4.4(a)
with the fit of an exponential function on the simulated data). The characteristic time

of this exponential is used as cooling time in the following.

Results for the cooling time as a function of the cavity decay rate « are plotted on a
logarithmic scale in Fig. 5.7. As we see the cooling time falls abruptly with increasing
x and reaches a minimum at about the limit of the ,quantum” regime « < 0.17. The
origin of this minimum behaviour is the same as that of the maximum behaviour in the

trapping time wherefore we refer to the above discussion.

In this Subsection we have shown that the x ~ 0.17 regime is not only the regime of
low temperature, considerable mode-atom entanglement, and coherence of the atomic
distribution, but also trapping time is maximal and cooling time is minimal in this

regime.
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5.3 The cavity FORT

In the following we show that Configuration CX in the far-off-resonance regime with
varying g but Rabi frequency kept constant can be looked on as a free-space far-off-
resonance trap (¢ = 0) in which the trapping laser field has been replaced by a dy-
namical cavity field (big g limit). Owing to the dynamical cavity cooling mechanism
described in Sec. 5.1, the trapping field itself also cools the atoms, allowing for trap-
ping in steady-state, which is in sharp contrast to what we see in free-space traps. In
this Section we use Model 1sc to describe the system when the photon number is large
and the MCWF solution of Model 1 presented in the previous Chapter for the comple-
mentary low photon number regime. From now on we are considering such driving

that is far detuned from the atomic resonance but nearly resonant with the cavity field.

5.3.1 Free-space FORT

Far-off-resonance dipole traps (FORT) are commonly used for long-time capturing and
localisation of neutral atoms by laser light fields [85]. The basic idea behind tuning the
laser frequency very far below the atomic resonance resides in the fact that the depth of
the trap potential and the spontaneous photon scattering rate scale differently with the
detuning Aa. The former is proportional to Q2/A 4 while the latter to Q2/A% where
Q is the Rabi frequency of the atom-laser coupling?. As a consequence, deep traps
can be formed at a reduced level of recoil noise generated by spontaneous emissions
in the large detuning limit. This scheme of almost conservative trapping preserves
the coherence of the atomic CM motion. This is vital for all-optical Bose condensation
[86], and also for processing quantum information with neutral atoms carrying a g-bit
in their internal degree of freedom. Furthermore, because of the large detuning, the
trapping potential captures simultaneously atoms in different Zeeman sublevels of the
ground state, an important element of the condensation of Cs [87], or different isotopes
to create fermion-boson mixtures of Yb [88].

Nevertheless, in steady state the atoms would not be localised at the antinodes of
the field in a FORT because Doppler cooling is inefficient in the large A limit. Long
trapping times are obtained only for an initially cold ensemble because the relaxation
process, ie spontaneous photon scattering is very slow. Its rate is usually so low that,
in fact, the trapping time is limited rather by technical noise in the experiments [89].

In this Section we show that Configuration CX can be considered as a generalised
FORT scheme. The square of the Rabi frequency, 22 = ¢* (afa), is a key parameter,
which is determined by the local energy density of the electromagnetic field at the

2All this can be verified by looking at Eq. (3.13b) and (3.17b), in the case when g = 0 and 1 = 0, since

then the system is simply an atom moving in a standing-wave laser field, the Rabi frequency being 2 = 7.
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atomic position. However, a given energy density can be provided in a variable manner
since it depends not only on the number of photons but also on, roughly speaking, the
“volume” of a photon. Consider now Configuration CX, where the field is enclosed in a
Fabry-Perot resonator with the photons having a well defined finite mode volume. The
shorter the cavity length, the smaller number of photons are needed to reach a given
local field density. Simply, photons are “recycled” by mirror reflections and hit the
atom more frequently in a unit of time. The opposite limit of infinite mode volume and
infinite number of photons, keeping their ratio constant, corresponds to the standard
optical lattice of a free standing-wave laser field.

We will show that, keeping the Rabi frequency € invariant but reducing the mode
volume, the atomic motion is dramatically influenced. The main effect is that a strong
localisation and stable trapping of atoms in steady state becomes possible, at a very small
degree of perturbation of the atomic ground state. Let’s emphasise that the strong-
coupling regime of CQED is not needed. Even for a moderate coupling between the
cavity photons and the atomic dipole, the trapping time gets longer by many orders
of magnitude than it would be in a free-space FORT with the same Rabi frequency.
The effect relies on the correlations between the atomic motion and the field which
yield, on top of the far-off resonance trapping, the dynamical cavity cooling mechanism
described in Sec. 5.1, experimentally demonstrated recently [31]. In this generalisation
of FORT the necessary and sufficient cooling is provided by the trapping field itself
without the need for additional near-resonant fields [90, 91], or for a magic wavelength
[92, 93].

In contrast to the standard FORT scheme, in Configuration CX the laser field does
not directly interact with the atom. It pumps a cavity mode which is dynamically
coupled to the atom. The cavity resonance frequency wc may differ from the laser
frequency, thus as compared to free-space FORT a new system parameter, the detuning

Ac appears.

5.3.2 Scaling of parameters

Our starting point is again the system (5.2). Since Uy o ¢*> « 1/V (cf Eq. 2.1), one
can recognise the local energy density fiwc |a|? /V in the force term. In the following
we attempt to keep this constant while varying the mode volume V from large values
(= standard FORT) towards the “cavity FORT” regime, where much fewer photons
create the same local field density. We note that, for simplicity, the cavity loss rate « is

assumed to be constant.>

% In fact, as it is easy to verify k = ¢T'/L, where L is the cavity wavelength and T is the transmission

coefficient of the mirrors. The latter has also to be varied when varying V to keep « constant.
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In the cavity FORT regime, the field amplitude « is a dynamical variable, its evolu-

tion couples to the atomic position as
&= (iAc — k — (iU + Do) sin®(Kz)) o + 1 + &4 (5.4)

(cf Eq. 3.21c). With properly setting the pump field 1 and the detuning Ac, the sta-
tionary mean « can be adjusted at will for a fixed position of the atom. The coupled
equations of motion, on average, can be kept closely invariant under the variation of
V. The only point for which this cannot be done exactly is the correlated fluctuations
of the atomic position and the field amplitude a (cf Eq. 3.22b).

The Rabi frequency, which we want to keep constant, can be expressed in terms of
the single-photon Rabi frequency g as Q2 = ¢2 |a|*. In Fig. 5.8 the steady-state proper-
ties of a single trapped atom are plotted for varying g, representing the variation of the

mode volume V via g oc 1/v/V. The detuning is set to
Ac = -k + Up. (5.5)

Since in this case |a|? o 7%, (see Eq. 4.20), the pumping strength must be varied as 7 o
1/g to keep Q? constant. From Eq. (3.14) it is easy to see that the mean atomic excitation
(oTo) = |(0) |, ie the probability P, of the two-level system being in the excited state,
is also kept constant by this assumption. It is about 0.05 for the whole range of this plot
with a small residual variation due to the localisation effect, ie the atoms are not always

at the very antinode of the field where they are maximally coupled to the mode.

5.3.3 Temperature, localisation

The kinetic temperature drops several orders of magnitude for increasing g, finally
reaching the limiting temperature of about the linewidth of the dominating dissipation
channel k7" ~ hk. Recall that in free-space Doppler cooling, which sets in for g — 0
the limiting temperature is k7" ~ hA 5 /2 for large detuning |Aa| > . The temperature
reduction can be attributed to the action of the coupled atom-field dynamics.

For low enough temperature trapping becomes possible, which is demonstrated by
the localisation plot in Fig. 5.8b. The measure is the mean spread ((Kz/7)?) in units
of E = 1/12 ~ 0.08 which is the mean spread of the uniform distribution. A mean
spread significantly below E expresses that the atom is localised in the vicinity of an
antinode. Note that the localisation is destroyed again for large values of g where the
mean intensity corresponds to only few photons. Such a minimum behaviour would
not be possible were the atom moving in a normal potential because the virial theorem
ensures a monotonic connection between the mean kinetic and the potential energy.

Here, however, the potential in the Hamiltonian (3.17a) is proportional to a'a. Hence
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Figure 5.8: (a) Steady-state kinetic temperature and (b) localisation of the atomic
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centre-of-mass motion as a function of the coupling constant to the cav-
ity mode. The localisation is given in units of E = 72/12 corresponding to
a uniform distribution. The two curves were generated at different atomic
detunings, Ay = —40x (solid line) and Ay = —1000x (dashed line), and
k = 7/2 was set for both. The bigger marks (for large ¢ values) originate
from the MCWF simulations, the smaller ones from Model 1sc. P. = 5% on

the whole range of g.



the part of the joint atom-cavity wave function which is associated with the Oth photon
number state does not feel any potential and spreads freely.

The cooling mechanism, responsible for the steady-state localisation, can be analyt-
ically shown to survive in the large detuning limit, Ay > + [see also 26 in a different
context]. In a calculation similar to the one carried out in Model Osc (cf Eq. 3.10a),
the linear response of the field amplitude to the atomic motion can be calculated from
Eq. (5.4), which, when put back into the force operator, yields a linear friction force

with a coefficient
2 2 _ .2 ;2
' ﬂP _ ZK Jcos? (Kx) 29 (Ac — Upsin® (Kz))(k + Iy sin® (Kz)) N
Tre H <(AC — Upsin? (Km))2—|— (k4T sin? (K:E))Q)

(5.6)

where we normalised it to the rate of spontaneous photon scattering. A similar re-
sult, without the normalisation to P, was obtained in Refs. [94, 95]. It follows that the

optimum cavity detuning is
Ac~—rk—Tog+ Uy~ —k+ Uy, (57)

which is exactly what we used for the plots in Fig. 5.8. The maximum friction coeffi-

cient, spatially averaged, is

2 2
pre - ij’y (%) (>8)
which proves the invariance of the friction coefficient per saturation as a function of
the atomic detuning. Dislike with Doppler cooling in free laser fields, going away
from resonance with the saturation kept constant does not make the damping processes
vanish. For g ~ &, the friction force equals the maximum of the Doppler friction force.
Since the relation of g and 7 is irrelevant here, strictly speaking, the regime of strong-
coupling CQED is not even necessary. Optical lattices in resonators fulfilling g 2  [eg
93, 96, 97] are suitable for this type of generalised FORT scheme.

Stable trapping is achieved if the steady-state temperature is well below the trap
depth. The former can be estimated by taking the large A o limit of the results of Refs.

[27, 28]. It yields, for uniform distribution,

kT = s (1 n %) , (5.9)
g

which is in accordance with the limiting temperature in Fig. 5.8a. In an intermediate
range of g the simulated temperature is in fact lower, an effect due to the localisation
where (5.9) holds only approximatively. As the temperature scales with «, it can be
independently controlled and chosen far below the trap depth, the latter being about
WU |a)? = hA Pe.
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Figure 5.9: Trapping times as a function of the detuning of the field from the cavity
resonance. Parameters are Ay = —1000x and g = k = 7/2, corresponding
to the point indicated by arrow in Fig. 5.8. P. = 5% on the whole range of
Ac.

5.3.4 Resonance in the trapping time

The role of the cavity cooling mechanism can be seized in the variation of steady-state
properties as a function of the detuning between the pump laser frequency and the
cavity resonance. In Fig. 5.9 we plot the mean escape time of the atom from a trapping
site, which is an experimentally accessible quantity. In the simulations the initial dis-
tribution represents atoms at the antinode with a small velocity spread. It is the dipole
force fluctuations and, to less extent, the spontaneous recoil noise which heats up the
atom to escape. A significant peak can be observed at about Ac ~ —x. The variance
of the escape times is also presented in the same plot. From the fact that the mean and
the variance are almost equal we can deduce that the distribution of the escape times is
close to an exponential one, which is expected in a steady state. The parameters were
set such that the point for detuning Ac = —x + Uj in this plot (see arrow) corresponds
to the point indicated by arrow in Fig. 5.8b. Note that, for reducing the numerical ef-

fort, this working point is far from the strongest localisation. In fact, the magnitude of
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the atomic detuning A, is also far below the one used in FORT. Though using larger
detunings would yield much longer trapping times, it would make the simulations

intractably long.

5.3.5 The |As| — oo limit

For very large detuning the trap frequency v (cf model developed in Appendix B) starts
to dominate the other frequencies of the system (resolved sideband limit). For about 5%
saturated Rb atoms the limit is A5 > 10%y, but it can be pushed to higher detunings A 5
by reducing the saturation. In the resolved sideband limit the validity of the analytical
calculations (Eq. 5.6) breaks down, since they rely on the assumption of small atomic
velocity (kv < k). The simulations presented throughout this Section would work in
this limit as well. With different tuning, Ac ~ —2v, cavity sideband cooling is possible
though very inefficient in the given geometry (only two-phonon transitions are allowed
— see Appendix B). In this case the use of an external probe field tuned to the red
sideband is a straightforward solution. Cavity cooling in the resolved sideband limit is
considered elsewhere [26, 49, 50], here we concentrate only on the cooling mechanism

around Ac = —«.

5.4 Theses

Thesis I1

We have shown that the regime where the cavity decay rate is smaller than the spon-
taneous decay rate by about an order of magnitude is the limit where quantum effects
such as atom-field entanglement and finite coherence length of the atomic wave packet
commence to play a role in the dynamics. This quantum-classical transition regime is
optimal for cavity cooling and trapping since here besides the fairly low temperature,
localisation and trapping time is maximal while cooling time is minimal. In the quan-
tum field regime we have shown that even when there is on average only one photon
in the cavity, it still fully exhibits the cavity cooling effect. We have found good agree-
ment between the results of former semiclassical simulations and MCWEF ones in the

regime of bigger cavity decay rate.

Thesis IT1

We have shown that if an atom is trapped by a quantum field, the trapping time differs
significantly from the one measured for a classical field of the same intensity. The atom

can escape via the zero photon component of the field which yields no potential. The
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effect can serve as a proof for testing the graininess of the field.

Thesis IV

We proved that in the standard dynamical cavity cooling scheme the cooling force at
a fixed rate of spontaneous photon scattering does not vanish in the regime of very
far detuning associated with large optical potential depths. This is at sharp variance
with standard Doppler cooling. From another point of view, the very popular far-
off-resonance dipole trap scheme was generalised and its efficiency was shown to be
greatly enhanced, embedding a cooling mechanism, if the field is enclosed in a cavity.
The embedded cooling mechanism provides for trapping in steady state, which means

that in an experiment trapping would be limited only by technical noise.

Thesis V

We have demonstrated cavity cooling and trapping with a model in which there is no
reference to the internal structure of the particle to be cooled. Hence, cavity cooling
is shown to be applicable for general linearly polarisable particles, in particular, for

molecules.

66



CHAPTER 6

Polariton cooling

From now on in the work we are considering the case when the atoms are driven. In
this Chapter we show the existence of a cavity cooling and trapping mechanism in
Configuration AZ. The effect is surprising in the sense that a passive cavity, though
yielding forces on the atom only in the direction of its axis, still yields cooling and
trapping in the direction orthogonal to its axis. The effect has been recently observed
experimentally by Nussmann et al. [55].

While in Sec. 5.3 we have found that a nearly resonantly driven cavity provides for
cooling and trapping in the direction of its axis, here we find that the same is true in
the case when the atoms are pumped and in the direction orthogonal to the cavity axis.
Clearly, common in the two schemes is that the spectrum of the coupled atom-field
system has resonances other than the Lorentzian of a simple polarisable medium —

responsible for simple Doppler cooling —, regardless of the geometry of the scheme.

6.1 Anomalous Doppler-effect

Configuration AZ can be considered as the standard Doppler cooling geometry, where
the atom interacts with two counter-propagating red detuned plane wave fields of
frequency w composing a standing wave along the direction z, plus a passive cavity
aligned in the z direction. An interesting question to ask is whether and how the prop-
erties of the standard Doppler scheme are modified by this addition. In this section we
are using Model Osc to study this question since it turns out to be useful to keep the

atomic internal degree of freedom for the interpretation of the findings.

6.1.1 The effect as anticipated by Model 0sc

In Configuration AZ, for the atom moving with velocity v, the linear velocity-depen-

dence of the mean polarisation is equivalent with the first-order expansion (3.10b). Cal-
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culated from Model Osc and up to first order in Kwv, it reads

<a(0) + vzagl)> = — > nt' 5 ) (6.1)
(iApx —7) + iAi—/i —iKwv, (1 - (iAgf—nP)

where the atom is supposed to be at the antinode of the pump field. This corresponds

to a Lorentzian resonance of an effective two-level atom with frequency

2 2(,.2 2
9°Ac g°(k* — Ag)
- I2C LK (1-20 -2 2
Wb WAt Az TAY ( (AZ 1 52)2 62)
and linewidth ) 2, A
g°K 29°kAc
oy I gy, S9RAC 6.3
W=V A2 TR AL e (6.3)

For g = 0, Egs. (6.2) and (6.3) reduce to the usual Doppler-shifted resonance curve
with wp = wa + Kv, and 7p = 7. However, when the atom is coupled to the cavity
mode, the additional terms shown above appear. The ones independent of the veloc-
ity correspond to the cavity-induced lineshift and line broadening well-known from
CQED. Their consequences on cavity cooling have been extensively covered in previ-
ous literature [22, 25, 28], therefore, we shall not discuss them here.

Rather, we focus on the transverse velocity-dependent correction to the standard
Doppler term in Eq. (6.2), which carries striking new features. It is proportional to
g%/ (iAc — k)%, a complex number yielding both lineshift and modification of the line-
width. The maximum lineshift is —Kv, g?/x?, reached at resonance Ac = 0. This can
cancel or even dominate the standard Doppler shift Kv, in the case of ¢ > x (good
cavity). Such a condition is satisfied in existing CQED setups. In this limit, the pump
tield is “red shifted” when the atom moves opposite to the wave propagation, which
is a seriously counterintuitive behaviour. The usual sign of the Doppler shift, which is
necessary for the cooling to work, is recovered only for a detuning |Ac| > x, and even
here its magnitude can be considerably altered.

A second interesting consequence is the velocity-dependence of the spontaneous
emission rate (6.3) into free-space modes independent of cavity geometry. It even de-
pends on the direction of motion relative to the pump field propagation. This motion-
induced effect is clearly different from the one predicted in Refs. [98, 99], where the
atom moves along the sinusoidal mode of the cavity, yielding sidebands on the atomic

resonance and enhanced inelastic scattering at the sideband frequencies.

6.1.2 Microscopic picture

The key to the anomalous behaviour is the interference of the pump and cavity fields.
The amplitude of the cavity field depends on the coordinate z since it is generated by

scattering on the atom. For an immobile scatterer, the cavity and pump fields, as well
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as the resulting atomic polarisation exhibit the same z-dependence. For g ~ &, the cav-
ity photons can be reabsorbed, or even multiple absorption-emission cycles can occur,
which combines the interference with the cavity memory effect. This can even lead to
a destructive interference of the two fields cancelling atomic polarisation [100]. For a
moving atom the phase of the pump varies instantaneously with the atomic position,
while the cavity field adapts only on a time scale x~!. Hence there appears a phase
lag between the pump and the cavity components of the field impinging on the atom.
This interference phase changes as a function of the atomic velocity, which can be seen

explicitly in an analytic form by rewriting the above expression for the polarisation as

<J(o) n 020§1)> _ e+ g (al?) V29 <a§1)>

, 6.4
i(w—wa—Kuv,)+7v  i(w—wa)+7 ©4)

here again, the atom at the antinode of the pump field. The first term is the polarisation
induced by the total adiabatic field, containing the velocity dependence in the naively
expected way (standard Doppler shift). The anomalous dependence is contained in
the second term, which describes the non-adiabatic response of the field to the atomic
motion (cf Eq. 3.10a).

Doppler cooling of two-level atoms makes use of the dependence of the photon
scattering rate on the velocity, as described by the Doppler effect. It can be improved
by a cavity which increases the photon emission rate at the cavity resonance frequency
set blue detuned to the pump frequency [25]. In such an inelastic scattering process the
photon energy difference has to be compensated by the loss of atomic kinetic energy,
hence the cavity yields an efficient dissipative channel for the atomic motion. However,
this interpretation is valid only in the “bad-cavity” limit, ¢ < . In this limit the cor-
rection to the Doppler shift can be neglected and the simple expression kv can be used
to leading order in g/x. In the good cavity limit g/« 2 1, however, the real shift calcu-
lated above deviates substantially from the standard form. The velocity-selectivity of
the optical force changes qualitatively, which implies a completely new scaling of the

laser cooling properties.

6.2 Cooling

Let us now discuss the dynamical consequences of the anomalous Doppler effect. We
have numerically simulated the coupled stochastic equations of Model Osc. In Fig. 6.1
the kinetic temperature is plotted against the coupling strength ¢ of the atom-cavity
interaction.

The drastic reduction in the temperature for increasing coupling constant g demon-

strates the impact of the anomalous Doppler term on the mechanical forces. As shown
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Figure 6.1: Steady-state kinetic temperature of the atomic centre-of-mass motion as a
function of the coupling constant to the cavity mode. @ (Aa, Ac, ) =
(—350, —0.6, 90)7.

in the inset, from g = 0 to g = ~ the temperature changes one and a half order of mag-
nitude!. It finally drops below the Doppler limit k7 = Ay (cf Eq. 5.1). Accordingly,
we have found that the trajectories exhibit longterm trapping (up to seconds) of the
particles in the direction of the pumping field: see Fig. 6.2 for the trapping probability
of an atom.

The result is in sharp contrast to free-space Doppler cooling, where the temperature
is always higher than the potential depth prohibiting trapping (cf Sec. 5.3.1). Hence the
effect cannot be simply seen as replacing our atom—cavity system by a single entity
with modified linewidth and transition frequency. Note also that the cooling gets most

efficient in the limit of k — 0, where the cavity dissipation channel is completely closed.

6.3 The polariton

Because of the large detuning, A, >> ~, direct excitation of the atom is negligible. By
coherent scattering on the atom, the pump can quasi-resonantly excite a “photonic po-
lariton” at the resonance condition, AcAx = g2, associated with the lower dressed

state of the coupled atom-cavity mode system — see also the resonance in the field and

"Note that g = 0 corresponds to simple Doppler cooling where according to the formula (5.1) the
temperature should be 175/, considerably higher than the one plotted here. Model Osc is unable to

reproduce this since it works only for small velocities.
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Figure 6.2: Trapping probability of an atom derived from an ensemble of about 32k
atoms initially at Doppler temperature and homogeneously distributed on
the section of length A around 0. The fraction of atoms still in this section
is plotted against time. About one half of the atoms remain trapped for

seconds. @ (g, k) = (5, 0.5)7, other parameters as in Fig. 6.1.
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Figure 6.3: (a) The polariton resonance in the mean atomic excitation, (b) the conse-
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quent linear friction coefficient normalised to the spontaneous emission
rate, and (c) kinetic temperature along the z-direction as a function of the
Ac. g = 5y, other parameters as above. The points in (c) stem from numer-

ical simulation of Model Osc.



polarisation (3.13). This state is composed dominantly of photonic excitations, the asso-
ciated small (x g?/A%) atomic excitation is plotted against the cavity mode frequency
(embedded in Ac) in Fig. 6.3(a). Note that for Ac = 0 the upper state population is
suppressed by destructive interference of the pump and cavity fields, it is strictly zero
for x = 0 [100].

The linewidth of the polariton resonance is k + (v — ) g?/A%. For vanishing , the
velocity dependence of the polariton excitation, hence that of the optical force is greatly
enhanced in the vicinity of the polariton peak. This results in enhanced friction force (cf
Bin Eq. 3.3b). The zz component of this, normalised to the mean spontaneous emission
rate, is shown in Fig. 6.3(b) for various values of . Regions below —1 indicate less than
one spontaneous emission in a cooling time 1/3,,. Owing to the sharp resonance, the
atomic motion can induce a dramatic increment of the number of photons in the cavity.
For the parameters of the figure and for x = 0.17, a number of 180 extra photons are
created at Doppler velocity and at a saturation of 0.1. If each photon carries about a
recoil energy (= h?K?/u ~ 0.0024/y) more than the incoming pump photon, a kinetic
energy on the order of the Doppler energy /iy can be rapidly transformed into internal
energy of the system. That is, the energy is being buffered in the form of "photonic
polariton" excitations while slowly leaking into the environment.

In Fig. 6.3(c), we used the temperature as a numerical benchmark of the polari-
ton resonance’s role in the cooling. The curves are analytically estimated by a semi-
empirical approach relying on the hypothesis that the atom is tightly confined in the
vicinity of an antinode of the pumping field (generalised Einstein relation — for details
see Ref. [34]).

Finally we note that some current experimental setups operate with parameters
g =57, k = 0.57[55,96], and g = 9y k = 27 [93]. The ratio g/« exceeds 1 by far so
that the anomalous Doppler shift is directly observable in the fluorescence, while the

polariton cooling manifests itself by the appearance of long-time atomic trapping.

6.4 Remarks, Theses

Note that the geometry of the cavity was not really relied on here, the effect occurring
in the direction orthogonal to its axis. Therefore, analogous effects are anticipated in
other micro-optical setups, where atoms are captured in dipole traps close to resonant
optical structures such as rings, waveguides or microspheres by using the correspond-
ing coupled atom-field resonances.

Our preliminary studies with the MCWF solution of Model 1 for Configuration AZ
have revealed that it may be possible to achieve ground-state cooling with the polariton

cooling effect in the very far detuned regime. Ground-state cooling means that in the
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steady state there is basically no excitation quantum in the atomic motion, so that it

corresponds to a BEC.

Thesis VI

We have shown that if an atom moves in a monochromatic laser field and is strongly
coupled to a mode with weak damping — such as a high-Q cavity mode — nearly res-
onant with the field then the velocity-dependence of its polarisation deviates substan-
tially from the standard Doppler shift. This “anomalous” Doppler shift is proportional
to the square of the ratio of coupling constant and decay rate. Depending on the param-
eters the Doppler-shift can even change sign: in this case a field counter-propagating

to the motion is felt as red-shifted by the atom.

Thesis VII

We have shown that if in the standard Doppler-cooling scheme a resonant object is
coupled to the atom then the efficiency of cooling both in terms of limiting temperature
and cooling time can be greatly enhanced. In addition, long-time trapping is achieved
up to the range of seconds. The effect is based on the anomalous Doppler effect, which
at proper but general enough parameters is an enhancement to the standard Doppler
effect. An alternative explanation on a higher level of understanding is in terms of a
peculiar resonance (polariton) of the coupled atom-cavity system, which in the strongly
coupled case is very different from the simple Lorentzian resonance used for Doppler

cooling.
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CHAPTER 7

The atom-cavity system as a

quantum seesaw

In this brief Chapter a quite spectacular effect is displayed which was come across
when applying the MCWF simulation developed in Chap. 4 to Configuration AZ or
AX. The effect has implications for a quantum version of self-organisation (cf Appendix
C), and hence it was the chief motivation for us to undertake quantum many-body

studies to be presented in Chap. 8. In the following we use Configuration AZ.

7.1 The quantum-seesaw analogy

With proper but generic enough parameter settings which allow for cooling and trap-
ping the atom, MCWF trajectories independent of the initial condition exhibit the fea-
ture that after a certain transient time in the cavity there is no field but still there are
photons:

(a) =0, <aTa> £ 0. (7.1)
The photon number is roughly the semiclassically expected, that is, the one which is
radiated by a point-like atom situated near the antinode of the pumping field. A closer
look at the joint atom-field wave function revealed that it eventually assumed the form

1

V2
Here [left) (|right)) means a well localised atomic wave packet centred on the left (right)
antinode of the pumping field — (left| Kz |left) = —n/2 ((right| Kz |right) = 7/2) —

in the section of length A\ considered in the MCWF simulation (cf the discussion of

104 ~ —— (|left) |a) = |right) |—a)). (7.2)

Fig. 4.2 in Sec. 4.2.2). An atom in state |left) (|right)) radiates approximately a coherent
field |a) (|—c)) into the cavity given by Eq. (3.13a). A field in state |a) (|—«)) deepens
the potential well at the left (right) antinode while flattens the other one. This positive

teedback is reminiscent of a seesaw and is also the must of the self-organisation process.
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Figure 7.1: Analogy between a quantum seesaw and the atom-cavity system in Con-

figuration AZ. Note that the seesaw itself and the particle on it as well is
supposed to have some attraction towards the centre to have a finite steady

state. The potential felt by the atom is indicated by solid black lines.

In the fully quantum mechanical version of the seesaw, that is, when both the see-
saw and the particle moving on it are quantum objects, the possibility of entangle-
ment allows the system to immediately leave its unstable central equilibrium point
and evolve towards left and right simultaneously. Moreover, the decay of the unstable
equilibrium occurs without any noise, which is unthinkable for classical spontaneous
symmetry breaking phenomena. In Fig. 7.1 we display the analogy between a quantum

seesaw and the atom-cavity system in Configuration AZ.

7.2 Role of entanglement and decoherence

The role of entanglement in the initial phase of the dynamics is displayed in Fig. 7.2
where the evolution of the mean photon number and the negativity characterising
atom-field entanglement (cf Sec. 4.2.3) is plotted. The plots stem from the ensemble
average of 500 trajectories where the initial condition was no field and the atom having
a completely flat wave function. According to the above discussion about immediate
decay of the unstable equilibrium, photons and entanglement are immediately created.
The oscillations in the photon number and negativity are clearly related. The minima
correspond to the expected times of the Oth, 1th, 2nd, etc. photon loss via cavity decay.
The photon number oscillates around a constant and does not vanish for long times.
On the other hand, dissipation (quantum jumps) destroys entanglement so that the

negativity oscillates around a decaying mean'. Indeed: each cavity decay means the

!Some residual entanglement remains in the steady state of the system for the same reasons as dis-

cussed in Sec. 5.2.4 for Configuration CX.

76



0.4

0.35

0.3

0.25

0.2

negativity

0.15

0.1

0.05

! ! ! ! I

| negativity

phot. num

| | I | |
0.5 1 15 2 25

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

photon number

Figure 7.2: Fast dynamic growth of entanglement and photon number for a single atom

in the range 0 < xt < 0.2. Afterwards, both oscillate around a decaying

mean — this is just the behaviour of an under-damped oscillator. The initial

condition is flat wave function and field in vacuum state. @ (Uy, Ac, nt) =
(=1.7, =12, 20)x, Ty = 0.

77



action of the operator a on the state (7.2), which flips the sign of the superposition:

Je V) = Vi (alleft) [a) + (—a) |right) [-a)) oc [¥_), (7.3)
Je W) o Wy ). (7.4)

It is easy to see that the atomic decay in Configuration AZ also flips the sign, while in
Configuration AX it leaves the sign unchanged. The result is that in steady state the

system is in the complete mixture:

() (| + ) ). 7.5)

N =

Pss =

Careful analysis of this state reveals that it is impossible to be distinguished from the
steady state of a classical simulation performed for one particle. Hence, the conclusion
is that quantum properties may play a role in the initial phase of the dynamics, while

they are absent from the steady-state.

7.3 Robustness of the final state

Let us start the system from the initial condition |right) where it begins to radiate the
coherent field state |[—a). As we see in Fig. 7.3, this state is remarkably stable for a
long time, but eventually collapses due to fluctuations, and the system ends up in the
state (7.2), which is made obvious by the fact that (z) = (a) = 0, while the photon
number is not affected: (a'a) ~ la|?. Hence in the atom-cavity implementation of the
quantum seesaw, even if the seesaw is tilted to one direction with the atomic wave
packet completely on that side, fluctuations eventually enable the system to escape
from this state to a symmetric final state.

Aswe seein Fig. 7.3(b) this happens even with atomic spontaneous emission, though

on a much longer time scale.

7.4 Remarks, Thesis

We note that in Refs. [61, 67] for atoms moving in a cavity a lattice model was devel-
oped which, when applied to Configuration AZ, fairly reproduces the quantum seesaw
effect, there is even good quantitative agreement with the MCWEFS results. The results
presented in this Chapter are to be published together with the lattice-model results
[56]. In the lattice model it was shown that in the initial phase of the dynamics even
the quantum many-body state of the system is important, whether eg it is in a Mott

insulator or a superfluid state.
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Figure 7.3: MCWEF trajectories exhibiting dynamical formation of a the state (7.2) with-
out (a) and with (b) spontaneous emission. The atom is initially well lo-
calised in the right well ((Kz) = 7) and radiates approximately a coher-
ent field with amplitude —o into the cavity. Due to fluctuations it even-
tually escapes and evolves into the state (7.2), having no mean field but
non-vanishing photon number: (a) = 0, (afa) ~ |of*. @ (Uy, Ac, n) =
(0.5, —1.2, 20)x. In (b) Ty = 0.005x.
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Thesis VIII

We have shown that the atom-cavity system in the case of atom pumping realizes a
quantum seesaw with the cavity field standing for the seesaw, that is, a system capa-
ble of leaving its unstable equilibrium point via entanglement and without any noise.
The effect has implications on phenomena in which spontaneous symmetry breaking

is inherent, such as the self-organisation of ultra-cold atoms in a cavity field.
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CHAPTER 8

Many-body aspects — Outlook

In this Chapter we overview some of our ideas of a fully quantum mechanical de-
scription of many atoms in the cavity. Our motivation is to study the self-organisation
phenomenon (cf. Appendix C) in the case when both the atomic motion and the cavity
field is described quantum mechanically, since Chap. 7 hinted that the possibility of
atom-field entanglement has an impact on what is classically spontaneous symmetry
breaking and maybe also on the phase transition phenomenon as a whole. The ques-
tion arises whether there is a quantum phase transition, that is, an abrupt change in the
structure of the ground state at some critical point in parameter space. Note that the
“ground state” of such a dissipative system is defined as the stationary solution of the
Master equation

b= 2 (z () + ﬁp) , 5.1)
that is, the eigenvector of the (super)operator £ corresponding to 0 eigenvalue.

Our starting point is the second quantised version of the Model 1sc Hamiltonian.
Probably the simplest model which has any chance for catching the basic physics of
the problem is discussed in Sec. 8.2. Here the cavity field is eliminated and we consider
only two possible atomic states corresponding to the |left) and |rigth) states of Chap. 7.
In Sec. 8.3 we show that the problem with full atomic motion can be mapped to a lattice
model and we discuss the possibility of a DMRG solution of the model.

To make it simple, in the whole Chapter I'y = 0. Hence, the whole dissipative part

of the dynamics is described by the Liouvillean

Lp=kK <2apaT — [aTa, p} +> . (8.2)

Note that even without the spontaneous emission induced recoil diffusion, there is
“enough” noise in the system stemming from the cavity-decay induced dipole force

diffusion to account for self-organisation.
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8.1 The many-atom Hamiltonian

The Hamiltonian describing the fully quantum mechanical dynamics of many atoms

interacting with the cavity field stems from (3.15a) and reads
p?
Hup, = —hAc ata — ilin (a —af ) + / dr U (r) <2M + WUy E1(r) 5(r)) U(r). (8.3)

Here ¥(r) is an operator which annihilates an atom at point r. The atoms are supposed
to be bosons so that
[xy(r), \IIT(I")} =5(r—1). (8.4)

Here we are chiefly interested in the interaction transmitted by the cavity field between
the atoms since each atom interacts with the very same cavity mode. As explained in
Appendix C for the classical case, this indirect interaction itself is capable of generating
a phase transition. Direct atom-atom interaction, which would be an additional term
in the Hamiltonian of fourth order in W is therefore omitted.

Concerning the problem of scaling with the atom number N we note that were
we to consider a Bose-Einstein condensate, the atoms could be described by a classical
field ¥(r) = v/N ®(r) where N is the number of atoms and ®(r) is the condensate wave
function. In this case it is easy to verify that the problem is identical to a one-particle
problem, but with parameters rescaled as g — v/Ng and 1, — v/ Nn.

In the following we shall consider Configuration AZ because it is here that we have
a lattice fixed by the transverse pumping field, which will be an important point in the

next Section. The Hamiltonian in this case reads
H = —h(Ac — NUy) ala + ﬁwrec/dz \IJT(Z) Ho ¥ (2) 4+ A/ Up Ness (aJf +a)S, (85)

with Hy = p2?/(2h2K?) + pne/(hK?) sin?(K z) the dimensionless lattice Hamiltonian,
and
S = /dz Ul (2) sin(Kz) ¥(z). (8.6)

Note that the total number of atoms is certainly conserved so that the operator [ dz f(z)¥(z)
has been replaced by N.
Sometimes it will be convenient to eliminate the cavity field. It can be done using

the above Hamiltonian and the Liouvillean (8.2) — omitting the noise:

—ivV Up Mot
. 7
Bc—NUp) —r° ®.7)

a = -
(3

We insert it back to the Hamiltonian (8.5):

WU nett (Ac — NUy)
(AC — NU0)2 + K2

Heff = hwrec dz \I/T(Z) Ho \IJ(Z) 82 (8.8a)
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Figure 8.1: Toy many-body model for many atoms interacting with the cavity field in
Configuration AZ. A section of length X is considered with two trapping
sites in the transverse pumping field at Kz = +7/2, and one atomic state in
each well. The cavity field is eliminated making that for IV atoms there are
N + 1 states of the system.

and Liouvillean (8.2)

_ Uo nefits a2
Lait = X NPT (2sps S ,p]+) . (8.8b)

This system describes a field which has gained self-interaction and dissipative dynam-

ics via the cavity field.

8.2 Toy many-body model

Let us consider the section A around 0 (cf. Fig. 8.1). In this section the potential stem-
ming from the transverse pumping field has two minima at Kz = £7/2 (note that U is
negative). This defines a symmetrical double-well problem in which the ground state
|0) is eigenstate of the parity operator with eigenvalue 1 and the first excited state |1)
with eigenvalue —1:

H() |0> = € |0> 5 Ho |1> = €1 |1> . (89)

Using these two states we can define two other states with minimal energy! localised

in the left and the right well, respectively:

1 1
= 50+, )=

and these two states are also orthogonal.

1) (10) = 1)), (8.10)

S

2

!This is the difference between |1}, |r) and [left), |right) used in Chap. 7. There, the atom is not neces-

sarily in the ground state of the corresponding potential well.
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The toy many-body model consists of the system (8.8) with the restriction to these

two states, that is, setting U = b; 1) + b |r). As it is easy to verify, in this case
/dz U (2)HoW(2) = J (blTbr + b;fbl) + const., (8.11a)
S=1J (blT b — bjbr) , (8.11b)

with J = €; — ¢ (hopping parameter), and J = (I|sin(K2) |l) = — (r|sin(K2) |r). This
model is eventually an utterly simplified Bose-Hubbard model [58, 61, 67, 68]. There

are only two dimensionless parameters:

U, Ac — NUy) J? U J?

g _lo Nest (Ac : 20) K= 0 Ueffzfi i 7 (8.12)
((AC_NUO) + K )WrecJ ((AC_NUO) + K )WrecJ
with dimensionless operators:
2

H = (b]be+ bt ) = 7 (b0 —ofbr) (8.13a)

2
Lp=K (2 (bjbl _ bjbr) 0 (bfbl _ bibr) _ [(b}bl _ bIbr) ,p} ) . (8.13b)

+

Since the states are defined by the fixed potential generated by the transverse pump
(o< sin?), the model is expected to work well in the limit when this potential dominates
the one generated by interference with the cavity field (o sin). Therefore, it certainly
cannot give account of the fact that the atoms make the potential for themselves (via the
scattering-generated cavity field), which so far has been a must of most of this work.
In particular, strictly speaking self-organisation is ruled out from this treatment since it
occurs in the limit where the sin potential dominates the sin? one.

On the other hand, since for N atoms there is only N + 1 possible states of the
system, the model can be solved exactly. The solution consists of exact diagonalisation
of the superoperator £. The dimension of the density matrix space being (N + 1)? this
means the diagonalisation of an (N + 1)2 x (N + 1)? matrix, which is again done using
LAPACK. This can be done for up to 20 atoms. Once done, the exact time evolution of
the density matrix p is known.

As it is easy to verify even analytically, the ground state, that is, the final state of the
evolution is a very trivial one which consists of each state |n, N — n) having the same
population with vanishing coherences. An example is given in Fig. 8.2. Hence, there is
of course no quantum phase transition in this model. The photon number in the final
state is proportional N? so that this is a superradiant state. The expectation value of
the field is, however, zero, due to the symmetry.

Still, in the transient behaviour there is a change which is reminiscent of the self-
organisation. Starting the system from the |N — 1, 1), with proper choice of parameters
it can be achieved that the population of the self-organised state |V, 0) dominates the

dynamics for a long time. An example for N = 4 atoms is shown in Fig. 8.3.
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Figure 8.2: The evolution of populations show the setting in of the simplistic final state
for N = 4 atoms. The initial state is (bf +b0)N /2N/2|0) — In the lattice-model
literature this is usually called “superfluid” or BEC state. @ J = 2000,
K = 1000.

8.3 Mapping to a lattice model

From what was said in Sec. 4.1.1 it is clear that in the many atom case for Configuration
AZ the system can be mapped to the lattice system depicted in Fig. 8.4. Since here a
section of length ) is the elemental cell in the problem, particle exchange is only band-
to-band. There is no particle exchange inside a band and interaction is only generated
by that each sublattice interacts with the same cavity mode, that is, a photon emitted
by a particle on one sublattice can be absorbed by one on another sublattice. While this
interaction alone is capable of generating phase transitions [101], here, just like in Sec.
4.1.1 we nevertheless restrict ourselves to the set of momentum components {nK},cz,

thatis, weset ¥ = > _, b, [nK). Inserting into Hamiltonian Eq. (8.5) we obtain:

nez
_ + hwrec o T Neff (11 +
H=—-h(Ac — NUp)ala+ Y =5 2 Blbn = = (0] obn + Blbnso

nez
Y Uomett (

2t (Bl 1bo = b;an) (a ¥ aT)> . (8.14)

In this model the atomic motion is not restricted, so that it fully accounts for the
atoms moving in the dynamic potential created by the field. Hence, it is very promising

for the description of dynamical phase transitions like the self-organisation. A great
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Figure 8.3: Evolution of populations of the states |3,1) and |4,0). In part (b) the later
dominates the former, an effect reminiscent of self-organisation. @ K =
1000; in (a) J = 2000, in (b) J = 200.
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(a) Cavity field

ZLQK b,K bo bK bQK
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Figure 8.4: (a) Many-atom system in Configuration AZ mapped to a lattice model in
momentum-space. Observe that the interaction is between Bloch bands.
The one between the next-neighbouring bands is generated by the pump
field, while the one between neighbouring bands is associated with the ab-
sorption or emission of a cavity photon. In the text we restrict ourselves to
the (sub)lattice indicated by the big crosses. (b) Using the symmetry of the
Hamiltonian even this sublattice is split into two between which there is no

particle exchange.
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advantage of using momentum space is that even the first few lattice sites seize the
basic physics of the system. E.g. the unorganised state is approximately described by
the sites -2, 0, while the organised one by the sites +1.

The above Hamiltonian is symmetric with respect to the change b,, < b_,. This
feature can be exploited by introducing cosine and sine modes instead of momentum

eigenstates:
by +b_p, b, —b_p

co="bo, cCp>0= T; Spn>0 = \/iz

In this case even the infinite lattice {nK },cz is separated into two half-infinite sublat-

(8.15)

tices between which there is no particle exchange. One consists of the even c-s and odd
s-s, the other vice versa. Between the two sublattices the interaction is again generated
by that both interact with the same cavity mode. This we again ignore and restrict
ourselves to only one sublattice.

We plan to apply the Density Matrix Renormalisation Group [102] — for a review
see Schollwock’s [69] — to this lattice, which aims at the calculation of ground state
properties of lattice systems. As already hinted above, the key physics is described
by the first few lattice sites while the rest serves as a noise source, which is a must
for the phase transition. The finite-system DMRG is to be applied with some prefixed
cutoff in momentum. The cavity field is not to be renormalised, and also in the photon
number a cutoff is to be introduced: hence, we in fact have a lattice for each photon
number component. In the DMRG method, quantum phase transitions are detected by

the calculation of site entropies in the ground state [103].
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APPENDIX A

The MCWF method made easy

Suppose a quantum system with dissipative dynamics governed by the Master equa-
tion ‘

.

p= 7 lp.Hl+ Lp, (A1)

where the Liouvillean, as it is usual in quantum optics, has the form

Lr=%" <JmpJJn - % [JJnJm, p} +> . (A2)

At time t the system is in a state with normalised wave function |V (¢)).
The Monte Carlo Wave-Function method for such an abstract system consist of two

steps in order to obtain the wave function at time ¢ + ¢ up to first order in d¢:

1. The wave function is evolved with the non-Hermitian Hamiltonian
nH_H——ZJTJ (A3)

to obtain (up to first order in 6t)

(A4)

Dot + 68)) = (1 _ tHoH ‘”) |

h
Since H,y is non-Hermitian, this new wave function is not normalised. The

square of its norm reads

<\I]nH(t+5t)| \I]nH(t+5t)>
iHT i
= (U(t)| <1 - H“; &) (1 - H“;5t> U (t)) =1—dp, (A5)

where 0p reads
‘ i
0p = 6t 5 (U(0)| Hipt — Hyyy | 9(2) Z 5Dm (A.6a)

Spm = Ot (U(0)] T}, I [W(2)) > 0 (A.6b)

Note that the time step ¢ should be small enough so that this first-order calcula-
tion be valid. The requirement is dp < 1.
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2. A possible quantum jump with total probability dp. For the physical interpreta-
tion of such a jump see eg Refs. [39, 104]. We choose a (quasi) random number ¢
between 0 and 1, and if dp < €, which should mostly be the case, no jump occurs
and for the new normalised wave function at t + J¢ we take

[Wara(t +51))

Wi+ a) = =

(A7)

If € < 6p, on the other hand, a quantum jump occurs, and the new normalised
wave function is chosen among the different wave functions .J,,, |¥(¢)) according

to the probability distribution I1,,, = dp,, /dp:

(W (t+ 6t)) = \/E%\I;(t». (A.8)

In the following we demonstrate that the above two-step stochastic evolution of

a wave function is equivalent with the deterministic evolution of the density oper-

ator governed by the Master equation (A.1). Let us consider the operator o(t) =

|U(t)) (U(t)]. Let o(t) be the average of o(t) over the possible outcomes of the MCWF

evolutions all starting in |¥(0)). We shall prove that if p(0) = |¥(0)) (¥(0)| then 7(¢)
coincides with p(t) at all times ¢.!

If at time ¢ the MCWF wave function is |¥(¢)) then at time ¢ 4 6t

_ B |Ung(t + 68)) (Unps(t + 6t)] T [T ()Y (T (2)] IS,
a(t+0t) = (1—dp) Ny, =5 +5tdp ZH _5% i (A9)

which, when using Eq. (A.4), gives
a(t+dt) =o(t) + % lo(t), H] + 0t Lo(t). (A.10)

Averaging over the possible values of o(t) we obtain

do(t) i _ —
=7 [F(0), H] + Lo (1), (A.11)

This is equivalent with the Master equation (A.1). From the above proof it is also clear
that in the MCWF method the deterministic part of the damping (loss, dissipation) is
accounted for by the non-Hermiticity of the evolution, while the stochastic part (noise,

fluctuation) is rendered by the quantum jumps.

'The generalisation for mixed initial states is then straightforward since every mixed state can be de-
composed as a convex combination of pure states. The MCWF evolution in this case should be performed

separately for each initial pure-state component.
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APPENDIX B

Cavity sideband cooling

Originally, sideband cooling is for an atom strongly-enough confined in a (harmonic)
trap and illuminated by a plane wave whose spatial dependence couples the atomic
internal and motional degrees of freedom, making that the atomic motion inherits the
dissipation of the internal dynamics (spontaneous decay). The detuning between the
illuminating light and the atomic transition has to be set to minus the trap vibration
frequency (a sideband), hence the name.!

In this Appendix, using a simple Wigner-Weisskopf approach and perturbation the-
ory, we demonstrate that a similar effect exists in Configuration CX, the cavity field
standing for the dissipative internal degree of freedom. We also show that to exhibit
this effect, a very different detuning is necessary than what we have used throughout
this work, and therefore this effect is very different from our dynamical cavity cooling
effect.

We start from the Hamiltonian (3.17a) and add the cavity decay in Wigner-Weisskopf

approximation (we omit the atomic decay):

2
H = g— —h (AC — Uy cos?(Kx) + ir) ala —ihn (a — aT> ) (B.1)

I
where we have taken cos for the mode function. We assume that the field is big enough
to strongly confine the atom in the vicinity of 0, so that we can take cos(Kz) ~ 1 —

K222 /2. We separate the expectation value of the field: @ = o + @ with a = in/(Ac —

!This effect is accounted for by the simple Hamiltonian
H = hwb'b + hwaolo + hn (O'T e twittke) 4 h.c‘) .
In interaction picture this reads

) 3" (b —ivt bT wt\"
H = h’n <O’T e—zAAt Z (COHSt) ( €n' +b'e ) +h.C.) s FL’/] (O.TbTP(bTb) +h.C.) ,

n

where for the ~ we have set Ay = —v and applied rotating-wave approximation, P is some polynom. The
coupling term o o 'b accounts for cooling in a way described in the text for the cavity sideband cooling

case.
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Up +ir) (cf Eq. 4.20) and (a) = 0. The Hamiltonian then reads

9 K2 2 K2 2
H = 2 4 h|U] o 255 = h(Ac = Uy + in)la + i (a*a+aal) =55, (B2)
i

where the higher order term oc @@ 2% has been dropped. The expectation value of the
last term being zero, the atom moves in a classical harmonic potential with frequency
v =+/h|Uy| /uK |a|. Introducing the ladder operators b for the harmonic potential we
arrive at

A i af 2
H:hubTb—h(Ac—Uo+m)EzTEz+—y<g+a—> (b+b*) . (B.3)
4 \a o

The last term is a small perturbation.
Let us consider the state |n,0) — n 2 2 atomic excitation and 0 photon (in the a

sense). The energy of this state is perturbed in second order:

Efg _ h21/22 ‘(n, 0la(b+ bT)2 |m, m>‘2
7 16 | m,m=n,0 Ex(m(,)g - Elg?)m
hfwrec ‘U0|n2 1 1 4
~ 16 (QVJF(ACU0+ili)+2y+(ACU0+’L'I€)+(AcUo+ili)>.

(B.4)

The energy has indeed inherited an imaginary part. This is true for every n > 0 which
means that the population of the excited states is damped, which means cooling to-
wards the ground state. Being of second order, this is a small effect, its best being at the

detunings Ac — Uy = +2v, 0.
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APPENDIX C

Self-organisation

Self-organisation of ultra-cold atoms in a cavity was first anticipated by Domokos and
Ritsch [35], and demonstrated experimentally by Black et al. [63]. Later it was discov-
ered that the process can be considered as a dynamical phase transition between an
unorganised and a self-organised atomic distribution with control parameter 7, and
connected phenomena such as spontaneous symmetry breaking, scaling laws, and hys-
teresis have been identified [62].

The authors of the above theoretical works used Model 1sc, which, owing to its sim-
plicity, allows for the simulation of many atoms interacting with the cavity field. Self-
organisation happens in Configurations AZ and AX where the self-organised phase
is a 2m/K periodic atomic distribution as well as in two dimensions in which case a
checkerboard-like pattern emerges in the self-organised phase. The process for Config-
uration AZ is summarised in Fig. C.1.

Self-organisation is due to the competition between the potential proportional to
sin and the one proportional to sin? in the Hamiltonians (3.17b) and (3.17c). When a
sin potential is added to a sin? potential, the original periodicity of 7/K is reduced to
a periodicity of 2r/K. The original even and odd attracting sites (minima of the sin?
potential) will now have different depths, and it can also happen that one set of them
become repelling sites (when the sin dominates the sin?).

Every phase transition can be considered as a result of a competition between en-
ergy and entropy, the transition happening between a phase with high energy and high

entropy and one with low energy and low entropy. In the present case these phases are:

High energy and entropy. In Configuration AX this is simply a homogeneous atomic
distribution, while in AZ a distribution with periodicity =/K. Since the cavity is
not pumped, cavity field can build up only from the field scattered by the atoms
from the cavity pump. In this phase there will be no cavity field since the field
scattered by atoms with position difference 7/K vanishes due to destructive in-

terference. No cavity field means that the sin potential being proportional to a

93



’ field: |0) \

AL A A

atoms at each antinode i < Ne

S’

nt>770

’ field: |a) \ ’ field: |—a) \
M OR M

atoms at eéven antinodes atoms at odd antinodes

S S

Figure C.1: Self-organisation in Configuration AZ. The solid black line indicates the
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vanishes. In Configuration AX the sin? potential being proportional to afa also
vanishes while in AZ this remains. This means that the above mentioned atomic

distributions are stationary.

Low energy and entropy. This is the self-organised phase. In each Configuration it
consists of the atoms occupying every second (either the even or the odd) trap-
ping sites of the sin? potential. In this case each atom scatters with the same
phase into the resonator so that constructive interference yields a strong field
(super-radiance). With big enough 7 this results in the sin potential dominating
the sin? one, which again with proper parameters yields deep potential wells at
the positions of the atoms. Which of the two configurations (even or odd) is realized

is decided in a spontaneous manner.

From the above discussion it is clear that in each phase the atomic distribution creates
a cavity field which, in turn, creates such a potential as to stabilise the given atomic
distribution, hence the name “self”-organisation. Note that parameters should be ad-
justed in a way such that this feedback be positive, in particular, Ac — NUj should be
negative. (Up < 0 is of course also necessary, or else the atoms seek the nodes of the
field where they do not scatter into the cavity). Strong coupling is not necessary for
self-organisation since the coupling parameter is scaled up with the square root of the

atom number.

C.1 Hydrodynamical approach

Probably the simplest approach to classical many-body effects such as the self-organ-
isation is considering the atoms as a continuum with density p(r) and velocity field
v(r) inside the cavity. In this approach the unorganised phase appears as a stationary
solution with every parameter setting, but it becomes hydrodynamically unstable at
the transition point.

This approach we shall present for Configuration AX since it is here that we know
the unorganised phase exactly (homogeneous distribution). The field equations mostly
stem from Egs. (3.23) of Model 1sc with the substitution &(z) = f(z) a + n/g:

5,5 + 5(8¢0) = Grec (Uo 5e |€(€)[2 — % b log ﬁ) , (C.1a)
6. + 6¢(0) = 0, (C.1b)

d - NU d
ﬁ — (z (AC - %) - 1) a— @'Uog”t / de () sin(€). (C.10)
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Here N is the number of atoms. Note that I'y has been set to zero since here we do
not want to be bothered by the recoil diffusion. This is well justified in the far-enough-
detuned regime. The first equation is a diffusive version of the Euler equation, the
second one is the continuity equation, while the third one is the hydrodynamic version
of Eq. (3.23c). We have written dimensionless equations with 7 = «t, { = Kz, 0 =
Kv/k,and p = p/K.

The second term in the right-hand side of Eq. (C.1a) has been added to account for
the diffusion in the atomic motion, which now originates solely from the dipole-force
diffusion of the cavity field (scaling with x).! Note that strictly speaking the system is at
zero temperature (since it does not interact with any finite temperature reservoir), still,
as we have seen throughout this work, cavity decay does yield some finite effective
temperature. This is necessary since without temperature entropy is not a concern
any more (cf 1st law of thermodynamics), and the system always goes for the low
energy state hindering any phase transition from occurring. To a more applied level
this general principle translates as the dipole force diffusion stabilising the unorganised
phase. Since the effective temperature is approximately «, we can set Ay = hx.

Now it is very clear that © = 0, p = po, and a = 0 is always a solution of the system
(C.1) (unorganised phase). Let us introduce the small fields v(£) and p(§) perturbing
this solution (« is also small in the following), and put them back to the system (C.1).

The linearised equations for the small fields read

07U = Wrec <[7 i cos(&)(a+ o) — 65—'0> , (C.2a)
g Po
drp ~+ Po 551) =0, (C.2b)
d - NU U
ﬁ = (z (AC - TO> - 1) a—i Og”t / dé p(€) sin(€). (C.2¢)

Now the spatial dependence of the fields can be separated since looking at the first

two equations it becomes clear that they must assume the form v = v(7) cos({) and

!Let us justify this term as follows: Suppose a continuum is moving in a potential V (z). Then the

“diffusive” Euler equation reads
B0+ v(000) =~ .V (x) = Ad logp).

If v = 0 this can be solved for an “equilibrium” p:

p(x) o< exp (—%) ,

which is just the equilibrium distribution for the gas interacting with a reservoir of temperature 7" with
A=KT/p.
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p = t(7) sin(&). We obtain

do = Tt v

= Orec | —Up— 2 - —, .
i wec( 0o 20} m) (C.3a)
d

S bov, (C.3b)
dr

da _ ( @ﬂ) QU@ (€39
dr 2 g 2

The last equation has to be split into real and imaginary parts and hence we are left with
a system of four real ordinary differential equations for which the eigenfrequencies
must be determined. The critical parameter setting is then signalled by the appearance

of an eigenfrequency with positive real part. This gives

= /2 t2al C4
" \f\/ﬁg’ (C4)

which is in good agreement with the result of more elaborate studies, such as Model

1sc simulations. Certainly, this hydrodynamical model cannot give account of the hys-
teresis effect discussed by Asbéth et al. [62].
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APPENDIX D

Osszefoglalds — Summary

A disszertacioban a 2003-mal kezd6d6 PhD-éveink alatt végzett munkankat foglaltuk
Ossze. A kovetkez6kben a disszertaciot foglaljuk 0ssze, fejezetenként haladva. A cimek
utdn megjelend referencidk azt mutatjak, hogy az adott fejezet anyaga milyen publika-

ci6kban jelent meg.

A vizsgalt fizikai rendszer

Frtekezésiinkben jobbdara az optikai rezondtoros kvantumelektrodinamikai rendszerek
egy prototipusat vizsgaltuk, ami egyetlen mozg6 kétallapota atombdl 4ll, és ez egy
nyilt (Fabry-Perot tipust) optikai rezonator egyetlen médusdval hat kdlcson.

A 8. fejezetben a tobbatomos esetet vizsgaltuk, ahol minden atom ugyanazzal a re-
zondtormoédussal hat kolcson. Bar a kozvetlen atom-atom kolcsonhatést az egyszerfi-
ség kedvéért elhanyagoltuk, a probléma mégis lényegileg soktestprobléma a rezondtor
dltal kozvetitett kolesonhatés miatt. Erdekes, hogy a kolcsonhatds eréssége nem is fiigg
az atomok tavolsagatol, egyediil az atomoknak a rezonatormezé legkozelebbi duzza-
dohelyéhez viszonyitott pozicidja a 1ényeges. Ezt a kolcsonhatast a [32] referencidban

kimerit6en vizsgaltak a legegyszertibb, kétatomos esetben.

Elméleti modellek

Négy kiilonb6z6 szintti modellt hasznéltunk az adott paramétertartomanynak megfe-

lelen. Ezeknek rovid neveket adtunk a hivatkozdsok megkonnyitése végett: A

0. Modell az atom-rezonator rendszer standard kvantumoptikai modellje. Meglehet-
sen kézenfekv6 dologrél van szo, hiszen két Jaynes-Cummings tipust tag szamot
ad az atom és a rezondtormezd, valamint az atomnak egy esetleges pumpalé me-
z6vel (atomi pumpa) val6 kolcsonhatdsarol. A rezondtor gerjesztését (rezondtor-

pumpa) egy egyszerii koherens gerjeszt6 tag irja le. A disszipativ folyamatokat
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a Lindblad-formalizmusban kezeljiik. A 0. Modell teljesen veszi figyelembe egy
optikai rezondtoros kvantumelektrodinamikai rendszer mindharom szabadségi
fokét: az atomi kiilsd (tomegkodzépponti mozgas), belsd (elektronkonfigurécio)

szabadsagi fokokat és a rezondtormezs szabadsagi fokat. A

0sc Modell [30, 33, 34] tigy keletkezik, hogy ez utébbi két szabadségi fokot eliminal-
juk. Az egyetlen megmaradé szabadsagi fokot, az atom tomegkdzépponti moz-
gdsat is végletesen leegyszertisitjiik a teljes kvantummechanikai leirdshoz képest,
mivel az atomot klasszikus pontszer(i részecskének tekintjiik. A két szabad-
sagi fok elimindldsa természetesen nem lehet adiabatikus, hiszen akkor elveszite-
nénk minden disszipacids csatornat. Ehelyett az atom sebességében els6 rendig
végezziik az elimindlést, ennek kovetkeztében a bels6é szabadsagi fokok disszi-
pativ dinamikéja atoroklédik az atom mozgésdra, amely igy klasszikus Brown-
mozgashoz hasonlit. A zaj kozvetleniil a bels6 szabadsagi fokok kvantumzaja-
bél szarmazik. A modell nagy elméleti elénye, hogy a tomegkozéppont Brown-

mozgasat leiré6 Langevin-egyenlet egytitthatoira zart kifejezéseket szolgaltat. Az

1. Modell [30] abbdl &ll, hogy az atom bels6 szabadsagi fokat adiabatikusan eliminal-
juk, tgyhogy az atomi polarizacié egyszertien az atom helyén 1év6 elektromos
mezdvel lesz ardnyos. Ez dltalanos linearisan polarizdlhaté kvantummechanikai
részecskével ekvivalens, ezért minden eredmény, amit az 1. Modellbdl vezetiink
le, ilyen &ltaldnos részecskékre is érvényes, igy atomokon kiviil pl. molekuldkra
vagy mikroszkopikus szilikon gombokre. Az eliminacié akkor jogos, amikor a
gerjesztd mezd frekvencidja nagyon el van hangolva az atomi rezonanciatol, hi-
szen ilyenkor az atomi gerjesztettség kicsi, és az atom bels6 szerkezete alig ész-
lelhet6. Az egész disszertacidban tobbnyire ezt a tartoményt tekintettiik, mert
ez az, ami a rezonatoros htités szempontjdbdl a legérdekesebb, hiszen a szabad
térbeli 1ézerhtitéses technikdk itt nem miikodnek. A spontdn emisszi6 elfojtott,
és a rezondtorbomlés lesz az uralkod¢ disszipdciés csatorna. Az értekezésben az
1. Modell hasznalataval demonstraltuk a rezonétoros hfitést és csapddzast, igy ez
valéban alkalmazhat6 molekuldkra, ami munkank egyik fontos motivéaciéja volt.
Az

1sc Modell [29, 30] az 1. Modell megszoritdsa, amennyiben mind az atom mozgdsat,
mind pedig a rezonatormezot klasszikusnak tekintjiik, de a Osc Modellhez ha-
sonléan a korrelalt zaj a dinamikdjukban tisztdn kvantummechanikai eredet.
Lényeges kiilonbség a Osc Modellhez képest azonban, hogy itt a rezonatormezd
dinamikédjat nem elimindljuk. Az 1sc Modell a lehetd legegyszer{ibb olyan mo-

dell, ami még képes a csatolt disszipativ atom-rezondtor dinamika alapvetd fizi-
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kajat leirni. Nagy elénye, hogy tobb (akdr tobb ezer) atomot is j6l tud kezelni, igy
sikeresen alkalmazhattak tobbatomos rendszerek kollektiv jelenségeinek vizsga-
latara [35].

A kvantumos szimulacid

[36] A 4. fejezetben azt mutattuk meg, hogyan lehet az 1. Modellnek kozelits, de telje-
sen kvantummechanikai megoldéséat adni. Kiindul6pontunk a Monte-Carlo hullamfiiggvény-
moédszer (Monte Carlo Wave-Function — MCWEF) volt. Ennek elénye, hogy a sfir{iségo-
perator sztochasztikus hullamfliggvényekkel val6 mintdzédsa segitségével a probléma
dimenzidszamat a négyzetgyokére csokkenti.

A szimuléci6 kifejlesztésével a célunk az volt, hogy feltérképezziik a kvantumos
jelenségeket az atom-rezonator kolcsonhatasban, f6ként olyan paramétertartoméanyok-
ban, amik kisérletekben mar napjainkban is elérhet6k, de ahol az 1sc Modell mar nem
megbizhaté. Ezt jorészt a 5. fejezetben tettiik meg. Ekozben természetesen aldtdmasz-
tottuk a korabbi, az 1sc Modellel kapott eredményeket azokban a tartomanyokban,
ahol ez a Modell érvényes lehet.

Két olyan tartomdany van, ahovéd az 1sc Modellel nem lehet behatolni: Egyrészt a
nagyon alacsony fotonszdmok tartomanya. Itt a mez6 kvantumos mivolta mér nyil-
vanval6an nem hanyagolhat6 el. Masrészt azok a tartomanyok, ahol az atom kinetikus
hémérséklete mar olyan alacsony, hogy az atomi mozgas kvantaltsdgat figyelembe kell
venni. Ez kiilonosen igaz az olyan kisérletekben, amikor Bose-kondenzatum hat kol-
cson a rezondtorral. Ilyenkor mindkét szabadségi fokot kvantélni kell, hogy az esetle-
ges kvantumos korrelaciékrél szamot adhassunk.

A modszer eredeti megfogalmazasaban szdmos trajektéridval kellett a stirtiségopera-
tort mintazni, értekezéstinkben azonban megmutattuk, hogy az dllandésult dllapotbeli
fizikai mennyiségek meghatdrozdsahoz elegendd egyetlen trajektoridn hosszabb ideig at-
lagolni. Ez természetesen az ergodikus hipotézissel egyenértékii, amir6l megmutattuk,
hogy bér egzaktul nem teljestilhet, gyakorlatilag mégis alkalmazhat6 a rendszerre.

Megkozelitésiink lényeges tjitdsa volt, hogy az 1. Modell Hamilton-operatordnak
specidlis alakjat kihaszndlva minden szamolast impulzustérben tudunk végezni, ami
azt jelenti, hogy a szimuldci6 lényeges része alatt nem kell Fourier-transzformdlni. Ez
mind CPU-id6ben mind pedig szdmitasi pontossdgban nagy javitast jelent a hagyoma-

nyos, parcidlis differencidlegyenletek megolddasat célz6 médszerekhez képest.

A rezonatoros hiités kvantumos tartomanya
[36, 51] Az 5. fejezetben az atom-rezonator kolcsonhatds olyan tartoményaba léptiink,

100



ami nem irhat6 le azzal a szemiklasszikus megkozelitéssel, ami az 1sc Modell a fent
emlitett két ok valamelyikébdl kifolyolag.

Az 5.2. szakaszban a f6 motivaciénk a [29] referencidban bemutatott munka volt,
amelyet a szerz6k az 1sc Modell segitségével végeztek. A kvantumos szimuldciénk-
kal mindenekel6tt ellendriztiik az eredményeiket olyan paramétertartoményban, ahol
mindkét Modell miikod6képes (Megjegyezziik, hogy az 1. Modell dltalunk adott kvan-
tumos megoldasanak csak gyakorlati, mig az 1sc Modellnek elméleti korlétai is van-
nak). Munkdjukat két irdnyba terjesztettiik ki: megmutattuk, hogy amikor atlagban
csak egyetlen foton van a rezondtorban, akkor is képes kifejteni a rezonatoros htitéshez
sziikséges hatdst. Mdsrészt, csokkentve a rezondtor vonalszélességét olyan alacsony
hémérsékleteket értiink el, ahol az atom mozgasaban 1év6 kvantumok szdma mind-
Ossze koriilbeliil 3 — ez mar nem tekinthet6 szemiklasszikus mozgasnak.

A fent emlitett munka szerz6i az atom csapdazasi idejét is tanulmanyoztédk. Ezeket
az eredményeket is megproébaltuk ellendrizni, itt azonban lényeges eltérést tapasztal-
tunk. Arra a kovetkeztetésre jutottunk, hogy az eltérés nem magyarazhaté meg egye-
diil az atom kvantumos természetével, vagyis az alagutazas lehet6ségével. A lehet-
séges magyardzat inkabb a csapddzo6 rezondtormezd kvantéltsagdban rejlik. Az altala
létrehozott potencidl nem klasszikus potencidl, hiszen a fotonszamoperdtorral aranyos.
A 0. fotonszdmkomponenshez igy nem is tartozik potencidl. Megmutattuk, hogyan
képes az atom ezen a fotonszdmkomponensen keresztiil megszokni a csapdabél. A
jelenség jelent8sége abban rejlik, hogy a rezondtormezé ,,szemcsézettségének” teszte-
lésére szolgalhat.

Az 5.3. szakasz munkénk taldn legfontosabb része volt. A rezonétor szerepét itt
egy masik szemszogbdl targyaltuk: A csatoldsi allandét véltoztattuk, de oly médon,
hogy a Rabi-frekvencia dlland6 maradjon. Megmutattuk, hogy ez felfoghat6 tgy, mint
atmenet a szabad térbeli messzire hangolt dipélcsapda (far-off-resonance dipole trap
— FORT) — ahol nincs htités! — és a dinamikus rezonatoros htités kozott. Az erésen
csatolt tartomanyban nagyon kevés foton eredményezi ugyanazt a Rabi-frekvenciat,
igy ezzel egy id6ben a kvantumos mez6 tartomanydba is beléptiink. Ebben a szakasz-
ban az 1sc Modellt és az 1. Modell kvantumos megoldasat egymast kiegészité6 médon
hasznaéltuk.

Megmutattuk, hogy a dinamikus rezondtoros htités a Doppler-htitéssel ellentétben
nem sz{inik meg a nagyon messzi elhangolas tartomanyaban. Ebben a tartomanyban,
ha a spontédn fotonszorasi ratat dllandonak tartjuk, mély optikai csapda jon létre. Ez,
a rezonatoros hfitéssel egyiitt, azt eredményezi, hogy az atom az dllandésult dllapotban
is csapdazott marad, ami a szabad térbeli FORT elrendezésben nem lehetséges, hiszen
ez ut6bbi esetben a hosszti csapddzds mindossze annak koszonhets, hogy az atomok

nagyon lassan melegszenek fel, az dlland6sult dllapotban azonban nem csapdazottak.
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Polariton-htités

P

[52] A 6. fejezetben azt vizsgéltuk, hogyan alakul az atom-mezé kolcsonhatéds sebes-
ségfliggése erGsen csatolt rezondtor jelenlétében. Azt talaltuk, hogy az atomi abszorp-
ciéban megszokott igen alapveté Doppler-effektus véaltozik meg.

Ezt az ,anomadlis” Doppler-effektust a hagyomédnyos Doppler-htités elrendezésé-
ben fedeztiik fel, az atomhoz csatolt rezonétor tengelye merdleges volt az atom moz-
gasara. Ebben az esetben az atom-mez6 csatolds dllando, igy a rezondtor nem fejt ki
er6t az atom mozgdasanak irdnyaban. Masrészt itt a rezondtorveszteség nem jatszik 1é-
nyeges szerepet a dinamikdban. Ezért volt meglepd, hogy a rezonator mégis jelentésen
megjavitja a Doppler-htitést a tengelyére meréleges irdnyban. Ez mind az elérhetd hé-
mérsékletben, mind a hfitési id6ben, mind pedig a csapddzési tulajdonsdgokban meg-
nyilvanul. A jelenséget mikroszkopikus szinten a rezondtor- és az atomot pumpalé
mez{ interferencidjdval magyardztuk, amely fiigg az atom sebességétol.

Hangstlyozzuk, hogy a rezonator geometridja itt alig jatszott szerepet, helyette
szinte tetsz6leges rezondns objektumot elképzelhetiink, példdul gytirtiket, hulldimve-
zetSket vagy mikrogomboket. Igy azt vérjuk, hogy az anomalis Doppler-effektus tul-
mutat a rezondtoros kvantumelektrodinamikédn, és a mikrooptikai kisérletek sokkal
szélesebb korében megfigyelhetd.

A Doppler-htités elrendezésében az atomhoz csatolt rezonator altal megjavitott hii-

tést, ahogy azt elméletileg megjosoltuk, nemrégiben kisérletileg is megfigyelték [55].

Az atom-rezonditor rendszer mint kvantumlibikdéka

[56] Az atom-rezonator kolcsonhatdsban a rezonétor altal 1étrehozott potencial dinami-
kus abban az értelemben, hogy az atom mozgdsa visszahat a potencidlra. A sokatomos
esetben az egész atomi konfiguréciot figyelembe kell venni, a rezonatormezé ilyenkor
dinamikus optikai racsként foghato fel.

Ennek egyik meglep6 kovetkezménye az, hogy pumpaélt atomok térbeli 6nszerve-
z8dést mutathatnak rezonator mezejében [35]. Egy bizonyos kritikus pumpateljesit-
mény folott az atomok, spontdn megsértve az atomfelh$ kezdeti transzlaciés szim-
metriajat, két lehetséges mintdzat egyikét hozzak létre. A jelenség dinamikai fazisa-
talakuldsként foghato fel [62]. A két mintdzat maximalizalja a szérdst a pumpdabdl a
rezondtorba (szuperradidns médon szérnak), és a rezonatormez6 a mintazatok kettds-
ségének megfelelen kétféle, egymadssal ellentétes fazist vehet fel, ahogy ezt kisérletileg
is megfigyelték [63]. Az atomok pozitiv visszacsatoldson keresztiil taldljak meg a stabil
konfiguracidjukat: az atomi konfigurdcié hat a rezondtormezére, ez pedig potencialt

hoz létre (vagy legaldbbis modositja a pumpa altal létrehozott optikai potencialt), ami
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hat az atomokra.

A'7. fejezetben egy olyan jelenséget mutattunk be, ami lényeges hatassal lehet az
oOnszervez$dés fent leirt klasszikus fazisatalakuldsara abban az esetben, amikor az ato-
mokat kvantumosan kell leirni, vagyis amikor a hullamfiiggvényiik a mez6 hullam-
hosszénak skéldjan lapos (gondoljunk példdul egy BEC-re). Ebben az esetben, ha a
mez6t klasszikusan, vagyis dtlagmez&vel irndnk le, nem torténne 6nszervezddés, hi-
szen az atomi hullamfiiggvény kiilonb6z6 részeirdl szort mezdk az interferencia miatt
kioltjdk egymdst. Megmutattuk azonban, hogy ebben az esetben nem tekinthetiink el
a rezonatormezd kvantumos mivoltatél, amely kvantumos visszacsatoldst hoz létre az
atomi mozgdas szdmadra. Az Osszefonddas ebben kulcsfontossdgti. A szért mez6k nem
oltjdk ki egymast, hanem kiilonb6z6 atomi hullamfiiggvényekkel fonédnak ¢ssze. A
mezd kvantummechanikai 4tlaga tovabbra is zérus, de a fotonszdm véges.

Azt talaltuk, hogy az 6nszervez6dés még zérus hémérsékleten is azonnal megindul,
hiszen val6jaban nincs sziikség spontan szimmetriasértésre: a két mintdzat egyszerre
realizdlédik (kvantummechanikai szuperpoziciéban). A jelenség altalanos lehet olyan
kvantumos fazisatalakuldsok esetén, ahol a kvantumaéllapot visszahat a kontrolljara.

A 7. fejezetben els6sorban azzal foglalkoztunk, hogy ez a rendszer a ,kvantum-
libikéka” kisérleti megvalositdsa lehet. A libikdka olyan rendszer, ahol a részecske
dinamikusan valtoz6 potencidlnak (visszacsatoldsnak) van kitéve, hiszen a poziciéja-
tol fiigg, hogy milyen potencidlt érez. A libikéka kvantumos verzidjdban a kozépen
1év6 instabil egyenstlyi helyzetét 6sszefonédédson keresztiil hagyja el a részecske, és a
libik6ka egyszerre dél el balra és jobbra. Hangsulyozzuk, hogy mindezt egy atom ese-
tén vizsgaltuk, az altalunk kifejlesztett MCWF szimulacioval. Azt, hogy a kvantum-
libik6ka jelenség milyen hatdssal van az dnszervezddésre a sokatomos esetben, egy, a
késtbbiekben megjelené cikkiinkben vizsgaljuk [56]. A vizsgalat azonban nem zarul-
hat le ezzel sem, mert szigortian véve még nem sikeriilt olyan modellt létrehoznunk,
amellyel sok atom teljesen kvantumos mozgésat tanulmanyozhatnank gy, hogy a tel-
jes csatolt atom-mez6 dinamikat is figyelembe vegyiik. Mindez a jov6beli munkank
egyik f6 irdnya lesz, erre a 8. fejezetben tekintettiink ki. A 8.3. szakaszban bemutatott

modell nagyon j6 jelolt a fent emlitett probléma tanulményozasara.

A sokatomos eset — Kitekintés

A 8. fejezetben felvazoltuk annak 4ltaldnos keretét, hogy hogyan lehet sok, a rezonator-
mez&vel kdlesonhat6é atom mozgésat teljesen kvantummechanikailag leirni. A modell
valdjdban az 1. Modell térelméleti valtozata.

Ezutdn egy negativ eredményre jutottunk: az atomi mozgas standard Hubbard-

tipust leirdsa — ez az, ami el6szor az esziinkbe jut — nem adhat szdmot egy esetle-
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ges kvantumos Onszervez6désrél. Ennek egyszertien az az oka, hogy az onszerve-
z8dés a rezondtor altal 1étrehozott potencidl dinamikus mivoltdn alapul, a Hubbard-
megkozelités azonban ezt a legjobb esetben is csak egy rogzitett potencidl perturbécio-
jaként tudja figyelembe venni.

Valéjdban a mar kordbban is emlitett, a rezonator 4ltal kozvetitett kolcsonhatés az
atomok kozott erds, tgyhogy errél perturbativ leirds nem adhat megfeleléen szamot.
Ez a kolcsonhatds onmagaban fazisatalakuldst eredményez. Mindez természetes mo-
don egy esetleges renormalizdcion alapul6 leirds lehet6ségét juttatta esziinkbe. Meg-
mutattuk, hogy a sok-atom-rezonédtorban rendszert felfoghatjuk ugyan racsmodellnek,
csakhogy impulzustérben. Itt a rezondtormezé (bozonikus) szennyezés szerepét jatsza,
ami szorast tesz lehet6vé bizonyos racspontok kozott. Az elmult évtizedben kifejls-
dott stirtiségmatrix-renormalizdcios csoport (density matrix renormalisation group —
DMRG) modszerét nagy sikerrel alkalmaztdk szennyez6t tartalmazé modellek meg-
oldasdban. A disszertaci6 kitekintéseként felvazoltuk egy, a rendszeriinkre adaptalt
DMRG szdmolas lehetSségét.
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