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The thesis has two main topics: the problem of deciding if a regular language is star-free, and 
the description of the free Conway theories. I would like to note here that I first considered 
the second problem, and the solution to that problem gave the motivation to consider the 
aperiodicitv problem of finite automata. Since that was already solved by Cho and Huynh 
[11] Zoltán Esik suggested to study the complexify of deciding if a regular expression denotes 
a star-free language.

Star-free languages form an important subclass of regular languages. By definition, they 
are the languages that can be obtained from the singleton languages by a finite mimbe- of 
applications of the operations of union, complement and product. By Schützenberger’s [26] 
famous theorem, a regular language L С E" is star-free if and only if its syntactic monoid 
is aperiodic, i.e.. if there exists an integer к > 0 such that for all words u. v, w e £*,

uvkw € L <==> uvk+lw € L.

This is the same as to say that L is recognized by an aperiodic DFA. There also exists a 
logical characterization by which a language is star-free if and only if it can be defined by 
a first-order formula of a suitable formal language, see [29]. Thus, it is interesting to know 
how hard it is to decide if a given regular language is star-free.

Naturally, when considering the problem of deciding whether a language has some property, 
we implicitly assume that the language is given by some finite representation. The thesis 
studies the complexify of the star-freeness problem when the regular language is represented 
by a (nondeterministic) finite automaton, and, more importantly, w hen it is represented by 
a regular expression. Some restricted versions of these decision problems are also considered, 
and it is proved that all of them are PSPACE-compIete. As a byproduct, we obtain some 
new complexify results on some restricted versions of the automata intersection problem, 
first considered by Kozen (21).

The second main topic of my thesis is the description of the free algebras in the variety 
of Conway theories—a kind of many-sorted algebra axiomatized by a finite set of equation 
schemes, or meta-equations. The description uses flowchart schemes.

The algebraic study of flow-chart schemes and flowchart algorithms was initiated in [15] and 
further developed in (6, 27, 10], to mention only a few references. Schemes may be defined 
as locally ordered, vertex labeled, finite digraphs w*ith distinguished begin and exit nodes, 
each numbered by a nonnegative integer, so that each scheme has source n and target p for 
some nonnegative integers n,p. (We use N to denote the set of nonnegative integers.) The 
other nodes are consistently labeled by letters in a ranked alphabet, or signature. Schemes 
over a signature E, or E-schemes for short, are equipped with se\-eraJ constants and the 
operations of sequential composition, pairing or separated sum—which may be viewed as 
some sort of parallel composition—and a looping operation called iteration. (The paper [10] 
uses feedback instead of iteration.) In [6]. E-schemes have been characterized as the free 
algebra generated by the signature E in a variety of N x N-sorted algebras axiomatized by 
a finite number of meta-equations. See also [27, 10] for refinements of this result.

E-schemes with source n and target p may also be viewed as morphisms n -► p in a small 
category whose objects are the nonnegative integers. Unless E is trivial, coproducts do not 
exist in this category, so that E-schemes do not form an algebraic theory- in the sense of 
Lawvere [23]. Nevertheless, schemes are commonly interpreted in such theories which are 
enriched by a fixed-point operation modeling iteration. For example, the theories Seq^ of 
sequacious functions [13] on a set .4 are used to model the stepwise behavior of flowchart 
algorithms, while the theories of partial functions Pfh^ serve as semantic models for input-
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. ! Referencesoutput behavior. Another common class of interpretations of schemes is as continuous 
functions over cpo’s. In this approach, a scheme is a graphical representation of a recursive 
system of equations. When A is a cpo with a bottom element, each letter in E may be 
interpreted as a continuous function on A. Then the semantics of a E-scheme is a morphism 
in the theory Tha of continuous functions over A, obtained as the least solution of the 
system of equations corresponding to the scheme.

The theories Seq^, Pfh>i, and ТЬд are all examples of iteration theories, which were 
originally defined in (4, 5] and [16]. The book [8] and the paper [9] give a summary of the 
results on iteration theories (and the properties of the fixed point operation in general).

It is known for example that the variety of iteration theories is generated by the theories 
Seq^, where A is a set. or by the theories ТЬд, where A is a cpo with a bottom element. 
(The theories of the form Pfn* generate the subvariety consisting of the iteration theories 
with a unique morphism 1 -> 0.) Thus, two schemes are equivalent under all interpretations 
in iteration theories (or strongly equivalent, for short) if and only if they are equivalent 
under all interpretations in the theories Seq^, or in the theories Th/). For this reason, 
iteration theories may be considered as the “standard” interpretations of flowchart schemes.

It is also well known that the equational theory' of iteration theories (that is, the problem of 
deciding whether an equation holds in all iteration theories) is solvable in polynomial time. 
It is also decidable in polynomial time whether two schemes are strongly equivalent.

The thesis contains similar results about “nonstandard” interpretations of flowchart schemes, 
first published in [3]. By a nonstandard interpretation we mean a theory enriched with an 
iteration operation satisfying all equations true of flowcharts. One of the main results states 
that these theories are exactly the Conway theories.

Aside from serving as interpretation domains for flowchart schemes, our interest in (the free) 
Conway theories stems from several mathematical facts. First, the complete description of a 
variety of algebras should include (at least) an equational axiomatization, and also a concrete 
description of the free algebras. For example, the papers [2, 18] give an axiomatization 
and a concrete description of the free algebras for the variety generated by all algebras of 
binary' relations with operations of union, composition, conversion and reflexive-transitive 
closure, and neutral elements 0 (the empty relation) and 1 (the identity relation). Second, 
the equational theory of iteration theories is axiomatized by the Conway theory axioms 
together with a complicated equation scheme, the commutative identity [16], or the group 
identities [17], or the Scott induction principle formulated to involve only equations [19]. 
(The second of the latter results may be seen as a generalization of Krob’s result [22] on 
the axiomatization of the regular identities.) Comparing the structure of the free Conway 
theory* with that of the free iteration theory, we obtain a clear picture of that part of the 
equational theory* of iteration theories which is captured by the commutative identity, or the 
group identities. Also, our work explains the role of the commutative identity: it separates 
nonstandard models from the standard ones by equations. And finally, Conway theories are 
interesting in themselves for the following reasons.
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• In a matrix theory [14,8] equipped with a unary operation аиа', the Conway axioms 
are the two well-known sum and product identities

(а + 6)' = (а*&Га*
(ab)* = a(6a)*ö + 1.

Conway’s book [12] contains many interesting identities which are consequences of just 
the Conway axioms. See also [22].

• A general Kleene-type theorem is a logical consequence of just the Conway axioms,

*

2 7

http://www.elsevier.nl/locate/entcs/volumel/esik.ps


see [8].

• It was proved in [7] that the soundness, and relative completeness of the Floyd- 
Hoare calculus in expressive models, is a consequence of the Conway theory axioms. 
Thus, even under nonstandard interpretations, one can reason about the correctness 
of flowchart programs using the Floyd-Hoare rules.

1. The least congruence on the algebra of schemes such that the quotient is a preiteration 
theory’- In other words, this is the smallest equivalence relation which identifies two 
schemes S and 5' with n input nodes and p output nodes if either n = 0, or 5 consists 
of two disjoint copies of the internal nodes of S' such that for some 0 < к < n the 
first к input nodes of S are connected to the first copies of the corresponding internal 
nodes of «5', the last n - к input nodes are connected to the second copies of the 
corresponding internal nodes of S', and both copies of the internal nodes of S' are 
connected to the same output nodes in S as in S'.

2. The smallest equivalence identifying any two schemes S and S' such that there is a 
simple aperiodic homomorphisms from S to S'.

3. The smallest equivalence identifying any two schemes S and S' such that there is an 
aperiodic homomorphism from S to S'.

2 Results on the complexity of star-freeness
ft

The results on the complexity of star-freeness contained in the thesis were published in [1]. 
The only exception is Theorem 2.3.2, which I proved late- and have not published yet. I 
also have to note that, due to a minor modification of Construction 2.2.2, Theorem 2.3.1 is 
slightly stronger than the corresponding theorem published in (1J.
We say that a finite automaton is a reset automaton if it has a unique initial state, and each 
input symbol of the automaton induces either the identity function or a partial constant 
function (that is, a partial function having a range of cardinality at most one) on the states. 
A 1-reset automaton is a reset automaton with a unique final state in which the inverse of 
each relation induced by an input symbol is either the identity function or a partial constant 
function. In other words, a 1-reset automaton has a unique initial state and a unique final 
state, and each input symbol induces either the identity function or a singleton relation or 
the empty relation on its states.
A deterministic finite automaton (DFA) is called minimal if it has a minimal number of 
states among all DFAs recognizing the same language. A DFA is called complete if it has a 
unique initial state and each input symbol induces a total function on its states.
The thesis provides an analysis of the computational complexity of the following decision 
problems.

• After proving a few technical lemmas—the most important being Lemma 4.1.29—we 
establish in Corollary 4.1.30 that the second of the above equivalences is the same as 
the third one.

• In the course of this proof we obtain a concrete description of the third equivalence, 
stated as Theorem 4.1.27.

• Then we prove in Lemma 4.3.1 that the second of the above equivalences is the same 
as the first one. Consequently, we obtain a concrete description of the free Conway 
theories as the quotient of the algebra of schemes under the third equivalence relation.

• Finally, we use the explicit description stated in Theorem 4.1.27 to prove in Theo­
rem 4.3.3 that the following problems are PSPACE-complete for an arbitrary signa­
ture £ containing at least one symbol of rank at least two.

I

1. Aperiodic E-schemes (ASchs):

Instance: A (strongly accessible) E-scheme S.
Question: Is S x S an aperiodic congruence on 5?

2. Aperiodic congruences of E-schemes (ACongs):

Instance: A (strongly accessible) E-scheme S and a E-sorted relation pCSxS. 
Question: Is p an aperiodic congruence on S?

3. The Conway-equivalence problem of E-schemes (SchEqE):

Instance: A pair (S,S') of E-schemes.
Question: Does S = S' hold?

4. The equational theory of Gonway theories with variables in E (EqE(Conway)):

Instance: A pair (t,i') of terms over the signature of Conway theories consisting of 
variables in E.

Question: Does the equation t = t' hold in all Conway theories?

1. The automata intersection problem (A1P):

Instance: A sequence A\,... , An (n > 2) of nondeterministic finite automata with 
a common set of input symbols.

Question: Does П,-е(„] Ф 0 hold?

2. The intersection problem of minimal 1-reset automata (AIPr):

Instance: A sequence A\,... , An (n > 2) of minimal 1-reset automata with a com­
mon set of input symbols.

Question: Does П,е(п] ЦЖ) Ф 0 hold?

3. The intersection problem of complete reset automata (AIPc):

Instance: A sequence A\,... , An (л > 2) of complete reset automata with a common 
set of input symbols.

Question: Does П^[п] ^Mi) Ф 0 bold?

4. Automaton star-freeness (ASF):

Instance: A nondeterministic finite automaton A.
Question: Does A recognize a star-free language?

5. A restricted version of automaton star-freeness (ASFr):

Theorems 3.3.2 and 4.3.2 answer open problems raised in [6] and [8J.
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Instance: A minimal DFA A with input symbols {0,1}.
Question: Does A recognize a star-free language?

6. Regular expression star-freeness (RSF):

Instance: A regular expression E.
Question: Does E denote a star-free language?

7. A restricted version of regular expression star-freeness (RSFr):

Instance: A regular expression E of star-height 2 over the 2-element set {0,1}. 
Question: Does E denote a star-free language?

• Then in Theorem 2.3.4 we prove that

I ATPR <(og RSFfi RSF og ASF.

Here the essential part is the reduction AIPr <iog RSFr. It is again heavily based 
on the fact that the problem AIPr deals with a collection of 1-reset automata.

It remains an interesting open problem how hard it is to decide if a regular expression of 
star-height 1 denotes a star-free language.

3 Results on the free Conway theories
Assuming some efficient encoding of automata and regular expressions (see [24, 20]) with 
words over a fixed finite set of symbols, all these problems can be considered as languages.

The first result on the complexity of ASF is due to Jacques Stem [28], who proved that the 
problem of deciding whether a deterministic finite automaton recognizes a star-free language 
is coNP-hard and belongs to PSPACE. A few years later Shang Cho and Dung T. Huynh 
[11] proved that the problem ASF* is PSPACE-complete.

The results on the free Conway theories were published in [3].

As we noted before, the standard interpretations of flowcharts are iteration theories, for 
example, the theory Seq^ of sequacious functions over a set A [13], the theory Th* of 
continuous functions over a cpo A, or the theory of partial functions Pfn*.

A nonstandard interpretation of flowcharts is a theory enriched with an iteration operation 
satisfying all equations true of flowcharts.

• We prove that all the other problems above are also PSPACE-complete, except for 
AIPc, for which we present a polynomial time algorithm in Theorem 2.3.2. • The first result, Theorem 3.3.2 states that the nonstandard interpretations are exactly 

the Conway theories defined in [8], axiomatized by a small set of meta-equatkms in­
cluding the well-known composition identity, which implies Elgot’s fixed point identity 
[13]. Thus the least congruence on E-schemes whose quotient is a theory gives the free 
Conway theory.

• The second main result, Theorem 4.3.2, provides an explicit description of the free 
Conway theories. The description uses aperiodic simulations of flowchart schemes, 
a concept borrowed from automata theory (see [25]). It follows that the equations 
that hold in Conway theories are exactly the valid “group-free” equations of iteration 
theories.

The remaining results are separated into three theorems.

• In Theorem 2.3.1 we show that

PSPACE <(os AIP* <tog AIP € PSPACE,

so that both АХРд and AIP are PSPACE-complete. Since PSPACE is closed 
under taking complements, it follows that the complementary problems AIP* and 
AIP are also PSPACE-complete. The initial reduction PSPACE </og AIP* (see 
Construction 2.2.1) is one of the most important results. It is a sharpening of the 
one given by Kozen [21] in the sense that this construction yields a collection of much 
simpler finite automata, namely, 1-reset automata.

• In Theorem 2.3.3 we show that

f

The proof of Theorem 4.3.2 is based on Theorem 3.3.2, as well as two other auxiliary results, 
Corollary 4.1.30 and Lemma 4.3.1, which are interesting in themselves.

In the thesis, we start by introducing the notion of aperiodic simulations of flowchart 
schemes. Briefly, a simulation from a flowchart scheme S to a flowchart scheme S* is a 
binary relation p from the states of 5 to the states of S' preserving the transitions and 
the labeling of the states. A simulation from a scheme to itself is called a congrueice if 
it is an equivalence relation. A congruence p on a scheme 5 is called aperiodic if none of 
the possible transition sequences of S induces a nontrivial permutation of any subset of an 
equivalence class of p. A simulation is called a homomorphism if it is function. It is easy to 
see that the kernel of a homomorphism ф from a scheme 5 to a scheme S' is a congruous 
on S. We say that a homomorphism is aperiodic if its kernel is an aperiodic congruoice. 
We also introduce some special kinds of aperiodic congruences in Definition 4.1.6, and prove 
several properties of these congruences in a sequence of lemmas. For example, an aperiodic 
homomorphism ф : S -► S' is called simple if for any two nonsingleton equivalence classes 
C, D of its kernel, any relation from C to D induced by a transition sequence of 5 is either 
a constant function or a bijective function from C to D.

Then we consider three equivalence relations on the class of flowchart schemes.

AIP я </os ASF* <lo3 ASF G PSPACE,

so that both ASF* and ASF are PSPACEcomlete. The reduction AIP* </0ff 
ASF* is closely related to the one of Cho and Huynh, but it is simpler due to the 
fact that the input of the problem ASF* is a sequence of 1-reset automata, which 
are a very special kind of aperiodic automata. (Cho and Huynh were using Kozen’s 
aforementioned construction as a starting point in proving that the problem ASF* is 
PSPACEhard. Since the result of that construction is a sequence of automata which 
are not aperiodic in general, there is an additional step in the proof of Cho and Huynh 
in order to get a sequence of aperiodic automata. Xo such modification is needed in 
my argument.) It is a new result that the problem ASF is solvable in polynomial 
space.

.4
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see [8].

• It was proved in [7] that the soundness, and relative completeness of the Floyd- 
Hoare calculus in expressive models, is a consequence of the Conway theory axioms. 
Thus, even under nonstandard interpretations, one can reason about the correctness 
of flowchart programs using the Floyd-Hoare rules.

1. The least congruence on the algebra of schemes such that the quotient is a preiteration 
theory’- In other words, this is the smallest equivalence relation which identifies two 
schemes S and 5' with n input nodes and p output nodes if either n = 0, or 5 consists 
of two disjoint copies of the internal nodes of S' such that for some 0 < к < n the 
first к input nodes of S are connected to the first copies of the corresponding internal 
nodes of «5', the last n - к input nodes are connected to the second copies of the 
corresponding internal nodes of S', and both copies of the internal nodes of S' are 
connected to the same output nodes in S as in S'.

2. The smallest equivalence identifying any two schemes S and S' such that there is a 
simple aperiodic homomorphisms from S to S'.

3. The smallest equivalence identifying any two schemes S and S' such that there is an 
aperiodic homomorphism from S to S'.
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input symbol of the automaton induces either the identity function or a partial constant 
function (that is, a partial function having a range of cardinality at most one) on the states. 
A 1-reset automaton is a reset automaton with a unique final state in which the inverse of 
each relation induced by an input symbol is either the identity function or a partial constant 
function. In other words, a 1-reset automaton has a unique initial state and a unique final 
state, and each input symbol induces either the identity function or a singleton relation or 
the empty relation on its states.
A deterministic finite automaton (DFA) is called minimal if it has a minimal number of 
states among all DFAs recognizing the same language. A DFA is called complete if it has a 
unique initial state and each input symbol induces a total function on its states.
The thesis provides an analysis of the computational complexity of the following decision 
problems.

• After proving a few technical lemmas—the most important being Lemma 4.1.29—we 
establish in Corollary 4.1.30 that the second of the above equivalences is the same as 
the third one.

• In the course of this proof we obtain a concrete description of the third equivalence, 
stated as Theorem 4.1.27.

• Then we prove in Lemma 4.3.1 that the second of the above equivalences is the same 
as the first one. Consequently, we obtain a concrete description of the free Conway 
theories as the quotient of the algebra of schemes under the third equivalence relation.

• Finally, we use the explicit description stated in Theorem 4.1.27 to prove in Theo­
rem 4.3.3 that the following problems are PSPACE-complete for an arbitrary signa­
ture £ containing at least one symbol of rank at least two.

I

1. Aperiodic E-schemes (ASchs):

Instance: A (strongly accessible) E-scheme S.
Question: Is S x S an aperiodic congruence on 5?

2. Aperiodic congruences of E-schemes (ACongs):

Instance: A (strongly accessible) E-scheme S and a E-sorted relation pCSxS. 
Question: Is p an aperiodic congruence on S?

3. The Conway-equivalence problem of E-schemes (SchEqE):

Instance: A pair (S,S') of E-schemes.
Question: Does S = S' hold?

4. The equational theory of Gonway theories with variables in E (EqE(Conway)):

Instance: A pair (t,i') of terms over the signature of Conway theories consisting of 
variables in E.

Question: Does the equation t = t' hold in all Conway theories?

1. The automata intersection problem (A1P):

Instance: A sequence A\,... , An (n > 2) of nondeterministic finite automata with 
a common set of input symbols.

Question: Does П,-е(„] Ф 0 hold?

2. The intersection problem of minimal 1-reset automata (AIPr):

Instance: A sequence A\,... , An (n > 2) of minimal 1-reset automata with a com­
mon set of input symbols.

Question: Does П,е(п] ЦЖ) Ф 0 hold?

3. The intersection problem of complete reset automata (AIPc):

Instance: A sequence A\,... , An (л > 2) of complete reset automata with a common 
set of input symbols.

Question: Does П^[п] ^Mi) Ф 0 bold?

4. Automaton star-freeness (ASF):

Instance: A nondeterministic finite automaton A.
Question: Does A recognize a star-free language?

5. A restricted version of automaton star-freeness (ASFr):

Theorems 3.3.2 and 4.3.2 answer open problems raised in [6] and [8J.
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. ! Referencesoutput behavior. Another common class of interpretations of schemes is as continuous 
functions over cpo’s. In this approach, a scheme is a graphical representation of a recursive 
system of equations. When A is a cpo with a bottom element, each letter in E may be 
interpreted as a continuous function on A. Then the semantics of a E-scheme is a morphism 
in the theory Tha of continuous functions over A, obtained as the least solution of the 
system of equations corresponding to the scheme.

The theories Seq^, Pfh>i, and ТЬд are all examples of iteration theories, which were 
originally defined in (4, 5] and [16]. The book [8] and the paper [9] give a summary of the 
results on iteration theories (and the properties of the fixed point operation in general).

It is known for example that the variety of iteration theories is generated by the theories 
Seq^, where A is a set. or by the theories ТЬд, where A is a cpo with a bottom element. 
(The theories of the form Pfn* generate the subvariety consisting of the iteration theories 
with a unique morphism 1 -> 0.) Thus, two schemes are equivalent under all interpretations 
in iteration theories (or strongly equivalent, for short) if and only if they are equivalent 
under all interpretations in the theories Seq^, or in the theories Th/). For this reason, 
iteration theories may be considered as the “standard” interpretations of flowchart schemes.

It is also well known that the equational theory' of iteration theories (that is, the problem of 
deciding whether an equation holds in all iteration theories) is solvable in polynomial time. 
It is also decidable in polynomial time whether two schemes are strongly equivalent.

The thesis contains similar results about “nonstandard” interpretations of flowchart schemes, 
first published in [3]. By a nonstandard interpretation we mean a theory enriched with an 
iteration operation satisfying all equations true of flowcharts. One of the main results states 
that these theories are exactly the Conway theories.

Aside from serving as interpretation domains for flowchart schemes, our interest in (the free) 
Conway theories stems from several mathematical facts. First, the complete description of a 
variety of algebras should include (at least) an equational axiomatization, and also a concrete 
description of the free algebras. For example, the papers [2, 18] give an axiomatization 
and a concrete description of the free algebras for the variety generated by all algebras of 
binary' relations with operations of union, composition, conversion and reflexive-transitive 
closure, and neutral elements 0 (the empty relation) and 1 (the identity relation). Second, 
the equational theory of iteration theories is axiomatized by the Conway theory axioms 
together with a complicated equation scheme, the commutative identity [16], or the group 
identities [17], or the Scott induction principle formulated to involve only equations [19]. 
(The second of the latter results may be seen as a generalization of Krob’s result [22] on 
the axiomatization of the regular identities.) Comparing the structure of the free Conway 
theory* with that of the free iteration theory, we obtain a clear picture of that part of the 
equational theory* of iteration theories which is captured by the commutative identity, or the 
group identities. Also, our work explains the role of the commutative identity: it separates 
nonstandard models from the standard ones by equations. And finally, Conway theories are 
interesting in themselves for the following reasons.
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• In a matrix theory [14,8] equipped with a unary operation аиа', the Conway axioms 
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Conway’s book [12] contains many interesting identities which are consequences of just 
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The thesis has two main topics: the problem of deciding if a regular language is star-free, and 
the description of the free Conway theories. I would like to note here that I first considered 
the second problem, and the solution to that problem gave the motivation to consider the 
aperiodicitv problem of finite automata. Since that was already solved by Cho and Huynh 
[11] Zoltán Esik suggested to study the complexify of deciding if a regular expression denotes 
a star-free language.

Star-free languages form an important subclass of regular languages. By definition, they 
are the languages that can be obtained from the singleton languages by a finite mimbe- of 
applications of the operations of union, complement and product. By Schützenberger’s [26] 
famous theorem, a regular language L С E" is star-free if and only if its syntactic monoid 
is aperiodic, i.e.. if there exists an integer к > 0 such that for all words u. v, w e £*,

uvkw € L <==> uvk+lw € L.

This is the same as to say that L is recognized by an aperiodic DFA. There also exists a 
logical characterization by which a language is star-free if and only if it can be defined by 
a first-order formula of a suitable formal language, see [29]. Thus, it is interesting to know 
how hard it is to decide if a given regular language is star-free.

Naturally, when considering the problem of deciding whether a language has some property, 
we implicitly assume that the language is given by some finite representation. The thesis 
studies the complexify of the star-freeness problem when the regular language is represented 
by a (nondeterministic) finite automaton, and, more importantly, w hen it is represented by 
a regular expression. Some restricted versions of these decision problems are also considered, 
and it is proved that all of them are PSPACE-compIete. As a byproduct, we obtain some 
new complexify results on some restricted versions of the automata intersection problem, 
first considered by Kozen (21).

The second main topic of my thesis is the description of the free algebras in the variety 
of Conway theories—a kind of many-sorted algebra axiomatized by a finite set of equation 
schemes, or meta-equations. The description uses flowchart schemes.

The algebraic study of flow-chart schemes and flowchart algorithms was initiated in [15] and 
further developed in (6, 27, 10], to mention only a few references. Schemes may be defined 
as locally ordered, vertex labeled, finite digraphs w*ith distinguished begin and exit nodes, 
each numbered by a nonnegative integer, so that each scheme has source n and target p for 
some nonnegative integers n,p. (We use N to denote the set of nonnegative integers.) The 
other nodes are consistently labeled by letters in a ranked alphabet, or signature. Schemes 
over a signature E, or E-schemes for short, are equipped with se\-eraJ constants and the 
operations of sequential composition, pairing or separated sum—which may be viewed as 
some sort of parallel composition—and a looping operation called iteration. (The paper [10] 
uses feedback instead of iteration.) In [6]. E-schemes have been characterized as the free 
algebra generated by the signature E in a variety of N x N-sorted algebras axiomatized by 
a finite number of meta-equations. See also [27, 10] for refinements of this result.

E-schemes with source n and target p may also be viewed as morphisms n -► p in a small 
category whose objects are the nonnegative integers. Unless E is trivial, coproducts do not 
exist in this category, so that E-schemes do not form an algebraic theory- in the sense of 
Lawvere [23]. Nevertheless, schemes are commonly interpreted in such theories which are 
enriched by a fixed-point operation modeling iteration. For example, the theories Seq^ of 
sequacious functions [13] on a set .4 are used to model the stepwise behavior of flowchart 
algorithms, while the theories of partial functions Pfh^ serve as semantic models for input-
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