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1 INTRODUCTION
In expected utility theory, the violations of the axioms and the under-
lying principles, were generated by certain experimental conditions
and framing procedures. In expected utility theories the failure of the
transitivity axiom have not been ignored. Fishburn [14]introduced
the ‘non-transitive measurable utility’ theory. In this utility theory, the
preferences on pairs of lotteries or risky decisions are represented by
the positive part of the φ(x, y) skew-symmetric bilinear (SSB) func-
tional [15][16][17]. Fishburn supposed that φ(x, y) = h(x− y), x ≥
y, i.e. the value of the SSB functional is given with the h univari-
ate real-valued function. Fishburn gave five lotteries as example, and
presented a univariate h function with which we obtain a preference
cycle. In the Chapter 1 we give a generalization of the cyclicity given
by Fishburn, and to give a class of the h univariate function for the
characterization of the generalized cyclical preferences.
In the Chapter 2 we examine the lexicographic decision method [13].
In the last decades the decision making models have been widely ap-
plied in the practice. After the The Neumann-Morgenstern model,
the Fishburn SSB utility theory, the ELECTRE, PROMETHEE and
the AHP [34] models by Saaty were the most important models de-
veloped. This applications generate the requirement for a general
representation for this decision making models. Dombi [4][5] gave
a framework for the utility based and outranking decision methods,
using a general preference function. In the Chapter 2 we give a nu-
merical representation of the lexicographic decision method, which
is applicable into this framework. For the representation we use a
general preference function and a threshold function.
There are many mathematical methods in multicriteria decision the-
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ory for solving problems in practice. There are lots of decision prob-
lems, where we can solve the decision problem, and apply several
decision models succesively in parallel. The various decision making
models [22][23][24][25][26][27][28] and the general decision frame-
works, uses the different parameters and parameter values. It is nec-
cessary to give the exact meaning of these parameters, and the pa-
rameters should be easily handled by users. It is important to find the
right parameter values in these models. In the lexicographic decision
method the criteria are linearly ordered. In the Chapter 3 we give
algorithm to learn the importance of the criteria in the lexicographic
decision method, and we examine the conditions of the learning.
Friedler et al. [18][19] introduced a new process network methodol-
ogy for solving chemical engineering problems in practice. This is a
successfully widely adapted method for solving the problems such as
the routing and scheduling of evacuees, facing a life-threatening situa-
tion, or solving problems of workflow management. The critical path
method (CPM) in project management is an algorithmic approach for
scheduling a set of activities. The purpose of the Chapter 4 is to
give a process network representation of the map the CPM problems.
Here we mapping CPM to a process network. In the process network
structure we examine the extension of the CPM problem with alterna-
tive of activities. Our aim is to provide a mathematical optimization
model for solving the extended CPM problem in the process network.
The Critical Path Method(CPM) today is widely used for the time
scheduling of projects, in various areas with practical applications.
In the process network, [1][12][21][29][30] in many cases we cannot
determine exactly the time parameters. In the CPM method many
models have been developed to handle the uncertainty time parame-
ters. The fuzzy theory is the most successful model for solving this
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problem. In the Chapter 5 we give a new concept of fuzzy linear op-
timization in order to solve the alternative extended CPM problem in
a process network.

2 Results of the dissertation

2.1 Universal characterization of non-transitive pref-
erences

The theories of preference comparisons under risk and under uncer-
tainty have been widely adapted over the past thirty five years. During
this period there has been a growing awareness that human reasoned
judgments often violate the basic assumptions of expected utility. An
important task for normative theory is to decide which violations of
the von Neumann-Morgenstern axioms are experimental artifacts and
which violations constitute fundamental rejections of the axioms by
intelligent people. Many generalizations of the expected utility theo-
ries have been proposed.The purpose of Chapter 1 is to explore and
characterize the non-transitivity of preferences in the Fishburn "non-
transitive measurable utility" theory. We consider the case in which
the decision outcomes are integers and the probability distributions on
X are two-valued. The k-cyclicity of a preference is defined for any
positive integer k, and it is shown that a k-cyclic preference exists for
every k. We represent preferences with univariate functions and give
one class of k-cyclic preference function. Then, different preference
functions were given in a concave, convex and ε-linear form. The
following results can be found in the article [9].
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Results
We will define the k-cyclicity of any positive integer k.
Definition 1. Let X = {j, j + 1, ..., n} for positive integers j, n. The
preference is then k-cyclic on X , for fixed k ∈ N , if

[m, p(m)] < [m+ rk, p(m+ rk)]

and
[m, p(m)] > [m+ i, p(m+ i)] if i 6= rk

for everym, r, i ∈ N for which j ≤ m,m+rk,m+i ≤ n, k < n−j.
Our main result is that one class of k-cyclic preference function is
given by the theory of finite difference equations, from the solution
of the linear homogeneous second-order difference equation

g(m+ 2)− sg(m+ 1) + g(m) = 0

for the special parameter s.
Here we give convex and concave k-cyclic preference functions. There
is no linear preference function, but we can get a k-cyclic preference
function which differs from the linear as little as we want. There-
fore we introduce ε-linearity as the measure of the difference between
h(m) and g(m). We show that an ε-linear k-cyclic solution exists.
That is neither concave nor convex. Finally, examples are presented
of k-cyclic preferences which have a convex, concave and 0.4-linear
form.
We can get the h univariate function in the form h(m) = v(m)g(m),
where g(m) is the solution of the functional equation

F (m+ i)g(m)− g(m+ i)F (m) = g(i) (1)
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for

F (m) =
f(m)

v(m)
1 ≤ m, i,m+ i ≤ n

and g(m) > 0 is positive on m ∈ {1, 2, ..., n} and v(m) is positive
and satisfies:

v(i) < v(m)v(m+i) if i 6= rkv(i) > v(m)v(m+i if i = rk
(2)

where r ∈ N , r ≤
[ n
2k

]
, j ≤ m,m+ i, rk ≤ n

The main results may be summarized in the following:

Theorem 1. For every k, n ∈ N , where 2k ≤ N , and for every ε >
0, there exists j ∈ N , such that the preference � is k-cyclic on the
interval [j, n] and there exist k-cyclic preference function h(m) for
every k in the form h(m) = g(m)v(m), where g(m) is the solution
of (1) so that g(m) is positive on {1, 2, ..., n} and v(m) is a solution
of (2) and h(m) may be convex, concave and ε-linear.

It follows from the theory that for every positive integer k there exists
a k-cyclic preference relation, and for every k we can characterize it
by its preference function. We see that for fixed k the preference func-
tions of k-cyclic preference relations may be given in several forms,
taken from different classes of functions.

2.2 Lexicographic decision function construction
In multicriteria decision making the idea of the lexicographic decision
consists of a hierarchy or ordered set of attributes or criteria [13][35].
Decision alternatives are examined initially on the basis of the first
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or most important criterion, If more than one alternative is ”best” or
”satisfactory” on this basis, then these are compared using the second
most important criterion and so forth. The principle of order by first
difference says that one alternative is ”better” than another iff the first
is ”better” than the second on the most important criterion on which
they differ. Sequential screening procedures illustrate another com-
mon application of the lexicographic idea. Candidates or alternatives
are first screened under a given criterion (perhaps with the use of a test
or an interview) and separated into ”rejects” and ”others”. Here the
lexicographic decision process is presented in a unified way. We con-
struct a lexicographic decision function using a universal preference
function and a unary function. The following results can be found in
the articles [10][11].

Results
Let a = (x1, x2, ..., xn) and b = (y1, y2, ..., yn) alternatives be given
with utility values xk, yk and let w1, w2, ..., wn be weigths. Let us be
the preference:

p(a, b) =
n∑

i=1

wiτi(pi(xi, yi))

with the preference function

p(x, y) = y−x+1
2

and τi : [0, 1]→ [0, 1] univariate monotone function, the following.

τ(x) =

 0 ha 0 ≤ x < 1
2 − δ

1
2 ha 1

2 − δ ≤ x ≤
1
2 + δ

1 ha 1
2 + δ < x ≤ 1
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The main result of this study is the following theorem:

Theorem 2. LetA = {a1, a2, · · · , am} be the set of alternatives. Let
C = {c1, c2, · · · , cn} be the set of criteria, ordered by importance.
Let xij denote the evaluation (utility) of criterion cj in the case of
choosing ai as an alternative, 0 ≤ xij ≤ 1.
Let p(x, y) be the preference function and τ(x) be the modifier, (or
threshold) function as defined earlier.
Then there exists weights wk , k = 1, 2, ..., n such that the real num-
bers:

li =
1
m

m∑
j=1

τ(
n∑

k=1

wkτ(p(xik, xjk))), i = 1, 2, ...,m

satisfy

li < lj if and only if ai >L aj .

So we can construct the lexicographic decision function with the help
of a weighting system. This function is non compensatory. This we
give in the following. Next we give the weighting system. Let the
weight of ci criterion be:

wi = 1/2i + 1/(n2n)

It can be verified, that:

n∑
k=1

wk = 1.

The lexicographic decision function may be constructed using the fol-
lowing function composition:
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τ(
n∑

k=1

wkτ(p(xik, xjk))) =

{
0 if ai >

L aj
1 if ai <

L aj

This is the main idea behind the preference construction of the
PROMETHEE, and ELECTRE [33][36] method. Normalizing the
lexicographic decision function we get real li in the interval [0,1].

li =
1
m

m∑
j=1

τ(
n∑

k=1

wkτ(p(xik, xjk))), i = 1, 2, ...,m

so that:

li < lj iff ai >L aj .

This construction is applicable into a general framework, which in-
corporates the different outranking approaches, the lexicographic de-
cision process and the utility-based decision making models.

2.3 Learning lexicographic orders
The lexicographic decision model is one of the simplest. In the mid-
70’s Fishburn wrote a state-of-the-art survey on the method. Although
it is very simple, it is the most commonly used decision model in
everyday life. Even if the decision-makers use another model, they
translate it (if it is possible) to lexicographic decision, because for the
verbal communication only this approach is good . Lexicographical
decisions appear in different areas of research . Usually in multicri-
teria optimization models the criteria are ordered by importance and
the optimal solution is defined by the lexicographic order of the fea-
sible solutions. The lexicographical ordering also appears in the area
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of linear programming, a version of the simplex algorithm where the
pivoting element is selected by a lexicographic ordering has been de-
veloped for the solution of the problem.
The main goal is to learn the order of criteria of lexicographic decision
using various reasonable assumptions. We give a sample evaluation
and an oracle based algorithm. In the worst case analysis we deal
with the adversarial models. We show that if the distances of the
samples are less than 4, then it is not learnable, but 4-distance samples
are polynomial learnable. The following results can be found in the
article [6].

Results
We present an algorithm which considers a sample containing a se-
quence L of EV vectors evaluated by the EV E function. The al-
gorithm evaluates the sequence and as a result it determines the im-
portance order of the criteria if it is possible, or it decides whether
the sample is insufficient (it could be generated by more importance
orders) or inconsistent (it cannot be obtained by the lexicographical
ordering).
This algorithm works in n phases. In the i-th phase it determines the
i-th criterion in the importance order. If the algorithm is not able to
determine the i-th criterion in the i-th phase then it concludes that the
sample is insufficient or it concludes that the sample is inconsistent.
In the i-th phase the algorithm examines the EV vectors which may
contain useful information - theEV vectors which obtain the value by
the i−1 most important criteria are already eliminated - and uses these
vectors to exclude candidates for the position of the i-th criterion in
the importance order. If the set of the candidates contains one element
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at the end of the phase then it is the i-th criterion in the importance
order. If it is empty then the sample is inconsistent, if it contains more
elements then the sample will be insufficient or inconsistent in some
later phase.

SamEv Algorithm

Initialization
S1 := {1 . . . , n}

Iteration part
for i = 1 to n do

S := Si,
for every pk ∈ L do

if i > 1 and pk(li−1) 6= 0 then
delete pk from L,

else if EV E(pk) = 1 then
delete each j with pk(j) = −1 from S,

else if EV E(pk) = −1 then
delete each j with pk(j) = 1 from S,

endfor
if |S| = 0 then

stop, the sample is inconsistent,
if |S| ≥ 2 then

note that the sample is not sufficient,
delete arbitrary |S| − 1 elements from S.

Let Si+1 := Si \ S,
let li be the index which is contained in S,

endfor

Output:
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One importance order is l1, . . . , ln, and if we noted at some
phase that the sample is insufficient then other importance orders are
also consistent with the sample.

Theorem 3. If algorithm SamEv does not stop with inconsistent sam-
ple then it results in an importance order which is consistent with the
sample. Furthermore it determines correctly if the sample is incon-
sistent, and also determines if the sample is insufficient.

In the following, we examine how long sequence of EV vectors can
be necessary to determine the importance order in the best case. We
use the following model, which we call the Oracle model. We sup-
pose that we can use the EV E function as an oracle, i.e. we can
ask to evaluate a sequence of EV vectors generated by us. We want
to find a short sequence of EV vectors which determines the impor-
tance order of the criteria. We use the following algorithm to generate
the sequence. In the i-th phase we determine the i-th most important
criterion by performing a binary search on the set S of the possible
candidates. During a phase in each step we half the set C of candi-
dates and we determine which half may contain the desired criterion.
At the beginning of the algorithm S is the set of the criteria. We use
the following notation. For any two sets C1, C2 of criteria the vector
EV (C1, C2) denotes the EV vector which is +1 in the coordinates
contained in C1, −1 in the coordinates contained in C2, and 0 in the
other coordinates.
EV sequence generating algorithm

for i := 1 to n
C := S
while |C| > 1 do
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let C1 be the set of first b|C|/2c elements of C
let C2 be the set of the other elements of C
let V = EV (C1, C2)
if EV E(V ) = +1 then C := C1

else C := C2

endwhile
C contains the i-th criterion in the importance order
delete the element of C from S

endfor

The total number of the used EV vectors is at most
dlog2 ne+dlog2(n− 1)e+ ...+dlog2 2e = n dlog2 ne−2dlog2 ne+1.

In contrast with the oracle model in this section we investigate the
worst case situation. Here we suppose that the list of the EV vectors
is generated by an adversary who has the goal to present as long list as
possible. If we consider all of the possible EV vectors then many re-
dundant information is given. The first restriction which is examined
is that we forbid the adversary to generate some types of redundant
EV vectors. We use the following rules to decrease redundancy If the
EV E function takes the value +1 on an EV vector, then we know
that it evaluates the reverse of the vector (we change each +1 to −1
and each −1 to +1) to −1. Therefore it is a redundant information to
consider both a vector and its reverse. So we suppose that the adver-
sary is allowed only to generate vectors which are evaluated by the
EV E function to +1. Since each nonzero EV vector which does not
contain −1 is evaluated to +1, we may suppose that the adversary
generates only such EV vectors which contain −1. If we obtain a
vector which is evaluated to +1, then any vector which is larger than
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it (at least as large in every component as the vector considered) is
evaluated to +1, so these vectors contain only redundant information.
Therefore we suppose that the adversary is allowed to generate only
such EV vectors which are not larger than any of the vectors already
generated.
In the following, we use a metric on the set of the EV vectors. We
consider the generalized version of the Hamming distance used in the
area of error detecting codes. The distance of two EV vectors is the
number of the different components. In this part we suppose that in
each step the adversary is only allowed to use such EV vector which
has distance 1 from the previous vector. Such sequences are called
weakly 1-distance restricted sequences. We show that the adversary
can present an exponential length 1-distance restricted EV sequence
which is not enough to determine the importance order of the criteria.
We consider strongly distance restricted sequences. A sequence is
called strongly k-distance restricted if none of the vectors has larger
distance from each other than k. It seems that this is a very strong
restriction, but as the following statement show there exist strongly
distance restricted sequences which are enough to determine the im-
portance order.

Theorem 4. If n > 3 then there is not such strongly 1-distance re-
stricted sequence which contains enough information to determine
the importance order.
If n ≥ 6 then there is not such strongly 2-distance restricted sequence
which contains enough information to determine the importance or-
der.
If n ≥ 8 then there is not such strongly 3-distance restricted sequence
which contains enough information to determine the importance or-
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der.
For arbitrary n there exist strongly 4-distance restricted sequences
which contain enough information to determine the importance order.

We show a restriction, the strongly 4-distance restriction, which forces
the adversary to use O(n2) length sequences.

2.4 Process network solution of extended CPM prob-
lems with alternatives

The critical path method (CPM) is an algorithmic approach of schedul-
ing a set of activities. CPM is widely used in the field of constructions
to software development for projects. Modeling techniques date back
in the 1950s. The main criteria, in order to use the CPM technique,
are the following. First, duration times of the activities have to be
known together with the dependencies among the activities. Based
on this information the activity network is developed. With the help
of the list of activities together with their duration and dependencies
on each other as well as on the logical end points, CPM calculates the
longest path of the planned activities together with the earliest and
latest times that each activity can start or finish without lengthening
the project.
In order to solve CPM problems with the help of process network
methodology, the two terminologies have to be mapped. A given
CPM graph may be mapped into a process network. Of course real
case examples raise the question of possible alternatives. If a given
problem can be solved by performing more than one activities or more
than one series of activities, then it is called to be the problem of
alternatives. The axioms of process networks determine a solution
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structure within the process network. According to the terminology
of the CPM, the axioms of process networks have to be extended with
the followings: each event in any solution structure, which is repre-
sented by a material in the process network, has one and only one
input arc, except the Start event, which has zero indegree. In other
words, it is also important to lock out from the solution point of view
the parallel alternatives, therefore it has to be stated that from every
operating unit there exists one and only one path to the final prod-
uct (which is the end of the project in case of the CPM model). In
this regards, the solution structures of the process network now cor-
respond to the CPM graph. Therefore, adding the alternatives within
the process network, multiple CPM graphs are described for the orig-
inal problem. As a result, the optimal solution with a given set of
constraints of the original problem is generated from the mathemati-
cal programming model of the process network with alternatives. The
proposed solution method considering the alternatives. Time optimal,
cost optimal, time optimal with additional cost constraints and cost
optimal with additional time constraints mathematical programming
models are described. Let A,E,D be finite sets, where A denotes
the set of Activities, E denotes the set of Events and D denotes the
set of edges. Let G be the bipartite process network as follows. The
following results can be found in the article [39].

Results
We give the mathematical programming model for the CPM problem,
extended with alternatives.
The G(A,E,D) graph has the following properties: A ∩ E = ∅,
D ⊆ (A× E) ∪ (E ×A).
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A = {i ∈ N} activities
E = {j ∈ N} events

Let xi denote the i-th activity in the CPM graph and operating unit in
the process network, where

xi =

{
1 if the i-th activity is performed
0 if the i-th activity is not performed

ti=the time from start-up to the i-th event occurs
Ti=the duration the i-th activity
T=planned upper time limit for the total project
Ci=cost of the i-th activity
C=planned upper budget for the total project

Since the end point of the CPM graph has two different preceeding
alternatives, in the process network an additional technical operating
unit called Close has to be inserted.

xClose = 1 Close ∈ A (3)∑
{i:i∈A (i,j)∈D}

xi = 1 ∀j ∈ E j 6= Start (4)

Line (3) refers to the fact that the project has to be finished; line (4)
refers to the fact that only one alternative can be considered. Let
{b1, b2, ..., bn} be the solution of the above equations and let S =
{i : i ∈ A and bi = 1} be a subset of A
The mathematical programming model of the time optimal project
plan for the CPM problem, extended with alternatives is given below.

xClose = 1 Close ∈ A (5)

16



∑
{i:i∈A (i,j)∈D}

xi = 1 ∀j ∈ E and j 6= Start (6)

tStart = 0 Start ∈ E (7)

tk +
∑

{i:i∈A (i,j)∈D}

xiTi ≤ tj ∀k, j ∈ E \ Start

where ∃i : (k, i) and (i, j) ∈ D (8)

tEnd −→ min (9)

It should also be mentioned that the solution of this mathematical pro-
gramming model equals to the solution in which the shortest duration
time is chosen among the alternatives. Cost optimal, time optimal
with additional cost constraints and cost optimal with additional time
constraints mathematical programming models are also described.

2.5 Optimization the process network using new con-
cept of fuzzy linear programming

Fuzzy theory [20] is widely applied in solving uncertainty problems
in many areas from mathematical problems, throughout engeneering
problems, to the area of project management. In project management
many methods have been developed for the scheduling optimization
[2]. A widely accepted method used in the CPM method to calculate
the optimal event parameters is the linear optimization model. For
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the process network [31][32][37][38][40] optimization in the Chap-
ter 5 we introduced a new solution method of the fuzzy LP problem
to calculate the optimal fuzzy time and cost parameters. We searched
for the sharpest solution i.e. we wish to be as close as possible for
to the the classical sharp solution. This is why in the objective func-
tion we handled the slope of the membership function [3]. Here we
present three different models for the fuzzy optimization. We apply
fuzzy activity times in the process network solution of extended CPM
problems with alternatives. We use a special new parametrization for
the aggregation of the left hand side and the right hand side linear
functions of trapezoid fuzzy numbers [7]. In the new two step con-
cept for fuzzy linear programming, for the first step we present the
left hand side and the right hand side mean parameters of fuzzy time
values. We give four mathematical optimization models for time op-
timization, cost optimization, time optimization with cost constraint,
and cost optimization with time constraint. The following results can
be found in the article [8].

Results
For the fuzzy activity time Ti, let the left hand side (l)and the right
hand side (r) mean and tangent parameters be denoted by:

aA,i,l, mA,i,l, aA,i,r, mA,i,r

For the fuzzy event time ti, let the left hand side (l)and the right hand
side (r) mean and the tangent parameters be denoted by:

aE,i,l, mE,i,l, aE,i,r, mE,i,r
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Similarly let us denote the fuzzy cost left hand side (l)and the right
hand side (r) mean and tangent time parameters by:

aC,i,l, mC,i,l, aC,i,r, mC,i,r

In the mathematical model let:

MA,i,r =
1

mA,i,r
ME,i,r =

1

mE,i,r

The time optimization model is:
Step 1.

xClose = 1 Close ∈ A (10)

∑
{i:i∈A (i,j)∈D}

xi = 1 ∀j ∈ E j 6= Start (11)

aE,1,l = aE,1,r = 0 (12)

aE,k,l +
∑

{i:i∈A (i,j)∈D}

xiaA,i,l ≤ aE,j,l ∀k, j ∈ E j 6= Start

where ∃i : (k, i) ∈ D and (i, j) ∈ D (13)

aE,k,r +
∑

{i:i∈A (i,j)∈D}

xiaA,i,r ≤ aE,j,r ∀k, j ∈ E j 6= Start
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where ∃i : (k, i) ∈ D and (i, j) ∈ D (14)

∑
∀s∈E

aE,s,l + aE,s,r

2
−→ min (15)

In Step 1. the mathematical model choses the possible alternatives of
the optimal structure. For the output activity set of the optimal struc-
ture is denoted by AT and the set of edges in the optimal structure is
denoted by DT . The set of events E is not changed in Step 1.
Now we define a mathematical model for the tangent parameter val-
ues for the optimal structure of the process network which contains
the alternatives of the AT set.
Step 2.

xClose = 1 Close ∈ AT (16)

∑
{i:i∈AT (i,j)∈DT }

xi = 1 ∀j ∈ E j 6= Start (17)

aE,1,l = aE,1,r = 0 (18)

ME,k,l +
∑

{i:i∈AT (i,j)∈DT }

xiMAT ,i,l ≤ME,j,l

∀k, j ∈ E j 6= Start

where ∃i : (k, i) ∈ DT and (i, j) ∈ DT (19)
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|ME,k,r|+
∑

{i:i∈AT (i,j)∈DT }

xi|MAT ,i,r| ≤ |ME,j,r|

∀k, j ∈ E j 6= Start

where ∃i : (k, i) ∈ DT and (i, j) ∈ DT (20)

∑
∀s∈E

ME,s,l + |ME,s,r|
2

−→ min (21)

Here we present three different models for the fuzzy optimization. We
apply fuzzy activity times in the process network solution of extended
CPM problems with alternatives. We use a special new parametriza-
tion for the aggregation of the left hand side and the right hand side
linear functions of trapezoid fuzzy numbers. We searched for the
sharpest solution i.e. we wish to be as close as possible for to the
the classical sharp solution. This is why in the objective function we
handled the slope of the membership function.
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