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1. Introduction 

Molecular conformation has become one of the central concepts of modern chemistry and 

structural biology. The conformational properties of bioactive molecules, due to the diverse 

valence states of their heavy atoms, play a crucial role in the appearance and maintenance 

of life. The stable spacial structures of molecules are formed during a large number of kine-

tic processes, governed by inter- and intramolecular interactions. To explore the conforma-

tional space and the conformational preferences of a molecule, including the dominant se-

condary interactions, one needs to rely both on experimental and theoretical methods. 

Among the experimental methods capable of determining stable conformations, most 

prominent are the diffraction and spectroscopic techniques. The theoretical strategies, pro-

ducing stationary molecular geometries, are of quantum chemical or classical physical ori-

gin. Quantum-chemical procedures are able to approximate the observed structures of mo-

lecules with considerable accuracy. In contrast, the classical physical alternatives yield only 

semi-quantitative estimates for the three dimensional molecular geometries. 

In chemical and biochemical structural research enumerating all the possible confor-

mational states of a molecule and understanding the interconversions of its conformers are 

equally important topics. This kind of scientific interest culminates in protein and nucleic-

acid folding, both of which are rather complex processes and none of which have been mo-

deled with detailed kinetic schemes. 

Similarly to the conformational equilibria of small molecules, the folding of an arbit-

rary bioactive macromolecule is driven by an interconversion reaction network, containing 

several interconversions of the form 1 2A A→ , where 1A  and 2A  are two molecular confor-

mers. The interconversion networks are described by systems of first-order linear differen-

tial equations, whose solutions correspond to the temporal distributions of the conformer 

populations. Since the concentration profiles of the conformers can be treated without nu-

merical difficulties, even a couple of thousand of species can be taken into account in such 

networks, facilitating the establishment of an in-depth kinetic folding model. 

The principal objectives of the present study are as follows: (i) perform a simple alge-

braic characterization of first-order reaction networks (FCRN), and (ii) provide benchmark-

quality estimaes for the interconversion rate coefficients of n-butane and n-pentane. While 

the former goal introduces a novel approach into formal kinetics, the latter helps to under-

stand the flexibility and the dispersion behavior of small organic molecules. The improved 

understanding is expected to have direct application in the analysis of n-alkyl side chains of 

larger molecular systems.  
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2. Theoretical background 

2.1. Chemical reaction networks 

The ordered quadruple , , ,D G A k  is a chemical reaction network (CRN) if (i) { }ijd=D  

and { }ijg=G  are the left and right stoichiometric matrices of the considered reaction sys-

tem, respectively, and (ii) { }jA=A  and { }ik=k  are vectors of chemical species and rate 

coefficients, respectively. If only first-order reactions take place in this CRN, i.e., in each 

rows of the matrix D  exactly one entry equals to one and all the others elements are zero, 

then , , ,D G A k  is a first-order chemical reaction network (FCRN). For the concentration 

vector ( )t=c c  of a FCRN the following system of linear differential equations holds: 

 =c Fc& ,  (1) 

where c&  is the time derivative of the vector c , and 

 ( )Tdiag ik=F S D   (2) 

is the coefficient matrix of the FCRN with the stoichiometric matrix defined as = −S G D . 

It is important to note that Eq. (1) can be solved in the case of a known initial value vector 

( ) 00t = =c c . If the reverse of every reaction is also of first-order in , , ,D G A k , then the 

processes in , , ,D G A k  are isomerization reactions, and , , ,D G A k  is an isomerization 

reaction network (IRN). 

2.2. Estimation of rate coefficients using quantum-chemical methods 

The interconversions of molecular conformers – within the Born–Oppenheinmer approxi-

mation – are motions on a so-called conformational potential energy surface (CPES). Ha-

ving found the minima and the first-order saddle points of the CPES, the rate coefficient of 

the interconversion 1 2= →R S S  through the transition state 12S , denoted by ( )k TR , can 

be computed with the help of the Eyring–Polányi equation: 

 ( ) ( )‡
B

A B

exp
G Tk T

k T
h N k T

∆  = − 
  

R

R ,  (3) 

where AN , Bk , and h  are the Avogadro, the Boltzmann, and the Plack constants, respec-

tively, while ( )‡G T∆ R  is the activation free energy, at temperature T, of the reaction R , 

interpreted as the difference between the total free energies of the transition state 12S  and 

the reactant 1S . It must be emphasized that Eq. (3) can only be employed within the realm 

of transition state theory and the ideal gas approximation.  
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Activation free energies, ( )‡G T∆ R , are computed within the framework of the focal-

point analysis (FPA) approach, using state-of-art quantum-chemical methods, as follows: 

 ( ) ( ) ( )‡ ‡ ‡0G T G G T∆ ∆ δ= +R R R ,  (4) 

where ( )‡ 0G∆ R  and ( )‡G Tδ R  are the activation free energy at 0 K and the thermal con-

tribution to the activation free energy, respectively. The quantity ( )‡ 0G∆ R  is estimated as 

 ( ) ZPE,h, ZPE,a
‡ ‡

,
‡ ‡0G E E E∆ ∆ ∆ δ= + +R R R R ,  (5) 

where ZPE h
‡

, ,E∆ R  and ZPE a
‡

, ,Eδ R  are the harmonic and anharmonic contributions to the ze-

ro-point energy (ZPE) of the reaction R , respectively, and ‡E∆ R  is the activation energy 

extrapolated to the complete basis set limit. ‡E∆ R  is decomposed in this study as 

 ( ) ( ) ( )( )HF, CV,MP2 fc , CCSD fc ,
‡

CCSD T fc ,
‡ ‡ ‡ ‡ ‡E E E E E E∆ ∆ δ δ δ δ= + + + +R R RR R R ,  (6) 

where 

(i) ,
‡

HFE∆ R  is the activation Hartree-Fock (HF) energy,  

(ii) ( )MP2 c
‡

f ,Eδ R  is the second-order Møller–Plesset (MP2) perturbation energy, 

(iii) ( )CCS c
‡

D f ,Eδ R  is the coupled-cluster singles and doubles (CCSD) energy increment, 

(iv) ( )( )CCSD c
‡

T f ,Eδ R  is the energy increment derived from the coupled-cluster singles, dou-

bles, and perturbative triples (CCSD(T)) method, 

(v) ‘fc’ denotes the use of the frozen core approximation, 

(vi) ,
‡

CVEδ R  is a term including the core-core and core-valance interations, and 

(vii) the individual terms are computed at carfully selected reference geometries. 

In the case of molecules with just a few heavy atoms the reference structures are usu-

ally optimized with the CCSD(T) method. Nevertheless, optimizations at this level would 

require extreme computational resources for larger molecular systems; thus, the CCSD(T) 

procedure should be substituted by a density functional theory (DFT) technique suitable for 

providing geometries near their CCSD(T) counterparts for „ordinary” molecules. 

3. Methodological details 

The research presented in the underlying dissertation, beyond simple algebraic means and 

the FPA scheme, a significant amount of programming was performed using the Fortran 90 

language. The quantum-chemical computations were carried out with the Gaussian 09 Rev. 

E.01 and Molpro 2012.1 softwares. Molpro was employed for compute the CCSD(T) ener-

gies, while Gaussian was applied to all the other electronic structure computations. In all 

electron-correlation treatments restricted Hartree–Fock orbitals were utilized. 
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4. Summary 

4.1. The Luther–Rost representation (LRR) of the equation =c Fcɺ  [1] 

In the first part of the present PhD research we dealt with a simple and sophisticated stra-

tegy for solving the equation =c Fc& . This technique is called the Luther–Rost representa-

tion, as it was proposed by Luther and Rost for handling similar problems.The LRR meth-

od is coupled with the Leverrier algorithm concerning the calculation of the characteristic 

polynomial coefficients for the matrix F.  

It is important to point out that the combination of these two procedures may be ap-

plied conveniently to solve linear systems of kinetic differential equations both in educa-

tion and in research. As revealed by a later study of Kyurkiev and Markov, the protocol re-

commended in our study, that avoids the cumbersome application of Jordan chains of F, al-

so appeared to be useful for symbolic-numeric calculations.  

The utility of this pair of methods is demonstrated on four relevant kinetic models, 

two of which, specifically the quadrangle and pentangle reactions, induce systems of linear 

differential equations whose solution functions had not been available in the literature. On 

the ground of the worked examples and the Abel–Ruffini theorem, it is anticipated that the 

universal algebraic solutions to the kinetic problems of the K-angle reaction systems can be 

expressed only in the case of 5K ≤ , where K  is the number of species in the reaction net-

work under study. 

4.2. New results in the qualitative theory of first-order reaction networks [2] 

After the constructive investigations related to solving the equation =c Fc& , we focused on 

the unexplored structural characteristics of FCRNs. After introducing the decomposability 

of CRNs, we proved that the first-order chemical reaction networks of nonnegative G mat-

rices can be decomposed iff their F matrices are block diagonalizable.  

Furthermore, we have also showed that each reaction of the FCRNs with nonnegative 

integer right stoichiometric coefficients has to meet the following so-called mass incompa-

tibility relations: (i) the reactant must have a mass not smaller than those of the products, 

(ii) if the masses of the reactant and an individual product are identical, the right stoichio-

metric coefficient of this product is exactly one, and (iii) provided that the masses of the 

reactant and one of the products are the same, further products are not created. These mass 

incompatibility conditions also imply that if there are not only isomerization reactions in a 
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FCRN, the coefficient matrix of the network inspected can be transformed, with a suitable 

permutation matrix, to block-diagonal form.  

It is also derived that for all conservative FCRNs there is a marker network, which (i) 

is linearly conjugate to the original network, (ii) contains only isomerization reactions, and 

(iii) entirely describes the temporal behavior of the network marked. The existence of mar-

ker networks supports that the statements related to IRNs can be translated to arbitrary con-

servative FCRNs. 

In the end, a method built upon the principle of successive eigenvalue elimination 

[284] is presented. This method helps to decide whether the eigenvalue problem of a speci-

fic ˆ
iiF  diagonal block in Frobenius form of the matrix F can be solved algebraically. As a 

consequence, a sufficient condition for the exact expressibility of the eigenvalues connec-

ted to the blocks ˆ
iiF  has been obtained: if ˆ

iiF  has at most four nonzero eigenvalues, then 

they can be localized with the well-known root formulae of algebraic equations. 

4.3. Fortran programs for simulating the kinetics of first-order reaction networks 

At the next stage of our research two new Fortran programs (fcrn_lrr and fcrn) have 

been developed, which are discussed together with some representative kinetic examples. 

Both programs determine the concentrations of the chemical species included in FCRNs at 

separate sampling times, but these codes display significant deviations in their operating 

conditions and the algorithms implemented.  

Regarding the procedures selected, the fcrn_lrr program utilizes the LRR strate-

gy, the Leverrier method, and the root formulae of polynomial equations. In contrast, the 

fcrn code seeks the eigenvalues of the matrix F with the most elaborate numerical tools 

available (Biloti–Matioli–Yuan and Bini–Gemignani–Tisseur method), and yields the con-

centrations of the species via the spectral decomposition of the coefficient matrix. As to the 

operating conditions, the following differences must be mentioned: (i) the fcrn_lrr pro-

gram demands (a) an F matrix whose eigenvalues can be obtained in closed form, and (b) 

stable Krylov- and Vandermonde matrices, and (ii) the fcrn code – according to our ex-

periments is robust up to K ≤  300  components – can be applied to those FCRNs with dia-

gonalizable F matrices. (This constraint is typically enforced for the common first-order 

kinetic models.) While it may occur that building a basis from Krylov and Vandermonde 

matrices can be stabilized via an appropriate scaling procedure, this question requires addi-

tional examination. 
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4.4. Interconversion kinetics of n-butane and n-pentane [3]  

Finally, so-called interconversion parameters (activation energies, activation free energies 

at 0 and 298 K, and interconversion rate coefficients at 298 K) of n-butane and n-pentane 

are estimated via the FPA approach. Within this project a FPA model (FPAna) is intro-

duced, applying electronic structure theory techniques as inexpensive as possible, and pro-

viding definitive approximations with reliable uncertainties for the aforementioned physi-

co-chemical quantities. The best estimates of the FPAna model are collected into Table 4.4, 

where { }t, g±  and { }tt, tg ,  g g ,  g x± ± ± ± ∓  are two sets containing the unique conformers of 

n-butane and n-pentane, respectively. 

R  1‡  / cal molE∆ −
R

 ( ) 1‡ 0  / cal molG∆ −
R

 ( ) 1‡ 298 K  / cal molG∆ −
R

 ( ) 1298 K  / sk −
R

 

t g±→  3331(30) 3347(95) 3901(158) 103(7)×10
7 

g t± →  2738(50) 2652(90) 3216(148) 33(2)×10
8
 

g g± ±→  4840(47) 4916(91) 5499(151) 69(4)×10
6
 

tt tg±→  3124(28) 3115(96) 3327(146) 27(2)×10
8
 

tg tt± →  2524(42) 2412(91) 3047(153) 44(3)×10
8
 

tg g g± ± ±→  2930(36) 2932(106) 3716(190) 14(1)×10
8
 

g g tg± ± ±→  2597(38) 2404(77) 2551(112) 101(5)×10
8
 

g g g x± ± ±→ ∓
 6162(55) 6110(143) 6186(179) 22(2)×10

6
 

g x g g± ± ±→∓  4258(33) 4236(77) 4723(143) 26(1)×10
7
 

tg g x± ±→ ∓
 2784(30) 2809(110) 3635(200) 16(1)×10

8
 

g x tg± ±→∓  544(9) 404(17) 1004(86) 137(5)×10
9
 

tg tg± ±→  423(6) 212(38) 682(118) 24(1)×10
10

 

g x g x± ±→∓ ∓
 4763(56) 4829(101) 5497(170) 69(5)×10

6
 

Table 4.4 FPAna estimates for the gase-phase interconversion parameters related to the unique confor-

mers of n-butane and n-pentane. The uncertainties of the estimated values are given in parentheses. 

In the FPAna protocol the following computations are included: (i) reference geome-

tries are optimized at the DSD-PBEP86-D2/cc-pVTZ level of DFT theory, (ii) single-point 

energies are determined at these structures using the CCSD(T)(fc)/cc-pVXZ, MP2(full)/cc-

pCVXZ, MP2(fc)/cc-pV5Z, and MP2(fc)/cc-pVXZ ( 2,3,4X = ) electron correlation meth-

ods, (iii) harmonic vibrational analyses are executed at the DSD-PBEP86-D2/cc-pVXZ (X 

= 2,3) levels, and (iv) HDCPT2 computations are performed with the MP2(fc)/6-31G* pro-

cedure. Knowing that our FPAna model results in high-accuracy estimates for the intercon-

version parameters of n-butane and n-pentane, we believe that the same protocol will work 

well for modeling the same quantities of longer n-alkanes, as well. 
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