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“The greater danger for most of us is not that we aim
too high and we miss it, but we aim too low and reach
it.”

— Michelangelo
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“Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand.”

— Martin Fowler

Introduction

It is a big challenge in software engineering to produce huge, reliable and robust soft-
ware systems. Nowadays, most computer programs are not written in machine code
or assembly, which tends to be very error prone, but using higher level languages like
Java, JavaScript or C+-. Despite that, the programs written in these languages are
easier to write and understand, they do not guarantee neither a bug-free, nor a good-
quality system, because the degree of complexity and the number of possibilities that a
programer needs to keep track is still huge. Human beings make mistakes, even if they
are programmers. Moreover, in industry, developers typically have to focus on solving
the problem quickly. The importance of code quality in time pressure is frequently
secondary. On the other hand, software code quality is very important, because a too
complex, hard-to-maintain code results in more bugs, and makes the further develop-
ment more expensive. The research work behind this thesis is inspired by the wish to
develop high quality software systems in industry in a more effective and easier way,
making the lives of customers and eventually end-users more comfortable and more
effective.

The thesis consists of two main topics: the utilization of symbolic execution for
runtime error detection and the investigation of practical refactoring activities. Both
topics address the area of program source code quality.

Symbolic execution is a program analysis technique which explores the possible
execution paths of a program by handling the inputs as unknown variables (symbolic
variables). It simulates the execution of the program on these symbolic variables.
If there is a branching statement in the code where it cannot be decided on which
branch to continue on because of the aforementioned unknown input, the execution
will continue on both possible paths. The main usages of symbolic execution are
generating inputs of program failure and high-coverage test case generation. It is also
used for finding serious code smells and bugs, which are hard to detect with other static
source code analysis techniques or with testing. Symbolic execution is able to expose
defects that would be very difficult and timeconsuming to find through manual testing,
and would be exponentially more costly to fix if they left undetected until runtime.

In this work we focus on runtime error detection (such as null pointer dereference,
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bad array indexing, division by zero, etc.) by discovering critical execution paths in
Java programs. By detecting these critical source code points, we are helping program-
mers develop better quality software and we are also supporting the debugging of such
errors by providing the execution path leading to the dangerous code part. One of
the greater challenges in symbolic execution is the huge number of possible execution
paths, which increase exponentially. Our research proposes approaches to the handling
the aforementioned problem of path explosion by applying symbolic execution at the
level of methods. We also investigated the limitations of this state space together with
the development of efficient search heuristics. To make the detection of runtime errors
more accurate, we propose a novel algorithm that keeps track of the conditions above
symbolic variables during the analysis.

Source code refactoring is a popular and powerful technique for improving the inter-
nal structure of software systems. With refactoring, developers eliminate code smells
and improve the maintainability of the code, making further developments more ef-
ficient. The concept of refactoring was introduced by Martin Fowler. He originally
proposed that code smells should be the primary technique for identifying refactoring
opportunities in the code. However, we lack empirical research results on how, when
and why refactoring is used in everyday software development, what are its effects
on short and long-term maintainability and costs. By getting answers to these ques-
tions, we could understand how developers refactor code in practice, which would help
propose new methods and tools for them that are aligned with their current habits
leading to more effective software engineering methodologies in the industry. To help
the further empirical investigations of code refactoring, we proposed a publicly avail-
able refactoring dataset. The dataset consists of refactorings and source code metrics
of open-source Java systems. We applied the dataset for an analysis on the effects of
code refactoring on source code metrics and maintainability, which are primary quality
attributes in software development.

The thesis has two main parts based on the two research areas we worked on.

The first part of the thesis is about advances in symbolic execution aiming run-
time error detection and consists of four chapters. Chapter 2 provides an overview
about symbolic execution, after that each chapters particularizes one thesis point. In
Chapter 3 we describe our method-level symbolic execution technique for runtime error
detection in Java programs. Then, Chapter 4 introduces a special constraint building
method that makes the error detection more accurate with our symbolic execution
engine. Finally, in Chapter 5 we show how we analyze the state space of symbolic
execution and how we optimize the traversal of the possible execution paths.

The second part contains one chapter (Chapter 6), which stands for the fourth
thesis point. Here we show the connection between the refactoring activity and the
maintainability with other source code metrics, and introduce the refactoring dataset
that our analysis was based on.

Chapter 7 concludes the thesis. In the Appendix we summarize our results in
English and Hungarian, listing the thesis points and the contributions of the author.
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Advances in Symbolic Execution for
Runtime Error Detection






“Most people overestimate what they
can do in one year and underestimate
what they can do in ten years.”

— Bill Gates

Background of Symbolic Execution

Program analysis is the process of analyzing the correctness and other quality properties
of software systems. Besides dynamic program analysis where we analyze the program
during runtime, there are static program analysis techniques, which are performed
without executing the program. In most cases, static analysis is performed on some
version of the source code, thus can also be used to find code smells and anti patterns
in the source that influence the inner quality of the system.

The most simplified static source code analysis technique is when we tokenize the
code and find patterns in the linear token sequence. On the next level, we do not
merely tokenize the input source, but we build an Abstract Syntax Tree (AST), which
represents the structure of the code, allowing the identification of more complex code
smells more precisely. A well-known tool that uses pattern matching on AST is the
PMD Java source code analyzer [73].

In the next step, control flow analysis 2] is a technique for determining the control
flow of a program. The knowledge of control flow is required by any static, global
analysis of the expression and data relationships and is embedded in many compilers
for optimization.

On the other hand, data flow analysis [1] tracks the propagation of data values and
the legality of data at multiple points in the code. With data flow analysis we are able
to detect more serious rule violations and bugs like the usage of uninitialized or invalid
memory, potential runtime errors and security vulnerabilities (e.g. SQL injection). For
example, the tools FindBugs [43] and Cppcheck [22]| use data flow analysis techniques
to find such coding rule violations.

Symbolic Execution can be considered a static analysis technique that not only
propagates data values, but does it on the possible execution paths through the ab-
stract states of the program while keeping track of the conditions that have to be
fulfilled on the different paths. In this chapter, we give a detailed background of
the symbolic execution program analysis technique. Firstly, we describe the theoret-
ical background of symbolic execution in Section 2.1. After that, we present existing
symbolic execution implementations and their applications in Section 2.2. Finally, in
Section 2.3 we describe those symbolic execution engines that our research is based on.



Chapter 2. Background of Symbolic Execution

2.1 Overview of Symbolic Execution

During its execution, every program performs operations on the input data in a defined
order. Symbolic execution [53] is based on the idea that the program is operated on
symbolic variables instead of specific input data, and the output will be a function
of these symbolic variables. A symbolic variable is a set of the possible values of a
concrete variable in the program, thus a symbolic state is a set of concrete states.
When the execution reaches a selection control structure (e.g. an if statement) where
the logical expression contains a symbolic variable, it cannot be evaluated, its value
might be also true and false. The execution continues on both branches accordingly.
This way we can simulate all the possible execution branches of the program. The
key goal of symbolic execution in the context of software testing is to explore as many
different program paths as possible in a given amount of time, and for each path to
(1) generate a set of concrete test input values exercising that path during a normal
execution, and (2) check for the presence of various kinds of errors including uncaught
exceptions, memory corruption and security vulnerabilities.

During symbolic execution we maintain a so-called path condition (PC). The path
condition is a quantifier-free logical formula with the initial value of true, and its vari-
ables are the symbolic variables of the program. If the execution reaches a branching
condition that depends on one or more symbolic variables, the condition will be ap-
pended to the current PC with the logical operator AND to indicate the true branch,
and the negation of the condition to indicate the false branch. With such an extension
of the PC, each execution branch will be linked to a unique formula over the symbolic
variables. In addition to maintaining the path condition, symbolic execution engines
make use of the so called constraint solver programs. Constraint solvers are used to
solve the path condition by assigning values to the symbolic variables that satisfy the
logical formula. Path condition can be solved at any point of the symbolic execution.
Practically, the solutions serve as test inputs that can be used to run the program in
such a way that the concrete execution follows the execution path for which the PC
was solved.

All of the possible execution paths define a connected and acyclic directed graph
called symbolic execution tree. Each point of the tree corresponds to a symbolic state
of the program. An example is shown in Figure 2.1.

Figure 2.1 (a) shows a sample code that determines the distance of two integers x
and y. The symbolic execution of this code is illustrated on Figure 2.1 (b) with the
corresponding symbolic execution tree. We handle x and y symbolically, their symbols
are X and Y respectively. The initial value of the path condition is true. Reaching
the first if statement in line 3, there are two possibilities: the logical expression can be
true or false; thus the execution branches and the logical expression and its negation
is added to the PC as follows:

true N X >Y = X >Y, and trueN—-(X>Y)=X<Y

The value of variable dist will be a symbolic expression, X-Y on the true branch
and Y-X on the false one. As a result of the second if statement (line 8) the execution
branches, and the appropriate PCs are appended again. On the true branches we get
the following PCs:

X>YANX-Y<0=X>YANXY,

X<YANY - X<0=X<YAX>Y



Chapter 2. Background of Symbolic Ezecution

(a) (b)

Figure 2.1. (a) Sample code that determines the distance of two integers on the
number line (b) Symbolic execution tree of the sample code handling variable x and y
symbolically

It is clear that these formulas are unsolvable, we cannot specify such X and Y that
satisfy the conditions. This means that there are no such x and y inputs with which
the program reaches the write("Error") statement. As long as the PC is unsatisfiable
at a state, the sub-tree starting from that state can be pruned, there is no sense to
continue the controversial execution.

In accordance with the goal that we want find true positive runtime errors in the
program we changed and extended the standard path condition building method de-
scribed above as described in Chapter 4.

It is impossible to explore all the symbolic states. It takes unreasonably long time
to execute all the possible paths. A solution for this problem can be e.g. to limit the
depth of the symbolic execution tree or the number of states which, of course, inhibit to
examine all the states. The approaches described in Chapter 3 and Chapter 5 address
this problem.

2.2 Symbolic Execution Engines and Their Applica-
tions

The idea of symbolic execution is not new, the first publications and execution engines
appeared in the 1970’s. One of the earliest works is by King that lays down the fun-
damentals of symbolic execution [53] and presents the EFFIGY system that is able to
execute PL /T programs symbolically. Even though EFFIGY handles only integers sym-
bolically, it is an interactive system with which the user is able to examine the process
of symbolic execution by placing breakpoints and saving and restoring states. Another
work from the 1970’s by Boyer et al. presents a similar system called SELECT [8] that
can be used for executing LISP programs symbolically. The users are allowed to define
conditions for variables and return values and get back whether these conditions are
satisfied or not as an output. The system can be applied for test input generation and
in addition, for every path it gives back the path condition over the symbolic variables.

Further description and comparison of the above mentioned and other tools can be
found in the work of Coward [21] and Cadar [14].

Starting from the last decade the interest about the technique is constantly growing,
numerous programs have been developed that aim at dynamic test input generation
using symbolic execution.

There are approaches and tools for generating test suites for .NET programs using

7

1. int x, y, dist; PC: true,x =X,y =Y/
2. ...
3. if (x > y) { true s o false
4. dist = -V = .
wt=x g PC: X > Y, dist= X-Y | PC: X <Y, dist= ¥-X_
5. } else { 3 I 2
6. dist = y - x; [PC: X >, dist=X-Y <0 | | PC: X <Y, dist=Y-X<0 |
7.} true —_,false trug \;ML
8. if (dist < 0) C;X>YAX-Y20i PC:X<YAY-X>0,
9. write("Error"); L U END
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symbolic execution. Pex [100] is a tool that automatically produces a small test suite
with high code coverage for .NET programs using dynamic symbolic execution, sim-
ilar to path-bounded model-checking. Jamrozik et al. introduce an extension of the
previous approach called augmented dynamic symbolic execution 46|, which aims to
produce representative test sets with DSE by augmenting path conditions with addi-
tional conditions that enforce target criteria such as boundary or mutation adequacy,
or logical coverage criteria. Experiments with the Apex prototype demonstrate that
the resulting test cases can detect up to 30% more seeded defects than those produced
with Pex.

KLEE [12] is another symbolic execution engine that aims to automatically generate
tests that achieve high coverage. Similar to our work it is possible to use various
heuristics to prioritize the most interesting paths first.

SonarQube [15] has its own symbolic execution engine for Java language, which
similarly to us is intended to find tricky bugs that are almost uncatchable by developers
unaided. It is able to find 3 kinds of issues compared to our 5: (1) null pointer
dereference, (2) unclosed resource and (3) it has a rule named "condition should not
unconditionally evaluate to true or false".

Java PathFinder [47] is an execution environment with the goal of verifying Java
programs. JPF is a spceial Java Virtual Machine which interprets the Java bytecode in
a way to be able to verify certain properties of the program. Symbolic PathFinder |75]
is an extension of Java PathFinder which is able to symbolically execute Java programs
by implementing a proper bytecode instruction set. This is the engine that we used to
conduct our research described in Chapter 3.

The main application of the Java PathFinder and its symbolic execution extension
is the verification of the internal projects in NASA. Bushnell et al. describes the
application of Symbolic PathFinder in TSAFE (Tactical Separation Assisted Flight
Environment) [11] that verifies the software components of an air control and collision
detection system. The primary target is to generate useful test cases for TSAFE that
simulates different wind conditions, radar images, flight schedules, etc.

The detection of design patterns can be performed using dynamic approaches as
well as with static program analysis. With the help of a monitoring software the pro-
gram can be analyzed during manual execution and conclusions about the existence of
different patterns can be made based on the execution branches. In his work, von Det-
ten [106] applied symbolic execution with Symbolic PathFinder supplementing manual
execution. This way, more execution branches can be examined and the instances
found by traditional approaches can be refined.

Thantola [45] describes an interesting application of JPF in education. He generates
test inputs for checking the programs of his students. His approach is that functional
test cases based on the specification of the program and their outcome (successful or
not) is not enough for educational purposes. He generates test cases for the programs
using symbolic execution. This way the students can get feedback like “the program
works incorrectly if variable @ is larger than variable b plus 10”.

Song et al. applied the symbolic execution to the verification of networking protocol
implementations [87]. The SymNV tool creates network packages with which a high
coverage can be achieved in the source code of the daemon, therefore potential rule
violations can be revealed according to the protocol specifications.

The SAFELI tool [30] by Fu and Qian is a SQL injection detection program for
analyzing Java web applications. It first instruments the Java bytecode then executes
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Java program
(system under test)

Symbolic PathFinder

/‘ - Java PathFinder
configuration p report

.jpf

Host JVM

Operating system

Figure 2.2. Java PathFinder as a virtual machine itself runs on a JVM, while
performing a verification of a Java program

the instrumented code symbolically. When the execution reaches a SQL query the tool
prepares a string equation based on the initial content of the web input components and
the built-in SQL injection attack patterns. If the equation can be solved the calculated
values are used as inputs which the tool verifies by sending a HTML form to the server.
According to the response of the server it can decide whether the found input can be
a real attack or not.

2.3 The Used Symbolic Execution Engines

2.3.1 Java PathFinder and Symbolic PathFinder

Java PathFinder (JPF) [47] is a highly customizable execution environment that aims
at verifying Java programs. In fact, JPF is nothing more than a Java Virtual Machine
which interprets the Java bytecode in a special way to be able to verify certain proper-
ties. It is difficult to determine what kind of errors can be found and which properties
can be checked by JPF, it depends primarily on its configuration. The system has
been designed from the beginning to be easily configurable and extendable. One of
its extensions is Symbolic PathFinder (SPF) |75] that provides symbolic execution of
Java programs by implementing a bytecode instruction set allowing to execute the Java
bytecode according to the theory of symbolic execution.

JPF (and SPF) itself is implemented in Java, so it also have to run on a virtual ma-
chine, thus JPF is actually a middleware between the standard JVM and the bytecode.
The architecture of the system is illustrated on Figure 2.2.

To start the analysis we have to make a configuration file with .jpf extension in
which we specify different options as key-value pairs. The output is a report that con-
tains e.g. the found defects. In addition to the ability of handling logical, integer and
floating-point type variables as symbols, SPF can also handle complex types symboli-
cally with the lazy initialization algorithm [51], and allows the symbolic execution of
multi-threaded programs too.

SPF supports multiple constraint solvers and defines a general interface to com-
municate them. Cucd is used to solve linear formulas, choco can handle non-linear
logical formulas too, while IASolver use interval arithmetic techniques to satisfy the
path condition. Among the supported constraint solvers, CORAL proved to be the
most effective in terms of the number of solved constraints and the performance [88].
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To reduce the state space of the symbolic execution SPF offers a number of options.
We can specify the maximum depth of the symbolic execution tree, and the number of
elementary formulas in the path condition can also be limited. Further possibility is
that we can restrict the value ranges of the integer and floating point types with options
symbolic.minint, symbolic.maxint, symbolic.minreal, and symbolic. maxreal. With the
proper use of these options the state space and the time required for the analysis can
be reduced significantly. Our concept described in Chapter 3 is based on the Symbolic
PathFinder.

2.3.2 Symbolic Checker

At the Software Engineering Department of the University of Szeged we started to
develop a symbolic execution engine that exactly meets our needs. The tool called
Symbolic Checker is being developed with the goal of detecting runtime errors in Java
applications without running the program in real-life environment. In contrast to
other symbolic execution tools [12, 53, 100, 105, 109] generating test cases which lead
to failure is not a goal here. Instead our aim is to produce a descriptive designation of
the execution path that led to a fault.

Symbolic Checker is developed in C++. Currently the detection of four kinds of
runtime faults are implemented: (1) null pointer dereferences, (2) array over-indexing,
(3) array creation with negative size, and (4) division by zero errors.

Instead of starting the symbolic execution from the main() method, which is the
entry point of a Java program, Symbolic Checker performs the analysis by symbolically
executing each method of the system one by one as described in Chapter 3. This does
not mean the engine cannot handle method calls, the analysis is interprocedural. The
engine handles method calls by placing the actual parameters onto the stack and giving
the control to the callee.

The parameters of the method and the referred but not initialized variables are
handled as symbols at the beginning of the symbolic execution. Importantly, we only
report an error if it is proven that the value that causes the problem during execution
can be determined by constant propagation. L.e. if a method call passes a concrete null
value, and Symbolic Checker finds a path in the called method that dereferences this
parameter, we will report an error. If the dereferenced variable is a symbol the error
will not be reported, because its value is unknown or uncertain.

The symbolic execution is performed using the language-dependent abstract seman-
tic graph (ASG) [26] of the program by interpreting the nodes of this graph in a defined
order. The order is defined by the language-independent control flow graph (CFG) |2],
which is constructed to every method. Loops and recursions are not handled specially,
the traversal of the CFG results simple unroll.

Symbolic Checker is able to handle integer, floating point, reference (including
aliasing), and array type data. It models the memory by storing the variables in a
special data structure for optimized memory usage: we do not store the whole variable
set for each state, only the changes. l.e., if a state wants to read a variable which
was assigned in a parent state, it will be found only in the storage of the appropriate
parent, but if a variable was changed by the current state, the updated value will be
stored in the variable storage of the current state. Moreover, each state has a stack
used for passing parameters in method invocations and for expression evaluation.

In Symbolic Checker Definition is a comprehensive name for all the data that ap-
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pears during symbolic execution. For example, the concrete or symbolic variables,
constants, parameters of methods, their return value, or the result of sub-expressions
are also Definitions. Actually, the symbolic execution of the program is the propagation
of these Definition objects. Basically, there are two types of Definitions: ValueDefini-
tion and SymbolDefinition. ValueDefinition objects store specific, concrete values and
SymbolDefinition instances represent the symbolic variables. In fact, the symbolic ex-
ecution of the program is nothing else than the proper propagation of these Definition
objects on the different paths.

Symbolic Checker has a special way of building the path condition, which will be
presented in Chapter 4. Tt uses the Gecode constraint solver tool-set [33].

To limit the size of the symbolic execution tree, its maximum depth and the maxi-
mum number of states can be specified.

The output of the Symbolic Checker is a CSV (Coma Separated Values) file that
contains the detected errors indicating their type, the execution path from the entry
point to the exact location where the error occurred and a probability that estimates
how likely the analyzed method runs onto the detected fault.

2.3.3 RTEHunter

Symbolic Checker went through further developments and we gave it the new name of
RTEHunter (RunTime Exception Hunter). Besides bug fixes, which result a more sta-
ble and reliable system, we redesigned and rewrote many essential parts that improved
the performance and code quality. Instead of CSV files, the output that contains the
detected errors (indicating their type and the execution path by a list of states from
the entry point to the exact location where the error occurred) are written into well
formatted txt files. Moreover, RTEHunter is integrated into the SonarQube quality
management platform [15], thus the reported issues can be investigated in a SonarQube
instance too. For now, RTEHunter is part of a commercial product, the SourceMeter
static analysis tool-kit'. This engine was used in the research described in Chapter 5.

thttps:/ /www.sourcemeter.com /
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“If you want to increase your success rate,
double your failure rate.”

— Thomas J. Watson

A Method-level Symbolic Execution
Technique for Runtime Error Detection in
Real-world Software Systems

3.1 Overview

Our purpose is to develop a new method and tool, which supports maintenance activi-
ties, particularly debugging and bug fixing with detecting runtime faults in real-world
Java programs, and finding dangerous parts in the source code, that could behave as
time-bombs during further development.

In Java programs runtime errors are manifested as runtime exceptions which are
the instances of class java.lang.RuntimeException. For example runtime exceptions
occurred by an invalid type cast, an array over indexing, or by a division by zero
operation. These exceptions are dangerous because they can cause a sudden stop of
the program, as they do not have to be handled by the programmer explicitly. The
exploration of these exceptions is done using the technique symbolic execution [53],
which is able to explore possible execution paths of a program.

Java PathFinder (JPF) [47] is a software model checker which is developed at NASA
Ames Research Center. This work is based on its extension, the Symbolic PathFinder
(SPF) |75] which can perform the symbolic execution of Java bytecode.

However, if we start the symbolic execution from the standard entry point of the
program (i.e. form method main()), the state space composed of the possible execution
paths would explode before the symbolic execution could reach the majority of the code.
To overcome this problem we perform the symbolic execution on each method of the
system one by one. Concrete input parameters of the method resulting a runtime
exception are also determined.

The chapter explains how the detection of runtime exceptions of the Java program-
ming language was implemented using Java PathFinder and symbolic execution. The
implemented tool called JPF Checker has been tested on open-source real life projects:
on log4j, ArgoUML, and on jEdit. We found multiple errors in the logjj system that
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were also reported as real bugs in its bug tracking system. The performance of the tool
is acceptable since the analysis was finished in a couple of hours even for the biggest
system used for testing.

The remainder of the chapter is organized as follows. Section 3.2 collects the works
that are related to ours. In Section 3.3 we present our approach for detecting runtime
exceptions. Section 3.4 discusses the results of the implemented algorithm on different
small examples and real-life open source projects. Finally, we conclude the research in
Section 3.5.

3.2 Related Work

In this section we present works are related to our research. We first introduce existing
approaches and techniques relating to our main goal: runtime error detection. Since
our method-level symbolic execution proposes an approach to handling the path ex-
plosion problem by applying symbolic execution for the portions of the program, we
also mention works that reduced the state space in a similar manner.

The EXE (EXecution generated Executions) [13] presented by Cadar et al. at the
Stanford University is an error checking tool made for generating input data on which
the program terminates with failure. The input generation is done by the STP built-in
constraint solver that solves the path condition of the path causing the failure. EXE
achieved promising results on real-life systems. It found errors in the package filter
implementations of BSD and Linuz, in the udhcpd DHCP server and in different Linux
file systems.

The DART [37] (Directed Automata Random Testing) by Godefroid et al. tries to
eliminate the shortcomings of the symbolic execution e.g. when it is unable to handle
a condition due to its unlinear nature. DART executes the program with random or
predefined input data and records the constraints defined by the conditions on the
input variables when it reaches a conditional statement. In the next iteration taking
into account the recorded constraints it runs the program with input data that causes
a different execution branch of the program. The goal is to execute all the reachable
branches of the program by generating appropriate input data. The CUTE and jCUTE
systems [80] by Sen and Agha extend DART with multithreading and dynamic data
structures. The advantage of these tools is that they are capable of handling complex
mathematical conditions due to concrete executions.

Sinha et al. deal with localizing Java runtime errors [83]. The introduced approach
aims at helping to fix existing errors. They extract the statement that threw the
exception from its stack trace and perform a backward dataflow analysis starting from
there to localize those statements that might be the root causes of the exception.

The work of Weimer and Necula [108] focuses on proving safe exception handling in
safety critical systems. They generate test cases that lead to an exception by violating
one of the rules of the language. Unlike JPF Checker they do not generate test inputs
based on symbolic execution but solving a global optimization problem on the control
flow graph (CFQG) of the program.

The JCrasher tool [23] by Csallner and Smaragdakis takes a set of Java classes
as input. After checking the class types it creates a Java program which instantiates
the given classes and calls each of their public methods with random parameters.
This algorithm might detect failures that cause the termination of the system such
as runtime exceptions. The tool is capable of generating JUnit test cases and can be
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integrated to the Eclipse IDE. Similarly to JPF Checker JCrasher also creates a driver
environment but it can analyze public methods only and instead of symbolic execution
it generates random data which is obviously not feasible for examining all possible
execution branches.

Bucur et al. [9] addresses the problem of path explosion by parallelizing symbolic
execution in a way that scales well on large clusters of cheap commodity hardware. The
system, called Cloud9 can automatically test real systems, that interact in complex
ways with their environment.

Another approach to reduce the state space, presented by Chipounov [16], proposes
the idea not to execute the whole program symbolically, but just portions of it. The
engine can start the symbolic execution at arbitrary portions of a full system, including
applications, libraries, operating system, and device drivers. It seamlessly transitions
back and forth between symbolic and concrete execution, while transparently convert-
ing system states from symbolic to concrete and back. A similar approach is used for
testing NASA Software [77]. The concept is also to start running the program in nor-
mal mode like in a real life environment then at given points, e.g. at more complex or
problematic parts in the program switch to symbolic execution mode. In Section 3.3.1
we give a more detailed comparison of this approach with our method-level symbolic
execution technique. The CUTE and jCUTE systems [80] by Sen and Agha, are also
concolic executors, start at an arbitrary function by initializing pointers based at first
on a simple heap with abstract addresses and incrementally increasing the heap com-
plexity in subsequent runs.

System MIX [50] combines symbolic execution with static type checking based
techniques. It designates type and symbolic blocks in the program, which determines
which code-part should be analysed using symbolic execution and wich one using static
type checking. In the border of these blocks so-called mix-rules are used to convey the
neccessary information. MIX is intended to provide a compromise between the precise
but resource intensive symbolic execution and the less precise but faster type checking.

Another technique is to reuse and merge the paths that are explored before. E.g.
reusing the analysis of lower-level functions in subsequent computations improves the
scalability of symbolic execution [35].

3.3 Detection of Runtime Exceptions

We developed a tool that is able to automatically detect runtime exceptions in an
arbitrary Java program. This section explains in detail how this analysis program, the
JPF checker works.

To check the whole program we use symbolic execution, which is performed by
Symbolic PathFinder. However, we do not execute the whole program symbolically to
discover all of the possible paths, instead we symbolically execute the methods of the
program one by one. This approach is called method-level symbolic execution. Starting
the analysis from the main method has the drawback that the state space would be
too large and we would need to cut it when the execution reaches the defined maximal
depth in the symbolic execution tree. Our approach results in a significant reduction
in the state space of the symbolic execution.

An important question is which variables to be handled symbolically. In general,
execution of a method mainly depends on the actual values of its parameters and the
referred external variables. Thus, these are the inputs of a method that should be
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handled symbolically to generally analyze it. Currently, we handle the parameters and
data members of the class of the analyzed method symbolically.

Our goal is not only to indicate the runtime exceptions a method can throw (its
type and the line causing the exception), but also to determine a parameterization that
leads to throwing those exceptions. In addition, we determine this parameterization
not only for the analyzed method which is at the bottom of the call stack, but for all
the other elements in the call stack (i.e. recursively for all the called methods).

Our work can be divided into two stages:

1. Tt is necessary to create a runtime environment which is able to iterate over all the
methods of a Java program, and start their symbolic execution using Symbolic
PathFinder to implement method-level symbolic execution.

2. We need a JPF extension which is built on its listener mechanism, and which is
able to indicate potential runtime exceptions and related parameterization while
monitoring the execution.

3.3.1 The Runtime Environment

The concept of the developers of Symbolic PathFinder was to start running the program
in normal mode like in a real life environment, than at given points, e.g. at more
complex or problematic parts in the program switch to symbolic execution mode [77].
The advantage of this approach is that, since the context is real, it is more likely to
find real errors. E.g. the values of the global variables are all set, but if these variables
are handled symbolically we can examine cases that never occur during a real run.
A disadvantage is that it is hard to explore the problematic points of a program, it
requires prior knowledge or preliminary work. Another disadvantage is that you have
to run the program manually namely, that the control reach those methods which will
be handled symbolic by the SPF.

In contrast, the tool we have developed is able to execute an arbitrary method or
all methods of a program symbolically. The advantage of this approach is that the
user does not have to perform any manual runs, the entire process can be automated.
Additionally, the symbolic state space also remains limited since we do not execute the
whole program symbolically, but their parts separately. The approach also makes it
possible to analyze libraries that do not have a main method such as log4j. One of the
major disadvantages is the that we back away from the real execution environment,
which may lead to false positive error reports.

For implementing such an execution environment we have to achieve somehow that
the control flow reaches the method we want to analyze. However, due to the nature
of the virtual machine, JPF requires the entry point of the program, which is the class
containing the main method. Therefore, we generate a driver class for each method
containing a main method that only passes the control to the method we want to
execute symbolically and carries out all the related tasks. Invoking the method is
done using the Java Reflection API. We also have to generate a JPF configuration file
that specifies, among others, the artificially created entry point and the method we
want to handle symbolically. After creating the necessary files, we have to compile the
generated Java class and finally, to launch Symbolic PathFinder.

The architecture of the system is illustrated in Figure 3.1. The input jar file is
processed by the JarEzplorer component, which reads all the methods of the classes
from the jar file and creates a list from them. The elements of the list is taken by the
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.Jar
: Explorer : Generator | SPF

Figure 3.1. Architecture of the runtime environment

Generator one by one. It generates a driver class and a JPF configuration file for each
method. After the generation is complete, we start the symbolic execution.

3.3.2 Implementing a Listener Class

During functioning, JPF sends notifications about certain events. This is realized by so-
called listeners, which are based on the observer design pattern. The registered listener
objects are notified about and can react to these events. JPF can send notifications
of almost every detail of the program execution. There are low-level events such as
execution of a bytecode instruction, as well as high-level events such as starting or
finishing the search in the state space. In JPF, basically two listener interfaces exist:
the SearchListener and VMListener interface. While the former includes the events
related to the state space search, the latter reports the events of the virtual machine.
Because these interfaces are quite large and the specific listener classes often implement
both of them, adapter classes are introduced that implement these interfaces with
empty method bodies. Therefore, to create our custom listener we derived a class from
this adapter and implemented only the necessary methods.

Our algorithm for detecting runtime exceptions is briefly summarized below. By
performing symbolic execution of a method all of its paths are executed, including those
that throw exceptions. When an exception occurs, namely when the virtual machine
executes an ATHROW bytecode instruction, JPF triggers and ezceptionThrown event.
Thus, we implemented the exceptionThrown method in our listener class. Its pseudo
code is shown in Listing 3.1.

First, we acquire the thrown Exception object (line 2), then we decide whether it
is a runtime exception (i.e. whether it is an instance of the class RuntimeException)
(line 3). If it is, we request the path condition related to the actual path and use the
constraint solver to find a satisfactory solution (lines 4-5). Lines 6-9 set up a summary
report that contains the type of the thrown exception, the line that throws it and
a parameterization which causes this exception to be thrown. The parameterization
is constructed by the parsePC() method, which assigns the satisfactory solutions of
the path condition to the method parameters. Lines 10-13 take care of collecting and
determining parameterization for the methods in the call stack. If the source code does
not specify any constraint for a parameter on the path throwing an exception (i.e. the
path condition does not contain the variable), then there is no related solution. This
means that it does not matter what the actual value of that parameter is, as it does
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1 exceptionThrown() {

2 exception = getPendingException();

3 if (isInstanceOfRuntimeException(exception)) {
4 pc = getCurrentPc();

5 solve (pc);

6 summary = new FoundExceptionSummary();
7 summary.setExceptionType(exception);

8 summary.set ThrownFrom (exception);

9 summary.setParameterization(parsePc(pe, analyzedMethod));
10 invocationChain = buildInvocationChain();
11 foreach(Method m : invocationChain) {
12 summary.addStack TraceElement(m, parsePc(pc, m));
13 }
14 foundExceptions.add(summary);
15}
16 }

Listing 3.1. Pseudo code of the exceptionThrown event

void x(int a) {
short b = 42;
y(a, b);

}

void y(int a, short b) {

throw new NullPointerException();

}

Listing 3.2. An example call with both symbolic and concrete parameters

© 00~ O Ut = W N =

not affect the execution path, and the method is going to throw an exception due to
the values of other parameters. In such cases parsePc() method assigns the value “any”
to these parameters.

It is also possible that a parameter has a concrete value. Listing 3.2 illustrates such
an example. When we start the symbolic execution of method z(), its parameter a
is handled symbolically. As z() calls y() its parameter a is still a symbol, but b is a
concrete value (42). In this case, parsePc() have to get the concrete value from the
stack of the actual method.

We note that the presented algorithm reports any runtime exceptions regardless of
the fact whether it is caught by the program or not. The reason of this is that we think
that relying on runtime exceptions is a bad coding practice and a runtime exception
can be dangerous even if it is handled by the program. Nonetheless, it would be easy
to modify our algorithm only to detect uncaught exceptions.

3.4 Results

The developed tool was tested in a variety of ways. The section describes the results of
these test runs. We analyzed manually prepared example codes containing instructions
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that cause runtime exceptions on purpose; then we performed analysis on different
open-source software to show that our tool is able to detect runtime exceptions in
real programs, not just in artificially made small examples. The subject systems are
the log4j' logging library, the ArgoUML? modeling tool, and the jEdit? text editor
program. We prove the validity of the detected exceptions by the bug reports, found
in the bug tracking systems of these projects, that describe program faults caused by
those runtime exceptions that are also found by the developed tool.

3.4.1 Manually Prepared Examples

A small manually prepared example code is shown on Listing 3.3. The method under
test is callRun() which calls method run() in line 12. Running our algorithm on this
code gives two hits: the first one is an ArrayIndexOutOfBoundsException and the
second one is a NullPointerException. The first exception is thrown by method run()
at line 24. A parametrization leading to this exception is callRun(7, 11). Method
run() will be called only if z > 6 (line 10) that is satisfied by 7 and it is called with
the concrete value 9 and symbol y. At this point there is no condition for y. Method
run() can reach line 24 only if y > 10, the indicated value 11 is obtained by satisfying
this constraint. Throwing of the ArraylndexOutOfBoundsException is due to the fact
that in line 22 we declare a 5-element array but the following for loop runs from 0 to
x. The value of x at this point is 9 which leads to an exception.

The train of thought is similar in the case of the second exception. The problem
is that variable ¢ created in line 27 initialized only in line 29 to a value different form
null, but not in the else block, therefore line 33 throws a NullPointerException. This
requires that the value of y not to be greater than 10 and not to be less than 5. These
restrictions are satisfied by e.g. 5, and value 7 for x is necessary to invoke run(). So
the parametrizations are callRun(7, 5) and run(9, 5). The analysis is finished in less
than a second.

A second example code is presented in Listing 3.4. The resulting report refers to
an ArithmeticException, which is thrown at line 39 and the stack trace highlights that
the problematic method is ezpand() which is invoked at line 30 by run(). The control
flow reaches line 30 only if variable b is false. For example, if n is -999, and check
has the value true, as the parameter list in the error report included, b will be false
and the ezpand() method on the else branch will be executed. At line 36, variable res
has a concrete value because method count() will be executed. It can be seen that
res is definitely a non-negative integer, thus the condition at line 37 is true if n=-999.
Then the loop begins executing, and variable res will be reduced to 0 after a number
of iterations, leading to a division by 0 fault. In the report, the third parameter of the
examined run() method is “any”. That is because this parameter does not play a role
in whether or not the program runs onto the discussed ArithmeticException.

Line 25 in method run() also calls ezpand(), but there is no corresponding error
report. In fact, due to the instructions at lines 13-23, the condition at line 24 is always
false, thus this ezpand() call will never be executed. Actually, line 25 is unreachable
code.

'http://logging.apache.org/loglj/
2http://argouml.tigris.org/
3http://www. jedit.org/
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20 public void run(int x, int y) {

public class Example5 { 21 if (y > 10) {
22 int[] arr = new int[5[;
8 wvoid callRun(int x, int y) { 23 for (int i =0;1 <x;i++){
9  Integer i = null; 24 arr|i] = i
10 if (x > 6) { 25 }
11 int b = 9; 26 } else {
12 run(b, y); 27 Integer 1 = null;
13 i = Integer.valueOf(b); 28 if (y <5){
14 System.out.println(i); 29 i = Integer.valueOf(4);
15 } else { 30 i.floatValue ();
16 i = Integer.valueOf(3); 31 1 else {
17 System.out.println(i ); 32 System.out.println(
18 } 33 i.floatValue());
19 } 34 }
35 1
36 }
37}

Listing 3.3. Manually prepared example code with the analysis of method callRun()

3.4.2 Analysis of Open-source Systems

Analysis of logdj 1.2.15, ArgoUML 0.28 and jEdit 4.4.2 were carried out on a desktop
computer with an Intel Core i5-540M 2.53 GHz processor and 8 GB of memory. In all
three cases the analysis was done by executing all the methods of the release jar files
of the projects symbolically.

Figure 3.2 (a) displays the number of methods we analyzed in the different programs.
We started analyzing 1242 methods in log4j of which only 757 were successful, in 474
cases the analysis stopped due to the failure of the Java PathFinder (or Symbolic
PathFinder). There are a lot of methods in ArgoUML which also could not be analyzed,
more than half of the checks ended with failure. In case of jEdit the ratio is very similar.
Unfortunately, in general JPF stopped with a variety of error messages.

Despite the frequent failures of JPF, our tool indicated a fairly large number of
runtime exceptions in all three programs. Figure 3.2 (b) shows the number of success-
fully analyzed methods and the methods with one or more runtime exceptions. The
hit rate is the highest for log4j and despite its high number of methods, relatively few
exceptions were found in ArgoUML.

The analysis times are shown in Figure 3.2 (c¢). Analysis of log4j completed within
an hour, while analysis of ArgoUML, that contains more than 7500 methods, took 3
hours and 42 minutes. Although jEdit contains fewer methods than ArgoUML, its full
analysis were more time-consuming. The performance of our algorithm is acceptable,
especially considering that the analysis was performed on an ordinary desktop PC not
on a high-performance server. However, it can be assumed that the analysis time would
grow with less failed method analysis.

It is important to note, that not all indicated exceptions are real errors. This
happens because the analysis were performed in an artificial execution environment
which might have introduced false positive hits. When we start the symbolic execution
of a method we have no information about the circumstances of the real invocation.
All parameters and data members are handled symbolically, that is, it is considered
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3 public class Example3 {

8 public void run(int n,

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

boolean check, A a) {
boolean b = check && n >= 0;
int max = Integer. MIN VALUE;

if (b) {
if (a != null) {
int 1 =n;

int r = 2xn + 1;
if (a.getMember() > 120) {
if (1 <= a.getMember()) {
max = a.getMember();
} else {
max = I;
}
if (r > max) {
max = r;
}
while (max < n) {
max = expand(n, 0);
}
}

}
} else {

max = expand(n, 0);
}
System.out.println("Maximum"
+ "value:_" + max);

35 private int expand(int n, int m) {
36  double res = count(m);
37 if (res >n) {

38 do {

39 res =1 / res;

40 res —= 2;

41 } while (res >= 0);

42 return n + m;

43} else {

44 return (int)res;

45  }

46}

47

48 private int count(int 1) {
49 int count = I;

50 for (int i=100;i>0; i——) {
51 if (1 %3==0){

52 count—+-;

53 }

54 }

%) return count;

56}

57

58 1

1 public class A extends Letter {
2

3 public int member;

4

5 public int getMember() {
6 return member;
T

8

-

©

Listing 3.4. Manually prepared example code with the analysis of method run()
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Figure 3.2. (a) The number of methods examined in the programs and the number
of JPF or SPF faults. (b) The number of successfully analyzed methods and the
number of defective methods. (¢) Analysis time

that their value can be anything although it is possible that a particular value of a
variable never occurs.

Despite the fact that not all the reported exceptions are real program errors they
are definitely representing real risks. During the modification of the source code there
are inevitably changes that introduce new errors. These errors often appear in form of
runtime exceptions (i.e. in places where our algorithm found possible failures). So the
majority of the reported exceptions do not report real errors, but potential sources of
danger that should be paid special attention to.

In the following, we are going to show some interesting faults found by our tool in
the above systems.

The first example method is org.apache.loglj. SimpleLayout.format() of logdj, which
is shwon in Listing 3.5. In this method three possible runtime exceptions are found
by the tool. The first two are NullPointerExceptions, both thrown at line 61. The
produced report says that the first NPE will be thrown if the parameter is null, and the
second when this parameter differs from null. In the first case, when the parameter is
null, expression event.getLevel() causes the exception, since a method of a null reference
cannot be called. When parameter event is not null, the code gets the level data
member and calls its toString() method. The second NullPointerException is caused
by the fact that the requested level data member can also be null, thus using operator
‘.’ may raise the exception.

The third exception is a ClassCastException. As shown, at line 256 in class Loggin-
gFEvent there is a type cast which tries to convert the [evel member which has a type
Priority to a Level object. According to the code in the bottom of Listing 3.5, class
Level is a descendant of class Priority, thus the cast at line 256 is a downcast, which
is incorrect in case the dynamic type of the member is not Level.

Three possible ClassCastExceptions are revealed in method Predicate M Type. create()
that is depicted in Listing 3.6. Lines 729, 730 and 731 cast down the three parameters
from Object to Class without performing any type check. The first entry in the report
says that create(null, null, Inull) parametrization can lead to an exception thrown at
line 731. If ¢0 and c1 parameters are null, lines 729 and 730 are executed without
any problem, because casting a null reference to any class is permitted in Java. It is
important that this does not mean that c0 and c¢I have to be necessarily null, the
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public class SimpleLayout extends Layout {

58 public String format(LoggingEvent event) {
29
60 sbuf.setLength(0);
61 sbuf.append(event.getLevel().toString());
62 sbuf.append("_—_");
63 sbuf.append(event.getRenderedMessage());
64 sbuf.append(LINE _SEP);
65 return sbuf.toString();
6 1

h

public class LoggingEvent implements java.io.Serializable {
transient public Priority level;

255 public Level getLevel() {
256 return (Level) level;
257 1

}

public class Level extends Priority implements Serializable{

s
Listing 3.5. Method org.apache.log4j.SimpleLayout.format() and its environment
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public class FindDialog extends ArgoDialog ... { ... }
class PredicateMType extends PredicateType {

727  public static PredicateType create(Object c0, Object c1, Object ¢2) {
728 Class[| classes = new Class|3];

729 classes|[0] = (Class) c0;

730 classes|[1] = (Class) cl;

731 classes|2] = (Class) c2;

732 return new PredicateMType(classes);

733 )

}
Listing 3.6. Method org.argouml.ui.PredicateM Type.create()

public class MRUFileManager {
private LinkedList mruFileList;

public int size() {
return mruFileList.size();

}
97 public Object getFile(int index) {
98 if (index < size()) {
99 return mruFileList.get(index);
100 }
101
102 return null;
103}

}

Listing 3.7. Method org.apache.log4j.1f5.viewer.configure. MRUFileManager.getFile()

report just gives a sample parametrization which leads the execution to the exception.
As long as the third parameter is not null a ClassCastException can be raised. Of
course, to achieve this it is necessary that the parameter type is different from Class.
Parametrization create(null, Inull, “any”) leads to potential fault at line 730. The rea-
soning is similar to the previous one: if ¢0 is null and ¢ is non-null (and of course it
is not a Class) ClassCastException will be thrown. The third parameter is completely
irrelevant. In case of the third ClassCastException, occurring at line 729, the values
of ¢1 and ¢2 do not matter.

The last example is a tiny method, MRUFileManager.getFile() shown in Listing 3.7.
At line 98, getFile() checks whether the indez parameter is less then the size of the
mruFileList LinkedList. If so, the return value is the corresponding element of the
LinkedList, otherwise null. Our report shows that the index can be a negative number,
too. This case is not handled, and LinkedList.get() will throw an IndexOutOfBound-
sException if method getField() is called for example with -999. Calling getField()
with a negative number seems unreasonable and of course it is, but possible.
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public class ThrowableInformation implements java.io.Serializable {
private transient Throwable throwable;

54 public String|| getThrowableStrRep() {
55 if (rep != null) {

56 return (String|]) rep.clone ();
57 } else {
58 VectorWriter vw = new VectorWriter();
59 throwable.printStackTrace(vw);
60 rep = vw.toStringArray();
61 return rep;
62 }
63 }
}

Listing 3.8. Method org.apache.log4j.spi. ThrowableInformation.get ThrowableStrRep()

public class NDC {
static Hashtable ht = new Hashtable();

374  static

375  public

376  void remove() {

377 ht.remove(Thread.current Thread());

378

379 // Lazily remove dead—thread references in ht.
380 lazyRemove();

381 }

}
Listing 3.9. Source code of method org.apache.logdj. NDC.remove()

3.4.3 Real Errors

In this subsection a few defects are presented which are reported in bug tracking sys-
tems, and caused by runtime exceptions found also by our tool. The first affected bug*
reports the termination of an application using log4j version 1.2.14 caused by a Null-
PointerException. The reporter got the Exception from line 59 of ThrowableInforma-
tion.java thrown by method org.apache.logsy.spi. ThrowableInformation.get Throwable-
StrRep() as shown in the given stack trace. The code of the method and the problematic
line detected by our analysis is shown in Listing 3.8.

The problem here is that the initialization of the throwable data member of class
ThrowableInformation is omitted, its value is null causing a NullPointerException
at line 59. This causes that the log() method of log4j can also throw an exception
which should never happen. Our tool found other errors as well which demonstrate its
strength of being capable of detecting real bugs.

“https:/ /issues.apache.org/bugzilla/show _bug.cgi?id—44038
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The next exception is also a NullPointerException, which occurred in log4j 1.2.15.
The bug report® explains that the runtime exception causing the halt comes form
method org.apache.loglj.NDC.remove(), at line 377. Listing 3.9 shows the correspond-
ing piece of code. The fault here is that the ht static data member is null. Although
the data member is initialized as Listing 3.9 shows, it is possible that during the execu-
tion its value is set to null. The report in the log4j bug tracking system sheds light to
this. The reporter also mentions that according to his observations, the other methods
of class NDC, which use the ht member, first check whether it is null or not, but in
method remove() there is no such investigation.

We describe one more error that was also found in log4j version 1.2.15°. The error
is at line 312 of the class org.apache.logij.net.SyslogAppender. The line is inside the
method append() in which there is a NullPointerException again. The code snippet is
in Listing 3.10. The reason of this runtime error is that the layout data member, which
is inherited from class AppenderSkeleton, stays uninitialized. Our report also includes
a ClassCastException thrown by method getLevel() at line 294. This fault is the same
that we already described explaining Listing 3.5 in the previous subsection.

3.5 Summary

The introduced approach that performs method-level symbolic execution for detecting
runtime exceptions works well not just on small, manually prepared examples but it
is able to find runtime exceptions which are the causes of some documented runtime
failures (i.e. there exists an issue for them in the bug tracking system) in real world
systems also. However, not all the detected possible runtime exceptions will actually
cause a system failure. There might be a large number of exceptions that will never
occur running the system in real environment. Nonetheless, the importance of these
warnings should not be underrated since they draw attention to those code parts that
might turn to real problems after changing the system. Considering these possible
problems could help system maintenance and contributes to achieving a better quality
software. As we presented in Section 3.4 the analysis time of real world systems are
also acceptable, therefore our approach and tool can be applied in practice.

Unfortunately the Java PathFinder and its Symbolic PathFinder extension — which
we used for implementing our approach — contain a lot of bugs. It made the development
very troublesome, but the authors at the NASA were really helpful. We contacted
them several times and got responses very quickly; they fixed some blocker issues
particularly for our request. Although JPF and SPF have several bugs, it is under
constant development and becoming more and more stable.

The author’s contributions. The author performed the exploration of symbolic ex-
ecution and the Symbolic PathFinder execution engine for the purpose of runtime
exception detection. The idea of method-level symbolic execution and the entire im-
plementation of the runtime environment which performs the analysis is the author’s
work. He performed the detection of runtime exceptions by implementing a module in
Symbolic PathFinder which also gives a stack trace leading to the found error and the
related parametrization as a test input that crashes the program. The investigation
of the found runtime exceptions and proving their validity by the bug reports, found

Shttps://issues.apache.org/bugzilla/show bug.cgi?id=45335
Shttps://issues.apache.org/bugzilla/show bug.cgi?id=46271
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public abstract class AppenderSkeleton {
protected Layout layout;

\

public class SyslogAppender extends AppenderSkeleton {
SyslogQuiet Writer sqw;
private boolean layoutHeaderChecked = false;

291  public

292 void append(LoggingEvent event) {
293
294 if ('isAsSevereAsThreshold(event.getLevel()))
295 return,;
296
297 // We must not attempt to append if squ is null.
298 if (sqw —= null) {
299 errorHandler.error ("No_syslog_host_is_set_for_SyslogAppedender"
300 + "_named_" + this.name + ".");
301 return;
302 }
303
304 if (!layoutHeaderChecked) {
305 if (layout != null && layout.getHeader() != null) {
306 sendLayoutMessage(layout.getHeader());
307 }
308 layoutHeaderChecked = true;
300 )
310
311
312 String packet = layout.format(event);
313 String hdr = getPacketHeader(event.timeStamp);
314
315 if ( facilityPrinting || hdr.length() > 0) {
316 StringBuffer buf = new StringBuffer(hdr);
317 if ( facilityPrinting ) {
318 buf.append(facilityStr );
319 }
320 buf.append(packet);
321 packet = buf.toString ();
322 )
1

Listing 3.10. Source code of method org.apache.log4j.net.SyslogAppender.append()
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in the bug tracking systems of the analyzed projects was also the author’s role. He
contacted the authors of Symbolic PathFinder several times to report some blocker
issues that held back the research. The publications related to this chapter are:

¢ I. Kadar, P. Hegediis, R. Ferenc. Runtime Exception Detection in Java Pro-
grams Using Symbolic Execution. In Proceedings of the 13th Symposium on
Programming Languages and Software Tools — SPLST’13, pages 215-229, 2013.

¢ I. Kadar, P. Hegediis, R. Ferenc. Runtime Exception Detection in Java Pro-
grams Using Symbolic Execution. In Acta Cybernetica, pages 331-352, 2014.
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“Don’t say I cannot’. Say ’I presently
struggle with.” ”

— Tony Horton

A Constraint Building Mechanism for
Symbolic Execution to Improve Runtime
Error Detection Accuracy

4.1 Overview

In the work presented in this chapter, we developed a constraint building mechanism
and integrated it into the Symbolic Checker symbolic execution engine, which allows
the detection of runtime errors that a conventional symbolic execution system cannot
do.

According to the theory of symbolic execution [53], the program does not run with
specific input data, but the inputs are handled as symbolic variables. When the ex-
ecution of the program reaches a branching condition containing a symbolic variable,
the execution continues on both branches. At each branching point, both the affected
logical expression and its negation are accumulated on the true and false branches,
thus all execution paths will be linked to a unique formula over the symbolic variables
called path condition. Test case generation is performed by solving these collected
constraints using a constraint solver, and the feasibility of a path is checked by solving
this formula as well.

This chapter describes a novel constraint system construction mechanism, which
improves the accuracy of the runtime errors found by the Symbolic Checker symbolic
execution engine by treating the assignments in the program as conditions too. Hence,
we can track the dependencies of the symbolic variables by extending the original
principles of symbolic execution. The presented method also substitutes symbolic
variables with concrete values if the built constraint system unambiguously determines
their value. To build and satisfy the constraint systems, we used the open-source
Gecode constraint satisfaction tool-set [33].

The chapter is organized as follows: In Section 4.2 we mention publications that
are related to this research, thereafter Section 4.3 explains in detail how the algorithm
that builds the novel constraint system for each execution path is implemented and
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how it is integrated into Symbolic Checker. After that, in Section 4.4 we describe how
the algorithm enhanced the effectiveness of the engine. We evaluate the results of tests
performed on real-life open-source systems and we also compare the approach to our
previous tool |94], JPF Checker which uses the original constraint building principle.
Finally, we conclude our work in Section 4.5.

4.2 Related Work

In this section first, we introduce some existing approaches that support specific fields
in the application of symbolic executor tools, similarly to our work. We also mention
constraint solvers that are used in the existing symbolic execution implementations.

Shannon and others [81] built an abstraction layer above the Java string handling
using finite state automatas to extend the handling of String-type data in symbolic
execution. In addition to the implementation of the java.lang.String class, String-
Builder and StringBuffer classes are modeled as well. As a result, the system is able to
handle constraints that contains strings and string operations, thus it can be applied
to programs that are working on more complex strings, such as SQL queries. Cur-
rently, Symbolic Checker does not handle string constraints, we plan to deliver this
development in the future.

Durring symbolic execution, it may occur that the built path condition contains
function calls, e.g. if(y >= f(x)). The so-called concolic (concrete-symbolic) [76]
execution provides a possible solution to this problem using a special constraint building
mechanism. The main idea of this approach is that two path conditions are maintained
at the same time. One of them contains those conditions witch do not includes function
calls, and the other is the so-called complex PC, in which there are conditions that
includes function calls too. First, the algorithm satisfies the simple PC and assigns
values to the included symbols. Then these values are used to execute those included
functions concretely which execution depended on the symbols whose values have been
determined in the first step. This method also capitalizes on turning symbols into
concrete values, like the approach we present in this chapter.

In Symbolic PathFinder [75], there are multiple constraint solvers integrated through
a generic interface: CV(C3 can be applied on linear formulas, CHOCO is able to han-
dle non-linear constraints over integer and floating point variables too, IASolver uses
interval-arithmetic methods in order to satisfy the path condition, and CORAL, which
has been proved to be the most effective in satisfying path conditions containing com-
plex mathematical functions considering the number of solved constraints and the time
consumption of the satisfaction algorithm [88]. CORAL (italics-ban) is able to handle
such complex constraints that often occur in the analysis of software in the aerospace
domain, for example TSAFE [11] that helps air-traffic controllers in detecting and
resolving short-term conflicts between aircrafts.

EXE [13] automatically generates a test case by solving the current path constraints
to find concrete values using its own codesigned constraint solver, STP [31]. The main
goal in EXE was to quickly solve the constraints generated by the code through a
combination of low-level optimizations and a series of higher-level ones, such as caching
and irrelevant constraint elimination.

29



Chapter 4. A Constraint Building Mechanism for Symbolic Execution

4.3 Constraint Building

4.3.1 Principles

As Section 2.3.2 describes, Symbolic Checker reports errors only if the value causing
the problem becomes concrete. The tool does not fire for symbolic variables, because
if a variable is a symbol that actually means that it’s value is doubtful, not known.
Le. if an expression is divided by a value which is zero (expression/0) on an exe-
cution path traversed by the engine, the tool fires but if it is divided by a symbol
(expression/Symbol), it does not. It may occur that during the symbolic execution of
a program most of the variables turn into symbols, which makes finding runtime errors
more difficult.

The main idea behind the developed constraint building mechanism is that, if during
analysis the program sets up conditions (constraints) that unambiguously determines
the value of one or more symbolic variables, then we can convert these symbols into
concrete values and the symbolic execution can be continued on the actual path using
the concreted variables. Since these variables, handled as concrete data, it is possible
to detect errors that Symbolic Checker could not otherwise find. The conditions we
mentioned above are determined by the conditional control structures (if, switch, while,
etc.) and expressed by the assignments of the program, including the impacts of the
increment and decrement operators (++, ——) of the Java language.

Overall, the goal of the implemented constraint building mechanism is the concre-
tion of as many symbols as possible, which helps find more runtime errors. In order
to achieve this, (1) it is necessary to build a special path condition (PC) that also
contains the dependencies of the symbolic variables determined by the assignments of
the program, and (2) if the constraints in the PC determine the values of some symbols
unambiguously, the execution has to be continued using these concrete values on the
actual path. This extended path condition also includes — in some form — those con-
ditions that can be found in the conventional PC. Hence, if the extended PC cannot
be satisfied, the code parts that are unreachable can also be skipped with the novel
approach. Therefore, false positive defects can be eliminated.

To demonstrate the basic idea of extending the PC, consider the code snippet in
Figure 2.1 (a). In this example, the conventional path condition of the path which
passes through the true branch of the ¢f statement in line 3, and the false branch of
the ¢f in line 8 is the following:

X>YANo(X-Y<0) = X>YANX-Y>0.
According to our concept, the extended PC of the same path is the following:
X >Y A —(dist <0) A dist=X —Y.

It is clear that the variable dist is also included in the constraint system as a symbol,
once in the negation of condition in line 8 where X-Y was not substituted and also in
the constraint that expresses the assignment in line 4. As a result, the constraint
system also contains information about variable dist that could be useful in the later
stages of the execution.

In this example, the extended PC does not contain constraints which could unam-
biguously determine any variable, thus the benefit of the extension is not obvious here.
The code snippet in Listing 4.1 shows an example where the extended PC has some
gains indeed.
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// ¢ is an int symbol
double b = 2xc + 4;
int a=>b+9;

if (a>8){

if (a < 10) {
// concretion of b
int p = 1/b;

O~ O Tk W~

<©

}
10 }

Listing 4.1. Sample code that provides symbol concretion which helps find runtime
errors that a conventional symbolic execution tool cannot

// a and b are symbols
if (b>0){

it (a—0) {

// concreting a?

\

=~ OO = W N

8 }
Listing 4.2. Code snippet which points out a path condition that has more solutions
but concreted the symbol a

Executing the code symbolically in Listing 4.1, handling variable ¢ as a symbol, the
following constraint system will be built in the program state at line 7:

a>8 Na=b+9 Ab=2-c+4 N a<10.

The constraint system above includes constraints that are introduced by the if
statements of the code and the dependencies of symbol a, i.e. those constraints that
are given by the assignments that define variable a. After satisfying this constraint
system, it can be obtained that a can only be 9, which implies that the values of b
and ¢ symbols are unambiguous too: b = 0.0 and ¢ = —2. In such a situation, the
execution continues on the path for which the extended PC was satisfied. In the case
of this example, if the execution continues with the b=0.0 value, a division by zero
error can be detected at line 8. As long as symbol b is not included in the PC, and if
its unambiguous value are not used, the detection of division by zero will fail.

In real-life programs quite large constraint systems are built with many symbols. It
is clear that satisfying such a large set of constraints as a whole has a low probability
for only one possible solution.

Listing 4.2 shows a code snippet that highlights the problem in question. Con-
sidering the path that passes along the true branches of both if statements, the path
condition is b > 0 A a = 0. Although there are infinite solutions for this formula
because the b > 0 constraint can be satisfied by any positive integer, the formula de-
termines the value of symbol a unambiguously, which would be preferred in later stages
of the execution.

To overcome the problem, we decompose the path condition into connected com-
ponents, that is, to constraint sets that are independent i.e. does not contain the
same variables. The connected components can be satisfied individually and, if some
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of them determine a variable unambiguously, the obtained values can be used later in
the execution. Two constraints are in the same component if they contain at least one
common variable. After such a decomposition, the path condition becomes a set of
constraint sets.

1 Constraint constraint;
set <Constraint> actualConstraints;
if (onTrueBranch()) {
constraint = constraintBuilder.createConstraint ();
} else if (onFalseBranch()) {
constraint = constraintBuilder.createNegatedConstraint();
¥
actualConstraints. insert (constraint );
9 actualConstraints.union(dependenciesOfSymbolsInConstraint);
10 pathCondition.insert(actualConstraints);
11 decomposedPC = decompose(pathCondition);
12 foreach (set<Constraint> s : decomposedPC) {

O~ O O i W N

13 constraintSolver . solve (s );
14 if (s.hasSolution) {

15 if (Is.hasMoreSolution) {
16 buildBackSolutions(s);
17 }

18 } else {

19 weight = 0.0;

20 break;

21 )

22}

Listing 4.3. Pseudo code of the algorithm of constraint system building

The essential steps of the algorithm of our constraint system building are shown in
Listing 4.3. This algorithm will be executed after each branching point in the symbolic
execution tree.

First, it is determined whether the accumulation of the PC happens on the true or on
the false branch then dependent upon this, the created logical expression or its negation
is stored in variable constraint (lines 3-7) (the handling of switch statement of the Java
programming language is not shown in the pseudo code). It is important to note that
we build constraint exactly from that logical expression that is determined in the source
code, there is no substitution of variables like in case of variable dist in Section 2.1, in
example 2.1. Next, the created constraint is added to the actualConstraints constraint
set (line 8), and the dependencies of the symbols included in this constraint are also
inserted (line 9). These dependencies are defined by the assignments of the code ( we
will later discuss how they are created). In the next step, the path condition of the
current execution path is extended by the actualConstraints constraint set (line 10),
then the PC will be decomposed into connected components in line 11. As long as
one of the connected components cannot be satisfied, the weight of the current path
is set to 0.0 indicating that there is no point continuing the execution because of the
contradictory conditions (line 19). On the other hand, if there is at least one solution,
the algorithm examines its uniqueness (line 13). If the solution is unique, the concrete
values are built back into the current symbolic state (line 16).

It has to be emphasized that a concreted symbol is built back into the a state only
once and only into the state for which the constraint system concreted it.
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4.3.2 Implementation

We used the Gecode constraint solver tool-set [33] for building and satisfying our con-
straint systems. Basically, we can differentiate two kinds of constraints: (1) conditions
in the conditional control structures of the program (including the loops too) and (2)
the dependencies of symbols which are included in these conditions. Below, we de-
scribe how we implemented the building of the constraint system and integrated into
Symbolic Checker.

As we described in Section 2.3.2, for every kind of data that appears in a program
during the symbolic execution (e.g. variables, literals, sub-expressions, etc.), a Defini-
tion object is created. The symbolic execution of the program is the proper propagation
of these Definition objects. The task is to achieve the tracking that determines what
other Definitions a Definition object is created from and what operations it uses. This
is how the relations between symbolic variables are described.

For the implementation, we added a so-called constraintSolver Expression data mem-
ber to the class Definition and a dependency set as well, which is a set of constraints.
These attributes are propagated with the Definitions along the program by the symbolic
execution.

The constraintSolverExpression represents an expression object created using the
Gecode constraint solver. With this, Gecode can represent the inner structure of ex-
pressions (i.e. the operands they are created from using which operators). The con-
straintSolverExpressions is propagated in the following way: when an operation is per-
formed on Definition objects, we take the constraintSolverExpressions of the operands
and perform the operation on the expressions too, and the resulting compound con-
straintSolverExpression will be set in the resulting Definition object. In the case of
operations performed on ValueDefinitions for efficiency reasons, the operation on the
constraintSolverExpressions is not performed. Instead, we simply create a new Gecode
expression which stores the calculated value.

The dependency set contains the dependencies of those symbols which are in the
constraintSolverExpression defined by the assignments of the program. In the case of
assignments where the right side is a SymbolDefinition, we create a new symbol for
the variable which is on the left. This new symbol will not take over the constraint-
SolverExpression of the right side, but the relation between left and right Definitions is
expressed by an equality constraint between them. The dependency set is propagated
in the following manner. After performing an operation, the dependency set of the
resulting Definition will be the union of the dependency sets of the operands. In the
case of an assignment which has SymbolDefinition on the right side, the dependency
set of the newly created SymbolDefinition on the left will be the dependency set of
the right side symbol extended by the constraint that defines equality between the two
sides.

1 //dis a symbol

2 int b=d + 3;
3 int ¢ = 2xd;
4 int a=b — ¢
5 if (42 == a) {
6

T}

Listing 4.4. Sample code for demonstrating the propagation of dependency sets
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The branching conditions in selection control structures which define the branch-
ing points of the symbolic execution tree are also expressions in the program, thus
they appear as Definition objects (actually as SymbolDefinitions) in Symbolic Checker.
Variable constraint in the algorithm shown in Figure 4.3 is created from the constraitn-
SolverExpression of such a Definition object, and constraint set dependenciesOfSym-
bolsInConstraint is the dependency set of this Definition too. Constraint set actual-
Constraints by which the path condition will be extended is the union of the above
mentioned constraint and dependenciesOfSymbolsinConstraint.

In the following, we demonstrate the building of the constraint system and the
propagation of dependency sets for the example code in Listing 4.4. Variable d is
handled as a symbol, it is a SymbolDefinition where the dependency set is empty and
its constraintSolverExpression is a Gecode expression which contains only a simple
unknown variable. Firstly, in line 2 a ValueDefinition is created for literal 3, with an
dependency set, then operation + creates the d+3 SymbolDefinition. The dependency
set of d+3 is the dependency set of the left and the right side, which is also an empty
set:

SymbolDef(d + 3).depset = SymbolDef(d).depset U ValueDef(3).depset = 0.

After the execution of the assignment the dependency set of b is:

SymbolDe f(b).depset = SymbolDef(d + 3).depset U {b=d+3} = {b=d+3}.

Dependency set of symbol ¢ created at line 3 is quite similar:
SymbolDef(c).depset = SymbolDef(2* d).depset U {c=2-d} = {c=2-d}.

At the left hand side of assignment at line 4, dependency set of SymbolDefinition
b-c is the union of dependency set of b and c:

SymbolDef (b — c).depset = SymbolDef(c).depset U SymboldDef(b).depset
={b=d+3,c=2-d}.
Then the dependency set of a:
SymbolDef(a).depset = SymbolDef(b— c).depset U {a =0b— c}
= {b=d+3,c=2-d,a=b—c}.
Dependency set of SymbolDefinition created from expression 42 == a at line 5 is

the same as the dependency set of a, thus the path condition on the true branch of the
if statement is the following:

PC = {£22=a} U{b=d+3,c=2-d,a=b—c}
= {42=a,b=d+3,¢c=2-d,a=b—c}.

4.4 Evaluation

Symbolic Checker with the novel constraint building mechanism was tested in a va-
riety of ways. This section contains the results of these tests. First, we demonstrate
the advantages of our algorithm through two examples emphasizing the difference com-
pared (1) to JPF Checker which uses traditional constraint building and (2) to Symbolic
Checker without using any constraint building mechanisms. After that, we write about
the experiences of the tests we have performed on large, real-life systems.
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1 class Example {

2 27 public int getCharPos(char c) {

3 public void run(int n) { 28 return ¢ — ’a’ + 1;

4 int max = getCharPos('w’); 29 }

5 Al] arr = new A|max]; 30

6 if (n>0){ 31 private int ged(int x, int y) {

7 for (int i = 0; i < max; +-+i) { 32 while (y !=0) {

8 arr[i] = new A(max — i); 33 int m=x%y;

9 } 34 X = V;

10 int suml = 0; 35 y = m;

11 while (n < max) { 36 }

12 if (n%2==0){ 37 return x;

13 suml += arr|n|.getMember(); 38 }

14 } 39

15 n-+-+; 40 }

16 11

17 System.out.println("Suml:" 4+ suml); 42 class A {

18 int negOfGed = —ged(n, arr[0]); 43 private int member;

19 int sum2 = 0; 44

20 while (negOfGed < max) { 45  public A(int member) {

21 sum?2 += arr|negOfGed++] 46 this.member = member;
.getMember(); 47 }

2 ) 48

23 System.out.println("Sum2:" 4+ sum2); 49 public int getMember() {

24} 50 return member;

25 } 51}

26 52 }

Listing 4.5. Example code with the analysis of method run()

In run() method of the example code shown in Listing 4.5, Symbolic Checker with
constraint building detects an array over-indexing fault. First, we follow the cause of
the runtime error, then we look at how the new approach helps to detect it. Line 5
defines an array called arr with size of maz. Aslong as parameter n is grater than 0 (line
6), a sequence of operations will be performed which aims to calculate two sums based
on the content of the array. This sequence of operations fills the array at first (lines 7-9),
then starting from n, summarizes the member data members of objects on every second
index into the variable sum (lines 11-16). Next, the code calls method ged() with
arguments n and the 0th element of array arr (line 18) and summarizes the elements
of the array starting from the negation of the return value of ged() (lines 20-22). Method
ged() calculates the greatest common divisor of the numbers and its return value must
be a positive integer if the arguments are n and arrf0/. Because of this, variable
negOfGed is guaranteed to be negative causing an ArraylndexOutOfBoundsException
runtime error that results in the halt of the program.

When starting the analysis with method run(), variable n is the only symbol. Vari-
able maz is concrete, array arr is also instantiated concretely and all of its elements
are concrete values too. However, the execution of the loop in line 11 depends on n.
On the false branch the execution continues from line 16, on the true branch we enter
into the body of the loop, and — after executing it — we will branch again depending
on the condition at line 11. This operation will continue until it reaches the maximum
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depth of the symbolic execution tree. If the execution paths entered into the loop at
least once and then exited, the following constraints must be part of the extended path
condition:

Nprey < MAT A N = Nprey + 1 A (0 < maz) =
Nprev < MAT N = Nprey + 1 A 1 >=max.

In this formula, 7., means the instance of symbol n when the execution just
entered the loop. The n,.., < max constraint can be defined in this state. As the
result of the incrementation, a new symbol is created in line 15 and the n = nye, + 1
constraint is built. Since in the next iteration the execution do not enters into the
loop but continues on the false branch, it is necessary to create the =(n < max)
constraint too. After satisfying the constraint set above, symbol n will be determined
unambiguously, and its value is equal to the value of variable maz. This means that if
the execution exits the while loop, the value of n must be maz.

Building back the unambiguous value of n into the current symbolic state, the
arguments of method call ged() are both concrete values, thus it will be executed
concretely and its return value will also be a concrete number. As we assumed, the
return value must be a positive integer leading to a bad array indexing in line 21.

// SMTPAppender.java
public class SMTPAppender extends
AppenderSkeleton {

protected Layout layout;
protected CyclicBuffer cb =
new CyclicBuffer(bufferSize);

protected
void sendBuffer() {

224 int len = cb.length ();
225 for(int i = 0; i < len; i++) {

226

227 LoggingEvent event = cb.get();

228 sbuf.append(layout.format(event));

229 if (layout.ignoresThrowable()) {

230 String || s =
event.getThrowableStrRep();

231 if (s != null) {

232 for(int j=0; j<s.length; j++) {

233 sbuf.append(s|j|);

234 }

235 }

236 }

237 }
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public class CyclicBuffer {
int numElems;

101  public

102 LoggingEvent get() {

103 LoggingEvent r = null;
104 if (numElems > 0) {

105 numElems——;
106 r — ea first |;
107 ea| first | = null;
108 if (+-+first —— maxSize)
109 first = 0;
110}
111 return r;
112}
119 public
120 int length() {
121 return numkElems;
122}
}
public class SimpleLayout extends Layout {
56  public
57  String format(LoggingEvent event) {
58
59 sbuf.setLength(0);
60 sbuf.append(event.getLevel().toString ());
61 sbuf.append("_—_");

62 sbuf.append(event.getRenderedMessage());
63 sbuf.append(LINE SEP);

64 return sbuf.toString();

65 }

\

Listing 4.6. Method org.apache.log4j.net. SMTPAppender.sendBuffer() and its envi-
ronment

The example detailed above highlights that a concreted symbolic variable can make
a significant part of the execution concrete. The spread of symbols can be reduced,
thus fewer variables have to be handled as unknown and uncertain data. As a result,
the analysis becomes faster because fewer execution paths have to be examined. In
this example, without concreting variable n we would have had to explore the whole
symbolic execution tree of method ged(), which is rather expensive because of the loop
inside.

The demonstrated ArraylndexOutOfBoundException cannot be detected by the
JPF Checker, nor by Symbolic Checker without constraint building.

In the second example, we show a real code part from the logdj logging system.
Consider method org.apache.loglj.net. SMTPAppender.sendBuffer() in Listing 4.6 from
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log4j version 1.2.11, in which we point out that our new approach can also eliminate
false positive faults as the conventional path condition construction.

In line 228 of method sendBuffer(), get() method of class CyclicBuffer is called,
which returns a LoggingFvent reference. First of all, method get() initializes the ref-
erence 1 to null (line 103), then if the numFElems data member is greater than 0, r
gets a new value. However, on the false branch it returns the null-initialized r ref-
erence. Following this false branch, in method SMTPAppender.sendBuffer() variable
event is initialized to null in line 227, this null value will be propagated into method
SimpleLayout.format(), which dereferences it in line 60.

However, this null dereference would be a false positive error, because in line 60
the null value never occurs. In line 224, we get the numFElems member of object ¢b for
which the first iteration of the for loop at line 225 defines a constraint. The PC looks
like this:

0<len A len = cb.numElems.

Nevertheless, method get() called at line 227 returns null only on the false branch
where the numFElems > 0 constraint is not satisfied, thus the path condition is the
following:

0<len A len = cbnumElems N —(numElems > 0).

This formula, however, is unsatisfiable, which means that the execution can not
continue on this path. Variable event will not get the null value in line 227, so the
method format() of class SimpleLayout cannot dereference it. This actually means
that the execution enters the for loop in line 225 only if the value of variable len is at
least 1, but in this case method get() cannot return null on the false branch of the if
statement in line 104.

The elimination of the discussed false positive error would fail using Symbolic
Checker without the constraint building mechanism, but JPF Checker would also elim-
inate it because no symbols are concreted and the unsatisfiability of the path condition
is also tested by the JPF/SPF based tool.

We ran Symbolic Checker with the presented constraint building mechanism on
large Java systems too, however, the evaluation of the results is not entirely finished
yet. Manually reviewing the reported errors is rather time-consuming because of the
difficulty in interpreting the long execution paths from the entry point to the point
where the error was detected in the source code. What we have seen in the results so
far is that there are significantly fewer runtime errors in the resultant report obtained
by Symbolic Checker that uses the constraint building mechanism compared to the
ones that JPF Checker produces. This does not mean that the report of Symbolic
Checker does not contain false positive results, but most of them draw attention to
real errors and potential sources of errors.

Considering the duration of the analyses, the run-time of Symbolic Checker using
the constraint building stays below the run-time of JPF Checker, but this duration is
about twice as long than Symbolic Checker running it without the constraint building
mechanism. The analysis of the log4j logging library took slightly less than half an hour
without constraint building, and the duration is about an hour using the new approach.
We of course expected such a time requirement because the building of the constraint
system, decomposing it to connected components, and especially its satisfaction are
rather computation-intensive tasks.
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4.5 Summary

The basic principles of symbolic execution have been known for decades and sev-
eral tools were made that utilize the possibilities offered by this technique. Symbolic
Checker, the tool that we developed at the Software Engineering Department of the
University of Szeged differs from most of these tools because it does not aim to generate
test inputs, but to detect execution paths that lead to runtime errors and dangerous
code parts as accurately as possible. In order to reach this goal, we developed a con-
straint building mechanism and integrated it into Symbolic Checker. The presented
approach builds a constraint system for each execution path, which also includes con-
straints over the variables that depend on the inputs handled as symbolic variables. In
case of unambiguity the concreted values are used in the later stages of the analysis.
As a result, it enables the detection of runtime errors that would not be possible using
a conventional symbolic execution tool. For example, the demonstrated ArrayIndex-
OutOfBoundsException in Section 4.4 cannot be detected by the JPF Checker, nor
by Symbolic Checker without constraint building. By concreting symbolic variables,
the size of the symbolic execution tree can be reduced as well, which also implies im-
provements in performance. The ability to eliminate false positive results is preserved,
because the proposed method also ignores paths that carry contradictory constraints
similarly to the original constraint building approach.

The author’s contributions. The author took part in the design and development
of the Symbolic Checker symbolic execution engine as the lead developer. He devised
the concept of the proposed constraint building mechanism. He implemented and inte-
grated it into the symbolic execution engine. The evaluation of the proposed method
by comparing it to the conventional approach and performing tests on example codes
and on real-life systems are also the author’s work. The publication related to this
chapter is:

¢ I. KAdar, P. Hegedis, R. Ferenc. Adding Constraint Building Mechanisms
to a Symbolic Execution Engine Developed for Detecting Runtime Errors. In
Proceedings of the International Conference on Computational Science and Its
Applications — ICCSA, volume 9159 Lecture Notes in Computer Science (LNCS),
pages 20-35, Springer International Publishing, 2015.
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“The only way to do great work is to love
what you do.”

— Steve Jobs

Novel Search Strategies for Symbolic
FExecution and Empirical Investigation of
State Space Limitations

5.1 Overview

Symbolic execution explores the possible execution paths of a program. However,
the number of execution paths increases exponentially with the number of branching
points, thus symbolic execution engines still struggle to achieve scalability. To overcome
this problem, these tools set up different kinds of constraints over the tree composed
of execution paths (symbolic execution tree). For example, the number of symbolic
states, the depth of the execution tree, or the time consumption of the analysis is
limited. In our improved symbolic execution tool called RTEHunter, the maximum
depth of the symbolic execution tree (means symbolic state depth) and the maximum
number of states can be adjusted and arbitrary strategies of the tree traversal can
also be implemented. This way, the detection of possible runtime failures is done by
traversing a sub-tree of the whole symbolic execution tree of the program.

Our goal is to find the optimal parametrization of RTEHunter in terms of maximum
number of states, maximum depth of the symbolic execution tree and search strategy in
order to find more runtime issues in less time. This means we have to figure out which
part of the whole execution tree contains the most runtime issues while taking into
consideration the time consumption of the exploration. Moreover, the search strategy
is also essential in directing the exploration towards those states in the sub-tree where it
is more likely to find issues and skip those that are supposed to be error-free. Maximum
depth limits the height of the tree, and with a fixed depth the maximum number of
states defines its width, while the search strategy determines the order in which the
states in this limited size tree will be visited.

The main contributions of this research are the following:

e We found out how the mazimum number of states affects the execution time and
the number of found errors without any constraint on the depth.

40



Chapter 5. Search Strategies and State Space Limitations for Symbolic Ezecution

e We found out how the mazimum number of states together with the mazimum
depth of the symbolic execution tree impact both the amount of detected runtime
issues and the analysis time.

e As our main contribution we propose two novel search strategies that successfully
increase the number of detected runtime issues by guiding the search towards the
more error-prone source-code parts.

The chapter is organized as follows: In the next section we summarize related works
describing techniques that proposed for handling state explosion in symbolic execution,
and how they prioritize the paths to be explored. In Section 5.3 we give a more detailed
description of how RTEHunter works and builds the execution tree to understand our
approach in Section 5.4. In Section 5.5 we publish and evaluate the results, Section 5.6
describes the possible threats to validity, and finally in Section 5.7 we conclude our
work.

5.2 Related Work

Here we summarize studies that are similar in the handling of the program path explo-
sion and the methods used to select and prioritize the most valuable execution path.

To reduce the state space in symbolic execution, the Symbolic PathFinder |75]
based on the Java PathFinder model checker offers a number of options. Similar to the
RTEHunter, the maximum depth of the symbolic execution tree can be specified and
the number of elementary formulas in the path condition can be limited. A further
possibility is that with options we can restrict the value ranges of the integer and float-
ing point type symbolic variables. In addition, Symbolic PathFinder lazily initializes
object references and uses types to infer aliasing.

In order to make symbolic execution more scalable, Majumdar and Xu propose
using symbolic grammars to guide symbolic execution by reducing the space of possible
inputs [60]. Godefroid et al. had a similar approach. They set up grammar-based
specifications of highly-structured inputs of symbolic execution, such as compilers and
interpreters |36].

Loops and recursions with conditions that cannot be evaluated during the symbolic
execution results in infinite constructs that can explode the state space without benefit.
For this reason, the handling of these constructs can have crucial effects. CBMC is a
Bounded Model Checker for C and C+-+ programs [19]. CBMC is able to verify array
bounds, exception handling correctness, pointer safety, and user defined assertions as
well. In bounded model checking, the potentially infinite constructs (e.g. while loops,
recursion) are unwound only n times where the number n is the upper bound. CBMC
pre-processes the program into an equivalent program that only uses while, if, goto
statements and assignments. Next, all while loops are unwound using the following
transformation n times:

while (cond) instruction;  — if (e) {instruction; while(cond) instruction}

The last while loop is replaced by assertion /cond ensuring that the program never
performs more iterations. This unwinding assertion is verified along with the user
defined assertions, and one more iteration is needed in the unwinding in the case
of failure. Following this, the program only consists of if instructions, assignments,
assertions, labels, and forward goto instructions, which are then transformed into static
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single assignment (SSA) form. From this, a bit vector equation is assembled together
with the target rule to be verified. If this equation is satisfiable, the tool finds a
violation. The mechanism used here to unroll loops as many times as necessary would
be promising to integrate into RTEHunter to reduce the state space generated by loops.
Currently, we are using a simple unrolling until we reach the depth or the overall state
limit. Another strategy would be to recognize patterns in the basic block sequence
during a loop unwinding. E.g. when a basic block is visited too many times, the
execution is deep into a recursion or a loop. This strategy works well for the Clang
Static Analyzer [55].

One of the key mechanisms used by symbolic execution tools to prioritize path
exploration is search heuristics. Most heuristics focus on achieving high statement or
branch coverage, but they could also be employed to optimize other desired criteria.
The main difference compared to our work is that we optimize for execution time and
also for the number of detected issues.

Similar to RTEHunter, in Klee [12] it is possible to use various heuristics to prioritize
the most interesting paths first. KLEE selects the state to run at each instruction by
interleaving the two search heuristics: random state selection and coverage-optimized
search that tries to select states likely to cover new code. Our search heuristics does
not consider any test coverage information yet, but we are planning to test its efficiency
in a future work.

Random exploration is proved to be efficient for test generation by Burnim et al [10]
too.

The error checking tool EXE (EXecution generated Executions) [13] presented by
Cadar et al. generates input data on which the program terminates with failure. The
heuristic in EXE favors previously visited statements that were run the fewest number
of times.

The AUSTIN tool uses fitness function to drive evolutionary search of the test input
space with dynamic symbolic execution [56].

Ma et al. [58] focuses on debugging scenarios for cases when the developer already
knows about a faulty line but might not know exactly how to reproduce the failure
or even whether it is reproducible. The approach also uses search strategies that aim
to direct symbolic execution to the target line. One strategy is the shortest-distance
symbolic execution (SDSE), which will pick the path that currently has the shortest
distance to the target line according to the control flow graph (CFG) of the program.
The other one starts at the target line and works backwards until it finds a realizable
path from the start of the program, using standard forward symbolic execution as a
subroutine.

In general, our problem can be placed in the area of Search Based Software En-
gineering (SBSE), where search based optimization algorithms are used to address
problems in software engineering, for example to figure out the smallest set of test
cases that cover all branches in the program or the set of requirements that balance
software development cost and customer satisfaction. Harman et al. provides a com-
prehensive survey of this area [39]. In our case, we look for the symbolic execution tree
that has smallest exploration time and covers the greatest number of runtime issues.
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5.3 Deeper insights into RTEHunter

This subsection gives a description of how RTEHunter constructs and traverses the
symbolic execution tree in order to understand the optimization approaches and inves-
tigations presented in this chapter. We also mention how RTEHunter handles cases
where an issue is found multiple times, because this is essential in the evaluation of the
results.

Symbolic execution is performed using the language-dependent abstract semantic
graph (ASG) |26] of the program by interpreting the nodes of this graph in the order
defined by the language-independent control flow graph (CFG) [2]. The ASG and the
CFG are assembled by the SourceMeter toolchain.

The nodes of the control flow graph are called basic blocks. A basic block represents
a straight-line piece of code that is guaranteed to execute sequentially (i.e. it does
not include any jumps or jump targets) by lining up the appropriate ASG nodes ac-
cording to the sequential execution. Directed edges between the basic blocks are used
to represent jumps in the control flow. In RTEHunter, for each analyzed method the
symbolic execution tree is constructed by traversing the CFG and for every basic block
a symbolic state will be created in the tree.

1 int distance(int x, int y) {
2 int dist;
3 if (x >y){
4 dist = x — y;
5 } else {
6 dist =y — x;
7 }
8 if (dist < 0) {
9 System.out.println("Error");
10 }
11 return dist;
12}
Listing 5.1. Java method distance() that determines the distance of two integers on
the number line

Figure 5.1 shows the control flow graph constructed for the Java method distance()
presented in Listing 5.1. The symbolic execution tree that RTEHunter creates using
the control flow graph is in Figure 5.2.

Listing 5.2 presents the simplified algorithm in RTEHunter that builds the symbolic
execution tree while symbolically executing each path. The presented search and build
strategy is depth-first search. The construction of the execution tree starts with method
search(). Here, we first get the root state of the tree and initialize the strategy object
with that. The while loop always gets the next state to be executed. The execution of
a state is done by ezecuteState(). This interprets the nodes that are in the basic block
which the state is created from according to the semantics of the Java programing
language. The strategy object gives the next state according to the implemented
strategy. In this listing, the strategy is implemented in class DepthFirstSearchStrategy,
in which the getNeztState() method is the essential part of the traversal. It gets
the top-most element from the stack and expands this state meaning to get all of its
descendants then puts them onto the stack. The ezpandState() method of our expander
object constructs the child states according to the descendent basic blocks in the CFG
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Figure 5.1. The control flow graph (CFG) constructed for the method in Listing 5.1

and the information that comes from the execution of the parent states. For example,
if the parent state stands for an if statement which has two children, but the logical
expression can be evaluated by the execution of the parent, the ezpandState() will only
give the appropriate child, not both of them. The stack data structure (LIFO queue)
provides the depth-first search traversal.

In this chapter, when we talk about "maximum depth" and "maximum state num-
ber" we mean the depth and the number of nodes (states) of the tree constructed by the
algorithm above. It is also possible to define custom search strategies by replacing the
demonstrated depth-first search strategy to guide the execution towards other paths.

The same runtime failures can be detected multiple times if we explore multiple
execution paths which led to the same program location. However, it is not obvious
when two errors should be considered the same, because the original cause of two errors
can be different despite the fact that detection points are the same. For example, a
reference type variable can be set to null at different locations in the program, and
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Figure 5.2. The symbolic execution tree constructed by RTEHunter to the code in
Listing 5.1.

then dereferenced at the same place causing a NullPointerExzception. The detection
location is the same, the causes (and the possible fixes) may differ. On the other hand,
when examining the results we realized that in most cases, the cause was the same
when multiple paths led to the same location because one path is a suffix to the others.
Due to this observation, we only keep the shorter paths and filer out the others when
multiple paths lead to the same error location.

5.4 Approach

5.4.1 Optimal Maximum Depth and State Number

As we mentioned in Section 5.3, two kinds of limitations can be set up in RTEHunter
in order to limit the size of the symbolic execution tree preventing the state explosion:
(1) the maximum depth (which means state depth), and (2) the maximum number of
states can be adjusted. With a given maximum depth, the maximum state number
defines the width of the tree. It should be added that these limitations are applied to
each symbolic execution tree built for each method of the given system separately and
these are not global limits for the system-wide analysis.

We ran RTEHunter with different depth and state number limits on three open
source Java systems. The systems analyzed with their total lines of code metric are
listed in Table 5.1.

In addition to the maximum depth and the maximum state number, the final shape
of the symbolic execution tree is also determined by the applied search strategy.

In our experiments, we sought to ascertain the optimal depth and state number
in order to find more runtime errors in less time, and we used the default depth-first
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1 Strategy* strategy = new DepthFirstSearchStrategy(expander);
2
3 void search(StateFactory stateFactory) {

4 State srootState = stateFactory.getRootState();

5  strategy—>initialize (*xrootState );

6 Statex nextState = NULL;

7  while (nextState = strategy—>getNextState())

8 executeState(xnextState);

9 }

10

11 class DepthFirstSearchStrategy: public SearchStrategy {
12 private:

13 std :: stack<Statex> stack;

14

15 public:

16 DepthFirstSearchStrategy(StateExpanderInterface& expander)
17 : SearchStrategy(expander), stack() {}

18

19 void initialize (State& rootState) {
20 stack . push(&state);
21 }
22
23 Statex getNextState() {
24 Statex front = stack.top();
25 stack . pop();
26 std :: vector<Statex> children=expander.expandState(xfront);
27 for (Statex child : children)
28 stack . push(child );
29 if (stack.empty())
30 return NULL;
31 return stack.top()
32 }
33

Listing 5.2. The main algorithm of tree building and execution shown in RTEHunter.

System TLOC
ArgoUML 372K
Jetspeed 275K
JFreeChart | 329K

Table 5.1. The Java systems on which the measurements were carried out
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search strategy.

5.4.2 Custom Search Strategies

Since the search strategy that is used to direct the traversal influences the shape of the
final symbolic execution tree, it plays a significant role in finding those states where
runtime errors might occur.

In the actual stage of the traversal of the state space (i.e. the symbolic execution
tree), a search strategy tells us from which state among the current leaf states the
exploration have to continue, i.e. which state have to be expanded as the next step of
the traversal.

In contrast to depth-first search where the actual leaf states placed into a LIFO
(last in, first out) queue, in our custom search strategies a score is assigned to every
actual leaf, which will be placed into a priority queue. Upon the engine have to choose
a state as the next step, it chooses the one with the highest score to continue the
traversal with. The implementations of these strategies are very similar to the code of
class DepthFirstStrategy shown on Listing 5.2, but the stack member is replaced by a
priority queue that orders the states by score, and the top is the one has the highest
score.

Next, we will describe two new search strategies that implement heuristics to direct
the search towards the potential runtime issues.

The null-heuristic Search Strategy

This search strategy seeks to drive the traversal to find more null pointer dereference
issues. Our motivation of focusing on null pointer dereferences is that according to
static analysis the most common checks against exceptions are null-checks in Java
sources, implying that this is the most common runtime issue that may occur |27,
79]. We also discovered that this type of runtime error is the most common one that
RTEHunter detects.

For each state we summarize the number of reachable reference-type values (variable
values, literals, function return values, etc.) reachable, whose value is null at the
current symbolic state of the given Java program. To continue the traversal, the engine
chooses the state with the highest number of null values assigning higher probability
value to find possible null pointer dereferences in that state and in the sub-tree obtained
from it.

A Linear Regression-Based Search Strategy

We also developed a search strategy that supports the detection of not just null pointer
dereferences, but all the four types of issues that RTEHunter is able to detect. To
implement such a search strategy, we used a linear regression model that assigns a
score to each leaf state during the search. The score is the estimated number of
runtime issues that might have been detected in the sub-tree reachable from the state.
We chose linear regression because it can be applied on continuous class labels and
provides a relatively quick result for an unseen example.

The training data of the linear regression model contains one training example for
each state got from symbolic execution trees that were traversed previously by the
engine. The label (i.e. the supervisory signal) for each example is the number of
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runtime issues that were detected in the sub-tree under the state that the example
belongs to.

We defined five attributes as predictors that can be determined for each state.
Attributes may containe both static source-code information and dynamic information
that the symbolic execution supplies.

The attributes are the followings:

1. The depth of the state in the symbolic execution tree. If there is a tendency of
in which depth the significant part of the faults occur, the information will be
encoded into the model.

2. The number of null values in the state, as described previously.

3. The sum of the number of zero numeric type values (variable values, literals,
function return values, etc.) in the state, and the number of division operators
reachable from the state according to the control flow graph in 15 basic block
depth. Here, we combined the dynamic information of zero values and the static
information of the number of division operators in the possible future of the
execution. This attribute is a heuristic for finding division-by-zero errors.

4. The Logical Lines of Code (LLOC) metric of the method that the state belongs
to.

5. The cyclomatic complexity metric [63] of the method that the state belongs to.

As lines of code (LOC) and cyclomatic complexity have proved to be promising
defect predictors [65, 66|, attributes 4 and 5 should be useful in our heuristic. Both
of them were calculated using static source code analyzer tool, called SourceMeter.

We applied the linear regression algorithm implemented in the Shark machine learn-
ing library [44].

5.5 Results

5.5.1 Optimal Maximum Depth and State Number

In order to ascertain the optimal limitations of the symbolic execution tree built by
RTEHunter with the goal of finding runtime issues in a minimal time frame, we per-
formed numerous analyses and applied different constraints.

First of all, we found that the number of executed states is closely correlated with
the analysis time. The Pearson-correlation coefficients are all above 0.99, which is a
strong positive correlation, and it means that the high state limit corresponds to a high
run-time. The result is significant at p < 0.05. However, the correlation coefficients
among the number of states and the number of found issues range from 0.3 to 0.8
indicating a weaker relationship, and the results are not significant in many cases at
p < 0.05. Hence the number of states seems to determine the execution time, but the
number of errors probably depends on other factors as well.

To understand the role of maximum depth, we ran RTEHunter with different depth
limits. At each depth limit level we used different maximum state sizes which allows
us to investigate how the results vary by increasing the analysis time. The depth limits
chosen were 50, 100, 200, 400, 600 and 800, at each depth limit the maximum state
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Figure 5.7. (a) The error distribution at different depth levels in Jetspeed. (b) The
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values differ from 200 to 10,000. The results were put onto line diagrams shown in
figures 5.3, 5.4 and 5.5 for ArgoUML, Jetspeed and JFreeChart respectively. The
diagrams show how the number of errors grows in time for each depth limit level. On
each line, the dots represents an RTEHunter run with a specific state number limit.
For the consecutive runs we used higher and higher state number limits (between 200
and 10,000) extending the analysis time. For each line, the last dot is formed to extend
the analysis at least nearly 500 seconds.

In general, each line starts increasing, and after a while the number of errors does
not increase anymore. The reason why the number of errors stagnate after a time may
be because all of the errors were found at that depth level, and to detect new ones
the analysis needs to go deeper. The depth limit is considered to be better which rises
more rapidly and with which the engine detects more errors. The best depth limit
varies from system to system.

As regards ArgoUML, the 100-depth configuration increases the most rapidly, but
the 200-depth one finds 24 errors in slightly shorter time. By decreasing the depth
limit to 50, the results get worse, and the 400- 600- and 800-depth configurations also
perform worse.

With Jetspeed, the 50-depth limit is far better than the others. While with the
depths of 100, 600 and 800 we can reach only 32 errors under 500 seconds, we managed
to detect 37 errors with the 50-depth configuration. These numbers imply that the
majority of the errors are below the depth level of 50 in Jetspeed.

Among the investigated depth limits, the 400-depth can be considered to be the
optimum in the case of JFreeChart. However, the 50-depth one starts to rise the most
rapidly, it stops growing after 100 seconds. After 600 seconds the 600-depth limit
becomes slightly better than the 400-depth, but in general the 400-depth one performs
the best.

To understand why the above-mentioned depth limits performed the best in the
experiments, we analyzed how many errors can found at different depth levels in gen-
eral. Subfigures (a) of Figures 5.6, 5.7 and 5.8 show the number of errors found at each
depth level. Each bar represents a depth interval formed to be 20-length. The height
of a bar represents the number of errors found in the particular depth interval. The
data is derived from an 800 depth and 15000 state limit run, with which we attempt
to analyze as big symbolic execution trees as the memory consumption made possible.

In general, the same pattern appears to be present in all three systems. The number
of errors are significant at shallower levels, then in the middle where just a few of them
were detected. Close to the overall depth limit (800) errors occur again but not at
such high numbers as in the shallower levels. E.g. the error distribution of Jetspeed in
Figure 5.7 (a) tells us that the majority of the errors were found at a depth limit of 40
or less, which explains why the 50-depth limit is so satisfactory in Figure 5.4. Although
deeper configurations reached more states, the error density is rather low there, hence
we wasted the time spent to execute the states here.

We have also plotted the distributions of the overall number of states that were
explored by RTEHunter in figures 5.6, 5.7 and 5.8 (b). These diagrams show the
global shape of the symbolic execution trees traversed through the analysis. Similar
pattern can be seen in the error distribution diagrams, which partially explains the
error distribution: at depth levels where more states are explored, more errors can
be found. However, there are many more states near the 800-depth limit than in the
shallower parts of the tree, but the number of errors are higher in the shallow levels than
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Figure 5.9. The efficiency of null-heuristic search compared to the default
depth-first search on ArgoUML (a), Jetspeed (b), JFreeChart (c)

at the bottom. This leads us conclude that the the runtime issues that RTEHunter
can detect are more common between levels 0 to 60 basic block depths compared to
the deeper levels in general.

It should be added that the search strategy which is used to explore the state space
has a marked effect on the state distribution, and hence on the error distribution too.

5.5.2 Null-heuristic Search Strategy

The goal of the null-heuristic search strategy is to increase the number of runtime issues
detected in the given time frame, compared to the default depth-first search. Especially,
we focused on the number of null pointer dereferences. To make a comparison, we used
those configurations which are evaluated to be the best in Section 5.5.1 as a reference.
The maximum depth for ArgoUML is 100, 50 for Jetseed and 400 for JFreeChart. We
also chose the same state number limit sequence to expand the analysis time as before.
With these parameters, but with our novel null-heuristic we repeated the experiments.
The result of these experiments are shown in Figure 5.9.

In each case the null-heuristic approach performed better, because the number of
detected issues increases more rapidly and the values higher, i.e. it found more runtime
issues in less time, which surely confirm the efficiency of our algorithm. It is worth
mentioning here that over 90% of the errors found in these systems are null pointer
dereferences, and the new search strategy does not affect this ratio significantly.

What is more interesting is that the same analysis sequence with the null-heuristic
approach finished in less time than before. E.g. in the case of ArgoUML the last analy-
sis (the last dot on the line) lasted 431 seconds with the null-heuristic, and 522 seconds
with the conventional DFS. This point is surprising because we need to calculate the
number of null reference values for each state and also maintain a priority queue to
keep the leaves in for the null-heuristic algorithm. Probably the reason why it is still
faster is that it guides the search towards states whose execution time is shorter.

5.5.3 Linear Regression-Based Search Strategy

In the evaluation of the linear regression-based search strategy, we use 10-fold cross-
validation on each system in the following way. Firstly, to form the folds we sort the
methods of the system by lines of code (LOC). In the sorted list, each j"method is
placed into fold; if equation j mod 10 = i is satisfied. In other words, every tenth
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500 max state 1000 max state 1500 max state

ArgoUML DFS 29 23 23
(max depth: 100) LR based 51 54 55
Jetspeed DFS 33 35 35
(max depth: 50) LR based 66 74 73
JEreeChart DFS 91 93 94
(max depth: 400) LR based 122 131 138

Table 5.2. The number of detected runtime issues using the linear regression-based
search strategy (LR based) compared to the default depth-first search (DFS)

method will go to the same fold (see Figure 5.10), ensuring that no fold differs too
much from the others in the length of the methods contained.

Lines of Code
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Figure 5.10. The formation of the folds used to perform 10-fold cross validation

After running RTEHunter on 10 folds, we summarized the number of errors that
were detected in each fold. The structure of the folds ensures that each error is counted
only once. The number of errors found using this strategy (LR-based) is shown in
Table 5.2 and it is compared to the errors found by the default depth-first search
strategy (DFS). With all the subject systems we set the depth limit that was found to
be the best in Section 5.5.1 using DFS: 100 for ArgoUML, 400 for JFreeChart, and 50
for Jetspeed. As regards the maximum state number constraint, we provide results for
500, 1000 and 1500 maximum state values.

As the results demonstrate, our novel algorithm outperforms the default one in each
case. In ArgoUML and Jetspeed, we found more than twice as many errors as we did
with DFS. However, in the case of JFreeChart this ratio is smaller, the difference being
still significant: it formed around 30 to 40 more issues were discovered.

The reason why we do not present the runtime here is due to the implementation
details of the 10-fold cross validation. Currently, before RTEHunter starts the analysis
of each fold, it has to load the ASG and then rebuild the CFG for architectural reasons.
This introduces an overhead, which is not present in the case of a conventional run.
Apart from this shortcoming, the difference in the number of detected issues is still
significant.

In this work we did not put emphasis on the practical usage of the developed search
strategies in a real life product considering which strategy is good for which error type.
I.e. the null heuristic search might be great for finding null dereferences but also might
degrade the quality of the detection of other issue types. In real-life usage one option
would be to develop a specific well performing search strategy for each issue type.
However, it can be time consuming to rerun the symbolic execution for each type. The
second option would be to develop one complex search strategy with general predictors
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that performs well for all or for most of the issues. This approach might consume
less time, because we need to build up the state space only once, but might not scale
well as the number of checks are increasing or not perform as well as the issue specific
heuristics.

5.6 Threats to Validity

In the present study we do not focus on the precision of RTEHunter. Some of the
issues found may be false positives and these may change or invalidate the result of
our investigations. Manual validation needs a considerable amount of work in the case
of such a high number of errors presented here. However, in a future work we plan to
perform the manual validation and repeat the experiments with the updated dataset.
We also intend to examine how the false positive rate is affected by the traversal strategy
because we wish to avoid situations where a deeper analysis on a path produces more
false positives, for instance because of an incorrectly handled coding pattern.

5.7 Summary

The goal of this study is to optimize the R EHunter symbolic execution engine to detect
more runtime issues faster. Because of the path explosion problem, the limitation of
the state space of symbolic execution gets major importance in this scenario. The
empirical investigations of three open-source Java systems showed that adjusting the
maximum number of states for the symbolic execution trees directly impacts execution
time but not the number of found issues. On the other hand, the limitations of the
depth of the tree have more importance in the detection of runtime errors. We found
different optimal depth limits for the three different systems, but we can conclude that
errors occur more often in the basic block depth of 0 to 60 compared to the deeper levels
in the analyzed systems, but it also highly depends on the applied search strategy.

We propose two novel search strategies that strive to guide symbolic execution
towards the more error prone source-code fragments using both static and dynamic
information. The null-heuristic search strategy performs better by finding up to 16 %
more errors within the same time frame compared to the default depth-first search.
The linear regression-based heuristic also outperforms DF'S, it detects more than twice
as many errors in ArgoUML and Jetspeed.

The author’s contributions. The author performed the entire empirical analysis to
find the connection between the maximum number of states for the symbolic execution
trees, the analysis time and the number of issues found by running RTEHunter many
times on three open source systems. He also performed many experiments to find the
optimal depth limits for each system and revealed the depth level where most errors can
be found. The idea of the two search strategies for the state space exploration, their
implementation and their entire evaluation are the author’s work. The publication
related to this chapter is:

¢ I. Kadar. The Optimization of a Symbolic Execution Engine for Detecting
Runtime Errors. In Acta Cybernetica, pages 573-597, 2017.
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Part 11

Investigation of Refactoring Activities
Based on a New Dataset






“It would appear that we have reached the limits of
what it is possible to achieve with computer tech-
nology, although one should be careful with such
statements, as they tend to sound pretty silly in five
years.”

— John von Neumann

Assessment of Refactoring Activities on
Classes and Methods Based on a New
Public Dataset

6.1 Overview

Source code refactoring is a popular and powerful technique for improving the internal
structure of software systems. The concept of refactoring was introduced by Fowler [29],
and nowadays I'T practitioners think of it today as an essential part of the development
process. Despite the high acceptance of refactoring techniques by the software industry,
there are some aspects that software companies should take into consideration as they
might affect the practical application of these techniques (for example, time constraint,
cost effectiveness, or return on investment). Due to this shift of priorities between
industry and research, we should also explore how developers tend to use refactoring in
practice and not merely focus on the theoretical concepts of code refactoring. Fowler
proposed that code smells should be the primary technique for identifying refactoring
opportunities in the code and a lot of research effort |28, 49, 62, 103] has been put into
examining them. However, there is evidence in literature [4, 72, 111] that engineers are
aware of code smells but are not concerned about their impact as refactoring activity
is not focused on them. A similar counter intuitive result by Bavota et al. [7] suggests
that only 7% of refactoring operations actually remove the code smells from the affected
class. Besides exploring how, when and why refactoring is used in everyday software
development, their effects on short and long-term maintainability and costs are vaguely
supported by empirical results.

To help address further empirical investigations of code refactoring, we proposed a
publicly available refactoring dataset [98] that we assembled using the Ref-Finder |52,
74] tool for refactoring extraction and the SourceMeter static source code analyzer tool
for source code metric calculation. The dataset consists of refactorings and source code
metrics for 37 releases of 7 open-source Java systems. We also store exact version and
line information in the dataset to supports reproducibility. In addition to source code
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metrics, the dataset includes the relative maintainability indices (RMI) of source code
elements calculated by the QualityGate® tool, an implementation of the ColumbusQM
quality model |5]. This makes it possible to directly analyze the connection between
source code maintainability and code refactoring.

We applied the dataset for an analysis on the effects of code refactoring on source
code metrics and maintainability by investigating the following research questions:

RQ1. Are code elements with lower maintainability value subject to more refactor-
ings in practice?

RQ2. Which quality attributes (source code metrics) are affected most by code
refactorings and to what extent?

Since the assembled dataset contains source code metrics, RMI, and refactoring
values for classes and methods as well, we investigated the research questions at both
class- and method-level.

At the level of classes, our results showed that classes with poor maintainability
are subject to more refactorings in practice than classes with higher technical quality.
Considering metrics, number of clone instances, complexity, coupling, and size metrics
have improved, although comment related metrics decreased.

Literature lacks studies on the evolution of methods in systems due to refactorings,
therefore, we examined them now by using the proposed dataset. We performed empir-
ical investigations at the level of individual methods similarly to the level of classes. We
found that lower maintainability indeed triggers more code refactorings in practice at
the level of methods and these refactorings significantly decrease code lines, coupling,
and clone metrics.

According to the authors of Ref-Finder, the precision of the tool is 79% [74], how-
ever, after our analysis, it is turned out that the quality of the refactoring data is lower
due to the false positive instances. Hence, we propose an improved dataset that is a
manually validated subset of our original dataset. It contains one manually validated
release for each of the 7 systems. Although the manually validated refactoring dataset
is in itself a major contribution, we also utilized it to replicate our studies on the base
dataset and re-examine the connection between maintainability and code refactoring
as well as the distribution of the individual source code metrics in the refactored and
non-refactored source code elements. The results showed that the overall average main-
tainability of refactored entities was much lower in the pre-refactoring release than the
entities subjected to no refactorings, which is in line with the results we got in the
earlier research. The analysis on the source code metrics has not been accepted and
published until the author finished writing this thesis, thus we only give a brief overview
of the findings in Section 6.7.2.

The rest of the chapter is organized as follows. First, we start with a related
literature overview in Section 6.2. Next, Section 6.3 outlines the data collection and
validation process of creating the datasets. We describe the data analysis methodology
applied for answering the research questions in Section 6.4. In Section 6.5, we display
the results of our empirical investigation on the maintainability and source code metrics
of refactored and non-refactored classes, and Section 6.6 gives the method-level results
on the unvalidated dataset. We describe the assessment of the manually validated
dataset in Section 6.7, the threats to the validity of our results are listed in Section 6.8,
and finally, we conclude the research in Section 6.9.

! http://www.quality-gate.com/
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6.2 Related Work

There are several studies that have investigated the relationship between practical refac-
toring activities and the software quality through different quality attributes. Many
of them used the Ref-Finder tool [52] to extract refactorings from real-life open-source
systems, similarly as we did.

Bavota et al. |7] made observations on the relations between metrics/code smells and
refactoring activities. They mined the evolution history of 2 open-source Java projects
and revealed that refactoring operations are generally focused on code components for
which quality metrics do not suggest there might be a need for refactoring operations.
In contrast to this work, by considering maintainability instead of code smells, we
found significant and quite clear relationship with refactoring activities. Bavota et
al. also provided a large refactoring dataset with 15,008 refactoring operations, but it
contains file level data only without exact line information. Our open dataset contains
method-level information as well and refactoring instances are completely traceable.

In a similar work to ours, Murgia et al. [68] studied whether highly coupled classes
are more likely to be targets of refactoring than less coupled ones. Classes with high
fan-out (and relatively low fan-in) metric consistently showed to be targets of refactor-
ing, implying that developers may prefer to refactor classes with high outgoing rather
than high incoming coupling. Kataoka et al. [48] also focused on the coupling met-
rics to evaluate the impact of refactorings and showed that their method is effective
in quantifying the impact of refactoring and helped them to choose the appropriate
refactoring types.

Contrary to these two works [68, 48], we did not select a particular metric to assess
the effect of refactorings, but rather used statistical tests to find those metrics that
change meaningfully upon refactorings. This way we could identify that complexity
and size metrics also play an important role in connection with refactorings applied in
practice.

Kosker et al. [54] introduced an expert system for determining candidate software
classes for refactoring. They focused on the complexity measures as primary indicators
for refactoring and built machine learning models that can predict whether a class
should be refactored or not based on its static source code metrics. In lack of real
refactoring data, they assumed that classes with decreasing complexity over the releases
are the ones being refactored actively. Using this heuristic, they were able to build quite
efficient prediction models.

Although it might seem that our work is very similar to that of Kosker et al., there
are numerous differences. We mined and manually verified real refactoring instances
instead of using heuristics to determine which classes are refactored. We also analyzed
the values of static source code metrics of the refactored and non-refactored elements,
but our focus was not on selecting the best predictors for building machine learning
models, but to generally explore the connection between each and every metric and
refactorings. Moreover, we examined 50+ metrics, which is almost the double that
Kosker et al. used and also contain for example, cohesion and clone related metrics
that were not examined by them. Furthermore, we applied a statistical approach
instead of machine learning, and published results at the level of methods as well, not
just for classes as Kosker et al did. A significant part of our work was dedicated to the
analysis of the changes in metric values that was entirely omitted by Kosker et al.

In the study conducted by Silva et al. [82] the authors monitored Java projects
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on GitHub and asked the developers to explain the reasons behind their decision to
refactor the code. They composed a set of 44 distinct motivations of 12 refactoring
types such as “Extract reusable method” or “Introduce alternative method signature”
and found that refactoring activity is mainly triggered by changes in the requirements
and much less by code smells. The authors also made the collected data and the tool
called RefactoringMiner publicly available, which was used to detect the refactorings.

The case study by Ratzinger et al. [78] investigated the influence of refactoring
activities on software defects. The authors extracted refactoring and non-refactoring
related features that represent several domains such as code measures, team and co-
change aspects, or complexity that served as input to build prediction models for
software defects. They found that the number of software defects decreased if the
number of refactorings increased in the preceding time period.

Similarly to us, Murphy-Hill et al. [69] empirically analyzed how developers refactor
in practice. They found that automatic refactoring is rarely used: 11% by Eclipse
developers and 9% by Mylyn developers. Unlike this paper, we did not focus on how
refactorings are introduced (i.e. manually or using a tool), but rather on their effect
on source code.

Negara et al. [70] conducted an empirical study considering both manual and auto-
mated refactoring. Using a continuous refactoring inference algorithm, they composed
a corpus of 5,371 refactoring instances collected from developers working in their nat-
ural environment. According to their findings, more than half of the refactorings were
performed manually, more than one third of the refactorings performed by developers
were clustered in time, and 30% of the applied refactorings did not reach the version
control system.

The approach presented by Hoque et al. [42] investigates the refactoring activity
as part of the software engineering process and not its effect on code quality. The
authors found that it is not always true that there are more refactoring activities
before major project release dates than after. The authors were able to confirm that
software developers perform different types of refactoring operations on test code and
production code, specific developers are responsible for refactorings in the project and
refactoring edits are not very well tested.

Tsantalis et al. [102] identified that refactoring decision-making and application is
often performed by individual refactoring “managers”. They found a strong alignment
between refactoring activity and release dates and revealed that the development teams
apply a considerable amount of refactorings during testing periods.

Measuring clones (code duplications) and investigating how refactoring affects them
has also attracted a lot of research effort. Our dataset also includes clone metrics, thus
clone oriented refactoring examinations can also be performed.

Choi et al. [18] identified that merged code clone token sequences and differences
in token sequence lengths vary for each refactoring pattern. They found that “Extract
method” and “Replace method with method object” refactorings are the most popular
when developers perform clone refactoring.

Choi et al. [17] also presented an investigation of actual clone refactorings performed
in open-source development. The characteristics of refactored clone pairs were also
measured. From the results, they again confirmed that clone refactorings are mostly
achieved by “Replace method with method object” and “Extract method”.

We found that refactoring activities are not related to clone metrics significantly in
general. However, we did not distinguish our analysis based on the types of refactorings
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(due to the relatively small number of true positive refactoring instances), which might
introduce new results for specific refactoring types that differ from the overall case.

An automated approach to recommend clones for refactoring by training a decision
tree-based classifier was proposed by Wang et al. [107|. The approach achieved a preci-
sion of around 80% in recommending clone refactoring instances for each target system,
and similarly good precision is achieved in cross-project evaluation. By recommending
which clones are appropriate for refactoring, the approach allows for better resource
allocation for refactoring itself after obtaining clone detection results.

Fowler informally linked bad code smells to refactorings and according to Beck,
bad smells are structures in the code that suggest refactoring [29]. Despite that many
studies showed that practitioners apply code refactoring differently, probably the most
widespread approach in the literature to detect program parts that require refactoring
is still the identification of bad smells.

Tourwé and Mens recommended a semi-automated approach based on logic meta
programming to formally specify and detect bad smells and to propose adequate refac-
torings that remove these bad smells [101]. Another approach to point out structural
weaknesses in object-oriented programs and solve them in an automated fashion using
refactorings was proposed by Dudziak and Wolak [25]. Tahvildari and Kontogian-
nis proposed a framework in which a catalog of object-oriented metrics was used as
indicators to automatically detect where a particular refactoring can be applied to im-
prove software quality [91]. Szdke et al. [90] introduced a tool called FaultBuster that
identifies bad code smells using static source code analysis and automatically applies
algorithms to fix selected code smells by refactoring.

Although Ref-Finder can detect 63 refactoring types from Fowler’s catalog and
many studies used it to extract refactorings |17, 20, 57, 34|, there are other approaches
for refactoring detection in practice. A method by Godfrey and Zou [38| identified
merge, split and rename refactorings using extended origin analysis in procedural code,
which served as a basis of refactoring reconstruction by matching code elements. De-
meyer et al. [24] proposed an approach that compares two program versions based
on a set of lightweight, object-oriented metrics such as method size, class size, and the
number of method calls within a method to detect refactorings. Rysselberghe and De-
meyer exploited also clone detection to detect move refactorings [104]. Xing et al. [110]
presented an approach by analyzing the system evolution at the design level. They
used a tool called UMLDIff to match program entities based on their name and struc-
tural similarity. However, the tool did not analyze method bodies, so it did not detect
intra-method refactoring changes, such as a '"Remove Assignment To Parameter’.

The survey by Soares et al. [85] compared different approaches to detect refactorings
in a pair of versions. They performed comparisons by evaluating their precision and
recall in randomly selected versions of JHotDraw and Apache Common Collections.
The results showed that Murphy-Hill [69] (manual analysis) performed the best, but
was not as scalable as the automated approaches. Ratzinger’s approach [78| is simple
and fast, but it has low recall; SafeRefactor [84] is able to detect most applied refac-
torings, although they get low precision values in certain circumstances. According to
experiments, Ref-Finder has a precision of around 35% and a recall of 24%, which is
similar to our evaluation results.

A history querying tool called QWALKEKO [89] was also applied to the problem of
detecting refactorings. The main difference between QWALKEKO and Ref-Finder is
that Ref-Finder is limited to reason about two predefined versions while QWALKEKO
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is able to detect refactorings that happen across multiple versions. Besides the ones pre-
sented above, many other approaches exist in the literature [3, 32, 59, 86, 92|, however,
our focus is not on refactoring miner tools, but to utilize refactoring instances found
by those tools to analyze their connection with software maintainability in practice.

6.3 Dataset Construction

In order to support empirical research on source code refactorings, we built a dataset of
the applied refactorings and source code metrics between two subsequent releases of 7
open-source Java systems available on GitHub. In our later research we assembled the
manually validated subset (from now on improved dataset) of the mentioned original
dataset (from now on base dataset) [98]. Table 6.1 provides an overview of the projects,
their names, URLs, number of analyzed releases and the covered time interval by
the releases in the base dataset. These projects were found ideal for our research
purposes because of the adequate number of release versions and the amount of the
code modifications between two adjacent releases. We investigated 3 to 8 releases of
each project.

System Git URL # Rel. Time interval
antlrd https://github.com/antlr/antlrd 5 | 21/01/2013-22/01/2015
junit https://github.com/junit-team/junit 8 | 13/04/2012-28/12/2014
mapdb https://github.com/jankotek/MapDB 6 | 01/04/2013-20/06/2015
mcMMO | https://github.com/mcMMO-Dev/mcMMO 5 | 24/06/2012-29/03/2014
mct https://github.com/nasa/mct 3 | 30/06/2012-27/09/2013
oryx https://github.com/0OryxProject/oryx 4 | 11/11/2013-10/06/2015
titan https://github.com/thinkaurelius/titan 6 | 07/09/2012-13/02/2015

Table 6.1. Descriptive statistics of the systems included in the refactoring base
dataset

To reveal refactorings between two adjacent release versions we used the Ref-
Finder [52] refactoring reconstruction tool. In order to use Ref-Finder to automatically
extract refactorings not just between two adjacent versions of a software but between
each of the versions in a given version sequence we improved Ref-Finder to be able to
perform an automatic batch analysis. To make further examinations possible, we also
implemented an export feature in Ref-Finder that writes the revealed refactorings and
all of their attributes into CSV files for each refactoring type.? The base dataset is com-
posed of the output of Ref-Finder grouped by refactoring types (e.g. extract method,
remove parameter) and the more than 50 types of source code metrics extracted by the
SourceMeter static code analysis tool, mapped to the classes and methods of the sys-
tems. The full list of extracted source code metrics is available on the tool’s website.?
Instead of selecting several metrics to analyze, we applied all the statistical methods
on each of the provided metrics, which include all the most widely used code metrics.

The refactoring types are different at the class- and method-levels: there are 23
refactoring types at class-level, and 19 at method-level. For a complete list of method
and class-level refactorings see Table 6.2.

Beyond the plain source code metrics the datasets include the so-called relative
maintainability index (RMI) which was measured by QualityGate SourceAudit [6] for

2The corresponding code changes can be found in a pull-request to the original repository: https:
//github.com/SEAL-UCLA/Ref-Finder/pull/1
3https://www.sourcemeter.com/resources/java/
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Refactoring type Class level Method level

AN
<

Add parameter

Consolidate conditional expression

Consolidate duplicate conditional fragments

Extract method

Inline temporary variable

Introduce assertion

Introduce explaining variable

Remove assignment to parameters

Remove parameter

Rename method

Replace magic number with constant

Replace method with method object

Inline method

Introduce null object

Remove control flag

Replace exception with test

Replace nested condition with guard clauses
Hide method

N ENENENENEN RN AN AN EN AN ENENENENENENEN

Replace temporary variable with query
Move field

Extract superclass

Extract interface

N ENENEN AN N ENEN AN ENENENENENENENENENENENENEN

Introduce local extension

Table 6.2. The type of refactorings extracted by RefFinder at class and method level
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each method and class of the systems. RMI, similarly to the well-known maintainability
index [71], reflects the maintainability of a code element, but it is calculated using
dynamic thresholds from a benchmark database, not by a fixed formula. Thus, RMI
expresses the maintainability of a code element compared to the maintainability of
other elements in the benchmark [40].

Static analysis tools
I
L
y FRE NTEND e
Source code
&
-"
! RefFinder
Metrics and 1l
Maintainability S
i
i)
Base dataset
Class/Method _W Refactoring
m". : W instances
== e el JF'
| F Map refactorings | —ﬂm"
to elements
Manually
validate
Improved dataset

H;:-:" Refactoring Class/Method
_ﬁ;ﬁ' instances ms—
[E5: 2= Map refactorings|: =
to elements

Figure 6.1. An overview of the process applied for constructing the base and the
improved datasets

The high-level overview of the dataset creation process is shown in Figure 6.1.
First of all, the Java source code is processed by the extended Ref-Finder version that
reveals and exports the refactoring instances to CSV files for each refactoring type. The
source code is also analyzed by the SourceMeter and QualityGate tools to calculate the
source code metrics and RMI values for each method and class of the input project.
The base dataset is assembled by mapping the extracted refactorings to the affected
code elements and extending the output of static code analysis with the number of
refactorings for each type that is mapped to the element.

To compose the improved dataset we performed a manual validation that resulted
in a subset of the refactoring instances detected by Ref-Finder (i.e. we left only the
true positive instances), then we mapped this validated subset of refactoring instances
to the code elements again.
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The datasets are available in the PROMISE data repository [64]:
http://openscience.us/repo/refactoring/refact.html
http://openscience.us/repo/refactoring/refact_val.html

6.3.1 Dataset Validation

As false positive instances may seriously affect the validity of empirical investigations
using the dataset, we decided to manually validate the refactoring instances extracted
by Ref-Finder and propose an improved dataset. Since it requires an enormous amount
of human effort, we started by selecting one release from each of the 7 systems and
validated every refactoring instance candidate proposed by Ref-Finder. The releases
were selected to contain as many different types of refactorings as possible. We also
kept in mind that the number of refactorings within each type has to be large enough
in the releases given that some of them will be marked as false positives. We did not
choose releases with huge amount of refactorings due to the necessity of an enormous
validation effort.

Note, that we made a compromise in selecting the refactoring instances for valida-
tion. We chose to evaluate all instances between two selected releases for each of our
subject systems. This resulted in an uneven proportion of validated refactorings from
system to system (e.g. we evaluated almost 58% of refactoring instances for oryz, but
only about 2% for titan), see Table 6.3. Moreover, there are refactoring types from
which we did not evaluate a single instance, Table 6.4 lists only those refactoring types
that were encountered during manual validation (Ref-Finder is able to extract 23 dif-
ferent types of refactorings [99]). The reason why we did this contrary to choosing for
example, a fixed % of refactoring instances for evaluation, is that it would not allow
us to answer our research questions meaningfully. Validating a fixed proportion of
refactorings for each system would not ensure a fully validated release for each system,
instead we would end up with releases containing refactoring instances from a couple
of which are manually validated and the rest are not. Analysis on such a dataset would
be by no means more precise than using the base dataset, as the unvalidated instances
might bias the statistical tests performed on the data between two releases of a system.
As the manually validated subset of refactoring instances for analyzing our research
questions is meaningful only if we have at least one fully validated release for each
system, we made this compromise.

The validation was carried out by two researchers. One of them is the author of
this thesis. Unfortunately, performing the evaluation in an optimal way, namely to ex-
amine all the possible refactoring instances by both of the evaluators, was not feasible
due to our available resources. Instead, we distributed the refactorings between each
other nearly equally and we validated only our corresponding instances. This strat-
egy reduced the amount of required human resources to half of the optimal strategy;
however, it also introduced some issues. To mitigate the possible inconsistency in the
judgment of the evaluators, we performed a random sample cross-validation on about
10% of each other’s data. Additionally, in each and every problematic case all the
authors of the published paper [95] (not just the two evaluators) mutually agreed on
how those specific refactorings should be classified.

Table 6.3 shows the total number of refactoring instances found by Ref-Finder in
all the releases of the systems (# All), the selected revisions for manual validation (Re-
lease), the number of manually validated instances per system (# Eval.), the number
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of true/false positive refactoring instances (TP and FP) and the overall precision of
Ref-Finder on the analyzed systems (Prec.).

System | # All Release|# Eval.| TP| FP| Prec.
antlr4 269| 30/06/2013 [3468a5f] 112 50| 62| 44.64%
junit 1,080|08/04,/2010 [a30e87b] 29| 14| 15| 48.28%
mapdb 4,547130/07/2014 [967d502] 171 4] 167 2.34%
mcMMO 448|11/07/2013 [4a5307f] 63| 6| 57| 9.52%
mct 716| 27/09/2013 [f2cdf00] 97| 28| 69| 28.87%
oryx 123|11/04,/2014 [0734897] 71| 25| 46| 35.21%
titan 3,661 | 13/02/2015 [fb74209] 84| 18| 66| 21.43%
Total (10,844 - 627(145|482|23.13%

Table 6.3. Number of all and manually validated refactorings with precision
information for each subject system

The evaluated release means that the refactoring instances between this and the
previous release was considered for validation. As can be seen, only the fraction of the
total number of refactorings has been validated (less than 6%). Even this work took
more than one person month work from the two evaluators. However, as the overall
precision of the Ref-Finder tool was only around 23% in total (and approximately
27% if we take the average of the system-wise precision values) on the base dataset,
even these few hundred manually validated instances of the improved dataset bear a
significant additional value compared to the base dataset. Considering the projects,
we got the lowest precision value in case of mapdb and mcMMO resulting a relatively
low number of refactorings in these projects.

Table 6.4 summarizes the number of various refactoring types within each subject
system. As can be seen, Add and Remove Parameter are the two most frequently
applied refactorings types. Together with the third most common Introduce Explaining
Variable, they constitute nearly 60% of the total refactoring count. The majority of the
Add Parameter refactoring is in the antlr4 system, while most of the Remove Parameter
refactorings appear in oryx.

Refactoring Type antlr4 junit mapdb mcMMO mct orxy titan|Total
Add Parameter 22 2 0 1 11 1 2 39
Remove Parameter 2 0 0 0 4 18 5 29
Introduce Explaining Variable 6 0 2 0 3 4 2 17
Extract Method 4 4 0 2 0 0 0 10
Introduce Assertion 2 1 0 0 3 0 4 10
Rename Method 0 2 0 1 2 0 4 9
Replace Method with Method Object 8 0 0 0 0 0 1 9
Inline Temp 0 1 0 1 4 1 0 7
Move Method 3 2 1 0 0 0 0 6
Move Field 2 1 0 0 0 0 0 3
Extract Interface 0 0 1 0 1 0 0 2
Inline Method 0 1 0 1 0 0 0 2
Remove Assignment to Parameters 1 0 0 0 0 0 0 1
Replace Magic Number with Constants| 0 0 0 0 0 1 0 1
Total 50 14 4 6 28 25 18 | 145

Table 6.4. Total number of refactoring occurrences in the improved dataset grouped
by their types
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6.3.2 Dataset Structure

The datasets contains one folder for each release of the analyzed systems. Within
each folder there are two files ($proj-Class.csv and $proj-Method.csv) and a sub-folder
containing a list of CSV files named by refactoring types. The CSV files with the names
of refactorings (e.g. ADD PARAMETER) lists the refactoring instances found by Ref-
Finder. The improved datset contains only the true positive refactoring instances that
were manually checked by one of the evaluators. The structure of these CSV files may
differ based on the refactoring types, but they always contain enough information to
uniquely identify the entities affected by the refactoring in the previous and actual
releases (e.g. unique name, path of classes/methods, parameters or line information).

The $proj-Class.csv and $proj-Method.csv files hold an accumulated result of the
above. Each line of these CSV files represents a class or method in the system (identified
in the same way as in the refactoring CSVs). In the columns of the CSV, there are
the source code metrics with the RMI scores and the various refactoring types. For
each row we have the source code metrics calculated for this element and the number
of refactorings of a certain type affecting the source code element (i.e. the source code
element appears in the refactoring type CSV in an arbitrary role).

6.4 Data Analysis Methodology

This section describes the way we utilized the constructed refactoring dataset to answer
our research questions. We applied the same statistical methods at class- and method-
level, thus in this section we will use the general term code element to denote both
classes and methods.

For answering RQ1, we performed a correlation analysis on the RMI values of the
code elements and the number of refactorings affecting these elements. We took the
RMI values from release x;, and the number of refactorings from release x;,;. This
way we assessed whether poor quality code elements got refactored more intensively
than others or not. Since we cannot assume anything about the distribution of the
maintainability indices nor the number of refactorings, we performed a Spearman rank
correlation analysis. In our latest research which assesses the improved dataset, we
used a slightly different analysis methodology from the above to answer RQ1, because
of the low number of the remaining refactorings. This difference will be highlighted in
Section 6.7.

For answering RQ2, first we calculated the differences of the metric values between
the subsequent releases. In most cases negative differences mean an improvement, as
lower metric values (e.g. lower complexity) are better. To decide whether there is a
significant difference among the metric decreases in the refactored and non-refactored
classes, we run a Mann-Whitney U test [61], which is a non-parametric statistical
test to analyze whether the distribution of the values differ significantly between two
groups. The p-value of the test helped us judging whether there is significant difference
in the metric decreases between the source code entities subjected to refactoring and
the entities unaffected by refactoring.

The result of this test gave us a hint on what are those metric values that improve
significantly upon refactorings. To estimate the volume of these metric changes, we
calculated the Cliff’s delta (§) effect size measure as well [41]. Cliff’s § measures how
often the values in one distribution are larger than the values in a second distribution.
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It ranges from -1 to 1 and is linearly related to the Mann-Whitney U statistic, however
it captures the direction of the difference in its sign as well. Simply speaking, if Cliff’s
J is a positive number, the metric value differences (thus the metric value decreases)
are higher in the refactored code elements, while negative value means that the metric
value differences are higher in the non-refactored elements. The closer the |d] is to 1,
the more values are larger in one group than the values in the other group. Besides
the Cliff’s 0 measure, in the class-level assessment of the base dataset (Section 6.5)
we calculated the odds ratio (OR) effect size measure as well [67], which denotes how
many times the chance is higher of that the values are differ in the two groups.

6.5 Results of the Class-level Assessment on the Base
Dataset

In this section we summarize the assessment results of the assembled base refactoring
dataset regarding software maintainability at the level of classes. First, we describe
the results of the analysis on the maintainability of refactored classes to answer RQ1.
Afterwards, we present the findings on the effect of refactorings on source code metrics
to answer RQ2.

6.5.1 The Maintainability of Refactored Classes

To answer RQ1, we performed a correlation analysis between the number of refactorings
affecting the classes and their maintainability indices in the previous release. Figure 6.2
depicts the Spearman correlation coefficients between the RMI values in release x; and
the number of refactorings affecting the corresponding classes in release x;;.

-0,45 -0,4 -0,35 -0,3 -0,25 -0,2 -0,15 -0,1 -0,05 0

Figure 6.2. Correlation of maintainability and number of refactorings in classes

As can be seen, all the values are negative, meaning that the worse the maintainabil-
ity of a class is the more refactorings touch it. Although the coefficients are moderate,
they are consistently negative and significant at the level of 0.05 (except for the two
lowest values of mcMMO and oryx). There are less correlation coefficients than releases
for some systems because we were unable to calculate them when Ref-Finder found no
refactorings between two releases, which happened a couple of times.
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Answer to RQ1 at the level of classes: Based on the findings on our dataset
it seems that classes with poor maintainability are subject to higher number of refac-
torings during their lifetime.

6.5.2 The Effect of Refactorings on Source Code Metrics

We found that refactorings affect poorly maintainable code, so the question arises
whether applying refactorings really improves the internal quality of the code? And if
yes, what are the source code metrics that show the highest improvement (i.e. decrease
significantly)?

According to the process described in Section 6.4, we first calculated the metric
value differences for every class between the adjacent releases. Then, we grouped
these metric difference values into two groups: in the first group we put the metric
differences of classes touched by at least one refactoring, and in the second group the
metric differences of non-refactored classes. Finally, we analyzed which metrics show
significant differences between the values of the two groups with the help of Mann-
Whitney U test.

System name CI WMC | NOI RFC | TCLOC | TLLOC | TNOS
antlr4 0.033 | 0.428 | 0.010 | 0.031 0.136 0.002 0.122
junit 0.728 | 0.042 | 0.170 N/A 0.012 0.101 0.113
mapdb 0.030 | 0.006 | 0.005 | 0.000 0.05 0.000 0.000
mcMMO 0.005 | 0.608 | 0.003 | 0.013 0.066 0.257 0.594
mct 0.905 | 0.200 N/A 0.941 N/A 0.115 0.703
oryx 0.667 | 0.575 | 0.381 | 0.533 0.800 0.743 0.159
titan 0.022 | 0.016 | 0.000 | 0.000 0.260 0.002 0.042

Table 6.5. The results of the Mann-Whitney U Test (p-values)

CI WMC NOI RFC
System name AT T ORTT 5 | OR | 6 | OR [
antlrd 938 -0.86 | 11.68 021 | 1095 0.75 | 10.95 058
junit 604 0.3 | 20.14 069 | 531 035 | 7.07 0.06
mapdb 1056 040 | 286 050 | 432 033 | 285 055
mcMMO 507 096 | 227 -022 | 357 089 | 280 0.79
mct 19.33  0.06 | 4.30 -0.89 | 595 000 | 242 0.3
oryx 617 -040 | 617 02 | 1234 050 | 1542  0.50
titan 376 039 | 553 0.5 | 492 024 | 457 0.30
Average 862 0.00 | 756 000 | 676 044 | 658 0.42

TCLOC TLLOC TNOS
System name OR 5 OR s OR s
antlrd 547 061 | 209 064 | 697 040
Junit 1173 050 | 843 069 | 19.94  0.35
mapdb 843 030 | 230 078 | 251  0.78
mcMMO 463 063 | 377 030 | 28 0.9
mct 1933 0.00 | 580 059 | 11.90 -0.15
oryx 712 013 | 359 -0.10 | 250  0.50
titan 498 015 | 443 026 | 4.95 017
Average 881 033 | 434 045 | 737 032

Table 6.6. Effect size measures

Out of 50+ source code metrics, the ones listed in Table 6.5 had the lowest p-
values, meaning that the differences in the metric value changes for refactored and
non-refactored classes are the most significant for these metrics.

To get an impression about the magnitude of the differences between the metric
value decreases of the refactored and non-refactored classes, we calculated the ratio of
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classes with metric value decreases within the two groups. The results are depicted
on the heat map shown in Figure 6.3. The left columns contain the proportion of
refactored classes having decreased metric value, while right columns show the same
ratio for the non-refactored classes. The darker values mark higher ratios. As can be
seen, all the dark values are in the left columns, thus metric value decreases are far
more frequent in the group of refactored classes than in non-refactored classes.

To quantify what we observed visually in the heatmap, we calculated the odds ratio
(OR) and Cliff’s delta (0) effect size measures. The detailed results are presented in
Table 6.6. The average OR values vary between approximately 4-9, which means that
on average the chances of a metric value decrease is 4-9 times higher in the classes
affected by refactorings than in the non-refactored classes. The Cliff’s ¢ values suggest
a similar conclusion, though not as obviously as the OR values.

a WMC NOI RFC TCLOC TLLOC TNOS

System name
R | MRogr | Foer | MRig | PR | Mg | R | MRusr | R | MR | R | MRog | R | NRige
antlr4 3.57%  0.38%| 952% 0.82%| 7.14% 065%| 8.33% 076%| 3.57% 0.65%| 9.52%  457%| 833%  1.20%
junit 3.17%  0.53%| 3.97% 0.20%| 476% 090%| 6.35% 0.90%| &73%  0.74%| 7.94% 0.94%| 873%  0.44%
mapdb 13.46% 1.27%| 1058% 3.70%| 16.35% 3.78%| 14.42%  5.06%| 1827% 2.17%| 11.54%  5.01%| 10.58%  4.21%
mCcMMO 3.95% 8.81% 8.40% 10.73% 6.48% 13.26% 10.63%
met 2.83%  0.15%| 094%  0.22%| 1.89% 032%| 0.94% 039%| 094% 0.05%| 2.83% 049%| 3.77% 032%
oryx 196%  032%| 7.84% 127%| 392% 0.32%| 3.92% 025%| 5.88% 0.83%| 9.80% 2.73%| 5.88%  2.35%
titan 269%  0.71%| 1198%  2.17%|025@1%  556%|02541%  5.56%| 579%  1.16%| 14.05%  3.17%| 14.46%  2.92%
Average 681% 1.04%|00026% 2.45%| 1278% 2.85%| 12.77%  338%| 1045% 173%| 15.10%  431%| 1168%  3.15%

Figure 6.3. Metric improvements heat map

According to the above results of the statistical analysis, we can conclude that
coupling metrics, namely Response Set for Classes (RFC) and Number of Outgoing
Invocations (NOI) indeed decrease significantly upon refactorings in accordance with
the previous findings of other studies [48, 68]. But besides coupling, we found a sig-
nificant decrease in size metrics as well, namely in the case of Total Logical Lines of
Code (TLLOC) and Total Number of Statements (TNOS). This finding is not really
surprising, nor that the complexity metric Weighted Methods per Class (WMC) also
decreased significantly. What is more interesting is that the number of Clone Instances
(CI) also decreased, thus refactoring activity seems to remove copy-paste code parts
in practice. Finally, an interesting result is that the Total Comment Lines of Code
(TCLOC) also decreased significantly. This might mean a degradation in maintain-
ability if the developer did not take the time to document the modifications, but it can
also mean an improvement if out-of-date comments were removed, or even better, if
the developer adhered to the clean code principle.

Generally, most of the Cliff’s § values are positive (i.e. the average J values are pos-
itive for every metric), meaning that the metric value differences (the metric value de-
creases) are higher in the refactored classes, than in the non-refactored ones. Nonethe-
less, there are several large negative 0 values for the CI and WMC metrics. This might
suggest that cloned code and complexity is decreased by other targeted changes, while
refactorings often have a side effect to remove code clones or reduce complexity as well.
However, this phenomenon needs further investigation.

Answer to RQ2 at the level of classes: We found that size (TLLOC, TNOS),
coupling (RFC, NOI), clone (CI), complexity (WMC) and comment (TCLOC) related
metrics decrease the most in refactored classes. Regarding the volumes of the differ-
ences, we can say that for these metrics the average chances of a decrease is 4-9 times
higher in the classes affected by refactorings than in the non-refactored classes.
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6.6 Results of the Method-level Assessment on the
Base Dataset

In this section we summarize the assessment results of the base datset on the connection
between refactoring activity and maintainability of methods. First, we describe the
results of the analysis on the maintainability of refactored methods to answer RQ1.
Afterwards, we present the findings on the effect of refactorings on method-level source
code metrics to answer RQ?2.

-0.50 -0.40 -0.30 -0.20 -0.10 0.00

Figure 6.4. Correlation of maintainability and refactorings in methods

6.6.1 The Maintainability of Refactored Methods

To answer RQ1, we performed a correlation analysis between the number of refactorings
affecting the methods of the subject systems and their maintainability indices in the
previous release. Figure 6.4 depicts the Spearman correlation coefficients between the
RMI values in release x; and the number of refactorings affecting the corresponding
methods in release x;,1.

As can be seen, all the values are negative. Although the coefficients are not
particularly high, they are consistently negative and significant at the level of 0.05.
The negative values simply mean an inverse proportionality, namely that the worse the
maintainability of a method or class is (the lower its RMI value) the more refactorings
touch it (the higher the number of refactorings affecting it). There are less correlation
coefficients than releases for some systems because we were unable to calculate them
when Ref-Finder found no refactorings between two releases, which happened a couple
of times. Table 6.7 summarizes the mean correlation coefficients both for method and
class-level, their deviation and the number of evaluated intervals between releases. Tt
can be noticed that the correlation coefficients and the deviations are somewhat larger
in the case of classes, but the differences are negligible.

Answer to RQ1 at the level of methods: Based on the findings on our dataset
we can conclude that methods with poor maintainability are subject to higher number
of refactorings during their lifetime compared to those with better maintainability.

6.6.2 The Effect of Refactorings on Source Code Metrics

We found that refactorings affect poorly maintainable code more (i.e. methods), so
the questions arises again: Whether applying refactorings really improves the internal
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Method level Class level

System T e e e

Mean corr. |Deviation |Intervals| Mean corr. |Deviation |Intervals
antlr4 -0.096 0.018 4 -0.183 0.052 4
junit -0.086 0.014 6 -0.146 0.076 4
mapdb -0.163 0.014 5 -0.283 0.048 5
mcMMO -0.183 0.144 4 -0.124 0.040 3
mct -0.089 0.069 2 -0.156 0.054 2
oryx -0.103 0.025 3 -0.121 0.063 3
titan -0.134 0.081 5 -0.314 0.106 4

Table 6.7. Average Spearman correlation coefficients between RMI and number of
refactorings at method and class level

quality of the code? What are the method-level source code metrics that show the
highest improvement (i.e. decrease significantly) upon refactoring?

As before, we first calculated the metric value differences for every method between
the adjacent releases. Then, we grouped these metric difference values into two groups:
in the first group we put the metric differences of methods affected by at least one refac-
toring, and in the second group the metric differences of non-refactored methods and
finally, we analyzed which method-level metrics show significant differences between
the values of the two groups with the help of the Mann-Whitney U test.

System name CC LLOC NOS NOI
antlr4 0.049 0.000 0.002 0.001
junit 0.058 0.923 0.667 0.403
mapdb 0.010 0.003 0.965 0.002
mcMMO 0.815 0.824 0.516 0.251
mct 0.703 0.924 0.547 0.660
oryx 0.654 0.555 0.306 1.000
titan 0.601 0.016 0.003 0.000

Table 6.8. The results of the Mann-Whitney U Test (p-values) for method-level
metrics

The source code metrics listed in Table 6.8 had the lowest p-values, meaning that
the differences in the metric value changes for refactored and non-refactored methods
are the most significant for these metrics. We observed that the Number of Outgo-
ing Invocations (NOI), which can be considered as a coupling metric indeed decreases
significantly upon refactoring in accordance with the previous findings of other stud-
ies [48, 68].

But besides NOI, we found a significant decrease in size metrics as well, namely in
the case of Logical Lines of Code (LLOC) and Number of Statements (NOS). These
can be explained by the fact that typical refactorings, like extract method and pull
up method, often have a side effect of reducing the amount of source code. This
phenomena is clearly observable on these pure size related metrics.

While this finding is not really surprising, the fact that McCabe’s cyclomatic com-
plexity [63] did not show a significant correlation with the number of refactorings
applied on methods is just the opposite of what we were expecting. Our perception
was that using better code structures will lead to less complex code, but we could not
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confirm this hypothesis. It is an even more interesting finding in the light of our previ-
ous results on the effect of refactorings on the Weighted Method Complexity (WMC)
metric of classes, which shows a significant reduction upon refactorings. However, this
is not a contradiction. Consider the Eztract method refactoring for example. In this
case duplicated methods in the child classes are extracted and put into their parent
class, leading to the removal of the method from several classes and inserting it to
their parent. On one hand, this yields to reduction in the average WMC metric as
the complexity of child classes decrease, while only the complexity of their parent class
increases. On the other hand, at method-level the average McCabe’s complexity values
do not change. So the above results might indicate that refactoring operations tend to
decrease complexity at class-level, but not really at the level of methods.

It is interesting that the Clone Coverage (CC) metric also decreased, thus refac-
toring activity seems to remove copy-paste code parts in practice. This phenomena
is similar to the code size reduction, e.g. by extracting common code snippets into a
method reduces the copy-pasted code parts, too.

System name CcC LLOC NOS NOI
antlr4 0.70 0.63 0.48 0.71
junit -0.68 0.01 -0.08 0.14
mapdb -0.34 0.27 0.00 0.28
mcMMO 0.10 0.05 0.17 0.27
mct -0.15 -0.03 -0.18 -0.15
oryx -0.18 -0.14 0.31 -0.02
titan -0.09 0.16 0.21 0.33
Average -0.09 0.14 0.13 0.22

Table 6.9. CIff § effect size measures for method-level metrics

To quantify the magnitude of the differences between the metric value decreases
of the refactored and non-refactored methods, we calculated the Cliff’s delta (6) effect
size measure again. The detailed results are presented in Table 6.9. If Cliff’s ¢ is a
positive number, the metric value differences are higher in the refactored methods, while
negative value means that the metric value differences are higher in the non-refactored
methods. Generally, the Cliff’s § values are quite hectic; however, the average § values
are positive for every metric except for CC. While in case of LLOC, NOS and NOI the
majority of values are positive, only two projects have positive ¢ values for CC. This
might suggest that cloned code is decreased by other targeted changes that are not
refactorings, while refactorings often have a side effect to remove code clones as well
(e.g. extract method).

To have a better overview of the above explained phenomena, we visualized the
average size metric differences for the refactored and non-refactored methods in Fig-
ure 6.5. This boxplot clearly shows that the maximum, minimum, and average numbers
of code line reduction are far smaller in case of methods that are not refactored than
in the case of refactored methods. While the median of LLOC decrease is 2 in case
of non-refactored methods, it is two times larger (around 4) for refactored methods.
Based on these findings, we can now conclude RQ2.

Answer to RQ2 at the level of methods: We found that size (LLOC, NOS),
coupling (NOT), and clone (CC) related metrics decrease the most in refactored meth-
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Figure 6.5. Boxplot of the LLOC metric decreses in the refactored and
non-refactored methods

ods. Regarding the volumes of the differences, we can say that for these metrics the
average Cliff’s 9 values are mostly positive suggesting a small to medium effect size on
the metric decreases in the refactored methods compared to the non-refactored ones.

6.7 The Assessment of the Manually Validated Dataset

This section describes how we utilized the improved dataset and gives the findings
regarding to software maintainability and source code metrics. However, we have done
the research for answering RQ2 (which source code metrics are affected the most by
refactoring and to what extent), the paper has not been accepted until the author
finished writing this thesis. Thus, we give only a brief overview of our results regarding
to the source code metrics and their change upon refactorings in Section 6.7.2.

6.7.1 Maintainability Analysis

To check whether source code elements with lower maintainability subject to more
refactorings, we followed a method, which differs from the one described in Section 6.4.

Instead of correlation analysis, we used the Man-Whitney U test for the RMI values
of code elements in the same way we applied it for metric value differences before to
answer RQ2. More precisely, we took all the RMI values in release x;_; for each system,
where x; is the release selected for manual validation. We formed two groups by RMI
values based on the fact if a corresponding source code entity was affected by any
refactorings in release z;. So we mapped the source code entities (i.e. classes and
methods) from version z; 1 to x; and put all the RMI values for the entities in z;
into the not affected group if the entity had zeros in all refactoring columns in z;,
otherwise we put the RMI values of the entity into the affected group. Once we had
these two groups we run the Mann-Whitney U test. The p-value of the test helped us
judging whether there is significant difference in the maintainability values between the
source code entities subjected to refactoring and the entities unaffected by refactoring.
Moreover, we used the mean rank values produced by the test to decide the direction
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of the differences, namely whether the maintainability value is lower or higher within
one of the groups.

Firstly, to get an impression about the difference of the RMI of the refactored and
non-refactored code elements we considered the average RMI values of the entities
falling into these groups. The result is shown in Figure 6.6.
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Figure 6.6. Average RMI values within the refactored and non-refactored entities

Yellow columns denote the average RMI values within methods, while black color
is for classes. The ref and noref marks next to the systems stand for the two groups,
ref is the first group of entities (i.e. the ones affected by refactorings) and noref is the
second group. As can be seen, all the average maintainability values of the refactored
group (regardless whether for classes or methods) is much lower than the non-refactored
group. What is more, almost all the average maintainability values for non-refactored
classes and methods are positive (except for titan and classes of mcMMO), while the
values related to refactored entities are negative. Given that positive RMI value means
above average maintainability, negative RMI means maintainability below the average,
it is clear that the source code entities targeted by refactorings have lower maintain-
ability than the average. We note that code size affects the RMI values, thus further
examinations are required to find out whether large code size in itself implicates more
refactoring or not.

To formally evaluate the above hypothesis, we performed a Mann-Whitney U test
on the RMI values of the two groups defined above. We executed the test on each
system both for the groups of classes and methods. Tables 6.10 and 6.11 summarize
the results of the test runs.

The main result of the test is the p-value (two-tailed) shown in the second column.
This indicates whether the null-hypothesis should be rejected, which states that there is
no significant difference between the RMI values of the entities affected by refactorings
in adjacent releases and the RMI values of non-refactored entities. Thus a p-value below
0.05 indicates that the hypothesis should be rejected and the alternative hypothesis
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System | p-value | N° noref cl. | N° ref cl. | M. rank™"¢f | M. rank”¢/ | Cliff’s §
antlrd 0.00001 385 23 210.61 102.26 0.53
Jjunit 0.00628 646 9 330.38 156.83 0.53
mapdb 0.01186 415 4 211.46 58.37 0.73
mcMMO 0.27604 85 4 45.65 31.25 0.32
mct 0.00000 2013 15 1019.94 284.60 0.73
oryx 0.04467 489 15 254.78 178.13 0.30
titan 0.00009 1145 13 583.61 217.50 0.63

Table 6.10. The Mann-Whitney U test results for refactored and not refactored
classes

should be accepted, namely that there is a significant difference in the RMI values
between the two groups.

As can be seen all the p-values are well below 0.05, except for mcMMO and mapDB
at method granularity, so we can conclude that according to the statistical test, there
1s a significant difference in the RMI values between the source code entities being
refactored and the entities not affected by any refactoring.

System | p-value | N° noref mth. | N° ref mth. | M. rank™°"¢f | M. rank"¢f | Cliff’s §
antlr4 0.00000 3104 40 1583.10 750.16 0.53
Jjunit 0.00466 2253 12 1135.84 600.21 0.47
mapdb 0.20610 3358 3 1681.63 973.00 0.42
mcMMO | 0.06529 813 5 410.69 215.40 0.48
mct 0.00346 11068 16 5545.88 3205.34 0.42
oryx 0.00034 2333 19 1181.03 620.82 0.48
titan 0.00530 7950 17 3987.32 2431.26 0.39

Table 6.11. The Mann-Whitney U test results for refactored and not refactored
methods

To tell something about which group has higher RMI values, thus better maintain-
ability, we should observe the mean ranks. The column Mean rank” shows the mean
rank values within the refactored groups, while Mean rank™" ¢/ displays the mean ranks
in the not refactored groups. If the mean rank value of one group is higher, it means
the RMI values in that group is significantly higher than in the other group. We report
Cliff’s 0 values in the last columns. Since in each row of both tables the mean ranks
of refactored group are lower than the not refactored group and all the Cliff’s § values
are positive, we can answer RQ1.

Answer to RQ1 assessing the improved dataset: The maintainability of
source code entities subjected to refactorings is significantly lower than the maintain-
ability of not refactored entities according to the manually validated dataset.

To compare this result to the findings of the previous studies (Sections 6.5 and 6.6),
we can say that the early results seem to remain valid after using the validated dataset.
In our not published work we did a more detailed comparison between the results of
the base and the improved dataset.

6.7.2 Source Code Metrics Analysis

To study the effect of code refactoring on metrics we used the approach described in
Section 6.4: we calculated the metric differences between versions z;_; and x; and
run the Mann-Whitney U test on the differences (we refer to this test as MW UP/),
Besides the above, we run the Man-Whitney U test on the pure metric values in
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version z;_; the same way like for RMT values before (for now MW U?"), which helps
us discover what are those source code properties the developers pay attention to find
refactoring candidates. We calculated the Cliff’s § effect size measure as well (§7%//
and 77 accordingly). We investigated the patterns we revealed from the tests above
and give an overview about our main findings.

The results show that the LOC values of refactored classes are significantly larger
in 6 out of the 7 subject systems. Thus developers tend to select and refactor large
classes, what is not surprising. LLOC (Logical Lines Of Code) and NOS (Number of
Statements) are also size metrics (and strongly correlate with LOC), thus their strong
effect is also not surprising.

Another group of metrics showing clear patterns are the coupling metrics: RFC
(Response set For a Class), CBO (Coupling Between Object classes), CBOI (Cou-
pling Between Object classes Inverse), NII (Number of Incoming Invocations) and
NOI (Number of Outgoing Invocations). In 4 out of 7 cases both the metric values and
their changes showed a significant difference, while in 1-1 case only the metric values or
their changes showed a significant difference between the refactored and non-refactored
group of classes.

The third group of metrics with remarkable patterns are the complexity metrics:
WMC (Weighted Methods per Class), NL (Nesting Level) and NLE (Nesting Level
Else-If). For all three metrics in 4 out of 7 systems we found significant differences
both in the metric values and their changes, while in 2 and 1 cases (for WMC, and
NL, NLE, respectively) only the metric values differed between the refactored and
non-refactored group of classes.

The comment, code clone related and inheritance metrics do not show clear pat-
terns.

Considering the effect size, what is also remarkable is that all the available 5§77
values are positive, which reflects that the appropriate metric values in the refactored
group is much likely to be larger than in the non-refactored group. Although most
of the values reflect a medium level effect size, such high values like 0.85 (CBOI for
mapdb) and 0.84 (RFC for mct) also appear. It suggests that coupling is one of
the main factors that developers consider when they select the targets for refactoring
(which is in line with other research results [68]). Very similar phenomenon applies to
size (i.e. LLOC, LOC, NOS) and complexity (i.e. WMC, NL, NLE) metrics in general.

An interesting observation can be made in connection with the CLOC (Comment
Lines Of Code) metric. It measures the amount of comments in a class, and for 5
out of the 7 systems its average value is larger in the classes that are refactored in
version x; (it is even true for the CD — Comment Density metric — for 4 out of 7
cases). Thus developers refactor classes with more comments, which might seem to
be a contradiction at first glance. However, comments are often outdated, misleading
or simply comment out unnecessary code, that are all indicators of poor code quality,
thus refactoring is justified.

We also compared these results with our previous findings performed on the base
refactoring dataset, where just like here size, complexity and coupling metrics showed
the highest differences in their distributions within the refactored and non-refactored
groups. However, while previous results displayed 2-4 significant cases out of 7, we
had 3-6 significant cases in the new tests on the improved dataset, with much stronger
p-values, thus we can be much more confident in the results. We found one major
difference as well; the clone related metrics (CI at class-level and CC at method-level)
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are much less significant in the analysis of the improved dataset.

6.8 Threats to Validity, Limitations

In this section, we summarize the threats to validity of our study.

From the point of view of the researches on the base dataset, we note that Ref-
Finder, the tool we used to mine refactorings from the selected projects, is not perfect.
According to its authors the precision of the tool is 79% [74], which means there
might be false positive refactorings included in our dataset. To mitigate this threat
we performed the manually validation of our entire dataset and eliminate false positive
instances. However, in our subject systems we found lower precision after the manual
validation than the authors of Ref-Finder published, the results are in line with ones
we get on the base dataset, and even we can be much more confident in our findings.

The key attribute in the datasets is the fully qualified name of the method with
parameter descriptions. If a source code element is renamed between two consecutive
releases, we do not track it and its metrics, and handle it as a new one in the next
release. Following such renamed entities throughout code versions is a really hard task
in general, but the number of renaming is relatively small compared to other changes,
thus we consider this to be a minor threat.

In addition, there might be arbitrary changes between the two examined releases of
the systems, not just refactorings. Therefore, we cannot be sure that changes in a source
code element that is affected by a refactoring are only due to the refactoring itself, or
other unrelated modifications cause it. The optimal solution would be to find those
particular commits that introduce the refactoring, although there is no guarantee that
the commit contains only code related to the refactoring itself. Finding those commits
would require running Ref-Finder for each subsequent revision between two releases,
which is obviously unfeasible. However, during manual validation we found that most
of the refactored source code elements did not contain any additional change, thus the
impact of this threat is limited.

Another threat to our results is that we investigated only seven Java systems, which
may not represent correctly the general characteristics of all of the software systems
considering refactoring activities in practice. Moreover, since manual validation re-
quires huge human effort, the number of refactoring instances in the improved dataset
is also limited.

As we employed human evaluation in the manual validation, we cannot be 100%
sure that each and every refactoring instance was correctly classified by the authors.
However, both evaluators are very experienced researchers and also software developers
that mitigates this threat. Moreover, all the authors consulted about refactoring in-
stances that were not straightforward to classify, and resolved these cases by majority
voting.

By manual validation we can ensure the high precision of the refactoring instances
in the improved dataset, however, we cannot guarantee complete recall. It is possible
that there are true refactoring instances that Ref-Finder did not find, thus we also
omitted these during the manual validation, what might cause a bias in the evaluation.
Nonetheless, the extraction rules of Ref-Finder are quite conservative, thus the tool is
more likely to report false positive instances than to omit true negative ones. Therefore,
the effect of missed refactoring instances is low.
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Regarding the statistical analysis, the relatively small number of refactoring in-
stances results in unbalanced datasets, which might cause a loss of statistical power.
The unbalanced property comes from the fact that there could be much less refactored
source code elements than unaffected elements and the tests compare the properties of
these two sets, the latter one containing a much larger number of samples. However,
we chose the Mann-Whitney U method to perform the hypothesis testing, which is not
sensitive to population sizes and is able to handle highly unbalanced datasets applying
exact distributions of small samples.

6.9 Summary

In this chapter, we present a publicly available dataset which is intended to assist the
research of refactoring activities in practice. The dataset contains fine-grained refactor-
ing information extracted by the Ref-Finder tool and more than 50 types of source code
metrics for 37 releases of 7 Java open-source systems at class- and method-level. We
also store exact version and line information in the dataset to support reproducibility.
In addition to the source code metrics, the dataset includes the relative maintainabil-
ity indices of source code elements. The dataset is available at the PROMISE data
repository. Another contribution is the extension of the Ref-Finder tool that allows
batch-style analysis and result reporting attached to the source code elements.

By utilizing the constructed dataset, we investigated the relationship between main-
tainability and refactoring activities, and we also assessed how refactorings affect dif-
ferent source code metrics at class- and method-level. We found that classes with poor
maintainability are subject to more refactorings in practice than classes with higher
technical quality. Considering metrics, the number of clone instances, complexity, and
coupling have improved, although comment related metrics decreased. We found a
significant decrease in size metrics as well.

The result of method-level assessment regarding to software maintainability is in
line with the class-level finding. We found that methods with poor maintainability are
subject to more refactorings than methods with higher maintainability. Clone coverage,
size metrics, and the number of outgoing invocations decreased most intensively in
the methods subjected to frequent refactorings. This might indicate that doing code
refactoring in practice indeed mitigates unwanted code characteristics, such as clones,
size, or coupling and result in more maintainable software systems.

The other main contribution of this work is the manually validated subset of our
original dataset. It contains one manually validated release for each of the 7 systems
from which we expect better quality results. This dataset was also made publicly
available in PROMISE. Although, the manually validated refactoring dataset is in itself
a major contribution, we also utilized it to replicate and extend our earlier studies and
re-examine the connection between maintainability and code refactoring as well as the
distribution of the individual source code metrics in the refactored and non-refactored
source code elements. The results showed that the overall average maintainability of
refactored entities was much lower in the pre-refactoring release than in the entities
subjected to no refactorings. This strongly suggests that refactoring is indeed used
in practice on deteriorated entities whether it is a conscious activity of the developers
or not. Moreover, we were interested in how the distribution of typical source code
metrics looks like in the refactored and non-refactored source code elements. We found
that the size, complexity and coupling-related metric values were significantly higher
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in the source code elements being refactored. We could also confirm that developers do
not only select their targets for refactoring based on these metrics, but they even try to
control and reduce their values, as these metrics grow much slower (or even decrease)
in the source code elements touched by refactorings.

Even though this work presents fundamental research, the results can be used as a
first step towards understanding refactoring practices more deeply. Having full under-
standing of developers’ actions, we can propose new methods and tools for them that
are aligned with their current habits and help in performing refactoring faster, cheaper,
and better.

The author’s contributions. To compose the refactoring dataset, the author im-
proved Ref-Finder with an automatic batch analysis feature, i.e., to be able to auto-
matically extract refactorings not just between two adjacent versions of a software but
between any number of adjacent version pairs. The author also implemented an export
feature in Ref-Finder that writes the revealed refactorings and all of their attributes
into CSV files for each refactoring type. The author took part in the dataset construc-
tion by mapping the refactorings to the source code elements and half of the manual
validation is also his work. He participated in the elaboration of the analysis method-
ology and in the evaluation of the results. The publications related to this chapter
are:

¢ I. Kadar, P. Hegediis, R. Ferenc, T. Gyimo6thy. A Code Refactoring Dataset and
Its Assessment Regarding Software Maintainability. In Proceedings of the 23rd
IEEFE International Conference on Software Analysis, Evolution, and Reengineer-
ing, pages 599-603. TEEE Computer Society, 2016.

¢ I. KAdar, P. Hegedis, R. Ferenc, T. Gyimo6thy. Assessment of the Code Refac-
toring Dataset Regarding the Maintainability of Methods. In International Con-
ference on Computational Science and Its Applications, volume 9789 Lecture
Notes in Computer Science (LNCS), pages 610-624. Springer International Pub-
lishing, 2016.

¢ I. Kadar, P. Hegedis, R. Ferenc, T. Gyimo6thy. A Manually Validated Code
Refactoring Dataset and Its Assessment Regarding Software Maintainability. In
Proceedings of the The 12th International Conference on Predictive Models and
Data Analytics in Software Engineering, pages 10-14. ACM, 2016.

¢ P. Hegediis, I. Kadar, R. Ferenc, T. Gyim6thy. Empirical Evaluation of Software
Maintainability Based on a Manually Validated Refactoring Dataset. Second
revision submitted to journal Inmformation and Software Technology. 44 pages.
Elsevier B.V.
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“Elegance is not a dispensable luxury, but a fac-
tor that decides between success and failure.”

— Edsger Dijkstra

Conclusions

In this thesis, we covered two main topics: symbolic execution and refactoring activity
analysis.

In the field of symbolic execution, we focused on the handling of the exponentially
growing state space and on making the detection of runtime errors more efficient. To
summarize our work, we successfully applied the symbolic execution technique on real-
life Java systems using the proposed method-level symbolic execution and made it more
efficient by a novel constraint building mechanism. We also investigated the possible
state space limitations while giving new algorithms in order to prioritize the paths to
explore. As a result of this research work, we developed new methods and a tool that
is now part of a commercial static source code analysis toolchain.

In refactoring activity analysis, we revealed the connection between practical refac-
toring activity in open-source Java systems and the maintainability quality indicator.
We also showed the connection with other quality attributes (source code metrics),
assessed at both class- and method-level. We are not aware of any publications that
performed similar investigations at method-level granularity. To perform the assess-
ment, we built a refactoring dataset that contains detailed refactoring information
mapped to classes and methods and more than 50 types of source code metrics as well.
We made this dataset publicly available together with its manually validated subset.
We believe that the possible utilization of the assembled datasets goes much beyond
our investigations presented in this thesis, and we would like to encourage the research
community to use it to reveal more complex phenomena regarding practical refactoring.

Despite the results of our research efforts, there is still work left to be done. Here
we summarize some possible future research directions.

The presented approach to symbolic execution is not limited to runtime exception
detection. It would be promising to utilize the potential of the technique by imple-
menting other types of error and rule violation checkers. E.g. we could detect special
types of infinite loops, dead or unused code parts, or even SQL injection vulnerabilities.
We believe that one of the limitations here is the explosion of the state space. If we
would be able to handle the size of the state space efficiently or keep it reduced, that
would open a large number of opportunities. In the future, we plan to include more
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systems into the empirical experiments in order to try and find the optimal depth and
state number limits of the symbolic execution tree in general to make RTEHunter and
other symbolic execution engines more efficient. We also plan to develop more efficient
search strategies by adding new features and using other machine learning approaches.
For example, we believe that the inclusion of including test coverage information to
the search could be a promising approach. We would also like to validate the errors re-
ported by the RTEHunter to find out more about its precision. The manual validation
would need enormous efforts, but it is also possible to write a framework that executes
those paths that led to the reported issues to enable automatic decision whether an
issue is true positive or not. Regarding to constraint building, optimization would
be an interesting research area: building and satisfying constraints at each and every
branching point is necessary to avoid unfeasible paths, but it is also very time and
memory consuming. For example, making a heuristic that can decide that it is worth
to satisfy the path condition at a point might worth the research effort. It would also
be interesting to evaluate the approach that runs symbolic execution without any con-
straint building and satisfying in the first round, then in the second round it builds
and satisfies path conditions only for the paths that led to an issue reported in the first
round.

In the topic of practical refactoring activity investigation, we plan to continuously
extend the number of systems in the improved dataset as well as the number of manu-
ally evaluated true positive refactoring instances, making the dataset more valuable to
support further research. It would have been interesting to see how our results change
when only considering individual refactoring types, but unfortunately, we do not have
enough refactoring data in the validated, improved dataset to be able to derive mean-
ingful results at this fine-grained level. Thus, continuous extension of the manually
validated instances is one of our major goals, but a community supported common ef-
fort would also be very welcome. We are planning to reveal more complex phenomena
in connection with practical refactorings, especially the relationship between bugs and
refactoring activities.

Personally, these years of research have given me code-quality-centered thinking in
daily software development. I firmly believe that it is worth energy to find and code
solutions that support better quality, rather than apply instant ones. Elegance always
pays off. Tt results in a program that is easier to understand, debug and maintain, and
that is where the real value comes in. I have learnt a lot of technical details about
the Java programming language especially in the first part of our research, and I also
understood the importance of quality control. I will always support the fight for source
code quality in both industry and research.
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Summary in English

The research work behind this thesis is inspired by the wish to develop high quality
software systems in industry in a more effective and easier way. The thesis consists
of two main topics: the utilization of symbolic execution for runtime error detection
and the investigation of practical refactoring activities. Both topics address the area of
program source code quality. The result statements have been grouped into four major
thesis points. The relation between thesis points and supporting publications is shown
in Table A.1.

Part I - Advances in symbolic execution for runtime error detection.

The first part of the thesis deals with symbolic execution and with the question
of how to apply this technique efficiently for detecting runtime faults in Java software
systems.

1. A method-level symbolic execution technique for runtime error detec-
tion in real-world software systems.

The contributions of this thesis point are related to the utilization of symbolic
execution for runtime error detection and are discussed in Chapter 3.

Most of the runtime failures of a software system can only be revealed during test
execution, which has a very high cost and the maintenance activities, particularly
bug fixing of the system also require a considerable amount of resources. Our
purpose was to develop a new method and tool, which supports this phase of the
software engineering lifecycle by detecting runtime exceptions in Java programs
(such as NullPointerException or ArithmeticException) and finding dangerous
parts in the source code that could behave as time-bombs during further devel-
opment.

We use the technique called symbolic execution [53] to implement an approach
that is able to explore the possible execution paths of the program. The run-
time environment we implemented on top of Symbolic PathFinder |75] starts the
symbolic execution for every method of an arbitrary Java system keeping the
state space reduced. If the symbolic execution starts from the entry point of the
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program i.e. from the main() method only, the state space will explode before
the execution reaches the majority of the code. By executing the methods of
the program symbolically, we can determine those execution branches that throw
exceptions, and our algorithm is also able to generate concrete test inputs that
cause the program to fail in runtime. Besides small example codes, we evaluated
our algorithm on three open source systems and found multiple runtime issues.
We found multiple errors in the log4j system that were also reported as real bugs
in its bug tracking system.

The author’s contributions. The author performed the exploration of symbolic
execution and the Symbolic PathFinder execution engine for the purpose of run-
time exception detection. The idea of method-level symbolic execution and the
entire implementation of the runtime environment which performs the analy-
sis is the author’s work. He performed the detection of runtime exceptions by
implementing a module in Symbolic PathFinder which also gives a stack trace
leading to the found error and the related parametrization as a test input that
crashes the program. The investigation of the found runtime exceptions and
proving their validity by the bug reports, found in the bug tracking systems of
the analyzed projects was also the author’s role. He contacted the authors of
Symbolic PathFinder several times to report some blocker issues that held back
the research. The publications related to this thesis point are:

¢ I. KAdar, P. Hegedts, R. Ferenc. Runtime Exception Detection in Java
Programs Using Symbolic Execution. In Proceedings of the 13th Symposium
on Programming Languages and Software Tools — SPLST’13, pages 215-229,
2013.

¢ I. Kadar, P. Hegedts, R. Ferenc. Runtime Exception Detection in Java
Programs Using Symbolic Execution. In Acta Cybernetica, pages 331-352,
2014.

. A constraint building mechanism for symbolic execution to improve
runtime error detection accuracy.

The contributions of this thesis point are related to the utilization of symbolic
execution for runtime error detection and are discussed in Chapter 4.

Symbolic Checker, the symbolic execution engine developed at the Software En-
gineering Department of the University of Szeged is able to detect runtime errors
(such as null pointer dereference, bad array indexing, division by zero) in Java
programs without running the program in real-life environment. According to
the theory of symbolic execution, the program does not run with specific input
data, but the inputs are handled as symbolic variables. When the execution of
the program reaches a branching condition containing a symbolic variable, the
execution continues on both branches. At each branching point, both the af-
fected logical expression and its negation are accumulated on the true and false
branches accordingly, thus all execution paths will be linked to a unique formula
over the symbolic variables called path condition.

We introduced a novel constraint system construction mechanism, which im-
proves the accuracy of the runtime errors found by Symbolic Checker by treating
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the assignments in the program as conditions too. Thus we can track the depen-
dencies of the symbolic variables extending the original principles of path condi-
tion building. The presented method also substitutes the symbolic variables with
concrete values if the built constraint system unambiguously determines their
value. As a result, it enables the detection of runtime errors that would not be
possible using a conventional symbolic execution tool, and by concreting symbolic
variables the size of the symbolic execution tree can be reduced as well, which
also implies improvements in performance. We demonstrate the advantages of
our algorithm through example codes emphasizing the difference compared to
a conventional symbolic execution tool and to Symbolic Checker without using
the novel constraint building mechanism. We also found runtime errors in large,
real-life systems that would not have been possible with the traditional constraint
building mechanism.

The author’s contributions. The author took part in the design and development
of the Symbolic Checker symbolic execution engine as the lead developer. He
devised the concept of the proposed constraint building mechanism. He imple-
mented and integrated it into the symbolic execution engine. The evaluation of
the proposed method by comparing it to the conventional approach and perform-
ing tests on example codes and on real-life systems are also the author’s work.
The publication related to this chapter is:

¢ I. Kadar, P. Hegedis, R. Ferenc. Adding Constraint Building Mechanisms
to a Symbolic Execution Engine Developed for Detecting Runtime Errors.
In Proceedings of the International Conference on Computational Science
and Its Applications — ICCSA, volume 9159 Lecture Notes in Computer
Science (LNCS), pages 20-35, Springer International Publishing, 2015.

3. Novel search strategies for symbolic execution and empirical investi-
gation of state space limitations.

The contributions of this thesis point are related to the utilization of symbolic
execution for runtime error detection and are discussed in Chapter 5.

Our symbolic execution engine, at the Department of Software Engineering at
the University of Szeged further developed and received the new name of RTE-
Hunter. According to the theory of symbolic execution, RTEHunter builds a tree,
called symbolic execution tree, composed from all the possible execution paths
of the program. RTEHunter detects runtime issues by traversing the symbolic
execution tree and, if a certain condition is fulfilled, the engine reports an issue.
However, the number of execution paths increases exponentially with the number
of branching points, thus the exploration of the whole symbolic execution tree is
impossible in practice. To overcome this problem, different kinds of constraints
can be set up over the tree. E.g. the number of symbolic program states, the
depth of the execution tree, or the time consumption can be limited. Because
of the path explosion problem, the limitation of the state space of the symbolic
execution is of major importance in this scenario. Our goal in this work is to
find the optimal parametrization of RTEHunter in terms of maximum number
of states, maximum depth of the symbolic execution tree, and search strategy in
order to find more runtime issues in less time.

86



Chapter A. Summary in English

The empirical investigations on three open-source Java systems showed that ad-
justing the maximum number of states for the symbolic execution trees directly
impacts the execution time, but not the number of found issues. On the other
hand, the limitations of the depth of the tree has more importance in the de-
tection of runtime errors. We found different optimal depth limits for the three
different systems, but we can conclude that errors occur more often in the state
depth of 0 to 60 compared to the deeper levels, but it also highly depends on
the applied search strategy. We propose two novel search strategies that strive to
guide the symbolic execution towards the more error prone source-code fragments
using both static and dynamic information. The null-heuristic search strategy
performs better by finding up to 16 % more errors within the same time frame
than the default depth-first search. The linear regression-based heuristic also
outperforms DFS, it detects more than twice as many errors in ArgoUML and
Jetspeed.

The author’s contributions. The author performed the entire empirical analysis
to find the connection between the maximum number of states for the symbolic
execution trees, the analysis time and the number of issues found by running
RTEHunter many times on three open source systems. He also performed many
experiments to find the optimal depth limits for each system and revealed the
depth level where most errors can be found. The idea of the two search strategies
for the state space exploration, their implementation and their entire evaluation
are the author’s work. The publication related to this chapter is:

¢ I. Kadar. The Optimization of a Symbolic Execution Engine for Detecting
Runtime Errors. In Acta Cybernetica, pages 573-597, 2017.

Part IT - Investigation of refactoring activities based on a new dataset.

In the second part of the thesis, we deal with how developers apply refactoring
operations in practice. To perform the investigation, we assembled a publicly available
dataset of refactorings found in open-source Java systems. This dataset does not serve
only our research, but we would also like to encourage the research community to utilize
it in the future.

4. Assessment of refactoring activities on classes and methods based on
a new public dataset.

The contributions of this thesis point are related to the investigation of prac-
tical refactoring activities based on a refactoring dataset and are discussed in
Chapter 6.

Source code refactoring is a popular and powerful technique for improving the
internal structure of software systems. The concept of refactoring was introduced
by Fowler [29] and nowadays I'T practitioners think of it as an essential part of the
development process. Despite the high acceptance of refactoring techniques by
the software industry, it has been shown that practitioners apply code refactoring
differently than Fowler originally suggested and we lack empirical research results
on the real effect of code refactoring and its applications.

We present an excessive open dataset of source code metrics and applied refactor-
ings through several releases of 7 open-source Java systems intended to assist the

87



Chapter A. Summary in English

research of refactoring activities in practice. The dataset contains fine-grained
refactoring information revealed by the Ref-Finder open-source refactoring ex-
traction tool [52] and more than 50 types of source code metrics for 37 releases of
7 open-source systems at class- and method-level. To construct the dataset, we
extended the Ref-Finder tool to allow batch-style analysis and result reporting
attached to the source code elements as well.

By utilizing the dataset, we investigated the relationship between maintainability
and refactoring activities, and we also assessed how refactorings affect different
source code metrics at both class- and method-level. We found that classes with
poor maintainability are subject to more refactorings in practice than classes
with higher technical quality. Considering metrics, number of clone instances,
complexity, and coupling have improved, although comment related metrics de-
creased. We found a significant decrease in size metrics as well. At method-level,
we found that methods with poor maintainability are subject to more refactorings
in practice than methods with higher technical quality. The clone coverage, size
metrics, and number of outgoing invocations decreased the most intensively in
the methods subjected to frequent refactorings, which might indicate that doing
code refactoring in practice indeed mitigates unwanted code characteristics such
as clones, size, or coupling, and results in more maintainable software systems.

Moreover, we present a manually validated subset of the dataset of applied refac-
torings mentioned above that helps ensure the high precision of this improved
dataset. Using this data, we studied several aspects of the refactored and non-
refactored source code elements (classes and methods). The results on the man-
ually validated dataset are in line with the numbers on the base dataset, though
they are much more consistent and significant for more subject systems. The
reason for this is that the preliminary tests were biased by the many false pos-
itive refactoring instances that have been removed from the validated dataset.
The results showed that the overall average maintainability of refactored entities
was much lower in the pre-refactoring release than the entities subjected to no
refactorings. Size, complexity, and coupling metrics show the highest differences
in their distribution within the refactored and non-refactored groups.

The possible utilization of the assembled datasets goes way beyond our investi-
gations. We made them publicly available at the PROMISE data repository [64]
to encourage the research community to reveal more complex phenomena in con-
nection with practical refactorings.

The author’s contributions. To compose the refactoring dataset, the author im-
proved Ref-Finder with an automatic batch analysis feature, i.e., to be able to
automatically extract refactorings not just between two adjacent versions of a
software but between any number of adjacent version pairs. The author also im-
plemented an export feature in Ref-Finder that writes the revealed refactorings
and all of their attributes into CSV files for each refactoring type. The author
took part in the dataset construction by mapping the refactorings to the source
code elements and half of the manual validation is also his work. He partici-
pated in the elaboration of the analysis methodology and in the evaluation of the
results. The publications related to this chapter are:

¢ I. Kadar, P. Hegediis, R. Ferenc, T. Gyimothy. A Code Refactoring Dataset
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and Its Assessment Regarding Software Maintainability. In Proceedings of
the 23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, pages 599-603. IEEE Computer Society, 2016.

¢ I. Kadar, P. Hegediis, R. Ferenc, T. Gyimo6thy. Assessment of the Code
Refactoring Dataset Regarding the Maintainability of Methods. In Interna-
tional Conference on Computational Science and Its Applications, volume
9789 Lecture Notes in Computer Science (LNCS), pages 610-624. Springer
International Publishing, 2016.

¢ I. Kadar, P. Hegediis, R. Ferenc, T. Gyimo6thy. A Manually Validated Code
Refactoring Dataset and Its Assessment Regarding Software Maintainabil-
ity. In Proceedings of the The 12th International Conference on Predictive
Models and Data Analytics in Software Engineering, pages 10-14. ACM,
2016.

¢ P. Hegedtis, I. Kadar, R. Ferenc, T. Gyimothy. Empirical Evaluation
of Software Maintainability Based on a Manually Validated Refactoring
Dataset. Second revision submitted to journal Information and Software
Technology. 44 pages. Elsevier B.V.

Here, we also summarize the main publications related to the various thesis points
in the table below.

No. [ [96][[04] 1971 T[93] T[98] [[99] [[95]

Wi N =
[ ]

Table A.1. Thesis contributions and supporting publications

89



Magyar nyelvi osszefoglalo

A disszertacioban kozzétett kutatasi munkat az inspiralta, hogy hatékonyabban és
kénnyebben tudjunk magas mindségi szoftverrendszereket elGallitani az ipari szoftver-
fejlesztésben. A disszertacio két téméat oOlel fel: szimbolikus végrehajtas felhaszndldsdt
futdsidejd hibdk detektdldsa céljabol, valamint refaktoring tevékenységek vizsgdlatdt a
gyakorlatban. Mindkét témakor a forraskdod minéség teriiletén helyezhets el. Kuta-
tasaink eredményét négy tézispontba szerveztiik. Az egyes tézispontokat alatdmasztod
publikacidkat a B.1 tablazat foglalja Gssze.

I. rész - Uj eredmények a szimbolikus végrehajtas alkalmazasaban futasidejii
hibak detektalasa céljabol.

A disszertéacio els6 része a szimbolikus végrehajtas statikus kédelemzd technikaval,
illetve annak felhasznalasaval foglalkozik abbodl a szempontbol, hogy hogyan tudjuk
hatékonyan alkalmazni futasideji hibak megtalalasdra nagy méretid Java nyelvid prog-
ramokban.

1. Metédus szintii szimbolikus végrehajtas futasideji hibak detektalasara
valés méretii szoftverrendszerekben.

Ezen tézispont eredményei a szimbolikus végrehajtas futasideji hibadetektalasra
torténd alkalmazasahoz tartoznak és a 3. fejezetben targyaltuk részletesen.

A futasidejd hibak tobbsége gyakran csak teszteléssel derithetd fel. A tesztelés
azonban rendkiviil koltséges, illetve a karbantartasi munkék, kiilondsen a hibaja-
vitas szintén jelentGs koltségeket emészt fel. A célunk az volt, hogy kifejlessziink
egy olyan modszert és eszkozt, amely a szoftverfejlesztési folyamat fenti fazisait
tamogatja azaltal, hogy futasideji kivételeket (mint példaul NullPointerExcept-
ion vagy ArithmeticException) detektal Java programokban, illetve olyan veszé-
lyes kodrészletekre mutat ra, amelyek mintegy id&zitett bombaként viselkednek
a fejlesztés késGbbi szakaszaiban.

A szimbolikus végrehajtas programelemzé technikat [53] hasznaltuk fel arra, hogy
megvalositsuk ezt az eszkozt. Szimbolikus végrehajtassal be tudjuk jarni a prog-
ram lehetséges végrehajtasi itvonalait. Azonban ahhoz, hogy a program végre-
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hajtasi itvonalaibol all6 allapottér mérete kezelhet6 maradjon, egy olyan futtato-
kornyezetet valositottunk meg, amely a Symbolic PathFinderre [75] felhasznalasa-
val tetszéleges Java program metodusait kiilon-kiilon, egyesével képes szimbolikus
végrehajtassal elemezni. Ha hagyomanyosan alkalmaznénk ezt a technikit, vagy-
is kizarolag a program belépési pontjat jelenté main() metodusbdl inditanank az
elemzést, az allapottér kezelhetetlen méretiire n6ne mar az elemzés elején, ezért a
programkod tilnyomo részét el sem érnénk. Azaltal, hogy a program metodusait
szimbolikusan végrehajtjuk, meghatarozzuk azokat a végrehajtési itvonalakat,
amelyek kivételt dobnak. Ezen feliil teszteseteket is generdlunk, amelyek ezeken
az Gtvonalakon futtatjak programot elérve annak leallasat a kivétel dobasa mi-
att. Amellett, hogy kisebb példakodokon teszteltiik az algoritmust, harom nyilt
forrasu rendszert is leelemeztiink, amelyekben szintén talaltunk potencialis futas-
ideji hibakat. A kifejlesztett modszer helyessége és hasznossaga azzal igazolhato,
hogy a log4j naplozokonyvtar hibakévetd rendszerében tébb olyan hibajelentést
is taldltunk, amelyek okat az altalunk fejlesztett eszkoz is megtalalt.

A szerzd hozzdjdruldsa az eredményekhez. A szerz6 térképezte fel a szimbolikus
végrehajtds modszerét és a Symbolic PathFinder végrehajté motor lehet&ségeit,
illetve azt, hogy hogyan alkalmazhat6 mindez futasideji programhibak megtalala-
sara. A metddus szintd szimbolikus végrehajtas kidolgozasa és a futtatokornyezet
megvaldsitasa, ami elvégzi az elemzést, teljes egészében a szerz6 munkija. Az 6
érdeme a futasideji hibak detektalasa azzal, hogy megvaldsitott egy 1j modult a
Symbolic PathFinderben, ami visszaadja a hibara vezet6 végrehajtasi dtvonalat
és az elemzett metodusnak ehhez az tvonalhoz tartozd paraméterezését, amely
tesztinputként felhasznalhato. A megtalalt futasideji kivételek atvizsgalasa és
azok érvényességének bizonyitasa azzal, hogy megkereste Gket az elemzett progo-
ramok hibakdévetd rendszereiben szintén a szerzd munkaja volt. A szerzé szamos
alkalommal felvette a kapcsolatot a Symbolic PathFinder fejlesztGivel, hogy olyan
blokkol6 hibakat jelentsen be, amelyek hatraltattak a kutatast.

A tézisponthoz tartozéd publikaciok:

¢ I. Kadar, P. Hegedtis, R. Ferenc. Runtime Exception Detection in Java
Programs Using Symbolic Execution. In Proceedings of the 15th Symposium
on Programming Languages and Software Tools — SPLST’13, pages 215-229,
2013.

¢ I. KAdar, P. Hegedts, R. Ferenc. Runtime Exception Detection in Java
Programs Using Symbolic Execution. In Acta Cybernetica, pages 331-352,
2014.

. Uj feltételrendszer épité mechanizmus szimbolikus végrehajtashoz fu-
tasidejii hibadetektalas pontositasara.

Ez a tézispont a szimbolikus végrehajtas futasideji hibadetektalasra torténd al-
kalmazasidhoz tartozik és a 4. fejezetben targyaltuk részletesen.

A Szegedi Tudoményegyetem Szoftverfejlesztés Tanszékén fejlesztett szimbolikus
végrehajto motor, a Symbolic Checker Java programokban képes futasidejd prob-
lemékat (mint példaul null pointer dereferencia tomb alul- és tilindexelés, nulla-
val valo osztéas) detektalni anélkiil, hogy a programot valos kornyezetben futtatni
kellene. A szimbolikus végrehajtas elmélete szerint a programot nem konkrét
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input adatokon futtatjuk, hanem ismeretlenekként, tin. szimbolikus valtozokként
kezeljiik a bemenetet. Amikor a program végrehajtasa egy olyan feltételes vezér-
lési szerkezethez ér, amelyben a logikai kifejezés tartalmaz szimbolikus valtozot,
az igaz és a hamis agon is folytatodni fog a végrehajtés. FEzeknél az elagaza-
si pontoknal a vezérlési szerkezetben szerepls logikai kifejezést feljegyezziik és
tovabbvissziik az igaz agon, illetve annak negaltjat a hamis d4gakon. Ennek meg-
felelGen az Osszes végrehajtasi utvonalhoz egy egyedi, szimbolikus valtozok feletti
formulat rendeliink, amelyet path condition-nek (PC) neveziink.

Ebben a tézispontban bemutatunk egy a fent leirtaktol eltérs feltételrendszer
épité mechanizmust, amely pontositja a Symbolic Checker altal adott futaside-
ji hibatalalatokat azzal, hogy a programban 1év6 értékadasokat is feltételként
kezeli. Ennek koszonhetGen kdvetni tudjuk a szimbolikus valtozok kozotti fliges-
ségeket, kibGvitve a path condition felépitésének eredeti koncepciojat. Ezen feliil,
amennyiben a feltételrendszer egyértelmiien meghatarozza valamely szimbolikus
valtozo értékét, azt a valtozot a meghatéarozott konkrét értékkel helyettesitve foly-
tatjuk a szimbolikus végrehajtast. Ennek eredményeként olyan futasideji hibakat
is megtalalhatunk, amelyeket egy hagyomanyos feltételrendszer épitést hasznalo
szimbolikus végrehajté eszkdz nem képes. Azaltal, hogy szimbolikus valtozokat
konkretizalunk, a szimbolikus végrehajtasi fa mérete is redukalodik, ami csokken-
ti az elemzéshez sziikséges id6t. A kifejlesztett algoritmus hasznalatanak elényeit
példakodokon keresztiil szemléltetjiik. Kiemeljiik a kiilonbségeket egy hagyo-
manyos szimbolikus végrehajtd eszkoz, az 4j feltételrendszer épité mechanizmus
nélkiil futtatott Symbolic Checker, valamint az Gj modszer eredményei kozott.
Ezen feliill bemutatunk nagymeéreti, valos rendszerekben talalt olyan futéside-
ji hibatalalatokat, amelyek detektalasa a konvenciondlis feltételrendszer épitési
mechanizmus hasznalataval nem lett volna lehetséges.

A szerzd hozzdjdruldsa az eredményekhez. A szerz6 részt vett a Symbolic Checker
szimbolikus végrehajto motor fejlesztésében vezets fejlesztéként. O dolgozta ki
a bemutatott feltételrendszer épité mechanizmust, megvaldsitotta és integralta
azt a Symbolic Checker-be. A modszer kiértékelése, dsszehasonlitiasa a konvenci-
ondlis megkdzelitéssel, valamint a példakdédokon és a valés rendszereken torténs
tesztelemzések futtatasa szintén a szerz6 nevéhez fiizédik.

A tézisponthoz tartozé publikacio:

¢ I. Kadar, P. Hegedis, R. Ferenc. Adding Constraint Building Mechanisms
to a Symbolic Execution Engine Developed for Detecting Runtime Errors.
In Proceedings of the International Conference on Computational Science
and Its Applications — ICCSA, volume 9159 Lecture Notes in Computer
Science (LNCS), pages 20-35, Springer International Publishing, 2015.

3. Uj bejarasi algoritmusok és az allapottér korlatozasok empirikus vizs-
galata a szimbolikus végrehajtasban.

Ez a tézispont a szimbolikus végrehajtas futasidejii hibadetektalasra valo alkal-
mazasahoz tartozik és a 5. fejezetben targyaltuk részletesen.

A szimbolikus végrehajté motor, amit a Szegedi Tudoményegyetem Szoftverfej-
lesztés Tanszékén készitettiink komolyabb fejlesztéseken esett at, és az 4 RTE-
Hunter nevet kapta. A szimbolikus végrehajtas elméletének megfelelGen, az RTE-
Hunter felépiti a lehetséges végrehajtasi utak fajat, amit szimbolikus végrehajtasi
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fanak neveziink. Futasidejd probléméakat igy detektal az eszkoz, hogy bejarja ezt
a fat végrehajtva a szoban forgo6 utvonalakat, és amennyiben egy bizonyos feltétel
teljesiil, hibat jelez. A végrehajtasi utak szidma azonban exponenciilisan novek-
szik az elagazési pontok szamaval, vagyis a teljes végrehajtasi fa bejarasa lehe-
tetlen a gyakorlatban. Ez a probléma azzal kezelhetd, hogy kiilénb6z6 médokon
korlatozzuk a fa méretét. Példaul a faban 1év6 szimbolikus programallapotok sza-
ma, a fa mélysége, vagy az elemzés idGtartalma limitalhatoé. Az RTEHunter-ben
a maximaélis allapotok szdma, a fa maximéalis mélysége, valamint a fabejarashoz
hasznalt keresési stratégia konfiguralhatd. A fent leirt alltoprobbanés miatt a
szimbolikus végrehajtas allapotterének korlatozasa relevans kutatasi téma, ha a
gyakorlatban is alkalmazni kivanjuk a modszert. A célunk az, hogy megtalaljuk
az RTEHunter optiméalis paraméterezését, vagyis azt, hogy mi az maximalis al-
lapotszam, maximaélis fa mélység, és mi az a bejarasi stratégia, amellyel a lehets
legtébb futasideji hibat meg tudjuk talalni minél révidebb idé alatt.

A héarom nyilt forrasa Java rendszeren végzett empirikus vizsgalatok azt mutat-
jék, hogy a szimbolikus végrehajtéasi faban 16v6 allapotok maximalis szama kdz-
vetleniil befolyasolja az elemzési id6t, de a futasideji hibajelzések szamat nem.
Ugyanakkor a bedllitott maximalis mélység nagyobb mértékben van hatassal a
talalt hibak szaméara. Az optimalis mélységkorlat kiilonbozik a vizsgalt rend-
szereken, de Osszességében azt a kdvetkeztetést vonhatjuk le, hogy a 0 és 60-as
mélységkorlat kozott gyakrabban fordulnak el6 hibak, mint a fa mélyebb szint-
jein, habar mindez nagyban fiigg az alkalmazott bejarasi stratégiatol is. Kifej-
lesztettiink két olyan fabejarasi stratégiat, amelyekkel a szimbolikus végrehajtast
a hibara hajlamosabb koédrészek felé iranyitjuk statikus és dinamikus informa-
ciokat egyarant felhasznalva. Az ugynevezett null-heurisztikit hasznald bejarasi
stratégia 16 %-kal tobb hibat talal ugyanannyi id6 alatt, mint az alapértelmezett
mélységi bejaras. A linearis regressziot hasznalo stratégiaval pedig tobb, mint
kétszer annyi potencidlis futésideji hibat talaltunk az ArgoUMI és a Jetspeed
rendszerekben, mint az alapértelmezett bejaras.

A szerzd hozzdjdruldsa az eredményekhez. A szimbolikus végrehajtasi fa maxi-
malis allapotszama, az elemzés idStartama és talalt futésidejd hibajelzések szama
kozotti kapesolat empirikus tdton torténs megtaldlasa az RTEHunter szamtalan
futtatasaval a vizsgalt rendszereken a szerzé munkaja. O végzett el szamos kisér-
leti elemzést annak érdekében, hogy megtaldljuk azt az optiméalis mélységkorlatot
a vizsgalt rendszereken, ahol a futasidejd hibak tobbsége detektalhat6. A bemu-
tatott két fabejarasi stratégia otlete, azok megvaldsitasa és kiértékelése szintén a
szerz6 érdeme.

A tézisponthoz tartozé publikacio:

¢ I. Kadar. The Optimization of a Symbolic Execution Engine for Detecting
Runtime Errors. In Acta Cybernetica, pages 573-597, 2017.

IT. rész - Refaktoring tevékenységek vizsgilata egy 0j refaktoring adatbéazis
alapjan.

A disszertacio masodik részében arra keressiik a valaszt, hogy a szoftverfejlesztk
hogyan alkalmaznak refaktoring miiveleteket a gyakorlatban. A kutatas elvégzéséhez
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létrehoztunk egy adatbazist, amely nyilt forrast Java rendszereben talalt refaktorin-
gokat gyiijt Ossze. Az adatbézist nem csak azzal a céllal hoztuk létre, hogy a sajat
tanulméanyunkhoz felhasznaljuk. Publikusan elérhetévé tettiik, tamogatva ezzel a te-
riilet jov6beli kutatéisait.

4. Refaktoring tevékenységek vizsgalata osztaly és metddus szinten egy
1j publikus adatbéazis felhasznalasaval.

Ezen tézispont kontribici6i a refaktoring miiveletek vizsgélatdhoz kapcsolédnak.
A tézispont teljes kifejtése a 6. fejezetben talalhato.

A forraskod refaktoring egy népszert és hatékony technika a forraskod belsé mi-
néségének javitasara. A refaktoring fogalmat Fowler [29] vezette be, és napja-
inkban a forraskod refaktoralasa lényeges szerepet tolt be a fejlesztésben az IT
szakemberek egybehangzo véleménye szerint. Annak ellenére, hogy a refaktoring
hasznalata széles korben elfogadott az ipari szoftverfejlesztésben, tobb tanulmany
is kimutatta, hogy a fejleszt6k a Fowler altal javasolt modszertdl eltérGen alkal-
maznak refaktoring miveleteket a gyakorlatban. Emellett kevés olyan tanulmany
lelhets fel, amely azt vizsgélja, hogy mik a refaktoring miiveletek valos hatésai,
és hogy a fejleszt6k hogyan alkalmazzak azokat a gyakorlatban.

Létrehoztunk egy olyan adatbazist, amely 7 nyilt forrast Java rendszer szamos
verziojara tartalmaz forrdskodmetrikdkat és verziok kozott elvégzett refaktoring
miveleteket. Az adatbazis célja, hogy tamogassa a refaktoring tevékenységek
kutatasat. Az adatbazis a Ref-Finder nyilt forrasa refaktoring detektalod eszkoz-
zel [52] megtalalt refaktoringokrol tartalmaz pontos informéaciokat, valamint t6bb
mint 50 féle forraskod metrikat 7 nyilt forrast Java rendszer 37 verzidjara osztaly
és metodus szinten. Az adatbazis elGallitasdhoz tovabbfejlesztettiik a Ref-Finder
eszkozt, hogy az a verzidkezel§ rendszer alapjan tobb egymést kdvetd verzid ko-
zOtt automatikusan is képes legyen a refaktoringok meghatarozasra. Ezen feliil,
azt is megvalositottuk benne, hogy a refaktoringokat a pontos forraskod pozi-
cibjukkal egyiitt exportalja meghatarozott struktaraju CSV (Comma Separated
Values) fajlokba.

Az adatbazis felhasznalasaval a karbantarthatosag és az elvégzett refaktoring mii-
veletek kozotti kapesolatot kerestiik, valamint megvizsgaltuk, hogy a refaktoraléds
milyen hatassal van az egyes forraskodmetrikdkra osztaly és metodus szinten. Azt
talaltuk, hogy az alacsony karbantarthatosagi mutatoval rendelkezd osztalyokat
tobbszor refaktoraltik a gyakorlatban, mint jobb minéségi mutatoval rendelkezd-
ket. A forraskodmetrikikat tekintve a klonok szama, a komplexités és a csatoltsa-
got jellemzG metrikak javultak refaktoralds hatésara, a kommentezettséget mérg
metrikik azonban romlottak. Ezen feliil, a méret alapti metrikak is jelentds csok-
kenést mutatnak. A metodusok szintjén, szintén azt allapithatjuk meg, hogy az
alacsonyabb karbantarthatdsagt metodusokat jellemzGen tobb refaktoring érinti
a gyakorlatban. A klon lefedettség, a méret, és a metodusokbodl kimend hivasok
szama csokkent a legintenzivebben a refaktoring altal érintett metdédusokban, ami
arra utal, hogy a refaktoring miiveletek ténylegesen mérséklik a negativ mutato-
ju forraskodjellemziket, és karbantarthatobb szoftverrendszert eredményeznek a
gyakorlatban.

A fenti vizsgalatokon feliil, elvégeztiik az emlitett refaktoring adatbazis manuélis
validaciojat, amivel kisztrtiik a Ref-Finder refaktoringnak nem tekinthets taldla-
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tait. Az igy pontositott adatbazis felhasznaldsaval szdmos aspektusat megvizsgal-
tuk a refaktoring mtveletek altal érintett és egyaltalan nem érintett osztalyoknak
és metodusoknak. A manuélisan validalt adathalmazon kapott eredmények 0ssz-
hangban vannak az eredeti adatbéazis felhasznalédsaval kapottakkal, de azok kon-
zisztensebbek és tobb rendszeren kaptunk szignifikdns eredményt. Ez azért lehet,
mert eredeti adatbazisban meglévé hamis pozitiv refaktoringok eltorzitottak a ko-
rabbi eredményt. A validalt adatbéazison végzett vizsgalatok azt mutatjék, hogy
a refaktoring altal érintett forraskod elemek atlagos karbantarthatosaga sokkal
alacsonyabb volt a refaktorélas el6tti verzioban, mint a refaktoring utani kiadés-
ban, azokhoz az osztalyokhoz és metodusokhoz képest, amiket egyaltalan nem
érintettek refaktoring mtveletek. A méret, a komplexitas és a csatolas metrikak
eloszlasa mutatja a legnagyobb kiilonbséget a refaktoralt és a nem refaktoralt
elemek kozott az 1j adatbazis szerint.

A bemutatott refaktoring adatbéazisok felhasznalédsaban rejl6 lehetGségek jelents-
sen tulmutatnak az altalunk elvégzett vizsgalatokon, emiatt publikusan elérhetd-
vé tettiik azokat a PROMISE adattarhazban [64] tamogatva ezzel a komplexebb
Osszefiiggések felfedezésére irdnyuld jovébeli kutatasokat.

A szerzd hozzdjdaruldsa az eredményekhez. A szerz6 fejlesztette tovabb a Ref-
Finder refaktoring keres6 eszkozt, hogy az a verzidkezel§ rendszer alapjéan sza-
mos egymast kdvets verzio kozdtt automatikusan is képes legyen a refaktoringok
meghatarozasra, valamint arra, hogy a megtalalt refaktoringokat a pontos po-
zicidinforméacioval egyiitt megfelels struktiraban CSV fajlokba exportalja. A
szerz6 az egyes refaktoring példanyok kodelemekhez rendelésével is hozzajarult
az adatbéazis létrejottéhez, valamint a manudlis validacio felét is 6 végezte el. A
szerz6 részt vett az elemzési modszertan kidolgozasaban és az eredmények kiér-
tékelésében. A tézispont eredményeit alatamasztd publikaciok:

¢ I. Kadar, P. Hegedis, R. Ferenc, T. Gyimothy. A Code Refactoring Dataset
and Its Assessment Regarding Software Maintainability. In Proceedings of
the 23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, pages 599-603. IEEE Computer Society, 2016.

¢ I. Kadar, P. Hegediis, R. Ferenc, T. Gyimo6thy. Assessment of the Code
Refactoring Dataset Regarding the Maintainability of Methods. In Interna-
tional Conference on Computational Science and Its Applications, volume
9789 Lecture Notes in Computer Science (LNCS), pages 610-624. Springer
International Publishing, 2016.

¢ I. KAdar, P. Hegediis, R. Ferenc, T. Gyimo6thy. A Manually Validated Code
Refactoring Dataset and Its Assessment Regarding Software Maintainabi-
lity. In Proceedings of the The 12th International Conference on Predictive
Models and Data Analytics in Software Engineering, pages 10-14. ACM,
2016.

¢ P. Hegedis, I. Kadar, R. Ferenc, T. Gyiméthy. Empirical Evaluation of
Software Maintainability Based on a Manually Validated Refactoring Data-
set. Second revision submitted to journal Information and Software Tech-
nology. 44 pages Elsevier B.V.

Az B.1 tablazatban ujra Osszefoglaljuk az egyes tézispontokat alatdmaszt6é publi-
kaciokat.
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