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1. The interval number of graphs

The interval number of a graph G, denoted by i(G), is the least natural 

number t such that G is the intersection graph of sets, each of which is 

the union of at most t intervals. Here we settle a conjecture of Griggs and 

West about bounding ¿(G) in terms of e, that is the number of edges in 

G. Namely, it will be shown that ¿(G) < [ 1/2^/e j +1. It is also observed 

that the edge bound induces ¿(G) < ^3/27(G) + o(l), where 7(G) is the 

genus of G.

In the first, chapter we are concerned with representing graphs as spe­

cial intersection graphs. That is, we assign a set to each vertex of G so 

that v is adjacent to w if and only if the common part of the assigned sets 

is not empty. A t-interval representation is such an assignment, in which 

each set consists of at most t closed intervals. The interval number of G, 

denoted by ¿(G), is the least integer t for which a t-representation of G 

exists. We need one more definition: a representation is displayed if each 

set of the representation has an open interval, which is disjoint from the 

other sets. Such an interval is called displayed segment.

Several interesting aspects of the interval number had been investi­

gated before, here we wish to pursue only one of these in depth. More 

than one and a half decade ago Griggs and West conjectured that ¿(G) <
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L1/2\ÆJ + 1 for any graph G, where e is the number of edges in G. They 

also showed that this would be the best possible because the bound is 

attained for the complete bipartite graphs where m is a positive

integer. In fact their conjecture can be restated as i(G) < [ 1/2^/e] + 1, 

since the two forms coincide for the previous graphs. In a series of papers 

it was proved that ¿(G) < [c^/e] + 1 for c = 1, c = y/2/2 and c = 2/3, see 

¡21], [33] and [24]. The main goal of this paper is to conclude this process 

by showing that the right constant is really c = 1/2.

We also mention some connected problems, which are worth further 

study.

Theorem 1. Every graph with e edges has a displayed interval represen­

tation with at most [ 1/2^] + 1 intervals for each vertex.

Most known bounds on i(G) are grossly excessive when G has more 

than half of the possible edges. A plausible remedy is to develop bounds 

on ¿(G) that are monotone decreasing in G. In Chapter 2, we bound j(G) 

in terms of e(G), the number of edges in the complement of G. We prove 

that i(G) < f |\/e(G) ] + O(n/ logn).

Conjecture 2. [10] i(G) < |[i/e(G)] + 1.

This bound would be sharp, since it is attained for the complete bi­
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partite graph A2m,2m and for the graph obtained by adding an edge from 

each vertex of K2m2rn to each vertex of a clique of order t. These are the 

only extremal graphs known so far.

Here we take a step toward settling Conjecture 2. As a byproduct, we 

also obtain upper bounds in terms of A(G).

Theorem 3. i(G) < [ |-(/e(G)] + (3/2 + o(l))n/logn.

Theorem 4. i(G) < ((A(G) + l)/2] + 2"AA<C>+1).

Theorem 5. i(G) < A(G) + |y(G) + 1, where % denotes the chromatic 

number.

Corollary 6. i(G) < |(A(G) + 1).

Perhaps every bounds in terms of density has an analogue in terms of 

the complement.

Conjecture 7. i(G) < r|(A(G) + 1)] and i(G) < |>(G)] + 1.

In Chapter 3 we examine further properties of the interval number of 

graphs. Namely, we characterize some graphs, whose interval number is 

maximal possible for the degree bound, we determine up to a 1/2 factor 

the interval number of split graphs, and we claim that the main reason for 

the unusually high interval number is a “large” induced bipartite graph.

One may ask, what is the reason of high interval number in terms of 

induced subgraphs? For the random graph Gn<1/2 the equality i(Gn,1/2) = 
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(l/2 + o(l))n/log2n holds almost surely [29]. If G contains the complete 

bipartite graph Kkyk as an induced subgraph, then ¿(G) > [(fc + l)/2]. 

The following result roughly states that the big induced complete bipartite 

graphs are responsible for the unusually high interval number.

Theorem 8. Let k be a positive integer. If a graph G does not contain 

Kktk as an induced subgraph, then i(G) < (1 + o(l))n/log2n.

We do not know matching lower bound here. Standard use of the 

probabilistic method shows the existence of a bipartite AV^-free graph 

G which has 2n vertices and n2~2^r edges. Applying the formula ¿(G) > 

[(e(G) + l)/u(G)] to G, which is triangle-free of course, we get that ¿(G) = 

i2(n1-2/r).

2. The game domination number

In Chapter 3 we define the game domination number. The game domi­

nation number of a (simple, undirected) graph is defined by a game related 

to the domination number, a well-known graph parameter.

A dominating set of a digraph G is a set S of vertices such that for every 

vertex v S there exists some u G S with uv G E(G). The domination 

number y(G) of G is defined as the cardinality of the smallest dominating 

set.
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We define a “domination parameter” of an undirected graph G as the 

domination number of one of its orientations, determined by the follow­

ing two player game. Players A and D orient the unoriented edges of 

the graph G alternately with D playing first, until all edges are oriented. 

Player D (frequently called the Domino.tor) is trying to minimize the dom­

ination number of the resulting digraph, while player A (Avoider) tries to 

maximize the domination number. This game gives a unique number de­

pending only on G, if we suppose that both A and D play according to 

their optimal strategies. We call this number the game domination number 

of G and denote it by 7,(G).

We determine the game domination number for several classes of graphs 

and provide general inequalities relating it to other graph parameters.

Theorem 9. For every graph G = (V, E) with n vertices and minimum 

degree S > 2 and for every real number p between 0 and 1, ryg(G') < 

np + 2n(l - p)6 + 1 + n<5p(l -p)s. Therefore, 79(G) < (1 + o(l))nl^1), 

where the o(l)-term tends to zero as S tends to infinity, and the above the 

estimate is tight, up to the o(l) error term.

3. A jump for graph properties

An extremal jump is a discrete step between measures guaranteed in 

certain situations. It has been known for some time that the density of 
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a graph jumps; recent work on hereditary graph properties has shown 

that properties witli “large” or “small” speeds jump, but it was unknown 

whether there is a clean jump for properties with speed in a middle range. 

In Chapter 5, generalizations of the theorems of Dilworth, Ramsey, and 

Turan’s are applied to answer this in the affirmative. In particular, we 

find a strict lower bound for the penultimate range of the speed hierarchy 

for hereditary properties of graphs.

Theorem 10. I/jP"! > nd+od))", then |7”*| > Bn for all n, where Bn is 

the nth Bell number. Furthermore, equality is possible only ifP = Pci or 

P = P^.

In the past, we have sought to give, in addition to bounds on the speed 

of properties, collections of minimal properties that “force” the speed to 

be in the range given. For the penultimate range, this type of result is 

only partially done.

4. Summary

In this dissertation we examine problems that have their roots in ques­

tions about properties and parameters of graphs. Each question develops 

into a deep theory about its subject.
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