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Chapter 1

Introduction

Non-equilibrium relaxation in a closed quantum system following a change of some para-

meter(s) in the Hamiltonian is of recent interest, both experimentally and theoretically.

Considering the speed of variation of the parameter, we generally discriminate between

two limiting processes. For the quench dynamics, the parameter is modified instantan-

eously, which experimentally can be realized in ultra cold atomic gases [1–11] using the

phenomenon of Feshbach resonance. In this process the evolution of different observables

after the quench is of interest, as well as the possible existence and properties of the sta-

tionary state, in particular in integrable and non-integrable systems [12–57]. In the other

limiting relaxation process, in the so called nearly adiabatic dynamics the parameter is

varied very slowly, usually linearly in time with a rate 1/τ across a phase-transition point.

At the start of the process the system is in the ground state of the Hamiltonian. If the

variation of the Hamiltonian would be much slower than the time scale of the smallest gap,

the system would remain exponentially close to the instantaneous ground state. However

when the system reaches the critical point, the smallest gap goes to zero, and the variation

of the Hamiltonian cannot be slow enough to remain in the instantaneous ground state.

The question, how far is the described system from the instantaneous ground state, is

target of extensive investigations in the literature [50, 56,58–74].

We mention that the parameter in the Hamiltonian of a closed system can be driven

periodically or randomly in time, and the non-equilibrium dynamics of these driven systems

draws attention both experimental [75] and theoretical [76] [77].

Many results for quantum quenches have been obtained for homogeneous systems [12,

16–33, 50, 51, 55]; for example, the relaxation of correlation functions in space and in time

have generally an exponential form, which defines a quench-dependent correlation length

and a relaxation time. Many basic features of the relaxation process can be successfully

explained by a quasi-particle picture [38, 51, 56]: after a global quench quasi-particles are

created homogeneously in the sample and move ballistically with momentum dependent

velocities. The behavior of observables in the stationary state is generally different in

integrable and in non-integrable systems. For non-integrable models, thermalization is

expected [16–24, 50, 51] and the distribution of an observable is given by a thermal Gibbs

ensemble; however, in some specific examples this issue has turned out to be more complex

[25–27, 32]. By contrast, it was conjectured that stationary state averages for integrable

1



2 1. CHAPTER. INTRODUCTION

models are described by a generalized Gibbs ensemble [16], in which case each integral of

motion is separately associated with an effective temperature.

Concerning quantum quenches in inhomogeneous systems, there have been only a few

studies in specific cases; for example, entanglement entropy dynamics in random quantum

chains [78–80] and in models of many-body localization [81,82]. In some of these cases the

eigenstates are localized, which prevents the system from reaching a thermal stationary

state.

A special type of inhomogeneity, interpolating between homogeneous and disordered

systems, is a quasi-crystal [83, 84] or an aperiodic tiling [85]. Quasi-crystals are known to

have anomalous transport properties [86,87], which is due to the fact that in these systems

the long-time motion of electrons is not ballistic, but an anomalous diffusion described by

a power law. One may expect that the quasi-particles created during the quench have a

similar dynamical behavior, which in turn affects the relaxation properties of quasi-crystals.

Quasi-crystals of ultra cold atomic gases have been experimentally realized in op-

tical lattices by superimposing two periodic optical waves with different incommensurate

wavelengths. An optical lattice produced in this way realizes a Harper’s quasi-periodic

potential [88, 89], for which the eigenstates are known to be either extended or localized

depending on the strength of the potential. Different phases of the Bose-Hubbard model

with such a potential have been experimentally investigated [90,91]. There have also been

theoretical studies concerning the relaxation process in the Harper potential [92,93].

The dissertation is organized as follows: In chapter 2 the investigated quantities are

defined and the most important equilibrium properties of the investigated models are out-

lined. In chapter 3 some results about the after quench dynamics of spin chains from

the literature are recapitulated. These results will be referred and extended in the later

sections.

Our new results are presented in Chapters 4-8. Below we briefly summarize the main res-

ults from these Chapters.

In Chapter 4 the dynamics after a composite local quench is investigated. Composite

here means that not only one site was modified during the quench, but the local magnetic

fields on two neighboring sites and the coupling between them. The quench was done in

a quantum Ising chain, and a coupling and the two neighboring local magnetic field are

changed suddenly. We calculated the local magnetization on the quench site. A relation

with a 2D classical spin system was found, and using this relation a closed formula was

conjectured for the time evolution of the local magnetization. These closed formulas are

the main results of the chapter. We validated the formulas with precise numerical calcula-

tions using free-fermion techniques.

In Chapter 5 we investigated the after quench dynamics of the Fibonacci quasi-crystal.

The quantum Ising chain in its homogeneous version is perhaps the most studied model

for non-equilibrium relaxation [13–15,34–44,57,94]. We focus on the Fibonacci lattice, for

which many equilibrium properties of the quantum Ising model are known [95–101]. In this

chapter we investigated the after-quench dynamics of the magnetization and entanglement
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entropy with numerical free-fermion calculations. We found, that the entanglement entropy

shows a power law increase after the quench, and the magnetization shows a stretched ex-

ponential increase. We also found a dynamical phase transition associated with the local

magnetization, which is not present in the homogeneous system. The results were inter-

preted with quasi-classical reasoning.

In chapter 6 the quench dynamic of the Harper model was investigated. In this model

there is a localization-delocalization transition, separating a localized phase and an ex-

tended phase. We investigated the dynamics of the entropy and the magnetization after

different quenches ending in the extended phase, at the critical point or in the localized

phase. We explored the functional form of the relaxation of the entanglement entropy and

the magnetization in the aforementioned quenches. We found, that both quanties remain

finite if the quench ends in the localized phase. If the quench ends in the extended phase

the behavior is strongly similar to the behavior of the homogeneous systems: The entangle-

ment entropy grows linearly, and the magnetization decrease exponentially. If the quench

ended at the transition point, the entanglement entropy grows as a power-law, and the

magnetization decreases with a starched exponential.

In chapter 7 we investigated a nearly adiabatic process in the Harper model by slowly

varying one of the parameters of the Hamiltonian, and the system is driven over the trans-

ition point. We investigated how far is the system from the instantaneous ground state

after crossing the localization-delocalization transition with finite speed. We present the

results of our large-scale numerical simulations, and give a modified version of the so-called

Kibble-Zurek scaling, which fits the numerical results well.

In chapter 8 we investigated the local magnetization after a global quench in a disordered

Ising chain. We explored the functional form of the relaxation of the local magnetization

with numerical free-fermion calculations. Two kinds of initial states were used in our calcu-

lations: one of these is ferromagnetic, in which all spins point in the X direction, the local

magnetization is 1. The other initial state is paramagnetic, in which all spins show in the

Z direction, and the local magnetization in the direction of the interaction (X-direction) is

zero.

The main results are: If the system after the quench is off-critical, the magnetization

remains finite. If the quench starts form the totally ferromagnetic phase, and ends in the

critical point, the magnetization shows an ultra slow decrease. If the quench start from

the totally paramagnetic state, and ends at the critical point, the magnetization increases,

which is a unique property of the disordered Ising chain: In all quenches performed in

homogeneous and quasi-periodic Ising chains the local magnetization always decreases.

There has been intensive investigations about the after quench dynamics of the entangle-

ment entropy in disordered spin chains [79–82]. The results about the magnetization are

in good agreement with these previous studies. At the end of the dissertation there is

an Appendix, in which detailed calculations are presented: the solution of the eigenvalue

problem of different spin chains; the calculation of the magnetization and the entanglement

entropy in spin chains; some facts about the ”meaning” of the entanglement entropy. The

dissertation is based on the following articles:
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2. Ferenc Iglói, Gergő Roósz, Loic Turban Evolution of the magnetization after a local

quench in the critical transverse-field Ising chain J. Stat. Mech. (2014) P03023
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Chapter 2

Ground-state properties of quantum

spin chains

In this Chapter we review the previously known ground-state properties of the models

studied in this work. We also list the definitions of the investigated quantities. The details

of calculation are presented in Appendix B.

The models investigated in this work are special cases of the inhomogeneous XY-model

H =
1

2

L∑
l=1

hlσ
z
l +

1 + γ

2

L∑
l=1

Jlσ
x
l σ

x
l+1 +

1− γ
2

L∑
l=1

Jlσ
y
l σ

y
l+1 . (2.1)

Here L is the number of spins, σzl and σxl are the Pauli matrices. Here ~ = 1 and the

parameters Jl and hl are dimensionless numbers. With the Jordan-Wigner transformation

[104] [105] the operator (2.1) can be written with fermion operators ck and c†k:

H = −
L∑
l=1

hl(c
†
l cl−1/2)−1 + γ

2

L−1∑
l=1

Jl(c
†
l−cl)(c†l+1+cl+1)−1− γ

2

L−1∑
l=1

Jl(c
†
l+cl)(cl+1−c†l+1)

+ JLw

[
1 + γ

2
(c†L − cL)(c†1 + c1) +

1− γ
2

(c†L + cL)(c†1 − c1)

]
e−iπ

∑L
j=1 c

†
jcj (2.2)

Here w = 0 corresponds to the free boundary conditions, and w = 1 corresponds to

the periodic boundary conditions. The P = e−iπ
∑L
j=1 c

†
jcj parity operator commutes with

the Hamiltonian 2.2. One can diagonalize the Hamiltonian in the eigensubspaces of P .

P has two eigenvalues, +1 if the number of particles is even, and −1 if the number of

particles is odd. In the even subspace P = +1, in the odd subspace P = −1. In the

even and in the odd subspace the Hamiltonian is quadratic in the cl, c
†
l operators. The

ground state of Hamiltonian 2.2 is in the even subspace. With an appropriate Bogoliubov

transformation [196] new fermions (ηk and η†k) can be introduced

ηk =
N∑
i

(
1

2
(Φk(i) + Ψk(i))ci +

1

2
(Φk(i)−Ψk(i))c

†
i

)
, (2.3)

5



6 2. CHAPTER. GROUND-STATE PROPERTIES OF QUANTUM SPIN CHAINS

and with these new fermionic operators the (2.1) Hamiltonian is diagonal:

H =
L∑
k=1

εkη
†
kηk + const. . (2.4)

The Φk(i) and Ψk(i) quantities in equation (2.3) are real numbers. Their calculation, and

the details of this standard diagonalization technique can be found in Appendix A. For

later reference I define here the Majorana operators:

ǎ2l−1 = cl + c†l (2.5)

ǎ2l = i(cl − c†l ) , (2.6)

which are self adjoint operators, and often make calculations more simple. The Majorana

operators satisfies the following simple anti-commutation rule: {ǎl, ǎk} = 2δl,k. The time

evolution of the Majorana operators after a sudden quench can be expressed in the form

ǎm(t) =
∑2L

n=1 Pm,n(t)ǎn, where Pm,n(t) are real coefficients. The calculation of the Pm,n(t)

coefficients are detailed in Appendix A.5. One gets the inhomogeneous XX model with

transverse field with γ = 0:

HXX = −1

2

L∑
n=1

(σxnσ
x
n+1 + σynσ

y
n+1)− 1

2

L∑
n=1

hnσ
z
n , (2.7)

here all of the couplings are 1, and the hn transverse field is inhomogeneous. With hn =

h cos(2πn
√

5−1
2

)n one gets the Harper model, which is investigated in more detail in this

work. One gets the transverse-field Ising chain from Hamiltonian (2.2) with γ = 1:

HIsing = −1

2

L−1∑
i=1

Jiσ
x
i σ

x
i+1 −

1

2

L∑
i=1

hiσ
z
i + wJLσ

x
Lσ

x
1 . (2.8)

In this work, three variants of the Ising chain will be investigated: One nearly homogeneous

with a (generalized) local defect, a quasi-periodic, and a disordered where the magnetic

fields and the couplings are (independent) random numbers.

One of the investigated quantities is the local magnetization. The Ising model shows fer-

romagnetic order in the x direction if the transverse field is small enough. The most

straightforward choice to characterize the magnetic order would be the expectation value

of σx. However this expectation value in the ground-state is always zero because of sym-

metry reasons. One possible solution is to add an infinitesimally small symmetry breaking

field. One adds a longitudinal field b to the Ising Hamiltonian and investigates the magnet-

ization in the ground state of the modified Hamiltonian Hb = HIsing+bV with V =
∑N

i=1 σ
x
i

It can be shown [167] , that the magnetization in the b→ 0 limit can be calculated as the

off-diagonal matrix member of σl between the ground state of (2.8) denoted by |Ψ0〉, and

the excited state of (2.8) denoted by |Ψ1〉.

ml = lim
b→0
〈σxl 〉 = 〈Ψ0|σxl |Ψ1〉 (2.9)
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An other interesting quantity investigated in this work is the entanglement entropy. The

formal definition is as follows. One divides the investigated system to two parts A and B.

One consider the density matrix of the system, which is simply the projector made from

the state vector of the system: ρ = |Ψ〉〈Ψ|. The reduced density matrix of subsystem A is

defined by tracing out for the degrees of freedom of the B system.

ρA = TrBρ (2.10)

The reduced density matrix of the B subsystem is defined similarly ρB = TrAρ. The

entanglement entropy is defined as the von Neuman entropy of ρA or ρB:

S = TrAρA ln ρA = TrBρB ln ρB . (2.11)

The set of the non-zero eigenvalues of ρA and ρB are identical, this is the reason why

the second equality holds in the previous equation. More details on the definition of the

entanglement entropy, and the calculation method for spin chains are included in Appendix

B.3. In this work A is always the first l spins of the chain, and B is the other L− l spins.

The definition allow any kind of partition. The choice of two intervals is the most simple

and perhaps the most interesting.

2.1 Homogeneous transverse-field Ising chain

The homogeneous Ising chain is derived from (2.8) with setting all of the couplings to J

and all of the magnetic fields to h. The model is exactly solvable, one first transform it to

a fermion system with the Jordan-Wigner transformation (A.5) [104] than diagonalize it

with a Bogoliubov transformation [105] [106]. The steps of this calculation are outlined in

Appendix A.3. There is a quantum phase transition in the model, the transition point is

h = 1. For h < 1 there is a long-range order in the x direction which is characterized by

non-zero transverse magnetization ml. The h < 1 phase is ferromagnetic, and the h > 1

phase is paramagnetic.

The paramagnetic and the ferromagnetic phases are mapped to each other by the duality

transformation [107]. To see this, let us investigate the Ising model with periodic boundary

conditions ( w = 1 in equation (2.8)). One can define a new set of Pauli matrices:

τxi = σzi+1σ
z
i

τ zi = Πm<iσ
x
m

τ yi = −iτ zi τxi

 . (2.12)
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With these matrices the Hamilton operator takes the form:

Hperiodic
Ising = −1

2

L∑
i=1

σxi σ
x
i+1 −

h

2

L∑
i=1

σzi =

= −1

2

L∑
i=1

τ zi −
h

2

L∑
i=1

τxi τ
x
i+1 =

= h

[
−1

h

1

2

L∑
i=1

τ zi −
1

2

L∑
i=1

τxi τ
x
i+1

]
. (2.13)

So the spectra of the Hamiltonians Hperiodic
Ising (h) and hHperiodic

Ising (1/h) is the same. If h is in

the ferromagnetic phase than 1/h is in the paramagnetic phase, the duality connect the

two sides of the critical point.

The most important correlation functions have been calculated in [106]. The long-range

limit of the XX correlation function (Cx
r 〈σxi σxi+r〉) shows the phase transition spectacu-

larly. In the paramagnetic phase limr→∞Cx
r = 0, there is no long range order. In the

ferromagnetic phase the long range limit is nonzero:

lim
r→∞

Cx
r = (1− h2)1/4 . (2.14)

The ml transverse magnetization behaves similarly to the Cx
r correlation function, non-zero

in the ferromagnetic phase, goes to zero approaching the critical point (ml = (1 − h2)β),

and zero in the paramagnetic phase. The magnetization exponent is β = 1/8.

Using the Cx
r correlation function one can obtain the correlation length of the system. One

find [108] that the correlation function shows an asymptotic decrease Cx
r ∼ exp(−r/ξ),

where the inverse of the correlation length is:

1

ξ
=


√

T
π

( 1
h
− 1)e−2(1/h−1)/T h < 1, T → 0

π
4
T
2

h = 1

1− 1/h+
√

T
π

( 1
h
− 1)e−2(1/h−1)/T h > 1, T → 0

. (2.15)

At the critical point, the XX correlation function decays as a power law: Cx
r ∼ 1/r1/4,

which defines the η = 1/4 critical exponent [106]. In equation (2.15) T is the temperature.

In the ground state (at zero temperature) one finds ξ = 1/(1 − 1/h) for h > 1, so the

critical exponent of the correlation length is ν = 1. Approaching the critical point from the

paramagnetic phase the smallest gap closes as ∆ ∼ (h−1) [107], so the dynamical exponent

of the model is z = 1. The entanglement entropy between two blocks of spins remains finite

in the L → ∞ thermodynamic limit both in the ferromagnetic and paramagnetic phases.

This behavior is a special case of the general ”area-law”: In a non-critical system the

entanglement entropy is proportional to the area between the two subsystem [109]. In the

critical point of the TIC, the entanglement entropy shows a totally different behavior, it

grows logarithmically [110]:

S = c/6 lnL . (2.16)
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where c = 1/2 is the central charge of the corresponding conformal field theory [168]. The

logarithmic growth of the entanglement entropy is a typical property of one-dimensional

critical systems. In a finite system the entanglement entropy shows a maximum at the

critical point.

2.2 Finonacci Ising quantum quasi-crystal

The Finonacci Ising quasi-crystal is defined by the Hamiltonian:

H = −1

2

[∑
i

Jiσ
x
i σ

x
i+1 + h

∑
i

σzi

]
, (2.17)

( σxi and σzi are Pauli matrices at site i.) The couplings, Ji, are site dependent, and

parameterized as:

Ji = Jrfi , (2.18)

Here r > 0 is the amplitude of the inhomogeneity, r = 1 corresponds to the homogeneous

system, the smaller r correspond to the stronger inhomogeneity. The fi numbers are

integers taken from a quasi-periodic sequence, from the so-called Fibonacci sequence.

The interaction J in (2.18) is fixed with J = r−ρ, where

ρ = lim
L→∞

∑L
i=1 fi
L

= 1− 1

ω
, (2.19)

is the fraction of units 1 in a very long (infinite) sequence.

The Fibonacci sequence is defined by the following algebraic expression :

fi = 1 +

[
i

ω

]
−
[
i+ 1

ω

]
, (2.20)

where [x] denotes the integer part of x, and ω = (
√

5+1)/2. The sequence can alternatively

defined by a substitution rule

A → AB

B → A

The lengths of the possible realizations of the Fibonacci chain are Fibonacci numbers

(1,2,3,5 ...). The first few realizations are:

A

AB

ABA

ABAAB

(2.21)
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One can get the (n + 1) string by copying the (n − 1)th string after the nth string. The

phase transition of the homogeneous model survive in the quasi-periodic one, there is a

ferromagnetic phase if h is smaller than a critical value, and there is a paramagnetic phase,

if h is bigger than the critical hc. The critical magnetic field can be calculated with Pfeuty’s

result [111]. Pfeuty investigated an inhomogeneous Ising chain (2.8) with inhomogeneous

couplings and magnetic fields. The smallest excitation becomes zero (the system is critical)

in an inhomogeneous Ising model if

ΠL
i=1hi = ΠL

i=1Ji . (2.22)

This relation holds for arbitrary choice of the couplings and magnetic fields, so for every

type of inhomogeneity. In Hamiltonian (2.17) the parameters were selected such a way

that the critical point is hc = 1.

In the literature various types of quasi-periodic sequences have been defined with vari-

ous substitution rules [101] [112]. The Fibonacci sequence was found to be an irrelevant

perturbation in the transverse Ising model, which means, the critical properties (exponents)

are common with the homogeneous model.

2.2.1 Other quasi-periodic sequences defined by substitution

In this section some examples of quasi-periodic sequences are listed, and their basis prop-

erties are obtained.

1. Fibonacci sequence defined above in detail.

2. Thue-Morse sequence. The substitution rule is

A → AB

B → BA (2.23)

Starting with letter A the first few realizations are: A, AB, ABBA, ABBABAAB.

3. Period doubling sequence. The substitution rule is:

A → BB

B → BA (2.24)

Starting with letter B the first few realizations are: B, BA, BABB, BABBBABA.

4. The Rudin-Shapiro-sequence is defined using an alphabet of four letters A,B,C,D.
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The substitution rule is:

A→ AB

B → AC

C → DB

D → DC

Starting with letter A the first few realizations are: A, AB, ABAC, ABACABDC.

Usually when the Rudin-Shapiro-sequence is investigated only two interaction strength

are used (J0 and J1), and each letter denotes two neighboring couplings:

A→ J0J0

B → J0J1

C → J1J0

D → J1J1

For example the string ABAC denotes the next set of couplings: J0, J0; J0, J1; J0,

J0; J1, J0.

A quasi-periodic sequence usually described by the asymptotic density of different inter-

actions, and the so-called wandering exponent (β), which characterizes the deviation of

the couplings from the average. More formally the wandering exponent is defined by the

following equation:
L∑
i=1

Ji − LJ ∼ Lβ , (2.25)

where J is the average coupling in the thermodynamic (L → ∞) limit. The asymptotic

density of the different letters, and the wandering exponent can be obtained investigating

the substitution matrix. We present this method on the Fibonacci sequence, and list the

results for the other sequences. Let us denote the string which substitutes A (B) with s(A)

(s(B)). For the Fibonacci chain s(A) = AB and s(B) = A. The number of the B letters

in s(A) is denoted by n
s(A)
B . The substitution matrix is defined as:

M =

(
n
s(A)
A n

s(B)
A

n
s(A)
B n

s(B)
B

)
. (2.26)

For the Fibonacci chain:

M =

(
1 1

1 0

)
. (2.27)

And the number of the A and B letters in the mth realization is:(
n

(m)
A

n
(m)
B

)
=

(
n
s(A)
A n

s(B)
A

n
s(A)
B n

s(B)
B

)(m−1)(
n

(1)
A

n
(1)
B

)
(2.28)



12 2. CHAPTER. GROUND-STATE PROPERTIES OF QUANTUM SPIN CHAINS

The asymptotic density of letters are given by the components of the eigenvector of M

corresponding to it’s maximal eigenvalue. The wandering exponent is β = ln |λ1|
ln |λ2| , where λ1

is the largest eigenvalue of M , and λ2 is the second largest eigenvalue of M . In the case of

the Rudin-Shapiro chain M is a 4 × 4 matrix. The results for the different sequences are

as follows:

1. In the Fibonacci sequence the density of A letters is ρA = 1/ω, the density of the B

letters is ρB = 1/ω2. The wandering exponent is β = −1.

2. For the Thue-Morse sequence ρA = ρB = 1/2 and β = −∞.

3. For the period doubling sequence ρA = 1/3, ρB = 2/3 and β = 0.

4. For the Rudin-Shapiro sequence ρ(J0) = ρ(J1) = 1/2 and β = 1/2.

2.2.2 Harris-Luck criteria

The Harris-Luck criteria classifies the different quasi-periodic sequences according to their

effect on the static critical behavior. The criteria can be obtained with the following

phenomenological argument. Let us consider a spherical region of the quasi periodic model

with radius R, and let’s denote this region with Ω. (In one dimension Ω is an interval

of length 2R.) Let’s denote the number of couplings in Ω by B(Ω), and the sum of the

couplings by Σ(Ω) =
∑

i,j∈Ω Ji,j. The aforementioned two quantities are proportional to the

volume |Ω| of the region Ω, which is proportional to RD, where D is the spatial dimension

of the system. The average coupling J0 is defined as J0 = limR→∞Σ(Ω)/B(Ω). The J0

average coupling determines the hc critical field in the thermodynamic limit.

For a big but finite Ω region the deviation from the average is characterized by:

Σ(Ω)− J0B(Ω) ∼ RDβ , (2.29)

where β is the wandering exponent. The correlation length of the system is ξ, ξ ∼ δ−ν ,

where δ is the distance from the critical point. The typical difference of the J couplings

from J0 is:
J − J0

J
∼ Σ(Ω)− J0B(Ω)

B(Ω)
∼ ξDβ

ξD
= ξ−D(1−β) . (2.30)

We introduce the local control parameter δi which is given by δi ∼ Ji. The typical deviation

of the local control parameter is:

∆δi ∼ ξ−Dν(1−β) . (2.31)

The perturbation is irrelevant if ∆δi � δ in the thermodynamic limit, which gives the

following criteria for the irrelevance:

Dν(β − 1) + 1 < 0 . (2.32)
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The above condition is called the Harris-Luck criteria. The criteria states, that in the

transverse Ising chain where D = 1 and ν = 1 the Fibonacci and the Thue-Morse sequence

are irrelevant perturbations, the period doubling sequence is a marginal perturbation, and

the Rudin-Shapiro is a relevant perturbation.

2.3 Harper model

The Harper-model [88], also called Aubry-André model [89], is a quasi-periodic version of

the XX-model. It’s Hamilton operator is:

H = −1

4

L∑
n=1

(σxnσ
x
n+1 + σynσ

y
n+1)−

L∑
n=1

hnσ
z
n . (2.33)

Here hn = h cos(2πβn) with β =
√

5−1
2

= 1/ω is the inverse of the golden mean, h is the

amplitude of the quasi-periodic modulation. The ω parameter is irrational, this makes the

system quasi-periodic. There is a localization-delocalization transition in the model [102],

the transition point is h = 1. For |h| < 1 the eigenstates are extended over the whole

system, for |h| > 1 the eigenstates are exponentially localized [89]. With the Jordan-Wigner

transformation, a set of fermionic operators (cl, c
†
l ) can be introduced (see Appendix A),

and the Hamiltonian takes the following form (which is a special case of equation 2.2):

H = −1

2

L∑
n=1

(c†ncn+1 + c†n+1cn)− h
L∑
n=1

cos(2πβn)c†ncn , (2.34)

which was also the original form of the model introduced by Harper [88].

2.3.1 Aubry-André duality

Following Aubry and André [89] a new set of fermion operators (ck, c
†
k
, k = 1 . . . L) are

introduced:

ck =
1√
L

∑
n

exp(i2πkβn)cn (2.35)

which are eigenstates of the momentum operator with eigenvalue: k = kFn−1modFn, where

Fn is the n-th Fibonacci number and L = Fn. In terms of these the Hamiltonian is given

by:

H = −h
2

 L∑
k=1

(c†
k
ck+1 + c†

k+1
ck)−

2

h

L∑
k=1

cos(2πβk)c†
k
ck

 . (2.36)

Note that Eq.(2.36) is in the same form as that in Eq.(2.34), thus the Hamiltonian

satisfies the duality relation:

H(h) ∼ hH(1/h) . (2.37)

Here ∼ denotes, that the two Hamiltonians are similar: their spectrum is the same.
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Through Eq.(2.37) the small h regime of the Hamiltonian, in which the eigenstates are

extended in real space are connected with the large h regime, in which the eigenstates have

extended properties in Fourier space, thus these are in real space localized. The localiza-

tion transition takes place at the self-duality point, thus the critical amplitude of the field

is hc = 1. For h > 1 the localized states have a finite correlation length, ξ, which is given

as [89]:

ξ =
1

ln(h)
, h > 1 , (2.38)

for all eigenstates of H. We will use the h → ±∞ limits in Chapter 7. For large |h| the

φq,n quantities are given as:

φq,n = δn,nq , εq = −h cos(2πβnq), |h| � 1 . (2.39)

2.4 Disordered quantum Ising chain

The disordered Ising chain is defined by the Hamiltonian:

H = −1

2

[
L∑
i=1

Jiσ
x
i σ

x
i+1 +

L∑
i=1

hiσ
z
i

]
. (2.40)

Here Ji and hi are positive independent random numbers, selected from the distributions

π(Ji) and ρ(hi) respectively. It was found, that the critical behavior is universal, inde-

pendent form the concrete shape of the distribution in the thermodynamic limit [115].

In the numerical simulations (presented in Chapter 8 ) We used uniform distribution

over [0, 1] for π(Ji), and uniform distribution over [0, h] for ρ(hi). The results recapitulated

in this section are true for general selection of π(Ji) and ρ(hi).

Pfeuty’s result about the criticality of the Ising chain [111] also holds for one realization

of the disordered chain, so a concrete realization is critical if ΠL
i=1(hi) = ΠL

i=1Ji (see equation

(2.22)), or equivalently
∑L

i=1 ln(hi) =
∑L

i=1 ln Ji. The distribution of the disordered chains

is called critical if the average of the logarithm of the local magnetic fields (hi) and the

average of the logarithm of the couplings (Ji) are equal:

lnh = ln J . (2.41)

Here the over line denotes the average over the probability distribution. Note, that with

our choice of parameters the system is critical with h = 1. If lnh > ln J the system is

paramagnetic if ln(h) < ln(J) the system is ferromagnetic. The distance of the critical

point is usually measured with the parameter, introduced by Fisher [115]:

δ =
ln(h)− ln(J)

var(h) + var(J)
, (2.42)

where var(J) is the varience of the couplings, and var(h) is the variance of the magnetic

fields. The disordered Ising chain shows equilibrium properties which are rather different
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from the properties of the homogeneous or quasi-periodic models.

Investigating the local magnetization one finds, in the critical point the typical real-

izations gives negligible contribution to the average. The average is dominated by so-

called rare events, which has vanishing probability but gives O(1) contribution to the

average [115] [116].

An other remarkable property of the disordered Ising chain is the existence of the so-

called Griffiths phase [116]. This phase is region in the neighborhood of the critical point.

It is the region where in the ferromagnetic phase some rare samples can be paramagnetic,

and in the paramagnetic phase some rare samples can be ferromagnetic. I summarize here

the properties of the surface magnetization, and the low-lying excitations. The surface

magnetization is a good example for a rare-event dominated average, and the properties of

the low-lying excitations will be used in Chapter 8. The surface magnetization ms = m1

is related to the local transverse fields and couplings with a relatively simple formula [117]

[118] :

ms =

[
1 +

L−1∑
l=1

Πl
j=1

(
hj
Jj

)2
]−1/2

, (2.43)

where hi and Ji are arbitrary positive real numbers. In the critical point, the typical value

of the magnetization is determined by the largest term of the sum in equation (2.43). The

typical value of the largest term is ∼ exp(constL1/2) so the typical value of the surface

magnetization is:

mtyp
s (L) ∼ exp(−const.L1/2) . (2.44)

The average surface magnetization shows a rather different behavior [14]. There are rare

realizations where the random variables εj = ln
hj
Jj

behaves like a surviving walk. This

realizations has O(1) contribution to the average of the magnetization, and dominate the

average. The average magnetization is:

[ms]av(L) ∼ L−x
(s)
m x(s)

m = 1/2 . (2.45)

In the ferromagnetic phase close to the critical point the surface magnetization is: [ms]av(δ) ∼
|δ|βs with βs = 1. The typical and the average correlations can be described with differ-

ent correlation lengths. From the finite size dependence of the surface magnetization one

obtains: ξ ∼ |δ|−ν with ν = 2. The typical correlations decay faster: ξtyp ∼ |δ|−νtyp with

νtyp = 1.

In the remaining of this section we summarize the basic properties of the low-lying excit-

ations of the disordered transverse Ising model. The lowest excitation energy is [98]:

ε1(L) ∼ msmsΠ
L−1
i=1

hi
Ji
, (2.46)

where ms and ms are the boundary magnetizations on the two ends of the chain.

In the critical point the order of magnitude of the lowest excitation is given by the boundary

magnetization, so

ε(δ = 0, L) ∼ exp
[
− constL1/2

]
. (2.47)
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The typical time scale is given by the inverse of the lowest excitation tr ∼ ε−1, and the

length scale in the neighborhood of the critical point is given by the system size (ξ ∼ L),

so the length and time scale is connected as:

ln τ ∼ ξΨ , (2.48)

where Ψ = 1/2 [115] [117] [103]. In the homogeneous and quasi periodic quantum Ising

chains a power law scaling connect the time and the length scale tr ∼ ξz with a finite z

dynamical exponent. The (2.48) equation is a sign of an ultra-slow dynamics, where the

dynamical exponent is formally infinite.

In the paramagnetic Griffiths phase, where δ > 0, and max{J} > min{h} there are rare

regions of size lrare where the local couplings are stronger than the local magnetic fields,

and the system is locally ferromagnetic. Note that the boundaries of the Griffiths phase

depends on the probability distribution of hi and Ji. For example with the box distributions

used in Chapter 8 and already mentioned after the definition of the model, the Griffiths

phase extends over the whole off-critical (ferromagnetic and paramagnetic) region. The

energy gap in the aforementioned locally ferromagnetic rare samples is exponentially small

in lrare: ε ∼ exp[−constlrare], so the relation between the length and the time scale is:

tr ∼ ξz , (2.49)

with a finite dynamical exponent z. This scaling relation is typical for the Griffiths phase

[119]. The dynamical exponent in the Griffiths phase is continuous function of the δ

parameter. The precise value of z is given by the positive root of the equation:[(
J

h

)z]
= 1 . (2.50)

In the ferromagnetic phase the lowest excitation is exponentially small. The dynamical

exponent is usually obtained from the second gap, and found to be the positive root of[(
h

J

)z]
= 1 . (2.51)

However, the exponentially small first gap is also interesting from the viewpoint of the

dynamics, as the reader will see it in chapter 8.

The eigenstates of the off-critical disordered Ising model are localized [115]. In the

critical system there is a finite localization length for every excitations with ε > 0, but

the localization length is divergent for ε → 0 [120] [115]. The equilibrium properties of

the random chain can be best understood with the strong disorder renormalization group

(SDRG), which was applied by Fisher [115] to the critical point of the model and later was

generalized to the Griffiths phase [116]. The SDRG is a real-space renormalization group

method where the decimation step is the elimination of the strongest of the couplings

and magnetic fields. It is possible to follow the transformation of the distribution of the

magnetic fields and couplings under the renormalization flow. From these distributions
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one can conclude exact results about the thermodynamic behavior.



Chapter 3

Quench dynamics of homogeneous

systems

The quench dynamic means, that the quantum system is in its ground state initially, and

an external parameter is changed instantaneously. With the new value of the external

parameter the initial ground state is not an eigenstate of the new Hamiltonian, and a non-

trivial time evolution starts. More formally let’s denote the Hamiltonian of the system with

H(h), where h is the external parameter. For t < 0 h = h0 and the system is prepared in

the ground state of H(h0). Let’s denote this initial state with |Ψ(0)
0 〉. At t = 0 the value of

the external parameter is changed instantaneously to h 6= h0, and remain h for t > 0. The

wave vector of the system is

|Ψ(t)〉 = e−iH(h)t|Ψ(0)
0 〉 . (3.1)

for t > 0. The |Ψ(0)
0 〉 original state of the system is usually not eigenstate of the after-quench

Hamiltonian H(h), and a non-trivial dynamics starts after the quench.

Usually we use the Heisenberg picture. The operator of physical observable A evolves

in the Heisenberg picture as

AH(t) = eiH(h)tAe−iH(h)t . (3.2)

The expectation value of the A observable is calculated as 〈A〉 = 〈Ψ(0)
0 |AH(t)|Ψ(0)

0 〉. A two

point correlation function can be calculated as CA,B(t1, t2) = 〈Ψ(0)
0 |AH(t1)BH(t2)|Ψ(0)

0 〉 =

〈Ψ(0)
0 |exp(iH(h)t1)Aexp(−iH(h)(t1−t2))Bexp(−iH(h)t2)|Ψ(0)

0 〉. The time evolution of the

most simple operators are written down in detail in Appendix A.

3.1 Numerical results on global quenches

3.1.1 Magnetization

In [37] the authors investigated the quantum Ising model. Here we recapitulate the main

numerical results about the dynamics of the magnetization (order parameter). For very

long times (t � L) the magnetization reaches an asymptotic value in a finite system.( In

figure 3.1 this regime is not show. The oscillations which can be seen in figure 3.1 decay,

18
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and become negligible for very long times.) The magnetization is measured on the l th

site in a system of total length of L spins. We assume L/2 > l so the nearest boundary is

at the first spin. For times of the same order of magnitude of the system length, different

regimes can distinguished.

1. For short times (t� L) the relaxation of the magnetization is exponential:

ml(t) ≈ A(t)exp(−t/τ) for t < tl . (3.3)

This regime can be seen in figure 3.1 in the left-bottom panel before the first min-

imum. The A(t) prefactor is O(1). It is found to be oscillating if the quench ends in

the disordered phase A(t) ∼ cos(at+b), and positive (A(t) ∼ cos(at+b)+c > 0) if the

quench ends in the ferromagnetic phase. This first regime ends after tl time. It was

found that tl = l/vmax, where vmax is the maximum group velocity 1 in the system.

In other words vmax is the time needed by the fastest possible signals to reach the

lth spin from the boundary. If the bulk of an infinite system is investigated,(L→∞
and l→∞ with l/L = constant) only this first regime exist.

2. Quasi-stationary regime. This regime can be seen in the left upper panel of figure 3.1,

when the magnetization is measured far from the center of the chain. (The length of

the chain was L = 256 so the center is l = 128. If the measured spin is far from the

center, the quasi-stationary regime is long (see the curve corresponding to l = 16), if

the spin is closer to the center the quasi-stationary regime becomes shorter (see the

curve corresponding to l = 64), if the measured spin is in the middle of the chain

(l = 128) the quasi-stationary regime vanishes.)

In this regime the decrease of the magnetization is much slower than in the previous

one. This regime starts when the fastest quasi-particles starting from the closer

boundary reach the measured spin (tl), and ends when the quasi-particles starting

from the other end of the chain (Lth) spin reach the measured spin (time (L−l)/vmax).
This regime holds for tl < t < T − tl where T = l/vmax.

If one investigates a half infinite system, so the L → ∞ limit with fixed l, the

magnetization remains forever in this stationary regime.

3. Reconstruction regime.

After time T − tl the magnetization starts to increase

ml(t) ∼ exp(t/τ ′) . (3.4)

This regime ends at time T , when the fastest signals has run over the whole chain.

4. After time T approximately periodic behavior starts with period T . This periodicity

is the result of repeating reflection of signals at the end of the chain.

1The group velocity is given by vk = ∂ε(k)
∂k
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Figure 3.1. Upper row: Magnetization dynamics after a quench from h0 = 0 to h = 0.5
(left) and from h = 0.5 to h = 1.5 (right). Lower row: Entanglement entropy dynamics
after a quench from h0 = 0 to h = 0.5 (left) and from h0 = 0.5 to h = 1.5 (right). The
gray curve is the result of the semiclassical calculation which is detailed in section 3.2.3
This figure is based on figure 1. of [79].

3.1.2 Entanglement entropy

Numerical investigations about the dynamics of the entanglement entropy were done in [56]

and [122]. In this subsection the main numerical results about the after quench dynamics

are recapitulated. The entanglement between the block of the first l spins, and the other

L− l spins was calculated. The typical dynamics of entropy is shown in figure 3.1.

The dynamics can divided to different regimes (shown in figure 3.1, lower panel ),

similarly to the magnetization:

1. For t < l/vmax the entanglement entropy increase. The functional form is found to

be:

S = α(h, h0)t , (3.5)

the α(h, h0) prefactor depends on the pre- and afterquench magnetic fields.

2. There is an intermediate region

l/vmax < t < (L− l)/vmax , (3.6)

where the entanglement entropy remain nearly constant. In the L → ∞ limit with
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finite l this constant value is the asymptotic value (t → ∞) of the entanglement

entropy.

3. For

(L− l)/vmax < t < T = L/vmax (3.7)

the entropy decreases.

4. After t > T an approximately periodic oscillation begins with period T .

3.2 Quasi-classical description

The quasi-classical description was first applied by Sachdev and Young [123] for finite

temperatures in equilibrium. Later this type of description was modified to describe zero

temperature non-equilibrium dynamics [37] of the local magnetization and the correlation

functions and also has been used to interpret the dynamical entanglement entropy [122]

[56]. In this subsection we follow articles [37] and [122] and describe the dynamics of the

magnetization and the entanglement entropy with the use of quasi-particles.

The quasi-classical transition works best if the quench ends in the ferromagnetic phase

(h < 1), and additionally h is small, not too close to the critical point.

With zero transverse magnetic field the ground state is twofold degenerate |Ψ0〉 =

a| + + + · · ·+〉 + b| − − − . . . 〉 where |+〉 and |−〉 are eigenstates of |σx〉. The lowest

excitation is (L − 1) times degenerate: |n〉 = | + + + · · · + + − − − · · · − −−〉, here n is

the position of the domain wall (kink).

A small transverse magnetic field h > 0 destroys the degeneracy of the lowest lying

excitations. First order perturbation gives that the low lying excitations are Fourier trans-

formations of the |n〉 domain wall states.

|Φ(p)〉 =
∑

an|n〉 (3.8)

where an =
√

2/L sin(pn), εh(p) = 1−h cos(p) and p has L− 1 discrete values in the [0, π]

interval.

The low lying excitations are Fourier transformations of domain walls, so a wave packet

formed from them represents a moving domain wall. It is known that the group velocity

of a wave packet which is localized in momentum space around momentum p is

vp =
∂εp
∂p

=
h sin p

εp
. (3.9)

In the quasi-classical picture the quasi-particles are created at the moment of the quench

homogeneously in the chain with momentum dependent probabilities. After they have

been created, they move ballisticaly (with constant speed) and are reflected from the ends

of the chain. After their creation the quasi-particles are considered to move determinist-

ically. The Ising model (with arbitrary couplings and magnetic field) can be transformed

to free fermions, the details can be found in Appendix A. In particular the after-quench
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Hamiltonian with magnetic filed h can be written with fermion operators ηk and η†k in the

following diagonal form:

H =
∑
k

ε(k)η†kηk; (3.10)

where k is the momentum, which is a quasi-continuous variable in a large system, and

εh(k) =
√

(h− cos p)2 + sin2 p the excitation energies. The η operators are connected to

the c operators by tha following Bogoliubov transformation:

ηq = uqcq + ivqc
†
−q (3.11)

η†−q = ivqcq + uqc
†
−q , (3.12)

where uh(p) =
√

(εh(p) + h− cos p)/(2εh(p)) and vh(p) =
√

(εh(p)− (h− cos p))/(2εh(p))

The ground state of the after quench Hamiltonian is the vacuum of the η fermions, denoted

by |0〉, The ground state before the quench (denoted by Ψ0) can be expressed with the

ground state after the quench ( |0〉)

|Ψ0〉 = Πp

[
Un + iVnη

†
pη
†
−p

]
|0〉 , (3.13)

where Vp = uh0(p)vh(p) − vh0(p)uh(p) and Up = uh0(p)uh(p) + vh0(p)vh(p), and defined

in detail in Appendix A.3. From (3.13) one can see, that the quasi-particles are created

in pairs with opposite momenta. (This is also required to fulfill the conservation of the

momenta.) The probability of the creation of a quasi-particle pair on a given site with

momenta p and −p is:

fp = 〈Ψ0|η†pηp|Ψ0〉 = V 2
p , (3.14)

fp =
1

2

[
1− h0h− (h0 + h) cos p+ 1

εh0(p)εh(p)

]
. (3.15)

The motion of the quasi-particle pairs is periodic with period time 2Tp = 2 L
vp

. The position

of the initially right moving quasi-particle is denoted by x1(t), the position of the initially

left moving quasi-particle is denoted by x2(t). If a quasi-particle pair start from x0 the left

moving particle reach the boundary at ta = x0/vp, the right moving quasi-particle reach

the left boundary at time tb = (L− x0)/vp. For t < Tp the positions of the quasi-particles

are:

x1(t) =

{
x0 + vpt for t ≤ tb

2L− x0 − vpt for tb < t ≤ Tp ,
(3.16)

x2(t) =

{
x0 − vpt for t ≤ ta

vpt− x0 for ta < t ≤ Tp .
(3.17)

The quasi-particles meet at t = Tp in L− x0. Between Tp and 2Tp another two reflections

happen, and at t = 2Tp the quasi-particles meet again, at the position of their creation, x0

and with the same direction of velocities as at the time of their creation. The quasi-particles

move periodically with 2Tp period.

When a quasi-particle passes a spin the spin is flipped in the X direction. The two

elements of the quasi-particle pair are correlated with each other, but the quasi-particles
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Figure 3.2. Quasi-particle trajectories after a global quench.

from different pairs (starting from different positions) are uncorrelated.

3.2.1 Correlation functions

The correlation functions are defined as:

C(r1, t1; r2, t2) = 〈Ψ0|σxr1(t1)σxr2(t2)|Ψ0〉 . (3.18)

The behavior of this correlations are interesting on its own right, however in this work I

include them, because they are used during the calculation of the local magnetization. The

motion of the quasi-particles after the quench is deterministic, but the creation process is

stochastic. To calculate the expectation value of correlation functions, one has to average

over the possible initial configurations of the quasi-particles.

With a given quasi-particle initial configuration C(r1, t1; r2, t2) is +1 if the traject-

ories intersect the (r1, t1; r2, t2) line even times, and −1 if the trajectories intersect the

(r1, t1; r2, t2) line odd times.

The probability, that the quasi-particles started from the same site intersect the line

(r1, t1; r2, t2) an odd number of times is denoted by Q(r1, t1, r2, t2).

The probability that for a given set of n sites the kinks passed odd times the (r1, t1; r2, t2)

line is:

C(r1, t1; r2, t2)

Ceq(r1, r2)
=

L∑
n=0

(−1)nQn(1−Q)L−n
L!

n!(L− n)!
= (1−2Q)L ≈ e−2Q(r1,t1;r2,t2)L . (3.19)

To calculate Q(r1, t1; r2t2) one has to average over the quasi-particle pairs with different

momenta between 0 and π:

Q(r1, t1; r2, t2) =
1

2π

∫ π

0

dpfp(h0, h)qp(r1, t1; r2, t2) . (3.20)

In the previous equation qp(r1, t1; r2, t2) denotes the probability that the two traject-

ories of a quasi-particle pair (x1(t) and x2(t)) together intersect the line (r1, t1; r2, t2) odd
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number of times. The qp probability can be calculated as the sum of the probabilities

qp(x0|r1, t1; r2, t2):

qp =
1

L

∫ L

0

dx0qp(x0|r1, t1; r2, t2) , (3.21)

where qp(x0|r1, t1; r2, t2) denotes the probability that the quasi-particle pair which originally

started from x0 with momenta p intersects the line (r1, t1; r2, t2) together odd number of

times.

3.2.2 Local magnetization

The local magnetization can be expressed as the correlation function of the lth spin at time

t, and the lth spin at t = 0 with the condition that the spin is fixed initially (σxl = +1).

ml(t) = meq
l C|σxl (t=0)=+1(l, 0; l, t) (3.22)

The aforementioned quantities (q(t, l), qp(t, l)) take special, more simple form:

q(t, l) = Q|σxl (t=0)=+1(l, 0; l, t) (3.23)

q(t, l) =
1

2π

∫ π

0

dpfp(h0, h)qp(t, l) (3.24)

qp(t, l) =
1

L

∫ L

0

dx0qp(x0|t, l) . (3.25)

To calculate the local magnetization one has to evaluate qp(t, l).

for early times, when the reflections at the ends did not play a role, qp(t, l) is simply

proportional with the length of the region from where the quasi-particles could reach the

l th site. The first reflected quasi-particles reach the lth spin at t1 = l/vp, so for t < t1

qp(t, l) = 2vpt/L.

After the quasi-particles reflected from the left boundary (neighborhood of the first

spin) arrives, the qp(t, l) probability remains constant. This constant period remain until

the reflections from the right end did not arrive, so for t1 = l/vp < t < t2 = (L− l)/vp the

qp(t, l) probability is constant pq(t, l) = 2l/L.

When the quasi-particles reflected from the right end arrives at the investigated site l,

the qp(t, l) probability becomes to decrease, and it decreases until t = Tp = L/vp. At time

Tp the qp(t, l) probability becomes zero again.

qp(t, l) =


2vpt/L for t ≤ t1

2l/L for t1 ≤ t ≤ t2

2− 2vpt/L for t2 ≤ t ≤ Tp

(3.26)

Since after Tp time the quasi-particles reach their original position, qp is periodic with

period Tp:

qp(t+ nTp, l) = q(t, l) (n = 1, 2 . . . ) . (3.27)

The q function is not periodic, because the quasi-particle pairs with different momenta
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Figure 3.3. The quasi-particle pair denoted by (1) gives no contribution to the entanglement
entropy. The other quasi-particle pair denoted by (2) gives non-zero contribution to the
entanglement entropy.

has different speed and different period time. In an half-infinite system, so in the limit of

L→∞ with l = const. the t2 time becomes formally infinite, and

qp(t, l) =

{
2vpt/L for t < t1

2l/L for t > t1 .
(3.28)

The magnetization is in the L→∞ limit:

ml(t) = meq
l exp(−t 2

π

∫ π

0

dpvpfp(h0, h)Θ(l−vpt))exp(−l 2
π

∫ π

0

dpfp(h0, h)Θ(vpt−l)) (3.29)

The relaxation time of the magnetization is:

τ−1
mag(h0, h) =

2

π

∫ π

0

dpvpfp(h0, h) . (3.30)

3.2.3 Entanglement entropy

In this section the quasi-classical description of the after quench entanglement entropy, and

some analytical results about the entropy are summarized. From (3.13) it can be seen that

the quasi-particles from one pair are entangled, and quasi-particles from different pairs are

not entangled.

A quasi-particle pair gives non-zero contribution to the entanglement entropy between

blocks A and B if one member of the pair is in A and the other member is in B.

The contribution of one quasi-particle pair is

sp = −(1− fp) ln(1− fp)− fp ln fp . (3.31)

Summing up the contributions of all quasi-particle pairs one obtains the precise value of

the entanglement entropy, see figure 3.1 The summing up of the entropies of quasi particles

(equation 3.31) is straightforward in the L→∞ and l� 1 limit.

Sl(t) =

{
t 1

2π

∫
dpvpsp if t < l/vmax

l 1
2π

∫
dpsp if t� l/vmax ,

(3.32)

which corresponds to the exact results of [57]. In this limit (L → ∞ and l � 1), there

is only an increasing regime, and a plateau regime. There are no oscillations, because the

quasi particles are reflected only from one end. The oscillations in finite systems (figure

3.1) are results of the interference of the quasi particles reflected from the opposite ends of
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the system.

3.3 Spectra and the dynamical properties

Usually the spectra of the Hamiltonian (after the quench) determines the mean features of

the dynamics. This will be illustrated by examples. The spectra of the operators can be

divided to three classes [113]:

1. Absolutely continuous spectra. The spectra of the most homogeneous systems are

absolutely continuous. For example the spectra of the homogeneous Ising model or

the homogeneous XX model is absolutely continuous. However, there are inhomo-

geneous models with absolutely continuous spectra, for example the spectra of the

Harper model is absolutely continuous in its extended phase.

The models with absolutely continuous spectra usually have eigenstates extended

over the whole system. 2

2. The second type is the so-called singular continuous spectra. Such spectra shows a

fractal like behavior.

This type of spectra is observed in certain quasi-periodic systems: in the critical

point of the harper model [102] or in the Fibonacci quasi-crystal [113].

3. The third kind is the pure point spectra, which is typical for disordered systems

(disordered Ising chain [115], Anderson model with diagonal and off diagonal dis-

order [120] ).

There are quasi-periodic systems with pure point spectra, an example is defined by

a substitutionary rule in [121] and the Harper model in its localized phase is also has

pure point spectra.

Usually there is a finite localization length if the spectrum is pure point spectrum.

The energy-dependent localization length shows the spatial extension of the eigen-

states with the given energy. It can happen, that the localization length is finite

almost in the whole spectra, but becomes divergent at a special energy value. This

happens in the critical point of the disordered Ising chain [115] and in the off-diagonal

Anderson model [120]. 3

There are a vast of literature about the dynamics of systems with various types of spectrum.

The results of the numerical and exact investigations can be summarized as follows:

1. In the case of absolutely continuous spectra the dynamics is usually ballistic. Ballistic

here means that the ”signals” travel with constant velocity in the chain.

2It is naturally possible to create a Hermitian operator with absolutely continuous spectra and localized
eigenstates. For example one can consider the spectra of the homogeneous XX model, and a complete basis
of localized eigenvectors. Then one define the operator as the eigenbasis is the aforementioned localized
complete set, and the spectra is the spectra of the XX model. However in simple physically inspired models
the absolutely continuous spectra is exist together with the extended eigenstates.

3The spectra of the one particle excitations of the disordered Ising chain and the set of the positive
eigenenergies of the off-diagonal Anderson model are identical.
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2. If the spectra is singular continuous the dynamics is slower,the wave packets spread

as a power law. This was observed in the critical point of the Harper model [102]

and in the Fibonacci quasi-crystal.

3. If there is pure point spectrum, localization or extremely slow dynamic was found.

Here localization means that the wave packet reaches a finite width in an infinite

system, as in the localized phase of the Harper model. Ultra slow growth of the

entanglement entropy after a quench was found in the disordered Ising chain and for

other disordered models.

A qualitative explanation of the above results was developed by Thouless and Piéchon in

their articles [128]. They investigated the typical variation of the energy levels (∆E) of

a one-dimensional system when the boundary conditions are changed. The ∆E energy

scale defines a time scale t∗ ∼ 1/∆E. A wave packet needs t∗ time to spread trough

the entire chain of length L. One gets the diffusion exponent of the wave packet with

the x2(t∗) ∼ (t∗)2 ∼ L2 relationship. In a model with absolutely continuous spectrum

the typical variation of energy levels is ∆E ∼ 1/L, which implies σ = 1. In a model

with pure point spectrum, ∆E ∼ 1/L and σ ∼ lnL/L ≈ 0. If the spectra is singular-

continuous, the relation between the variation of energy levels and the system size is more

complicated,∆E ∼ L−1/α, with various exponents α. Detailed investigations shows, that

the qth moment of a wave-packet starting form the i0th site behaves as x(q)(i0, t) ∼ tσ(i0,q),

where the exponent σ(i0, q) depends on the initial position i0.

3.4 Experiments

In the past two decades the experimental study of non-equilibrium quantum dynamics

become possible in systems of trapped ultra-cold atoms [12]. The gas of neutral atoms

(mostly alkali atoms) is cooled with subsequent methods. In a typical experiment the gas

is first cooled by laser cooling [129] and then trapped in a magnetic or magneto-optical

trap, and the trapped gas is cooled further by microwave evaporate cooling [130]. These

systems were the first realizations of a Bose-Einstein condensate of weakly interacting

particles, and the pioneers of this experiments Eric A. Cornell, Wolfgang Ketterle and

Carl E. Wieman has been awarded with the 2001 Nobel Prize in Physics for constructing

these experiments. The usual way of studying a trapped condensate is the time-of-flight

measurement: The trap is turned off instantaneously, and the atoms of the condensate ex-

tends ballistically. The extended atomic cloud is photographed later. Since the condensate

is located in a small volume, the velocity distribution can be obtained by time-of-flight

measurement [131]. Cooling and trapping fermions is also possible. however technically

even more challenging, since the thermalization during the evaporating cooling is slower

than in the bosonic case due to the exclusion principle [132].

The systems built from trapped cold atoms are well isolated from the environment and

can be considered as closed systems during the duration of experiments. The time scale

of the dynamics of these cold-atom systems is much longer than the usual time scales in
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solid sates. The reason of the longer time scale, is the dilute nature of this systems. The

typical time scale is a few ms which makes possible to experimentally follow the dynamics.

The interaction strength (usually characterized by the s-wave scattering length) between

the trapped atoms is tunable with an external magnetic filed due to the Fresbach reson-

ance [133].

With the use of the so-called optical lattices [134] experimental realization of lattice mod-

els became possible. An optical lattice is formed by the interference of contra propagating

laser beams, which create an effective optical potential. Atoms can be trapped at the

minima of the optical potential. (The minima of the optical potential are actually maxima

of the light intensity.)

One of the most natural models emerging in optical lattices is the Bose-Hubbard model

and the Fermi-Hubbard model [135]. Even the monitoring of a single atom became possible

in Hubbard-like models [136]. Among investigating naturally emerging models in optical

lattices it is possible to simulate several solid-state-physics inspired models [137]. Ising and

XY models were engineered on triangular lattice [138]. The metal-insulator transition was

observed in the experimental realization of the Harper-model [139]. Disordered systems

were also realized in optical latices [137].

The quench dynamics of isolated systems were investigated in many experiments. Kinoshita

investigated [3] [4] the quench dynamics and the steady state of an effectively one-dimensional

system. It was found, that the system does not reach a thermal steady state in the ob-

tainable time regime, the system was close to the integrable Lieb-Lüttinger model. The

nearly integrability may be the reason of the lack of the thermalization. Marc Cheneau and

his colleges investigated the spreading of correlations in a one dimensional Bose-Hubbard

model [10]. They demonstrated experimentally the light-cone-like spreading of the correl-

ations, which is characteristic in homogeneous systems, and has been used in Section 3.2.

Nearly-adiabatic dynamics was also investigated in systems of ultra-cold atoms. Weiler et

al. investigated a Bose gas, which was cooled below the BEC transition point [140]. They

demonstrated spontaneous forming of defects (vortices) during the process. Sadler et al. [6]

investigated a spinor Bose gas (87Rb). This system shows both magnetism and superfluid-

ity. They have driven this system over a quantum phase transition, and investigated the

density of ”generated defects”. Here defects refer to any difference from the ground state

of the instantaneous Hamiltonian.

A periodically driven interacting Harper model was studied recently [75]. The periodic

driving induce a delocalized regime in the phase diagram of the system.

These experiments with cold atoms draw attention on their own right. On the other hand,

these experiments lead to better understanding of solid state physics. Furthermore these

systems may serve as a hardware of quantum computing [139].



Chapter 4

Local quenches

4.1 Introduction

The non-equilibrium process after a sudden change of a parameter ”quench” at T = 0 is of

recent interest, and there were much attention paid to the [13–51,55–57] global quenches,

where the parameters are varied homogeneously in space.

The local quench is another interesting question, when parameters are modified locally

at a given site. Experimental realization of local quenches is X-ray [141] absorption

in metals. The theoretically most investigated systems in this field are the critical one-

dimensional systems.

For those systems, exact analytical results have been derived using conformal field

theory (CFT) [142,143].

In CFT one investigates the continuum limit of the model, where the system evolves

in a continuous two dimensional space-time (x, t). In this description the local quench

means the sudden change of a parameter at a given spatial (x) position, for example the

strength of the coupling at x = 0, changes from κ1 before the quench (t < 0) to κ2, after

the quench (t > 0). The expectation value of operators are calculated with path-integral

methods. These conformal methods usually work for appropriate boundary conditions:

κ = 0 (uncoupled half chains) or κ = ∞ (fixed local spin) and κ = 1, i.e., uniformly

coupled chain. Among other quantities the after quench entanglement entropy has been

studied by CFT ( [122,144–147]), after joining two initially independent systems (changing

from κ1 = 0 to κ2 = 1), the entropy grows logarithmically [142], and the prefactor of the

logarithm is universal S(t) = (c/3) ln t + const, it is one third of the central charge of the

CFT. In finite systems the entropy cannot grow without limit, in a system of length L the

entropy starts to grow for short times, but for long times it shows a periodic variation in

terms of t/L [143].

Various correlation functions and also the magnetization have been investigated with

CFT: the time (measured from the time of the quench ) and spatial (distance measured

from the site of the local quench) dependence is usually characterized by power laws [142],

and the exponents are combinations of bulk and surface static scaling dimensions. The

CFT predictions have been tested against numerical calculations in concrete models [94],

and good agreement has been found.

29
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There were studies about local quenches in non-conformally invariant systems. For

quenches ending in the ordered phase of the transverse Ising chain, a semiclassical de-

scription was applied [38], which has been verified by numerical simulations [94]. The

strong disorder renormalization group method was modified to describe the dynamics of

disordered systems [103] such as TIC (transverse Ising chain), and the entanglement en-

tropy [79, 82] and the full counting statistics was [80] investigated with this modified

renormalization group. In critical disordered systems, both quantities has an ultra slow

S(t) ∼ ln ln t time dependence, which was tested against numerical calculations.

In this section we study the time evolution of the local magnetization at the critical

point of the TIC, after a generalized local quench: The value of the local coupling and also

the value of the local fields are changed at the time of the quench t = 0. The static critical

behavior near a local defect in the TIC is non-universal, the scaling dimension of the local

magnetization continuously varies with the defect strength xi = xi(κi) [118,148–152]. Later

this question has been studied with various methods, S-matrix theory [153], , conformal

methods [154–159] and conformal field theory [160–162].

The ground state [122], [163–165] and the dynamical [122,166] entanglement entropy

across a defect also shows a similar behavior: the so-called effective central charge is a

prefactor of the entropy, and a continuous function of the defect parameters. It is expected,

that the non-equilibrium relaxation of the magnetization is also non-universal.

4.2 Model

I consider a critical TIC of length L with free boundary conditions and a defect at L/2.

The Hamiltonian of the system is

Hi=−
1

2

[
L−1∑
n=1

σxnσ
x
n+1+(Ji−1)σxL/2σ

x
L/2+1+

L∑
n=1

σzn+(hi1−1)σzL/2 + (hi2−1)σzL/2+1

]
. (4.1)

The index i = 1, 2 refers to the values of the transverse fields hi1, hi2 and the coupling Ji,

before and after the quench at t = 0. In this chapter the after quench time dependence

of the local magnetization is in the focus of the interest. I follow the evolution of the

local magnetization at the defect, md(t) = mn=L/2(t). To investigate this generalized local

quench a two dimensional classical model is introduced in section 4.3. The imaginary time

version of the above described quench is in close relation with this classical model. The

imaginary time version of the quench is defined on the n-τ plane, where n is the number

of the spins, and τ is the imaginary time. The quench process investigated in the n − τ
plane corresponds to a two-dimensional (2d) classical critical Ising model with a composite

ladder defect at the center (see figure 4.1 for an illustration; the x axes corresponds to τ

and n corresponds to y ).

With the help of the two-dimensional classical model, exact results can be obtained for the

imaginary time version. This results are summarized in section 4.3.

The real time behavior is obtained by analytical continuation the imaginary time behavior

in section 4.3. To do this, we use previous exact results from the literature about special
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Figure 4.1. Composite line defect in the critical two-dimensional square lattice Ising model.
The composite defect is made of two half-lines of perturbed couplings on a ladder.

cases of the local quench.

The results are validated by large scale numerical simulations which are written down in

section 4.4.

4.3 Composite defect exponents

In this section the critical classical Ising model on the square lattice is investigated with a

line defect as shown in figure 4.1. The composite defect results from the junction of two

semiinfinite line defects, indexed 1 and 2, with different horizontal (Kij) and vertical (Ki)

perturbed couplings (i, j = 1, 2). Since the scaling dimension of the bulk energy density,

xe = 1, is the same as the dimension of the line defect, the perturbation is marginal and

varying local magnetic exponents are expected as for the infinite line defect [148,149].

In the off-critical system the local behavior of the magnetization, at a distance from the

defect smaller than the bulk correlation length ξ, is governed by three different exponents.

In the central region the local magnetization exponent x12 is influenced by the two parts

of the composite defect. Outside this region, at a distance larger than ξ from the junction,

the local magnetization exponents, x1 and x2, are the same as for infinite line defects.

One can calculate the composite defect exponent x12 using conformal methods and

finite-size scaling [154–159].

In a first step, the infinite critical system of figure 4.1, with a single composite line defect

along the x-axis, is transformed into a cylinder with two equidistant line defects, 1 and 2,

parallel to the cylinder axis, through the conformal transformation w = (L/2π) ln z where

z = x+ iy and w = u+ iv. The system after the transformation (shown in figure 4.2(a)),

is infinite along the u-axis and periodic with size L, even, in the transverse direction. The

gap-exponent relation [168] can be used in the cylinder geometry to calculate the composite

defect exponents.

Although the column-to-column transfer matrix can in principle be diagonalized for

arbitrary couplings, the calculations are more simple in the strongly anisotropic (Hamilto-

nian) limit [107, 169] where the couplings in the longitudinal direction (Ku in the bulk

and Kij on the line defects) are strong while the couplings in the transverse direction (Kv
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Figure 4.2. (a) Under the conformal transformation w = (L/2π) ln z the full plane with
a composite line defect becomes an infinite cylinder with circumference L and two infin-
ite equidistant line defects, parallel to the cylinder axis. (b) In the extreme anisotropic
limit, the column-to-column transfer operator can be expressed as the exponential of the
Hamiltonian of a TIC, up to a rescaling factor.

in the bulk and Ki on the line defects) are weak. For a critical bulk in the extreme an-

isotropic limit, corresponding to a continuous imaginary time along the u-axis, the ratio

Kvc/K
∗
uc → 1 whereas on the line defects Ki/K

∗
uc → Ji and K∗ij/K

∗
uc → hij. Here K∗uc is

defined by the implicit equation tanhK∗uv = exp (−2Kuv).

Then the transfer operator is T = exp(−2K∗ucH) where H is the Hamiltonian of a

TIC [106] (see figure 4.2(b))

H = −1

2

[
L∑
n=1

σxnσ
x
n+1 + (J1 − 1)σxLσ

x
1 + (J2 − 1)σxL/2σ

x
L/2+1

+
L∑
n=1

σzn + (h11 − 1)σzL + (h12 − 1)σz1 + (h22 − 1)σzL/2 + (h21 − 1)σzL/2+1

]
. (4.2)

With the Jordan-Wigner transformation the Pauli spin operators σxn and σzn, are ex-

pressed in terms of fermion operators. [104] See details in Appendix A.4. The Hamiltonian

becomes quadratic in terms of fermion operators, but involves an operator P = (−1)Q, as-

sociated with the bond between the last (Lth) and the first spin.. The P operator commutes

withH, and its eigenvalues are +1 and −1 corresponding to Q = 0 and Q = 1. The number

of fermions is even (odd) if Q = 0 (Q = 1). In each subspace H(Q) is diagonalized by a

Bogoliubov transformation [106, 170] and takes the form H =
∑

k εk

(
η†kηk − 1

2

)
in terms

of the new fermion operators ηk and η†k. One gets the square of the excitation energies as

the Q-dependent eigenvalues of the L × L matrix equation (M − ε2k) Φk = 0 with line n

(1 < n < L) given by:

h(n−1)J(n−1)Φk(n−1) + [h2(n)+J2(n−1)−ε2k]Φk(n)+h(n)J(n)Φk(n+1)=0. (4.3)
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Figure 4.3. The conformal transformation w = z2 maps the upper half-plane onto the full
plane with a cut along the positive real axis.

In lines 1 and L one has to replace J1 by (−1)Q+1J1. h(n) is the transverse field at site n

and J(n) the coupling between sites n and n+ 1 as shown in figure 4.2(b).

With ε2k = 4 sin2(k/2) and using the Ansatz

Φk(1) = −A , Φk(n) = (−1)n
(
B eikn + C e−ikn

)
(n = 2, L/2) ,

Φk(L/2+1)= (−1)L/2+1D, Φk(n) = (−1)n
(
E eikn+F e−ikn

)
(n = L/2+1, L), (4.4)

equation (4.2) becomes a linear system of six equations for the amplitudes A to F . The

characteristic equation gives the allowed values of k in each Q sector.

In the limit of large systems (continuum limit, 1/L→ 0), with εk = k = α/L, one can

expand the characteristic equation in powers of 1/L. To leading order, O (L−2), is found

to be

cosα =

[
κ1 − (−1)Q κ2

]2 − [1 + (−1)Q κ1κ2

]2
[κ1 − (−1)Q κ2]2 + [1 + (−1)Q κ1κ2]2

,

κi =
Ji

hi1 hi2
(i = 1, 2) , (4.5)

where κi is an effective bond interaction. This can be rewritten as

cot
(α

2

)
= ± κ1 − (−1)Q κ2

1 + (−1)Q κ1κ2

= − tan
(α

2
− π

2

)
. (4.6)
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By introducing the angle θi = arctan(1/κi) (i = 1, 2) one gets the relation

tan
(α

2
− π

2

)
= ± tan θ1 − (−1)Q tan θ2

1 + (−1)Q tan θ1 tan θ2

= ± tan
[
θ1 − (−1)Q θ2

]
. (4.7)

Thus the fermionic excitation energies take the form [157,159]

ε±r (Q) =
2π

L
(1/2±∆Q + r) , Q = 0, 1 , (4.8)

where r is an integer and

∆0 =

∣∣∣∣θ1 − θ2

π

∣∣∣∣ , ∆1 = 1− θ1 + θ2

π
. (4.9)

One gets the magnetization exponent from the gap-exponent relation [168]

x12 =
L

2π
(Eσ − E0) , (4.10)

where E0 = E0(0) is the ground-state energy of H in equation (4.2 which belongs to the

even sector of the fermionic Hamiltonian whereas Eσ, which is the first excited state of H,

belongs to the odd sector. These two states belong to different sectors, so the gap involves

the difference ∆E between the ground-state energies in the two sectors and is given by

Eσ − E0 = ∆E + ε0(1) = E0(1)− E0(0) + ε0(1) , (4.11)

with [157]

∆E =
2π

L

[
1

2

(
∆2

1 −∆2
0

)]
, ε0(1) = 1/2−∆1 . (4.12)

A simple expression for the local magnetization exponent is obtained by collecting the

above results:

x12 =
2

π2
arctan

(
1

κ1

)
arctan

(
1

κ2

)
=
√
x1x2 . (4.13)

This result can be proven for the “composite defect” shown in figure 4.3(b) where κ1 = 0

(cut on the positive u-axis) and κ2 = 1 (no perturbation around the negative u-axis).

Then x1 is the free surface exponent xms = 1/2, x2 the bulk exponent xm = 1/8 and from

equation (4.13) one gets x12 = 1/4. Now the conformal transformation w = zω/π is applied

to the critical upper half-plane of figure 4.3(a). The result of the conformal transformation

is a corner with opening angle ω and corner exponents are related to the surface exponents

via xc = πxms/ω [171,172]. If ω = 2π, the transformed system is the full plane with a cut

(see figure 4.3(b) ) so that x12 = xms/2 = 1/4.

The gap giving the local energy density exponent is Eε − E0, where Eε is the lowest

eigenstate of H with two fermions. Both states contains even fermions so that, according



4.2. SCALING BEHAVIOR IN IMAGINARY TIME 35

to equation (4.8), the local energy exponent, given by

L

2π
(Eε − E0) =

L

2π

[
ε−0 (0) + ε+0 (0)

]
= 1 , (4.14)

keeps its unperturbed value. It is necessary to keep a truly marginal behavior for the local

magnetization when the defect strength is modified. Otherwise the criterion of marginality

would no longer be satisfied.

4.2 Scaling behavior in imaginary time

In this short section the result obtained for the imaginary time scaling t = iτ of critical

systems are summarized and stated in a form, that the real-time continuation become

straightforward.

The parameters of the defect are different for τ < 0 and for τ > 0. The magnetization

has the following finite-size scaling behavior along the defect line:

md(τ, L) = L−xi m̃i
d(τ/L), i = 1(2), τ < 0 (> 0) . (4.15)

According to exact calculations, which can be found in the next subsection, the local scaling

exponent xi is a function of the following combination of the defect parameters

κi =
Ji

hi1hi2
. (4.16)

and it is given by

xi =
2

π2
arctan2

(
1

κi

)
. (4.17)

The scaling function m̃i
d(z) = const for |z| � 1, i.e., for |τ | � L and for |z| � 1 it behaves

as a power law m̃i
d(z) ∼ |z|ωi . The value of the exponent ωi depends on the scaling behavior

of the local magnetization in the region τ � L, where the two different semiinfinite defect

lines are connected. In the junction point the local critical behavior is influenced by both

defects and the scaling of the magnetization in the asymptotic limit is:

md(τ � L,L) ∼ L−x12 , (4.18)

where x12 is the composite defect (generalized corner) exponent.

Since both scaling equations (4.15) and (4.18) are true for the system, the ωi exponent

has to be x12 − xi. Using the previous result one gets for the magnetization profile in the

0 < τ � L limit:

md(τ) ∼ τx12−x2 , 0 < τ � L . (4.19)

At the end of this section some special cases are treated. The scaling behavior of the

magnetization is the same on both sides of the defect, which is not trivial due to the

(possible) asymmetry. An other interesting property of the magnetization is obtained if

fixed-spin initial condition is realized either with h1j = 0 (j = 1 and/or 2) or with J1 =∞,
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leading to κ1 =∞. With this initial condition, according to equation (4.17), x1 = x12 = 0,

so that equation (4.19) simplifies to

m
(+)
d (τ) ∼ τ−x2 0 < τ � L . (4.20)

The protocol where two half-chains, initially disconnected, are connected by a bulk coupling

for τ > 0 is a special case of the general local quench investigated here, and due to

it’s simplicity it is worth to investigate this special case. The scaling dimensions of the

magnetization are denoted by xm and xms, in the bulk and at a free surface, respectively.

Initially κ1 = 0 and x1 = xms = 1/2 whereas κ2 = 1 and x2 = xm = 1/8 for τ > 0. In this

special case the scaling of the magnetization is

m
(fb)
d (τ) ∼ τ 1/8 , 0 < τ � L . (4.21)

Here the (fb) superscript refers to the free boundary (surface).

4.3 Scaling behavior in real time

For the scaling behavior of the magnetization in real time, some results have been obtained

in special cases, when the final state is the homogeneous bulk one (κ2 = 1), and the initial

state is also special, the spin at the defect is fixed (κ1 =∞) or the chains are disconnected

(free) (κ1 = 0). There is CFT-result [142] for the fixed spin initial condition.

m
(+)
d (t) ∼ t−2xm 0 < t� L . (4.22)

This result have been tested by numerical simulations on the TIC [94]. The time depend-

ence of the local magnetization is periodic in a finite system of length L. In an open chain

the result of [94] are described by the following sinusoidal form:

m
(+)
d (t, L) ∼

[
L sin

(
π
t

L

)]−2xm

, 0 < t < L , (4.23)

which transforms to equation (4.22) for t� L. For the case, when the two half chains are

disconnected, the results of [94] can be summarized as:

m
(fb)
d (t, L) ∼ L−1/2

[
L sin

(
π
t

L

)]1/4

, 0 < t < L . (4.24)

In the limit of short times the previous formula takes the following shape:

m
(fb)
d (t) ∼ m0(L) t1/4, 0 ≤ t� L , (4.25)

where m0(L) ∼ L−xms is the equilibrium value of the defect magnetization in the initial

state.

The time exponent in equation (4.25) is 1/4 = 2(xms/2− xm) where the x2 = xm and
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x12 = xms/2 exponents of the protocol (κ1 = 0 to κ2 = 1) are in evidence.

For fixed spin initial state (equation (4.22)) the same form applies with x12 = 0.

If t2 is substituted for τ the scaling equations in imaginary time (equations (4.20) and

(4.21)) and real time (equations (4.22) and (4.25) ) become equivalent.

Thus one can wrote for the general behavior of the real time magnetization (in the

asymptotic limit of large systems L� 1) :

md(t) ∼ m0(L) t2(x12−x2), 0 < t� L , (4.26)

with m0(L) ∼ L−x1 . In a finite-size system periodic behavior is expected in the form:

md(t, L)∼L−x1

[
L sin

(
π
t

L

)]2(x12−x2)

, 0 < t < L . (4.27)

The above two equations are the main results of this chapter. At this point these formulas

are conjectures and will be tested by large-scale numerical simulations in the next sections.

4.4 Numerical investigations

4.4.1 Technical details

In the numerical calculations the techniques presented in the Appendix A and in chapter

B.1 are used. The TIC is expressed in terms of free fermions, (Appendix A) and the

magnetization is calculated as a Pfaffian (described in section B.1). From technical point

of view the process requires the numerical diagonalization of 2L × 2L matrices with the

real time t entering as a parameter in the calculation.

In the calculations the maximum of the system sizes was L = 4096, in the general case

the largest system size was L = 512.

From the equation (4.27) one can obtain the finite size values of the defect exponents.

I calculated the defect magnetization in a system of size L at times t = L/2 and

t = 3L/4 and in a system of size L/2 at time t = L/4.

I investigated the ratios 1

r(L) = md(t = L/2, L)/md(t = L/4, L/2) ,

r′(L) = md(t = L/2, L)/md(t = 3L/4, L) . (4.28)

With these ratios one gets the nest combinations of exponents

ln r(L)

ln 2
= α(L)→ −x1 + 2(x12 − x2) , (4.29)

1The value of the defect magnetization in equation (4.27) should be equal at t = L/4 and t = 3L/4 due
to the sine in equation (4.27). However in a finite system, at L/4 there are oscillations around the leading
behavior which are often not negligible, see next section.
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Figure 4.4. (a) Double logarithmic plot of the time evolution of the defect magnetization
in a finite system of length L = 1024 after a quench from an ordered defect initial state.
The values of κ2 in the final state vary between 1.6 and 0.4, in steps of 0.2, from top to
bottom. The dashed lines show the prediction of equation (4.26). The amplitude of the
initial oscillations is increasing with decreasing κ2. (The oscillations decay with time.) (b)
The decay exponents in a system of length L = 512 are shown by circles for different values
of κ2 in a double logarithmic scale. The error of the estimate is smaller than the size of
the symbols. The theoretical prediction 2x2(κ2) is shown by the line.

and
2 ln r′(L)

ln 2
= α′(L)→ 2(x12 − x2) . (4.30)

The equation (4.29) does not depend on the exact functional form of time evolution in finite

systems (does not depend on the sine in (4.27) it is the consequence of the asymptotic

behavior (4.26) ). The functional form of the relaxation in finite systems (the sine in

equation (4.27) ) can be checked using (4.30), this equation is true only if the functional

form in (4.27) is correct. I tested (4.29) and (4.30) in chains up to L = 4096.

4.4.2 Ordered defect in the initial state

The initially ordered defect site is reached with κ1 =∞. In this case the exponents x1 = 0

and x12 = 0 are zero. Since the other two exponents are zero, only x2 remains in the scaling

relation of the magnetization (4.26).

I used in the numerical calculations h11 = h12 = 0 and J1 = 1 which corresponds to an

ordered defect in the initial state (κ1 =∞). The final state of the quench is parametrized

by h21 = h22 = 1 and J2 = κ2. The time dependence of the magnetization is shown in

figure 4.4(a), for various κ2 values.

If the quench ends with homogeneous chain, κ2 = 1 (middle curve in figure 4.4(a)),

the relaxation of the magnetization behaves as the conformal result: m
(+)
d (t) ∼ t−1/4, see

equation (4.22). This has been checked before in [94]. If the coupling at the defect is

larger than the bulk value, κ2 > 1, the decay becomes slower and slower. The exponent

of the decay (2x2 ) is in good agreement with the prediction of equation (4.26). If the

after quench defect coupling is weaker than the bulk coupling, κ2 < 1 there is a decaying

oscillatory modulation on the prediction of equation equation (4.26). The amplitude of
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Figure 4.5. Scaling plot of the defect magnetization. The system sizes range from 64 to
512. The quench starts from an initially ordered defect (a) to κ2 =

√
2 − 1 and (b) to

κ2 =
√

2 + 1. In the two insets, ρ is the ratio of the numerical result for L = 512 to the
analytical prediction in equation (4.27). The effect of the oscillations can be seen in the
insets when t/L is close to 0 or 1.

κ2 =
√

2 + 1 κ2 = 1 κ2 =
√

2− 1
L α(L) α′(L) α(L) α′(L) α(L) α′(L)

128 -0.06208 -0.06243 -0.25305 -0.25758 -0.55512 -0.65624
256 -0.06235 -0.06293 -0.25224 -0.25308 -0.57922 -0.62445
512 -0.06266 -0.06267 -0.25118 -0.25072 -0.60196 -0.54546
1024 -0.06258 -0.06247 -0.25008 -0.25056 -0.54929 -0.57194
2048 -0.06248 -0.06254 -0.25015 -0.25027 -0.56824 -0.56046
4096 -0.06251 -0.06250 -0.25006 -0.25013 -0.56219 -0.56107

Conjecture -0.0625 -0.0625 -0.25 -0.25 -0.5625 -0.5625

Table 4.1. Finite-size estimates of the relaxation exponent at the defect as defined in
equations (4.29) and (4.30) after a quench from an ordered defect to different values of κ2.
In the last line the conjectured exact results are given.

the oscillations increase with decreasing κ2. For short time, and small enough κ2 the local

magnetization may change sign. In this oscillating regime it would be difficult to directly

obtain the decay exponents from a log-log plot. To obtain the exponents, we have measured

the series of minimum [mmin(ti)] and maximum values [mmax(ti)] of the oscillations.

The average of the neighboring maximum and minimummav(ti) = [mmax(ti)+mmin(ti)]/2

is expected to represent an effective (non-oscillating) decay. I used this series to obtain the

decay exponents. 1

The estimated decay exponent is shown in figure 4.4(b) as a function of κ2. The

estimated exponent values are in good agreement with the prediction of equations (4.26)

and (4.17).

The time dependence of the oscillation amplitudes, ∆m(ti) = mmax(ti)−mmin(ti) was

also studied. The decay follows a power law, ∆m(t) ∼ t−a, where a = 1.6(2). The a

exponent has weak κ2 dependence, at least for small values of κ2. To investigate the origin

of these oscillations let us consider the quench to two uncoupled half chains, i.e., to κ2 = 0.

With these parameters the quench is equivalent with the decay of the surface magnetization

1Alternatively one may have to consider so long systems, where the oscillations decay in t� L times.
For small κ2 this requires too long systems.
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starting from a fixed surface spin. With the notation of [14] (equation (4.8)) one gets for

the magnetization at the defect: m
(+)
d (t) = P1,1(t). (Here P1,1(t) is a coefficient in the

time evolution of the Majorana operators. See details in Appendix A.) This value can be

calculated in the critical point exactly [14]. In the thermodynamic limit the result is

m
(+)
d (t) =

J1(2t)

t
' t−3/2

√
π

cos

(
2t− 3

4
π

)
, κ2 = 0 , (4.31)

the second equation holds for t → ∞. Here J1(x) is the Bessel function of the first kind.

In the second part of the equation the asymptotic behavior of the Bessel function (at large

t) was used. The surface magnetization for κ2 = 0 shows a purely oscillating behavior, the

amplitude of the oscillations decays with an exponent a = 3/2.

The a = 3/2 value for the limiting case κ2 = 0, is in correspondence with the numerical

estimates calculated for small κ2 values. The numerical investigations for κ2 > 0 and the

exact calculations for the limiting case κ2 = 0 suggest, that the time dependence can be

described as a sum of two terms.

Namely, there is a power law decay, corresponding to equation (4.26) and it is the

dominant term for positive κ2 values. There is an oscillating correction to (4.26), which

is usually much smaller than the mean term, but become relevant if κ2 � 1. Thus the

following form is expected:

m
(+)
d (t) ' A(κ2)t−2x2(κ2) +B(κ2)t−a cos(2t+ φ) . (4.32)

Here a ≈ 1.5 and the prefactors, A(κ2) and B(κ2) are even functions of κ2 due to symmetry.

For small κ2 we have A(κ2) ∼ κ2
2 and B(κ2) ' 1/

√
π − bκ2

2. Let’s investigate the finite-

size behavior of the defect magnetization. According to (4.27) the defect magnetization

is periodic function of the time, with period L. 2. This behavior can be explained in the

framework of the semiclassical approach. In the semiclassical description one considers

quasi-particles, which move ballistically in the chain, and reflected at the free ends. Figure

4.5(a) shows the scaled magnetization L2x2m
(+)
d as a function of t/L for κ2 =

√
2 − 1.

Figure 4.5(a) shows the same quantity for κ2 =
√

2 + 1.

If the after quench defect coupling (κ2) is small, there are strong oscillations for short

times (t/L � 1), in agreement with equation (4.32). There is a good data collapse, in

agreement with 4.27 if t/L and κ is not too small.

This is shown in the insets of figure (4.5) in which the ratio ρ of the numerical results

for L = 512 and the analytical conjecture in (4.27) is shown as a function of t/L. For the

latter the prefactor is fixed in order to have a ratio ρ = 1 at t = L/2.

With the equations (4.29) and (4.30) finite-size estimates for the defect exponent x2

has been obtained. The finite-size exponents listed in table 4.1 converge quite fast to the

expected values, this verifies equation (4.26), and means that the sine in equation (4.27)

is probably exact.

For the smallest value of κ2,
√

2 − 1, there are strong oscillations, so the data are

2For t > L the absolute value of the sine has to be taken in equation (4.27).
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Figure 4.6. Time dependence of the defect magnetization on a log-log plot. The length
of the chain is L = 512. The strength of the defect changes from (a) κ1 = 0 and (b)
κ1 =

√
2 − 1 to different values of κ2 during the local quench. The analytical result in

equation (4.26) is indicated by the dashed lines. Note that in both figures there are two
quenches with the same decay exponent.

non-monotonic in L.

4.4.3 Non-ordered defect in the initial state

For initially non-ordered defects the parameters h11 = h12 = 1 and J1 = κ1 were used in the

initial state and the quench is performed to the final state with parameters h21 = h22 = 1

and J2 = κ2.

I have chosen the values of κ1 and κ2 from the set {0, tan(π/8) =
√

2−1, 1, 1/ tan(π/8) =√
2 + 1}.

Whit this choice defect exponents are rational numbers {1/2, 9/32, 1/8, 1/32}, and the

same is true for the composite defect exponents.

The time dependence of the defect magnetization can be seen in log–log plots for dif-

ferent values of the initial and final defect couplings with κ1 = 0 and
√

2− 1 in figure 4.6,

κ1 = 1 and
√

2 + 1 in figure 4.7. The values of κ2 are the remaining ones in the set given

above.

The curves have a linear scaling behavior and the slope is in good agreement with

the analytical expression in (4.26). The short-time behavior is more or less oscillating,

depending on the relative strength of the defect, before and after the quench.
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Figure 4.7. As in figure 4.6, for (a) κ1 = 1 and (b) κ1 =
√

2 + 1.

In order to check the scaling prediction and the functional form given in equation

(4.27) we studied the finite-size behavior of the defect magnetization. The scaled defect

magnetization md(t, L)Lx1−2(x12−x2) can be seen in figure 4.8 for κ1 = 0 and for two values

of κ2. For the smaller value of the coupling κ2 =
√

2 − 1 the data collapse is excellent

(figure 4.8(a)). For κ2 =
√

2 + 1 (figure 4.8(b)) the collapse is not so perfect due to

oscillations. The amplitude of these oscillations decrease with the system size. The overall

trend confirms the conjectured result in equation (4.27). The insets shows the ratio ρ of

the numerical results for L = 512 to the analytical conjecture in (4.27). The amplitude of

the latter is chosen so that ρ = 1 at t = L/2. These figures also validate the conjectured

result of equation (4.27).

With the relations (4.29) and (4.30) quantitative estimates of the defect exponents have

been calculated for finite sizes up to L = 4096.

The obtained estimates of the exponents for κ1 =
√

2− 1 and different values of κ2 are

shown in table 4.2.

For each combination of κ1 and κ2 the effective exponents converge to the conjectured

values.

At the largest size the finite-size estimate for α(L) agrees with the conjectured value

up to four or five digits except when κ2 is small. For small κ2 the defect magnetization

shows strong oscillations (see equation (4.32)).

There is very good, although somewhat less accurate correspondence between the es-

timates for the exponent α′(L) and the conjectured values. This shows that the conjecture
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Figure 4.8. Scaling plot of the defect magnetization. The local quench goes from the
initial state with κ1 = 0 to a final state with (a) κ2 =

√
2 − 1 and (b) κ2 =

√
2 + 1. The

ratio ρ of the numerical result for L = 512 to the analytical conjecture in equation (4.27)
is plotted in the inset.

Figure 4.9. Log–log plot of the time dependence of the defect magnetization in a chain
of length L = 256 with a more complex defect structure after the quench. In the initial
state J1 = 1 +

√
2, h11 = h12 = 1 thus κ1 = 1 +

√
2 and x1 = 1/32. In the final state

J2 = 1, h21 =
√
q, h22 = 1/

√
q thus κ2(q) = 1, x2 = 1/8 and x12 = 1/16. The slopes for

the different values of q are in good agreement with the expected one, 2(x12 − x2) = −1/8
(dashed line).

about the finite-size scaling form in equation (4.27) is most probably exact. The deviations

between the conjectured analytical formula and the numerical results came form oscilla-
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κ2 = 0 κ2 = 1 κ2 =
√

2 + 1
L α(L) α′(L) α(L) α′(L) α(L) α′(L)

128 -0.52609 -0.23745 -0.15460 -0.12094 -0.15554 0.13977
256 -0.52870 -0.24379 -0.15547 -0.12299 -0.15528 0.12397
512 -0.52970 -0.24679 -0.15586 -0.12399 -0.15584 0.12133
1024 -0.53061 -0.24839 -0.15606 -0.12449 -0.15607 0.12086
2048 -0.53093 -0.24923 -0.15616 -0.12474 -0.15617 0.12476
4096 -0.53109 -0.24962 -0.15620 -0.12487 -0.15620 0.12446

Conjecture -0.53125 -0.25 -0.15625 -0.125 -0.15625 0.125

Table 4.2. Finite-size estimates of the relaxation exponent at the defect as defined in
equations (4.29) and (4.30) after a quench from κ1 =

√
2− 1 to different values of κ2. The

conjectured exact results are given in the last line.

tions which are results of the discrete lattice spacing. The conformal results are connected

to the continuous limit of the model, therefore the conformal results are not expected to

describe the aforementioned oscillations.

4.5 Discussion

In this chapter the evolution of the local magnetization was studied in the transverse field

Ising chain (TIC) after a quench, when parameters at a defect are suddenly modified. At

short time, the defect magnetization follows a power-law behavior. This behavior is closely

related to the local static critical behavior at a composite line defect in the 2d classical

Ising model, which corresponds to the imaginary time version of our problem.

The composite defect exponents have been exactly calculated making use of conformal

invariance [171, 172]. The local magnetic exponents are continuously varying with the

parameters of the composite defect (i.e., their values before and after the quench in real

time) because the perturbation is marginal .

In finite chains the defect magnetization is found to be a periodic function of time and

its asymptotic functional form has been conjectured based on the results of [94] an my

numerical data.

I have checked numerically (see figure 4.9 for an illustration) that details of the local

defect structure (asymmetry in the transverse fields, etc.) are indeed irrelevant and that

only the values of κ1 and κ2 matter in this respect. The defect exponents x1 and x2, as

well as the composite defect exponent x12, are functions of the defect parameters κ1 and

κ2, as given in equation (4.16). I compared the analytical expressions for t � L, as well

as for t/L = O(1) with the results of large-scale numerical calculations and an excellent

agreement has been found.

This chapter is based on the following article:

F. Iglói, G. Roósz, L. Turban Evolution of the magnetization after a local quench in the

critical transverse-field Ising chain J. Stat. Mech. (2014) P03023

In this article my contributions are the numerical simulations.



Chapter 5

Quench dynamics of the Ising

quantum quasi-crystal

5.1 The model

We investigate the quantum Finonacci Ising quasi-crystal, which has been defined in Section

2.2

H = −1

2

[
L−1∑
i=1

Jiσ
x
i σ

x
i+1 + h

L∑
i=1

σzi

]
. (5.1)

The length of the system L is a Fibonacci number, L = Fn. (F1 = 1, F2 = 1, Fn+1 =

Fn + Fn−1)

The couplings, Ji, are site dependent, and parameterized as Ji = Jrfi . Here 0 < r ≤ 1

is the amplitude of the inhomogeneity, r = 1 correspond to the homogeneous system, the

smaller r correspond to the stronger inhomogeneity. The fi numbers are integers taken

from the Fibonacci sequence defined in section 2.2 fi = 1 +
[
i
ω

]
−
[
i+1
ω

]
, where [x] denotes

the integer part of x, and ω = (
√

5 + 1)/2. The interaction J in (2.18) is chosen to be

J = r−ρ, where ρ is the fraction of units 1 in a very long (infinite) sequence, calculated in

section 2.2. With this choice of J the critical point of the system remains h = hc = 1.

5.2 Entanglement entropy

For a chain of total length Fn with periodic boundary conditions, the entanglement entropy

S` between a block of length ` = Fn−2 and its environment which has a length of Fn−1

has been calculated. We investigated various values of 0 < r < 1 for the inhomogeneity

amplitude. The numerical calculations have been started from the fully ordered state with

h0 = 0 to a state with h > 0 both in the ordered and in the disordered phases, as well as

at the critical point. The numerical results for S`(t)−S`(0) are shown in figure 5.1. For all

cases mentioned, S`(t) exhibits two time-regimes: in the late-time regime, the entropy is

oscillating around an L dependent value, for short times, it increases with time according

to a power-law:

S(t) ∼ tσ , (5.2)

45
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Figure 5.1. Dynamical entropy after a quench from h0 = 0 to various values of h at the
aperiodicity parameters (a) r = 0.75, (b) r = 0.5 and (c) r = 0.25. The solid lines are the
results for L = F16 = 987, and the dashed lines (only at h = 0.25, h = 0.5 and h = 0.75)
correspond to the data for L = F17 = 1597. The ”noise” (irregular variation) present on
the curves in the small t regime is due to such low-energy excitations, which are related to
local properties of the quasi-periodic chain and are independent of the chain lengths.

with some exponent σ < 1, this sort time regime is the linear part in figure 5.1, where

the logarithm of the entropy is shown as the function of the logarithm of the time. The

numerical results show, that σ depends on the after quench magnetic field h, and does not

depend significantly on the initial magnetic field h0. The (fitted) values of σ for r = 0.25,

0.5 and 0.75 are shown in figure 5.6. For the investigated cases, σ reaches it’s maximum

when the quench ends in the critical point (h = 1). The σ exponent depends on the

inhomogeneity: The greater inhomogeneity (smaller r) results in slower dynamics (smaller

σ).

A characteristic fingerprint of the quasi-periodicity has been seen here: the power

law time dependence of the entanglement entropy. In the disordered systems the time

evolution is much slower (there is localization, or extra slow evolution in log log t form).

In the homogeneous systems the entanglement entropy usually grows linearly in time,

which is faster than the power law of the quasi-periodic systems. The power-law growth

of the entanglement entropy can understood in the frame of the semiclassical theory, if

one suppose that the quasi-particles moves with an anomalous diffusion. The width of a

wave grows with x ∼ tD where the diffusion exponent is 0 < D < 1. The semiclassical

interpretation will be discussed in section 5.4.
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(a)

time

space

t

(b)

time

space

t

Figure 5.2. Schematic illustration of the light cones of quasi-particles for a homogeneous
quantum Ising chain (a) and for a chain with an aperiodic modulation of the couplings (the
thin/thick lines between sites represent weak/strong couplings according to a Fibonacci
sequence) (b). The quasi-particle excitations emitted at time t = 0 move ballistically in
the homogeneous lattice, while their motion is anomalous diffusive with x ∼ tD (D < 1)
in the quasi-periodic lattice. Pairs of quasi-particles moving to the left or right from a
given point are entangled; they will contribute to the entanglement entropy between a
region A (the region with orange sites) and the rest of the chain, region B, if they arrive
simultaneously in A and B.

5.3 Local magnetization

We calculated the local magnetization ml(t) in open chains of length L = Fn. The mag-

netization was calculated at site l = Fn−1
1, we refer this value as bulk magnetization, and

denote it with mb(t). The surface magnetization m1(t) was also studied, and some exact

results were obtained.

We are interested in the asymptotic behavior of the surface magnetization for long

time after the quench. When the quench ends in the ordered phase, h < 1, the lowest

excitation energy is ε1 ≈ 0 (i.e. cos(ε1t) = 1). As a consequence P1,2k−1(t) in (A.43) has

a time independent part. The non-oscillating part of the surface magnetization is defined

as: m1 = limt→∞
1
t

∫ t
0
m1(t′)dt′. The stationary value is:

m1 = Φ1(1)
L∑
j=1

Φ1(j)Φ
(0)
1 (j) . (5.3)

Here Φ
(0)
1 (j) is one of the coefficients used in the diagonalization of the pre-quench Hamilto-

nian, Φ
(0)
k (j) was mentioned in equation (2.3) and defined in detail in Appendix A. The

Φk(j) coefficients corresponds to the diagonalization of the after-quench Hamiltonian. The

ground state surface magnetization is m1(h, t = 0) = Φ1(1) [117,118], it is finite for h < 1

and zero in the paramagnetic phase. The Φ
(0)
1 (1) factor shows a similar behavior: it is

1With this special choice, one can minimize the finite size effects: The selected spin has similar neigh-
borhood in the chains of different lengths.
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Figure 5.3. Double logarithm of the bulk magnetization as a function of the logarithm of
the time. During the quench the transverse field is changed from h0 = 0 to different values
of h at the aperiodicity parameter r = 0.75 (panel (a)), r = 0.5 (panel (b)), r = 0.25
(panel (c)). The length of the chain is L = F17 = 1597 and the magnetization is considered
at site l = F16 = 987. In panel (d) ln |mb(t)| is shown as a function of t in the window
50 < t < 100 for different values of h at r = 0.5. The oscillations in ln |mb(t)| (i.e. in the
prefactor A(t)) occur when h is larger than a certain value h∗ (here h∗ ≈ 0.85), and the
oscillations disappear for h < h∗; the dynamical phase transition described in the main
text occurs at h∗.

non-zero for h0 < 1, and zero for h0 > 1. Consequently, the stationary surface magnetiza-

tion is non-zero if h0 < 1 and h < 0. If the quench starts from h0 = 0, Φ
(0)
1 (j) = δ1,j and

m1 = Φ2
1(1) so one obtains2:

m1(h) = [m1(h, t = 0)]2 , (5.4)

The above expression gives an exact connection between the asymptotic value of the surface

magnetization and the ground state value of the surface magnetization. The (5.4) equation

gives a direct connection between the critical exponent βne
s of the non-equilibrium surface

magnetization and the critical exponent βs of the equilibrium surface magnetization βne
s =

2βs. According to (5.4) and [173], for the Fibonacci chain close to the critical point h →
hc = 1, one has m1(h) ∼ 1− h2 = (hc − h)(hc + h) ∼ hc − h, thus βne

s = 1.

The time dependence of the bulk magnetization have been numerically calculated for

quenches starting from h0 = 0, and ending at various h values. For inhomogeneity values

r = 0.25, 0.5, 0.75, the double logarithm of |mb(t)| are shown in figure 5.3(a-c) as func-

2The (5.4) equation holds for transverse field Ising chains with any type of inhomogeneity.
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Figure 5.4. Position of the dynamical critical point for different values of the aperiodicity
parameter in a double-logarithmic plot. The straight line has a slope α = 0.24.

tions of ln t. Investigating the figures 5.2(a-c) one obtains a linear dependence between

ln | ln |mb(t)|| and ln t, which means, that the local magnetization decreases as a stretched

exponential function of time:

mb(t) ∼ A(t)exp (−Ctµ) . (5.5)

The bulk magnetization decays exponentially in the homogeneous system, so for zero

inhomogeneity (r = 1) µ = 1.

There is a dynamical phase transition in the homogeneous case: If the quench ends in the

ferromagnetic phase (h < 1), the magnetization remains positive for all times, however,

if the quench ends in the paramagnetic phase (h > 1), the magnetization oscillate. One

would expect, that there is a similar phase transition in the Finonacci Ising chain, and

indeed, the A(t) prefactor shows a dynamical phase transition, however the transition

point depends on the strength of the inhomogeneity, on r. For small enough after quench

magnetic fields, the magnetization remains positive, if the magnetic field is larger than

a value h(r), the magnetization decreases with oscillations. In the oscillating phase one

can define a characteristic time, tper(h, r), as the average period of A(t). This time scale

( tper(h, r)) diverges if h → h(r)+. This behavior is shown in figure 5.2, panel (d) in

this figure ln |mb(t)| is plotted as a function of t. The curves for h = 0.86, 1.0 and 1.25

oscillate, but the oscillations vanish for h = 0.81 and for h = 0.84. The transition point

is identified as h∗ = 0.850(5). In the quasi-periodic Finonacci Ising chain the dynamical

phase transition point is different from the static phase transition point. (The latter is

1.) The dynamical phase transition point, h(r), is smaller than the static phase transition

point: h(r) < 1. The measured values of h(r) can be approximated with a power law of r:

h∗(r) ∼ rα (5.6)

where the fitted value of α is α = 0.24(3) (see figure 5.4). This power law can be understood

by investigating the local neighborhood of the measured spin. One doesn’t expect oscilla-

tions if the chain is locally ferromagnetic. In the case of a weakly coupled spin with one
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Figure 5.5. Double-logarithmic plot of time-dependent width of the wave-packet at different
values of h for r = 0.75 (panel (a)), r = 0.5 (panel (b)), r = 0.25 (panel (c)).

strong (Js) and one weak (Jw) bond, the chain is locally ferromagnetic if lnh < ln Js+ln Jw.

It gives for the dynamical transition point h∗ = r2/ω−1. The fitted α = 0.24(3) exponent

coincides with 2/ω − 1 ≈ 0.236.

The exponent µ describing the decay of the local magnetization dependents both on

h and r, but it does not vary significantly with h0, at least for h0 < h. Our results for

the critical exponents µ = µ(h, r) are shown in figure 5.6 for r = 0.75, 0.5 and 0.25 as

functions of h. The exponent µ is maximal at the dynamical phase transition point h∗(r).

5.4 Interpretation by wave packet dynamics

The behavior of the entanglement entropy and the local magnetization after quantum

quenches has been successfully described with a semiclassical approach in previous studies.

The semiclassical theory will be modified in this chapter to describe the dynamics of quasi-

crystals. To do so, the quasi-particles will be described as wave packets, using the method

of [87, 174].

We construct a wave packet connecting sites k and l at time t in the form (see the
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”Propagator” section):

G(l, k, t) = 〈0|ck(t)c†l (0)|0〉 = 1
2

∑
q

{
cos(εqt)

[
Φq(l)Φq(k) + Ψq(l)Ψq(k)

]
− ı sin(εqt)

[
Φq(l)Ψq(k) + Φq(k)Ψq(l)

]}
, (5.7)

which is localized at t = 0 since G(l, k, 0) = δl,k .

The width of the wave packet starting from site k after time t is defined as:

d(k, t) =

[∑
l

(k − l)2|G(l, k, t)|2
] 1

2

. (5.8)

Since the spectrum of the Finonacci Ising chain is singular continuous, there are multiple

energy scales ∆ε ∼ L−1/α with multiple exponents (α). The wave packet in an aperiodic

chain is expected to follow an anomalous diffusion d(k, t) ∼ tD(k) . The diffusion exponent

D(k) may depend on the initial position k. The D(k) exponent will extracted from numer-

ical data. A global quench create quasi-particles at every lattice site, so we can measure

the average of d(k, t):

d(t) = d(k, t) ∼ tD . (5.9)

In the numerical calculations chains of length L = F17 = 1597 with periodic boundary

condition were used. The homogeneous (r = 1) case was checked, and ballistic spreading

(D = 1) was found, as it was expected. In the quasi-periodic chains anomalous diffusion

was found (D < 1), which is seen in Figure 5.5. In Figure 5.5 the initially-position-averaged

wave packet widths are plotted, as functions of time, in a double logarithmic plot. The

diffusion exponent D is extracted from the fit to the linear part of the figures.

The variation of the exponentsD, σ (entanglement entropy) and µ (local magnetization)

with h at a fixed r is shown in Figure 5.6, In figure 5.6 it can bee seen, that the exponents

are close to each other in the non-oscillatory phase (h < h∗(r)), and there are significant

difference between them in the oscillatory phase (h > h∗(r)).

In the homogeneous transverse Ising chain, the dynamic of the entanglement entropy

and the magnetization can be described with ballistically moving quasi-particles. In the

non-oscillatory phase, one can qualitatively describe the dynamic of the entanglement

entropy and the magnetization by considering quasi-particles which move with anomalous

diffusion rather than constant speed.

5.5 Discussion

In this chapter we have studied the non-equilibrium dynamics of quasi-periodic quantum

Ising chains after a global quench. In a quench process, the complete spectrum of the

Hamiltonian is relevant for the time evolution of various observables. For the quasi-periodic

quantum Ising chain the spectrum is in a very special form, which is given by a Cantor

set of zero Lebesgue measure, i.e. purely singular continuous. We have calculated numer-
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Figure 5.6. Scaling exponents calculated from the time-dependence of the width of the wave-
packet, from the entanglement entropy and from the magnetization at different values of h
for r = 0.75 (panel (a)), r = 0.5 (panel (b)), r = 0.25 (panel (c)). The full lines connecting
the diffusion and magnetization exponents are guides to the eye.
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ically two quantities: the dynamical entanglement entropy and the relaxation of the local

magnetization. The entanglement entropy is found to increase in time as a power-law (see

equation (5.2)), whereas the bulk magnetization decays in a stretched exponential way (see

equation (5.5)). Both behaviors can be explained in a quasi-particle picture, in which the

quasi-particles move by anomalous diffusion in the quasi-periodic lattice. The diffusion

exponent has been calculated by a wave packet approach, and good agreement has been

found with the exponents that we obtained for the entropy and for the magnetization. We

note that the anomalous dynamics found in the global quench process is similar to the

transport properties of quasi-crystals.

Relaxation of the bulk magnetization is found to present a non-equilibrium dynamical

phase transition. The non-oscillating phase, in which the magnetization is always positive,

and the oscillating phase, in which the sign of the magnetization varies periodically in time,

is separated by a dynamical phase transition point, at which the time-scale of oscillations

diverges. This singularity point, due to collective dynamical effects, is different from the

equilibrium critical point.

A similar non-equilibrium dynamical behavior is expected to hold for other quasi-

periodic or aperiodic quantum models as long as the spectrum of the Hamiltonian is also

purely singular continuous; there is a large class of such models, for example the Thue-

Morse quantum Ising chain. If, however the spectrum of the Hamiltonian of the model is

in a different type, such as the Harper potential which has extended or localized states,

the non-equilibrium dynamics is expected to be different than the case we consider in this

chapter.

This chapter is based on the following article:

F. Iglói, G. Roósz, Y.-C. Lin Nonequilibrium quench dynamics in quantum quasicrystals

New J. Phys. 15, 023036 (2013)

In this work the numerical calcuations about the entanglemet entropy were done by Prof.

Dr. Yu-Cheng Lin. The other numerical works and the anyalisys were done by me. The

”Interpretation by wave-packet dynamics” part is common work of the authors.



Chapter 6

Quench dynamics of the Harper

model

In the previous chapters, the results about quench dynamics of the homogeneous transverse

Ising model were shortly summarized, and we presented our own results abut the Finonacci

Ising quasi-crystal.

The spectrum of the homogeneous transverse Ising model is absolute continuous, and the

dynamics can be described using ballistically moving quasi-particles. The spectrum of the

Finonacci Ising quasi-crystal is singular-continuous and the dynamics can be (qualitatively)

described by diffusing quasi-particles.

In this chapter the Harper model will be investigated. The spectrum of this model can

be absolutely continuous, singular continuous or pure point spectra, depending on the

amplitude of the magnetic field [102], thus one expects a rich behavior of quench dynamics.

6.1 Quasi periodic XX-chain

The Harper model was defined in section 2.3, and the basic properties of the model was

also summarized in that section. In this section only notations will be introduced. The

Hamilton operator of the Harper model is:

H = −1

4

L∑
n=1

(σxnσ
x
n+1 + σynσ

y
n+1)−

L∑
n=1

hnσ
z
n . (6.1)

Here σx,y,zn Pauli-matrices at site n. Periodic boundary conditions are applied, thus σxL+1 ≡
σx1 and σyL+1 ≡ σy1 , and hn is a quasi-periodic field:

hn = h cos(2πβn) , (6.2)

where β =
√

5−1
2

the inverse of the golden mean. The size of the system is a Fibonacci

number Fn. The Hamiltonian can written in terms of fermion creation and annihilation
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Figure 6.1. Dynamical entanglement entropy after a quench from h0 = 0 to different
values of h (left panel). Saturation values of the entanglement entropy and the limiting
value of the width of the wave packet (diffusion) in the localized phase show a power-law
divergence close to the transition point (right panel).

operators [105]:

H = −1

2

L∑
n=1

(c†ncn+1 + c†n+1cn)− h
L∑
n=1

cos(2πβn)c†ncn , (6.3)

thus equation (6.3) is a tight-binding model of spinless fermions in a quasi-periodic on-site

potential.

This Hamiltonian was first investigated by Harper, who came to this problem with

h = 1 studying the motion of electrons in a square lattice subject to perpendicular magnetic

field [88]. A new set of fermion operators (ηq and η†q) are introduced in order to diagonalize

the model.

ηq =
L∑
n=1

φq,ncn , (6.4)

with
∑L

q=1 φq,nφq,n′ = δn,n′

H =
∑
q

εq
(
η†qηq − 1/2

)
. (6.5)

Here the components of vectors (φq,n) and the energy modes (εq) are given by the almost

Mathieu equation [175]:

1

2
φq,n−1 + hnφq,n +

1

2
φq,n+1 = −εqφq,n . (6.6)

6.2 Entanglement entropy

I calculated the entanglement entropy, S` between a block of length, ` = Fn−2 and the rest

of the chain (Fn−1 spins) using periodic boundary conditions. There are two regimes in

the variation of the entanglement entropy (as for homogeneous chains or Finonacci Ising

chain): For short times the entanglement entropy grows, for long times it oscillates around

its asymptotic value. If the quench ends in the extended phase, the entropy grows linearly

with time S`(t) ≈ α(h)t in the short-time regime, and its asymptotic value is proportional
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Figure 6.2. Prefactor of the linear part of the dynamical entanglement entropy (left axis)
and the relaxation time (right axis) after a quench from h0 = 0 to different values of h.

to the length of the block S̃` ∼ `. This behavior is similar to the behavior in homogeneous

systems. Fitted values of the prefactor α can be seen in figure 6.2. The α prefactor has its

maximum around h = 0.5, from h = 0 to h = 0.5 it’s increasing, from h = 0.5 to h = 1.0

it is decreasing, and it is zero at h = 1.0, signaling that the quenches ending at h = 1.0

show a different behavior.

If the quench ends in the transition point, the entanglement entropy grows with a power

function:

S(t) ∼ tσ , (6.7)

with an exponent σ = 0.43(5), which is a fitted value see the left panel of 6.1.

If the quench ends in the localized phase (h > 1), the entanglement entropy saturates

quickly, and its asymptotic value is independent of the length of the block `. I have

observed, that close to the critical point S̃(h) diverges:

S̃(h) ∼ | ln(h)|−σ′ , (6.8)

with an exponent: σ′ = 0.50(4), see in the right panel of Figure 6.1.

The σ′ and σ exponents are not independent, the relation between them can be found

with a phenomenological scaling. If the lengths are rescaled by a factor b > 1 the entan-

glement entropy scaled as:

S̃(lnh, t) = bsS̃(b/ lnh, t/bz) , (6.9)

for h ≥ 1, where the form of the correlation length equation (2.38) was used, and the

dynamical exponent is z = 1. Taking the scale factor b = t1/z one gets

S̃(lnh, t) = ts/zŜ(t1/z lnh) . (6.10)

The limiting value of the scaling function in the critical point h = 1 is limu→∞ Ŝ(u) = cst,

thus σ = s/z = s. Taking b = 1/ ln(h) one can show that σ′ = s, thus σ = σ′ in agreement

with the values extracted from numerical data.
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Figure 6.3. Bulk magnetization after a quench from h0 = 0 to different values of h. In the
inset quench to the critical region is shown in agreement with the stretched-exponential
form in equation (6.11) (the straight lines have a slope µ = 0.47).

6.3 Local magnetization

I calculated the local magnetization ml(t) in a chain of length L = Fn at the l = Fn−2th

spin. This value will be referred to bulk magnetization and will be denoted by mb(t).

Numerical results about the time dependence of the bulk magnetization after a quench from

h0 = 0 to various values of h can be seen in figure 6.3. If the quench ends in the extended

phase, (0 < h < 1) the magnetization follows an exponential decay: mb(t) ∼ exp(−t/τ̃),

similarly to the homogeneous system. Fitted values for the characteristic time (τ̃(h)) are

shown in figure 6.2 (right axis): The characteristic time shows a similar behavior as the

prefactor of the linear part of the entanglement entropy.

For a critical quench (h = 1), the behavior of the magnetization is a stretched expo-

nential:

mb(t) ∼ A(t)exp(−Ctµ) . (6.11)

Here A(t) is an oscillatory function, µ = 0.47(5). This is shown in the inset of figure 6.3.

If the quench ends in the localized phase, the magnetization quickly reaches an asymptotic

value, and oscillates around it.

6.4 Semiclassical interpretation

In this section a semiclassical interpretation [37, 38, 51, 56] will be developed, similarly as

in the case of the Finonacci Ising chain.

G(n, n′, t) = 〈0|cn(t)c†n′(0)|0〉 =
∑
q

cos(εqt)φq,nφq,n′ , (6.12)

in terms of the eigenvectors and eigenvalues of equation (6.6) calculated with the magnetic

filed h, i.e. after the quench. For t = 0 G(n, n′, 0) = δn,n′ . The width of the wave-packet
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Figure 6.4. Time-dependent width of the wave packet at different amplitudes of the
transverse field.

started from site n after time t is given by (similarly to equation (5.8)):

d(n, t) =

[∑
n′

(n− n′)2|G(n, n′, t)|2
]1/2

, (6.13)

which is then averaged over the starting positions, thus d(t) = d(n, t).

The d(t) width has been calculated for various after quench transverse field, these results

can be seen in figure 6.4. In the extended phase, in agreement with previous results [102]

the wave packet width d(t) grows linearly, which can be interpreted as the quasi-particles

moving ballistically, i.e. with constant velocity. From this it follows, as in the homogeneous

chains [38], that the entanglement entropy grows linearly, and the magnetization decreases

exponentially.

If the quench ends in the localized phase (h > 1), the wave packet width d(t) remains

finite d(t) → d̃. We found, that this finite asymptotic value (d̃) is proportional to the

equilibrium localization length d̃ ∼ ξ, see in the right panel of figure 6.1.

If the quench ends at the critical point h = 1, the width of the wave packet grows with

a power function of the time: d(t) ∼ tD, where D is D = 0.477(10) in correspondence with

the results of [102]. The anomalous diffusion of the quasi-particles lead to the power-law

increase of the dynamical entanglement entropy eq. (6.7), and the stretched exponential

behavior of the bulk magnetization equation (6.11). The semiclassical picture predict, that

the diffusion exponent of the wave packet D, the exponent of the entanglement entropy σ,

and the exponent of the magnetization µ should be equal, and indeed these tree are equal

within the errors of the numerical data.
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6.5 Discussion

In this chapter we studied the quench dynamics of the Harper model.

If the quench ends in the localized phase, the entanglement entropy grows proportional

to the time, the magnetization decreases exponentially, and the diffusion exponent of the

wave packet is close to one. The dynamics is similar to the after quench dynamics of the

homogeneous systems: The reason is that the spectrum of the Harper model is absolutely

continuous in the extended phase.

If the quench ended in the localized phase, the width of the wave packet remains finite for

long times, similarly the entanglement entropy and the magnetization also reaches a finite

limiting value. The asymptotic value of the wave packet width is proportional with the

localization length d̃ ∼ ξ = 1
lnh

. For the asymptotic value of the entanglement entropy the

S̃ ∼ | ln(h)|−σ′ relation was found with σ′ = 0.5(4).

If the quench ended at the critical point, power-law growth of the wave packet was found

d(t) ∼ t0.477 in agreement with the results of [102]. The entanglement entropy grows with

a power function of the time S(t) ∼ tσ with exponent σ ≈ 0.43(5). The local magnetiz-

ation decrease with a stretched exponential function: mb(t) ∼ exp(−Ctµ) with µ ≈ 0.47(5).

This chapter is based on the following article:

G. Roósz., U. Divakaran, H. Rieger, F. Iglói Non-equilibrium quantum relaxation across a

localization-delocalization transition Phys. Rev. B 90, 184202 (2014)

The numerical simulations presented in this chapter, and the quasi-classical reasoning

were done by me. The scaling about the entanglement is common work with Prof. Dr.

Heiko Rieger and Prof. Dr. Ferenc Igloi.



Chapter 7

Nearly adiabatic dynamics of the

Harper model

Here the term ”nearly adiabatic“ means that a parameter of the system is varied very

slowly. If the external parameter is varied infinitely slowly, the eigenstates of the initial

Hamiltonian evolve to the eigenstates of the final Hamiltonian.

If the system crosses during the above mentioned process a second order phase transition,

the dynamics slows down (the relaxation time diverges), and the system cannot follow the

variation of the outer parameter, regardless of how slow the variation is. In consequence

defects are generated. The standard ”paradigm” to describe the generation of the defects

is the so called Kibble-Zurek scaling.

7.1 Kibble-Zurek scaling

The Kibble-Zurek scaling gives a prediction about the density of the defects, using the

critical exponents of the (crossed) transition point. The scaling is first used by Tom W. B.

Kibble who studied the structure of the early universe [58]. Later it was applied to solid

state physics by Wojciech H. Zurek [59]. Let us denote the correlation length as ξ and the

correlation time as ξt, which are related as ξt ∼ ξz, where z is the dynamical exponent.

Let us suppose, there is a well defined moment, when the time evolution becomes non-

adiabatic. Time evolution become non-adiabatic when the variation of the instantaneous

relaxation time is faster than the typical speed of relaxation:

(change of ξt during ξt time) ∼ ξt . (7.1)

Which is equivalent with:

ξtξ̇t ∼ ξt ⇒ ξ̇t ≈ 1 (7.2)

Let’s denote the external parameter with δ. The critical point is δ = 0. The outer

parameter is varied linearly in time: δ(t) = (t − tcrit.)/τ . Here τ is a time scale, which

characterizes the speed of the process. The nearly adiabatic (very slow) limit is: τ � 1.

The tcrit. time is the time when the system crosses the critical point. Of course, it is

basically possible to choose tcrit. to be the zero of the time scale, however in the later part
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of this chapter another choice will be appropriate.

Using the critical scaling of the correlation length ξ and relaxation time ξt one gets:

ξt ∼ ξz ∼ δ(t)−νz ∼ (|t− tcrit.|/τ)−νz (7.3)

Using the above relationship equation (7.1) takes the form:

1 ≈ ξ̇t|t=t̃ ∼
|t̃− tcrit.|−(νz+1)

τ−νz
. (7.4)

Here t̃ is the time when the system loses the adiabatic behavior. The |t̃ − tcrit.| time

difference is usually referenced in the literature as Kibble-Zurek time. One can calculate

the instantaneous localization length at time t = t̃:

|t̃− tcrit.| ∼ τ
νz
νz+1 =⇒ ξ̃ ∼ |t̃− tcrit.|1/z ∼ τ

ν
νz+1 . (7.5)

In the Kibble-Zurek scaling the instantaneous localization length at time t = t̃ is con-

sidered to be the average distance of two defects, and the excitation probability P (τ) is

supposed to be proportional to the density of the defects:

P (τ) ∼ (density of deffects) ∼ 1

ξ̃d
∼ τ−

dν
1+νz .

ξ~

- t~
t

ξ

tcrit

Figure 7.1. The red curve represent the diverging relaxation time. One supposes, that there
is a given moment, when the time evolution becomes non-adiabatic. The time difference
between the aforementioned moment and the crossing of the critical point is the so called
Kibble-Zurek time.

Later (after we defined the excitation probability in our calculation) we return to the

Kibble-Zurek scaling, and investigate in details what is the Kibble-Zurek prediction for the

Harper model.
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7.2 Density of defects in the adiabatic dynamics

The transverse field is varied linearly (and slowly) h = h(t) = t/τ , and the defects created

during this process. I investigate the density of the created defects, as a function of the τ

time. The time evolution starts at t = −∞, when the absolute value of the magnetic field

is very large, h→ −∞, so the initial state is a classical product state. In the initial state

the direction of the magnetic field gives the direction of the spins: σzn = 1 (c†ncn = 1) for

cos(2πβn) > 0 and σzn = −1 (c†ncn = 0) for cos(2πβn) < 0.

I used chains of even lengths, so in the initial state half of the spins directed in −z
direction and half of the spins directed in +z direction, in fermionic language, the initial

state is half-filled. The time evolution of the system is driven by the time dependent

Schrödinger equation dΨ/dt = −iH(t)Ψ(t), with the initial condition Ψ(−∞) = Ψ0(−∞).

The ground state of the H(t) Hamiltonian operator at time t is Ψ0(t): This ground state

usually differs from the Ψ(t) state which latter one is the result of a non-equilibrium time

evolution. We will investigate how far the two states Ψ(t) and Ψ0(t) are from each other,

and what is the connection between the difference, and the ”speed” of the variation of the

magnetic field τ . To investigate such questions one has to quantify the difference of the

two states. To do this, we will define the total excitation probability P , with the use of

the fermionic representation.

The Heisenberg equation of motion of the cn,H(t) are linear (see in Appendix A.4 and [61]),

because the Hamiltonian in equation(6.3) is quadratic. The evolution of vectors φ̃q,n(t)

satisfy the differential equation:

i
dφ̃q,n

dt
=

1

2
φ̃q,n−1 + hnφ̃q,n +

1

2
φ̃q,n+1 , (7.6)

with the initial condition: φ̃q,n(−∞) = φq,n(−∞), where the latter are given in equation

(2.39).

The vector φ̃q,n(t) at t time is generally different from the vector φq,n(t) which corres-

ponds to the ground state of the H(t) instantaneous Hamilton operator. .

In the initial state at t = −∞ half of the fermionic states are occupied, these are

denoted by Q−. The other half of fermionic states, denoted by Q+, are empty. If the time

evolution would be perfectly adiabatic, all empty states would remain empty. We define

the excitation probability as:

Pt =
2

L

∑
q∈Q+

∑
q′∈Q−

pq,q′ , (7.7)

where pq,q′ is called partial excitation probability and defined as:

pq,q′ =

∣∣∣∣∣∑
n

φ̃q,n(t)φq′,n(t)

∣∣∣∣∣
2

. (7.8)

The excitation probability measures how many empty states become excited due to the

finite speed of the variation of the magnetic field. Pt is normalized: 0 ≤ Pt ≤ 1. If the
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dynamics would be perfectly adiabatic, the Pt excitation probability would remain zero.

For a process with finite speed τ , one waits that the slover process (larger τ) implies the

smaller excitation probability Pt.

localized extended localized

t

h(t)

ξ

Figure 7.2. Magnetic field h(t), and the instantaneous correlation length ξ(t) as a function
of the time during the quench. In the numerical calculations two type of quench protocols
were used: each of the start at t = −∞, the endpoints are t = 0 and t = +∞.

We investigated two kinds of final states: i) the quench ends at t = 0, in the middle

of the extended phase and ii) t = ∞, when the quench cross the full extended phase,

and goes to the localized phase on the other site. (With positive h.) In the first case the

localization-delocalization transition is crossed once (at h = −1), in the second case, the

localization-delocalization transition is crossed twice: first at h = −1, and at h = +1.

7.3 Numerical results and scaling theory

I investigated the adiabatic dynamics by numerical calculations. The time evolution was

calculated using a Runge-Kutta method with adaptive step size in time, to keep the relative

error less than 10−6. I used h = ±10 to approximate h → ±∞, and I tested that the

numerical results are stable, and do not change if I used h = ±20.

Numerical results of the excitation probability as a function of the time-scale τ can be

seen in figure 7.3. The excitation probability shows a power-law dependence in both cases:

Pt(τ) ∼ At(τ)τ−κ , (7.9)

but the prefactors, At(τ) have different functional forms.

When the quench ends at t = 0, and the localization-delocalization transition is crossed

only once, the prefactor shows log-periodic oscillations: A0(τ) ∼ sin2(log(τ/τ0)). This

type of log-periodic oscillations are common in quasi-periodic systems [177]. Due to the

oscillations, the exponent can be determined with some uncertainty:

κ = 0.45(5) . (7.10)
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Figure 7.3. Excitation probability as a function of the time-scale, τ , after an adiabatic
process from h = −∞ to h = 0 (upper panel) and to h = ∞ (lower panel) calculated in
finite systems of sizes L = 2Fn with n = 13, 14, . . . , 18.

If the localization-delocalization transition is crossed twice (at h = −1 and h = 1)

the prefactor has fast oscillations in τ : A∞(τ) ∼ sin2(τ/τ∞ + cst.) with τ∞ ≈ 0.15, and

a slower log-periodic oscillation is also present. The fast oscillations are analogous to the

Stückelberg oscillations [178,179]. It is hard to obtain the exponent of the second protocol,

due to the fast oscillations, however the numerical data is compatible with the estimate

for κ in equation (7.10).

Now we will build a scaling picture to interpret the measured κ = 0.45 value.

First the traditional Kibble-Zurek scaling ( described in section 7.1) is used for the

Aubry-André model. In the Aubry-André model d = 1 and ν = z = 1 so the prediction

of the Kibble-Zurek scaling theory is κsc = 0.5, which is close to the numerical estimate,

but sightly different. The rigorous derivations of the Kibble-Zurek scaling assume trans-

lational invariance, so the Kibble-Zurek prediction is not guaranteed to be precise for an

inhomogeneous system. Here a scaling is developed specially for the Aubry-André model.

The concept of the Kibble-Zurek time scale tKZ = |t̃ − tcrit| (7.5) is used, however, the

tKZ time scale is connected with a more special way to the excitation probability than in

the usual Kibble-Zurek scaling. The elementary transition probabilities pq,q′ , calculated at

t = 0 (for the first protocol) will be investigated. The pq,q′-s are arranged in decreasing

order, then the first (biggest) N is summed up:

P (N,L, τ) =
2

L

N ′∑
q∈Q+q′∈Q−

pq,q′ . (7.11)

This quantity is called partial excitation probability. (The prime on the sum denotes

that the summation involves not all terms, just the N largest.)

I calculated the fraction of the partial excitation probability, and the full excitation

probability P (N,L, τ)/P0(τ), for several system sizes and decay parameters (τ -s). For

large systems the P (N,L, τ) is a function of N/L2

P (N,L, τ) = π(N/L2)P0(τ) , (7.12)

for large enough τ .
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As it is shown on the right part of Fig.7.4 in the log-log plot π(N/L2) there is a linear

section over many decades, and for large arguments it saturates. Thus P (N,L, τ)/P0(τ)

can be approximated as

P (N,L, τ)

P0(τ)
≈


P (N,L,τ)
P (Neff ,L,τ)

∼ (N/Neff)ω N ≤ Neff

1, N > Neff

(7.13)

From the data in the right panel of Fig.7.4 we estimate ω = 0.90(2). By definition of Neff :

P0(τ) ∼ (Neff/L
2)ω . (7.14)

We have to connect Neff/L
2 with the time scale. To do this, we investigate the spectra of

the Aubry-André model near to the Fermi - energy. In figure 7.5 the number of eigenstates

between the Fermi level EF and E > EF are shown in a finite chain, as function of

the E − EF difference. The number of states between EF and E > EF are denoted by

n(E − EF ). It can be seen that the eigenstates form ’branches’. These branches show a

fractal-like structure. In figure 7.5 there is a finite number of branches, since it represents

the spectra of a finite system. In an infinite system there would be an infinite number of

branches. In an infinite system there are infinite number of branches. Investigating the

position of the branches we found that

n(ε) ∼ εXe (7.15)

where Xe ≈ 0.5 ± 0.02. Note, that this numerical result is in agreement with the more

exact results of Wilkinson [102] about the box counting dimension. If two states (m and

n) are close enough to the Fermi level, say closer than an energy scale ε, than the partial

excitation probability pm,n gives an important part of a full excitation probability. There is

n(ε) states in the ε neighborhood of the Fermi level EF , so the effective number of partial

excitations scales as:

Neff/L
2 ∼ n(ε)2 = ε2Xe (7.16)

Using equation (7.14) one gets:

P0(τ) ∼ (Neff/L
2)ω = ε2Xeω . (7.17)

Using ε ∼ 1/tKZ and equation (7.5) the expression of the Kibble-Zurek time:

P0(τ) ∼ τ−
2ωνzXe
νz+1 (7.18)

Substituting the values of the various exponents (z = 1, ν = 1, ω = 0.9, Xe = 0.5 ) one

gets:

P0(τ) ≈ 0.45 , (7.19)

in good agreement with the numerical result.
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Figure 7.4. Normalized partial excitation probabilities as a function of (N/L)2 for different
sizes: L = 2Fn with n = 13, 14, . . . , 18 at τ = 100 (upper panel) the same at L = 2F18 for
different values of τ (lower panel) both in log-log scale.
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Figure 7.5. Number of eigenstates between the Fermi energy (EF ) and E > EF , as
a function of the E − EF difference. There are logarithmic scales of both axis. The
eigenstates are result of numerical calculation in a chain of length L = 2× 6765.

7.4 Discussion

In this chapter we studied a nearly adiabatic process in the Harper model. The amplitude

of the magnetic field h(t) was varied linearly in time with a rate 1/τ and studied the

density of defects in the ground state created during this process. If the localization-

delocalization transition point is passed once the density of defects follows a power-law

dependence, ∼ τ−κ, while if two symmetrically placed transition points are passed then

the density of defects has a multiplicative oscillating correction, similar to the Stückelberg

phase of periodically driven two-level systems. Using scaling arguments we have related κ

to another critical exponents as given in equation(7.18). In this expression also the scaling

dimension ω of the excitation probability enters. For homogeneous systems it is generally

expected that ω = 1. In our case, when the spectrum of the Hamiltonian is not continuous

at the transition point, as well as the spectrum of the critical Hamiltonian is singular

continuous we have ω < 1. It is expected that ω 6= 1 is a general rule for quasi-periodic

and aperiodic Hamiltonians.

Finally, we discuss the question of the non-equilibrium dynamics of the Hamiltonian in

equation (2.17) for different values of the quasi-periodicity parameter β in equation (6.2).

If β is a rational number of the form β = 1/(2q) with q being an integer, then in the
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adiabatic process the decay exponent is given by [74] κ = q/(q+ 1). The same result holds

for β = p/(2q), when p is an odd integer and p and q are relative primes, at least for not

too large values of q. Thus these results cannot be analytically continued to the case, when

β is an irrational number. If β is an irrational number and different from the inverse of the

golden mean ratio studied in this paper, than the critical exponents of the non-equilibrium

dynamics are expected to be β dependent. Some hint in favor of this assumption can

be found in the diffusion properties of the quasi-particles, see in section 6.4. Indeed the

diffusion exponent, D, is measured to be β dependent [102] and the same is expected to

hold for the non-equilibrium exponents σ and µ.

This chapter is based on the following article:

G. Roósz., U. Divakaran, H. Rieger, F. Iglói Non-equilibrium quantum relaxation across a

localization-delocalization transition Phys. Rev. B 90, 184202 (2014)

The numerical simulations presented in this chapter was done by me. Dr. Uma Divakaran

did stability investigations about the numerical method. The modified scaling theory

represented in the above chapter is also my work.



Chapter 8

Quench dynamics of the disordered

Ising model

8.1 Introduction

In this chapter we investigate the dynamics of the magnetization of the disordered trans-

verse field quantum Ising chain after a global quench. Concerning the functional form of

the relaxation process after a quench in random quantum systems, there have been de-

tailed studies about the time-dependence of the entanglement entropy [78–81, 180]. If the

system consists of non-interacting fermions - such as the random XX-spin chain or the

critical random transverse-field Ising chain - the dynamical entanglement entropy grows

ultra slowly in time as

S(t) ∼ a ln ln t , (8.1)

and saturates in a finite system at a value

S(`) ∼ b ln ` , (8.2)

where ` denotes the size of a block in a bipartite system and can be chosen to be pro-

portional to the size of the system L [79, 180]. These scaling forms can be explained by

a strong disorder renormalization-group (SDRG) approach [103]. Recently, the SDRG

method, which was designed as a ground state approach, has been generalized to take

into account excited states [181–183]; this generalized RG method is often abbreviated

as RSRG-X [181]. By this generalized SDRG method the ratio of the prefactors in (8.1)

and (8.2) is predicted as b/a = ψne, where ψne = 1/2 is a critical exponent in the non-

equilibrium process and describes the relation between time-scale and length-scale as

ln t ∼ Lψne . (8.3)

For interacting fermion models due to many-body localization the time-dependence of the

dynamical entropy is S(t) ∼ lnω t with ω ≥ 1, while the saturation value follows the volume

law, S(`) ∼ ` [81].

We consider relaxation processes from an initial ferromagnetic state and from a fully

68
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paramagnetic state by a sudden change of the strength of the transverse field. To cir-

cumvent numerical instability as observed in previous calculations for large systems using

eigenvalue solver routines [79,180], we use multiple precision arithmetic to study the time-

evolution through direct matrix multiplications.

8.2 The model

The model was introduced in Section 2.4, and the properties of the model also summarized

there. The model we consider is the quantum Ising chain of length L defined by the

Hamiltonian:

H = −1

2

L−1∑
i=1

Jiσ
x
i σ

x
i+1 −

1

2

L∑
i=1

hiσ
z
i , (8.4)

in terms of the Pauli matrices σx,zi at site i. In this Chapter I will take free boundary

conditions. The homogeneous model with the uniform coupling Ji = 1 and the uniform

transverse field, hi = h̃, is in the disordered (ordered) phase for h̃ > 1 (h̃ < 1), and the

quantum critical point is located at h̃ = 1. [111] The critical point of the model is described

by a conformal field theory with a central charge c = 1/2. In the random model with

quenched disorder, the Ji and the hi are position dependent, and are independent random

numbers taken from uniform distributions in the intervals [0, 1] and [0, h], respectively.

The random model is in the disordered (ordered) phase for h > 1 (h < 1) and the random

quantum critical point is at h = 1.

The free fermion representation of the Hamiltonian is:

H = −
L∑
i=1

hi(c
†
ici −

1

2
)− 1

2

L−1∑
i=1

Ji(c
†
i − ci)(c†i+1 + ci+1) , (8.5)

which is a special case of equation (2.2). The usual description of the dynamics is to

transform (8.5) to diagonal form, as it can be read in Appendix A, and as it was done in

the previous chapters. This method was applied to the disordered Ising chain, and it was

found that the eigenvalue solver routine fails to converge for some samples. The root of

the problem is that nearly degenerate eigenstates occur in some samples. The difference

between the energy levels of the states is comparable with the used numerical precision.

This causes that the eigenvalue solver routine returns false eigenstates. These events cause a

significant numerical error. To avoid instabilities, we follow a sightly difference procedure,

where only matrix products are used, and the rounding errors are controlled by using

multiple precision arithmetic.

8.2.1 Numerical calculation of time evolution

The Hamiltonian can be written in terms of Majorana operators:

H =
1

4

2L∑
n=1

2L∑
m=1

ǎm
[
Tm,n(i)(n−m)mod(2)

]
ǎn , (8.6)
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where

ǎ2l−1 =
L∑
k=1

Φk(l)(η
†
k + ηk) ,

ǎ2l = −ı
L∑
k=1

Ψk(l)(η
†
k − ηk) , (8.7)

are the Majorana operators. Some basic properties of these operators are included in

Appendix A.5. The T matrix is given as:

T =



0 h1

h1 0 J1

J1 0 h2

h2 0
. . .

. . . . . . hL

hL 0


(8.8)

Using the canonical anti-commutators, one can derive the Heisenberg equation of mo-

tion of the Majoranna operators:

dǎn(t)

dt
=

2L∑
m=1

Mn,mǎm(t) . (8.9)

here M is a 2L×2L real matrix. In the upper triangle the elements of M and T are equal,

in the lower triangle the elements of T and M are opposite of each other.

M =



0 h1

−h1 0 J1

−J1 0 h2

−h2 0
. . .

. . . . . . hL

−hL 0


(8.10)

One can expand the time dependent Majorana operators in the bases of the initial

Majorana operators as follows:

ǎm(t) =
2L∑
n=1

Pmn(t)ǎn(0) . (8.11)

Pmn(0) = δmn (8.12)

One obtains the following equations for the time evolution of the Pmn(t) coefficients:

dPn,k(t)

dt
=

2L∑
m=1

Tn,m(−1)n−mPm,k(t) =
2L∑
m=1

Mn,mPm,k(t) , (8.13)
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which can be written with short-hand matrix notation:

dP (t)

dt
= MP (t) , (8.14)

with the initial condition Pn,m(0) = δn,m. The solution is P (t) = exp(Mt). It is possible

to evaluate the exponential using the eigenvalue decomposition of M , however there are

realizations where the eigenvalue solver routines fail to converge. To avoid the convergence

problems we evaluate the exponential for a unit time step tstep = 1 using the Taylor series

exp(Mtstep) =
∑∞

n=0
Mn

n!
tnstep. In the numerical calculations, we used multiple precision

arithmetic to evaluate the Taylor-expansion, and summed the first 100 term in the expan-

sion. The first 100 term is enough to make the truncation error smaller than the used

numerical precision. The absolute value of the eigenvalues of M are smaller than 2 [120],

so the nth term is the Taylor expansion is smaller than 2ntnstep/n! in operator norm. The

time evolution is then calculated with matrix products,

P (2ntstep) = P (2n−1tstep)P (2n−1tstep) . (8.15)

I used two kinda of initial states, one ferromagnetic (h0 → 0+) state and one paramag-

netic (h0 → +∞) state.

In the ferromagnetic state Ψ(0)(k)j = δj,(k+1)mod(L) and Φ(0)(k)j = −δk,j. One gets for the

initial correlation matrix G
(0)
m,n = −∑L

k=1 Ψ(0)(k)mΦ(0)(k)j = δm,(n+1)mod(L).

In the paramagnetic state Ψ(0)(k)j = δj,k and Φ(0)(k)j = −δk,j, and one gets for the initial

correlation matrix G
(0)
m,n = δm,n.
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8.3 From fully ordered initial state to the ferromag-

netic phase

The fully ordered state is defined by h→ 0+. We investigated various after quench magnetic

field h = 0.5 . . . 0.9, and different lengths of the chain L = 16 . . . 128. The numerical results

are shown in figure 8.1. Let us first investigate the (a) panel of Figure 8.1. The bulk
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Figure 8.1. Quenches from the fully ordered initial state h0 = 0, to the ferromagnetic phase
and the critical point. Each sub-figure corresponds to a different magnetic field. (See the
labels above the sub-figures.) The different colors denote the different chain lengths. The
quench shown in the right bottom sub-figure ends in the critical point (h = 1), the others
ends in the ferromagnetic phase (h < 1). The magnetization was calculated in the middle
of the spin chain at site l = L/2.

magnetization decreases, first reach the first plateau, and after a system-size dependent

time, tp2 a fast decrease happens, and the magnetization reaches a second plateau. The

tp2 time goes to infinity in the thermodynamic limit: Therefore in the thermodynamic

limit the second plateau is absent. The end time of the first plateau scales in a finite

system as log(log tp2) ∼ logL, and the average magnetization in the second plateau scales

as log[mp2(L)/mp2(∞)] ∼ ξ/L, where ξ is the correlation length of the second plateau.

The other quenches ending in the ferromagnetic phase ( (b)-(e) panels in Figure 8.1) show

similar behavior. The end time of the first plateau tp2 become smaller and smaller as the

after quench magnetic field approaches the critical value 1, and if the quench ends in the
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critical point (Figure 8.1 (f) panel), there is no first plateau.

The double plateau behavior can be described in the framework of the semiclassical

theory. Quasi-particles are created at the time of the quench, and the magnetization on

a given site decrease, if a quasi-particle crosses the given site. In the ferromagnetic phase

of the disordered Ising chain, there is a finite correlation length ξ, and the quasi-particles

travels only ξ distance after the quench. When the quasi-particles traveled ξ distance from

the site of their creation, the decrease of the magnetization stops, and the first plateau is

created. If the after quench magnetic field h is closer to the critical point, the localization

length ξ becomes larger, and the average magnetization in the first plateau becomes smaller.

The second plateau and the second fast decrease of the magnetization are the results

of another, strictly finite-size effect. There is a special excitation in the ferromagnetic

phase, with exponentially small energy: ε0(L) ∼ exp(−L/ξ). The time scale where the

first decrease occur is tp2 ∼ 1/ε0, in correspondence with the numerical simulations. This

special excitation is also localized, and the average values of the second plateau goes to a

finite value in the thermodynamic (L→∞) limit. There is no such low energy excitation

in the critical point: There the lowest excitation is ε0(L) ∼ exp(−AL1/2).

8.4 Quench to the critical point

8.4.1 Ferromagnetic initial state

In Figure 8.2 the decay of the magnetization is shown after a quench from the ferromagnetic

initial state (h0 → 0+) to the critical point (h = 1). There is an asymptotic region where

log(m(t)) is proportional with log(log t), log(m(t)) ∼ a log(log t), where a ≈ 0.14.

m(t) ∼ (log(t))−a (8.16)

The asymptotic region ends after a finite size dependent time, ta(L). For the quasi-particles

emitted from the neighborhood of the boundaries, ta(L) amount of time is needed to reach

the investigated bulk spin at l = L/2. Before ta(L) the boundaries does not effect the

magnetization at site l = L/2, after ta(L) one observes finite-size effects in the dynamics

of the bulk magnetization. After this asymptotic region there is a short period of fast

decrease, and at the end there is the plateau region. For critical quenches there is only one

plateau region. The average magnetization of the plateau region (mp(L)) decreases with

the increasing system size (see Figure 8.3). The mp(L) average magnetization is a power

law of the system size (L)

mp(L) ∼ L−b , (8.17)

where b ≈ 0.068(5). Here the estimated error is the error of the numerical fit. The two

formulas (8.16) and (8.17) have to give the same result for t = ta(L), so one gets:

log ta(L) ∼ Lb/a whereb/a ≈ 0.489± 0.02 . (8.18)
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Comparing this result with the definition of the Ψ exponent:

Ψ = b/a . (8.19)

This agrees with the result of RSRG-X. The scaling described above is illustrated in the

right panel of Figure 8.2, where ln(Lbm(t)) is plotted against ln(ln t/LΨ).

The distributions of the variables in a disordered system are usually non-trivial, and often

contains important informations about the system.

We investigate the distribution of the log-magnetization in the plateau regime. The

probability distribution can be seen in Figure 8.3. The distribution is broad, and becomes

broader with larger system sizes. One gets a data collapse with the scaling variable y =

logmpL
−α, thus

PL(logmp) = L−αp̃(logmpL
−α), α = b = 0.0685 . (8.20)

as can be seen in Figure 8.3. The typical value of the magnetization in the plateau region

is exp(−ALα), which is much smaller than the average value, mp(L) ∼ L−b (see Equation

(8.17)). The contribution of the typical samples is very small, negligible in the thermody-

namic limit. The important contribution to the average of the magnetization comes from

the atypical samples, i.e. from the rare realizations. In those rare realizations the long

time limit of the magnetization is large mp(L) = O(1). The average of the magnetization

is given by the y → 0− behavior. It is assumed that for small values of y, p̃ follows a power

law:

p̃(y) ∼ (−y)χ . (8.21)

The average of mp is given by:

[mp]av = L−α
∫
dmpp̃(logmpL

−α) (8.22)

∼ L−α
∫
dmp[logmpL

−α]χ ∼ L−α(1+χ) (8.23)

with α = b and χ = 0 (see figure 8.3) one gets [mp]av ∼ L−b, in agreement with the results

of the numerical calculations summarized in Equation (8.17).

8.4.2 Paramagnetic initial state

The fully paramagnetic initial state means, that the initial magnetic field is very large

h0 →∞, or equivalently all of the couplings vanish. In this state, all of the spins point to

the z direction, the magnetization is zero in the x direction, the initial correlation matrix

is diagonal: G
(0)
m,n = δm,n. I investigate quenches from the above described paramagnetic

state to the critical point h = 1. The time dependence of the average magnetization

are shown in Figure 8.4. The initial value is zero of the magnetization, which cannot be

represented on the logarithmic scale of equation (8.4). The magnetization decreases for

all global quenches in homogeneous or quasi-periodic chains. Surprisingly in the quench
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Figure 8.2. Left: Time evolution of the magnetization after a quench from h0 = 0.0 to the
critical point h = 1. The broken line denote a fit to the asymptotic region. Right Scaling
plot of the relaxation of the magnetization after a quench from h0 = 0 to the critical point
in the disordered Ising chain the fitting parameters are b = 0.0685, Ψ = 0.5.
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Figure 8.3. Left: Histogram of the plateau values after a quench from h0 = 0.0 to the
critical point. Right: Scaling plot of the histogram of the plateau values after a quench
from h0 = 0 to h1 = 1. Bottom: Average of the magnetization after a quench from h0 = 0
to h = 1 in the plateau region.
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Figure 8.4. Panel (a): Time evolution of the order parameter after a quench from the
paramagnetic state (h0 =∞), to the critical point h = 1 for different system sizes. In inset
the average asymptotic (plateau) values can be seen. Panel (b): Scaled plot of the time
evolution of the order parameter after a quench from the paramagnetic state (h0 =∞), to
the critical point h = 1 for different system sizes. The values of the scaling exponents are
b′ = 1.46 Ψ = 0.5

investigated in this chapter the magnetization starts to increase and for long times reaches

an asymptotic plateau value. The average plateau values decay with the system size L,

and follow a power law:

[mp]av(L) ∼ L−b
′
, b′ = 1.4 . (8.24)

This behavior is shown in the inset of Figure 8.4. The dynamical magnetization shows

good scaling collapse, when mpL
b′ is plotted against log t/LΨ, as it is shown in Figure 8.4 .

The large time limiting value of the dynamical magnetization, mp(L) was also studied, and

it is shown in Figure 8.5. It can be seen, that the logarithm of the magnetization is broadly

distributed. A good scaling collapse can reached with the scaling variable y = logmpL
−α′ ,

with α′ = 0.5. The scaling is shown in Figure 8.5. It follows, that the typical values of

the magnetization scales with L as mtyp
p ∼ exp(−CLα), and it is much smaller than the

average. The average value is determined by rare events with contributions of O(1).

PL(logmp) = L−αp̌(logmpL
−α′) . (8.25)

The average of mp(L) is determined by the behavior of the p̌(y) function on small negative

arguments. (The function p̌(y) is introduced in equation 8.25.) we assume that for small

y:

p̌(y) ∼ (−y)χ
′
. (8.26)

From figure 8.5 one can see χ′ = 2 and with similar reasoning as in equation (8.23) one

gets

[mp]av(L) ∼ L−α
′(1+χ′) , (8.27)

in agreement with the numerical results.

With the investigation of the surface magnetization measured on the boundary site

(l = 1) of an open chain enables a better understanding of the scaling behavior of the
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Figure 8.5. (a): Histogram of the plateau values after a quench from h0 =∞ to the critical
point. (b): Histogram of the plateau values after a quench from h0 = ∞ to the critical
point. The P (log(mL1/2)) - log(m)L1/2 scaling gives a good data collapse.

long-time limiting value of the dynamical order parameter. With the results of Ref. [176])

(see equation (16)) the long-time limiting value of the surface magnetization, ms
p, can be

calculated exactly:

ms
p = Φ1(1)

L∑
j=1

Φ1(j)Φ
(0)
1 (j) . (8.28)

Here:

Φ1(j) = Φ1(1)

j−1∏
i=1

hi
Ji
,

Φ1(1) =

[
1 +

L−1∑
l=1

l∏
j=1

(
hj
Jj

)2
]−1/2

. (8.29)

In the large-h0 limit for Φ
(0)
1 (j) one gets Φ

(0)
1 (j) = δlm,j. Here lm is the position of the

largest transverse field in the sample [184]. Thus

ms
p = [Φ1(1)]2

lm−1∏
j=1

(
hj
Jj

)
, (8.30)

where Φ1(1) = ms
eq is the equilibrium value of the surface magnetization of the chain [117,

185], evaluated in the final state, i.e. with h = hc.

The typical value of ms
eq at the critical point scales as exp(−CL1/2) [117, 186]. The

same scaling combination holds for ms
p. As a consequence the right scaling combination

for ms
p is y = ln(ms

p)L
−1/2. It is the same form that has been obtained for the bulk spins

above. From the scaling behavior of the average value ms
p it can be seen, that the rare

events are dominant.

The scaling of the surface magnetization can be calculated using an analogy with ran-

dom walks. There is a direct connection between the random transverse-field Ising chain

and a one-dimensional random walk ( [117]): to a given sample (given magnetic fields hi
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and couplings Ji for i = 1, 2, . . . L) a one-dimensional random walk is associated. The

associated random walk starts at the origin and takes consecutive steps, the length of the

i-th step being ln(hi/Ji).

The associated random walk stays at positive positions for all steps (In other words it

is a surviving walk.) for rare realizations of ms
eq. Concerning ms

p, here for a rare realization

both ms
eq and the product

∏lm−1
j=1

(
hj
Jj

)
should be of order of O(1). In the random walk

language it means that the walk is surviving and returns after lm steps.

The probability of this particular event is: P(lm) ∼ l
−3/2
m (L − lm)−1/2. The average

value scales as:
∑

lm
P(lm)/L ∼ L−3/2, which means that ms

p(L) ∼ L−3/2. The scaling

behavior, extracted from the numerical data is similar to the last form.

8.5 Discussion

In this section we investigated numerically the dynamics of the local magnetization after a

quench in the transverse quantum Ising chain. In order to get precise numerical results we

avoided to use eigenvalue solver routines, since routine stability problems were reported in

the literature [122] [187]. I calculated the time evolution of Majorana operators using only

matrix products and multiple precision arithmetic.

If the quench starts from the ferromagnetic state and ends in the ferromagnetic phase the

magnetization first reaches a plateau value, and after a delay time a second relaxation

occurs, and the magnetization reaches a second plateau value. The second relaxation is

generated by quasi-localized modes which are present in the ferromagnetic phase of a finite

system. In an infinite system only the first plateau exists. The average magnetization is h

dependent and finite in both plateaus.

If the system is quenched from the ferromagnetic phase to the critical point the magnet-

ization goes to zero in an infinite system, as ml(t) ∼ (ln(t))−a. In a finite system the

magnetization reaches a finite L dependent limiting value. The distribution of the long-

time limiting value of the magnetization was investigated. The typical value goes to zero

starched exponentially with the system size (exp(−CLα)), but the average is dominated

by rare events, and decays with a power law of the system size.

If the quench start from the paramagnetic state and ends in the critical point a rapid

increase of the average magnetization was found, which is a unique property of the random

chain: After any quench in the homogeneous or quasi-periodic Ising chain the magnetiza-

tion decays.

This chapter is based on the following article:

G. Roósz., Y.-C. Lin, F. Iglói Critical quench dynamics of random quantum spin chains:

Ultra-slow relaxation from initial order and delayed ordering from initial disorder New J.

Phys. 19, 023055 (2017)

I did the numerical simulations presented in the above chapter, and the scaling analysis

about the bulk magnetization is also my own work. The analysis of the surface magnetiz-

ation was did by Prof. Dr. Ferenc Igloi.



Chapter 9

Conclusion

In this dissertation I investigated the dynamics of inhomogeneous one dimensional systems

with free-fermion techniques. Different types of inhomogeneities were investigated (local

defect, two types of quasi periodic modulation, and a disordered system). The main results

are the following:

1. For the generalized local defect I checked using large scale numerical simulations the

conjuncture about the dynamics of the local magnetization at the defect site. Here

the term generalized means, that a coupling and the two neighboring magnetic fields

differs from the critical value. The dynamics is function of the quench parameter κi

which is a combination of the coupling, and the magnetic fields: κi = Ji
h1ih2i

. Here

κ1 describes the pre-quench system, and κ2 describes the after quench system. The

time evolution of the magnetization in a finite system of length L is:

md(t, L)∼L−x1

[
L sin

(
π
t

L

)]2(x12−x2)

, 0 < t < L .

where the exponents are xi =
√

2
π

arctan( 1
κi

) and x12 =
√
x1x2. (i = 1, 2)

2. For the Fibonacci Ising chain I investigated the after dynamics of the local magnetiz-

ation numerically using free fermion methods. I found that the magnetization follows

a stretched exponential decrease:

mb(t) ∼ A(t)exp (−Ctµ) .

I also found a dynamical phase transition in the behavior of the magnetization: There

is a critical magnetic field h∗ if the after quench magnetic field is bigger than h∗, the

A(t) prefactor of the magnetization oscillates, if the after quench magnetic field is

below h∗ the prefactor A(t) remains positive. In a homogeneous system h∗ = 1, in

the Finonacci Ising chain h∗ < 1, and h∗ is power law of the inhomogeneity strength.

For the entanglement entropy and for the wave-packet power-law increase were found.

The exponents of the magnetization, entropy, and wave packet are close to each other

in the non-oscillatory phase. This phenomenon was understood using a quasi-classical

reasoning.
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3. I investigated the quench dynamics of the Harper model, which shows a localization-

delocalization phase transition. I calculated the after-quench dynamics of the en-

tanglement entropy and the local magnetization. If the quench ends in the localized

phase, the dynamics is similar to the dynamics of an homogeneous system: The en-

tanglement entropy grows linearly in time, the magnetization decrease exponentially,

the wave packet shows a ballistic spread. If the quench ends in the localized phase,

the entropy and the magnetization both remains finite in the long-time limit, and

the width of the wave packet remains small, comparable with the static localization

length.

If the quench ends at the critical point, the magnetization decreases with a stretched

exponential function mb(t) ∼ A(t)exp (−Ctµ), and the entropy grows with a power

function S ∼ tσ of the time. The spreading of the wave packet follows a power law

d(t) ∼ t0.477 [102]. The exponents µ and σ are close to the exponent of the wave-

packet spread. This fact has been understood based on a quasi-classical reasoning.

4. I investigated a Kibble-Zurek process in the Harper model. The defect density scales

with a power of the speed of the process P ∼ 1/τκ. The prediction of the standard

Kibble-Zurek scaling for the exponent is κ = 1/2. My numerical data suggest smaller

exponent, κ ≈ 0.45. I developed a modified version of the Kibble-Zurek scaling for

the Harper model. This modified scaling is in good agreement with the numerical

data.

5. I investigated the after quench dynamics of the magnetization in the disordered trans-

verse Ising model. I investigated three types of quenches: from a totally ferromagnetic

(h0 = 0) state to the ferromagnetic phase (0 < h < 1), from the totally ferromagnetic

phase (h0 = 0) to the critical point (h = 1), and from the totally paramagnetic state

(h0 →∞) to the critical point (h = 1).

If the quench starts from the totally ferromagnetic state, and ends at the critical

point, the magnetization remains constant in the long time limit.

If the quench starts from the infinitely paramagnetic phase and ends at the critical

point, the magnetization of the finite system increases, which is a unique fact of this

disordered system. If L → ∞, the asymptotic magnetization goes to zero in the

aforementioned quench.

If the quench starts from the totally ferromagnetic phase (h0 = 0) and ends at the

critical point, the magnetization shows an extremely slow decrease of the form:

m(t) ∼ (log(t))−a

where a ≈ 0.14.



10. fejezet

Összefoglaló

10.1. Bevezetés

A zárt kvantumrendszerek külső paraméterek megváltoztatását követő dinamikája akt́ıvan

kutatott terület, mind ḱısérleti, mind elméleti tekintetben. A paraméter megváltoztatásának

sebessége szerint két szélsőséges esetről beszélhetünk. A külső paraméter hirtelen megváltoztatását

”kvencs”-nek nevezzük. A változtatás utáni dinamikát kvencs utáni dinamikának Kı́sérletileg

a kvencs utáni dinamika a Feshbach rezonancia seǵıtségével valóśıtható meg [1–11].

A kvencsekkel kapcsolatban az egyik kérdéskör az, hogy a fizikai mennyiségek hogyan

változnak röviddel a paraméter megváltoztatása után. A másik kérdéskör azt vizsgálja,

hogy a kvencs után nagyon hosszú idő elteltével milyen állandósult állapot alakul ki, mi a

kapcsolata a kialakult állandósult állapotnak a rendszerben létező megmaradó mennyiségekkel.

[12–57]. A másik határeset a paraméter nagyon lassú változtatása, a közel adiabati-

kus dinamika. A külső paramétert a legtöbbször időben lineárisan változtatják ∼ t/τ

módon, és a változtatás során átvisszük a rendszert egy fázisátalakulási ponton. A folya-

mat elején a rendszer a pillanatnyi Hamilton-operátor alapállapotában van. Ha a paraméter

változtatásának sebessége (1/τ) sokkal kisebb mint a rendszerben található legkisebb ener-

gia különbséghez tartozó időskála, a rendszert jellemző állapotvektor mindvégig közel ma-

rad a pillanatnyi alapállapothoz. Azonban a legkisebb energia különbség (legkisebb gap)

nullához tart, ahogy a rendszer közeĺıt a fázisátalakulási ponthoz, ı́gy a külső paraméter

változása nem lesz a folyamat egész ideje alatt ”elég lassú”.

A kérdés, hogy milyen messze lesz a lassú dinamikával kapott állapot az alapállapottól a

fázisátalakulási pont keresztezése után, intenźıv vizsgálatok tárgyát képezte [50,56,58–74].

Kibble és Zurek [58] [59] megadott egy összefüggést, amely a két állapot ”távolságát”

a P (τ) ∼ (density of deffects) ∼ 1
ξ̃d
∼ τ−

dν
νz+1 módon jellemzi, ahol d a rendszer dina-

mikája, ν a korrelációs hossz kritikus exponense, z a dinamikai exponens. A formula

eredeti indoklása heurisztikus, azóta perturbat́ıv és numerikus módszerekkel vizsgálták az

érvényességét különböző rendszerekben.

Az itt kiemelt kétféle folyamat mellett az irodalomban más nemegyensúlyi dinamikával

kapcsolatos kérdéseket is vizsgáltak, ilyen például egy izolált rendszer időfejlődése időben

periodikusan [75] [76], kvázi-periodikusan vagy véletlenszerűen [77] változó külső poten-

ciálban.
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A kvencs dinamikával kapcsolatban kiterjedt irodalom létezik, amelyben azonban leginkább

a homogén (transzláció invariáns) rendszerek dinamikáját vizsgálták [12,16–33,50,51,55]. A

homogén rendszerekkel kapcsolatban az egyik legszebb eredmény a kvencs utáni dinamika

kvázi-klasszikus léırása. A kvencs során a rendszer minden pontjában kvázirészecske párok

keletkeznek ellentétes impulzussal. Ezek a részecskék a későbbiek során állandó sebességgel

haladnak, a rendszert határoló felületekről visszaverődnek [38, 51, 56]. A kváziklasszikus

léırás seǵıtségével a homogén rendszerekre aszimptotikusan egzakt eredmények kaphatóak.

Az inhomogén rendszerek kvencs utáni dinamikájával kapcsolatban csak néhány speciális

esetet vizsgáltak az irodalomban, például az összefonódási entrópia viselkedését rendezetlen

spinláncokban [78–80], vagy a soktest-lokalizáció modelljeiben [81] [82]. Az inhomogenitás

egy speciális t́ıpusa a kvázi-periodikus rend, ami a homogén és a rendezetlen rendszerek

”között” helyezkedik el: bonyolultabb az előbbinél, hisz nem transzláció invariáns, de egy-

szerűbb az utóbbinál, mert rendezett, determinisztikus [83–85].

A kváziperiodikus rendszerek szokatlan transzporttulajdonságokkal b́ırnak, bennük a hullámcsomag

kiterjedése nem ”ballisztikus” mint a homogén rendszerekben, hanem anomális diffúziót

követ [86, 87].

A disszertáció az alábbi négy cikken alapul:

1. F. Iglói, G. Roósz, Y.-C. Lin Nonequilibrium quench dynamics in quantum quasicrys-

tals New J. Phys. 15, 023036 (2013)

2. F. Iglói, G. Roósz, L. Turban Evolution of the magnetization after a local quench in

the critical transverse-field Ising chain J. Stat. Mech. (2014) P03023

3. G. Roósz., U. Divakaran, H. Rieger, F. Iglói Non-equilibrium quantum relaxation

across a localization-delocalization transition Phys. Rev. B 90, 184202 (2014)

4. G. Roósz., Y.-C. Lin, F. Iglói Critical quench dynamics of random quantum spin

chains: Ultra-slow relaxation from initial order and delayed ordering from initial

disorder 2017 New J. Phys. https://doi.org/10.1088/1367-2630/aa60e6

A következő alfejezetekben a disszertáció saját eredményeket ismertető részeinek magyar

nyelvű kivonata olvasható.

10.2. Általánośıtott lokális kvencs

Ebben a fejezetben az angol nyelvű szöveg 4 fejezetét foglalom össze, amely a [188] cikken

alapul. Az irodalomban a legtöbbet vizsgált kérdéskör az un. globális kvencs: Ekkor a

rendszer egy paramétere globálisan, az egész rendszerre kiterjedő homogén módon változik

meg: Ilyen például egy külső mágneses tér bekapcsolása, amelynek értéke az egész rendszer

területén homogén. Egy másik érdekes kérdéskör a lokális kvencsek területe, amikor a Ha-

milton operátor egy rácshely környezetében változik meg pillanatszerűen. Kı́sérletekben a

lokális kvencset valóśıt meg például a röntgensugarak fémbeli elnyelődése [141].
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Az elméleti vizsgálatok többsége kritikus egydimenziós rendszerekkel foglalkozik, amelyek-

re vonatkozóan a konform térelmélet seǵıtségével egzakt eredményeket lehet megfogal-

mazni. A konform térelmélet a modell folytonos határesetét ı́rja le, ahol a rendszer egy

kétdimenziós (x, t) téridőben él. Ebben a fejezetben egy kritikus transzverzális terű kvan-

tum Ising láncot vizsgálunk, amelyben egy általánośıtott hibahely paramétereit pillanat-

szerűen megváltoztatjuk. Az általánośıtott jelző arra vonatkozik, hogy egy csatolás és a

két szomszédos mágneses tér értéke is különbözik a kritikus láncra jellemző tömbi értéktől.

Az általunk vizsgált rendszer Hamilton-operátora:

Hi=−
1

2

[
L−1∑
n=1

σxnσ
x
n+1+(Ji−1)σxL/2σ

x
L/2+1+

L∑
n=1

σzn+(hi1−1)σzL/2 + (hi2−1)σzL/2+1

]
, (10.1)

ahol σxn, σyn, σzn a pauli mátrixok. A hibahely a lánc közepén található, és a kvencs előtt

(t < 0) J1 csatolás, attól balra h11 mágneses tér, a J1 csatolástól jobbra h12 mágneses

tér jellemzi. A kvencs utáni paraméterek J2, h21, h22. A kvencs után a hibahelyen

mért lokális mágnesezettség időbeli fejlődését vizsgáljuk. A lokális mágnesezettséget a

σx operátor alapállapot és első gerjesztett állapot közötti mátrixelemeként számı́thatjuk

[167] mn(t)〈Φ0|σxn(t)|Φ1〉 egy tetszőleges rácsponton. A mágnesezettség a hibahelyen:

md(t) = mn=L/2(t). A rendszer megfeleltethető egy kétdimenziós klasszikus spin mo-

dell extrém-anizotrop esete transzfermátrixának. A megfeleltetés seǵıtségével levezethető

a lokális mágnesezettség imaginárius időbeli dinamikája a termodinamikai határesetben

(L→∞ határesetben). Az eredmények a következőképen foglalhatók össze: A dinamika a

κi = Ji
hi1 hi2

(i = 1, 2) effekt́ıv kölcsönhatások függvénye, a mágnesezettség imaginárius

időbeli változása hatványfüggvényt követ a

md(τ) ∼ τx12−x2 , 0 < τ � L (10.2)

alakban, ahol az exponensek értékei: xi =
√

2
π

arctan( 1
κi

) és x12 =
√
x1x2. A valós idejű

dinamikára ismertek az irodalomból eredmények ha h11 = h12 = h21 = h22 = 1, és a

J1 = ∞ (a kezdeti állapotban a hibahely spinjei rögźıtettek) vagy J1 = 1 és J2 = 0 (egy

homogén lánc szétvágása).

A rögźıtett spinű esetre [142] konform térelmélet seǵıtségével meghatározták hogy a

mágnesezettség relaxációja:

m
(+)
d (t) ∼ t−2xm 0 < t� L . (10.3)

ami numerikus szimulációkkal is tesztelve lett a transzverzális terű kvantum Ising láncban

[94]. Egy nýılt láncban [94] eredményei a következő formulával összegezhetőek:

m
(+)
d (t, L) ∼

[
L sin

(
π
t

L

)]−2xm

, 0 < t < L . (10.4)

Abban az esetben, amikor a két félrendszer a kvencs után nincs összekapcsolva [94] nume-
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rikus eredményeit az alábbi formulával lehet összefoglalni:

m
(fb)
d (t, L) ∼ L−1/2

[
L sin

(
π
t

L

)]1/4

, 0 < t < L . (10.5)

ami rövid időkre a következő alakot veszi fel:

m
(fb)
d (t) ∼ m0(L) t1/4, 0 ≤ t� L , (10.6)

ahol m0(L) ∼ L−xms az egyensúlyi értéke a hibahelyi mágnesezettségnek a kiindulási

állapotban. Az exponens a (10.6) egyenletben megegyezik 1/4 = 2(xms/2 − xm) -vel,

ahol x2 = xm and x12 = xms/2. A rögźıtett spinű kezdőállapotra, (10.4) egyenlet, ugyanez

teljesül x12 = 0-el. Ha t2-et helyetteśıtünk τ helyére az imaginárius időre vonatkozó egyen-

letekbe akkor a (10.2) egyenletből megkaphatjuk a valós időre vonatkozó eredményeket, a

(10.4) és (10.6) egyenleteket. Ezért megfogalmazhatjuk a hibahelyi mágnesezettség kvencs

utáni viselkedésére (az L� 1 határesetben) az alábbi sejtést:

md(t) ∼ m0(L) t2(x12−x2), 0 < t� L , (10.7)

ahol m0(L) ∼ L−x1 . Egy véges rendszerben sejtésünk szerint a mágnesezettség a következő

(periodikus) módon változik a kvencs után:

md(t, L)∼L−x1

[
L sin

(
π
t

L

)]2(x12−x2)

, 0 < t < L . (10.8)

A fenti két egyenlet a fejezet fő eredménye. A sejtésként megfogalmazott formulákat nu-

merikus szimulációval ellenőriztem.

10.3. A Finonacci Ising kvázikristály nem egyensúlyi

dinamikája

Ebben a fejezetben a kvantum Ising lánc egy kváziperiodikus változatának dinamikáját

vizsgáljuk. A modellt definiáló Hamilton-operátor a következő:

H = −1

2

[∑
i

Jiσ
x
i σ

x
i+1 + h

∑
i

σzi

]
, (10.9)

( σxi , σzi a Pauli mátrixok az i. helyen) A Ji csatolások helyfüggőek, és az alábbi módon

vannak paraméterezve:

Ji = Jrfi , (10.10)

itt r > 0 az inhomogenitás erősségét jellemzi, r = 1 megfelel a homogén rendszernek, minél

kisebb r annál erősebb az inhomogenitás. Az fi számok 0 vagy 1 értéket vehetnek fel, és

kváziperiodikusan váltakoznak az un. Fibonacci sorozatnak megfelelően.
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A J kölcsönhatás erősség a (10.10) egyenletben J = r−ρ, ahol

ρ = lim
L→∞

∑L
i=1 fi
L

= 1− 1

ω
, (10.11)

az 1 számok aránya egy nagyon hosszú (végtelen sorozatban).

A Fibonacci sorozatot a következő algebrai kifejezés definiálja:

fi = 1 +

[
i

ω

]
−
[
i+ 1

ω

]
, (10.12)

ahol [x] az x szám egészrésze, és ω = (
√

5 + 1)/2. A fenti defińıcióval a modell kritikus

pontja h = 1-ben van, h < 1 a ferromágneses fázis, h > 1 a paramágneses fázis. A Fi-

bonacci sorozat a Harris-Luck kritérium szerint [204] irreleváns perturbáció: A kritikus

exponensek folytonosan változnak a rendezetlenség erősségének függvényben.

A kvencset a mágneses tér hirtelen változtatásával valóśıtottam meg. A kvencs előtt a

mágneses tér h0 a kvencs után a mágneses tér értéke h. Vizsgáltam a lokális mágnesezettség

viselkedését a határfelületektől távol, a tömbi részben, az összefonódási entrópia időbeli

változását, és az un. hullámcsomag kiszélesedését. Az összefonódási entrópia defińıciója a

következő. A rendszer a |Ψ〉 tiszta állapotban van, amit a ρ = |Ψ〉〈Ψ| diadikus sűrűségmátrixszal

is jellemezhetünk. A rendszert két részre osztjuk (A és B). Definiáljuk a redukált sűrűség

mátrixokat ρA = TrBρ és ρB = TrAρ. Az összefonódási entrópia a redukált sűrűségmátrixok

von Neumann entrópiája: S = −TrBρB ln ρB = −TrAρB ln ρA Az összefonódási entrópia

a két rész közötti összefonódást jellemzi. Numerikus szimulációk seǵıtségével a következő

eredményekre jutottam: A mágnesezettség kvencs utáni dinamikája nyújtott exponenciális

viselkedést mutat:

mb(t) ∼ A(t)exp (−Ctµ) . (10.13)

az A(t) prefaktor egységnyi nagyságrendű. Az A(t) prefaktor viselkedésében két tar-

tományt külöńıthetünk el h < h∗(r), akkor A(t) > 0 ha h < h∗(r) akkor A(t) oszcillál.

A h∗(r) dinamikai fázisátalakulási pont az r paraméternek hatványfüggvénye: h∗(r) ∼ rω

ahol ω ≈ 0.24 adódik. A h∗(r) ∼ rω összefüggés azzal a feltevéssel áll összhangban,hogy

a mágnesezettség akkor marad pozit́ıv, ha a vizsgált rácshely környezete lokálisan fer-

romágneses, és akkor csökken oszcillálva, ha a környezet lokálisan paramágneses. Az össze-

fonódási entrópia a kvencs után az idő hatványfüggvényeként nő:

S(t) ∼ tσ , (10.14)

a σ exponens közel megegyezik a mágnesezettségnél bevezetett µ exponenssel abban a

tartományban, ahol a mágnesezettség oszcilláció nélkül tart 0-hoz. Ezt a numerikus meg-

figyelést kvalitat́ıven a kvázi-klasszikus elmélettel értelmeztem.
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10.4. A Harper-modell nem egyensúlyi dinamikája

A Harper-modellt definiáló Hamilton-operátor:

H = −1

4

L∑
n=1

(σxnσ
x
n+1 + σynσ

y
n+1)−

L∑
n=1

hnσ
z
n . (10.15)

ahol σx,y,zn a Pauli-mátrixok az n. rácshelyen és hn egy kváziperiodikus potenciál:

hn = h cos(2πβn) , (10.16)

ahol β = (
√

5−1)/2 az aranymetszés inverze. A Harper-modell lokalizációs fázisátalakulást

mutat [102], |h| < 1-re a modell saját állapotai kiterjedtek, a spektrum abszolút folytonos,

|h| > 1-re a saját állapotok lokalizáltak, a modell pontspektrummal b́ır. A kritikus pont-

ban (|h| = 1) a modell spektruma fraktál-szerű, szinguláris-folytonos [113]. A kvenccsel

kapcsolatos numerikus eredményeket aszerint ı́rom le, hogy a kvencs utáni h mágneses tér

melyik fázisban van.

Ha a kvencs a kiterjedt fázisban végződött, a Harper-modell dinamikája a homogén rend-

szerekére emlékeztet: A lokális mágnesezettség exponenciálisan csökken, az összefonódási

entrópia az idővel lineárisan nő, a hullámcsomag ballisztikusan szélesedik. Ha a kvencs a

lokalizált fázisban végződik, a lokális mágnesezettség és az entrópia is véges értékű marad.

Ha a kvencs a kritikus pontban végződik, a lokális mágnesezettség nyújtott exponenciális

viselkedést mutat mb(t) ∼ A(t)exp (−Ctµ) ahol µ ≈ 0.43(5), az entrópia S(t) ∼ tσ visel-

kedést mutat, ahol σ ≈ 0.47(5). Mind a σ mind a ν exponens közel esik a [102] cikkeben a

hullámcsomag kiszélesedésére meghatározott 0.477 értékhez. Az exponensek közeli értéke

arra enged következtetni, hogy a kvázi-klasszikus kép kvázi-periodikus rendszerek esetében

is helyes, csupán a kvázi-részecske párok homogén rendszerbeli ballisztikus mozgását kell

a megfelelő anomális diffúzióval helyetteśıteni.

10.5. Közel adiabatikus dinamika a Harper modellben

Ebben a fejezetben a Harper-modell közel adiabatikus dinamikájával kapcsolatos eredményeket

összegzem. Az adiabatikus dinamikával kapcsolatban kétféle ”protokollt” használtam: Az

első során a h mágneses tér értéke −∞-ből indul, és h = t/τ módon növekszik∞ értékig. A

második protokoll során a mágneses tér szintén −∞-ből indul, és h = t/τ módon növekszik,

de csak h = 0-ig. Az első protokoll során a fázisátalakulási pontot kétszer keresztezzük, a

második protokoll során egyszer.

A fázisátalakulási pontokon való áthaladás során a rendszerben gerjesztések keletkeznek.

Annak valósźınűségére, hogy a rendszer gerjesztett állapotban lesz, a hagyományos Kibble-

Zurek skálázás P ∼ 1/τ 1/2-et jósol [58]. A numerikus adataim P ∼ 1/τ 0.45-el kompatibili-

sek. A Kibble-Zurek skálázás egy módośıtott formáját alkottam meg, ami jól illeszkedik a

numerikus eredményeimhez.
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10.6. A rendezetlen kvantumos Ising modell nem egyensúlyi

dinamikája

Ebben a fejezetben a mágnesezettség kvencs utáni dinamikáját vizsgáljuk a rendezetlen

Ising láncban. Az összefonódási entrópia kvencs utáni dinamikájával kapcsolatban részletes

vizsgálatokat olvashatunk az irodalomban [78–81,180].

Ha a rendszer nemkölcsönható fermionokból áll - mint a rendezetlen XX vagy a ren-

dezetlen kritikus Ising lánc - a dinamikus összefonódási entrópia az idő második logarit-

musával arányosan, rendḱıvül lassan növekszik:

S(t) ∼ a ln ln t , (10.17)

és hosszú idő eltelte után szaturálódik egy aszimptotikus értékhez:

S(`) ∼ b ln ` , (10.18)

ahol ` a blokkméret a kétfelé vágott rendszerben, amit a teljes L hosszal arányosnak

választottak a vizsgálatokban [79,180]. Ezek az összefüggések értelmezhetőek az erős rende-

zetlenség renormálási csoport (strong disorder renormalization-group, SDRG) seǵıtségével

[103]. Az erős rendezetlenség renormálási csoport (SDRG), ami eredetileg az alapállapot tu-

lajdonságainak léırására lett megalkotva, a közelmúltban megjelent munkákban [181–183]

általánośıtva lett a gerjesztett állapotokra is, erre az általánośıtott verzióra gyakran hivat-

koznak RSRG-X -ként [181].

Az RSRG-X módszer jóslata a (10.17) és (10.18) egyenletekben szereplő prefaktorok

arányáról b/a = ψne, ahol ψne = 1/2. A nem-egyensúlyi folyamatban a hossz és időskála

összefüggése:

ln t ∼ Lψne . (10.19)

Az általam vizsgált modlet definiáló Hamilton-operátor:

H = −
L−1∑
i=1

Jiσ
x
i σ

x
i+1 −

L∑
i=1

hiσ
z
i , (10.20)

ahol Ji a [0, 1] intervallumból és hi a [0, h] intervallumból kerül kiválasztásra egyenletes

eloszlás szerint.

A vizsgálatok során kétféle kezdőállapotot használtam. Az egyik a teljesen ferromágneses

állapot, ami a h→ 0 határesetnek felel meg, a másik a teljesen paramágneses állapot, ami

az összes csatolás kikapcsolásának felel meg Ji = 0. Ha a kvencs a teljesen ferromágneses

állapotból indult a ferromágneses fázis ”belsejébe” (0 < h < 1) vezetett, a mágnesezettség

véges maradt a hosszú idők határesetében.

Ha a kvencs előtt a rendszer a teljesen paramágneses állapotban volt és a kritikus pontba

vittük a kvenccsel, akkor a mágnesezettség egy gyors növekedés után ért el egy állandósult

értéket. Az állandósult érték az L→∞ limeszben zéróhoz tart.

Ha a kvencs a teljesen ferromágneses állapotból indult, és a kvencs utáni Hamilton operátor
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kritikus volt, a mágnesezettség egy nagyon lassú relaxációt mutatott:

m(t) ∼ (log(t))−a , (10.21)

ahol a ≈ 0.14. A csökkenő tartomány után a mágnesezettség egy konstans értéket vett fel,

aminek a véges méret függése:

mp(L) ∼ L−b , (10.22)

ahol b ≈ 0.068(5). A két exponens aránya b/a = 0.48(5) ≈ 1/2 jó összhangban az RSRG-X

eredményekkel.

10.7. Konklúzió

A disszertációmban egydimenziós inhomogén kvantum rendszerek nem-egyensúlyi dina-

mikáját vizsgáltam szabad fermionos módszerek seǵıtségével. Különböző t́ıpusú inhomoge-

nitásokat vizsgáltam (lokális hibahely, kétféle kváziperiodikus rendszer, rendezetlen rend-

szer.) Az elért eredmények a következőek:

1. Általánośıtott lokális kvencs. Az általánośıtott kifejezés arra vonatkozik, hogy nem

csak egy csatolás, hanem a csatolással szomszédos mágnese terek is megváltoznak

a kvencs időpontjában. Prećız numerikus szimulációk seǵıtségével ellenőriztem a

lokális mágnesezettség kvencs utáni dinamikájára vonatkozó sejtést. A dinamika a

κi kvencs paraméter függvénye, ami a hibahelyet jellemző csatolás és mágneses terek

kombinációja: κi = Ji
h1ih2i

. A κ1 paraméter a kvencs előtti, a κ2 paraméter a kvencs

utáni rendszerre vonatkozik. A mágnesezettség időfejlődése egy véges, L spinből álló

rendszerben:

md(t, L)∼L−x1

[
L sin

(
π
t

L

)]2(x12−x2)

, 0 < t < L .

ahol az exponensek xi =
√

2
π

arctan( 1
κi

) és x12 =
√
x1x2.

2. Fibonacci Ising kvázi kristályban a mágnesezettség, az összefonódási entrópia és a

propagátor kvencs utáni dinamikáját vizsgáltam. A lokális mágnesezettség a kvencs

után nyújtott exponenciális függvény szerint csökken:

mb(t) ∼ A(t)exp (−Ctµ) .

Itt A(t) egy O(1) nagyságrendű prefaktor. Az A(t) prefaktoral kapcsolatban egy

dinamikai fázisátalakulást találtam. Van egy kritikus mágneses tér érték h∗, ha a

kvencs utáni mágneses tér kisebb mint h∗ az A(t) prefaktor pozit́ıv minden t-re, ha

nagyobb akkor oszcillálva pozit́ıv és negat́ıv értékeket is felvesz. A homogén rend-

szerben ez a fázishatár egybeesik a (statikus) kritikus ponttal. Az inhomogén rend-

szerben h∗ a ferromágneses fázisban van, és folytonos függvénye az inhomogenitás

erősségének. Az összefonódási entrópia a kvencs után kezdetben hatványfüggvény

módon növekszik S ∼ tσ, majd (véges rendszerben) beáll egy aszimptotikus értékre,
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ami a rendszerméret függvénye. A propagátorból késźıtett ”hullámcsomag” kezdet-

ben szintén hatványfüggvény módon szélesedik,d(t) ∼ tD. A három exponens (µ,

σ, D) numerikusan megállaṕıtott értéke (a számı́tások pontosságát figyelembe véve)

megegyezik abban a tartományban, ahol a mágnesezettség előjel nélkül csökken. Ezt

az egyezést kvázi-klasszikus léırás seǵıtségével értelmeztem.

3. Vizsgáltam a Harper-modell kvencs utáni dinamikáját. Ebben a modellben loka-

lizáció-delokalizáció átalakulás figyelhető meg. Numerikus számolással követtem az

összefonódási entrópia és a lokális mágnesezettség dinamikáját. Ha a kvencs utáni

Hmailton-operátor a delokalizált fázisban van, a dinamika hasonló egy homogén rend-

szer dinamikájához: A mágnesezettség exponenciálisan csökken, az összefonódási

entrópia lineárisan nő az idővel. Ha a kvencs a lokalizált fázisban végződik, a

mágnesezettség és az entrópia is véges marad.

Ha kvencs a kritikus pontban végződik, a mágnesezettség nyújtott exponenciális

függvény szerint csökken: mb(t) ∼ A(t)exp (−Ctµ), és az entrópia hatványfüggvényként

nő S ∼ tσ. A hullámcsomag szélessége szintén hatványfüggvény szerint növekszik

d(t) ∼ t0.477, összhangban az irodalomban fellelhető eredményekkel [102]. A µ és σ

exponensek értéke közel esik a hullámcsomag exponenséhez, amit a kvázi-klasszikus

kép seǵıtségével értelmeztem

4. Vizsgáltam egy közel adiabatikus folyamatot a Harper-modellben. A folyamat során

a rendszert lassan visszük át a lokalizációs-delokalizációs kritikus ponton, a mágneses

tér időfüggése h(t) = t/τ ahol τ � 1 a folyamat sebessége. Azt vizsgáltam, a rendszer

milyen közel lesz a pillanatnyi Hamilton-operátor alapállapotához a kritikus ponton

való áthaladás után- A Kibble-Zurek skálázás jóslata az, hogy pillanatnyi Hamilton-

operátor alapállapotától vett távolság P ∼ 1/τκ módon függ a folyamat sebességétől,

ahol κ = 1/2. A numerikus adataim κ ≈ 0.45-el kompatibilisek. Megadtam a Kibble-

Zurek skálázásnak a Harper-modellre vonatkozó, speciálisan módośıtott változatát,

ami jól illeszkedik a numerikus adatokhoz is.

5. Vizsgáltam a rendezetlen egydimenziós kvantum Ising lánc globális kvencs utáni dina-

mikáját. A transzverzális tér a kvencs előtti h0 értékről hirtelen h-ra változik. Kétféle

kezdőállapotot vizsgáltam, a h = 0 ferromágneses kezdőállapotban mindegyik spin

az X irányba mutat (ami a kölcsönhatás iránya), a paramágneses kezdőállapotban

mindegyik spin a Z irányba (a transzverzális tér irányába) mutat. A két kezdőállapot

seǵıtségével háromféle kvencset vizsgáltam: A h = 0 ferromágneses állapotból a fer-

romágneses fázis 0 < h < 1 belsejébe, a ferromágneses kezdőállapotból a kritikus

pontba, illetve a paramágneses kezdőállapotból a kritikus pontba vittem a rendszert

a kvencs során.

Ha a ferromágneses kezdőállapotból a ferromágneses fázis belsejébe vezetett a kvencs,

a mágnesezettség konstans maradt az L→∞, t→∞ határesetben is.

Ha a paramágneses állapotból a kritikus pontba vezetett a kvencs, akkor egy véges

rendszerben a mágnesezettség átlagértéke növekedett, majd egy aszimptotikus (t→
∞) értékre állt be. A homogén és kvázi-periodikus rendszerekben minden kvencs
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után csökkent a mágnesezettség értéke, a növekedés ennek a speciális kvencsnek a

sajátossága. Az aszimptotikus (t→∞) mágnesezettség érték függ a rendszermérettől,

és nullához tart az L→∞ határesetben.

Ha a kvencs a ferromágneses állapotból indul, és a kritikus pontban végződik, a

mágnesezettség átlaga rendḱıvül lassan csökken:

m(t) ∼ (log(t))−a

ahol a ≈ 0.14.
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Dr. Róbert Juhász, and Dr. István Kovács. I am glad to them all for the common work,

and for the valuable discussions.

I had the luck to work in the group of Prof. Dr. Heiko Rieger at the Universität des

Saarlandes. I am really grateful for the hospitality to Dr. Prof. Heiko Rieger and every

members of his group. This group was a great place to work and learn.

I am grateful to my supervisor Prof. Dr. Ferenc Igloi, for the continuous support, for

raising interesting problems, and for introducing me to the impressive filed of statistical

physics.

I would like to express my sincere gratitude to my wife, for her patience, for our home, which

would be empty without She, and for her unique way of thinking, which is a complementary

of mine. This thesis is dedicated to her.

91



92 11. CHAPTER. ACKNOWLEDGEMENTS
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Appendix A

Time Evolution, Eigenstates

In this chapter we summarize the basic facts about calculating the eigenstates of the

inhomogeneous XY model, and the dynamics. The inhomogeneous XY model is defined in

Equation (2.1).

A.1 Transformation to quadratic form

Jordan-Wigner transformation [105] [104]:

σ±l =
1

2
(σxl ± iσyl ) (A.1)

σxl = σ+
l + σ−l σyl =

1

i
(σ+

l − σ−l ) σzl = 2σ+
l σ
−
l − 1 (A.2)

cl = exp(iπ
l−1∑
j=1

σ+
j σ
−
j )σ−l (A.3)

c†l = exp(iπ
l−1∑
j=1

σ+
j σ
−
j )σ+

l (A.4)

(A.5)

The Hamiltonian is quadratic with the new cl Fermion operators, expect the last term

in the case of periodic boundary conditions.

H = −
L∑
l=1

hl(c
†
l cl−1/2)−1 + γ

2

L−1∑
l=1

Jl(c
†
l−cl)(c†l+1+cl+1)−1− γ

2

L−1∑
l=1

Jl(c
†
l+cl)(cl+1−c†l+1)

+ JLw

[
1 + γ

2
(c†L − cL)(c†1 + c1) +

1− γ
2

(c†L + cL)(c†1 − c1)

]
e−iπ

∑L
j=1 c

†
jcj (A.6)

If one uses periodic boundary conditions, the Hamiltonian is not quadratic in the cl, c
†
l

operators. However the Hamiltonian commutes with the P = e−iπ
∑L
j=1 c

†
jcj parity operator.

The P operator has two eigenvalues: λP = ±1. When periodic boundary conditions

are used the Hamiltonian can solved separately in the odd (λP = −1), and the even
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(λP = +1) sub spaces. After restricting to these (invariant) subspaces, the Hamiltonian

becomes quadratic in the cl, c
†
l operators. In the the invariant subspaces:

HλP = −
L∑
l=1

hl(c
†
l cl−1/2)−1 + γ

2

L−1∑
j=1

Jl(c
†
l−cl)(c†l+1+cl+1)−1− γ

2

L−1∑
j=1

Jl(c
†
l+cl)(cl+1−c†l+1)

+ wJLλP

[
1 + γ

2
(c†L − cL)(c†1 + c1)− 1− γ

2
(c†L + cL)(c†1 − c1)

]
. (A.7)

A.2 Solution of a general quadratic operator

Consider a quadratic Hamiltonian [105] :

H =
L∑

i,j=1

Ai,jc
†
icj +

1

2

N∑
i,j=1

Bi,j(c
†
ic
†
j + h.c.) . (A.8)

In the case of the XY chain Ai,i = −hi, Ai+1,i = Ai,i+1 = −1
2
Ji, Bi+1,i = −Bi,i+1 = 1

2
γJl

With the Bogoliubov transformation:

ηk =
N∑
i

(
1

2
(Φk(i) + Ψk(i))ci +

1

2
(Φk(i)−Ψk(i))c

†
i

)
, (A.9)

the Hamiltonian becomes diagonal:

H =
N∑
k=1

Λk(η
†
kηk − 1/2) . (A.10)

The ηk and η†k operators fulfill the canonical anti-commutation relations:

[
ηk, η

†
q

]
+

= δk,q

[ηk, ηq]+ =
[
η†k, η

†
q

]
+

= 0 (A.11)

The excitation energies and the Ψk(i) Φk(i) coefficients are solutions of the following

two equations:

(A−B)Φk = ΛkΨk (A.12)

(A+B)Ψk = ΛkΦk (A.13)

By multiplying (A.12) with A+B, and (A.13) with A−B, one gets an eigenvalue problem:

(A+B)(A−B)Φk = Λ2
kΦk (A.14)

(A−B)(A+B)Ψk = Λ2
kΨk . (A.15)

Usually the above two equations are used to calculate Ψk(i), Φk(i) and Λk. The ground
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state is the vacuum of the new fermion operators (η and η†):

ηk|GS〉 = 0 . (A.16)

To calculate the expectation value of any operators in the ground state one usually express

the operator using the η and ηk operators, and use the canonical anti-commutators and

equation (A.16).

A.3 Solution of the homogeneous Ising chain

In this section the calculation of the elementary excitations and eigenenergies of the Ising

chain are included. It is also included how the ground states of homogeneous Ising models

with different transverse fields can be expressed with each other. This later relationship is

useful in the investigation of the quenches in the homogeneous system. The Hamiltonian

after the Jordan-Wigner transformation is:

H = −h
L∑
i=1

c†ici −
1

2

L∑
i=1

(c†i − ci)(c†i+1 + ci+1) , (A.17)

where hi = h and Ji = 1. It is worth to introduce the Fourier transformation of the ci, c
†
i

fermion operators:

cq =
1√
L

N∑
j=1

exp(iqj)cj (A.18)

c†q =
1√
L

N∑
j=1

exp(iqj)c†j , (A.19)

where q = 2πm/L, m = 0 . . . L− 1. The cq c
†
q operators are fermion operators ({cq, ck} =

{c†q, c†k} = 0, {cq, c†k} = δq,k). With these operators the Hamiltonian takes the following

form:

H = −
∑
q

(h+ cos q)c†qcq −
1

2

∑
q

(e−iqc†qc
†
−q − eiqcqc−q) . (A.20)

One introduces the ηq and η†q fermion operators with the Bogoliubov transformation:

ηq = uqcq + ivqc
†
−q (A.21)

η†−q = ivqcq + uqc
†
−q . (A.22)

Where

uh(p) =

√
εh(p) + h− cos p

2εh(p)

vh(p) =

√
εh(p)− (h− cos p)

2εh(p)
, (A.23)
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and the εh(p) excitation energy is:

εh(p) =
√

(h− cos p)2 + sin2 p . (A.24)

The ηq and η†q operators are fermion operators with the usual anti-commutator rules.

{ηq, ηk} = {η†q, η†k} = 0, {ηq, η†k} = δq,k) The diagonal form of the Hamiltonian is:

H =
∑
q

εh(q)η
†
qηq . (A.25)

Ground states with different transverse fields

Let |Ψ0〉 is the ground state of (A.17) with h = h0 and |0〉 is the ground state with h = h1.

The η operators correspond to the h0 magnetic field. The ground state corresponding to

h1 transverse field van be expressed as:

|Ψ0〉 =
∏
p

[
Up + iVpη

†
pη
†
−p

]
|0〉 , (A.26)

where

Up = uh0(p)uh(p) + vh0(p)vh(p) (A.27)

Vp = uh0(p)vh(p)− vh0(p)uh(p) . (A.28)

A.4 Time evolution of the cl, c
†
l operators

In the following non-equilibrium calculations, the α parameter will be time-dependent in

the Hamiltonian:

Hodd = α(t)
L∑
l=1

hl(c
†
l cl−1/2)+

1 + γ

2

L−1∑
j=1

Jl(c
†
l−cl)(c†l+1+cl+1)+

1− γ
2

L−1∑
j=1

Jl(c
†
l+cl)(cl+1−c†l+1)

(A.29)

We will use the Heisenberg picture to calculate the time evolution. Creation-annihilation

operators in the Heisenberg picture:

cHl (t) = Texp

[∫ t

t0

iH(t′)dt′
]
cTexp

[∫ t

t0

−iH(t′)dt′
]

(A.30)

cH†l (t) = Texp

[∫ t

t0

iH(t′)dt′
]
c†Texp

[∫ t

t0

−iH(t′)dt′
]

(A.31)

Here Texp denotes the time ordered exponential function. The Hamiltonian is quadratic

in the creation-annihilation operators, as a consequence the time evolution only mixes this
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2L operator, higher order operator products does not occur:

cHl (t) =
L∑
k=1

gk(t)ck + hk(t)c
†
k

cH†l (t) =
L∑
k=1

g∗k(t)c
†
k + h∗k(t)ck (A.32)

At the beginning of the time evolution, the system is in the ground state of the initial

Hamiltonian. We will use two different types of α(t) functions. For quenches α(t) is step

function of the time:

α(t) =

{
h0 if t < 0

h if t > 0
(A.33)

For quenches one solves the after quench Hamiltonian, and expresses the cl(t), c
†
l (t) oper-

ators using the well-known time evolution of the ηk, η
†
k operators.

H(t > 0) =
∑
k

εkη
†
kηk (A.34)

ηk(t) = e−iεktηk η†k(t) = e−iεktη†k (A.35)

cl(t) =
∑
k

{
1

2
(Ψk(l) + Φk(l))ηke

−iεkt +
1

2
(Φk(l)−Ψk(l))η

†
ke
iεkt

}
(A.36)

c†l (t) =
∑
k

{
1

2
(Ψk(l) + Φk(l))η

†
ke
iεkt +

1

2
(Φk(l)−Ψk(l))ηke

−iεkt
}

(A.37)

When investigating a Kibble-Zurek process, we will consider a smooth, continuous α(t)

function. In this case, using the Heisenberg equation of motion and the canonical anti

commutators one derives a set of differential equations for the gm,l and hm,l coefficients in

(A.32).

ġm,l(t) = −iα(t)hmgm,l(t)− iJmgm+1,l(t)− iJmgm+1,l(t)− γJm−1hm−1,l(t) + γJmhm+1,l(t)

ġm,l(t) = −iα(t)hmhm,l(t)− iJmhm+1,l(t)− iJmhm+1,l(t)− γJm−1gm−1,l(t) + γJmgm+1,l(t)

We will use the above equations to calculate the time evolution in the Harper model. In

the Harper model γ = 0, the dynamics preserve the particle number, and the creation

operators don’t mix with the annihilation operators.

In this limit the hk,l(t) coefficients are zero, and the time evolution of the system is driven

by the following equation:

i
dφ̃q,n

dt
=

1

2
φ̃q,n−1 + α(t)hnφ̃q,n +

1

2
φ̃q,n+1 , (A.38)

where the notation φ̃k,n(t) = gk,l(t) was introduced, because this notation has been used

in our article, and in the main text.
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A.5 Majorana fermions

When investigating quench dynamics, it is convenient to introduce the so-called Majoranna

fermions:

ǎ2l−1 = cl + c†l (A.39)

ǎ2l = i(cl − c†l ) . (A.40)

They are simply related to the ηk and η†k operators:

ǎ2l−1 =
L∑
k=1

Φk(l)(η
†
k + ηk) ,

ǎ2l = −ı
L∑
k=1

Ψk(l)(η
†
k − ηk) . (A.41)

Inserting η†k(t) = eıtεkη†k and ηk(t) = e−ıtεkηk into (A.41) one obtains

ǎm(t) =
2L∑
n=1

Pm,n(t)ǎn , (A.42)

with

P2l−1,2k−1 =
∑
q

cos(εqt)Φq(l)Φq(k),

P2l−1,2k = −
∑
q

sin(εqt)Φq(l)Ψq(k) ,

P2l,2k−1 =
∑
q

sin(εqt)Φq(k)Ψq(l) ,

P2l,2k =
∑
q

cos(εqt)Ψq(l)Ψq(k) . (A.43)

The two-operator expectation values are given as:

〈ǎm(t)ǎn(t)〉 =
∑
k1,k2

Pm,k1(t)Pn,k2(t)〈ǎk1 ǎk2〉 . (A.44)



Appendix B

Quantities of interest

B.1 Magnetization

B.1.1 Definition

Another quantity we consider is the local magnetization, ml(t), at a position l, of an open

chain. Following Yang [167] this is defined for large L as the off-diagonal matrix-element:

ml (t) =
〈

Ψ
(0)
0 |σxl (t)|Ψ(0)

1

〉
, (B.1)

where
∣∣∣Ψ(0)

1

〉
is the first excited state of the initial Hamiltonian.

B.1.2 Calculation method

To calculate the local magnetization in (B.1), we need to first calculate the time dependence

of the spin operator σxl (t) at site l in the Heisenberg picture. The spin operators are then

expressed in terms of the Majoranna operators as:

σxl = ıl−1

2l−1∏
j=1

ǎj , (B.2)

and the local magnetization in (B.1) is then given as the expectation value of a product of

fermion operators with respect to the ground state:

ml(t) = (ı)l−1〈Ψ(0)
0 |

2l−1∏
j=1

ǎj(t)η1|Ψ(0)
0 〉 , (B.3)

where we have used: |Ψ(0)
1 〉 = η1|Ψ(0)

0 〉. The expression in (B.3) - according to Wick’s

theorem - can be expressed as a sum of products of two-operator expectation values. This

can be written in a compact form of a Pfaffian, which in turn can be evaluated as the

square root of the determinant of an antisymmetric matrix:

99



100 B. APPENDIX. QUANTITIES OF INTEREST

ml(t) = (−ı)l−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈ǎ1(t)ǎ2(t)〉 〈ǎ1(t)ǎ3(t)〉 · · · 〈ǎ1(t)ǎ2l−1(t1)〉 〈ǎ1(t)η1〉
〈ǎ2(t)ǎ3(t)〉 · · · 〈ǎ2(t)ǎ2l−1(t)〉 〈ǎ2(t)η1〉

. . .
...

〈ǎ2l−2(t)ǎ2l−1(t)〉 〈ǎ2l−2(t)η1〉
〈ǎ2l−1(t)η1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
= ± [detCij]

1/2 , (B.4)

where Cij is the antisymmetric matrix Cij = −Cji, with the elements of the Pfaffian

(B.4) above the diagonal. (Here and in the following we use the short-hand notation:

〈. . . 〉 = 〈Ψ(0)
0 | . . . |Ψ(0)

0 〉.)

Below we describe how the time evolution of the spin operator σxl follows from the time

dependence of the Majorana fermion operators. The equilibrium correlations in the initial

state with a transverse field h0 are:

〈ǎ2m−1ǎ2n−1〉 = 〈ǎ2mǎ2n〉 = δm,n,

〈ǎ2m−1ǎ2n〉 = −〈ǎ2mǎ2n−1〉 = ıG(0)
n,m , (B.5)

where the static correlation matrix G
(0)
m,n is given as:

G(0)
m,n = −

∑
q

Ψ(0)
q (m)Φ(0)

q (n) , (B.6)

where Ψ
(0)
q (m) and Φ

(0)
q (n) are the components of the eigenvectors in (A.9), calculated for

the initial Hamiltonian. Then (A.44) can be written in the form:

〈ǎm(t)ǎn(t)〉 = δm,n + ıΓm,n(t) , (B.7)

were

Γ2l−1,2m−1 =
∑
k1,k2

[
G

(0)
k2,k1

P2l−1,2k1−1P2m−1,2k2 −G(0)
k1,k2

P2l−1,2k1P2m−1,2k2−1

]
Γ2l−1,2m =

∑
k1,k2

[
G

(0)
k2,k1

P2l−1,2k1−1P2m,2k2 −G(0)
k1,k2

P2l−1,2k1P2m,2k2−1

]
Γ2l,2m−1 = −

∑
k1,k2

[
G

(0)
k2,k1

P2l,2k2P2m−1,2k1−1 −G(0)
k1,k2

P2l,2k2−1P2m−1,2k1

]
Γ2l,2m =

∑
k1,k2

[
G

(0)
k2,k1

P2l,2k1−1P2m,2k2 −G(0)
k1,k2

P2l,2k1P2m,2k2−1

]
. (B.8)

In (B.4) there are also the contractions:

Πm = 〈Ψ(0)
0 |ǎm(t)η1|Ψ(0)

0 〉
=

∑
n

Pm,n〈Ψ(0)
0 |ǎnη1|Ψ(0)

0 〉 (B.9)
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where

〈Ψ(0)
0 |ǎ2l−1η1|Ψ(0)

0 〉 = Φ
(0)
1 (l)

〈Ψ(0)
0 |ǎ2lη1|Ψ(0)

0 〉 = ıΨ
(0)
1 (l) . (B.10)

B.2 Propagator

Let us denote the all spin down state as |0〉.

|0〉 = | ↓〉 ⊗ | ↓〉 ⊗ · · · ⊗ | ↓〉 (B.11)

Where | ↓〉 is an eigenvector of σz: σz| ↓〉 = −| ↓〉. This is the vacuum of the cl, c
†
l

operators:

cl|0〉 = 0 for all l. (B.12)

The definition propagator is:

G(k, l, t) = 〈0|ck(t)c†l (0)|0〉 . (B.13)

|G(k, l, t)|2 is the probability of creating a quasi-particle at site l at time 0, and detecting

it at site k at time t. We will use this quantity to interpret the quench dynamics of

the magnetization and the entanglement entropy. If the dynamics conserve the particle

number, G(k, l, t) equals the wave packet, starting from site l at t = 0. To see the previous

statement we first observe that any particle number conserving Hamiltonian destroys the

vacuum, and consequently the dynamics conserves the vacuum state:

exp(−itH)|0〉 =
[
1 + iHt+ (iHt)2/2 + . . .

]
|0〉 = |0〉 (B.14)

Adding a constant factor to the Hamiltonian causes a time dependent phase factor to the

vacuum, which is unimportant.

G(k, l, t) = 〈0|ck(t)c†l (0)|0〉 = 〈0|exp(iHt)ck(0)exp(−iHt)c†l (0)|0〉 =

= 〈0|ck(0)exp(−iHt)c†l (0)|0〉 (B.15)

Here c†l (0)|0〉 is a localized state at site l, exp(−iHt)c†l (0)|0〉 is the wave packet, in time t

which started from site l at t = 0. The 〈0|ck(0) vector is the (bra) basis vector, localized

at site k. In consequence G(k, l, t) is the wave packet starting form site l at t = 0, in time

t, in the space representation.

We will refer to the G(k, l, t) propagator simply as ”wave packet”, even if the considered

Hamiltonian is not particle number conserving.
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B.3 Entanglement entropy

Quantum entanglement is one of the most interesting aspects of quantum mechanics, it was

first written down by Schrödinger [190]. Entanglement was an actively studied field already

in the early times of the quantum theory both in theory [191] [192] and in experiments

citehidden-test-1, [194], [195], [197], [198], [199]. Today investigations about entanglement

are motivated partially by applications such DMRG [206] [207] and quantum-information

theory [201] [202] [203] [205], and partially by the need of better understood of basics

concepts [208] [209]

In Section B.3.1 I introduce the Schmidt decomposition. In Section B.3.2 I present a

detailed definition of entanglement entropy using the Schmidt decomposition. In Section

B.3.3 some properties of the entanglement entropy are listed. In Section ?? the calculation

method presented.

B.3.1 Schmidt decomposition

With the singular value decomposition the [B]i,j = bi,j matrix can be written as the product

of two unitary matrices (U and V ) and a positive semi-definite matrix (Σ):

B = UΣV T (B.16)

Where the Σ matrix is semidiagonal, it has non-zero elements only in its main diagonal,

but Σ can be a non-square matrix.

With components:

bi,j =
∑
k

ui,kσkvj,k (B.17)

A general vector v =
∑

i,j bi,j|i〉A ⊗ |j〉B of the tensor product space can be written in the

following form with the singular value decomposition of the bi,j matrix:

v =
∑
i,j

∑
k

ui,kσkvj,k|i〉A ⊗ |j〉B (B.18)

Defining the vectors:

uk =
∑
i

ui,k|i〉A

vk =
∑
j

vjk|j〉B (B.19)

one gets:

v =
∑
k

σkuk ⊗ vk
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which is the Schmidt decomposition of the v vector. Note, that the uk vectors and the vk

vectors are orthogonal sets:

〈uk|uq〉 = δk,q

〈vk|vq〉 = δk,q (B.20)

B.3.2 Definition of entanglement entropy

The investigated system is in a pure state, denoted by |Ψ〉. One can equivalently use the

density matrix ρ = |Ψ〉〈Ψ| to describe the system. We divide the system to two parts

denoted by A and B.

The reduced density matrices for A and B:

ρA = TrBρ

ρB = TrAρ (B.21)

The entanglement (von Naumann) entropy is defined as:

SA = TrAρA log ρA (B.22)

SB = TrBρB log ρB

SA = SB

The last equation is non-trivial. To see it we recall the Schmidt decomposition of quantum

states. We will see that not only the two definitions of the entanglement entropy (SA and

SB) equal, but the two reduced density matrix (ρA and ρB) has the same structure. (They

are defined on different Hilbert spaces (HA and HB), usually with different dimensions.

The non-zero eigenvalues of ρA, and ρB are the same.) A general vector in the HA ⊗HB

Hilbert space is:

v =
∑
i,j

bi,j|i〉A ⊗ |j〉B (B.23)

With the Schmidt decomposition it can written in the next form:

v =
∑
k

σkuk ⊗ vk (B.24)

ρA = TrB|v〉〈v| =
∑
nB

∑
k

σk|vk〉〈nB|uk〉B
∑
q

σ∗q〈uq|nB〉〈vq| =

=
∑
k,q

σkσ
∗
qδk,q|vk〉〈vq| =

=
∑
k

|σk|2|vk〉〈vk| (B.25)
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With similar calculation one gets:

ρB =
∑
k

|σk|2|uk〉〈uk| (B.26)

If we restrict ρA and ρB to their non-zero subspaces, we get the same operator, in con-

sequently SA = SB.

B.3.3 Properties of entanglement entropy

In this short section I summarize the basic properties of entanglement entropy, and its con-

nection with other entanglement measures, and the correlation functions. First I recapit-

ulate the basic results about the connection with the operational entanglement measures.

Than I recapitulate that the entanglement entropy can be considered as a bound for any

normalized correlation function in a bipartite system.

The basic idea about comparing operationally entanglement in bipartite systems is that

LOCC operations cannot create quantum correlations [189]. If it is possible (with prob-

ability one) to convert a ρ1 state to an other one (ρ2) using only LOCC operations, ρ1 is

more entangled then ρ2. There is a maximally entangled state, in a finite d dimensional

system it is:

|ψ+
d 〉 =

|0, 0〉+ |1, 1〉+ · · ·+ |d− 1, d− 1〉√
d

. (B.27)

Maximally entangled here means, that |ψ+
d 〉 can be converted to any other state using

LOCC operations. Let’s denote the density matrix corresponding to |ψ+
d 〉 with Φ(K)

where K is the dimension of the Hilbert space.

One can investigate how difficult is it to convert the maximally entangled state Φ(K) to the

investigated state ρ using LOCC operations. It turned out that no meaningful definition

is possible if one requires exact conversion of Φ(K) to ρ. One has to consider copies of the

maximally entangled state and also the investigated state, and requires only asymptotically

exact transformation. This measure is called entanglement cost and defined as [189] [210]:

EC(ρ) = lim
ε→0

sup
n→∞

{m
n

:
m

n
∈ Cε

}
(B.28)

where

Cε =
{m
n

: there exists an LOCC Λ such that ||ρ⊗n − Λ([Φ(dim(ρ))]⊗m)|| < ε
}
. (B.29)

Another operational measure can be the distillable entanglement which characterize how

many copies of the maximally entangled state can be extracted from many copies of the

investigated state ρ. Formally the distillable entanglement is defined as:

Ed(ρ) = lim
ε→0

sup
n→∞

{m
n

:
m

n
∈ Dε

}
(B.30)
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where

Dε =
{m
n

: there exists an LOCC Λ such that ||Λ(ρ⊗n)− [Φ(dim(ρ))]⊗m|| < ε
}

(B.31)

It can be shown that if ρ is a reduced density matrix of a bipartite pure state, then

Ed(ρ) = Ec(ρ) = S(ρ). So either the distillable entanglement or the entanglement cost can

be considered as an operational definition of the entanglement entropy.

Let us consider the mutual information I(A : B) of a bipartite system:

I(A : B) = S(ρA) + S(ρB)− S(ρ) . (B.32)

Here ρ is the density matrix of the system, ρA and ρB are the reduced density matrices.

Let OA (OA) be a hermitian operator acting on subsystem A (B). The correlation function

is usually defined as: C(A,B) = 〈OAOB〉 − 〈OA〉〈OB〉. It can be proven [109] that the

normalized correlation function can be overestimated by the mutual information:

I(A : B) ≥ 1

2

C(A,B)

‖ OA ‖2
∞‖ OB ‖2

∞
. (B.33)

If ρ is a pure state, as it is everywhere in this dissertation, then S(ρ) = 0 an I(A : B) =

2SA = 2SB = 2Sentanglement. Hence in a closed system any correlations can be overestimated

by the entanglement entropy:

Sentanglement ≥
1

4

C(A,B)

‖ OA ‖2
∞‖ OB ‖2

∞
. (B.34)

For example: The entanglement entropy remains small, O(1) after a quench which ends in

the localised phase of the Harper model (See Chapte 6.2.) than all normalized correlation

functions has to be O(1).

In the axiomatic definition of the measures of the bipartite entanglement one of the

axioms states, that any measure should give the entanglement entropy on pure states [189]

[212] [213].

B.3.4 Calculation of entanglement entropy in spin chains

In this work we consider a simple geometry, where the subsystem A is the continuous block

of the first l spin, and the subsystem B is the continuous block of the other L − l spins.

We follow [122] and [211] in the main ideas.

Since the simple time evolution eq. (A.37) Wick’s theorem holds for the corrections in any

time. For example the expectation value of the four operator product 〈c†n(t)c†m(t)ck(t)cl(t)〉
can be evaluated as:

〈c†n(t)c†m(t)ck(t)cl(t)〉 = 〈c†n(t)cl(t)〉〈c†m(t)ck(t)〉
− 〈c†n(t)ck(t)〉〈c†m(t)cl(t)〉

+ 〈cn(t)cm(t)〉〈c†k(t)c†l (t)〉 , (B.35)
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and in a similar way, the expectation value of any string of creation/annihilation operators

equals the sum of the non-zero parings. Since Wick theorem holds for the correlations,

the reduced density matrix ρA is the exponential of an appropriate Hermitian operator H,

and H is quadratic in the annihilation and creation operators. (In other words, ρA is a

fermionic Gaussian state.)

ρA =
exp(H)

Trexp(H)
(B.36)

H =
l∑

i,j=1

Ãijc
†
icj +

1

2

l∑
i,j=1

B̃ij(c
†
ic
†
j − h.c.) . (B.37)

Now we recall how to compute the von Neumann entropy of a fermionic Gaussian state.

We diagonalize this Hamiltonian H by means of a Bogoliubov transformation

ξk =
l∑

i=1

(
1

2
(φk(i) + ψk(i))ci +

1

2
(φk(i)− ψk(i)c†i )

)
. (B.38)

Then, the Hamiltonian reads

H =
l∑

k=1

εkξ
†
kξk , (B.39)

where ξ†k and ξk are creation and annihilation operators of some fermionic modes. The

density matrix ρA can simply be expressed as

ρA =
l∏

k=1

ρ̃k =
l∏

k=1

eεkξ
†
kξk

1 + e−εk
where ρ̃k =

eεkξ
†
kξk

1 + e−εk
. (B.40)

ρ̃k =
1

1 + e−εk

(
e−εk 0

0 1

)
=

(
1+νk

2
0

0 1−νk
2

)
, (B.41)

where νk = − tanh(εk/2). Thus, the entanglement entropy of the density matrix ρL is

merely the sum of binary entropies

S(l) =
l∑

k=1

S(ρ̃k) =
l∑

k=1

H

(
1 + νk

2

)
. (B.42)

where H(p) ≡ −p log p− (1− p) log(1− p) is the binary Shannon entropy.

In order to determine the parameters of the reduced density matrix (the spectra νk and

the vectors Φ̃k(i), Ψ̃k(i)) ), let us consider the dynamical correlation matrix,

Cm,n(t) = 〈Ψ|ǎm(t)ǎn(t)|Ψ〉 . (B.43)

Notice that matrix C can be computed using the initial correlations and the Pm,l(t) coef-

ficients as:

Cm,n(t) =
∑
k1,k2

Pm,k1(t)Pm,k2(t)〈ǎk1(t = 0)ǎk2(t = 0)〉 (B.44)
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Let us define T ≡ C(1 : 2l, 1 : 2l) as the 2l× 2l upper-left sub-matrix of the correlation

matrix C. If we transform the ǎ Majorana operators accordingly to (B.38):

b̌2n−1 =
l∑

m=1

φ̃m(n)ǎ2m−1 = ξ†n + ξn (B.45)

b̌2n =
l∑

m=1

ψ̃m(n)ǎ2m = −i(ξ†n − ξn) . (B.46)

The Bmn = 〈b̌mb̌n〉 correlation matrix is:

B =



1 −iν1

iν1 1

1 −iν2

iν2 1
. . .

1 −iνl
iνl 1


(B.47)

The B matrix is connected to the C matrix by an unitary basis transformation, so they

have the same spectra. As a consequence, the spectra of the C − 1 matrix is built up from

the νk and the −νk numbers (k = 1 . . . l).

Numerical recipe to calculate the entanglement entropy: To calculate the entanglement

entropy one has to calculate the C correlation matrix, then solve the eigenvalue problem

of C − 1. (Here 1 stands for the 2lx2l unit matrix. ) The eigenvalues of C − 1 are ±νl.
One gets the entanglement from equation (B.42) entropy as

S =
l∑

r=1

[
1 + νl

2
log

(
1 + νl

2

)
+

1− νl
2

log

(
1− νl

2

)]
. (B.48)

Renyi entropies

The Renyi entropies are generalizations of the entanglement entropy, and defined as:

S(α) =
1

1− α log Trρα . (B.49)

One gets the entanglement entropy in the α → 1 limit. The Renyi entropies can be

calculated with the methods described above only equation (B.42) has to be replaced with:

S
(α)
A =

1

1− α
l∑

j=1

ln

[(
1 + νj

2

)p
+

(
1− νj

2

)p]
. (B.50)



Bibliography

[1] M. Greiner, O. Mandel, T. W. Hänsch, I. Bloch Nature 419 51 (2002)
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[96] L. Turban, F. Iglói, B. Berche Phys. Rev. B 49 12695 (1994)
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[101] F. Iglói, R. Juhász, Z. Zimborás Europhys. Lett. 79 37001 (2007)

[102] M. Wilkinson and J. Austin, Phys. Rev. B 50, 1420 (1994)
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