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Leindler and F. Móricz.
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Chapter 1

Preliminaries

1.1 Introduction

The subject of this dissertation is a generalization of Bernstein’s inequality
[11].

The complex Bernstein’s inequality is (see [19, Corollary 1.3 p. 98] or [16,
Corollary 5.1.6 p. 233] or [41, Theorem 1.2.3 p. 531])∣∣p′n(z0)

∣∣ ≤ n||pn||D , (1.1)

where pn is an arbitrary complex polynomial of degree n, ||pn||D denotes its
supremum norm over the unit disk D = {z ∈ C : |z| ≤ 1} and |z0| = 1.

With standard substitutions one obtains the following inequality on I =
[−1, 1] ∣∣p′n(t)

∣∣ ≤ n
1√

1 − t2
||pn||I (1.2)

where pn is an algebraic polynomial of degree n, ||pn||I is the supremum norm
of pn over I = [−1, 1] and t ∈ I (see [19, Corollary 1.2 p. 98] or [16, Theorem
5.1.7 p. 233] or [41, Theorem 1.2.5 p. 532] or [45, formula (158) p. 128]).

This inequality has recently been extended to the following inequality
by Baran [5] and Totik [56]. Let K ⊂ R be a compact set and νK be
its equilibrium measure (see [51] or [52] or the following section). In the
interior of K, Int(K), the measure νK is absolutely continuous with respect
to Lebesgue measure and write ωK(t)dt = dνK(t). Then∣∣p′n(t)

∣∣ ≤ nπωK(t)||pn||K (1.3)

where pn is an algebraic polynomial with degree n and ||pn||K is the supre-
mum norm of pn over K and t ∈ Int(K).
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There is a vast literature for various generalizations of Bernstein’s and
Markov’s inequality. It is more or less hopeless to find all the papers and
articles which is related to these inequalities. Some surveys have appeared
recently, see e.g. [54] which details the different approaches to these inequali-
ties and also their history. Our aim here is to find the analogue of Bernstein’s
inequality for sets bounded by Jordan curves. This dissertation is based on
the papers [42], [44] and [43]. The main result of this work is Theorem 9. To
prove it we shall have to use several tools and results from potential theory,
and to generalize Hilbert’s lemniscate theorem.

The basic idea is to exhaust compact sets with lemniscates. See Hilbert’s
lemniscate theorem, Theorem 6. This exhaustion is useful in potential theo-
retic calculations, see Lemma 4 and also useful in supremum norm estimates.
Recently, such ”exhaustion” has appeared in different forms and different sit-
uations. The ”inscribed ellipse method” is one of such examples. See for ex-
ample Sarantopoulos’ article [53] or the more recent Milev-Révész paper [40].
Another example is the ”Padova” points by Len Bos and Shayne Waldron
which is unpublished yet. And, from our point of view, the most important
example is Totik’s paper [56].

1.2 Notions and tools from potential theory

We extensively use potential theory. For a detailed introduction and also as
a reference book, we refer to Ransford’s [51] or Saff-Totik’s [52] book.

Let us briefly recall some important notions and theorems. On the com-
plex plane, the logarithmic kernel − log |x − y| plays an important role
which also has an interesting physical interpretation: if we have one elec-
tron at x and we want to move another electron from y1 to y2, then we do
log |x − y1| − log |x − y2| work.

Let µ be a positive Borel measure on C with compact support and with
total mass 1. We call the following convolution the potential of µ

Uµ(x) :=

∫
log

1

|x − y|dµ(y)

where this function may attain +∞ as well. Actually for such µ’s, the set
where the potential attains plus infinity is not large. Uµ(x) is a superhar-
monic function and is harmonic outside supp µ. We define the logarithmic
energy of the measure µ with the double integral

I(µ) :=

∫ ∫
log

1

|x − y|dµ(y)dµ(x)
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Again, this quantity may be +∞. For a compact set K let

M(K) := {µ : µ Borel measure, µ ≥ 0,

supp µ is compact, ||µ|| = 1, supp µ ⊂ K},

which is the set of probabilty measures supported on K. We define the energy
of the compact set K as

I(K) := inf{I(µ) : µ ∈ M(K)}.

With it, we set
cap(K) := exp

( − I(K)
)

which is called the logarithmic capacity of K. If I(K) = ∞, then K is of/has
zero capacity and is ”small” in potential theory. For example, a compact set
consisting of only countably many points is of zero capacity. We say that a
propetry holds quasi-everywhere (q.e.) if it holds everywhere except for a
zero capacity set.

The following theorem (see [51, Theorem 3.3.2 p. 58 and Theorem 3.7.6
p. 75] or [52, Theorem I.1.3 (b) p. 27 ]) is based on a simple compactness
argument. For every compact set K with positive capacity there exists a
unique measure νK with minimal energy:

I(νK) = I(K) = inf{I(µ) : µ ∈ M(K)}

and supp νK ⊂ ∂eK where ∂eK is the exterior boundary of K, that is, the
boundary of the unbounded component of C \ K. Furthermore, Frostman’s
theorem describes the potential of νK :

a) UνK (x) ≤ I(K) for every x ∈ C

b) UνK (x) = I(K) for quasi every x ∈ K.

We call this unique measure νK the equilibrium measure of K. We also
use the notion of Green’s function. Let K be a compact set with positive
capacity. Then Green’s function of the complement of K with pole at infinity
is defined as

gK(z) = g(K, z) := I(K) − U νK (z).

Green’s function has the properties

• gK(z) ≥ 0,

• gK(z) is harmonic outside K,
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• gK(z) is subharmonic on C,

• gK(z) has logarithmic growth near infinity, more precisely, lim|z|→∞(gK(z)−
log |z|) = I(K)

• gK(z) is zero on K quasi everywhere and everywhere on Int(K).

Equivalently, these properties can be used as the defining properties of Green’s
function.
Examples.

1. K = D = {z ∈ C : |z| ≤ 1}. Then Green’s function is gD(z) = log |z|
and cap(D) = 1.

2. K = [−1, 1]. Then Green’s function is g[−1,1](z) = log |z+
√

z2 − 1| and
cap([−1, 1]) = 1/4.

3. K = {z ∈ C : |r(z)| = 1} where r is a complex polynomial of degree m,
that is, K is a so called lemniscate. Then Green’s function is gK(z) =
1
m

log |r(z)| and cap(K) = a−1/m where a is the leading coefficient of r.

4. K = {z ∈ C : |r(z)| ≤ 1}, where, again, r is a complex polynomial of
degree m with leading coefficient a, then the same holds as in 3.

5. If K is a compact set such that C∞ \ K is connected, and f is a
conformal map from C∞ \ K onto C∞ \ K1 for some compact K1 and
f(∞) = ∞, then gK(z) = gK1

(
f(z)

)
.

The relation between Green’s function and equilibrium measure has a
”converse”: If K is a compact set such that ∂K is a union of finitely many
C1+δ smooth curves (δ > 0), then the equilibrium measure is absolutely
continuous with respect to arc length measure, furthermore,

dνK(z)

ds
=

1

2π

∂

∂nz
gK(z)

where ds denotes the arc-length measure on ∂K and ∂/∂nz denotes dif-
ferentation at z in the direction of the outer normal nz (see [52], p. 92.
Theorem II.1.5 and p. 211. Theorem IV.2.2) .

In some cases, the equilibrium measure is known explicitly, for example,
if K = D is the unit disk, then dνK = 1/2πds, where ds denotes the arc
length measure on the unit circle. If K = [−1, +1], then dνK = 1

π
√

1−t2
dt,

where dt is the Lebesgue measure. ν[−1,+1] is called the arcsine distribution.
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Chapter 2

Asymptotic Bernstein type
inequality on lemniscates

2.1 Notations, some remarks

Denote the unit disk by D, D = {z ∈ C : |z| ≤ 1}.
Definition 1. The set L ⊂ C is a lemniscate if for some complex polynomial
r, L = r−1[∂D], that is, z ∈ L ⇔ |r(z)| = 1. The set r−1[D] = {z ∈ C :
|r(z)| ≤ 1} is called the interior of the lemniscate L.

Note that the interior of a lemniscate is not the topological interior of the
lemniscate (which is actually {z ∈ C : |r(z)| < 1}).

A lemniscate is a system of finitely many closed Jordan curves. They
are not necessarily simple curves, so we distinguish their points. If z ∈ L =
r−1[∂D] is a point from the lemniscate L with r′(z) �= 0, then we say z is a
simple point (of the lemniscate L). In other words, z is not a critical point of
r. It is also equivalent to the fact that L is a simple curve near z0 (does not
cross itself). Moreover, if r′(z) �= 0, then L = r−1[∂D] is a smooth (actually,
analytic) curve near z.

In this chapter we assume that K is the interior of a lemniscate.
If ∂K is differentiable at z0 ∈ ∂K, then the normal vector (with norm

1) at z0 pointing outward is denoted by nz0. We will usually consider nz0 as
a vector and as a complex number simoultaneously. So ∂K near z0 can be
parametrized in the form z0 + inz0t + o(|t|) for small real values of t.

To generalize the classical Bernstein’s inequality (1.1), let us rephrase
it in a different way first. We can write Bernstein’s inequality for the disk
{z ∈ C : |z| ≤ ρ} (ρ > 0) with the simple substitution w = ρz, hence∣∣P ′

n(w)
∣∣ ≤ n

1

ρ
||Pn||
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where Pn is arbitrary complex polynomial of degree n, ||Pn|| is the supremum
norm of Pn over the disk {z ∈ C : |z| ≤ ρ} and |w| = ρ.

The Green’s function of the complement of the disk {z ∈ C : |z| ≤ ρ}
is g(z) = log |z/ρ| which follows immediately from the defining properties.
Its derivative at z0 (|z0| = ρ) with respect to the normal vector nz0 pointing
outward is

∂

∂nz0

g(z0) =
∂

∂nz0

log |z0/ρ| =
1

ρ
,

which implicitly appears on the right hand side of (1.1).
So the classical Bernstein’s inequality (1.1) for any disk {z ∈ C : |z| ≤ ρ}

can be written in the following form

|P ′
n(z0)| ≤ n||Pn|| ∂

∂nz0

g(z0) (|z0| = ρ).

Now we state

Theorem 2. Let K ⊂ C be the interior of a lemniscate of some polynomial
r, that is, K = r−1[D] and let z0 ∈ ∂K be fixed. Assume that z0 is a simple
point of ∂K. Denote the Green’s function of the unbounded component of
C∞ \ K by gK(z). Then, for every polynomial Pn with deg Pn = n we have

|P ′
n(z0)| ≤

(
1 + o(1)

) · n · ∂

∂nz0

gK(z0) · ||Pn||K , (2.1)

where the term o(1) is to be understood as n → ∞ and depends only on K
and z0 and is independent of Pn.

The result is sharp in the following two senses.

Theorem 3. i) For a given fixed n, the factor 1 + o(1) can be arbitrarily
large, if we choose the set K and the polynomial Pn appropriately.

ii) For every interior of a lemniscate K there exists a sequence of nonzero
polynomials {Pn} with degrees tending to infinity such that

∣∣P ′
n(z0)

∣∣ = n||Pn||K ∂

∂nz0

gK(z0)

where deg Pn = n, z0 ∈ ∂K and z0 is a simple point of ∂K.

In other words, the 1+o(1) factor cannot be left out if we choose the com-
pact set and the polynomial suitably, and the constant (the factor ∂

∂nz0
gK(z0)

on the right hand side) cannot be replaced by anything smaller. The proof
of this latter Theorem will be given at the end of this chapter.
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Brief outline of the proof (of Theorem 2) is as follows. First we prove the
statement when Pn is a polynomial of r, that is, there exists a polynomial
p such that Pn = p(r). In this case the Bernstein type inequality (2.1)
simply follows from the fact that gK(z) = 1

deg r
log |r(z)|. Then we prove the

inequality for polynomials that are not (necessarily) polynomials of r. This
will be achieved by summing up the Pn on different branches of r−1[∂D] so
that the sum will be a polynomial of r.

For sake of convenience, the notations may change, but this will be ex-
plicitly mentioned.

2.2 The proof of Theorem 2 when Pn is a

polynomial of r

In this section we prove the Bernstein type inequality (2.1) provided there
exists a polynomial p such that Pn = p(r). For simpler notation, we write
P for Pn, P = Pn. The degree of Pn = P is denoted by n and let Nr =
deg r, Np = deg p (Np = deg P/ deg r = n/Nr).

The following lemma will help us.

Lemma 4. Let K := r−1[D] = {z ∈ C : |r(z)| ≤ 1}. Denote the Green’s
function of the unbounded component of the complement of K by gK. If
z0 ∈ ∂K and r′(z0) �= 0, then

∂

∂nz0

gK(z0) =
1

Nr
|r′(z0)| . (2.2)

Proof. First, Green’s function of C∞ \ K is gK(w) = 1
Nr

log |r(w)| which
immediately follows from the defining properties of Green’s function. Second,
the following computation holds. If χ ∈ C, |χ| = 1 and f holomorphic, then
for the directional derivative ∂

∂χ
log |f(z)| of log |f(z)| we have

∂

∂χ
log |f(z)| = lim

t→0 t>0

log |f(z + t · χ)| − log |f(z)|
t

=

lim
t→0 t>0

Re
(
log f(z + t · χ)

) − Re
(
log f(z)

)
t

=

Re lim
t→0 t>0

log f(z + t · χ) − log f(z)

t · χ χ = Re
(f ′(z)

f(z)
· χ

)
.

(2.3)

Applying this with f = r, we obtain

∂

∂nz0

1

Nr
log |r(z0)| =

1

Nr
|r′(z0)| · Re

(arg r′(z0)

r(z0)
nz0

)
.
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Since r′(z0) �= 0, r behaves in a small neighbourhood of z0 like a R2 → R2

linear mapping which preserves angles. Denote the unit length tangent vector
to ∂K at z0 by vz0 ; the actual direction of vz0 is not important. Since nz0

is perpendicular to vz0 , that is, to ∂K at z0, r′(z0)nz0 is perpendicular to
r′(z0)vz0 , that is, to ∂D at r(z0). Furthermore, if t > 0 is small enough,
then z0 + tnz0 �∈ K, that is, |r(z0 + tnz0)| > 1. So, from the r(z0 + tnz0) =
r(z0)+r′(z0)·tnz0+o(|t|) representation it follows that r′(z0)·nz0 is an outward
normal vector to ∂D at r(z0). Therefore, the direction of r′(z0)nz0 coincides
with the direction of r(z0), and this means that

(
arg r′(z0)

)
nz0 = r(z0).

Substituting this into the previous formula, we obtain that Re (...) = 1, that
is

∂

∂nz0

1

Nr
log |r(z0)| =

1

Nr
|r′(z0)| .

Using P = p(r) with w = r(z) and w0 = r(z0) (z0 ∈ ∂K) we can write

|P ′(z0)| = |p′(r(z0)
) · r′(z0)| = |p′(w0)| · |r′(z0)| .

But p(w) already acts on the unit circle so Bernstein’s inequality (1.1) can
be applied. Clearly ||p(r(.))||K = ||p(.)||D holds, furthemore deg p = n/Nr,
so (2.2) yields

|P ′(z0)| ≤ (deg p) · ||p||D · |r′(z0)| = n · ||P ||K · ∂

∂nz0

gK(z0) ,

which is the inequality (2.1) without the (1 + o(1)) here.

2.3 The proof of Theorem 2 for arbitrary poly-

nomials

We will use the already introduced notations: deg P = n, deg r = Nr, r(z) =
w, K = r−1[D].

Let z(0) := z and z(1), . . . , z(Nr−1) denote those points (counting multi-
plicity) for which r(z(0)) = r(z(1)) = . . . = r(z(Nr−1)). From the assumption

in the theorem, we have z0 �= z
(j)
0 j = 1, 2, . . . , Nr.

Now we construct the weight that we will use when summing up P on
different branches of r−1[∂D] = ∂K.
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Lemma 5. For arbitrary ε > 0 and any fixed z0 ∈ ∂K where z0 is simple
point (r′(z0) �= 0) there exists a polynomial Q(.) = Q(z0; .) = Q(ε, z0; .)
satisfying the following properties

Q(z0) = 1 , (2.4)

Q(z
(1)
0 ) = Q′(z(1)

0 ) = . . . = Q(z
(Nr−1)
0 ) = Q′(z(Nr−1)

0 ) = 0 and (2.5)
Nr−1∑
j=0

|Q(z(j))| ≤ 1 + ε for all z ∈ ∂K . (2.6)

Proof. The proof consists of two steps. In the first step we construct a prelim-
inary polynomial, and in the second step we use this preliminary polynomial
to construct Q. Since z0 is fixed, we assume in this proof that r(z0) = 1.

First step.
Consider the following polynomial

q1(m, z0; z) = q1(z) :=
(1 + r(z)

2

)m

,

where m is a positive integer parameter which we will choose later. Since
r(z0) = 1, q1(z0) = 1. Moreover, |q1(z)| < 1 for all z ∈ K except for finitely

many points (namely, z
(0)
0 , z

(1)
0 , . . . , z

(Nr−1)
0 ).

Second step.
Let q2(z0; z) = q2(z) be the polynomial with the lowest possible degree

such that

q2(z0; z0) = 1, q2
′(z0; z0) = −1,

q2(z0, z
(1)
0 ) = q2

′(z0; z
(1)
0 ) = . . . = q2(z0, z

(Nr−1)
0 ) = q2

′(z0; z
(Nr−1)
0 ) = 0 .

The z0 is not a critical point of r, but the other z
(j)
0 s (j �= 0) may be, so

deg q2 ≤ 2 · Nr.
Let Q = Q(z0; .) be the following polynomial

Q(z) = Q(m, z0; z) := q1(m, z0; z) · q2(z0; z) ,

where m will be chosen later. Property (2.5) for Q immediately follows since

q2(z0; z
(j)
0 ) = q2

′(z0; z
(j)
0 ) = 0 at every z

(j)
0 , z

(j)
0 �= z0. Property (2.4) is also

true because of q1(z0) = q2(z0) = 1.
Now we verify (2.6) for all z ∈ ∂K. The family {|q2(z0; z)| : z0 ∈ ∂K}

is uniformly bounded if z ∈ K and let M < ∞ be an upper bound where
M is independent of ε and m. Moreover, the derivatives (with respect to
z) {|q2

′(z0; z)|} are bounded too and let M1 denote its upper bound. So
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the functions q2(z0; z) z0 ∈ ∂K are uniformly equicontinuous on K. That
is, there exists δ = δ(ε) which is independent of z0 and we can reindex the
solutions z(0), z(1), . . . , z(Nr) of the equation r(t) = r(z) so that if z ∈ ∂K and
w = r(z) then we have the following assertion:

if |w − 1| < δ, then
∣∣q2(z0; z

(j)
0 ) − q2(z0; z

(j))
∣∣ <

ε

Nr
for all j.

Using this and the definition of q2, we get the following estimate

Nr−1∑
j=0

|Q(z0; z
(j))| =

∣∣q1(m, z0; z) · q2(z0; z)
∣∣ +

Nr−1∑
j=1

|Q(z0; z
(j))| ≤

≤ 1(1 +
ε

Nr

) + (Nr − 1)
ε

Nr

= 1 + ε .

So if z is such that |w − 1| < δ (where w = r(z)), then
∑ |Q| ≤ 1 + ε. Note

that we used here that z0 �= z
(j)
0 , j = 1, 2, . . . , Nr.

On the other hand, let z ∈ ∂K be such that |w − 1| ≥ δ. Then let us
choose m so that∣∣q1(m, z0; z)

∣∣ <
ε

3NrM
for all z with |r(z) − 1| > δ, z ∈ K . (2.7)

The m depends on ε but is independent of z0. Then, in this case

Nr−1∑
j=0

|Q(z0; z
(j))| ≤

Nr−1∑
j=0

ε

3NrM
· 3M = ε < 1 + ε .

So (2.6) holds.

For an arbitrary polynomial P = Pn define

P ∗(z) :=
Nr−1∑
j=0

P (z(j)) · Q(z0; z
(j)) . (2.8)

This P ∗ is symmetric in z(0), z(1), . . . , z(Nr−1) so it is a polynomial in their ele-
mentary symmetric polynomials. Consider the equation r(t)−r(z) = 0 where
z is a parameter and t is the variable. The solutions are z(0), z(1), . . . , z(Nr−1),
hence an elementary symmetric polynomial is constant (± ratios of coeffi-
cients of r) if its degree is smaller than Nr and is a linear polynomial of r(z)
if its degree is Nr.
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This shows that P ∗ is a polynomial of r(z), P ∗ = p(r) where p is a suitable
polynomial.

Differentiate P ∗ at z0 :(
P ∗)′(z0) = P ′(z0) Q(z0; z0) + P (z0) Q′(z0; z0) +

+
Nr−1∑
j=1

(
P (z

(j)
0 )

)′
Q(z0; z

(j)
0 ) +

Nr−1∑
j=1

P (z
(j)
0 ) Q′(z0; z

(j)
0 ) .

For all j with z
(j)
0 �= z0 we have Q(z0; z

(j)
0 ) = Q′(z0; z

(j)
0 ) = 0. Since

Q(z0; z0) = 1 it follows that(
P ∗)′(z0) = P ′(z0) + P (z0)Q

′(z0; z0) .

We estimate the second term as follows∣∣P (z0)Q
′(z0; z0)

∣∣ ≤ ||P ||K · (m|r′(z0)| + M1

)
,

where M1 = M1(K) and also m = m(ε, K, z0) is independent of deg P = n
so this estimate can be written∣∣P (z0)Q

′(z0; z0)
∣∣ = o(1)n

∂

∂nz0

gK(z0) ||P ||K ,

where o(1) tends to zero as n tends to infinity and is independent of P (but
depends on m, z0, K).

On the other hand, the supremum norm of P ∗ on K can be estimated as
follows (using r(K) = D)

||P ∗(z)||K =
∣∣∣∣∣∣ Nr−1∑

j=0

P (z
(j)
0 ) · Q(z0; z

(j))
∣∣∣∣∣∣

D
≤

≤ ||P ||K sup
z∈K

Nr−1∑
j=0

|Q(z0; z
(j))| ≤ ||P ||K(1 + ε) .

The P ∗ is a polynomial of r, so we can use the Bernstein type inequality
of the previous section. We get∣∣∣∣(P ∗)′(z0)

∣∣∣∣ ≤ deg P ∗ · ||P ∗||K · ∂

∂nz0

gK(z0) .

We know that
(
P ∗)′(z0) = P ′(z0) + o(1)n ∂

∂nz0
gK(z0)||P ||K, and ||P ∗||K ≤

(1 + ε) · ||P ||K and deg P ∗ = deg P + deg Q and deg Q = m · deg r + deg q2 ≤

14



mNr +2Nr. The ε > 0 is fixed, so is m = m(ε). So deg Q ≤ m(ε) ·Nr +2 ·Nr,
which is a fixed value too. So we have

∣∣P ′(z0)
∣∣ ≤ n · (1 +

mNr

n
+

2Nr

n
+ o(1)

) · (1 + ε) · ||P ||K · ∂

∂nz0

gK(z0) =

= (1 + o(1)) · n · ||P ||K · ∂

∂nz0

gK(z0) .

It is easy to verify that the o(1) error term depends on z0, because the degree
of Q(z0; z) depends on z0.

2.4 Sharpness of the results

Proof of Theorem 3 i). Let r(z) = zl − 1 and P (z) = z and K = r−1[∂D].
Then, the equilibrium measure of K is absolutely continuous with respect
to arc length (denote its density by ω) and the length of lemniscate K is at
least 2l. (Furthermore, z ∈ K ⇒ |z| ≤ 2, so ||P ||K ≤ 2 for every l.) That is,
if l → ∞, then there will exist a z ∈ K such that ∂/∂nz0gK(z) = πω(z) ≤
1/(2l) and

1 · 2 · 1

2l

which is larger than the right hand side (of (2.1) for P on K) and is much
smaller than 1 = |P ′(z)|.
Proof of Theorem 3 ii). If K is a lemniscate, that is, K = r−1[∂D] for some
complex polynomial r, then let P (z) :=

(
r(z)

)m
where m is an arbitrary

positive integer. Then, deg P = m deg r and if z ∈ K, then P ′(z) =

m
(
r(z)

)m−1 · r′(z). So the left hand side (of (2.1) for P at z) is

m
∣∣(r(z)

)m−1 · r′(z)
∣∣ = m

∣∣r′(z)
∣∣

while the right hand side (of (2.1) for P at z) is (see Lemma (4))

m deg r ||(r(.))m||r−1[∂D]

1

deg r

∣∣r′(z)
∣∣ = m

∣∣r′(z)
∣∣

which is the same.
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Chapter 3

Sharpening of Hilbert’s
lemniscate theorem

3.1 Preliminaries to Theorem 9

As in the preceeding chapter, a lemniscate σ is a level curve of a polynomial,
i.e. σ = {z : |TN(z)| = c} for some polynomial TN and some constant
c (which may always be assumed to be 1). Hilbert’s lemniscate theorem
claims the following (see [51, Theorem 5.5.8, p. 158] or [52, p. 79]).

Theorem 6. If K is a compact set on the plane and U is a neighborhood of
K then there is a lemniscate σ that separates K and C\U , i.e. it lies within
U but encloses K. In other words, K ⊂ Int σ and Int σ ⊂ U .

An equivalent formulation is the following. Let γj, Γj, j = 1, . . . , m be
Jordan curves (i.e. homeomorphic images of the unit circle), γj lying interior
to Γj and the Γj’s lying exterior to each other, and set γ∗ = ∪jγj , Γ∗ = ∪jΓj.
Then there is a lemniscate σ contained in the interior of Γ∗ that contains γ∗

in its interior, i.e. σ separates γ∗ and Γ∗ in the sense that it separates each
γj from the corresponding Γj.

In this and the following few sections we shall extend this lemniscate
theorem to the case when γ∗ can touch Γ∗ at finitely many points. It will
follow that at the touching points the normal derivative of Green’s function
for the (unbounded component of the) complement of σ can be as close to the
normal derivative of Green’s function for the complement of Γ∗ as we wish.
This fact will be applied to derive the analogue of Bernstein’s inequality for
polynomials on Γ∗ with asymptotically sharp constants.

Let γ∗ and Γ∗ be twice continuously differentiable in a neighborhood of
P and touching each other at P . We say that they K-touch each other if

16



*
*

P

Γγ

P
Γ*

γ*

Γ
γ

P

*

*

Figure 3.1: Various possibilities for the separating circles

their (signed) curvature at P is different (signed curvature is seen from the
outside of Γ∗). Equivalently we can say that in a neighborhood of P the two
curves are separated by two circles one of them lying in the interior of the
other one. See Figure 3.1 for the various possibilities for these circles.

One of our main theorems is

Theorem 7. Let γ∗ = ∪m
j=1γj and Γ∗ = ∪m

j=1Γj be as above, and let γ∗ K-
touch Γ∗ in finitely many points P1, . . . , Pk in a neighborhood of which both
curves are twice continuously differentiable. Then there is a lemniscate σ
that separates γ∗ and Γ∗ and K-touches both γ∗ and Γ∗ at each Pj.

Furthermore, σ lies strictly in between γ∗ and Γ∗ except for the points
P1, . . . , Pk, and has precisely one connected component in between each γj

and Γj, j = 1, . . . , m, and these m components are Jordan curves.

It should be noted that since in Theorem 7 the lemniscate σ is strictly
in between γ∗ and Γ∗ except for the points P1, . . . , Pk and in these points it
has curvature bigger then the corresponding curvature of Γ∗, this σ can play
the role of the inner curve γ∗, and this way we can get an exhaustion of the
domain enclosed by Γ∗ by interiors of lemniscates σ0, σ1, . . . touching in more
and more points, as is depicted in Figure 3.2.

Let K be the closed domain enclosed by Γ∗ and K0 the closed domain
enclosed by γ∗. Denote by g(K, z) Green’s function of C∞ \ K with pole at
infinity. Finally, let L be the closed domain enclosed by σ. We shall need
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Figure 3.2: Exhaustion by interiors of lemniscates touching in more and more
points

Theorem 8. Let Γ∗, γ∗ and P1, . . . , Pk ∈ Γ∗ be as in Theorem 7. Then for
every ε > 0 there is a lemniscate σ as in Theorem 7 such that for each Pj

we have
∂g(L, Pj)

∂n
≤ ∂g(K, Pj)

∂n
+ ε, (3.1)

where ∂(·)/∂n denotes (outward) normal derivative.
In a similar manner, for every ε > 0 there is a lemniscate σ as in Theorem

7 such that for each Pj we have

∂g(K0, Pj)

∂n
≤ ∂g(L, Pj)

∂n
+ ε. (3.2)

Note that
∂g(K, Pj)

∂n
≤ ∂g(L, Pj)

∂n
≤ ∂g(K0, Pj)

∂n
,

because K0 ⊂ L ⊂ K.
As an application of these results we prove the following Bernstein’stype

inequality with asymptotically best constant for derivatives of polynomials.
By approximating a compact set K from the inside by touching lemniscates
we deduce from Theorem 2 a general Bernstein type inequality. We want to
do that for more general sets than those bounded by finitely many Jordan
curves, so we make the following definition. We say that the compact set K
is Jordan fat, if the boundary of every connected component of its interior
Int(K) is a Jordan curve and K is the closure of its interior: K = Int(K).
In particular, every component of its interior is a simply connected domain,
but K may have infinitely many connected components or it may have cut
points on the boundary.

Now we can state
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Theorem 9. Let K be a Jordan fat compact set on the plane with connected
complement. Let z0 be a point on the boundary of K and let us suppose that
this boundary is a twice continuously differentiable Jordan arc in a neighbor-
hood of z0. Then

|P ′
n(z0)| ≤ n(1 + o(1))

∂g(K, z0)

∂n
‖Pn‖K , (3.3)

where the o(1) tends to 0 uniformly in the polynomials Pn of degree at most
n as n → ∞.

Recall that a Jordan arc is a homeomorphic image of the interval (0, 1).
Theorem 9 is sharp regarding the constant ∂g(K, z0)/∂n:

Theorem 10. Let K and z0 be as in Theorem 9. Then for every n there is
a polynomial Pn of degree at most n such that

|P ′
n(z0)| > n(1 − o(1))

∂g(K, z0)

∂n
‖Pn‖K . (3.4)

Actually, this theorem is true for any compact K for which z0 belongs to
the boundary of the interior of K, and in a neighborhood of z0 the boundary
∂K is a twice differentiable Jordan arc. This follows from the proof below by
first approximating K from the outside by a compact set which is bounded by
finitely many Jordan curves and which coincides with K in a neighborhood
of z0.

The proofs of the theorems use some basic tools from potential theory,
for which see for example [51], [59] or [52]. Placing lemniscates in between
touching curves will be done by the Brouwer fixed point theorem and by a
local version of Blaschke’s rolling theorem ([12, Ch. 4., Section 24., subsection
II.]) claiming that out of two touching curves the one with a larger curvature
stays inside the other one.

We also remark that having just a single touch point is conceptually
simpler (and a simpler translation-rotation technique would work) than hav-
ing finitely many points. In order to facilitate the general discussion, when
dealing with a single touching point in Section 3.2 we shall follow the more
involved approach that will lead to the general case of finitely many touching
points.

The outline of the paper is as follows. In the next section we shall prove
the analogue of Theorem 7 for k = 1 (i.e. when there is only one touch
point), but for Green lines (i.e. level lines of some Green’s functions) instead
of lemniscates. Then in Section 3.3 we extend this to any k points still for
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Green lines. Section 3.4 contains the completion of the proof by showing
that the Green lines in Section 3.3 can be replaced by lemniscates. Section
3.5 contains the proof of Theorem 8, while in Section 3.6 we present some
lemmas that are frequently used in the proofs. Finally, in Section 3.7 we give
short proofs for Theorems 9 and 10.

3.2 Green lines touching in one point

In this section we prove Theorem 7 for a single touching point (k = 1) and
for Green lines (level lines of Green’s functions) instead of lemniscates. Thus,
let γj, Γj , j = 1, . . . , m be Jordan curves, γj lying interior to Γj and the Γj ’s
lying exterior to each other, γ∗ = ∪jγj, Γ∗ = ∪jΓj, and denote by K the
closed domain enclosed by Γ∗ and by K0 the closed domain enclosed by γ∗.
Some of the topological properties are easier to see for smooth curves, and by
suitable approximation we may assume that the curves γj and Γj are twice
continuously differentiable (apply e.g. conformal mapping of the interior
of the curves in question on the unit disk and make use of [50, Theorem
3.6]), though we shall not explicitly use this assumption (except the twice
differentiability around touching points).

For simpler notation Γ will mean any one (but fixed) of the curves Γj,
and then γ is the corresponding inner curve γj.

The proof is fairly technical, therefore first we present an outline:

• First we remove a small part of the closed inner domain K0 around the
point P , the rest will be denoted by K1.

• The removed part will be replaced by a rotated and shifted copy T θ,δ(S)
of a lens shaped region S for which the bounding circular arcs have
curvature lying in between the curvatures of Γ and γ at the point P .

• The Green line will be for some small τ the τ -level curve of Green’s
function g(K1 ∪T θ,δ(S), z) of C∞ \ (K1 ∪T θ,δ(S)) with pole at infinity.

• To analyze these τ -level lines close to the boundary of T θ,δ(S) we use the
reflection principle to continue the Green’s functions g(K1 ∪T θ,δ(S), z)
over the circular arc ∂T θ,δ(S), and complete these continued harmonic
functions to analytic functions. This way the τ -level line of g(K1 ∪
T θ,δ(S), z) coincides with the image of a line segment under the inverse
of these analytic functions, and simple analytic properties can be used
for the analysis (Lemma 11).
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• We shall use the Brouwer fixed point theorem to prove that for appro-
priate (and small) rotation (by angle θ) and shift (by δ), the τ -level
line will pass through the point P and will have the same tangent line
there as Γ (and γ).

• For small τ this τ -level line will lie very close to K1 ∪ T θ,δ(S), hence
it will separate each γj from Γj , and along the boundary of T θ,δ(S) it
will have curvature very close to that of ∂T θ,δ(S), which is the same as
the curvature of ∂S.

• As a consequence, in the neighborhood of P we are working in, the
curvature of the τ -level line will lie in between the curvatures of γ and
Γ and at the same time it touches both of these curves at P . Hence, by
a variant of Blaschke’s rolling theorem (given in Lemma 13) the level
line will lie in between these two curves in a smaller neighborhood.

• Elsewhere the τ -level line follows closely the boundary of K1 ∪T θ,δ(S),
hence it lies outside γ∗ but inside Γ∗.

To carry out this project we have found it convenient to separate γ and
Γ in a neighborhood of P by two circles CR0 and CR1 specified in the second
paragraph below. In what follows we may encounter compact sets L (like
K1 ∪ S or K1 ∪ T θ,δ(S) below) which may have unconnected component,
in which case Green’s function g(L, ·) will mean Green’s function of the
unbounded component of C∞ \ L with pole at infinity.

If σ is a curve which is twice continuously differentiable in a neighborhood
of P ∈ σ, then let κ(σ, P ) denote the curvature of σ at P and ϕ(σ, P ) the
tangent direction angle (i.e. the angle with the positive half of the real axis
of the tangent line to σ at P ), which we consider modulo π.

In this section we shall assume that γ∗ and Γ∗ K-touch each other at a sin-
gle point P , and they are twice continuously differentiable in a neighborhood
of P . Thus, γ∗ lies strictly within Γ∗ except for the point P , where we have
κ(γ∗, P ) > κ(Γ∗, P ) (note that K-touching means that κ(γ∗, P ) �= κ(Γ∗, P ),
and κ(Γ∗, P ) > κ(γ∗, P ) is impossible because γ∗ lies inside Γ∗, see e.g.
Lemma 13).

Let ∆r(P ) = {ζ |z − P | < r} denote the open disk of radius r about P ,
and for simpler notation in this section we shall write ∆r for ∆r(P ).

Let P ∈ Γ (recall that Γ is one of the Γj’s), and with κ(Γ, P ) < 1/R1 <
1/R0 < κ(γ, P ) consider the circles CR0 and CR1 of radii R0 and R1, respec-
tively, that touch Γ at P in appropriate sense, see Figure 3.3 (if the curvature
κ(Γ, P ) is negative, then we set |κ(γ, P )| < 1/R0 < 1/R1 < |κ(Γ, P )|, see
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Figure 3.4). Then in a neighborhood of P these circles lie inside Γ and out-
side γ (see e.g. Lemma 13), and in this section our aim is to show that there
is a Green line (the level curve of a Green’s function) that separates γj and
Γj , j = 1, . . . , m, and in a neighborhood of P it also lies in between CR0 and
CR1 . We shall only deal with the nonnegative curvature case, the argument
is similar when the curvature at P is negative.

In what follows CR always means a circle touching Γ at P in the appro-
priate sense and DR denotes the closed disk that it encloses.

Choose a number R0 < R < R1. Then (see Figure 3.3) there is a small
r < R0/8 such that κ(Γ, z) < 1/R1 and κ(γ, z) > 1/R0 for z ∈ ∆4r, DR1∩∆4r

lies inside Γ and DR0 contains the part of K0 that lies in ∆4r. We may also
suppose r < 1 so small that ∆8r intersects only the curve Γ (which contains
P ) out of the curves Γ1, . . . , Γm. Let A and B be the two points on CR lying
of distance 4r from P , and let S be a closed lens shaped domain bounded by
the (shorter) arc ÃB of the circle CR and by its reflection onto the segment
AB, see Figure 3.5. When the curvature of Γ at P is negative then we have
to make a slight change in the definition of S: then let S be bounded by
ÃB and by a curve lying inside Γ and going close to ÃB, see Figure 3.6. We
cut off a small part of K0, namely if Q is the open half-plane with boundary
line passing through the points A and B and containing P , then we cut off
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∆4r ∩ K0 ∩ Q, and set

K1 = K0 \
(
∆4r ∩ K0 ∩ Q

)
, (3.5)

for the remainder, see Figure 3.5, where the darkest shaded region is the
cut off part ∆4r ∩ K0 ∩ Q. Then K0 ⊂ K1 ∪ S, K1 ∪ S has one connected
component inside Γ and K1 ∪ S lies inside Γ∗ except for its point at P . It is
possible however, that K1∪S (or the sets K1∪T θ,δ(S) considered below) has
unconnected complement. Let T θ,δ be the transformation that consists of a
counterclockwise rotation about P by angle θ followed by a translation in the
direction of PO by δ, where O is the center of CR (this is the inner normal
direction). With S we also consider the domain T θ,δ(S). We restrict θ, δ with
some small but fixed numbers 0 ≤ θ∗, δ∗ < r/8 so that for −θ∗ ≤ θ ≤ θ∗ and
0 ≤ δ ≤ δ∗ the circle T θ,δ(CR) hits ∂∆r/2 in between the circles CR0 and CR1 ,
and T θ,δ(S) \ ∆r/2 lies inside Γ. If θ∗, δ∗ are sufficiently small, then we have
K0 \ ∆r/2 ⊂ K1 ∪ T θ,δ(S).

Note also that the system of curves

Σ =
(
CR1 ∩ ∆r/2

)
∪ (

Γ∗ \ ∆r/2

) ∪ (
(∂∆r/2 ∩ K) \ DR1

)
(3.6)

(see Figure 3.7) lies within Γ∗ and outside γ∗ (except for the point P ). We
shall put a Green line outside γ∗ that lies within Σ and also in between CR0

and CR1 in ∆r/2.
The Green’s functions g(K1∪T θ,δ(S), z), |θ| ≤ θ∗, 0 ≤ δ ≤ δ∗ of C∞\(K1∪

T θ,δ(S)) (or of their unbounded component if these sets are not connected)
are uniformly bounded on compact subsets of the plane. g(K1 ∪ T θ,δ(S), z)

vanishes on T θ,δ(ÃB), hence by the reflection principle we can reflect it on
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the circular arc T θ,δ(ÃB), and let this extended function be denoted by
gE(K1 ∪ T θ,δ(S), z). Thus, these gE(K1 ∪ T θ,δ(S), z) are uniformly bounded
harmonic functions on ∆3r, and let hθ,δ be their analytic completion in ∆3r

such that the imaginary part vanishes at P : Im hθ,δ(P ) = 0. Then hθ,ρ and
their first and second derivatives are uniformly bounded in ∆2r.

Next we claim that

∂g(K1 ∪ T θ,δ(S), z)

∂n
≥ c0 (3.7)

with some c0 > 0 independent of θ, δ, where the partial derivative is taken in
the direction of the normal to T θ,δ(ÃB), and the inequality is claimed for z ∈
T θ,δ(ÃB)∩∆2r. To this end let gw(K1∪T θ,δ(S), z) denote Green’s function of
C∞\(K1∪T θ,δ(S)) with pole at w. Then the normal derivative in question is
∂g∞(K1∪T θ,δ(S), z)/∂n. Let w0 be the point on ∂∆r that is the farthest away

from the arc ÃB, see (see Figure 3.8). The function ∂(gw(K1∪T θ,δ(S), z))/∂n
is non-negative and harmonic in w, hence Harnack’s inequality gives with a
c1 > 0 independent of |θ| ≤ θ∗, 0 ≤ δ ≤ δ∗ and z ∈ T θ,δ(ÃB) ∩ ∆r

∂g∞(K1 ∪ T θ,δ(S), z)

∂n
≥ c1

∂gT θ,δ(w0)(K1 ∪ T θ,δ(S), z)

∂n
. (3.8)

But it is easy to see that the right hand side is uniformly bounded from below
on T θ,δ(ÃB) ∩ ∆r. In fact, just attach a domain H to ÃB ∩ ∆3r with C2

boundary in such a way that it contains w0 and lies in C\K (see Figure 3.8).
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Then gT θ,δ(w0)(K1 ∪ T θ,δ(S), z) at z = T θ,δ(ζ) is bigger than Green’s function
g of H with pole at w0 at ζ , hence the right hand side of (3.8) is at least as
large as the appropriate normal derivative for g at ζ = (T θ,δ)−1(z). But H

can be conformally mapped into the unit disk so that w0 is mapped into the
origin, and this conformal map is C1 up to the boundary of H. Since Green’s
functions are conformal invariant, the lower boundedness of the right hand
side of (3.8) is a consequence of the same result on the disk (in which case
Green’s function is just log 1/|z|).

A consequence of (3.7) is that |h′
θ,δ(z)| ≥ c0 for T θ,δ(ÃB)∩∆2r (recall that

hθ,δ was the analytic completion of gE(K1∪T θ,δ(S), ·)), hence, by the uniform
boundedness of the second derivatives of hθ,δ in ∆2r, it follows that there is

a neighborhood U of ÃB∩∆2r such that in T θ,δ(U) we have |h′
θ,δ(z)| ≥ c0/2,

and this is even true in a neighborhood of the closure of U . Let

σ(τ, θ, δ) = {z g(K1 ∪ T θ,δ(S), z) = τ}
be the τ -level line of Green’s function g(K1∪T θ,δ(S), ·). From the properties
of hθ,δ and from Lemma 11 below it follows that there are constants C0 and
τ0 > 0 such that for 0 ≤ τ ≤ τ0 and z ∈ σ(τ, θ, δ) ∩ T θ,δ(U)

1. we have for the distance from z to the boundary arc T θ,δ(ÃB)

1

C0
τ ≤ dist(z, T θ,δ(ÃB)) ≤ C0τ, (3.9)
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2. we have for the curvatures

|κ(γ(τ, θ, δ), z) − 1

R
| ≤ C0τ (3.10)

(recall that the curvature of T θ,δ(ÃB) is 1/R), and

3. if z∗ is the intersection point of T θ,δ(ÃB) with the segment zT θ,δ(O)
connecting z with the center T θ,δ(O) of the circle T θ,δ(CR), then we
have for the tangent direction angles

|ϕ(σ(τ, θ, δ), z) − ϕ(T θ,δ(ÃB), z∗)| ≤ C0τ. (3.11)

The first and third estimate we shall only need around P , but the second
one along σ(τ, θ, δ) ∩ T θ,δ(U).

Let σθ,δ be the level line of g(K1 ∪ T θ,δ(S)), ·) passing through the point
P , and let ϕ0 = ϕ(Γ, P ) be the tangent direction angle to the bounding curve
Γ at P . The distance from P to K1 ∪ T θ,δ(S) is the same as to T θ,δ(S), and
this is ≥ δ cos θ > δ/2 (recall that T θ,δ consists of a rotation by angle θ and
by a shift δ, and this latter one moves T θ,0(S) away from P by δ). Therefore,
(3.9) implies for θ ∈ [−θ∗, θ∗] and δ = 2C0τ that the point P lies outside the
τ level line (i.e. σ(τ, θ, δ) lies inside σθ,2C0τ ):

g(K1 ∪ T θ,2C0τ (S), P ) > τ. (3.12)

Next, if 0 < τ < τ0 is sufficiently small, then for 0 ≤ δ ≤ 2C0τ (3.11) gives

ϕ(σθ∗,δ, P ) − ϕ0 >
θ∗

2
(3.13)

and

ϕ(σ−θ∗,δ, P ) − ϕ0 < −θ∗

2
. (3.14)

Now fix 0 < τ < τ0 so small that all these are satisfied, as well as the
inequalities

C0τ < (1/R0 − 1/R)/2, C0τ < (1/R − 1/R1)/2

and

τ < inf
{
g(K1∪T θ,δ(S), z) −θ∗ ≤ θ ≤ θ∗, 0 ≤ δ ≤ δ∗, z ∈ Σ\∆r/2

}
, (3.15)

where Σ is the curve defined in (3.6). Since all points of Σ \ ∆r/2 lie outside
every K1 ∪ T θ,δ(S), −θ∗ ≤ θ ≤ θ∗, 0 ≤ δ ≤ δ∗ (by the choice of θ∗, δ∗), the
latter infimum is positive, hence such a choice of τ is possible.
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On the set [−θ∗, θ∗] × [0, 2C0τ ] consider the functions

f(θ, δ) = g(K1 ∪ T θ,δ(S), P ) − τ, (3.16)

and
Φ(θ, δ) = ϕ(σθ,δ, P ) − ϕ0. (3.17)

These are continuous functions of (θ, δ), and their behavior on the boundary
is as follows:

f(θ, 2C0τ) > 0 by (3.12), (3.18)

f(θ, 0) < 0 because g(K1 ∪ T θ,0(S), P ) = 0, (3.19)

Φ(θ∗, δ) > 0 by (3.13)

and
Φ(−θ∗, δ) < 0 by (3.14).

Therefore Lemma 12 can be applied to the function F (θ, δ) = (Φ(θ, δ), f(θ, δ))
on the box [−θ∗, θ∗] × [0, 2C0τ ] to conclude that there is a θ ∈ [−θ∗, θ∗] and
a 0 ≤ δ ≤ 2C0τ such that f(θ, δ) = Φ(θ, δ) = 0. In other words, for this θ
and δ the τ -level line σ(τ, θ, δ) of the Green’s function of K1 ∪T θ,δ(S) passes
through the point P and at P it has the same tangent line as Γ.

This is true for all sufficiently small τ > 0. We claim that for small τ this
level line δ(τ, θ, δ) separates each γj from Γj, it consists of m components
and it lies in between CR0 and CR1 in ∆r/2. For the latter one consider
that by (3.10) and the choice of τ we have 1/R1 < κ(σ(τ, θ, δ), z) < 1/R0

for all z ∈ σ(τ, θ, δ) ∩ T θ,δ(U), hence for all z ∈ ∆r ∩ σ(τ, θ, δ), and so we
may apply Lemma 13 to conclude that in ∆r/2 the level line σ(τ, θ, δ) lies
in between CR0 and CR1 , for it has the same starting point P and the same
tangent line at P as these latter circles. The curve (3.6) encloses the Green
line σ(τ, θ, δ) because of what we have just proved and because of (3.15).
Finally, σ(τ, θ, δ) lies outside K1 ∪T θ,δ(S), and since this set has exactly one
component in each Γj , we get that for small τ > 0 the level curve σ(τ, θ, δ) has
exactly m components and it separates each γj from Γj . That this level curve
σ(τ, θ, δ) consists of precisely m Jordan curves follows from the fact that each
bounded component of the complement of σ(τ, θ, δ) must contain a point of
K1 ∪ T θ,δ(S), so there are precisely m such bounded components, one-one
containing γj, j = 1, . . . , m (in other words, σ(τ, θ, δ) cannot intersect itself).

3.3 Green lines touching in finitely many points

In this section we extend the construction in Section 3.2 to k touching points.
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Let γj, Γj, j = 1, . . . , m be the given Jordan curves, γj lying interior to Γj

and the Γj ’s lying exterior to each other, and γ∗ touching Γ∗ in the finitely
many points P1, . . . , Pk, where we assume the curves to be twice continuously
differentiable. For each j let there be given two touching circles CRj,0

and
CRj,1

with
κ(γ∗, Pj) > 1/Rj,0 > 1/Rj,1 > κ(Γ∗, Pj)

(with appropriate modification for negative curvatures). We want to prove
that there is a Green line separating γ∗ and Γ∗ which also goes in between
CRj,0

and CRj,1
in a neighborhood of each Pj. We follow the proof from Section

3.2, just do what was done there simultaneously around each Pj. We follow
the notations there, but let us agree that the relevant objects from Section
3.2 for a point Pj (instead of the point P of Section 3.2) will be denoted
by affixing the subscript j. In particular, we fix radii Rj,0 < Rj < Rj,1 and
consider touching circles CRj

etc. The radius r can be chosen to be common
for all Pj , and then let Aj and Bj be the two points on CRj

lying of distance
4r from Pj , and let Sj be the closed lens shaped domain bounded by the

arc ÃjBj and by its reflection onto AjBj (with obvious modifications for the
negative curvature case), see Figure 3.9. We cut off a small part from K0 as
in (3.5) (with modifications for the negative curvature case) and set

K1 = K0 \
( k⋃

j=1

(∆4r(Pj) ∩ K0 ∩ Qj)
)
.

For each j = 1, . . . , k we consider the transformation T
θj ,δj

j that consists of
a rotation about Pj by angle θj followed by a translation in the direction of
PjOj by δj , where Oj is the center of CRj

(inward normal direction at Pj).

With each Sj we also consider the domains T
θj ,δj

j (Sj), where −θ∗ ≤ θj ≤ θ∗

and 0 ≤ δj ≤ δ∗ with some small positive numbers θ∗, δ∗. Thus, in this case
we rotate and translate each Sj independently of each other, and we have 2k
parameters θ1, . . . , θk, δ1, . . . , δk. We set (θ, δ) = (θ1, . . . , θk, δ1, . . . , δk).

Now copy the proof from Section 3.2 word for word with the set

K1 ∪ (∪k
j=1T

θj ,δj

j (Sj)).

If θ∗, δ∗ are sufficiently small then no change is needed in the proof, and for
small τ > 0 the analogues of (3.13)–(3.19) hold for each point Pj instead of
P for the functions

fj(θ, δ) = g
(
K1 ∪ (∪k

j=1T
θj ,δj

j (Sj)), Pj

)
− τ,

and
Φj(θ, δ) = ϕ(σ

j,θ, δ, P ) − ϕj,0,
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Figure 3.9: The choice of the Sj ’s

where σ
j,θ, δ is the level curve of g

(
K1 ∪ (∪k

j=1T
θ,δ

j(Sj)), ·
)

passing through

the point Pj , and ϕj,0 = ϕ(Γ∗, Pj) is the tangent direction angle to Γ∗ at Pj.
All these for τ > 0 sufficiently small. Now an application of Lemma 12 to
the function

F (θ, δ) =
(
Φ1(θ, δ), · · · , Φk(θ, δ), f1(θ, δ), · · · , fk(θ, δ),

)
on the box [−θ∗, θ∗]k × [0, 2C0τ ]k gives θ1, . . . , θk ∈ [−θ∗, θ∗] and δ1, . . . , δk ∈
[0, 2C0τ ] such that the τ -level line σ = σ(τ, θ, δ) of Green’s function g

(
K1 ∪

(∪k
j=1T

θ,δ
j(Sj)), ·

)
of C∞\(

K1 ∪ (∪k
j=1T

θ,δ
j(Sj))

)
passes through each Pj and

has the same tangent line there as Γ∗. Furthermore, in ∆r/2(Pj) its curvature
is close to the curvature of CRj

, and the same proof that was used at the end
of Section 3.2 shows that σ lies in between γ∗ and Γ∗, and also lies in between
CRj,0

and CRj,1
in each ∆r/2(Pj). Since K1 ∪ (∪k

j=1T
θ,δ

j(Sj)) has exactly one
connected component inside every Γj, it also follows that the Green line σ
consists of m connected components.

3.4 Completion of the proof of Theorem 7

In this section we shall replace the Green line σ = σ(τ, θ, δ) from Section 3.3
by lemniscates.

The outline is the following.

• σ is the τ -level line of some Green’s function, and first using the integral
representation for Green’s functions in terms of equilibrium measures
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and discretizing these equilibrium measures, we get polynomials TN for
which the eτ -level curve lies very close to σ (and this approximation is
getting better and better as N → ∞).

• Next, for each j = 1, . . . , k we select (for some large M) N/M zeros of
TN lying close to Pj , and apply to all these N/M zeros a small rotation
and dilation with center at Pj in such a way that these rotations and
dilations are done independently of each other for different j’s. Thus,
in this step we introduce k rotation and k dilation parameters θ1, . . . , θk

and (1 + ρ1), . . . , (1 + ρk).

• Using the Brouwer fixed point theorem we show that these rotation
and dilation parameters can be selected in such a way that for the
so modified polynomials T ∗

N the eτ -level curve σ∗ passes through each
point Pj and has the same tangent line there as Γ∗.

• By controlling the curvature of σ∗ around each Pj and using that else-
where σ∗ is very close to σ and σ lies strictly in between γ∗ and Γ∗,
we can conclude that σ∗ has similar properties as σ, in particular it
separates each γj from the corresponding Γj.

We use the notations from Sections 3.2, 3.3, but denote the disks ∆r(Pj)
there by ∆r0(Pj). Recall that the Green line σ in question was the Green
line associated with a set

K2 = K1

⋃ k⋃
j=1

T θj ,δj (Sj),

where each Sj has a circular arc on its boundary in the neighborhood ∆r0(Pj),
more precisely ∆r0(Pj) ∩ ∂Sj is a circular arc of some fixed radius Rj , going
closer to Pj than r0/4. Recall also that this arc was lying on some circle
CRj

touching Γ∗ at Pj and σ lies in between two touching circles CRj,0
and

CRj,1
in the neighborhood ∆r0(Pj) of Pj, and lies strictly in between γ∗ and

Γ∗ outside these neighborhoods, see Figure 3.10. We shall also need that in
∆r0(Pj) the curvature of σ satisfies an inequality

1/Rj,1 + ε < κ(σ, z) < 1/Rj,0 − ε (3.20)

with some ε > 0 (this is how the construction went in Sections 3.2 and 3.3).
In Section 3.2 we also verified that the normal derivative to level lines of

g(K2, z) is strictly positive in the given neighborhood ∆2r0(Pj) of each Pj .
Now choose a small 0 < r < r0/2 so that ∆4r(Pj) ∩ K2 = ∅ for all j, i.e.

the disks ∆4r(Pj) lie outside K2 (see Figure 3.10).
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Let µ be the equilibrium measure of K2, and cap(K2) the logarithmic
capacity of K2 (see e.g [51, p. 107] or [52, (I.4.8)]). Then

g(K2, z) =

∫
log |z − t|dµ(t) − log cap(K2),

and locally this is the same as the real part of

h(z) =

∫
log(z − t)dµ(t) − log cap(K2),

(with an appropriate local branch of log). What we have just mentioned on
the normal derivative implies that h′(z) �= 0 in any of the neighborhoods
∆2r(Pj). Note also that the Green line σ is just the level line {Re h(z) = τ}.

For each N choose N points {x(N)
s }N

s=1 on the boundary of K2 so that

their asymptotic distribution is µ (i.e. if we put mass 1/N to each x
(N)
s , then

the so obtained measures tend to µ in the weak∗ topology on measures as
N → ∞), and set

TN(z) =

N∏
s=1

(z − x(N)
s ).

Then (note that all zeros of TN lie in K2) we have

1

N
log TN (z) →

∫
log(z − t)dµ(t), (3.21)
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and
1

N
log |TN(z)| →

∫
log |z − t|dµ(t) (3.22)

locally uniformly in C \ K2 as N → ∞. Thus,

1

N
log TN(z) → h(z) + log cap(K2) (3.23)

uniformly on each ∆2r(Pj), j = 1, . . . , k (with some local branches of the
logarithm). Then for sufficiently large N the absolute value of the derivative
of 1

N
log TN(z) stays above a fixed positive number on each ∆r(Pj) (because

the same is true of their limit in ∆2r(Pj)), and all derivatives 1
N

log TN (z)
tend to the appropriate derivative of h uniformly on each ∆r(Pj). Hence it
follows from Lemma 11 that for the level line σN,j of

1

N
log |TN(z)| = Re

1

N
log TN (z)

that passes through the point Pj we have for all j = 1, . . . , k

ϕ(σN,j , Pj) → ϕ(σ, Pj) = ϕ(Γ∗, Pj), N → ∞,

where, as always, ϕ(σ, Pj) is the tangent direction angle of σ at Pj taken
modulo π. Thus, there is sequence {dN} tending to 0 such that

|ϕ(σN,j, Pj) − ϕ(σ, Pj)| < d2
N (3.24)

and
(cap(K2)e

τ )Ne−Nd2
N ≤ |TN(Pj)| ≤ (cap(K2)e

τ )NeNd2
N . (3.25)

Choose and fix a large number M , and consider only N ’s that are divisible
by M . For each j let Xj be the set of the M closest zero of TN to Pj. As we
remarked at the beginning of this section the normal derivative ∂g(K2, z)/∂n
is strictly positive for z ∈ ∆r0(Pj) ∩ ∂K2, and this latter set is a circular arc
of ∆r0(Pj). But this normal derivative is just the density of the equilibrium
measure with respect to arc length ds, more precisely

dµ(z)

ds
=

1

2π

∂g(K2, z)

∂n

(see [52, Theorem I.1.5] and formula [52, (I.4.8)]), hence there is a fixed
constant C such that µ(∆C/M (Pj)) > 1/M , and so for large N there are
at least N/M zeros in each ∆C/M (Pj). This implies Xj ⊂ ∆C/M (Pj) for
each j = 1, . . . , k. In particular, if M is sufficiently large, then the sets Xj,
j = 1, 2, . . . , k are disjoint.
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Consider the transformations T
θj ,ρj

j , j = 1, . . . , k, where

T
θj ,δj

j z = Pj + eiθj(1 + ρj)(z − Pj)

is a rotation about Pj with angle θj followed by a dilation with factor (1+ρj),
and let T ∗

N (z) be the polynomial obtained by replacing each zero x of TN in Xj

by a corresponding zero T
θj ,ρj

j x in T
θj ,ρj

j Xj (and do this for all j = 1, . . . , k).
Let

X∗ =
(
X \ (∪jXj

))⋃(
∪jT

θj ,δj

j Xj

)
= {x∗(N)

s }N
s=1

be the zero set of T ∗
N . We restrict θj , ρj to lie in the interval [−dN , dN ].

We think of the transformation x → T
θj ,ρj

j x as moving the zero x. Note
first of all that no zero in X is moved by more than 2CdN/M , and all the
N/M points in Xj get farther away from Pj by a factor (1 + ρj) (or closer
by this factor if ρj < 0). Hence, if d is the minimum distance between the
points Pj, then for any j0 = 1, . . . , k if ρj0 = −dN then

|T ∗
N (Pj0)|

|TN (Pj0)|
≤ (1 − dN)N/M

(
1 +

2CdN/M

d/2

)(k−1)N/M

< e−dN N/4M

provided M is so large that 2C(k − 1)/M(d/2) < 1/8. In a similar manner,
if ρj0 = dN then

|T ∗
N(Pj0)|

|TN(Pj0)|
≥ (1 + dN)N/M

(
1 − 2CdN/M

d/2

)(k−1)N/M

> edN N/4M .

Combining these with (3.25) we can see that for the functions

fj(ρ1, . . . , ρn, θ1, . . . , θn) =
1

N
log |T ∗

N(Pj)| − log cap(K2) − τ (3.26)

we have
signfj0(ρ1, . . . , ρn, θ1, . . . , θn) = ±1 (3.27)

if ρj0 = ±dN and N is sufficiently large.
Next we consider the change of the tangent direction angle to the lemnis-

cates when we go from TN to T ∗
N . By Lemma 11 the tangent direction angle

ϕ(σN,j , Pj) on the left hand side of (3.24) equals (mod π)

π

2
− arg

1

N
(log TN (z))′

∣∣
z=Pj

=
π

2
+

1

N

N∑
s=1

arg(x(N)
s − Pj).
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Subtract this from the corresponding expression for T ∗
N , the result is

Φj(ρ1, . . . , ρm, θ1, . . . , θm) =
1

N

k∑
l=1

∑
x∈Xl

(
arg(Tθl,ρl

l x − Pj) − arg(x − Pj)
)

,

and this quantity is the difference between the tangent direction angles at
Pj to the level lines of |T ∗

N | resp. |TN | going through the point Pj . Here for
x ∈ Xj the change of the argument is

arg(T
θj ,ρj

j x − Pj) − arg(x − Pj) = θj ,

while for all other l �= j and x ∈ Xl this change is at most

| arg(Tθl,ρl

l x − Pj) − arg(x − Pj)| ≤ 2CdN/M

d/2

because the distance between x and T
θl,ρl

l x is at most 2CdN/M , and the
distance from Pj to x is at least d/2 (d was the minimum distance between
the points Pj). Therefore, if for a particular j = j0 we have θj0 = −dN , then

Φj0(ρ1, . . . , ρm, θ1, . . . , θm) ≤ 1

N

(
−dN

N

M
+ (k − 1)

N

M

4CdN

Md

)
< − dN

2M
(3.28)

if M is large, and similarly for θj0 = dN we have

Φj0(ρ1, . . . , ρm, θ1, . . . , θm) ≥
(

dN
N

M
− (k − 1)

N

M

4CdN

Md

)
>

dN

2M
. (3.29)

This and (3.24) give that for θj0 = ±dN the sign of

Φ̂j(ρ1, . . . , ρm, θ1, . . . , θm) = ϕ(σN,j, Pj)−ϕ(σ, Pj)+Φj(ρ1, . . . , ρm, θ1, . . . , θm)
(3.30)

for j = j0 is ±1 for all large N . Therefore we can applying Lemma 12 to the
function

F (ρ1, . . . , ρm, θ1, . . . , θm) = F (ρ, θ)

=
(
f1(ρ, θ), · · · , fk(ρ, θ), Φ̂1(ρ, θ), · · · , Φ̂k(ρ, θ)

)
with the fj’s from (3.26), to conclude that for all large N there are values

ρ1, . . . , ρm, θ1, . . . , θm ∈ [−dN , dN ]
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such that the lemniscate

σ∗
N =

{
z |T ∗

N(z)| = (cap(K2)e
τ )N

}
passes through each Pj and has the same tangent line at Pj as the lemniscate
σ, i.e. as Γ.

From what we have said it also follows that the distribution of the sets
X∗

N is again the equilibrium distribution µ, and for any compact set in C\K2

there are no points from X∗
N in that compact set for large N . Therefore, all

the asymptotic formulae that we have verified for TN hold also for T ∗
N . In

particular, the analogue of (3.23) is true:

1

N
log T ∗

N(z) → h(z) + log cap(K2) (3.31)

uniformly on each ∆2r(Pj). Now this, Lemma 11 and (3.20) imply that for
large N the curvature of σ∗

N lies strictly in between 1/Rj,0 and 1/Rj,1 in each
∆2r(Pj), j = 1, . . . , k. Therefore, we can apply Lemma 13 to conclude that
in ∆r(Pj) the lemniscate σ∗

N goes in between CRj
and Γ.

Finally, the function
1

N
log

|T ∗
N (z)|

cap(K2)N

converges to the Green’s function g(K2, z) of C∞ \K2 uniformly on compact
subsets of C \K2. Therefore, if τ1 < τ < τ2, then for large N the lemniscate
σ∗

N lies in between the Green’s lines

{g(K2, z) = τ1} and {g(K2, z) = τ1}.

For τ1 and τ2 sufficiently close to τ , away from the Pj’s, more precisely
outside ∪j∆r(Pj) these level lines lie in between γ∗ and Γ∗ (because σ =
{g(K2, z) = τ} lies strictly in between these curves there), and this shows
that the lemniscate σ∗

N lies in between γ∗ and Γ∗, and, as we have just seen,
in ∆r(Pj) it also lies in between CRj

and Γ for each j.
The same argument easily implies that the lemniscate σ∗

N has the same
number of components as σ, i.e. it has precisely one component in between
each γj and Γj , and this completes the proof.

3.5 Normal derivative of Green’s function

We shall only prove the inequality in (3.1), the proof of (3.2) is completely
analogous.
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Let σ = σ(τ, θ, δ) be the lemniscate constructed in the preceding section,
and let L be the closed region inside it. Recall also that K is the closed
domain enclosed by the Γ∗, i.e. the union of the domains enclosed by the
Γj ’s, j = 1, . . . , m.

We pick any touching point P = P1, . . . , Pk, and work with this single P
as in Section 3.2, and use the notations from there. We show that if 1/R0

is sufficiently close to κ(Γ, P ) and γj are sufficiently close Γj for all j =
0, 1, . . . , m, then the normal derivative ∂g(L, P )/∂n is close to ∂g(K, P )/∂n.
Note that since L lies inside K, we necessarily have g(L, z) ≥ g(K, z), and
hence

∂g(L, P )

∂n
≥ ∂g(K, P )

∂n
.

We shall only consider the case when the curvature of Γ∗ at P (seen from
the outside of Γ∗) is nonnegative – the case of negative curvature can be
similarly handled. As in Section 3.2, Γ is the Γj that contains the point P .

We shall use the notation from the previous section, but will only use the
fact that L contains K0 (and K0 ⊂ K, i.e. the choice of the γj’s is at our
disposal at this moment), and σ runs in between CR0 and Γ in a neighborhood
of P .
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For simpler notation we may assume P = 0, that the tangent line to Γ at
0 is the imaginary axis and CR0 lies to the left of this axis, see Figure 3.11.

First we consider the case when the curvature κ(Γ, 0) of Γ at 0 is positive.
Let ε > 0 and choose R0 < 1/κ(Γ, 0) < 1/R2 so that 1/R0 − 1/R2 < ε. We
may assume r < R0/8 so small that in ∆4r = ∆4r(P ) = ∆4r(0) the lemniscate
σ runs in between CR0 and Γ, and Γ runs strictly in between CR0 and CR2

except for the point 0, where all these curves touch each other. Let ẼF be the
arc CR0∩∆4r. Then this is part of L, hence g(L, z) ≤ g(ẼF , z). Since ẼF has

diameter bigger than r and smaller than 8r, if we consider ẼF/diam(ẼF ),
then this is an arc of diameter 1 and of curvature ≥ 1, hence its Green’s
function is C1-smooth inside ẼF , i.e. there is an absolute constant C0 ≥ 1
such that for any z we have g(ẼF , z) ≤ C0dist(z, ẼF ∩∆2r)/r. It is easy to
verify that if z ∈ CR2 ∩ ∆2r then

dist(z, ẼF ∩ ∆2r) ≤ |z|2
R0

− |z|2
R2

≤ ε|z|2. (3.32)

Therefore, for z ∈ CR2 ∩ ∆2r

g(L, z) ≤ C0
ε

r
|z|2. (3.33)

Next observe that as γ∗ approaches Γ∗, the domain L approaches K from
the inside, therefore cap(L) tends to cap(K) where cap denotes logarithmic
capacity. Now the function g(L, z)− g(K, z) is nonnegative and harmonic in
C∞\K, and takes the value log(cap(K)/ cap(L)) at infinity, therefore it tends
to 0 at infinity if γ∗ approaches Γ∗. ¿From Harnack’s inequality we can infer
that in this case g(L, z) − g(K, z) tends to 0 uniformly on compact subsets
of C∞ \ K. Therefore, if we start from inner curves γ∗ that lie sufficiently
close to Γ∗, we can achieve that

g(L, z) − g(K, z) ≤ εr (3.34)

for all z ∈ ∂∆2r \ DR2 , where DR2 is the disk enclosed by CR2 .
Consider the domain

G = ∆2r \ DR2. (3.35)

(3.33) can be applied on its boundary that lies on CR2 , while (3.34) can be
applied on the part of its boundary that lies on ∂∆2r . In particular,

g(L, z) − g(K, z) ≤ 4C0εr (3.36)

on the whole boundary, and hence also on the whole G. We show that these
are sufficient to conclude that the normal derivative ∂(g(L, z) − g(K, z)/∂n
is small at 0.
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The circle CR2 is the one with radius R2 and with center at −R2, hence
the Joukovskii transformation

ζ =
1

2

(
i(z + R2)

R2
+

R2

i(z + R2)

)

maps the arc CR2 ∩ ∆2r into a segment around the origin, and simple cal-
culation shows that the image of G contains the upper half of the disk
∆r/R2

. By the mapping w = ζR2/r map this half disk onto the upper
half of the unit disk. We have defined mappings z → ζ → w, and set
h(w) = g(L, z) − g(K, z). For all w in the upper half of the unit disk
|w|/(|z|/r) lies in between two universal constants, therefore it follows from
(3.33)–(3.36) that there is a universal constant C1 such that h(w) ≤ C1εr|w|2
for all w ∈ [−1, 1], and h(w) ≤ C1rε for |w| = 1, Im w > 0. Let h1(w) be the
function that is harmonic and bounded on the upper half plane and takes
the boundary value C1εr|w|2 for w ∈ [−1, 1] and 0 on R \ [−1, 1], and let
h2(w) be the harmonic function in the upper half of the unit disk that takes
boundary value C1rε for |w| = 1, Im w > 0 and 0 for w ∈ [−1, 1]. Then
h(w) ≤ h1(w) + h2(w), and we can separately estimate h1(w) and h2(w) for
w lying close to 0.

By the Poisson formula ([51, Theorem 4.3.13]) for the upper half plane
we have for w = x + iy lying close to 0

h1(w) =
1

π

∫ 1

−1

y

(u − x)2 + y2
C1εru

2du.

The integrand over the interval |u − x| ≤ 2|w| is at most y/((u − x)2 + y2)
times C1εr(3|w|)2, therefore∫

|u−x|≤2|w|
≤ 9C1εr|w|2.

On the rest of [−1, 1] we have |u−x| ≥ |u|/2, hence the integrand is at most
4C1εry, therefore ∫

|u−x|≥2|w|
≤ 4C1εr|w|.

These give h1(w) ≤ 13C1εr|w|.
To estimate h2 apply the Joukovskii transform W = (w + 1/w)/2, which

maps the upper half of the unit disk onto the upper half plane C+, the
image of the upper semi-circle being [−1, 1]. Now h3(W ) := h2(w)/(C1rε)
is nothing else than the harmonic measure ω(W, [−1, 1],C+) of the segment
[−1, 1] ⊂ ∂C+, which is 1/π-times the angle that the interval [−1, 1] is seen
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Figure 3.12: The choice of CR0 and CR2 in the zero curvature case

from W (see e.g. [51, Theorem 4.3.13] or [1, Example 3-1, p. 38]). For
|w| ≤ 1/4 we have 1/4|w| ≤ |W | ≤ 1/|w|, hence the angle in question is at
most 2 arctan(1/|W |) ≤ 8|w|. Thus, h2(w) ≤ 8C1rε|w|.

All in all we have obtained h(w) ≤ 21C1rε|w|, if |w| ≤ 1/4, which gives
for g(L, z) − g(K, z) = h(w) the estimate g(L, z) − g(K, z) ≤ C2ε|z| with
some universal constant C2 for all z lying close to 0. This implies

∂(g(L, z) − g(K, z))

∂n

∣∣
z=0

≤ C2ε,

and this is what we wanted to prove.

Finally let us consider the case when the curvature of σ at the origin is
0. Then let CR2 be the reflection of CR0 onto the origin, where R0 > 2/ε, see
Figure 3.12. In this case ∆4r ∩ DR0 lies in the exterior of K, and (3.32) is
still true in the form

dist(z, ẼF ∩ ∆2r) ≤ |z|2
R0

+
|z|2
R2

≤ ε|z|2.

The rest of the argument is unchanged, if we set G = ∆2r ∩ DR2 and work
with this G instead of the one defined above in (3.35).

3.6 Lemmas

Lemma 11. Let h be an analytic function in a neighborhood of a point z0, and
suppose that h′(z) �= 0 in that neighborhood. Then the tangent direction angle
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of the level curve σ = {Re h(z) = Re h(z0)} at z0 is equal to π
2
− arg h′(z0)

(mod π) and the curvature of σ at z0 is given by

|Re (h′′(z0)/h
′(z0)

2)||h′(z0)|.
Furthermore, if c ≤ |h′(z)| ≤ C for |z− z0| ≤ ρ, then for 0 ≤ |τ | < ρc the

distance from z0 to the level line σ(τ) = {Re h(z) = Re h(z0) + τ} satisfies
the inequality

|τ |
C

≤ dist{z0, σ(τ)} ≤ |τ |
c

. (3.37)

Proof. . Without loss of generality we may assume z0 = 0, h(z0) = 0. Let
f(z) = (ih)−1(z) be the inverse of ih(z) in a small neighborhood of 0. Then
the level curve {Re h(z) = 0} is the set of points that are mapped by ih
into the real line, hence it is the same as the image of the real line under
f . Let [−a, a] be a small interval such that f exists on it. The direction of
the tangent line for the curve f(t), t ∈ [−a, a] (which is part of σ) is f ′(t) =
1/ih′(f(t)), hence the tangent direction angle of σ at 0 is arg 1/ih′(0) =
π
2
− arg h′(0) (mod π).

As for the curvature, consider first the case when f ′(0) = 1. The arc
length element for the curve f(t), t ∈ [−a, a] is ds = |f ′(t)|dt, the unit
tangent vector is f ′(t)/|f ′(t)|, and the curvature is the absolute value of the
derivative of the latter with respect to ds, i.e. it is∣∣∣∣d(f ′(t)/|f ′(t)|)

dt

dt

ds

∣∣∣∣ =

∣∣∣∣∣f
′′(t)|f ′(t)| − f ′(t)d|f ′(t)|

dt

|f ′(t)|2
1

|f ′(t)|

∣∣∣∣∣ . (3.38)

At t = 0 we have f ′(0) = 1, hence f has expansion about the origin f(t) =
t + ct2 + · · · with some c. Then

|f ′(t)| = |1 + 2ct + · · · | =
√

1 + 2(c + c)t + · · · = 1 + (c + c)t + · · ·
for small real t, which gives

d|f ′(t)|
dt

∣∣
t=0

= c + c = 2 Re c = Re f ′′(0).

Putting this into (3.38) and making use of f ′(0) = 1 we obtain that the
curvature to the curve f(t) at t = 0 is | Im f ′′(0)|.

If f ′(0) �= 1, then apply what we have got to the function F (z) =
f(z)/f ′(0). Then the curvature for the curve f(t) is 1/|f ′(0)| times the cur-
vature for the curve F (t), hence it is equal to | Im (f ′′(0)/f ′(0))|/|f ′(0)|. Fi-
nally, we can rewrite this back in terms of h using f ′(t) = 1/ih′(f(t)), f ′′(t) =
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h′′(f(t))/(h′(f(t))3 and we get the curvature in question is |Re (h′′(0)/h′(0)2)||h′(0)|.

Finally, let us consider the distance of σ(τ) from z0. We may assume
τ > 0. Let z1 be the closest point of σ(τ) to z0. If this point is outside
the disk |z − z0| < ρ, then the distance in question is ≥ ρ ≥ τ/c > τ/C.
Otherwise

τ = Re h(z1) − Re h(z0) = Re

∫ z1

z0

h′(u)du ≤ C|z1 − z0|,

and this proves the left inequality in (3.37). On the other hand, let us consider
the vector field h′(z)/|h′(z)| where z means here the complex conjugate of z.
Let χ(s) be the tangent curve to the vector field starting from z0 with arc
length parameter s. Then dχ(s)/ds = h′(χ(s))/|h′(χ(s))| is the unit tangent
vector to χ, and so for integration along the curve χ we have

h(χ(τ/c)) − h(z0) =

∫ χ(τ/c)

z0

h′(z)dz =

∫ τ/c

0

h′(χ(s))χ′(s)ds

=

∫ τ/c

0

|h′(χ(s)|ds ≥ (τ/c)c = τ, (3.39)

so one of the points on the curve χ(s), 0 ≤ s ≤ τ/c must lie on the τ -level
line σ(τ), and the distance of this point to z0 is not bigger than the length
of this curve, i.e. τ/c (which is smaller than ρ, so χ(s) for 0 ≤ s ≤ τ/c stays
within the disk |z − z0| < ρ and the lower estimate |h′| ≥ c in (3.39) holds
by the assumption in the lemma).

Lemma 12. Let B =
∏k

j=1[a
−
j , a+

j ] be a box in Rk and let F : B → Rk

be a continuous mapping in such a way that for any fixed j0 = 1, . . . , k if
x = (x1, . . . , xk) is a point with xj0 = a±

j0
, then signF (x) = ±1 (i.e. the

function takes positive respectively negative values on opposite sides of the
box). Then there is an x ∈ B such that F (x) = 0, i.e. the origin is in the
image set.

Proof. . Without loss of generality we may assume a±
j = ±1. Let us suppose

to the contrary that the origin is not in the image set, and let H(x) be
the point where the half line emanating from the origin and going through
−F (x) intersects the boundary of the cube B = [−1, 1]k. Then x → H(x) is
a continuous map of B into its boundary which does not have a fixed point
(a fixed point could only be on the boundary of B, but a boundary point
on face xj = ±1 is mapped into a boundary point in the opposite half space
signxj = ∓1). This however, contradicts the Brouwer fixed point theorem,
and this contradiction proves the claim.
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The next lemma is a local version of Blaschke’s rolling theorem ([12, Ch.
4., Section 24., subsection II.]): suppose that two smooth convex curves G
and g lie in the same side of a common tangent line and G has larger curvature
at any point P than g at p, where the points P ∈ G and p ∈ g are such that
the tangent line of G at P is parallel with the tangent line of g at p. Then
G lies inside g.

Lemma 13. Suppose that G, g are the curves (t, F (t)), and (t, f(t)), t ∈
[0, a] respectively, where F, f are real valued twice continuously differentiable
convex functions in [0, a] such that the real line is their common tangent line
at 0. If the curvature of G at any point (t, F (t)) is at least as large as the
curvature of g at the point (t, f(t)), then F (t) ≥ f(t), i.e. G lies above g.

In particular, let R0 < R1 and let CR0 and CR1 be two circles of radii R0

and R1, respectively, with CR0 lying inside CR1, so that they touch each other
at a point P and have common tangent line l there. Suppose that r ≤ R0

and a smooth curve γ lies on the same side of l as CR1 and CR2, and at all
points of ∆r ∩ γ it is has curvature lying in between 1/R1 and 1/R0. Then
in ∆r/2 the curve γ lies in between the two circles CR0 and CR1.

Proof. . It is sufficient to prove the first statement.
The normalized tangent vector to (t, f(t)) is(

1

(1 + f ′(t)2)1/2
,

f ′(t)
(1 + f ′(t)2)1/2

)

and the arc length element is ds = (1 + f ′(t)2)1/2dt. Now a similar computa-
tion that was done in Lemma 11 gives that the curvature is

f ′′(t)
(1 + f ′(t)2)3/2

=
( f ′(t)

(1 + f ′(t)2)1/2

)′
.

Therefore, the assumption is that(
F ′(t)

(1 + F ′(t)2)1/2

)′
≥

(
f ′(t)

(1 + f ′(t)2)1/2

)′
,

and upon using f ′(0) = F ′(0) = 0, integration from 0 to t gives

F ′(t)
(1 + F ′(t)2)1/2

≥ f ′(t)
(1 + f ′(t)2)1/2

.

Since the function x/(1 + x2)1/2 is increasing, this implies F ′(t) ≥ f ′(t), and
another integration yields F (t) ≥ f(t) on [0, a].
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3.7 Proof of Theorems 9 and 10

First we verify a lemma.

Lemma 14. Let D be a simply connected region with C1+α boundary for
some α > 0, let J be a closed arc on the boundary of D and let z0 ∈ J be an
inner point of this arc. Suppose that {un}∞n=1 is a uniformly bounded sequence
of continuous functions on D such that they are harmonic in D, vanish on J
and uniformly tend to 0 on every compact subset of the complementary open
arc ∂D \ J . Then

∂un(z0)

∂n
→ 0, as n → ∞,

where ∂/∂n denotes normal derivative in the direction of the inner normal
to D.

Proof. . Let |un| ≤ M , and fix a conformal map of D onto the upper half
plane C+ that maps z0 into the origin. This map can be extended to a C1

function to the boundary ([50, Theorems 3.5–3.6]), and the normal direction
is preserved under this map. Hence, it is sufficient to show the result in the
case D = C+ and z0 = 0 (see also the estimate (3.40) below).

Let J be the interval [−x1, x2] with x1, x2 > 0. The assumption is that for
every ε > 0 the sequence {un} tends uniformly to 0 on R \ (−x1 − ε, x2 + ε),
thus there is an Nε such that |un| ≤ ε there for n ≥ Nε. If ω(z, E,C+)
denotes the harmonic measure of the set E ⊂ R at z relative to C+, then
for n ≥ Nε

|un(z)| ≤ Mω(z, [−x1 − ε,−x1],C+) + Mω(z, [x2, x2 + ε],C+)

+ εω(z,R \ (−x1 − ε, x2 + ε),C+).

Seeing that the harmonic measure ω(z, E,C+) is 1/π-times the angle that
the set E is seen from z (see [51, Theorem 4.3.13] or [1, Example 3-1, p. 38]),
for |z| < x1/2 the first term is easily seen to be at most

arctan
|z|

x1/2
− arctan

|z|
x1/2 + ε

≤ C1ε|z|

with some constant C1 depending only on x1, and a similar estimate is true
for the second term with the same constant C1. Finally, the third term is at
most

ε

(
arctan

|z|
x1/2

+ arctan
|z|

x2/2

)
≤ C2ε|z|.

These together give for n ≥ Nε and |z| < min(x1/2, x2/2)

|un(z)| ≤ (C1M + C1M + C2)ε|z|, (3.40)
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from which the claim immediately follows, as ε > 0 is arbitrary here.

Proof. Theorem 9. Let U1, . . . , Uj, . . . be the connected components of the
interior Int(K) of K (their number may be finite). Every Uj is a simply con-
nected Jordan domain (i.e. its boundary is a Jordan curve – a homeomorphic
image of a circle), hence Uj is homeomorphic to the closed unit disk (see e.g.
[50, Theorem 2.6]). It easily follows from the Jordan curve theorem that for
k �= j the boundaries ∂Uj and ∂Uk may have at most one common point.
Let M0 be so large that z0 belongs to KM = U1 ∪ . . . ∪ UM for M ≥ M0. We
claim that for any ε > 0

∂g(KM , z0)

∂n
<

∂g(K, z0)

∂n
+ ε (3.41)

for all sufficiently large M . Indeed, select a simply connected domain D
with C2 boundary in the complement of K in such a way that z0 is on its
boundary, and for some small disk ∆ with center at z0 the set K ∩ ∂∆
coincides with ∆ ∩ ∂KM0 (recall that this is a C2 Jordan arc for small ∆).
Now cap(KM) → cap(K) as M → ∞ (in case there are infinitely many
UM ’s), and hence g(KM , z) → g(K, z) locally uniformly in the complement
of K (just apply Harnack’s inequality in C∞\K to the nonnegative harmonic
functions g(KM , z) − g(K, z) that take the value log(cap(K)/ cap(KM)) at
infinity, cf. the proof of Theorem 8)). Hence, if D is a domain in C \K with
C2 boundary so that D ∩ KM = ∆ ∩ ∂K, then g(KM , z) − g(K, z) → 0 as
M → ∞ locally uniformly inside the complementary arc ∂D \ (∆ ∩ ∂K) to
∆∩ ∂K on the boundary of D. Now (3.41) follows for large M from Lemma
14 applied to the functions g(KM , z) − g(K, z).

Any two of the U1, . . . , UM can touch each other only in a single point
(necessarily different from z0), so we have altogether only finitely many
touching points for these domains. If we remove from U1, . . . , UM some
tiny parts around these touching points then we get domains U ∗

1 , . . . , U∗
M

bounded by disjoint Jordan curves. The parts removed can be so small that
for K∗

M = U∗
1 ∪ . . . ∪ U∗

M we have

∂g(K∗
M , z0)

∂n
<

∂g(KM , z0)

∂n
+ ε, (3.42)

– just repeat the proof of (3.41).
Now approximate K∗

M from the inside as in Theorem 8 by a lemniscate
σ touching ∂K∗

M from the inside at z0 in such a way that for the region L
enclosed by σ we have the analogue of (3.1) (recall that L is the closed region
enclosed by σ):

∂g(L, z0)

∂n
≤ ∂g(K∗

M , z0)

∂n
+ ε ≤ ∂g(K, z0)

∂n
+ 3ε. (3.43)
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Finally, apply Theorem 2 to conclude

|P ′
n(z0)| ≤ n(1 + o(1))

∂g(L, z0)

∂n
‖Pn‖L ≤ n(1 + o(1))

(∂g(K, z0)

∂n
+ 3ε

)
‖Pn‖K ,

where we used that, because of L ⊂ K, we have ‖Pn‖L ≤ ‖Pn‖K . Since here
ε > 0 is arbitrary small, this is the same as (3.3).

Proof. Theorem 10. Let ∆ be a small neighborhood of z0, and approximate
K from the outside by compact sets Kl, l = 1, 2, . . . such that each Kl is
bounded by finitely many Jordan curves, Kl ∩ ∆ = K ∩ ∆, the Hausdorff
distance between K and Kl tends to 0, and so cap(Kl) → cap(K) as l → ∞.
These imply (see the preceding proof) g(Kl, z) → g(K, z) as l → ∞ locally
uniformly in the complement of K, and then Lemma 14 gives by an argument
similar to what we did in the preceding proof that for large l

∂g(K, z0)

∂n
≤ ∂g(Kl, z0)

∂n
+ ε.

Select such a large l.
Kl is such that Theorem 8 can be applied to it, so let us approximate Kl

from the outside by a lemniscate touching ∂Kl at z0 as in Theorem 8 so that
(3.2) holds in the form

∂g(Kl, z0)

∂n
≤ ∂g(L, z0)

∂n
+ ε.

(i.e. now Γ∗ plays the role of γ∗ in Theorem 8, and the outer curve is at
our disposal). Let σ = {z |TN(z)| = 1}. Green’s function for C∞ \ L
with pole at infinity is g(L, z) = 1

N
log |TN(z)|, and its normal derivative on

the level curve σ is the gradient of z �→ 1
N

log |TN(z)|, i.e. at z0 ∈ σ it is
|T ′

N(z0)|/N . Now let n be large and k = [n/N ] the integral part of n/N . For
Pn(z) = T k

N(z), which is a polynomial of degree at most Nk ≤ n, we have

|P ′
n(z0)| = k|T ′

N(z0)| = kN
∂g(L, z0)

∂n
≥ kN

(∂g(K, z0)

∂n
− 2ε

)
≥ n(1 − o(1))

(∂g(K, z0)

∂n
− 2ε

)
‖Pn‖K

because ‖Pn‖K ≤ ‖Pn‖L = 1, and this is (3.4).

46



Chapter 4

Higher order sharpness of the
generalized Hilbert’s lemniscate
theorem

4.1 Curves touching each other

As above, if γ is a system of closed curves, we denote the complement of the
unbounded component of C \ γ by Int γ. That is, Int γ is the set what γ
encloses. E.g. if γ is the unit circle, then Int γ is the closed unit disk.

Suppose that we have two C1 smooth curves, γ1, γ2 which pass through
the same point, z0 = γ1(0) = γ2(0) and have the same tangent line at z0.
We can assume that z0 = 0 and their common tangent line is the real axis.
So we can parametrize them near the origin as follows: γj(t) = t + igj(t),
j = 1, 2 where the smoothness of γj ’s imply that gj’s are C1 smooth.

So we have defined some functions using the original curves. Using these
functions:

Definition 15. Suppose we have two C1 smooth curves, γ1, γ2 and the func-
tions g1, g2 as above. We say that γ1 and γ2 touch each other at γ1(0) = γ2(0)
in order s (s ≥ 1), if

∣∣g1(t) − g2(t)
∣∣ ∼ |t|s. That is, for some constants

C1 > c1 > 0, we have

c1|t|s ≤
∣∣g1(t) − g2(t)

∣∣ ≤ C1|t|s. (4.1)

Remarks.
The order s can be a real number. This translation (z0 = 0) and rotation
(their tangent line is the real axis) is needed so that we could easily compare
the two curves pointwise.

Investigate this definition in the following geometric case.
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Theorem 16. Suppose that we have two C2 curves γ1, γ2 and the correspond-
ing functions g1, g2 as above.

Then γ1 and γ2 touch each other in order 2 if and only if the their tangent
line at t = 0 coincide but their curvature at t = 0 are different.

Proof. We use the following well-known relation. The curvature of the curve
t �→ t + if(t) at t0 is

f ′′(t0)(
1 +

(
f ′(t0

)2)3/2
. (4.2)

The γj j = 1, 2 are C2 smooth curves so if we reparametrize them with
the functions gj j = 1, 2 such that they describe the same curve, that is,
{γj(s) : |s| < s0 for some s0 > 0} = {t + igj(t) : |t| < t0 for some t0 > 0}
j = 1, 2, then the functions g1, g2 will be C2 smooth too.

If they touch each other in order 2, then
∣∣g1(t) − g2(t)

∣∣ ∼ |t|2. This,
with their C2 smoothness, give that g′

1(0) = g′
2(0) and g′′

1(0) �= g′′
2(0). Using

the curvature formula (4.2), we immediately obtain that their curvature is
different and we also know that their tangent line coincide (it will be the real
axis).

On the other hand, suppose that their tangent line coincide and their
curvature are different. We can assume that their common tangent line is
the real axis and they pass through the origin. As above, we have that g1, g2

are C2 smooth. Since their tangent line coincide at the origin, this implies
that g′

1(0) = g′
2(0). Using that their curvature are different at the origin, we

obtain with the curvature formula (4.2) that g ′′
1(0) �= g′′

2(0). These two facts
immediately imply that

∣∣g1(t) − g2(t)
∣∣ ∼ |t|2, that is, they touch each other

in order 2.

This criteria describes the touching of order 2 with a geometric property.

4.2 Examples

Now we show two examples where (a badly required) higher order of touching
excludes the existence of in-between lemniscate (see Theorem 7).

Example 1.
Let s be a noninteger, real number (s ∈ R \ Z), s > 2. We use the upper
integral part of a real number, �x� := min{k ∈ Z : x ≤ k}. Consider the
functions f1(t) := |t|s, f2(t) := 1/2f1(t). These functions can be differenti-

ated �s−1� times and actually f
(	s−1
)
1 (t) = s(s−1) . . . (s−�s−1�) · |t|s−	s−1
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where s− �s− 1� ≤ 1. So f1, f2 ∈ C	s−1
, but f
(	s−1
)
j (t), j = 1, 2 can not be

differentiated at t = 0.
Consider their graphs. Let γ∗ : t �→ t + if1(t) and Γ∗ : t �→ t + if2(t).

Let γ be the following closed Jordan curve {γ∗(t) : −1/2 ≤ t ≤ 1/2} ∪ {t +
i/2s : −1/2 ≤ t ≤ 1/2} such that γ(0) = 0. Define Γ in a similar way:
Γ := {Γ∗(t) : −1 ≤ t ≤ 1} ∪ {t + i/2 : −1 ≤ t ≤ 1} such that Γ(0) = 0.

By definition,
∣∣f1(t) − f2(t)

∣∣ ∼ |t|s, so γ and Γ touch each other at 0 in
order s.

On the other hand, any lemniscate L = r−1[C] away from its critical
points (where r′ = 0) is locally an analytic curve because of the inverse
function theorem (for holomorphic functions). At the critical points, the
lemniscates branch off, so r can have no critical points at z = 0 because of
higher order of touching (of γ and Γ).

Indirectly, assume that there is a lemniscate L = r−1[C] in between γ and
Γ. We can assume that r(0) = 1. Parametrize its subarc near z = 0 by λ that
is,

∣∣r(λ(t)
)∣∣ ≡ 1 for small values of t and λ(0) = 0. Since the lemniscate L is

analytic near z = 0, we can assume that λ′ �= 0 and Re λ(t) = t. The tangent
lines of γ and Γ at z = 0 coincide with the real axis, so the same holds for λ
(i.e. λ′(0) ∈ R \ {0}). Now introduce the real function g as follows

λ(t) = t + ig(t) (for small t) ,

where actually g(t) = Im λ(t), so g(0) = 0, g is a real valued function and g
is C∞ smooth.

So we have 3 functions

f2(t) ≤ g(t) ≤ f1(t) (for small t). (4.3)

g(	s−1
)(0) is necessarily 0. So g(t) = O
(|t|	s−1
+1

)
, but f1(t), f2(t) ∼ |t|s.

Since �s − 1� + 1 > s (s �∈ Z), for some small t > 0, we have g(t) < f2(t)
which contradicts (4.3).

Example 2.
This is very similar to the previous example, but a small change is needed
because e.g. t �→ |t|k is analytic if k is an even integer.

Let k be an integer, k ≥ 3. Let f3(t) := sign t · tk,

f4(t) :=

⎧⎪⎨
⎪⎩

|t|k
2

if t ≥ 0,
|t|k
2

if t < 0 and k is odd,
−2|t|k if t < 0 and k is even.

This definition immediately implies f4 ≤ f3 and
∣∣f3(t) − f4(t)

∣∣ ∼ |t|k. It is

easy to see that f3, f4 are Ck−1 smooth functions but neither f
(k−1)
3 (t), nor

f
(k−1)
4 (t) is differentiable at t = 0.
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Now consider their graphs. Let γ∗ : t �→ t + if3(t) and Γ∗ : t �→ t + if4(t).
Let γ be the following closed Jordan curve {γ∗(t) : −1/2 ≤ t ≤ 1/2} ∪ {t +
i/2k : −1/2 ≤ t ≤ 1/2} such that γ(0) = 0. Let Γ be the union of the
following curves: {Γ∗(t) : −1 ≤ t ≤ 1}, {t + if4(1) : −1 ≤ t ≤ 1} and
{−1 + it : f4(−1) ≤ t ≤ f4(1)}. We can also assume that Γ(0) = 0.

By definition, γ and Γ touch each other at t = 0 in order k.
Indirectly, assume that there is a lemniscate in between γ and Γ. Exactly

as above, we introduce the notations λ and g. Again, we have 3 functions

f4(t) ≤ g(t) ≤ f3(t) (for small t). (4.4)

We argue as follows. It is easy to verify that f ′
j(0) = . . . = f

(k−1)
j = 0,

j = 1, 2, so g′(0) = . . . = g(k−1)(0) = 0.
If k is even, we have 3 subcases depending on the sign of g(k)(0). If

g(k)(0) > 0, then for small t < 0, we have g(t) > 0, which is a contradiction
with (4.3) because for small t < 0 we already have f3(t), f4(t) < 0.

If g(k)(0) < 0, then we have contradiction the same way for small t > 0.
If g(k)(0) = 0, then for small t, we know that f3(t), f4(t) ∼ |t|k, but

g(t) = o(|t|k), so for some small t, g(t) < f4(t) which contradicts (4.4).
If k is odd, then the same idea can be applied except that the first two

subcases change place.
Again, these contradictions show that there is no such in-between lem-

niscate.

Remarks.
The second example can be extended to k = 2, but in that case, γ and Γ are
not C2 smooth, so they do not give counterexamples to Theorem 7.

In the proof of Theorem 7 we actually used the fact that there is an order
s (actually s = 2) such that the derivates of the curves up to order s − 1
coincide and they have derivatives of order s which are different. This is the
same as that we can insert two different analytic curves φ and Φ in between
them such a way that γ ⊂ Int φ, φ ⊂ Int Φ, Φ ⊂ Int Γ. These φ and Φ in [44]
were (subarcs of) properly chosen circles.

On the other hand, one of the common features of these two examples is
the fact that all the derivatives (at t = 0) they have coincide.

We conjecture the following.
Suppose we have two curves Γ, γ as above: γ, Γ closed Jordan curves, their in-
teriors are fat, γ ⊂ Int Γ, they have finite number of common points z1, . . . , zN

and they are Cnj smooth near zj (j = 1, . . . , N). Furthermore assume that
their derivatives coincide at zj up to order nj −1 but their derivatives at zj of
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order nj differ. Then we conjecture that we can put a lemniscate in between
γ and Γ.

Note that the assumption on their derivatives implies that locally one can
construct a lemniscate.
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[8] M. Baran and W. Pleśniak. Polynomial inequalities on algebraic sets.
Studia Math., 141(3):209–219, 2000.
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[24] T. Erdélyi. Markov-Bernstein-type inequality for trigonometric poly-
nomials with respect to doubling weights on [−ω, ω]. Constr. Approx.,
19(3):329–338, 2003.
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[28] T. Erdélyi and J. Szabados. Bernstein inequalities for polynomials with
constrained roots. Acta Sci. Math. (Szeged), 68(3-4):937–952, 2002. Cor-
rected reprint of Acta Sci. Math. (Szeged) 68 (2002), no. 1-2, 163–178 [
MR1916574 (2004a:41012a)].
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[34] A. Kroó and S. Révész. On Bernstein and Markov-type inequalities
for multivariate polynomials on convex bodies. J. Approx. Theory,
99(1):134–152, 1999.
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Summary

The well-known Bernstein’s inequality states that∣∣P ′
n(z0)

∣∣ ≤ n||Pn||D , (1.1)

where Pn is an arbitrary complex polynomial with degree n, ||Pn||D denotes
its supremum norm over the unit disk D = {z ∈ C : |z| ≤ 1} and |z0| = 1.
The subject of this dissertation is to extend this inequality.

If K ⊂ C is compact, then Green’s function of the complement of K with
pole at infinity is denoted by gK(z) = g(K, z). We say that the compact set
K is Jordan fat, if the boundary of every connected component of its interior
Int(K) is a Jordan curve and K is the closure of its interior: K = Int(K).

One of the main results is

Theorem (9). Let K be a Jordan fat compact set on the plane with con-
nected complement. Let z0 be a point on the boundary of K and let us sup-
pose that this boundary is a twice continuously differentiable Jordan arc in a
neighborhood of z0. Then

|P ′
n(z0)| ≤ n(1 + o(1))

∂g(K, z0)

∂n
‖Pn‖K , (3.3)

where the o(1) tends to 0 uniformly in the polynomials Pn of degree at most n

as n → ∞ and ∂g(K,z0)
∂n

denotes the normal derivative of the Green’s function
of C∞ \ K in the (outward) normal direction n (at z).

The proof of Theorem 9 is based on the the following two notions and
two theorems:

Definition (1). The set L ⊂ C is a lemniscate if for some complex polyno-
mial r, L = r−1[∂D], that is, z ∈ L ⇔ |r(z)| = 1. The set r−1[D] = {z ∈ C :
|r(z)| ≤ 1} is called the interior of the lemniscate L.

Let γ∗ and Γ∗ be some finite systems of Jordan curves γ∗ lying inside
Γ∗. We assume that γ∗ and Γ∗ are twice continuously differentiable in a
neighborhood of P and touching each other at P . We say that they K-touch
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each other if their (signed) curvature at P is different (signed curvature is
seen from the outside of Γ∗). Equivalently we can say that in a neighborhood
of P the two curves are separated by two circles one of them lying in the
interior of the other one.

Theorem (7). Let γ∗ = ∪m
j=1γj and Γ∗ = ∪m

j=1Γj be as above, and let γ∗

K-touch Γ∗ in finitely many points P1, . . . , Pk in a neighborhood of which
both curves are twice continuously differentiable. Then there is a lemniscate
σ that separates γ∗ and Γ∗ and K-touches both γ∗ and Γ∗ at each Pj.

Furthermore, σ lies strictly in between γ∗ and Γ∗ except for the points
P1, . . . , Pk, and has precisely one connected component in between each γj

and Γj, j = 1, . . . , m, and these m components are Jordan curves.

This is a sharpening of a celebrated theorem of David Hilbert claiming
the same but for untouching curves.

Theorem (8). Let Γ∗, γ∗ and P1, . . . , Pk ∈ Γ∗ be as in Theorem 7. Then
for every ε > 0 there is a lemniscate σ as in Theorem 7 such that for each
Pj we have

∂g(L, Pj)

∂n
≤ ∂g(K, Pj)

∂n
+ ε, (3.1)

where ∂(·)/∂n denotes (outward) normal derivative and K is the compact set
enclosed by Γ∗.

In a similar manner, for every ε > 0 there is a lemniscate σ as in Theorem
7 such that for each Pj we have

∂g(K0, Pj)

∂n
≤ ∂g(L, Pj)

∂n
+ ε, (3.2)

where K0 is the compact set enclosed by γ∗.

Theorem 9 follows from Theorem 7 and its special case when K is enclosed
by a lemniscate (it is formulated as Theorem 2, as a very important special
case of Theorem 9). Theorem 9 is sharp regarding the constant ∂g(K, z0)/∂n:

Theorem (10). Let K and z0 be as in Theorem 9. Then for every n there
is a polynomial Pn of degree at most n such that

|P ′
n(z0)| > n(1 − o(1))

∂g(K, z0)

∂n
‖Pn‖K . (3.4)

It is sharp also in the sense that in general the inequality

|P ′
n(z0)| ≤ n

∂g(K, z0)

∂n
‖Pn‖K

i.e. (3.3) without the term 1 + o(1) is not true.
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Összefoglaló

A jól ismert Bernstein egyelőtlenség azt álĺıtja, hogy∣∣P ′
n(z0)

∣∣ ≤ n||Pn||D , (1.1)

ahol Pn egy tetszőleges n-ed fokú komplex polinom, ||Pn||D jelöli a szuprémum
normáját a D = {z ∈ C : |z| ≤ 1} egységkörlapon és |z0| = 1. Ennek az
egyelőtlenségnek kiterjesztése ezen disszertáció tárgya.

Ha K ⊂ C kompakt, akkor gK(z) = g(K, z)-val jelöljük a komple-
menterének Green függvényét végtelenbeli pólussal. Azt mondjuk, hogy a
K kompakt halmaz Jordan kövér, ha a határa minden összefüggő kompo-
nensének egy Jordan görbe, és K a belsejének a lezártja: K = Int(K).

Az egyik fő eredmény a következő

Tétel (9). Legyen K egy Jordan kövér kompakt halmaz a śıkon összefüggő
komplementerrel. Legyen z0 egy pont K határán és tegyük fel, hogy K határa
kétszer folytonosan differenciálható Jordan ı́v a z0 egy környezetében. Ekkor

|P ′
n(z0)| ≤ n(1 + o(1))

∂g(K, z0)

∂n
‖Pn‖K , (3.3)

ahol o(1) tart 0-hoz egyenletesen a legfeljebb n-ed fokú polinomokon amint

n → ∞ és ∂g(K,z0)
∂n

jelöli az n külső normális menti deriváltját a C∞ \ K
Green függvényének a z pontban.

A 9. Tétel bizonýıtása a következő két fogalmon és két tételen alapul:

Defińıció (1). Az L ⊂ C halmaz egy lemniszkáta, ha valamely r komplex
polinomra L = r−1[∂D], vagyis z ∈ L ⇔ |r(z)| = 1. Az r−1[D] = {z ∈ C :
|r(z)| ≤ 1} halmazt h́ıvjuk az L lemniszkáta belsejének.

Legyen γ∗ és Γ∗ két, véges sok zárt Jordan görbéből álló rendszer. Fel-
tesszük, hogy γ∗ és Γ∗ kétszer folytonosan differenciálható egy P pont vala-
mely környezetében és érintik egymást P -ben. Azt mondjuk, hogy K-érintik
egymást, ha az (előjeles) görbületük P -ben különbözik (az előjeles görbületet
Γ∗ külsejéből tekintve). Ezzel egyenértékű, ha P egy környezetében a két
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görbét szét lehet választani két körvonallal úgy, hogy az egyik körvonal a
másik körvonal belsejében fekszik.

Tétel (7). Legyen γ∗ = ∪m
j=1γj, Γ∗ = ∪m

j=1Γj mint fentebb, γ∗ és Γ∗ K-
érintse egymást véges sok P1, . . . , Pk pontokban, amelyek környezeteiben két-
szer folytonosan differenciálhatóak. Ekkor létezik egy σ lemniszkáta, amely
elválasztja γ∗-t és Γ∗-t, valamint K-érinti γ∗-t és Γ∗-t mindegyik Pj-nél.

Továbbá, σ szigorúan γ∗ és Γ∗ közt helyezkedik el, kivéve a P1, . . . , Pk

pontokat, pontosan egy komponense van minden egyes γj és Γj közt, j =
1, . . . , m, és ez az m komponens mindegyike Jordan görbe.

Ez éleśıtése David Hilbert egy h́ıres tételének, amely hasonlót álĺıt, de
nem-érintő görbékre.

Tétel (8). Legyen γ∗, Γ∗ és P1, . . . , Pk ∈ Γ∗ mint a 7. Tételben. Ekkor
minden ε > 0-ra létezik egy lemniszkáta, olyan mint a 7. Tételben, úgy, hogy
mindegyik Pj-nél fennáll, hogy

∂g(L, Pj)

∂n
≤ ∂g(K, Pj)

∂n
+ ε, (3.1)

ahol ∂(·)/∂n jelöli a (külső) normális szerinti deriváltat és K az a kompakt
halmaz, amit Γ∗ közrefog.

Hasonló módon, minden ε > 0-ra létezik egy lemniszkáta, olyan mint a
7. Tételben, úgy, hogy mindegyik Pj-nél fennáll, hogy

∂g(K0, Pj)

∂n
≤ ∂g(L, Pj)

∂n
+ ε, (3.2)

ahol K0 az a kompakt halmaz, amit γ∗ közrefog.

A 9. Tétel következik a 7. Tételből és annak speciális esetéből, amikor
K-t egy lemniszkáta fogja közre (ez a 2. Tétel, mint a 9. Tétel nagyon fontos
speciális esete). A 9. Tétel éles a ∂g(K, z0)/∂n konstansot tekintve:

Tétel (10). Legyen K és z0 olyan, mint 9. Tételben. Ekkor minden n-re
létezik egy legfeljebb n-ed fokú Pn polinom úgy, hogy

|P ′
n(z0)| > n(1 − o(1))

∂g(K, z0)

∂n
‖Pn‖K . (3.4)

Abban az értelemben is éles, hogy a következő egyenlőtlenség

|P ′
n(z0)| ≤ n

∂g(K, z0)

∂n
‖Pn‖K ,

vagyis (3.3) az 1 + o(1) szorzó nélkül nem igaz.
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