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SMOOTHNESS OF GREEN’S FUNCTIONS
AND DENSITY OF SETS

ABSTRACT

We investigate local properties of the Green function of the complement
of a compact set E.

First we consider the case £ C [0, 1] in the extended complex plane (c.f.
[16]). We extend results of V. Andrievskii, L. Carleson and V. Totik which
claim that the Green function satisfies the 1/2-Holder condition locally
at the origin if and only if the density of £ at 0, in terms of logarithmic
capacity, is the same as that of the whole interval [0, 1]. We give an integral
estimate on the density in terms of the Green function and extend the
results to the case &/ C |[—1,1]. In this case the maximal smoothness of the
Green function is Holder-1 and a similar integral estimate and necessary
and sufficient condition hold as well.

The second part of the paper is joint work with Vilmos Totik (c.f.
[15]). A characterization is given for compact sets £ C C whose Green
function satisfies the Lipschitz (or Holder-1) condition. It is shown that
this Lipschitz condition is equivalent to a Lipschitz type condition on the
equilibrium measure and to the Markov inequality ||P)||g < Cn||P,||g for
any polynomial P, of degree < n. We also give an example for such a set
with infinitely many connected components.

In the third part of the paper we consider the case when F is a compact
set in RY, d > 2 (c.f. [17]). We give a Wiener type characterization for
the Holder continuity of the Green function, thus extending a result of L.
Carleson and V. Totik. The obtained density condition is necessary, and
it is sufficient as well, provided E satisfies the cone condition. It is also
shown that the Holder condition for the Green function at a boundary
point can be equivalently stated in terms of the equilibrium measure and
the solution to the corresponding Dirichlet problem. The results solve a
long standing open problem - raised by Maz’ja in the 1960’s - under the
simple cone condition.

v



Chapter 1

Introduction

The continuity of Green’s functions at boundary points has been exten-
sively studied for a long time. The aim of this research is to give conditions
for the stronger Holder continuity in terms of the geometry of the set. We
consider both the planar and the higher dimensional case. For the con-
cepts and notions in this Chapter see Section 2.1.

Suppose that E C C is a compact set with positive logarithmic capac-
ity cap(E) > 0. Let Q := C\ E, where C := {00} U C is the extended
complex plane. Denote by ga(2) = ga(z,00), 2z € €, the Green function
of €1 with pole at co. We extend gq to 02 in the usual way by

ga(z,00) = limsup go(w,o0),
w—z, WEN

and to C\ Q by setting go(z,00) = 0 there. This way gq becomes a
subharmonic function on C. We are interested in the behavior of gq at a
regular boundary point.

Suppose that 0 is a regular point of E, i.e., go(z) is continuous at 0
and go(0) = 0. First consider the case F C [0,1]. The monotonicity of
the Green function yields

90(2) > ga\py(?), 2z € C\|0,1],

that is, if F has the "highest density" at 0, then go has the "highest
smoothness" at the origin. In particular

9a(=7) > go\o (=) > Vr, 0<r<1.

In this regard, we would like to explore properties of F whose Green
function has the “highest smoothness" at 0, that is, F conforming to the
following condition

ga(2) < Cl2]"?,  zeC,
which is known to be the same as

ga(—r) < Cri/2, O<r<l1 (1.0.1)
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(c.f. |1, Theorem 3.6]). Various sufficient conditions for (1.0.1) in terms
of metric properties of I are stated in [5], where the reader can also find
further references.

There are compact sets E C [0, 1] of linear Lebesgue measure 0 with
property (1.0.1) (see e.g. [5, Corollary 5.2|), hence (1.0.1) may hold,
though the set £ is not dense at 0 in terms of linear measure. On the con-
trary, V. Andrievskii [2| proved that if £ satisfies (1.0.1) then its density
in a small neighborhood of 0, measured in terms of logarithmic capacity,
is arbitrary close to the density of [0, 1] in that neighborhood, i.e. (1.0.1)
implies

lim SPEO 0 )L (1.0.2)
r—0 T 4
In Chapter 2 we will prove a general integral estimate for the density via
the Green function.
For 0 < e < 1/2 we set (see [5])

E(t) = (EN[0,4])U0,et] U[(1 — &)t 1]. (1.0.3)

L. Carleson and V. Totik [5] have characterized the optimal smoothness
in terms of a Wiener type condition. They proved

Theorem 1.0.1. Let ¢ < 1/3. E satisfies (1.0.1) if and only if
1 cap(B.(27F))
> <1 B

k

This theorem plays the same role for Lip 1/2 smoothness as Wiener’s
theorem for continuity. The proof of Theorem 1.0.1 in [5], due to L. Car-
leson, was based on Poisson’s formula. There is an alternative approach:
using the technique of balayage; and with it we prove the integral variant
of Carleson’s Theorem, from which Andrievskii’s theorem (1.0.2) easily
follows (see Lemma 2.7.1).

Andrievskii also constructed a regular compact set £ C [0, 1] such that

_gal=r) 1
lg)% P =0, O<5<§
holds but Zni0
lim inf cap(BO0.r) (1.0.4)
r— r

Furthermore he proved that conversely, (1.0.2) does not imply (1.0.1).
Now let’s turn to the case F C [—1, 1]. In this case

: , T
9 (ir) 2 goyj_1,y(ir) > 2’ 0<r<l,

therefore in this case the optimal smoothness for Green functions is Holder
1 and we are interested in sets F satisfving

ga(2) < Clz|, 0<]z| <1



This is equivalent to
galir) < C'r, 0<r<l (1.0.5)

because go(x+iy) is monotone in y. As we will see, the necessary condition
for the optimal smoothness can be generalized to this case, as well.

Let us consider now the more general setting when F is an arbitrary
compact subset of C. Assume that 0 is a boundary point of (2. Several
equivalent conditions are known for the regularity of 0 (see e.g. (|14,
Appendix A2.]). One of them is due to Wiener. It characterizes the
regularity with the capacity of the sets

E*"=FEnN (E27n+1 \D27n) = {Z cl o o—n S |Z| S 2—n+1}.

Theorem 1.0.2. go(0) = 0 if and only if

2 ol jean(@) (1.06)

where cap(E™) denotes the logarithmic capacity of E™.

L. Carleson and V. Totik (see [5]) characterized in a similar manner
the stronger Holder continuity:

ga(z,00) < Cz]" (1.0.7)

with some positive numbers C| k.
For ¢ > 0 set

Ne(e)={neN : cap(E") > 27"}, (1.0.8)

and we say that a subsequence N' = {n; < ny < ...} of the natural
numbers is of positive lower density if

i NV N{0,1,...,N}|

> 0,

which is clearly the same condition as ny = O(k).

Theorem 1.0.3 (Carleson, Totik). Suppose that the compact set I sat-
1sfies the cone condition. Then Green’s function gq is Hélder continuous
at 0 if and only if Ng(¢) is of positive lower density for some ¢ > 0.

The Holder continuity of the Green function can be stated as an equiv-
alent condition in terms of the harmonic and equilibrium measure and the
solution to the corresponding Dirichlet problem as well (see |5, Proposition
1.4]). Tt is also strongly related to the Markov inequality.



Let I1,, denote the set of algebraic polynomials of degree < n. Markov’s
inequality is a basic result comparing the supremum norm of a polynomial
P, € 11, to the supremum norm of its derivative:

Pl < P[Pl
If C1(0) is the unit circle, then the corresponding inequality

1Py < nllPalloy o)

is due to Bernstein. Let us also remark that this is in some sense the
optimal case, for if F is any compact set on the complex plane then there
are polynomials P, € I1,,, n = 1,2,... for which

P2l = enl| Palle

with some constant ¢ > 0. Indeed, let D be a disk containing F with the
smallest possible radius. Then 0D N E is not empty, say zp is a point in
this set. If @ is the center of D and r is its radius, then for F,(2) = (z—a)™
we have
, n
[Pazo)l = ~ Il

Let ¥ C C be an arbitrary compact set with positive logarithmic
capacity. We say that E satisfies the Markov inequality with a polynomial
factor if there exist C, k > 0 such that

1P|z < Cn*|| Palle (1.0.9)

holds for every n and B, € I1,.
Let € be the outer domain of I, Green’s function gq is Holder contin-
uous if there exist (1, a > 0 such that

ga(z) < Cy (dist(z,E))a. (1.0.10)

for all z € C. It is known that in certain cases the Markov inequality is
equivalent to the Holder continuity of the Green function. Totik (see [18])
proved that this is true for Cantor-type sets, i.e. (1.0.9) is equivalent to
(1.0.10) if F is Cantor-type. It is an open problem if (1.0.9) and (1.0.10)
are equivalent for any compact set . In Chapter 3 our aim is to show
that in the optimal cases k = 1 and a = 1 they are, indeed, equivalent.

Totik suggested that Theorem 1.0.3 could be extended to the higher
dimensional case, i.e. when F C R%. For this case a Wiener type condi-
tion like in Theorem 1.0.3 was already defined by Maz’ja (see [8]- [11]).
Maz’ja proved its sufficiency for the Holder continuity of the solution to
the Dirichlet problem and showed that in general it is not necessary. In
Chapter 4 we will prove the sufficiency of this condition for the Holder con-
tinuity of the Green function and show that it is also necessary provided
E satisfies the cone condition. We also give an equivalent characteriza-
tion in terms of the equilibrium measure. In other words, under the cone
condition we completely characterize Holder continuity, which has been a
long standing open problem.



Chapter 2

Optimal Smoothness for
E C|0,1]

2.1 Notations, Definitions

We shall use ¢, ¢q,¢1,¢0,..., C,Cy,C1,Ch, ... and dy,ds, . .. to denote pos-
itive constants. These constants may be either absolute or they may de-
pend on I depending on the context. We may use the same symbol for
different constants if this does not lead to confusion.

| '] denotes the linear Lebesgue measure of a measurable subset F' C R
of the real line R.

D :={z : |z| < 1} is the unit disk, T = 9D is the unit circle and for
21,72 € C, 21 7£ 29 let

[21,22] = {tZQ + (1 — t)Zl - 0 S 14 S 1}

be the interval between these points.
For the notions of logarithmic potential theory see e.g. [13] or [14]. In
what follows pup denotes the equilibrium measure of F,

U¥(z) = /log ;du(t)

|2 — 1]

the logarithmic potential of the measure v, gs(z,a) the Green function
of the domain G with pole at a, w(x, H, G) the harmonic measure in G
corresponding to the set H C 0G. We shall frequently use the relation

=1 — UHE C\FE 2.1.1

goru(2) = log ap(E) (2), 2€C\ (2.1.1)
valid for any compact set I of positive capacity.

Let G be a domain with compact boundary and with cap(9G) > 0,

and let ¥ be a measure supported on G. We shall need the concept of

balayage (or sweeping) of v out of G (sometimes we say balayvage onto



0G), see e.g. [14, Sec. 11.4]. Tt is the unique measure 7 supported on 9G
with the property that

U?(z) = UY(2) + const (2.1.2)

for z € 0G with the exception of a set of capacity 0. For regular G the
exceptional set is empty. If GG is bounded, then the constant is 0 ([14, Ch.
I1, Theorem 4.1]), and if G is unbounded, then it is (|14, Ch. II, Theorem
4.4])

const = /Ggg(a, o0) dv{a). (2.1.3)

We shall use the notation Bal(u, G) for the balayage measure 7.

There is a connection between harmonic and balayvage measures: if
K C 0G are compact sets, then for x € G the equality

Bal (530, G) (K) = w(z, K, G) (2.1.4)

holds, where ¢, denotes the point mass (Dirac measure) placed at the
point x (see e.g. [14, Appendix A3, (3.3)]). Therefore, in what follows we
shall interchangeably use the harmonic measure and balayage notations.

We shall also use Harnack’s inequality: if u is a positive harmonic
function in the unit disk and |z| < 1, then

1 —|z| L+ |7
w(0) < u(z) < u
1+|z|()_ ()_1—|z|

0) (2.1.5)

It follows from this (see e.g. [4]) that if K is a compact subset of G, then
there is a constant ¢ such that for all positive harmonic functions v on GG

cu(e) < uly) < ~ula)

for all x and y in K.

2.2 Results

Let F2 C [0,1] be a compact set with positive (logarithmic) capacity and
let Q:= C\ E.

Recall the definition of E.(¢) in (1.0.3) from the previous Chapter
and that cap(/) = |I|/4 for any interval I, where || denotes the length
(Lebesgue measure) of 1.

Our first result is



Theorem 2.2.1. For anye >0

[ (i - —Cap(fg(t))> %dt < Com\/_;) (2.2.6)

where Cy is independent of r.

The integral variant of Carleson’s theorem (Theorem 1.0.1) is a conse-
quence of this result.

Theorem 2.2.2. Let ¢ < 1/2. E satisfies (1.0.1) if and only if

/01 (i - w> %dt < . (2.2.7)

The method used in the proofs of Theorems 2.2.1 and 2.2.2 can be
applied to the case F C [—1,1] as well. The highest smoothness of the
Green function at the origin (Lipschitz condition) is again equivalent to
the highest density at 0. Namely, let £ C [—1, 1] and set E.(¢) as in (1.0.3)
and

Ee(=t) = (BN [=£,0)) U [, (1 — )(=t)] U [—et, 0].

Theorem 2.2.3. If £ C [—1,1] and € > 0 then

[ G - —Cap(fs(t))> %dt < 00995”) (2.2.8)

The same is true for E.(—t).
Theorem 2.2.4. Let ¢ < 1/2. E salisfies
gal(z) < Clz, 0<|z| <1, (2.2.9)
if and only if (2.2.7) holds for E.(t) and E.(—t).
This is a variant of [5, Theorem 1.11].
Corollary 2.2.5. If F satisfies (2.2.9) then

lim cap(EE N [—r,7])

1
—. 2.2.10
r—0 r 2 ( )

Corollary 2.2.6. (c.f. [5, Corollary 1.12]) gq is Holder 1 continuous at 0
if and only if both g&\(prp,1)y nd g8\ (gr-10) @re Holder 1/2 continuous
there.



Figure 2.1: the disk D; and the set F}

2.3 Proof of Theorem 2.2.1

We divide the proof into three steps.

Step I. First we are going to verify the following: let I; = [a;,0;], j € N
be disjoint closed subintervals of (0,1] such that b; < Cy|I;|, j € N for
some C4, and for ¢ > 0 set

Fy = (I; N E)Ulag, a5 + (/2] U by = (e/2)|1],0]. (2.3.11)
Then 1 " L
!l gal—r

it I]Zg:[r,” <Z N T) < \/F : (2.3.12)

For the proof first of all notice that
paup([0,7]) < Cagal(—r), 0<r<l, (2.3.18)

for some Cy > 0 (recall that u Eulo,r] denotes the equilibrium measure of
E U [0,r]). This is immediate, since (see (2.1.1))

go(=1) = ga\(mup)(=T)
i|
— ] — [JtEU0](—
o cap(E£ U [0,7]) (=r)

—  [JHEUD] (O) _ UMEU[O,T](—T) = /ng

L
t

d,uEU[O,r] (t)

> (log2) / " oo (t) = (0g2popn(0, ).

Let D; resp. C; be the open disk, resp. circle with diameter [;, let J;
be the middle third part of the arc 9D; N {2z > 0}. If I = (a,b) we use
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the notation /(¢) = (a + (b —a),b — (b — a)). Taking balayage of some
measure supported in D; onto F U [0,r| can be done in two steps: first
take balayage onto 9(D; \ (FU[0,7])), and then onto U0, ] (see Figure
2.1). Hence for a € I;(e/2) = |a; + (¢/2)|1;],b; — (¢/2)|1;]], I; C [r, 1]

Bal(éa,C \ (EU [O,r]))([O,r])

_ /Bal(éb, C\(2U[0.)) ([0, l)dBal (5, D, \ 1) ().

Next we use that pgup, is the balayage of pyo 1 onto £U [0, r] (|14,
Theorem IV.1.6, (¢)]), and so

pogo (10,71) = Bal(poy, ©\ (B0 [0,7]) ) ([0, )

> Bal( L CANEU0.7])) (0.7)

PO e, 1)\
_ / Bal (3., G\ (220 0,7)) ) ([0, ) (a)
[r,1\E

> Y[ Bal(s.C\ (B UL0L.D) (0. Do)

g L;Clr ] 7

= ) s, (2.3.14)

3t 1;C[r.1]

and here

S, > /Ij<5/2)/CjBal<6b,C\(EU[O,r]))([O,r])
dBal (5a, D\ E) (b)dpipo(a)

> (jor Bai(a,C\ (U 0)) (0.1))

beJ;
< [ Bal(5,. D, \ B) ()i )
1i(e/2)

Denote by 2C;, resp. 2D; what we obtain from Cj resp. D; by enlarg-
ing them twice from their center. Then 2D, contains in its interior the
interval I;. For a € I;(¢/2) Lemma 2.7.2 gives

Bal (6a, D;\ E) (J;) > Bal (% D\ Fj) (J5)
c./2Bal <5a, Dy \ Fj) (C5)

CE/QBELI <6a, 2D] \ FJ> (20])
= copw(a,2C;,2D; \ F;).

Y

Y

9



Since gg\p, (2) ~ 1 = w(z,20;,2D; \ F}) for z € 2C;, and both functions
ge\r, (7) and w(z,2C;,2D; \ F) are harmonic in 2D; \ I and vanish on
F;, these functions are comparable throughout 2D, \ F;. Therefore the
preceding estimate vields a constant ¢ > 0 such that for a € [;(¢/2) we
have

Bal(éa,D \E)( 5) > cgevr,(a (a).

Therefore we can continue the inequality for S; as

52 ¢ jof Bat(, ©\ (B0 (011

X/ ge\r; (@)dpo,1(a). (2.3.15)
1;(e/2)
Here )

d a) = ————=da,

110,17 (a) S

and hence for a € I; = [a;, b;| we have
1 1 1
ma(l —a) 7T\/_ Civ/|1

by the assumption b; < Cy|;|. If

(2.3.16)

1 cap(Fy) 1

0; = 37— —77— = 7 (cap(l;) — cap(Fy))
T4 Ll ] !
then
cap(/;) / /
05 ~log———=% = [ ge\p ()dps,(t) J& )dt, 2.3.17)
18 (), o W0~ 1 g O

where the equality is known (see e.g. [5, (2.7)]) and the last relation is
true because the integrals are actually integrals over [a; + (¢/2)|1;],b; —
(/)L \ E and dpp, (1) = 1/(m+/(t — a;)(b; — t)) ~ 1/|I;|dt there. Thus
we obtain

S; > c10,4/11] <bigj Bal(éb, C\(EU [O,r]))([O,r])) L (2.3.18)
For b & E U [0, 7] the quantity

Bal (5, C\ (U 0.7 ([0.7]) = w(b.[0.r.C\ (B U [0.7]))

is a nonnegative harmonic function of b, hence by Harnack’s inequality we
have for b € J; and d; = |I;| the inequality

Bal (5b, C\ (EUo, r])) ([0,7]) > csBal (5_d],, C\ (EU, r])) ([0, 7))

10



with some absolute constant ¢, > 0 because dist(.J;,0) ~ dist(.J;, [0, 1])
~ |I;] = dj. By (|14, Ch. II, (4.47)]) we have

Bal(0,, €\ (B U[0,7) )([0,7]) > Bal(d_4,,C\ [0,1])([0,(2}3.19)
N RVUNIET

TJo IO =0t +d))

< Lyr 1
T om/dy TG

This, the previous inequality, (2.3.18) and (2.3.14) give

,UEU[O,T]([Oy T]) > 03\/F Z 9]’7

Jr 1;Cr 1]
which together with (2.3.13) proves (2.3.12).
Step II. Let 2 C [0, 1] be compact and for e > 0, 0 < ¢ < 1 set
EX(t)y = (EnNet/2,t]) Ulet/2,et] U [(1 — &/2)¢,1]. (2.3.20)

Then for 0 < g <1

L (B gal=r)
Y -megy) <ot e

m: qm>2£—r

where co depends only on € and q.

To prove this let the integer M be so large that ¢™ < /2. Clearly, it is
sufficient to show that for each [ = 1,..., M the sum for the subsequence
m = jM + 1, j € N satisfies

1 cap(EX(¢?MTh)) ga(=r)
E (L) e

e qiMA+IS 21
Jo g@MAl> =

But this immediately follows from the result proved in Part 1, since the
intervals [; = [g¢/Mt /2 ¢?MH] j € N are pairwise disjoint and the set
F; defined in (2.3.11) for these intervals is contained in E*(¢g7M1).

Step III. Finally, we complete the proof of Theorem 2.2.1. Let ¢ > 0 and
0<u<l Iftu<t<ull—e/2)/(1—c¢), then for the sets (1.0.3) and
(2.3.20) the relation E.(t) N [eu/2,u] 2 EX(u) holds, and so

cap(E7 (u)) _ cap(EL(t) N ([eu/2, u]))
u(l —¢/2) u(l —e/2) '

< (2.3.22)

But E.(t) = [0,eu/2] U (E.(u) N [eu/2,u]) U |u,t], i.e. E.(t) is obtained
from E.(t) N |eu/2,u| by attaching one-one intervals to the right and to

11



the left. Therefore, we can apply Lemma 2.7.4 below ((2.7 .57),twice> to

conclude
cap(Fe(u) N (lew/2,u])) _ cap(Fe(l))
u(l —e/2) - t ’

which, together with (2.3.22), gives
cap (B2 (u))

1 cap(Z:(t) _ 1
1T T SiT e (2.3.23)

This is true for all u <t < u(l — ¢/2)/(1 — ¢), therefore if we divide
both sides by t and integrate with respect to ¢ over the interval [u, u(1 —
£/2)/(1 — ¢)] then we obtain with ¢ = (1 — ) /(1 — ¢/2)

/u/q 1 cap(E:(1) ldt < (10g l—¢/2\ (1 cap(EZ(u)) .

u 4 t t l—¢ 4wl —¢e/2)
(2.3.24)

Let k be the largest integer for which ¢ > 2. Summing up (2.3.24) for

u=q,q%,¢% ..., q¢" and making use of (2.3.21) we obtain

/q: G B Cap(tﬂ> %dt < 0399\(/;7").

Since
k<2r172r1—§<4r

)

€ q el—e ™ ¢

we can change the limit of the integral to 45—7". Then, changing % for r we

can use Harnack’s inequality to obtain

g@(—%) < Cagal(-1), (2.3.25)

where Cy depends only on . This completes the proof of Theorem 2.2.1.
|

2.4 Proof of Theorem 2.2.2

It follows from Theorem 2.2.1 that (1.0.1) implies (2.2.7). Therefore we
only need to show that the converse is true. We divide the proof into two
steps.

Step I. First we are going to verify the following: If 0 < ¢ < 1 and
e <q/(q+1) then

i (1 - M) < o0 (2.4.26)

implies (1.0.1).
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For the proof let
g L can(l(¢™)

and suppose ) 0 < oo. Let n > 0 be chosen below, choose M so that
> omsas On < 5 and let B = E'U [eg~™ 1], By considering Green’s func-
tions g\ g and gg, j; on a small circle about the origin not intersecting E,
we can see that the Holder 1/2 property at the origin for gc\ g is the same
as for ge 7, therefore we may assume that £ = B, ie Y 0% <nand
(for sufficiently large M) [(1 — a)q/2,1] C E, where o = ¢q/(¢q + 1).

It is sufficient to show that pz([0,6]) = O(v/3). In fact, then

r + t
go(=r) = gal—r) — ga(0) = / log “ L (1)
/r/2m 2m+1
_ n /
Z T/2m+1 m: r<22;"7“<1 2m

_ ZO<m+1\/7> ZO( 2%)0(%).

This time let [, = [0,¢™] and C}, resp. D! be the circle resp. disk
with diameter I,,,(¢) = [eq™, (1 —)q™] (c.f. Figure 2.2). For a € I,,(a) =
lag™, (1 — a)¢™] we obtain from Lemma 2.7.2

wla,Cr,, Dy \ E) < dw(a, J),, Dy, \ E),

> <y

where J/, is the middle third part of the arc C¥, N {Sz > 0} (see Lemma
2.7.2) and d = 1/cy(a—s)/(1-25). Let By, = E.(¢™). Since for z € Jy, we
have ga\ p, (2) ~ 1 and gg 5, (2) > 0 for z € Cp, \ J;,, it follows from the
maximum principle and the previous inequality that with some constant
d

w(a,Cy,, Dy, \ E) < digg\g,, () for any a € I,,(a). (2.4.27)

Let n be large, p, = ppgus, the equilibrium measure of U [, =
E U [0,¢", and define M, as pu,([0,q"]) = M,q*/?. Since ug([0,q”)) <
1, ([0, ¢*]) (note that pp is the balavage of u,, out of ), it is sufficient to
show that M,, = O(1). p, is obtained by taking the balayage of o 1) onto
E U I, hence

ann/2 — //L[OJ](In)‘I“/

Bal (5&, C\ (EU In)> (L)dpp. (). (2.4.28)
[g™ I\NE

Set p such that ¢* < ag¢? < ¢~ Then U_, I, (a) D (0,(1 — a)q] and
since [(1 — a)q/2,1] C E, the last integral can be written as

/qaqp Bal(8,, C\ (B U L) ) (In)dupoy (@)

n

13



Figure 2.2: the disk D}, and the set I,

+§:¢;®Bm@m0\ﬁhﬂmthMMWU

r
Sa+Y _ Sh (2.4.29)
m=1

Clearly
S+ o In) < pp([0,6°71) < g2

Therefore, if we can show that with some constant dy depending only on
e < q/(q+1) we have S*, < do0* M,q"'?, then (2.4.28) and (2.4.29) give

r
ann/2 < qn/2 +d2ann/2 Ze:n < qn/2 +d2ann/2n)

m=1

and for n < 1/2d, this yields M, < 2.
Thus, it has left to prove S}, < dQQ:;Lan”/ 2. Since the balayage mea-

sure Bal (6&, C\(FU In)> can be obtained by taking first balayage out of
D’ \ E and then taking the balayage of the so obtained measure out of

C\ (FUI,), we have the formula
Bal (5a, C\ (BU In)> (1)

_ / Bal(, C\ (B0 1)) (1)dBal (5, D, \ ) ().

14



Here
Bal(8,, D}, \ B)(Ch,) = wla, Chy Dy, \ E),

hence
[ /Ma) / . Bal(éb,C \ (EUIn)>(In) (2.4.30)

dBal (8, D;, \ 1) (b)dpp,(a)

< <SUP Bal <6b; C \ (E U In)) (In)>

beCr,
<[ w0, D\ B (o)
I ()

Since for a € I,(a) the equilibrium measure pp 3(a) is given by the density

1/ (W\/a(l = a)) ~ ¢~™?, we obtain from (2.4.27)

S:n S <Sup Bal (657 C \ (E U In)) (Lz)) / gC\Em (a)dgq_m/2da.
I ()

bect,

Now, just like in (2.3.17)

0~ / G, (D),

m

therefore the last integral is at most dyq™/20,, hence it is left to show

sup Bal <6b, C\(EU In)> (1) < dsBal (500, C\(EU In)> (L)g~™/2,

beCs,

because Bal (600, C\ (LU In)> is the equilibrium measure of F U [,, and
Bal (500, C\ (BU In)> (1) = pin(L) = Mg,

We estimate the harmonic measure Bal (62, C\(FU In)> (1)
= w(z,1,,C\ (FUL,)) for z € C¥ by taking the conformal map

w(z)= (¢ 'z —1) - \/(q—”—lz — 1)’ -1

of C\ I,, onto the unit disk D. This maps I,, onto T, £\ I, into a subset
E* of [¢"*2, 1], the point oo into the origin and the circle C¥, into a closed
curve v such that all points of v are of distance ~ ¢"™ from 0. Thus,
there is a constant dgs such that + lies inside the circle Ty n-m of radius
dgq” ™™ about the origin. Now for b € C}, we obtain from the maximum

15



principle

wb, I,,C\(EUL)) = w(w),T,D\ L")
< sup  w(w, T, D\ E£*)

wer6qn7m

w(_d6qn_m7 T) D \ E*)7

where the last equality follows from the solution to Milloux’ problem (see
[1, Section 3.3]). Hence, it is enough to prove

w(—dsg™™, T, D\ E) < d7¢g"™?w(0,T,D\ E*). (2.4.31)

Map now D onto the exterior of [—1, 1| by v(w) = (w+ 1/w)/2, and then
the exterior of [-1,¢™72 — 1] onto D by

u(®) = (@@ 1 1) = 1) = /@ ) — 1P - L

n—m

Under these mappings the point —dgzqg is mapped into —1 + r,, with
T ~ ¢™?, while 0 is mapped into 0, furthermore with » = u(v(w)) = h(w)
the function w(h~'(z), T, D\ E*) is harmonic in D (note that the image of
E* under w — h(w) is part of the unit circle). Hence Harnack’s inequality
gives

w(h_l(_l + Tm)) T) D \ E*) < d7q_m/2w(h_1(0)7 T) D \ E*)7
and this is (2.4.31).

Step II. Let & < 1/2 and suppose (2.2.7) holds with &' in place of . Then
(2.4.26) holds for ' <e <q/(g+1) (¢<1).

Let 0 <u < 1. fu(l —e)/(1 —¢') <t < wu, then for the sets (1.0.3)
and F.(u) the relation EL(t) C E.(u) N [0,t| holds, and so

cap(Fa(0) _ cap(Felu) 010,) o)
t t

Since F.(u) = (E-(u) N [0,¢t]) U [t,u], applying Lemma 2.7.4 (like in the
Proof of Theorem 2.2.1) we can conclude

cap(Ex (1)) _ cap(F(u))
t - u ’

hence
L cap(Fo(t) 1 cap(Fa(u))
4 t — 4 u '
Dividing both sides by ¢ and integrating with respect to ¢ over the
interval [u(1 —¢)/(1 — €’),u| we obtain with ¢ = (1 —¢)/(1 — &’)

[, G oz (i) (-5
(2.4.34)

(2.4.33)

16



Summing up foru = 1,q,¢% ¢*, ..., ¢™ and making use of (2.2.7) we obtain

i(ﬁ_w><w,

m=1

and the proof of Theorem 2.2.2 is complete.

2.5 Proof of Theorem 2.2.3

First of all notice that in the proof of Theorem 2.2.1 we used the fact that
E C [0,1] only in Step 1. Actually, we used it at two main steps: proving
(2.3.18) (using the equilibrium measure of [0, 1]) and establishing (2.3.19).
Therefore, we will only mention the steps where the proof differs from that
of Theorem 2.2.1.
We are going to use the notations of Step I. Instead of (2.3.13) now we
have
Lru,([0,7]) < Cogalir), 0<r<l (2.5.35)

Indeed,

9a(ir) > g&\(mup (i)
wr—1

— [JHEU[O, (O) — [JtEU0q] (ZT) — /lOg

‘ dppupo(t)
> 108;\/5/ dpgup,(t) = (108; \/§> peuo,([0,7]).
0

Replacing o1 by p—1,1) in the argument before (2.3.15) we have (c.f.
(2.3.15))

S, > ¢ <bi££ Bal(éb, C\ (EUD, r]))([O, r]))
X / ! 9o\, (@)dp-1,1(a). (2.5.36)

I

Now (c.f. the proof of (2.3.18)) we have

S; > 10,1 (bigjf Bal(éb, C\(EU [O,r]))([O,r])) , (2.5.37)

since

dnlt) = ==

and (c.f. (2.3.16))




In (2.3.19) we used 0_q;. Now, since —d; may be in F, let us change
it for id;. By Harnack’s inequality we have for b € J;

Bal(éb,C \ (B U [O,r]))([O,r]) > clBal<6idj, C\ (EU [O,r]))([O,r])
> clBal<6idj,C\[—1,1])([O,r])
- clw<idj, 0,7],C\ [1, 1]). (2.5.38)

Applying the transformation ¢(z) = z — v/22 — 1 and using (|14, Ch.
I1,(4.8)]) we have

w(idj,[O,r],C\[—1,1]> - w(i(dj—1/1+d§>,A,D>
- %( / P(Gi(d; = \J1+ &) )t

arccosr

2m—arccos r

+ / P(g,i(dj—W))dt>,

3m
2

where ¢ = €, P is the Poisson kernel and A is the intersection TN {z :
0 < R(z) < r} consisting of two arcs on the unit circle. Thus,

2m—arccos r

w(idj,[O,r],C\[—l,lDZ% / F)t,

where
(1—(1+2d§—2dj 1+d§))
1—2(1/1+d§—dj)COS<t‘|‘%>‘|‘(1+2d§_2dj 1+d§)'

It follows that

w(idj, 0,7],C\ [~1, 1])

Jt)

di(y/ 1+ d? — dj)

1= 201+ & = dyVT =77+ (14202 — 2d;, /1 + &)

>

33

Assuming d; > r we get

w(idj, 0,7],C\ [—1, 1])
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. di(y/1+ &% — dy)

7T1—21/1+d§ d;) A2+ (1 -+ 2d2 — 2d;, /1 + &2)

2”1— (\/1+d2 - djm/

= gg(d]),
where
() — (V1422 - 2) VIt a1l —a?
TV e oWV -2 ta) 21 '

xg(x) is monotone decreasing on [0, 1], hence

g(%)2®£<l>,

w(idj,[O,r],C\[—1,1]> > Z—f (di) .
This, (2.5.38) and (2.5.37) give

which gives

Sj Z 63(9]'7"
for d; > r, I; C |r, 1], which proves

. () oot

3o L;Clr 1], |L|>r J

and the proof of Step I is complete.

The requirement |I;| > r in the summation doesn’t affect the proofs in
Steps IT and III, because if ¢™ > 2, then r < ¢™(1 — ¢/2) = |I;|. Finally,
in (2.3.25) we can change the arguments for ier/4 and ir respectively.

]

2.6 Proof of Theorem 2.2.4 and Corollary 2.2.5

Again, we will only mention the steps where the proof differs from that
of Theorem 2.2.2. We only need to show that if E.(¢) and E.(—t) satisfy
(2.2.7), then (1.0.5) holds. We need some changes in Step 1.

It suffices to show that pg([—0,9]) = O(J). This time let u, =
LEu[—gn g the equilibrium measure of I/ U [—¢",¢"], and define M, as
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(=G, ") = M,q". Again it is sufficient to show that M, = O(1). u,
is obtained by taking the balayage of y_1 ) onto £ U [—¢",¢"], hence

Myg" = pa([=4", ")) (2.6.39)
+ /[ . Bal (% C\(FU[=¢", qn])) ([=4¢", " dp-1.1(a)

+ /[—1,—qn]\E Bal (% C\(EU[=¢", qn])) ([=4" a"Ddpy-1.1(a).

Now
p-1((=¢" 1 ") < eg”

and we can write the two integrals as sums like before. We will only deal
with the first integral, the other one can be handled similarly. Let a,
I,(c) and 6}, be as in the proof of Theorem 2.2.2. It suffices to show that
with some constant dy depending only on ¢ we have S}, < dx0), M,q",
where

S [ B0 O\ (U D) (a0 D)

and I,,(a) = [ag™, (1 — a)q™|.

The inequality in (2.4.30) and the equations before remain valid if we
change I, for [—¢", ¢"] and [0, 1] for [—1, 1] (and C¥ and D}, are the circle
and disk with diameter [,,). This time for a € I,,,(c) the density of the

equilibrium measure j_y q(a) is 1/ (w (a+ 1)(1 — a)) ~ 1, hence it is
left to show

sup Bal (8, C\ (EU [~¢".¢")) ) (=4" ")

beCr,
< dsBal (5.0, C\ (B U [=¢",q")) ) (=a" 4" g™
The conformal map
w(z) =q "z —/(g"2)* =1

takes C \ [—¢™ ¢"] onto the unit disk D, [—¢*,¢"| onto T, £\ [—¢", ¢"]
into a subset E* of [—1, —¢""?|U[¢""?2, 1], the point oo into the origin and
the circle C}, into a closed curve ~ such that all points of v are of distance
~ ¢"~™ from 0. Hence, it is enough to prove

sup  w(w, T, D\ E*) <d;¢q""w(0,T,D\ E*). (2.6.40)

wer6qn7m

Let § < &o, where g is defined in Lemma 2.7.5. Set E** = [—1 +
5,1 — 4] N E*. The image of E** under w™!is £ N ([—1, —sT™M2 -0+

502 /(2— 8)|U[s™(2 = 6+ 82) /(2 — §), 1]), which has positive capacity for
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large n. Therefore we can assume that cap(£**) > 0. The left-hand side
of (2.6.40) is increasing if we replace D \ E* by (D \ E**). The function
w(z, T,D\ E*) is harmonic in D\ E** and equals 1 on T, therefore it
is comparable with gg\ . More precisely, let A = infr gg\ g It follows
from Harnack’s principle that there is a constant ¢s depending only on 9
such that ga\EH(z) < ¢sA for z € T. Thus

Aw(z, T, D\ E™) < g\ g (2) < csAw(z, T, D\ E*) (2.6.41)

holds true on T and an application of the maximum principle shows that
it is true for all z € D\ £**. This implies

w(w, T,D\ E*) < %gg\EH (w) (2.6.42)

for w € Tyyyn-m. It follows from the definition of the Green function
(2.1.1) that if ' C Rand z = 2 +iy, x, y € R,y > 0 then gg p(2) is
monotone increasing in y. Using also the symmetry with respect to the
real axis we have

SUp g g (W) < SUD g oo (W), (2.6.43)
weT weL

n—1m

dgq

where L = {z : z = x+idsq"™ ™, |x| < dsq"™}. By Harnack’s inequality
(2.1.5) and (2.6.41) we obtain

Stélzge\m(w) < dsge\ e (1dsg"™™)
< dgcsAw(idsg”™™, T, D\ E*). (2.6.44)

On the other hand, by Lemma 2.7.5 the right-hand side of (2.6.40) is
not less than dog™"w(0, T,D \ E**). In view of this and (2.6.41)-(2.6.44)
it suffices to prove

w(idsg™™, T, D\ E*) < diog~™w(0, T, D\ E™). (2.6.45)
Now set v(w) = (w + 1/w)/2 and
u(v) = ¢"v — /(¢ T20)2 — 1.

Under the mapping z = u(v(w)) the origin is mapped into itself, D \ £**
is mapped into a set containing D, E** is mapped into a subset of the
unit circle T and the point idsg”™"" is mapped into a point of distance
> dg™ from T, where d is a constant. Thus with z = u(v(w)) = h(w),
using Harnack’s inequality we get (2.6.45). This completes the proof of
Theorem 2.2.4.

The proof of Corollary 2.2.5 is immediate from Lemmas 2.7.1 and 2.7.4.
First of all, Lemma 2.7.1 implies (1.0.2) and

lim cap(EN[-r,0)) 1

r—0 r 4 )
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Then, taking I = [—r,0], J = [0,r] and F' = EN[—r,0] in (2.7.57) we get

cap((EN[=r.0)ulor])
lim = (2.6.46)
r—0 r 2
Next, taking I = [0,r], J = [-r,0], F = EN|0,r] and G = EN[-r,0] in
(2.7.56) we can infer
cap(EE N [—r,7]) < Acap(FE N[0, 7])

Cap<(E A [—r,0]) U [O,r]) r

Finally, (2.2.10) is a direct consequence of (2.6.46) and (2.6.47).

1>

— 1. (2.6.47)

2.7 Lemmas

Lemma 2.7.1. (2.2.7) for every ¢ > 0 implies (1.0.2).

Proof. Let n > 0 be arbitrary such that 1 +n < (1 —¢/2)/(1 —¢). For
t/(1 +n) <u<twehave F,(u) C (1), therefore

Lcap(Bap(u) 1 cap(Eu(t) 1 cap(En(t))

1
1 y = 7 v 1 ()
1 cap(L.(t))
= 7 ¢ -

On adding 7, dividing by u both sides and integrating with respect to u
over the interval ¢/(1 + 1) < u <t we obtain

1 cap(FE.(t)) < 1 /t <l B cap(EE/g(U))> ldu .
4 t log(1 +n) Jiyam \ 4 u u

Therefore, the finiteness of the integral in (2.2.7) (for £/2 rather than for

£) gives
1 E(t
lim sup <— _ can(B(t) ))> <,
t—0 4 t

and since here 1 > 0 can be arbitrary small, it follows that

B, |
fi S2PE=) L (2.7.48)
t—0 t 4

Now let {¢,} be an arbitrary positive sequence tending to 0 and set

1
F, = Es(tn)/t”’ Yn = m

We have just proved that cap(F,,) — 1/4 as n — oo, and below we verify
that this implies the convergence ur, — po,1) in the weak* topology. Since

fo((e,1 =€) > 1 =2/,

HE le, 1 —¢]
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there is an ng such that for n > ng we have up ((,1 —¢)) > 1 — 24/,
There is also an n; such that for n > n; the inequality

Ut () = log

< (1 log 4 € Fy,

holds, which implies for n > max(ng, n1)

Um(x) < (1+¢)log4, x € I,

1
1— 2.z
But the measure v, is supported on F,, N [g,1 — | and has mass 1, hence
the preceding inequality gives

1

1
1 < [ U"dy, < ———(1 +¢)log 4, F,,
Ogcap(Fnﬂ([s,l—s])_/ . —1_2¢5( +e)logd, we

i.e.

1 (H2)/(1-2vE)
cap((E, N [0,2,])/tn) 2> cap(F, Ne, 1 —¢]) > 1
Since here ¢ > 0 is arbitrary, it follows that cap(F, N1[0,t,])/tn) — 1/4 as
n — oo, and this is (1.0.2).

Above we used that as n — oo, we have up, — pp,1 in the weak®
topology on measures. In fact, let o be a weak® limit of some subsequence,
say fir, — o as | — oo. Then o is supported in [0, 1], has total mass 1,
and all we have to show is that o — o ;. We know that

1
cap(Fn)

for x € F,, with the exception of a set of capacity 0, and the same is true
for [0,1]. Since F,, C [0, 1], it follows that

Utrn (x) = log (2.7.49)

cap([0, 1})
cap(F,)

for x € F,, with the exception of a set of capacity 0, and since every set
of zero capacity has zero pp -measure (see [14, Remark 1.1.7, p. 28]), it
follows that this inequality is true pp -almost everywhere. But then by
the principle of domination [14, Theorem II.3.2] the same inequality is
true for all z € C. Fixing such an x & [0, 1| and letting n tend to infinity
through the subsequence {n;} it follows from cap(F,) — 1/4 = cap(F)
that

UFPa () < UFR1 () + log

U?(x) < UF0ON ().

Thus, this inequality is true for all z € C\ [0, 1].
However, the function

Ut (x) — U’ (x)
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vanishes at infinity, so it is harmonic there, and an appeal to the minimum
principle on the domain C\ [0, 1] yields that we must have

U (x) = Uro1(x), x e C\|0,1].
Now we can conclude o = pjoq) from the unicity theorem [14, Theorem

11.4.13).

Lemma 2.7.2. Let J = {e*% : 7/3 < o < 27/3} be the middle third
of the upper part of the unit circle. For every ¢ > 0 there is a constant
c. > 0 with the following property: if F C |—1,1] is any compact set with
[—1,—1+e]U[l —¢,1] C F, then for x € [—1,1] \ F the inequality

w(z, ;D\ F) > cw(x, T,D\ F) (2.7.50)
holds.
Remark 2.7.3. The proof actually works the same way for any arc J C T.

Proof. First we verify the lemma in the special case when [—1,1]\ F' =
I = (u,v) is an interval. Let o € I be the point for which

u—a v —Q

l—au 1—av’

and apply the conformal map ¢, (z) = (z—a)/(1—az). This maps the unit
circle into itself, F' into a set F’ of type [—1, —a] U |a, 1], and J into some
arc J' of the upper half circle T = {€** : 0 < p < 7} (see Figure 2.3).
It is easy to see that there is constant b, > 0 depending only ¢ such that
F’ contains the intervals [—1,—1 -+ b.] and [1 —b,, 1] and the both the arc
length of J' and the distance of J' from the points +1 is > b.. Map now
D\ /7’ conformally onto D via the mapping )y normalized by 15(0) = 0,
5(0) > 0. The image of [—1,0]N F' = [—1, —a] is an arc on T symmetric
about the point —1, and similarly the image of [0, 1| N F’ = [a, 1] is an arc
on T symmetric about the point 1, furthermore the length of these arcs
are bounded from below by some constant d. > 0. T is mapped into the
complementary arcs of T, and let us denote the complementary arc lying
on the upper half plane by A” (which is the image of the upper half circle
T, under ¢y, i.e. A” = ¢p(T,)). The image J” of J' is a subarc of A",
and its length is comparable to the length of the latter, i.e. with some
0. > 0 we have

(arc length of J”) > d.(arc length of A”).

If y = Ya(¢hi(x)) € (—1,1) is the image of x, then using the conformal
invariance of harmonic measures, (2.7.50) takes the form

w(:% JII) D) > CEW(:U; ¢2 © ¢1(T); D))
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Figure 2.3: the mappings ¥ and 1

which, using the symmetry of the image 1y o ¢ (T) = A" U (= A"), is
equivalent to
w(y, J", D) > 2c.w(y, A", D).

But in D harmonic measures are given by the Poisson kernel, so the pre-
ceding inequality is the same as

1 1— 1 1 —
d 2.7.51
= = |2| e > / = |2| |, (2.7.51)

which is clear with some ¢, > 0, since y € [—1,1]| and on the two sides
during integration £ runs trough two arcs of comparable length both of
which lie of distance > d./4 from [—1, 1]. Thus, (2.7.51) is true with some
c: > 0, and this gives (2.7.50).

Next we turn to the general case, i.e. when [—1, 1]\ F = [—1+4¢e, 1—¢|\ F
is an arbitrary open set. Since the constant c. should be independent
of the set F' (depending only on ¢ with [—1,—1 + ] U [l —¢,1] C F),
without loss of generality we may assume I to consist of finitely many
intervals, in which case [—1, 1|\ F consists of finitely many open intervals,
say Iy, ..., In.

According to (4.1.7), what we have to prove is that there is a constant
¢. > 0 such that for x € [—1,1] \ I we have

Bal (51, D\ F) (J) > c.Bal (51, D\ F) (T). (2.7.52)

We show that the constant c. verified above for the special case when
[—1,1] \ F was an interval, is appropriate. To this end, starting from
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Vg = 0,, we successively define the measures v, by

Vit — Bal(un,D \ ([=1,1] \1,1)),

where j, € {1,2,...,m} is the index j for which v,(/;) is maximal for
j = 1,...,m. Each v, is supported on T U [—1,1|, and on T U F the
measures v, form a monotone increasing sequence of measures. Note also
that on T U F' we have

i == [ Bal(8, D\ (=11 \ ) (o)

I;

and by the special case proved in the first part of this proof, here we have
for all z € I, the inequality

Bal(6,, D\ (=1, 1]\ [;,) ) (/) > e-Bal (8, D\ (=1, 1]\ 1;,) ) (T).
Therefore the same is true of v, — 1, i.e. we have
Uni1(J) = vn(J) = (1 (T) — 1, (T)), n=0,1,....
Since 1y(J) = 1p(T) = 0, induction gives
Un1(J) > cevni1(T), n=20,1,...,

therefore (2.7.52) will follow from here if we show that v, —

Bal (61, D\ F) as n — 0o. As {Vn‘T U F}Z":O is an increasing sequence
of measures on T U I, it converges to some measure v supported on
T U F, and to complete the proof we show that v = Bal (61, D\ F) and

v([=1,1]\ F) — 0 as n — 0. Since the total mass of each v, is 1, it
is clear that the total mass of v is at most 1. Also, by the properties of
balayage measures, for z € C'U F' and for all n we have the equality

1
() = U (z) = - = U(z) = log -y,
and it is easy to see that then the same is true of v, i.e.
1
U¥(z) = log [ 2€TUF. (2.7.53)
-

Now Bal (61, D\ F) is the unique measure supported on T U F' which has

mass 1 and its logarithmic potential is log 1/|z — x|, thus the proof will be
complete if we show that v has mass 1, i.e. (T U F) = 1, which is the
same as

lim v, ([—-1,1]\ F) =0

n—00
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which we wanted to prove anyway. This will be done by showing that
in each step when going from v, to 1,1 a fixed portion of the mass
Un is moved to F, i.e. with some v < 1 we have

=1L\ F

Vst (-1, 1\ F) < yoal[=1,1]\ F). (2.7.54)

Let I; = [a;,b;], and let 7 > 0 be so small that all the intervals
la; — 7, a;] and [b;,b; + 7| are part of (—1,1) and they are disjoint. For
I =1, and y € I the value

Bal (3, D\ (=1, 11\ 1)) (fas, — 75,1 U [bs, by, 1 71),
which is the same as
(v lag, = 7.05,] U [by,. by, + 71, DA (LN 1))

is bounded from below by a constant p independent of nand y € I = I, .
In fact, consider the conformal maps 1, ¥, from the first part of the proof.
Under )5 01y the set [a;, — 7, a;,] U [bj,, b;, + 7] is mapped into the union
of two arcs Ai, one-one around +1, of length bounded from below by a
positive constant depending only on ¢ and 7. Now the inequality

(9105, = 7.a5,) U b by, + 7L DA (=11 UD) > p (27.55)

with some positive constant p follows from the fact that here the left hand
side is
1 1—
w(z,A_UA; D) = 2IdSI z = P2t (y)),
27 A_UAL € — 2|

and the integral is bounded from below by a positive constant p for any
point z € [—1, 1] (and hence in particular also for the point z = ¥ (1)1 (y))).
We obtain from (2.7.55)

Bal(5,, D\ (=1,1]\ 1)) (F)
Bal(éy,D\a ]\1))([ =725, U lbg, by, +71) 2 p,

which gives
Bal (v, DA (1IN D) (F)
— /1 Bal(éy, D\ ([-1,1]\ I))(F)dvn(y)
Z/I p dvn(y) = pvn(l;,),

Jn
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and here the right hand side is at least pv,([—1,1] \ F)/m by the choice
of the interval I; . Thus,

vt (SN F) € val[=1 1]\ F)
_ Bal(un|l ,D\([—l,l]\]))(F)

J

< vall=1LUNF) = prn (=1, 10\ F)/m
= val[=1L1\ F)(A = p/m).

This proves (2.7.54) and the proof is complete.
|

Lemma 2.7.4. Let I be a closed interval in R and let J be a closed
interval that is attached either from the left or from the right to 1. Let F
and G be closed subsets of I and J, respectively. Then

cap(F) < cap(F U G)
[I|  — 4dcap(IUG)’

(2.7.56)

In particular, if G = J then

cap(F) < cap(F U J)
1T+

(2.7.57)

Proof. Without loss of generality we may assume F' and G to be regular
compact sets (or to consist of finitely many closed intervals if we wish).
The equilibrium measure pp is obtained from p; by adding to uy|  the

balayage of v = M‘I \F out of C\ F' (see [14, Theorem IV.1.6, (e)]), and
in this balayage process the potential on F increases by a constant value.
More precisely (see (4.1.6), (2.1.3)) for x € F and 7 := Bal (V, C\ F) we
have

WWWWH¢G%MWM%

and this gives
mevwm+/ dop(@)dyir(a).
INF

Taking into account that for x € I’ the equilibrium potentials on the left
and right hand sides are the constants log 1 /cap(F') and log1/cap(l) =
log 4/|1], respectively, we obtain the identity

1 4
lo ——lo—/ a)dur(a). 2.7.58
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The analogous formula for F'U G and I U G reads as

1 1
- Jog—
cap(F U G) 08 cap(l U G)

- / Je\(rue) (a)duiuc(a)
(TUG)\(FUG)

log

= / 9G\(FuG) (a)dprala), (2.7.59)
aVa

where we used that (/ UG) \ (FUG) = I\ F, so the integration is over
the same set on the right hand sides of (2.7.58) and (2.7.59). Since the
measure j; is the balayage of p,c onto I (see [14, Theorem 1V.1.6, (e)]),
we have on [ \ I the inequality dujoc(a) < dus(a). At the same time
9e\(ruc)(@) < ga\r(a), and these show that the integral on the right hand
side of (2.7.59) is not larger than the integral on the right hand side of
(2.7.58). This gives

lo ;—lo ;<lo L —loi
g(:ap(FUG) g(:ap(IUG) - g(:ap(F) g|[|’

which is the same as (2.7.56).
n

Lemma 2.7.5. There is an €y such that for each 0 < & < gy there exists
a constant C. with the following property: if F' C [—1,1]| then

w(0,T,D\ F) > C’Ew<0,T, (D\ F)U[-1,—1 te]U[l —«, 1]). (2.7.60)
Proof. Clearly, for every € > 0
w(O,T,(D \FYU[=1,—1 1 e]Ul —e, 1])
< w(O,TU 1, —1 4 Ul —e,1],
(D\ F)\ ([=1,—1 — ] U[l —¢, 1])). (2.7.61)
There is a conformal mapping ® of D\ ([-1,—1 + ¢/ U [l —¢,1]) onto D
which maps TU [—1,—1 +¢] U [l —e,1] onto T, [1 — ¢, 1] into an arc of
the form L = {e* : |¢| < 6. (and symmetrically [—1,—1 + ¢] into an

opposite arc L), it takes 0 into 0 and F'N[—1+ ¢,1 —¢] into some subset
F* C |—1,1]. Because of the conformal invariance of harmonic measures,

w(O,TU [—1,—1 4 Ul 1],

(DA )\ ([~ —L =] UL =, 1))
= w(0,T,D\ ™). (2.7.62)
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If ¢ is sufficiently small, then T \ (L U L') contains the pair of arcs
J={e" . 74 < |¢| < 3m/4}. According to |5, Lemma 7.2]

1
S0(0.T,D\ F*) w(0,/,D\ F), (2.7.63)

and here the right hand side is at most w(0, T\ (L U L), D\ F*). Now
application of ®~1 gives

w(0, T\ (LUL),D\ F*)
(0T DA P (L1 U=, 1))
<w(0,T,D\ F).

This, along with (2.7.61)-(2.7.63) gives (2.7.60) and the proof is complete.
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Chapter 3

Markov Inequality and Green
Functions

3.1 Definitions and results

For notions in potential theory - Green’s function, equilibrium measure
etc. - we shall use the notations of Chapter 2. Let 1I, denote the set
of algebraic polynomials of degree < n and F C C be compact with
positive logarithmic capacity. Recall from the Introduction that we say
that F satisfies the Markov inequality with a polynomial factor if there
exist C, k> 0 such that

P12 < Cn*l|Palli (3.1.1)

holds for every n and B, € I1,.
Let €2 be the outer domain of E. Green’s function gq is said to be
Holder continuous if there exist C;, a > 0 such that

ga(z) < C) (dist(z,E))a. (3.1.2)

for all z € C.

Theorem 3.1.1. Let F be a compact subset of the plane such that the un-
bounded component Q) of C\ E is reqular. Then the following are pairwise
equivalent.

i) Optimal Markov inequality holds on E, i.e. there exists a C' > 0 such
that
1Ea e < Cnl| Bk (3.1.3)

for every polynomial F, € 11,,, n=1,2,....

il) Green’s function gq is Lipschitz continuous, i.e. there exists a Cy > 0
such that
ga(z) < Cidist(z, E) (3.1.4)

for every z € C.
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iii) The equilibrium measure ug of I satisfies a Lipschitz type condition,
1.e. there exists a Cy > 0 such that

1g (D(;(z)> < Cyd (3.1.5)

for every z € E and 6 > 0.
If, in addition, Q is simply connected, then i)—iii) are also equivalent to

iv) The conformal mapping ® from Q onto the exterior of the unit disk is
Lipschitz continuous, i.e.

|CI)(21) — CI)(ZQ)| < 03|Zl — 22|, 21, %9 € Q.

We mention that each of i), ii) and iv) implies regularity, so in their
equivalence the regularity assumption is not needed. However, iii) may
be true without 2 being regular, in which case iii) is not equivalent to
the other statements. Consider e.g. as F the unit disk together with the
single point {2}. In this case pg is the normalized arc measure on the
unit circle and the one point set {2} does not carry any mass. Thus, iii)
holds, but the other statements in the theorem are not true.

There is a local version of our theorem which we formulate now. We
say that F has the optimal local Markov property at the point zy € 99 if
there is a constant C' such that

[P (o)l < C*n¥(|Palle,  Pa €My n=1,2,...

forall k=1,2,....

Theorem 3.1.2. Let E be a compact subset of the plane, §1 the unbounded
component of C\ E, and suppose that zy € 0X) is a reqular boundary point
of Q (i.e. ga(z0) = 0). Then the following are equivalent.

i) E has the optimal Markov property at 2.
il) Green’s function gq is Lipschitz continuous atl zp, i.e.
ga(z) < Cilz — 2
with some constant C.

iii) The equilibrium measure pg of I satisfies a Lipschitz type condition
at zg, t.e. there exists a Cy > 0 such that

UE <D5(20)> &)

for every o > 0.

If, in addition, Q is simply connected, then i)—iii) are also equivalent to
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iv) The conformal mapping ® from Q onto the exterior of the unit disk is
Lipschitz continuous at z.

In the last statement we think of ® as being extended continuously
onto the boundary of ().

It is worth noticing that much more is true than the equivalence of ii)
and iii), namely we can give a very precise two sided estimate for Green’s
function in terms of the equilibrium measure.

Theorem 3.1.3. Let E be a compact subset of the plane, §1 the unbounded
component of C\ E, and suppose that zy € 0X) is a reqular boundary point
of Q1. Then for every 0 < r < 1 we have

/T ME(Dt(Zo))dt < sup ga(2) < 3/4T Mdt. (3.1.6)

0 |z—z0|=7 t

Let F' be a connected component of F which is of positive distance from
the set £/ \ F'. Then on F the Lipschitz continuity of Green’s functions
go and ge\ p are equivalent, and for the latter one can use the conformal
mapping characterization given in Theorem 3.1.1, iv). In particular, if
ge is Lipschitz, then so is every geg p for every component F which is
of positive distance from F. In Section 3.4 (Example 2) we shall show
that this need not be true for components of I’ that are not of positive
distance from I\ F, even if they are consisting of more than one point.
This will be based on a construction in Example 1, which exhibits a set
E with infinitely many connected components and Lipschitz-continuous
Green function, which is an interesting fact in itself (note that the sim-
plest example of a set E satisfyving Theorem 3.1.1 is any finite union of
disjoint smooth simple closed curves, and one is tempted to think that
sets appearing in Theorem 3.1.1 can have only finitely many connected
components).

In what follows C,(a) resp. D,(a) denote the circle resp. open disk
centered at a with radius r. We shall need the Bernstein-Walsh inequality

|Pu(2)] < €99 Pl (3.1.7)
valid for all polynomials F, of degree n = 1,2,..., as well as its sharpness:
e90(?) — sup |P,(2)|V/" (3.1.8)

Ppelly, ||P’ﬂ||E§1

valid for any z € (L.

3.2 Proof of Theorems 3.1.1 and 3.1.2

We shall only prove Theorem 3.1.1, the proof of the local version (Theorem
3.1.2) is similar.
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First we show that (i) is equivalent to (ii). Suppose (3.1.4) holds true.
Let z € C and apply Cauchy’s formula to F, € I1,, on C,.(z):

Pl(z) — 1/ L) L [ Bz tret)
C,

© 27 ) 1§ — 27 T o o ret

Taking absolute value on both sides and setting r = 1/n we get
n 2w 1 .
|P!(2)] < —/ |Po(z + —e™)|dt. (3.2.9)
21 Jo n

For z € E the Bernstein-Walsh inequality (3.1.7) and (3.1.4) give

1 . i
|Py(z + =€) < || Py]| et e
n

< |Pul|perw = || P | e

This and (3.2.9) prove (i).
Conversely, suppose (3.1.3). Then it follows by induction that

1P| g < C™0™||Polle, m=1,2,.... (3.2.10)

(3.1.4) is obviously true for z € E, therefore we can assume z € C\ E.
Choose zyp € E such that dist(z, F) = |z — z|. Suppose P, € Il,, and
|| P.]|e < 1. We can use the (finite) Taylor-expansion of F, around z; and
(3.2.10) to obtain:

 plm) (o
P = Pl + |30 Ty

S 11 Z Cm? |Z N ZO|m _ 60n|z—zo|.
m=1

Thus |P,(2)|'/" < e“F==l and this, using the representation (3.1.8) and

the choice of zy, proves (ii).

The equivalence of ii) and iii) follows from Theorem 3.1.3.

Finally, suppose that €2 is simply connected, and ® is the conformal
map of € onto the complement of the unit disk. Then gq(z) is the real
part of log ®(z) (this follows e.g. from the defining properties of gq),
hence the Lipschitz property of ® implies the Lipschitz property of gq.
Conversely, suppose that gq is Lipschitz continuous. Since gq is infinitely
differentiable, this happens precisely if the partial derivatives dgq /0x and
0gq /0y are bounded in €. But then using the Cauchy-Riemann equations
it follows that the partial derivatives of Slog ®(z) are also bounded, hence
log ® is a Lipschitz function. But then so is ® in any bounded set. On the
other hand, around infinity the derivative of ® tends to a constant (recall
that lim,_, ., F'(2)/z exists and apply Cauchy’s formula for the derivative),
and the proof is complete.

|

34



3.3 Proof of Theorem 3.1.3

Without loss of generality let zp = 0, and r > 0. It follows from the
representation (2.1.1) and the assumed regularity (go(0) = 0) that

i i lre’” — |
ga(re’”) = ga(re’”) — go(0) = [ log TduE(t)-

Since (see [13, p. 29])

wo__ ¢
_/ 1gud¢ log"

i Itl

we get with Fubini’s Theorem

%/_:gﬂ(rew)dgp = /(log |t|>duE()

With S(t) = ur(D¢(0)) the last integral can be written as

/ log —dS(t) = / 50 .
0 t o U

where the equality follows by integration by parts. Thus,

/ @dt < sup ga(re™),
0

3

which is the left inequality in (3.1.6).
To prove the right inequality we write again for |z| < 2r

0 ga2) = gol=) ~ gal0) = / o 21 |t|t'duE<t>

" o =0

where both functions hy and hy vanish at 0. Clearly, for |z| < 2r we have

() — / tog E— 000 g/ tog 2 dyu(t)
D2, (0) |t] Dy (0 ||

4
< / log —— dju (1),
Do) It

and with the function S(t) defined above this can be written again as

hi(z) < m where
Ar
m = / &dt.
0 t

35



Therefore, we have for all |z| < 2r
0 < hi(2) + ha(2) <m+ ha(2).

But the function on the right hand side is harmonic in D, (0) and takes
the value m+ hy(0) = m at the origin, therefore we obtain from Harnack’s
inequality (2.1.5) (applied to the function u(w) = m + ha(w2r) and to the
point z/2r) that for 2| = r the inequality m+ ho(2) < 3(m+ho(0)) = 3m
holds. Together with this we have for |z| = r

g(2) = hi(2) + ha(2) < m + 2m = 3m,

and this is the right inequality in (3.1.6).

3.4 Constructions of Examples 1 and 2

Example 1 We are going to construct the first connected component Ey
of F in the following way. Let 0 < 6 < 7 be arbitrary. Set Jy = {e"
0 <|t| <x} and

Ag = U Dl/lo(a).

a€Jy

Thus, Ay is a "thickened arc" of the unit circle T. There is a largest 0*
such that the complement of Ay is not connected (the two “arms" of Ags
touch each other).

Let w(z, J, G) be the harmonic measure corresponding to the set J C
OG in the domain G. Clearly w(0,T \ Ag,D) — 0 if 6 \ 0*. Fix 6, > 6*
such that w(0, T\ Ap,,D) < 1/9.

Set Ey = Ayg,, for every integer n > 1 define FE,, = (1/3)"Ep, and let
E =7, E,U{0}. Thisis a compact set consisting of infinitely many
components such that Q = C\ F is connected. Below we show that gq is
Lipschitz.

Since w(0, T \ Ay,,D) < 1/9, it follows from Harnack’s inequality
((2.1.5) with |2] = 1/2) that w(z, T\ Ag,, D) < 1/3 for all z € D;,,(0), in
particular this is true for z € C/3(0). Both w(z, T\ Ag,, D) and g p(2)
are positive harmonic functions in D \ £,

g@\E(Z) < QG\EO(Z) < w(z,T \ A907D)

on T'\ Ag, and gg, ;; vanishes on F, while w(z, T \ Ag,, D) is nonnegative
there. Thus, the same inequality holds true everywhere in D \ F by the
maximum principle for harmonic functions. Hence

gou(2) <1/3,  ze Dys(0)\ E. (3.4.11)
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Now consider the domain D;/3(0) \ /' and the positive harmonic func-
tions w(z, Ci/3(0) \ El,D1/3(0)> and 3¢g z(2). Since 3gg, z(2) vanishes
on E and, in view of (3.4.11), it is at most 1 on Cy/3(0) \ £, where
w(z, Chy3(0) \ i, D1/3(O)> takes the (boundary) value 1, we have

390,6() < (2 Cuya(0) \ Br, Dyjsf0))
in Dy/3(0) \ . Because of similarity,
w(O,Cl/g(O)\El,D1/3(0)> — (0, T\ Ag,, D) < 1/9,
which implies via Harnack’s inequality as before that
w(z, Cy5(0) \ El,D1/3(0)> <1/3,  z€ Dys(0).
Thus, we can conclude 3¢z, p(2) < 1/3if 2 € C1/0(0), i.e.

gop(z) <1/9, z€ Dyp(0)\ E.
In a similar manner it follows by induction that

1 n
gﬁ\E(Z) < <—> ) z€ Dz \ . (3.4.12)

3
We are going to show that Green’s function g is Lipschitz continu-
ous. Let zyp € C\ E be arbitrarily chosen. Suppose the component closest
to 2o 18 Fy,, 1.e. dist(zg, F) = dist(zo, En,). We will compare Jo\k,, and
ge\p- 1t tollows from the construction of IV that F,, is included in the

disk D /(2.3n0-1y(0). Thus the monotonicity of Green functions gives for
2| = (1/3)m~t

(/3"

96\E,, (7) 2 96\51/(2.3710,1)(0)(2) = log

Y
On the other hand, according to (3.4.12), gz x(2) < (1/3)"" holds for
Z € C(l/?))nofl. HenCe

3n0—1

IC\En,, (2) > gG\E(Z); z € Clyzymo—1- (3.4.14)

log 2

Since both sides are positive and harmonic in D gme-1 \ F, inequality
(3.4.14) remains true throughout this domain, and by the definition of ng
the point zy is included in this set.

Let C denote the Lipschitz-constant of Fj, i.e.

QG\EO(Z) < Cdist(z, FEy).
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Using the fact gg\EnO(z) = 98\5,(3""z) we obtain

log 2 log 2 "
gone(z) < Wgﬁ\Eno(ZO) = Wgﬁ\EO(S °Zo)
log 2
3n0—1
log 2
_ %CS”Odist(zO, E,.)

= 3Clog?2-dist(z0, F).

IA

Cdist (3™ 2z, Fp)

Therefore gz ;(2) is Lipschitz continuous with Lipschitz constant
3C' log 2.

Example 2 Let I be the set from the preceding section (Example 1), and
let
E* = EU[0,2]UD,(3),

i.e. we add to E the segment [0,2| and to that attach the disk Dq(2).
Then I = [0,2] U Dy(3) is a connected component of E* for which gg\
is not Lipschitz (in fact, around 0 this behaves like geyo,2, which is only
Lipschitz 1/2 smooth at 0). Thus, it is left to show that gg, . is a Lipschitz
function.

Since gg,p. is bounded by either of gz g, ge\pg and ga prE, the

Lipschitz property is clear on E (Example 1), on [1,2] and on D;(3).

Thus, we have to worry about points close to the segment [0, 1]. Let
20 € E* be an arbitrary point, and let o be a point in F that is closest
to zo. If o € E'U[L,2]U D;(3), then according to what we have just said,
ge\g(2) < Clz — xo| with some constant C. Thus, let us assume that
xo € (0,1). Choose ng so that 37"~ < x5 < 37", Since 96\[_1,1](2) > 1
for |z] = 2, we have

9e\p23 o) (2) = 1, |2 = 37notL,

(3.4.12) implies

3 e g (1) S 3 T gep(2) L, [z =37
hence by the comparison technique applied several times before we get
that

3n0_196\E*(Z) < 96\[0,2.3*710](@

for all |z| < 370"l In particular,

gep+ (20) < 377 gpg p.a-m0)(20) = 377 gm0 9 (37 20).
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Here 3"z lies in the annulus 1/3 < |w| < 1, on which gg, o 5 i Lipschitz
continuous, and the closest point in [0, 2] to 3™z is 3™ xg. Hence we get
with some constant C

ga\E* (Zo) < 3_n0+10|3n020 — 3n0$0| = 30|ZO — ZCO|

and the proof is over.

39



Chapter 4

A Wiener-type Condition in R?

4.1 Preliminaries

We shall use ¢, co, 1, ¢z, . . . to denote positive constants. B, (z) resp. B,(x)
denote the open resp. closed ball about the point x of radius r, and S, (x)
is the bounding surface of these balls. ||u|| denotes the total mass of the
measure .

For the notions of classical potential theory in R? see e.g. [7]. The
Newtonian potential of the measure v is defined as

(@) = | vt

@ — ]2

and the energy integral is

() / / mdu(t)du(x).

The capacity of a compact set F is the number

B 1
~inf I(v)’

cap(l) :

where the infimum is taken over all probability measures on F. There is
a unique measure A for which the infimum (minimum) is attained. pp =
cap(E)A is called the equilibrium measure of E. E.g. the equilibrium
measure of B, (and S,) is

pg, =rlog,, (4.1.1)

where o5, is the (d — 1)-dimensional normalized surface area measure on
S,

If the compact set E has positive capacity then for the Newtonian
potential of the equilibrium measure we have

UrE(z) =1, for qee. x € E, (4.1.2)
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where q.e. means “quasi-everywhere", i.e. with the exception of a set of
Zero capacity.

If F is of positive capacity, then pp has finite energy. Hence a set
of zero capacity has zero pp-measure, and so if a property holds quasi-
everywhere, i.e. with the exception of a set of zero capacity, then it also
holds pg-almost everywhere.

If o is a measure supported on the compact set F' and U?(x) < 1 for
all x € RY, then the set

K ={z : U(x) >~} (4.1.3)

has capacity at most (1/v)cap(F). In fact, if K is of positive capacity,
then the inequality

U?(x) < UMK (1) v 1

cap(F) — cap(K) = cap(F)  cap(K)

holds true for quasi-every x € K. Hence this is true for pug-almost all x,
and then the principle of domination ([7, Theorem 1.27]) gives the same
inequality for all z € R%. Now

cap(K) < %cap(F) (4.1.4)

follows if we let x tend to infinity.
We shall also need the following result. There is a positive constant ¢
such that if A C S and 3(A) denotes the (d — 1)-dimensional surface area

measure of A then
B(A) < cy/cap(A). (4.1.5)

Indeed, if A denotes the normalized surface area measure on S; then based
on the definition of capacity:

1 1 1
cap(d) = ﬁ<A>2/A/A|x—t|d—2d”x)d“t)

1 1
< 3A% /S1 : P t|d_2d)\(x)d)\(t).

Hence, (4.1.5) follows with

1
c= \//S1 . md)\(x)d)\(t).

Let G be a domain with compact boundary and with cap(0G) > 0,
and let v be a Borel measure supported on G (by which we mean that
v(R4\ G) = 0). We shall again need the concept of balayage of v out
of G, see e.g. [14, Sec. 11.4] or [7, Chapter IV]. The definition is slightly
different from the two dimensional case. It is the unique Borel measure 7
supported on G with the properties:
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e |7|| < |||, where ||v|| denotes the total mass of v,

e for all x € 9G with the exception of a set of capacity 0

U (z) = U"(x), (4.1.6)

e 7 is so called C-continuous, i.e. the T-measure of any set of zero
capacity is zero.

For regular G the exceptional set is empty. If G is bounded, then 7 has
the same total mass as v. If v is not supported on G, then taking its
balayage out of G is understood in the sense that we take the balayage
of v| and leave the rest of v unchanged. In this sense if G| C G5, then

taking balayage out of G5 can be done in two steps: first take balayage
out of GGy, and then take the balayage of the resulting measure out of G,.
Perhaps the most important connection between equilibrium and bal-
ayage measures is the fact that if £ C I’ are compact sets of positive
capacity, then ug is the balayage of pp onto E (i.e. out of the unbounded
component of R* \ B).
If K C 0G are compact sets of positive capacity, then the harmonic
measure
w(x, K,G) is the unique solution of the generalized Dirichlet-problem in
G corresponding to the characteristic function of K in 0G. There is a con-
nection between harmonic and balayage measures: for a € G the equality

bu(K) = w(a, K, Q) (4.1.7)

holds, where ¢, denotes the point mass (Dirac measure) placed at the
point a and 9, denotes its balayage out of G (see e.g. [14, Appendix A3,
(3.3)] or |7, IV.3]).

Green’s function of G with pole at y € G is defined as

g, y) = U (x) — U%(x).

Let 0 < r < R, v € Sk and let &, be the balayage of , out of R4\ B,.
This measure is given by the formula

do,(y) Y
dos, |z —yl"

(4.1.8)
where y € S, and g, is the normalized surface area measure on S,.

Indeed, Poisson’s formula (see e.g. |3, Section 1.3, (1.3.1)]) gives

dé.(y) 1 R*—r?

do w,r|r—y|¢
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where o is the surface area measure (not normalized) on S, and w, =
o(S1). Multiplying by do/dos, = w,r*" we obtain (4.1.8). Thus, for the
density of 4, with respect to ogs. we have the inequalities

R—r dé.(y) R+r

d=2 < O L — 4.1.9
TR T dos, © 1 (R—n)! (4.1.9)

Multiplying by R4~? and letting B — oo we get that 0., can be understood
as 7972 -times the normalized surface area measure on S,, which is the
equilibrium measure of S, (B,). On applying this for a large r containing
the set F of positive capacity we can see that if ~ denotes balavage onto I,
then g — 6. Tt also follows that ré- 20g, = pg. But g, = [ 5, Wdog (a),
so it follows from Harnack’s inequahtAy that there are constants c¢,, C,
such that for a € S, we have c,up < 0, < C,uug. Another application of
Harnack’s inequality gives

Cafiry < 04 < Copir (4.1.10)

for any @ lying in the unbounded component of R?\ / with some constants
Cay Co.

Let u be a measure on S,. The lower Radon-Nikodym derivative (den-
sity) of u with respect to normalized surface area measure on S, is defined
as follows (see e.g. |6, Chapter 3| or [12, Chapter VII]). Let x5 € S, and
0 <7 < 1. Then the cone

(x,0)

C(xo,7) = {x € R* :
rll|

>1-7}
determines a closed polar cap K(xg,7) = C(xg,7) NS, centered at xg.
The lower derivative of p with respect to og, at xg is

v(xg) := liminf o
(@0) = lim inf 1 (K) /o ()
where K is an arbitrary closed polar cap containing xy € S,. Wherever
the ordinary Radon-Nikodym derivative exists, it agrees with v. Therefore,

v(y)dos, (y) < du(y).
Finally, let us recall that the Newtonian capacity is subadditive: if

cap(F) < anp(Fi). (4.1.11)

In particular, one of the sets F; must have capacity > cap(F')/k. On the
other hand, if the distance between the sets F; and F is at least [, then

cap(F1) + cap(Fh)

cap(F1)cap(Fs)
+ 2 19=2(cap(F)+cap(Fy)

cap(Fy U Fy) > (4.1.12)
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Indeed, set
1—1 t

R T

where t is between 0 and 1. Then v is a probability measure and

v

(1—t)2+ {2 N 2t(1 — 1)
cap(F1) =~ cap(Fz) = 192cap(Fi)cap(l3)

I(v) < e -

This yields with ||ug || = cap(F)) and ||up,|| = cap(F)

1
cap(Fy U Fy) >

(1—1)2 12 26(1—1) °
cap(F1) + cap(Fh) + 142

Now t = cap(Fy)/(cap(Fy) + cap(Fy)) gives (4.1.12).

4.2 Results

Let £ C R? be a compact set of positive Newtonian capacity, € the
unbounded component of R\ £ and go(x,a) the Green’s function of
with pole at a € Q). We extend gq to df) by

go(z,a) = limsup go(w,a),
w—x, WES

and to R*\ Q by setting gqo(z,a) = 0 there. We are interested in the
behavior of gq at a boundary point of ), which we assume to be 0, i.e. let
0 € 09.

Let B, = B,(0) be the ball of radius r about the origin, and we shall
denote its closure by B, and its boundary (the sphere of center 0 and
radius r) by S,. With

E" = BN (Bt \ Byr) = {x eE 2" < |7 < 2—"“}

the regularity of the boundary point 0 was characterized by Wiener (see
e.g. |7, Theorem 5.2]): Green’s function ge(x,a) (a € 2) is continuous at
0 € 99 (i.e. 0 is a regular boundary point of £) if and only if

z:cap(E’”‘)Q”(d_2> = o0, (4.2.13)

n=1

where cap(E™) denotes the (d-dimensional) Newtonian capacity of E™.
We would like to characterize in a similar manner the stronger Holder
continuity:

galz,a) < Clz|” (4.2.14)
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with some positive numbers C| k.
Following the definitions in [5], for ¢ > 0 set

Nig(e)={neN : cap(E") > 2742} (4.2.15)

and we say that a subsequence N' = {n; < ny < ...} of the natural
numbers is of positive lower density if

.. . WNNn{o,1,... N}
ey Ty
Let zp € 51, 0 <7 < 1, £ > 0 and set
Clxo,7,6) :={x € By : <”T|;|’x”°> >1-—r1}. (4.2.16)
x

This is a cone with vertex at 0 and x( as the direction of its axis. We say
that £ satisfies the cone condition if

Clo,7,0) C Q (4.2.17)

with some xy € S;, 7 and ¢ > 0, which means that € contains a cone with
vertex at 0.

Theorem 4.2.1. a) If Ng(e) is of positive lower density for some € > 0
then Green’s function gq is Holder continuous at 0.

b) If Green’s function gq is Holder continuous at 0 and E satisfies the
cone condition then Ng(€) is of positive lower density for some e > 0.

The importance of the Holder property is explained by the following
result. Let GG be a domain in R? with compact boundary such that 0 is
on the boundary of . We may assume that G ¢ B, and set I = B\ G.
Then Q := R4\ E = G U (R?\ B)) is a domain larger than G and 0 is on
the boundary of 2. If f is a bounded Borel function on the boundary of
G, then let u; denote the Perron-Wiener-Brelot solution of the Dirichlet
problem in G with boundary function f. We think u; to be extended to
0G as uy = [ there.

Lemma 4.2.2. Suppose that 0 is a regular boundary point of G. Then the
following are equivalent.

1) gc(,a) is Holder continuous at 0 for a € G.
2) pp(B,) < Cré=2t% for some C, k> 0 and all r < 1.

If, in addition, G satisfies the cone condition at 0, then 1) - 2) are
also equivalent to

3) If [ is Holder continuous at 0, then so is uy.

Note also that it is indifferent if "for ¢ € G" in 1) is understood as
"for some a € G" or as "for all a € G".
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4.3 Proof of Theorem 4.2.1

Proof of a) in Theorem 4.2.1

Let us suppose that Ng(e) is of positive lower density for some ¢ > 0.
Clearly then 0 is a regular boundary point of €2, hence by the equivalence
of 1) and 2) in Lemma 4.2.2 it is sufficient to verify ug(B,) < r4=#** for
some x > 0 and sufficiently small 7.

Let F' be a compact set such that 0 is on the boundary of the un-
bounded component of R\ I, and let 7 denote the balayage of some mea-
sure v out of R4\ (FUB,). First we verify that if cap(F'N (Bg\ By)) > 4e,
with some ¢ < 1/8, then

— 1 € )
0sg El S W (1 - &) 0g; - (4318)
In fact, let Fy = FN(Bs\ By), and F, = F;UB;. We enlarge the balayage
measure on the left in (4.3.18) if we replace the domain R\ (F"U By) with
R?\ (F1 U By), hence we may suppose I = [, I, = F'U By. Let 7 be
the balayage of some measure v out of RY\ B,. Then 7 = 7, i.e.

v:ﬁ‘§1+ﬁ|_F,

and we apply this with v = og,. Thus,

05, 5 = T3 — 053] - (4.3.19)

1 F
The left hand side is what is on the left of (4.3.18), and since og, =
s, /872, and Tig; = ps, = 0s,, the first term on the right hand side is
0, /8772, Therefore, it has left to estimate from below the second measure
on the right of (4.3.19).

For every a € Sg (4.1.9) with r = 1 and R = 8 shows that

— 7 1
6a > Wagl > @O’Sl;
and so = ()
— gs
0sg e 89d 05y, (4320)

and we havz to estimate how much of g, goes on to F. Since we assumed
Fy = U By C Bg, and, as we have just remarked, og, = ps, /8972, it
follows that

T F) = gmgiun, () (4.3.21)

The distance of the sets F C By \ By and B is at least 3, so (4.1.12)
vields for the capacities of I, By and Iy, = F'U By the inequality

cap(Fy) > cap(F') + cap(B1) > Lt cap(l)
2) = 14 2cap(F)cap(B1) -1+ 3d_%zcap(F)’

34=2(cap(F)+cap(B1))
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because cap(B1) = 1. The latter expression is monotone increasing in
cap(F'), and the assumption gives cap(F') > 4e and € < 1/8, thus

1+4
cap(Fy) > e >1+e.

- 1+@2,—245

Therefore

prs(F) + 1y (By) = sl = cap(Fy) > 1 +«.

Here pup,(B1) < 1 because pg, (B1) = 1 and g, is obtained by taking the
balayage of up, onto By. Hence up, (F) > € follows. This and (4.3.20)—
(4.3.21) give

1 e

05g F Z W@Ugl.

Now all from (4.3.19) imply

- < 1 1 ¢ 1 €
7alp, < s - gEges g (1) o

and (4.3.18) has been verified.
We shall use (4.3.18) in a scaled form, namely if £ is compact, 0 is on
the boundary of the unbounded component of R?\ £ and

cap(E N (Byn \ Byn-1)) > 4e2(7n=3d=2), (4.3.22)
then we have
— 1 £ ,
Tl S (1 . @) 05, s (4.3.23)

where now - denotes balayage out of R*\ (F U By n 3).

After this preparation let us return to the set Ng(¢) which was assumed
to be of positive lower density. Then there is an n > 0 such that for large
N the set Ng(e) has at least n/N elements smaller than N. For large N
then we can select a subset

K CNgle)n{2,...,N -2}

such that it has k > n(N + 1)/5 elements, and if ny,na, ..., ng is the
increasing enumeration of K, then n;; > n, + 3 for all ¢ < k.
We set
En:EU§2*"7 Mn — BE, -

Our aim is to estimate the quantity pg(B, ~), which is at most as large
as pn(By-n~) (recall that py is the balayage of uy onto E, and during
this we sweep out of R?\ I the portion of yy sitting on B, ~ \ F, so the
measure of B, ~ is not increasing during this sweeping process). We shall
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recursively estimate un| by og,, and the n = N case will give the
2777,
desired result.
First note that MO‘S < os (0s, = s, is the balayage of po onto
1

—n

Fl). Suppose Mn|S < cos, , holds true with some constant ¢. The

measure [i,,1 is the balayage of y, onto F, and_ during this balayage
we sweep out only Mn|S onto Sy—n—1 U (E N (Ba-n \ By-n-1)). This

2—n
balayage measure is not less than the balavage of Mn|S onto Sy-n—1.
— 27”
Therefore if = denotes the balayage out of R4\ By-»-1 then we have (see
(4.1.1))

1
S ,un| o S 00'52771 = CWUSQ*W*V (4324)

Hnt1 | Sy

On the other hand, if n = n; — 1, with n; € K, then (4.3.22) is true,
hence for such n we have (4.3.23). Again, the measure j, ;3 is the balayage
of w, onto I, 3, and in taking this balayage we sweep out only the part
of u, that is sitting on Sy—» \ E. Thus, if - denotes the balayage onto
E, 13, then

e —
<cog

Hn+3 -
3277173 2

g

327"73 3277173

1 €

This estimate holds for all n with n + 1 € K, and consecutive numbers in
K differ by at least 3, hence this estimate for going from n to n 4 3 can
be applied at least k > (N + 1)n/5 times. For other n we just use (4.3.24)
(N — 3k times altogether). Thus, we eventually obtain

uv(By) = in(Sy )

1\ 42 . k |\ N8k
: <<§> (1—@)> (2‘d—2> 755 (52)
3 1\ N(d-2) 1 - k< 1\ M=) 1 o\ n(NA1)/5
< (3) (-g)=() (-5

This is the desired inequality, for it immediately implies for 27V-1 <
r < 27N that

pe(By) < pp(Byw~) < puy(Byn)

N(d—2)
< l (1_ i)ﬁ(N+1)/5 Srd_2+“,
- 2 9d

—10(d —2)log2
nlog(l — &/94)
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and r is defined by the equation

e e 7]/10
2 :(1—@) .

Remark 4.3.1. Note that the previous proof was effective in the sense
that if ¢ > 0 and n > 0 are given, then there are an Ny and a k > 0 such
that if for a particular M > Ny we have |[Ng(e) N {0,1,..., M} > nM,
then

pp(Bym) < par(Bym) < (27M)4720w, (4.3.25)

Proof of b) in Theorem 4.2.1

The proof is rather long, therefore we break it into several steps.

Step 1

Let L > 2 be a fixed natural number, F' C By 1 \ By-1-1 a compact set
such that

cap(F N (By s \ By y)) <e279W@=2 j—9 L4 1, (4.3.26)

and let 4, be the balayage of 6, out of the domain (By-1\ By-2-1)\ F. We
shall estimate from below this balayage measure on S,-1-1 for a € Sy-r;
namely we shall show that for large L. and small ¢ > 0, disregarding a

small subset of S,-r, for a € Sy the measure 6; has almost full
2—L-1

density (i.e. asin the case F' = )) on a large (almost full) subset of Sy-r-1.

For notational convenience let Ay = Bo-1, A, = By, A1 = By1-1,
Aszjy = Bsg-r—, and let the bounding surfaces of these balls be denoted
by Ty, Tr, Try1 and T5jo, respectively. Set also Iy, — F'N As 2. We
shall take the balayage out of different sets, and for the convenience of the
reader we list them here:

e ~ is the balayage out of (A1 \ A1)\ F,

e 7~ is the balayage out of (R*\ Az 1)\ Fio,
e — is the balayage out of R*\ Ay, ;.

We start from the representation

L+1
F = U Fn (BgfjJrl \327]'),

Jj=2
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hence (4.1.11) gives

L+1
cap(F) < Zs2‘j<d_2) <e. (4.3.27)
=2

Now let a € A, \ZLH, and let v =1, = 6; be the balayage measure
of 6, out of (A;\ Az;1) \ F. This measure has total mass 1 and it is
supported on Tr 1 U FUT];. First we verify that it has small mass on F.

Without loss of generality we may assume that I is of positive capacity
(otherwise enlarge it), and then we can write

V(F)/U“qu/U“FdV|F/UV|quF§/U”duF. (4.3.28)
P

The potential U”(x) agrees with
1

|z — a|d=2

Ul (z) =

for quasi-every x € F (see (4.1.6)) and hence for up-almost all x, therefore
the last integral on the right of (4.3.28) is U#¥(a). This gives that if

1
UMF < =
(a) —_ L?
then

Va(F) < —. (4.3.29)

SIE

We shall need a similar reasoning for the balayage v* = 1} 1= 8, of 0y
out of (R*\ A1)\ F3/5. In fact, replace in (4.3.28) I by F3/; and v by
v*. This gives that if

1
[JHF3/2 <
@<1,
then X
v, (Fy2) < T (4.3.30)
Thus, if
1
K = {a : UM (a) > Z}, (4.3.31)
then for a ¢ K we have (4.3.29), and if
1
K3/2 = {a : UMF?’/2 (a) Z z}, (4332)

then for a € 17\ K3/, we have (4.3.30). For the capacity of K we get from
(4.1.3)(4.1.4) and (4.3.27) the inequality

cap(K) < Leap(F) < eL, (4.3.33)
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and similarly we get
cap(Ks2) < Leap(Fy0) < el (4.3.34)

If o, denotes the (d — 1)-dimensional normalized surface area measure
on T, then by (4.1.5) we have

282\ /cap(K)

o (KNTp) < ey/2Ecap(K NTy) <
< 2l?el. (4.3.35)

An identical inequality is true for K, (c.f. (4.3.34)):

01(KapaN'Ty) < c252V/eL. (4.3.36)

Let a,b € Ty, and let 9,, 9, be the balayage of d,, d, out of the domain
R\ (F32 UAry1). This balayage is obtained by first taking balayage
of d,,0, out of R*\ Ag/s, and if these balayage measures are denoted by
ag, and ap, then take the balayage of a, and ap (which are supported on
T5/5) out of R4\ (Fis /2 UApL1). The measures oy and aj are given by the
formula (4.1.8) with r = 327172 and R = 271, hence (4.1.9) gives the

inequality
1+3/4\* ;
a < =7 )
fa = (1—3/4) =

therefore we also have 6Na < 7”@. Now 6; is the balayage out of (A\AL;1)\
F, while §, is the balayage out of the larger domain (R*\ Az 1) \ Fya,
hence

< dq.-

o~

Oa

Ap U F3/o
These give for all a,b € Tf, the inequality

o~

ba < 7%, (4.3.37)

App U Fs/o

Choose and fix a b € T}, \ Kz (see (4.3.32)). By (4.3.36) if ¢ is
sufficiently small compared to L, then there is such a 0. In this case

(4.3.30) gives S;,(Fg/g) < 1/L, hence the balayage 7 := g;, of 5;,
. 3/2 F3/o
out of R\ Az, also has total mass at most 1/L. Therefore, if we define
dr(y) _ 1 }
H*={yeTp : > 4.3.38
{y L+1 dO'L+1 — \/Z ( )

then
or41(H") <

-
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Taking into account (4.3.37) we obtain for the measures p, := Ou P
3/2

the inequality
dp. () 74

< —_—
dor+1 — VL
forall @ € Ty, and all x € Ty, \ H*.

(4.3.39)

of the restriction
\ Fs/2

d, out of R4\ Az ;. The set F'\ Fyp lies outside A, and
F\ F3/2

for each ¢ outside Asj, the inequality (4.1.9) gives for the density of the
balayage b, of 8. out of R% \ZLH the estimate

Next consider the balayage p} = O

db. 1\ 3/2bt2 4 oLt o
< ¢ — B2 .
dor 1 oL+1 (3/2042 — 1 /2Lt1)d=1
Hence for a € T, \ K we get
dpk dd, -~ -~
A — / déa(C) < 5602d_2 : 6a(F \ F3/2)
dO'L+1 F\F3/2 dO'L+1
-~ 5202
< 5ot () < COL , (4.3.40)
where we used (4.3.29) which is valid for a« € K.
In a similar fashion we obtain for p** := O T the estimate
1
dpr* < a2l + 1) STy < a2l + 1) (4.3.41)
dop iy = (2F—1)d-1 Y = (2L - -
Now note that
Patpot ol H 0|, =0 =73,

and the last term on the left hand side is actually 6: T Thus, (4.3.39),
Lt1
(4.3.40) and (4.3.41) give that for all @ € T, \ K and y € T \ H* we
have . _
dda(y)  ddaly)

dO'L+1 - dO'L+1 \/Z L (2L — 1)d_1’
which, in view of (4.1.8) gives for a € T, \ K and for y € T4, \ H*

7 5e2' w2V 1)

douly) 3 _«a
dovn © Tl VT

This derivation used the existence of b € T}, \ Kj3/,, and it is valid if ¢
is sufficiently small compared to L (see (4.3.36)).

(4.3.42)
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Step 11

We follow the notations from Step I, in particular suppose that F is a
compact set with (4.3.26).
Let 6 > 0. Suppose that i is a measure on Ty, such that
d
W) S| oy e\ . (4.3.43)
dUL

where H C T}, is of (normalized surface area) measure at most 0. Let [
be the balayage of 1 out of (A \ A1) \ . We are going to show that
for large L and small ¢ > 0 the measure i satisfies a similar condition as
(4.3.43) but on T4y, namely we verify

dii(y)
dUL+1

_1 *
> sis(l—cd)  forye T\ HY, (4.3.44)

where H* is a set of (normalized surface area) measure at most ¢ and
cz > 0 is a constant depending only on d.

First of all note that we have (4.3.42) fora € T\ K and y € T4, \ H*,
where I* is the fixed set defined in (4.3.38), and also note that the integral
over Ty 1 of the first term on the right of (4.3.42) with respect to doy, is

3 B dba(y)
(/;12ﬂL+1”a__zAddaL(a) - (/;ldUL+1dUL(a)

doz(y) (25" *diz(y)

dUL+1 dUL+1

B 2L<d_2)duTL+1(y) B l d—2
a ALADE=D gy, N ’

where 7, denotes the equilibrium measure of T7. Therefore we have

3 C1 1 1
— d > — = — 4.3.45
[ G ) iz g s

We write with a € T, and y € T4,

djiy) / do,(y)

dUL+1

du(a).

dUL+1

The integral element du(a) is at least as large as (du(y)/dor)dor, and
here

du(y)/dop > 1 if y € Ty, \ H. Furthermore, as we have just mentioned,
for a ¢ K the integrand is at least as large as the integrand in (4.3.45),
and these give for y € T, \ H*

duly) 1 C1
> — — A
dopyr — 292 /L
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where

3
A=)+ ] ) mopno

The integrand on the right hand side is at most 3, hence the integral is
bounded by 3 times the normalized surface area measure of H and those
a € Ty, for which a € K, which is at most o7, (H) + o, (K NT}). Thus, the
assumption o (H) < ¢ and the inequality (4.3.35) give

A< 3<UL(H) +on(K N TL)> < 3(6 + c2L/2x/E).

Thus, if y € Ty \ H* then

di(y) 1 €1 L

YY) L 354 22T

dO'L+1 - 2d-2 \/Z ( te c )
1

W(l — 246), (4.3.46)

Y

provided

€1 L/2 ./ 19
— + 3c2 el <. 4.3.47

This condition should be understood in the sense that first we choose
L large enough, then for fixed L choose ¢ > 0 small to satisfy (4.3.47).
Furthermore, assuming this condition, H* has measure at most

Thus, with such a choice for L and ¢ the estimate (4.3.44) holds with
Cy — 2d.

Step 111

We follow the notations from steps I and II, and assume that F' is a
compact set with (4.3.26).

Let c3/4 > 6 > 0, where c3 is a constant to be chosen later, and suppose
that p is a measure on 77, such that

du(y)
dUL

>1 forye H, (4.3.49)

where H' is of (normalized surface area) measure at least c; — ¢. Thus,
we consider the same situation as in step II, but there the assumption on
the density of p with respect to oz, was on a large set (namely on T, \ H
of measure > 1 — §), while here the assumption is on a set H’ of measure
at least c3 — 4.

54



Let, as before, 1i be the balayage of i out of (A} \ Ary1)\ F. We are
going to show that for large L and small € > 0 the measure 1 satisfies

d(y)
dUL+1

> ey forye T \ HY, (4.3.50)

where H* is a set of (normalized surface area) measure at most ¢ and ¢4
depends only on d.

For a proof just follow the proof in step II. We have (4.3.42) for a €
Ty, \ K with H* given in (4.3.38), and note that

3 S 3
2041 g — y|d = 92d°

Therefore, if a € T, \ K and y € T, 1 \ H* then (4.3.42) vields

o~

doa(y)

dUL+1

3o

22d

> > Cx

S

provided L is large enough. Integrating this inequality with respect to
p(a) for a € H'\ K, we obtain for y € Tp1; as in (4.3.46)

diiy) > cx (c;», —0— CQL/2\/E> ,

dUL+1

where we used (4.3.35) and the fact that the measure of H' is at least
cs — 0. Since § < c3/4, we get that if 22/, < 6 < c3/4 then (4.3.50)
follows for all y € T4y \ H* where H* is the set defined in (4.3.38) of
measure at most 1/y/L. If, in addition, 1/v/L < §, then o7, (H*) < 4, as
was claimed in (4.3.50).
Note that both of these conditions are satisfied if L is sufficiently large
and ¢ is sufficiently small.
|

Step IV

The estimate below will be used when our compact set omits the cone

Cy,, where

<5U,ZL’0>
]

Consider the domain (By \ Bj/2) N Cyr, and let @ € Sy N . It is clear
(by Harnack’s inequality) that there is a positive constant ¢, depending
only on 7 such that if &, is the balayage of &, out of (B, \ B, 2) N Cor,
then on S)/, N C; this balayage has density at least c;, i.e.

déa(y) ZQ’) yesl/2ﬂ07_’ a & CTQSL
doy

C,:—={reR: >1—71} (4.3.51)
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Thus, if ¢3 = 61(C; N S1), d < ¢3/2 and p is a measure on Sy such that
du(y)/doy > 1 on a set H' C C. NSy of measure at least ¢3 — d, then

dji(y) _ cscr

s Y < Sl/g N CT. (4352)

Step V

Now we can complete the proof of the necessity direction part (b) in
Theorem 4.2.1. Let us suppose that Ng(e) is of zero lower density for
every € > 0 and that F satisfies the cone condition. We may assume that
the cone that E omits is Co, N By with C; defined in (4.3.51), and first let
us suppose that E is contained in the unit ball. Then E N C,, = 0.

Let § < ¢3/2 < 1/2, and select the integer L and ¢ > 0 in such a way
that all the estimates in steps II-1V hold.

Let B, — F UEQ*n, tn = lg,, and let

only) — ditn(y)

- do,

be the lower Radon-Nikodym derivative (density) of p,, on Sy—» with re-
spect to normalized surface area measure on So—. Thus, v,(y)do,(y) <
dun(y). Note that pg is the normalized surface area measure on Sy, hence

voly) = 1.
Let

e>o={n>L: n+ln....n—L+1¢&Ng(e)},
e>Xi={n>L: nt+tln,....n—L+2&Ng(e), n—L+1e Ng(e)},

edo={neN:n<Lor
one of n+1,n,...,n — L+ 2 belongs to Ng(e)}.

These give a partition of the integers. For every natural number n we
define a number A, as follows. If n > Land n,n—1,... n—L+1 & Ng(e),
then let A, be the largest number with the property that v,(y) > A, for
all y € So—» with the exception of a set of normalized surface measure
< 4. Let us call this case for A,, of the first type. If, however, n < L or
one of n,n—1,...,n— L+1 belongs to Ng(¢), then let A, be the largest
number with the property that v,(y) > A, for all y € Sy-» N C; with the
exception of a set of normalized surface measure < 4. Let us call this case
for A,, of the second type.

We want to compare A, ; with A, for n > L. Let = denote the

balayage out of R’ \ (E UByn1). Then fi,,1 = T, and MnH‘S =
2—n—1
[in . Thus, v, is at least as large as the density (on Sy-n-1)
-
of the balayage v,(y)do, of v,(y)do,. If © denotes balayage out of the

e —

narrower domain Byn z+1 \ (£ U By » 1), then the density of v,(y)do, is
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not larger on Sy-»—1 than the density of the balayage v,(y)do,, which (as
we have just seen) is not larger than v,,;. Now if n € >, then both
A, and A,y are of first type (i.e. v,(y) > A, and v, 1(y) > A,y for
all y € Sy-» and y € Sy-n-1, respectively, with the exception of a set of
measure < §), heng(\él.?).élél) can be applied (in a scaled form) for the

measure du(y) = v,(y)do, to conclude that A, 1 > (1/2972)(1 — c20) A,..

In a completely similar manner, if n € >, then A, is of the second
type while A, is of the first type, i.e. v,(y) > A, for all y € Sy—n N C;
with the exception of a set of measure < § and v,41(y) > A,y for all
y € So-n-1 with the exception of a set of measure < 4. Now instead of
(4.3.44) we apply (4.3.50) to conclude that A, 1 > c4A,.

Finally, if n € 35, n > L, then A, is definitely of the second type, but
A,, may be of the first or second type (of the first type only if n+1 € Ng(e),
but n,n —1,...n — L+ 2 & Ng(e)). In either case v,(y) > A, for all
y € Sy—» N C; with the exception of a set of measure < ¢, and hence
we can apply (4.3.52) to conclude A, ;1 > (c3c./2)A,. This is also the
estimate we use for all n < L.

In summary, we have A, > (1/2972)(1 — c20) A, for n € Yo, Ay >
cs A, form € ¥y and A, 1 > (e3¢, /2) A, for n € 3. If s = sy denotes the
number of elements of Ng(¢) U {0} not larger than N, then there are at
most s elements of 3y and at most sl elements of >y not larger than N.
Thus, we can conclude

1 \" N/ nso [C3C\SNL
Avnz (5= ) (=e) (04)N(_) Ao,

2

Since Ng(¢) is of zero lower density, the limit inferior of sy /N is zero,
hence there are infinitely many N’s for which

C3Cr

(ca)™ ( 2
For all such NV we can conclude that

An1 > (2/es)(1/2°7)N (1 — cp0)2,

syL 2
3

which implies

1 N
ILI/N+1(SN+1) Z <w> (1 — 626)2]\[ (4354)

because, independently if Ay is of the first or second type, we have vy (y) >
Ap on a set of measure at least cs — § > ¢3/2.

Now we can easily complete the proof. Let Q0n,; be the unbounded
component of R? \ Exi1. Consider Green’s function with pole at y, €
Q41 and integrate it over the sphere S, with r = ry = 27V,

/SQQNH(%QO)CZUST(%) = /S(QQNH(%?JO)—QQNH(O;yo))dUST(%)

57



/ (U‘Sy0 (2) — U (0)) dos, (x)

T

n / (U7(0) = U (2) ) dos, (@), (4.3.55)

T

where = denotes the balayage out of Qn .
Here the first integrand is

1 1

|z — yo|42 a |lyo]4—2

< cslz], (4.3.56)
where cg depends only on yg and d. For the second integral we have

/5 (0%(0) — U™ (2)) dar, (2 (4.3.57)

o T
= déot—// ————ddy, (t)dos, (x).
/EN+1 |t]d-2 wo (L) Sew, | — ]4-2 w(t)dos, ()

1 . 1 1
[, mgiosto) = ()

(see e.g. [3, Example 4.2.9]) and there exists ¢; depending only on g, and

d such that do,, > crdunyq1 (see (4.1.10)), we get from (4.3.55), (4.3.56)
and (4.3.57)

Since

[ g0 @i (2)

S
1 1 1 o
> [ <——min <—,—>>d6 (t)  cor
v,y \ 142 (|72 pi-2 Yo

1 1
> 07/_ <W - rd_—2> dpna () — cor
BQ*N*l

1
— (22— 1)C7mﬂN+l(SN+l) — CeT
> (2772 — Der(1 — 20) — cr > r", (4.3.58)
provided 6 < (1 — /2/2)/c,,

log(2ce) — log ((2772 — 1)e7)
log (2(1 — ¢36)?) ’

N > max(

@ (log2 —log ((Qd_2 — 1)C7>>> (4.3.59)

and




Hence, there is an xx such that go,  (zn,%) = r~, and this implies

gQ($,y0) > gQN+1(x7yO) > T?V'

Here k > 0 can be arbitrarily small since 6 > 0 is as close to 0 as we
wish, and this inequality is true for a sequence ry = 27" — 0 (for which
sy satisfies (4.3.53) and (4.3.59)). Therefore Green’s function gq is not
Holder continuous at 0.

The proof above used that E is contained in the unit ball and omits
the cone C,;. The general case can be similarly handled. In fact, let €
contain the cone C' = C(x,27,¢). Select a sphere S,,, ro < /2, that
intersects C'. Without loss of generality (use a dilation) we may assume
that S,, = S, and let J = S; N C; be the middle part of S; N C. Then
tpup, has strictly positive density on J, say (with the notations of the
preceding proof) vo(y) > co > 0 for y € J. Now the preceding proof can
be repeated, the only difference is that in this case the starting value of
Ag 18 ¢y (note that for n = 0 the number A, is of the first type).

|

Remark 4.3.2. The proof above was effective in the following sense. Let
Yo, T, €, ¢, 1o, & > 0, 19 < /2 be given. Then there are ¢ > 0, n > 0
and M that depend only on d,yy, 7,¢,c,ro, k, with the following property.
Let E be a compact set of positive capacity, €2 the unbounded component
of R\ E, 0 € 99, and assume that Q contains a cone C(xo,27,¢). If for
the measure jio = ppyp,, the condition

d,LLO(y) Z C, y & STO M C(xO) T, 6)
dUsTO

holds, and if for a particular N > M we have [Ng(s) N{0,1,..., N} <
NN, then there is an x € Sy~ such that

golz,y0) > (27%)".

4.4 Proof of Lemma 4.2.2

First we show that 1) is equivalent to 2). As at the end of the proof of
Theorem 4.2.1 in Section 4.3 (see (4.3.58)), we can write

cC —
| sateados (@) 2 Sun(B) - e

T
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with some constants ¢; and cy. If go(-, a) is Holder continuous at 0, then
the left-hand side is less than c3r”™ for some positive constants ¢z and k < 1.
Therefore it follows for » < 1 that

pi(B,) < cyrd™"

for some constant ¢, and this shows that 1) implies 2).

Conversely, suppose 2). Let |x| = r be small, and E* = E'\ By,. Let
— and ~ denote the balayage out of RY\ E* and R¢ \ F, respectively.
Since 0 is a regular point, go(0,a) = 0. Therefore

ng\E*(())a) - ng\E*(())a)_gQ(O)a)

= (U‘S“(O) = U°(0)) = (U°*(0) — U*(0))

Now, 6, is the balayage of 6& onto E*, and so 6; o < 6,. Thus, we do

not decrease the integral by integrating only over By, with respect to 6;,

ie.
1 ~
IR\ E* (O,CL) < /B Wdéa(y) (4460)

Furthermore, using 2) we obtain

1
et~ 3|
/BZT |y|d_2 i Z 2 /zz\B

= QduE( )

/2t

< Z<7> pi(Bay joi)
1=0
o] 2(d—2)z’ 27" d—2+K
< Y %=e(F)
1=0
C2d—2+QH
= g

This, (4.4.60) and (4.1.10) give gra\g+(0,a) < csr® for all small r > 0
with some constant c5. Now the ball B,, is contained in R\ E*, hence
Harnack’s inequality gives gra\p+(7,a) < cegravg+(0,a) < cgesr™ for all
|z| = r. Since here gga\p+(7,a) > ga(r,a) > go(x,a), the Holder conti-
nuity of gs(x, a) follows, and this proves 2) = 1).

Remark 4.4.1. The proof just given is effective in the following sense. If
for some r > 0 we have pug(B;) < Ct3=2t% for t < 2r, then for |x| =1
0&0662d—2+2ﬁ

golw.a) < Cur, O =

(4.4.61)

60



Next we show that 3) implies 1). Let R be so large that 9G' C Bpg
and construct a domain 7 in the following way. If a & Bg then set
T — Br N G. Otherwise take a small ball B, C ( centered at a and set
T = (Br\ B.) NG. Let r be small and set f = 0 on B, and f = 1 on
8G\§T. Compare uy and ¢¢ in the region T'. Both are harmonic in 7" and
positive on S and 9B,. Hence an application of the maximum principle
shows that go(z,a) < crus(x) in T, and this proves 3) = 1).

It is left to show 1) = 3 under the cone condition. Under the cone
condition 1) implies the positive lower density of Nz(e) for some ¢ > 0,
i.e. there is an 7 and an N; such that |[Ng(e) N {0,1,..., N}| > 4nN for
N > Nj. Then for large N, say for N > N,, we also have

Ve (@) N {[En) N+ 1,[(2) N +2,..., M}| = nM

for any M > N. Set ry = 27"l and F = B,, N (R?\ G). For this F
the preceding inequality gives

INp(e) N {0,1,..., M} > nM, for M > N > N,,

hence, by the proof of a) in Theorem 4.2.1, see in particular Remark
4.3.1, there are a k > 0 and an Ny > N (depending only on ¢ and 7) such
that for all M > N > N, the inequality pup(Bywmi) < (27MF1)d=24x g
true. This implies pp(B;) < 247 2H7¢4=2+% for ¢ < 2. 27N, Hence, by the
effective form of the implication 2) = 1) given in Remark 4.4.1, we can
conclude for |z| = r = 27V the inequality gra\p(z,a) < C1(27V)" with
C, = C'CLC622<d_2+2H)/(2H — 1)

|
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Summary

This dissertation investigates local smoothness properties of the Green
function of the complement of a compact set . The continuity of Green’s
functions at boundary points has been extensively studied for a long time.
The aim of this research is to give conditions for the stronger Holder
continuity in terms of the geometry of the set. We consider both the
planar and the higher dimensional case. The dissertation consists of 3
parts based on 3 papers: [15], [16] and [17].

Optimal Smoothness for £ C [0, 1]

Suppose that F C C is a compact set with positive logarithmic capacity
cap(E) > 0. Let Q := C\ E, where C := {00} U C is the extended
complex plane. Denote by ga(z) = ga(z,00), z € ), the Green function
of 2 with pole at oco. We are interested in the behavior of gq at a regular
boundary point.

Suppose that 0 is a regular point of E, i.e., go(z) is continuous at 0
and go(0) = 0. First consider the case F C [0,1]. The monotonicity of
the Green function yields

90(2) > ga\py(?), 2z € C\|0,1],

that is, if F has the "highest density" at 0, then go has the "highest
smoothness" at the origin. In particular

9o(=7) > ga\o (=) > Vr, 0<r<l1.

In this regard, we would like to explore properties of F whose Green
function has the “highest smoothness" at 0, that is, F conforming to the
following condition

ga(z) < Cl2|"?, zeC,
which is known to be the same as
ga(—r) < Cr'/? 0<r<l1 (1)

(c.f. [1, Theorem 3.6]).
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For 0 < e < 1/2 we set (see [5])
E(t) = (En|0,t]) U0,et] U [(1—e)t,t].
Extending the results of V. Andrievskii, L. Carleson and V. Totik we prove
the following main theorems:
Theorem 1. For any ¢ > 0

/7«1 G N w> %dt < 0099\(/;7")

where Cy is independent of r.

Theorem 2. Let ¢ < 1/2. I satisfies (1) if and only if

[ G e

The method used in the proofs of Theorems 1 and 2 can be applied to
the case I/ C [—1,1] as well (c.f. [5, Theorem 1.11]). In this case

: , T
9 (ir) 2 gayj_1,y(ir) > 2’ 0<r<l,

therefore in this case the optimal smoothness for Green functions is Holder
1 and we are interested in the sets I satisfving

ga(z) < Clz|, 0< |zl <1

The highest smoothness of the Green function at the origin (Lipschitz
condition) is again equivalent to the highest density at 0 and the corre-
sponding theorems, similar to Theorems 1 and 2 hold as well.

Markov Inequality and Green Functions

This part of the dissertation is joint work with Vilmos Totik.
Let 1I,, denote the set of algebraic polynomials of degree < n. Let
E C C be compact with positive logarithmic capacity. We say that I
satisfies the Markov inequality with a polynomial factor if there exist
C, k > 0 such that
1Pl < On®||Pall (2)

holds for every n and P, € Il,.

Inequality (2) is strongly related to the smoothness properties of the
Green function belonging to E. Let () be the outer domain of F, i.e. the
unbounded component of C\ F, and let go(2) denote Green’s function of
0 with pole at infinity. gq is said to be Holder continuous if there exist
C1, a > 0 such that

go(z) < C (dist(z,E))a (3)
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for all z € C. Tt is an open problem if (2) and (3) are equivalent for any
compact set . In Chapter 3 our aim is to show that in the optimal cases
k=1 and o = 1 they are, indeed, equivalent. Our main result is:

Theorem. Let I be a compact subset of the plane such that the unbounded
component Q) of C\ E is reqular. Then the following are pairwise equiva-
lent.

i) Optimal Markov inequality holds on E, i.e. there exists a C' > 0 such
that
[Pz < Cnl| P&

for every polynomial F, € 11,, n=1,2,....

il) Green’s function gq is Lipschitz continuous, i.e. there exists a Cp > 0
such that
ga(z) < Cidist(z, E)

for every z € C.

iii) The equilibrium measure ug of I satisfies a Lipschitz type condition,
1.e. there erists a Cy > 0 such that

/LE<D(5(Z)> S 026
for every z € E and 6 > 0.

If, in addition, Q is simply connected, then i)—iii) are also equivalent to

iv) The conformal mapping ® from Q onto the exterior of the unit disk is
Lipschitz continuous, i.e.

|CI)(21) — CI)(ZQ)| < 03|Zl — 22|, 21, %9 € Q.

In Chapter 3 we also state a local version of the theorem.

A Wiener-type Condition in R?

Let £ C R? be a compact set of positive Newtonian capacity, € the
unbounded component of R\ £ and go(x,a) the Green’s function of
with pole at a € 2. We are interested in the behavior of go at a boundary
point of ), which we assume to be 0, i.e. let 0 € 9.

Let B, = {x : |x| < r} be the ball of radius r about the origin, and
we shall denote its closure by B, and its boundary (the sphere of center 0
and radius r) by S,. With

E" = BN (Bynis \ Byn) = {x eB 2" < |7 < 2—"“}
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the regularity of the boundary point 0 was characterized by Wiener (see
e.g. |7, Theorem 5.2]): Green’s function ge(x,a) (a € 2) is continuous at
0 € 99 (i.e. 0 is a regular boundary point of £) if and only if

Z cap(E™) 244" — o,

n=1

where cap(E™) denotes the (d-dimensional) Newtonian capacity of E™.
Our aim is to characterize in a similar manner the stronger Holder conti-
nuity:
golz,a) < Clal”
with some positive numbers C| k.
Following the definitions in [5], for ¢ > 0 set

Ng(e)={neN : cap(E") > 2742

and we say that a subsequence N' = {n; < ny < ...} of the natural
numbers is of positive lower density if

i NV N{0,1,...,N}|

> 0,

which is clearly the same condition as ny = O(k).
Let zp € 51, 0 <7 < 1, £ > 0 and set

(x,0)

C($0,T,€) = {l’ e By : ||$||

>1—7}

This is a cone with vertex at 0 and x( as the direction of its axis. We say
that F satisfies the cone condition if

C(ZCo, T, 6) C Q
with some xy € S;, 7 and ¢ > 0, which means that € contains a cone with
vertex at 0. Our main result in Chapter 4 is

Theorem. a) If Ng(¢) is of positive lower density for some ¢ > 0 then
Green’s function gq is Holder continuous at 0.

b) If Green’s function gq is Holder continuous at 0 and E satisfies the
cone condition then Ng(¢) is of positive lower density for some e > 0.

The sufficiency of the density condition for Holder continuity of the
solution to Dirichlet’s problems and various elliptic equations was proved
by Maz’ja in [8]- [11]. Maz’ja used the condition

N
22”<d_2>cap(E mﬁgfn) Z 6N; N = 1727 (4)

n=1
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for some § > 0, which is equivalent to the positive density of Nz(e). Tt
was also shown in [11] that in general this condition is not necessary. The
problem to find conditions under which (4) is necessary was raised in [10].
Thus, the above theorem solves a long standing open problem under the
simple cone condition.
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Osszefoglalas

A disszertacio egy E kompakt halmaz komplementerének Green-fiiggveé-
nyének lokalis tulajdonsagait vizsgalja. A Green-fiiggvények folytonossa-
gaval hatarpontokban sok tanulmény foglalkozik. Ezen munka célja, hogy
a halmaz geometriajan alapul6 feltételeket adjon az erésebb Holder folyto-
nossagra. Egvarant targyaljuk a sfkbeli és a magasabb dimenzi6s esetet.
A disszertacio 3 részbol all, melyek egy-egy cikken alapulnak: [15], [16] és
[17].

Optimalis simasag I C [0, 1]-re

Tegyiik fel, hogy £ C C egy kompakt halmaz cap(£) > 0 logaritmikus
kapacitéssal. Legyen Q := C\ E, ahol C := {00} UC a kibgvitett komplex
sik. Jelolje ga(2) = ga(z, ), z € Q az Q Green-fiiggvényét oo podlussal.
A gq viselkedését tanulmanyozzuk egy regularis hatarpontban.

Tegyiik fel, hogy a 0 az E-nek egy regularis pontja, vagyis, hogy ga(z)
folytonos 0-ban, és go(0) = 0. El6szor tekintsiik az £ C [0, 1] esetet. A
Green-fliggvény monotonitasa miatt

90(2) > ga\py(?), 2z € C\|0,1],

azaz, ha E-nek a "legnagyvobb a sirisége" a 0-ban, akkor go-nak a "leg-
nagyobb a simasaga" az origoban. Ezért

9o(=7) > ga\o (=) > Vr, 0<r<l1.

Szeretnénk jellemezni azokat az F halmazokat, amelyek Green-fiiggvényé-
nek a "legnagyobb a simasiga" 0-ban, vagyis azokat az E-ket, amelyek
eleget tesznek a kovetkezs feltételnek:

go(z) < CJl2V2, 2 €C,
amely ekvivalens a
ga(—r) < Cr'/? 0<r<l1 (1)

egyenlGtlenséggel (c.f. [1, Theorem 3.6]).
0 <& < 1/2-re legyen (lasd [5])

E(t) = (EN[0,4])U0,et] U[(1 — &)t 1].
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V. Andrievskii, L. Carleson és Totik Vilmos eredményeit kibGvitve a kvet-
kez§ tételeket bizonyitjuk:

1. Tétel. Bdrmely ¢ > 0-ra

/7«1 G a M) %dt < (jom\/_;)

ahol Cy fiiggetlen r-tél.
2. Tétel. Legyen ¢ < 1/2. I akkor és csak akkor elégili ki (1)-et, ha

[

Az 1. és 2. Tétel bizonyitdsanal hasznélt modszer az E C [—1, 1] esetre
is alkalmazhat6 (c.f. [5, Theorem 1.11]). Ebben az esetben

: , T
9 (ir) 2 goyj_1,y(ir) > 2’ 0<r<l,

tehat a Green-fiiggvény optimalis simasaga itt Holder 1, és most azokat
az F halmazokat keressiik, melyekre

ga(2) < Clz|, 0<]z| <1

A Green-fiiggvény legnagvobb simaséga az origonal (Lipschitz-feltétel) is-
mét ekvivalens a legnagvobb siirtiséggel a 0-ban, és az 1. és 2. Tételhez
hasonld megfelels tételek is igazak.

Markov-egyenldtlenség és Green-fiiggvények

A disszertacio ezen része Totik Vilmossal kézos munka.
Jelolje 11, a legfeljebb n-edfoku algebrai polinomok halmazit. Legven
E C C kompakt pozitiv logaritmikus kapacitassal. Azt mondjuk, hogy F
eleget tesz a Markov-egyvenlStlenségnek polinomidlis faktorral, ha létezik
C, k> 0 ugy, hogy
AR AP (2)

igaz minden n-re és P, € I1,-re.

A (2) egvenlStlenség szoros kapcesolatban all £ Green-fiiggvényének
simasagi tulajdonsigaival. Legyen Q az I kiilsé tartomanya, azaz a C\ B
nemkorlatos komponense, és jeldlje go(z) az () Green-fliggvényét végtelen
polussal. gq-t Holder-folvtonosnak nevezziik, ha létezik Cy, o > 0 ugy,
hogy

gal2) < C) (dist(z,E)) . (3)
minden z € C-re. Nyitott probléma, hogy (2) és (3) ekvivalensek-e
barmely F kompakt halmazra. A disszertécié 3. fejezetében az a célunk,

hogy megmutassuk, hogy a & = 1 és a = 1 optimalis esetek valoban
ekvivalensek. F6 eredményiink:
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Tétel. Legyen I/ a sik egy kompakt részhalmaza, és tegyiik fel, hogy €2, a
C \ E nemkorldtos komponense requldris. Ekkor a kévetkez6k pdronként
ekvivalensek.

i) E-n optimdlis Markov-egyenldtlenséy igaz, azaz létezik C' > 0 dgy, hogy
1P3lle < Onl|Palls
minden P, € II,,, n=1,2,... polinomra.
ii) A go Green-fiiggvény Lipschitz-folytonos, azaz létezik C, > 0 gy, hogy
ga(z) < Cidist(z, E)
minden z € C-re.

iii) Az E halmaz pug egyensulyi mértéke kielégit egy Lipschitz-féle feltételt,
azaz létezk Cy > 0 gy, hogy

ME<D(;(z)> < Cyd

minden z € E-re és § > 0-ra.

Touvdbbd, ha ) egyszeresen dsszefiiggd, akkor az i)—iii) feltételekkel szintén
ekvivalens a kévetkezd

iv) Az Q-t az egységkor kilsejére képezd © konformis leképezés Lipschitz-
folytonos, azaz

|CI)(21) — CI)(ZQ)| < 03|Zl — 22|, 21, %9 € Q.

A 3. fejezetben ezen tétel egy lokalis valtozatat is kimondjuk.

Egy Wiener-tipusu feltétel R%ben

Legven 5 C R? egy kompakt halmaz pozitiv Newton-féle kapacitassal,
Q) az R\ I nemkorlatos komponense, és go(x,a) az () Green-fiiggvénye
a € ) polussal. gq viselkedését vizsgéaljuk € egy hatarpontjaban, melyrol
az altaldnossag megszoritdsa nélkiil feltehetjiik, hogy a 0-ban van, vagyvis
hogy 0 € 0f0.

Jelolje B, = {x : |z| < r} az orig6 kériili r sugart nyilt gémbot, B,
a lezartjat, és S, a hatarat (a gombhéjat). Legven tovabba

Wienertdl szarmazik a 0 hatarpont regularitasianak karakterizicioja (lasd
pl. |7, Theorem 5.2|): A go(x,a) (a € ) Green-fiiggvény akkor és csak
akkor folytonos 0 € 9Q-ban (vagyis 0 az I regularis hatarpontja), ha

Z cap(FE™) 242 = o0,

n=1
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ahol cap(E") jeloli az E™ halmaz (d-dimenzios) Newton-féle kapacitasat.
Célunk egy hasonl6 jellemzést adni az erGsebb Holder-folytonossagra:

ga(x,a) < Clz[*

valamely pozitiv C, k konstansokkal.
[5] definicioit kovetve tetszéleges € > O-ra vezessiik be a kovetkezd
jelolést:
Ngle)={neN : cap(E") > 2742},
Azt mondjuk, hogy a természetes szamok egy N = {n; < ny < ...}
részsorozata pozitiv alsod stirtiségt, ha

liming W N{0,1,..., N}

> 0,

ami nyilvanvaloan ekvivalens n, = O(k)-val.
Legven xp € 51, 0 <7 < 1, £ > 0, tovibba

X,
C(:UO)T)g) = {iUEBg : ﬁz 1_7-}

Ez egy 0 csicsi és xo tengelyirdnyd kip. Azt mondjuk, hogy F eleget
tesz a kuapfeltételnek, ha
C(l’o, T, 6) C €

valamilyen xy € Si-re, 7-ra és ¢ > O-ra, tehat ha () tartalmaz egy 0 csticst
kipot. A 4. fejezet {6 eredménye:

Tétel. a) Ha Ng(e) pozitiv alsd siriségd valamilyen ¢ > 0-ra, akkor a
ga Green-fligguény Holder-folytonos 0-ban.

b) Ha a go Green-figgvény Holder-folytonos 0-ban, és E eleget tesz a
kupfeltételnek, akkor Ng(e) pozitiv alsé stiriségd valamilyen ¢ > 0-
ra.

A tétel els6 részét, a striségi feltétel elégségességét a Dirichlet-problé-
ma és mas elliptikus egvenletek megoldasanak Holder-folytonossigahoz
Maz’ja mér a '60-as években belatta (lasd [8]- [11]). Maz’ja ezt a feltételt
hasznalta:

N
Y 2 cap(ENDyn) > 6N, N=1,2, .. (4)

n=1

valamely ¢ > 0O-ra, ami ekvivalens Nz () pozitiv strdségével. Maz’ja [11]-
ben azt is megmutatta, hogy altalanossigban ez a feltétel nem sziikséges.
[10]-ben vetette 6l a problémat olyan feltételek keresésére, melyek mellett
(4) sziikséges is lenne. Tehét a fenti tétel egy régi nyilt probléméat old meg
az egyszer kupfeltétel mellett.
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