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Behavior of Green’s functions around boundary points is a 
fundamental question of harmonic analysis, which has appli
cations in different areas such as smoothness properties of so
lutions to Dirichlet problems or bounds for polynomials and 
polynomial inequalities. The continuity of Green’s functions at 
boundary points has been extensively studied for a long time. 
The aim of this research is to give conditions for the stronger 
Holder continuity in terms of the geometry of the set. We con
sider both the planar and the higher dimensional case. The 
dissertation consists of 3 parts based on 3 papers: [9], [10] and 
[11]-

1 Optimal Smoothness for E c [0,1]
Suppose that E  C C is a compact set with positive logarithmic 
capacity cap(E) > 0. Let il :=  C \E, where C := {oo}UC is the 
extended complex plane. Denote by gn(z) =  gn(z, oo), z t i l ,  
the Green function of il with pole at oo. We are interested in 
the behavior of gn at a regular boundary point.

Suppose that 0 is a regular point of E, i.e., gn(z) is continu
ous at 0 and gn(0) =  0. First consider the case E  C [0,1], The 
monotonicity of the Green function yields

gn(z) >g-c\[0A](z), z e C \ [ 0 ,  l],

that is, if E  has the ’’highest density” at 0, then gn has the 
’’highest smoothness” at the origin. In particular

g n (-r) > gc\[0A]( - r )  > Vr, 0 < r < 1.
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In this regard, we would like to explore properties of E  whose 
Green function has the “highest smoothness” at 0, that is, E  
conforming to the following condition

gn(z) < C\z\1/2, z e  C,

which is known to be the same as

g n (-r) < C r l/2, 0 < r < 1 (1)

(c.f. [1, Theorem 3.6]). V. Andrievskii [2] proved that if E  satis
fies (1) then its density in a small neighborhood of 0, measured 
in terms of logarithmic capacity, is arbitrary close to the density 
of [0,1] in that neighborhood, i.e. (1) implies

, cap(£n 0,r 1
iim ------------------- =  - .r—>0 r 4

For 0 < e < 1/2 we set (see [8])

E e(t) =  (E  fl [0, t]) U [0, et] U [(1 — e)t,t\.

Our first result is

( 2 )

(3)

Theorem  1 For any e > 0

( I _ 5PKWI) l Jt „ Co9£!izl)
\4 t )  t (4)

where Co is independent ofr.

L. Carleson and V. Totik [8] have characterized the optimal 
smoothness in terms of a Wiener type condition. They proved
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Theorem  2 (Carleson, Totik) Let e < 1/3. E  satisfies (1) 
if and only if

This theorem plays the same role for Lip 1/2 smoothness as 
Wiener’s theorem for continuity. The proof of Theorem 2 in [8], 
due to L. Carleson, was based on Poisson’s formula. There is 
an alternative approach: using the technique of balayage; and 
with it we prove the following variant of Theorem 2.

Theorem  3 Let e < 1/2. E  satisfies (1) if and only if

Andrievskii’s theorem is a consequence of Theorem 3.
The method used in the proofs of Theorems 1 and 3 can be 

applied to the case E  C [—1,1] as well (c.f. [8, Theorem 1.11]). 
In this case

therefore in this case the optimal smoothness for Green func
tions is Holder 1 and we are interested in the sets E  satisfying

k

gn(ir) > ° < r < !>
r

gn(z) < C\z\, 0 < \z\ < 1.

This is equivalent to

go, (ir) < C r , 0 < r < 1 ( 6 )
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because gn(x +  iy) is monotone in y. The highest smoothness of 
the Green function at the origin (Lipschitz condition) is again 
equivalent to the highest density at 0. Namely, let E  C [—1,1] 
and set E e(t) as in (3) and

Ee{-t) =  {E  n [-t, 0]) U [-t, (1 -  e ) (—t)] U [~£t, 0],

Theorem  4 If E  C [—1,1] and e > 0 then

f 1 _  cap(Ee(t))
Jr U  t

The same is true for E e(—t).

KI t < C o g- ^ l
t r (7)

Theorem  5 Let e < 1/2. E  satisfies

ga{z) < C\z\, 0 < \z\ < 1,

if and only if (5) holds for Ee(t) and Ee(—t).

This is a variant of [8, Theorem 1.11].

Corollary 1 If E  satisfies (8) then

, c&p(E fl [—r, r]) 1
iim --------------------- =  - .

( 8 )

(9)

Corollary 2 (c.f. [8, Corollary 1.12]) is Holder 1 continuous 
at 0 if and only if both gc\{En[o l]) S'cV.Ery-i o]) are Holder 
1/2 continuous there.
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2 Markov Inequality and Green Func
tions

This part of the dissertation is joint work with Vilmos Totik.
Let n„ denote the set of algebraic polynomials of degree < n. 

Markov’s inequality is a basic result comparing the supremum 
norm of a polynomial Pn G IIn to the supremum norm of its 
derivative:

ll^ ll[-i,i] < n2\\Pn\\[-i,i].

If C’i(O) is the unit circle, then the corresponding inequality

ll^llcqo) < n\\Pn\\Cl(o)

is due to Bernstein. Let us also remark that this is in some sense 
the optimal case, for if E  is any compact set on the complex 
plane then there are polynomials Pn G IIn, n =  1 ,2, . . .  for 
which

\\P:Me  > cn\\Pn\\E

with some constant c > 0.
Let B c C b e  compact with positive logarithmic capacity. 

We say that E  satisfies the Markov inequality with a polynomial 
factor if there exist C, k > 0 such that

\\Pn\\E<Cnk\\Pn \\E (10)

holds for every n and Pn G Iln.
Inequality (10) is strongly related to the smoothness prop

erties of the Green function belonging to E. Let il be the outer
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domain of E, i.e. the unbounded component of C \ E, and let 
gn(z) denote Green’s function of il with pole at infinity, gn is 
said to be Holder continuous if there exist C*i, a > 0 such that

for all z G C. It is known that in certain cases the Markov 
inequality is equivalent to the Holder continuity of the Green 
function. Totik (see [12]) proved that this is true for Cantor- 
type sets, i.e. (10) is equivalent to (11) if E  is Cantor-type. It is 
an open problem if (10) and (11) are equivalent for any compact 
set E. In this work our aim is to show that in the optimal cases 
k =  1 and a =  1 they are, indeed, equivalent.

Theorem  6 Let E  be a compact subset of the plane such that 
the unbounded component Q of C \ E  is regular. Then the fol
lowing are pairwise equivalent.

i) Optimal Markov inequality holds on E , i.e. there exists a 
C  > 0 such that

for every polynomial Pn G Hn, n =  1,2, . . . .

ii) Green’s function go, is Lipschitz continuous, i.e. there exists 
a C i > 0 such that

( 1 1 )

\\P'n\\E<Cn\\Pn\\E ( 1 2 )

gn(z) < Cudist^, E) (13)

for every z G C.
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iii) The equilibrium measure ¡j>e  of E  satisfies a Lipschitz type
condition, i.e. there exists a C2 > 0 such that

Te (D s(z)J < C 25 (14)

for every z G E  and S > 0.

If in addition, Q is simply connected, then i)—iii) are also equiv
alent to

iv) The conformal mapping $  from Q onto the exterior of the
unit disk is Lipschitz continuous, i.e.

|$ (z i)  -  $ ( z 2)I < C2\zi -  z21, z i , z 2 G Cl.

We mention that each of i), ii) and iv) implies regularity, 
so in their equivalence the regularity assumption is not needed.

There is also a local version of our theorem. We say that E  
has the optimal local Markov property at the point zq G dCl if 
there is a constant C  such that

\Pik)(z0)\ < C kn k\\Pn\\E, Pn G n„, n =  1, 2, .. .

for all k =  1, 2, . . . .

Theorem  7 Let E  be a compact subset of the plane, Q the un
bounded component of C \ E, and suppose that z0 G dQ is a 
regular boundary point of Q (i.e. gn(zo) =  0). Then the follow
ing are equivalent.

i) E  has the optimal Markov property at zq.
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ii) Green’s function go, is Lipschitz continuous at zq, i.e.

gn(z) < C i\ z -  z01

with some constant C\.

iii) The equilibrium measure °f E  satisfies a Lipschitz type 
condition at zq, i.e. there exists a C2 > 0 such that

for every S > 0.

If in addition, Cl is simply connected, then i)—iii) are also equiv
alent to

iv) The conformal mapping $  from Cl onto the exterior of the 
unit disk is Lipschitz continuous at z0.

It is worth noticing that much more is true than the equiv
alence of ii) and iii), namely we can give a very precise two 
sided estimate for Green’s function in terms of the equilibrium 
measure.

Theorem  8 Let E  be a compact subset of the plane, Cl the un
bounded component of C \ E, and suppose that z0 G dCl is a 
regular boundary point of Cl {i.e. ga{z<f) =  0). Then for every 
0 < r < 1 we have

Le  (^Ds{z0)j < C2 S

l z — zo\=r f pE (Dt(zo)) dt
t

(15)
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3 A Wiener-type Condition in Hd
Let E  C  R d be a compact set of positive Newtonian capacity, il 
the unbounded component of R d \ E  and gn(x, a) the Green’s 
function of il with pole at « 6  il. We are interested in the 
behavior of gn at a boundary point of il, which we assume to 
be 0, i.e. let 0 G dil.

Let Br =  {x  | \x\ < r }  be the ball of radius r about the 
origin, and we shall denote its closure by B r and its boundary 
(the sphere of center 0 and radius r) by Sr . With

the regularity of the boundary point 0 was characterized by 
Wiener (see e.g. [3, Theorem 5.2]): Green’s function ga(x,a) 
(a G il) is continuous at 0 G dil (i.e. 0 is a regular boundary 
point of E) if and only if

where cap(En) denotes the (d-dimensional) Newtonian capac
ity of E n. Our aim is to characterize in a similar manner the 
stronger Holder continuity:

E n =  E  n ( B 2-„+ i \ S 2- „ )  =  { i g £  2 -n < \x\ < 2~"+1 j

OO
(16)

n= 1

gn(x, a) < C\x\ti

with some positive numbers C , k .
Following the definitions in [8], for e > 0 set

ATE (e) =  {n  G N | cap(£;n) > e2 -n(-d- 2'>},

(17)

(18)
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and we say that a subsequence J\f =  {«4 < n-2 < . . . }  of the 
natural numbers is of positive lower density if

liminf
N —>-oo

l-A/'n { 0,
N + l > 0 ,

which is clearly the same condition as n =  O(k). 
Let xq & S\, 0 < t  < 1, £ > 0 and set

C(xo, t , £) {x  G Be {x ,  X 0) > 1 — r } . (19)

This is a cone with vertex at 0 and xo as the direction of its 
axis. We say that E  satisfies the cone condition if

C ( x 0, r , f ) c i l ( 2 0 )

with some xo G Si, r  and £ > 0, which means that fi contains 
a cone with vertex at 0.

Theorem  9 a) If N e {&) of positive lower density for some 
£ > 0 then Green’s function go, is Holder continuous at 0.

b) If Green’s function go, is Holder continuous at 0 and E  sat
isfies the cone condition then Me { )̂ of positive lower 
density for some £ > 0.

The sufficiency of the density condition for Holder continu
ity of the solution to Dirichlet’s problems and various elliptic 
equations was proved by Maz’ja  in [4]- [7]. Maz’ja  used the 
condition

N

^  2n(d- 2)cap(.E id D2- n) > S N ,  N  =  1,2,...  (21)
n= 1
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for some S > 0, which is equivalent to the positive density of 
J\Te (£). It was also shown in [7] that in general this condition is 
not necessary. The problem to find conditions under which (21) 
is necessary was raised in [6]. Thus, the above theorem solves a 
long standing open problem under the simple cone condition.

The importance of the Holder property is explained by the 
following result. Let G be a domain in R d with compact bound
ary such that 0 is on the boundary of G. We may assume that 
G % B\, and set E  =  Tfi\G. Then Q := TLd\E =  GU ( R d\Bi)  
is a domain larger than G and 0 is on the boundary of il. If / is 
a bounded Borel function on the boundary of G, then let u f de
note the Perron-Wiener-Brelot solution of the Dirichlet problem 
in G with boundary function /. We think Uf to be extended to 
dG as Uf =  f  there.

Lem m a 1 Suppose that 0 is a regular boundary point of G. 
Then the following are equivalent.

1) 9g (p  a) is Holder continuous at 0 for a G G.

2) h e {Bt ) < C rd~2+K for some C , k > 0 and all r < 1, where
Pe  denotes the equilibrium measure of E .

If, in addition, G satisfies the cone condition at 0, then 1) -
2) are also equivalent to

3) If f  is Holder continuous at 0, then so is Uf.

Note also that it is indifferent if ’’for a G G” in 1) is under
stood as ” for some a G G” or as ” for all a G G”.
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