Doktori (PhD) értekezés tézisei

AZ OXOVANÁDIUM(IV) INDUKÁLT AMIDNITROGÉN DEPROTONÁLÓDÁS

Jakusch Tamás

Témavezető:
Dr. Kiss Tamás

Szigedi Tudományegyetem,
Szervetlen és Analitikai Kémiai Tanszék,

Szeged
2004
Bevezetés és célkitűzés

Az 1980-as évek elejére az oligopeptidek és a legáltalánosabban vizsgált kétértékű átmeneti fémionok (Cu²⁺, Ni²⁺, Pd²⁺, Co²⁺, Zn²⁺) kölcsönhatásának több kérdési alapvetően tisztázódtak. Az amidnitrogén deprotonálódásához és koordinálódásához egy elsődlegesen kötő horgony donor csoportra van szükség. A vanádium bioszervetlen kémiaja csak az utóbbi évtizedekben indult jelentősebb fejlődésnek, ezen fémion – talán az érdeklődés hiányában – kimaradt a vizsgálatokból.

A nemkoordináló oldalláncot tartalmazó egyszerű dipeptidek esetében vizes oldatban az oxovanádium(IV) hidrolizál, az amidnitrogén nem koordinálódkik a V⁴⁺O-hez. Az aminocsoport – ellentétben más fémionokkal: Cu⁰, Ni³⁺, Co⁰, Pd³⁺ – nem megfelelő horgony donor csoport a V⁴⁺O indukálta amidnitrogén deprotonálódás számára. A 90-es évek első felében publikálták az első oxovanádium(IV)-deprotonált amidnitrogén kötést tartalmazó egykristály szerkezetek. Az első biológiaiias leg releváns ligandumokkal (egyszerű dipeptidekkel) alkotott, igaz terner komplexek röntgenszerkezete 1998-ban vált ismerté. Szintén ebben az évben közölték az első vizes oldatban pH 4,5 körül lejátszódó oxovanádium(IV) indukált amid nitrogén deprotonálódását a szalicilglicin vegyülettel, melynek feltehetően a fenolálcsoportja tölti be a horgony-donorscsoport szerepét.

Kutatómunkánk során további információkhoz szerettünk volna jutni a V⁴⁺O-peptidamid kölcsönhatásról, célkitűzéseink a következők voltak:

– Olyan ligandumok keresése, esetleg szintézise, melyek képesek a V⁴⁺O iont oldatban tartani, hidrolízisét meggátolni, az amidnitrogén(ek)nek a koordinációban való aktív részvételével.

– Második ligandum hatása az amidnitrogén deprotonálódására: terner rendszerek vizsgálata

– A kiválasztott ligandumok V⁴⁺O komplexeinek stabilitási állandóinak, ezen keresztül a rendszer speciációjának pH metriás módszerrel történő meghatározása

– ESR, látható elektronferjésztési, és amennyiben lehetséges CD spektroszkópiás módszerekkel az adott V⁴⁺O-ligandum rendszereket jellemezni
Az összetétel, a stabilitási állandók és a spektrális viselkedés alapján a keletkezett – elsősorban a deprotonált amidnitrogént tartalmazó – komplexek kötésmódját minél pontosabban meghatározni.

Munkánk során több mint tíz ligandumot vizsgáltunk oxovanádium(IV)-kőth képesség illetve a fémion által indukált amidnitrogén koordinálódás szempontjából vizes oldatban. Az egyes rendszerek jellemzéséhez pH- potenciometria, ESR-, látható elektrongerjesztési valamint amely esetekben lehetséges volt CD- spektrometriás módszereket alkalmaztunk.

A ligandumokat, amelyek termínális karboxilcsoportot tartalmaztak, alapvetően négy csoportba sorolhatjuk:
- tiolcsoportot tartalmazó ligandum (2-mpg),
- több alifás hidroxilcsoportot tartalmazó vegyületek (N-ά-glükonil- aminosavak),
- fenolos hidroxilcsoport tartalmazó ligandumok,
 a, két amidnitrogént tartalmazó vegyületek: (SalGly-L-Ala, SalGly-L-Asp),
 b, Asp tartalmú ligandumok (Sal-L-Asp, SalGly-L-Asp).

A terner rendszerek vizsgálatát a tiolátcsoportot tartalmazó dipeptidszármazék vegyes rendszereire korlátoztuk, a B ligandumnak a bipiridil-t, egy catecholszármazékot tiront, a maltolt és az oxálsavat válsztottuk.

ÁLKALMAZOTT VIZSGÁLATI MÓDSZEREK

Az általunk tanulmányozott ligandumok savbázis tulajdonságait, valamit fémkomplexeik egyensúlyi állandóit pH-potenciometriás módszerrel határoztuk meg 25 °C-on, 0,20 M ionerősség (KCl) beállítása mellett. A titrálást személyi számítógép vezérelte automatikusan. A kapott eredményeket a PSEQUAD illetve a csak a ligandumot tartalmazó rendszerek esetében a SUPERQUAD programmal értékeltük ki.

Az ESR spektroszkópiás méréseket általában csepปffolyós nitrogén hőmérsékleten végeztük. Az így nyert spektrumot megfelelő számítógépes program segítségével szimuláltuk, a részecskére jellemző ESR paramétereket meghatározottuk. A képződött komplexek oldszerkezetére elsősorban az ily
A vizsgált ligandumok szerkezete.
módon meghatározott párhuzamos csatolási állandó nagysága és egy empirikus megfigyelés alapján felállított egyenlet segítségével becslőt érték összehasonlításából következtettünk. Ahol lehetséges volt természetesen felhasználtuk a CD illetve a látható elektrongerjesztési szinképből nyerhető adatokat is.

A ligandumok közül a 2-merkapto-propionil-glicin és a terner rendszerek B ligandumai Fluka termékek voltak, a többi ligandumot együttműködő partnereink állították elő.

ÚJ TUDOMányos EREDMÉNYEK

4. A $\text{SalH}_3\text{GlyGly}$ és $\text{SalH}_2\text{GlyGlyGly}$ ligandumok $\text{V}^{\text{IV}}\text{O}$ komplexeit kétszeres, vagy annál nagyobb ligandumfelesleg mellett a pH 2-8 tartományban tudtuk pH-potenciometriás módon tanulmányozni. Kizárólag a tripeptid analóg esetén tudtunk amidnitrogént tartalmazó VOLH_1 összetételű részecskét kimutatni, az amidnitrogén deprotonálódása $\text{pK} = 5,43$-mal következik be. A mindkét ligandumáttal képzett bizskomplexek szerkezete az eljárástechnikai ESR spektrumuk alapján azonosnak kell lennie. A mért és a Chastean fele empirikus összefüggés alapján becsült csatolási állandó értékeinek összehasonlítása alapján a négy lehetséges donorcsoportból mind a biskomplex (fenolát, amin, amid, karboxilát), mind a VOLH_1 összetételű deprotonált amidnitrogént tartalmazó komplexben (2 fenolát, két amin) vagy egy fenolát vagy egy aminosorpoport axiális pozícióban koordinálódik.

A két ligandum között megfigyelhető különbség igazolja, hogy a karboxilátcsoport megfelelő pozícióban történő koordinációja – amely csak a $\text{SalH}_3\text{GlyGly}$ ligandum esetén tud az amidnitrogénnel valamint a fenolát és az aminosorpoportal $6+5+5$ tagú csatolt kelágyűrendezet képző – meglehetősen fontos az oxovanádium(IV)ion indukálta amidnitrogén deprotonálódás szempontjából.

A V\\(^{IV}\)O indukált amidnitrogén-deprotonálódás mindkét ligandumnál – ahogy az aszparaginsav-oldallánc nélküli származékoknál is – bekövetkezik, mindazonáltal az extra karboxilátkoordináció különbözőképpen hat a folyamatra. A dipeptidanalóxi axiális koordinációjának nincs hatása az
amidnitrogén deprotonálódásának pK értékére (4,79) az a SalGly liganduméval (4,76) gyakorlatilag megegyezik.

A tripeptidanalóg amidnitrogénjeinek deprotonálódásakor – mivel a V^{III}OL komplexben a karboxilátszoportok az ektovariáis síkban helyezkedtek el – a SalGly-L-Ala típusú V^{III}OLH₂ komplexe képződéséhez a donorcsoportok átrendeződése szükséges. Az amidnitrogén kooperatív deprotonálódására jellemző pH érték így 0,6 egységgel magasabban van, mint a SalGly-L-Ala esetében. Mindkét tripeptidanalógot tekintve az egyszeresen deprotonált származékból képződött maximálisan képződött mennyiség moltörtje bizonytalan, az alkalmazott kísérleti technikák különböző értéket határoznak meg.

Általános megállapítások:

8. A SalH₂GlyGly, a SalH₂GlyGlyGly és a SalGly-L-Ala rendszerekben kapott eredmények alapján valószínűsíthük, hogy az oxovanádium(IV) indukálta amidnitrogén-deprotonálódás savas pH tartományban jellemzően olyan rendszerekben jöhet létre, ahol a központi fémionhoz elsődlegesen már két vagy több horgony-donorcsoport koordinálódott, ezáltal az amidnitrogén(ek) koordinációjaval három (vagy négy) egységből álló csatolt kelátrendszer jön létre, és ahol minden amidnitrogén legalább két kelátgyűrű része. E megállapítást alátámaszthatja egyrészt az a megfigyelés, hogy egyetlen
ligandum esetén sem képződött V^{IV}O(LH$_2$)$_2$-két deprotonált amidnitrogént tartalmazó biszkomplex, amelyhez elegendőnek kellene lennie egyetlen horgony-donorcsoportnak is. Az állítás igazolására további kísérletek elvégzése szükséges.

9. A karboxilátcsoport mellett a horgony szerepét betöltő donorcsoportokat (fenolát, tiolát, alkoholát=alkoholos hidroxilcsoportok) összehasonlítva megállapíthatjuk, hogy a fenolátot tartalmazó ligandum (SalGly) stabilabb kölcsönhatást képes kialakítani a V^{IV}O-ionnal, mint a tiolát (2-mpg) és az alkoholátcsoportot (például GluGly) tartalmazó vegyületek, ezáltal erősebb horgonyként viselkedve jobban elősegíti a fémion hidrolízisének megakadályozását. Az amidnitrogén deprotonálódásának pK értéke azonban inkább a tiolát < alkoholát < fenolát sorrendben növekszik. Az oxovanádium (IV) által preferált oxigénkoordináció révén a vanádiumatom környezetében megnövekedett töltéssűrűség az amidnitrogén deprotonálódására gátolhatással van.

10. A megállapított szerkezetek alapján lehetőség nyílik az amidnitrogén párhuzamos csatolási állandóhoz való hozzájárulás értékének pontosabb becsüléséhez. A hozzájárulás értéke viszonylag tág határok – 35,5-40,0×10$^{-4}$ cm$^{-1}$ között mozog, és hasonlóan az irodalomban közöltékhez jellemzően függ a vanádium környezetének össztöltésétől. Egy negatív töltésű complexeknél 35,5-38×10$^{-4}$ cm$^{-1}$, míg a mínusz két vagy még nagyobb töltés esetén a 38-40×10$^{-4}$ cm$^{-1}$ tartományba esik.

Az értekezés alapjául szolgáló közlemények:

Összesített impakt faktor: 15,788

Az értekezés témakörébe tartozó egyéb közlemények:

10. Tamás Kiss, Tamás Jakusch, Melinda Kilyén, Erzsébet Kiss, Andrea Lakatos: Speciation of bioactive Al(III) and VO(IV) complexes in biological systems. Acta Pharmaceutica Hungarica (2000), 70(3-6), 175-186.

11. Tamás Kiss, Tamás Jakusch, Melinda Kilyén, Erzsébet Kiss, Andrea Lakatos: Speciation of bioactive Al(III) and VO(IV) complexes in biological systems.

Előadások, poszterek:

2. B. Gyurcsik, T. Jakusch: Equilibrium and solution structural study of oxovanadium(IV)$^{2+}$ ions with some carbohydrate derivatives, 33th ICCC ”The Chemistry of Metal Ions in Everyday Life”, Firenze, Italy, August 30-September 4, 1998 (poszter)
3. B. Gyurcsik, T. Jakusch, T. Kiss: Equilibrium and solution structural study of oxovanadium(IV)$^{2+}$ ions with some N-D-gluconylamino acids, COST D8 and ESF-Workshop on Biological and Medicinal Aspects of Metal Ion Speciation, Szeged, Hungary, August 22-25, 1998 (poszter)
environmental Medine” COST Symposium Lectures, Wroclaw, October 18-21, 2000 (előadás)

14 João Costa Pessoa, Isabel Correia, Carlos F. G. C. Geraldes, Margarida Castro, Tamás Jakusch and Tamás Kiss: V^{IV}O and V^{VO_2} complexes of schiff base

15. Tamás Jakusch, Saad Bouhsina, Hiromu Sakurai and Tamás Kiss: Binding Constant of VO(IV) to Transferrin, The 4th International Symposium of Chemistry and Biological Chemistry and Biological Chemistry of Vanadium. 3-5 September, Szeged, Hungary 3 (poszter)

