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Introduction

Molecular computing is an emerging field in current theoretical and
application-oriented research ([1],[27], [30])as well. One of the most promis-
ing alternatives of the traditional semiconductor technology is the so-called
biolectronics or molecular electronics ([28]).

One interesting possibility of molecular electronic devices was proposed
by F. L. Carter ([9]) and is about using single strands of the electrically
conductive plastic polyacetylene. Electrons are thought to travel along poly-
acetylene in little packets called solitons. Hence, molecular scale electronic
devices constructed from molecular switches and polyacetylene chains are
called soliton circuits.

The practical research in soliton circuits (cf. [19], [20], [21], and [22]) has
arisen the need to develop an applied mathematical arsenal in order to obtain
a detailed understanding of the behavior of these circuits. Nevertheless,
apart from the early work by M. P. Groves ([18]), no structural analysis has
been given for the design and verification of soliton circuits.

This thesis deals with the mathematical model of soliton circuits called
soliton automata. This model was introduced by J. Dassow and H.
Jürgensen in 1990 ([10]) in order to capture the logical aspects of the ”valve”
effect by which soliton switches and soliton circuits might operate. Dassow’s
and Jürgensen’s introductory work was followed by a series of papers (cf.
[11], [12], and [13]) in which special cases of deterministic soliton automata
were analyzed with respect to their transition monoids. Concerning an-
other aspect of the computational power of deterministic soliton automata,
in [17] a detailed analysis was given for homomorphically complete systems
of these automata. However, no detailed theory has been developed for the
description of the underlying topological structure of these automata, which
explains the lack of more general results on soliton automata.

The precedings show that both from the side of automata theory and
from the side of circuit design, there is a common need for a structural theory
by which soliton circuits and soliton automata can be analyzed. This thesis
is motivated by the above recognition and its goal is to provide a detailed
structural description of soliton graphs and soliton automata. The impacts
of our results on the practical design will also be outlined by giving the
algorithmic consequences of the theory.

This work is strongly based on the papers [4], [5], [6], [7], [8], and [25].
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Soliton automata and matching theory

The structural analysis of soliton automata will be carried out on the basis
of matching theory. By a matching M in graph G we mean a subset of E(G)
such that no vertex of G occurs more than once as an endpoint of some edge
in M . The connection between matching theory and soliton automata was
recognized by M. Bartha and E. Gombás in [2] and [3].

The underlying object of a soliton automaton is the so-called soliton
graph representing the topological structure of the corresponding molecule-
network. In this model atoms (or groups of atoms) are represented by ver-
tices and chemical bonds correspond to edges. The vertices with degree 1
are designated as external vertices, while a vertex with degree greater than
one is called internal. External vertices correspond to the marginal parts
of the system, which parts serve as electron donors or acceptors for the re-
maining part of the molecule-network. The internal vertices correspond to
an atom (or group of atoms) with the property that among its neighbors
there exists a unique one to which it is connected by a double bond. The
above property is described by perfect internal matchings, matchings which
cover all the internal vertices. Therefore a soliton graph is defined as an
open graph (graphs having external vertices) possessing a perfect internal
matching.

Considering the above facts it is justified to use the name state as a
synonym for perfect internal matching. The set of states (set of perfect
internal matchings) of a graph G will be denoted by S(G).

For the study of the logical aspects of soliton switching we need to give
a graph theoretic formalization of the state transitions induced by soliton
waves. Ignoring the physico-chemical details, the effect of a soliton wave
propagating along a polycetylene chain is to exchange all single and double
bonds. This logical aspect is captured by the concept of soliton walk. In
order to place this concept into a matching-theoretic framework, we need
the following notation: For a walk α = v0, e1, . . . , en, vn, let nα(j) (j ∈ [n])
denote the number of occurrences of the edge ej in the prefix α[v0, vj ].

Definition. A partial soliton walk with respect to state M in soliton graph
G is a backtrack-free walk α = v0, e1, . . . , en, vn (n ≥ 1) subject to the
following conditions:

(a) v0 is an external vertex;

(b) for every j ∈ [n − 1], nα(j) and nα(j + 1) have the same parity if and
only if ej and ej+1 are M -alternating, i.e., ej ∈ M iff ej+1 �∈ M .
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Furthermore, a partial soliton walk is called a soliton walk if vn above is an
external vertex.

Making the walk α in state M means creating the edge set S(M, α) by setting
for every e ∈ E(G):

e ∈ S(M,α) iff e ∈ M and e occurs an even number of times in α, or
e �∈ M and e occurs an odd number of times in α.

It can be proved that for any soliton walk α, S(M,α) is also a state.
Furthermore, it is also clear that impervious edges, i.e. edges not traversed
by any partial soliton walk, have no effect on the operations of the system.
Therefore, considering any soliton graph G, only the viable edges (edges
which are not impervious) of G have role in the concept of soliton automata.
The above observation motivates to define the viable subgraph G+ of any
soliton graph G, by which we mean the subgraph of G determined by its
viable edges only. It is also easy to prove that G+ is also a soliton graph.

For the definition of soliton automata, we need a further notation:
For any state M of a soliton graph G and any external vertices v1, v2 ∈ V (G),
let

SG(M,v1, v2) = {S(M, α) | α is a soliton walk with respect to M , which
starts at v1 and ends at v2}

Definition. A soliton automaton associated with underlying graph G is a
non-deterministic finite automaton

A(G) = ((S(G+), (X × X), δ)

subject to the following conditions:

(a) G is a soliton graph

(b) S(G+), the set of states of A(G), is the set of states of G+

(c) (X × X) is the input alphabet, where X denotes the set of external
vertices of G

(d) δ : S(G+) × (X × X) → 2S(G+) is the transition function, such that

δ(M, (v1, v2)) =
{SG+(M, v1, v2), if SG+(M,v1, v2) �= ∅
{M}, otherwise

for any M ∈ S(G+) and v1, v2 ∈ X.
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Tutte type characterizations of soliton graphs

In [2], the exact counterpart of Tutte’s theorem ([29]) on graphs with perfect
matchings has been elaborated for graphs having a perfect internal matching.
Here we strengthen the above result by proving two Tutte type theorems
for splitters, which are introduced to take over the role of barriers ([26]) in
graphs with perfect internal matchings. In order to state these theorems,
we need the following concepts.

Given a soliton graph G, we say that an edge e ∈ E(G) is allowed
(mandatory) if e is contained in some (respectively, all) perfect internal
matching(s) of G. Forbidden edges are those that are not allowed. A
nonempty set of internal vertices of G is a splitter if connecting any two
of its elements by an edge e, the edge e will become forbidden in the re-
sulted graph G + e.

Let M be a perfect internal matching in G. An edge e ∈ E(G) is said to
be M -positive (M -negative) if e ∈ M (respectively, e �∈ M). An alternating
trail with respect to M (or M -alternating trail, for short) in G is a trail
stepping on M -positive and M -negative edges in an alternating fashion. We
say that an internal vertex v is accessible from external vertex w in state
M , if there exists an alternating path starting from w and terminating in
a positive edge at v. Accessible vertices are those that are accessible from
some external vertex in a state of G.

The concept of factor-critical graphs (cf. [26]) can be also generalized in
a natural way: A connected graph G is factor-critical if for every internal
vertex v, G has a matching covering every internal vertex but v.

Finally, if X is a set of internal vertices in G, then a connected compo-
nent of G−X which consists of a single external vertex is called degenerate.

Theorem 1.([8]) Let X be a non-empty set X of internal vertices of a
soliton graph G, and let cin(G,X) denote the number of connected compo-
nents of G − X containing internal vertices only. Then the following two
statements are equivalent.

(i) The set X is a maximal splitter.

(ii) Each non-degenerate connected component of G − X is factor-critical
such that

(iia) |X| = cin(G,X) + 1, or

(iib) |X| = cin(G,X) with every external component of G − X
being degenerate.
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Furthermore, condition (iib) holds in (ii) above if and only if X is inacces-
sible, i.e. it does not contain accessible vertices.

Theorem 2.([8]) An open graph G is a soliton graph if and only if
co
in(G,X) ≤ |X| for any set X of internal vertices, where co

in(G,X) de-
notes the number of odd connected components of G−X containing internal
vertices only. Equality may hold for some non-empty X only if not all con-
nected components of G are open factor-critical. In this case, the equation
is guaranteed by any maximal inaccessible splitter X.

Our concluding observation provides a characterization of factor-critical
open graphs.

Theorem 3.([8]) A connected open graph G is factor-critical if and only if
co
in(G,X) ≤ |X| − 1 for any non-empty set X of internal vertices. In this

case, equality holds for any maximal splitter X.

A structure theory for soliton graphs

Compositions and decompositions of finite automata have been intensively
studied since the beginning of the sixties. The goal of this research is to
characterize complex systems by products of smaller automata. In order to
carry out this task for soliton automata, first we need to work out a decom-
position of soliton graphs into smaller components such that the automata
associated with these components should operate partly independently, i.e.
the relationship among the components can be fully described. To meet the
above goal, we develop a structure theory of soliton graphs on the basis of
their elementary components.

An elementary component of a graph G having a perfect internal match-
ing is a maximal connected subgraph of G spanned by allowed edges only. An
elementary component is called external or internal depending on whether it
contains an external vertex. A graph is elementary if it consists of a unique
elementary component.

It is well-known (cf. [26]) that a canonical partition can be defined on
the vertex set of any elementary graph with respect to perfect matchings
(matchings covering all vertices). This result has been generalized for perfect
internal matchings in [3]. As a first result, we show that this partition can
be extended for any graph having a perfect internal matching.

Definition. Let G be a graph having a perfect internal matching. Then
for any two internal vertices u, v ∈ V (G), u ∼ v if there exists a splitter
containing both u and v, and they belong to the same elementary component
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of G.

Theorem 4.([6]) The relation ∼ is an equivalence on the set of internal
vertices of G.

The relation ∼ is called canonical equivalence, and the blocks determined
by ∼ are called the canonical classes of G.

Based on this partition the elementary components containing viable
edges are given a structure reflecting the order in which they can be reached
by alternating paths starting from an external vertex (external alternating
paths). The observations of this structure theory are summarized below.

Theorem 5.([6]) The viable elementary components of a soliton graph G
can be grouped into disjoint families such that the following conditions hold.

(i) Any family contains at most one external elementary component.

(ii) For any family F consisting of internal elementary components only
(internal families), there exists a unique canonical class P in some
elementary component of F , called the principal canonical class of F ,
such that any external alternating path leading to a member of F must
reach P first.

(iii) There exists a partial order ∗�→ among the families reflecting the or-
der by which any external alternating path reaches the families. The
maximal elements are the families containing an external elementary
component (external families).

(iv) An internal vertex v belonging to a viable elementary component is
inaccessible iff v is contained in a principal canonical class.

The above structure plays a central role in the decomposition of soliton
automata. Therefore it is important to isolate the families of any soliton
graph by an efficient method. We have proved that a modification of the
Edmonds algorithm ([14]) leads to a procedure running in linear time.

Theorem 6.([5]) For any soliton graph G, the viable subgraph G+ and the
families of the viable elementary components together with the partial order
∗�→ can be determined in O(|E(G)|) time.

Decomposition of soliton automata

Concerning soliton circuits and soliton automata two questions seem to be
the most fundamental to address.
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(a) Given the underlying topology of interconnected molecules and
molecule chains, verify the soliton circuit based on this system by
describing its operations. (see e.g. [18])

(b) Characterize the class of soliton automata.

Making use of our structure theory we reduce both of the above problems
to the analysis of elementary soliton automata (soliton automata associated
with an elementary graph).

Actually question (a) can be also easily translated into the language of
soliton automata: a method which describes the automaton associated with
a given soliton graph (Automaton Description Problem - ADP) is needed.
First we investigate the following basic approach for solving the above prob-
lem.

Automaton Construction Problem (ACP): Given a soliton graph G.
Construct the automaton A(G) associated with G.

In order to solve ACP we need to determine the set of states and the transi-
tion function of A(G). The set of states can be constructed by an extension
of the method suggested in [24] for bipartite graphs with respect to perfect
matchings. In order to determine the transition function, we have given a
matching-theoretic characterization of soliton transitions ([4]). This charac-
terization leads then an O(|V (G+)| · |E(G+)|) time algorithm which decides
for an arbitrary pair of states if there exists a transition between them.
Therefore we obtain the following result.

Theorem 7. Let G be a soliton graph, n = |V (G+)|, m = |E(G+)| and
k = |S(G+)|. Then ACP can be solved in O(k2 · n · m) time.

In [12], an important special case of deterministic soliton automata has been
characterized: soliton automata with a single external vertex. Here we gen-
eralize this result for non-deterministic soliton automata.

Definition. Let M be a state of soliton graph G and v be an external
vertex of G. An M -alternating v-racket β is an M -alternating trail starting
from v which can be decomposed into an external alternating path βh and
an even-length alternating cycle βc. An M -alternating double v-racket α is
a pair of M -alternating v-rackets (α1, α2) such that E(α1

h) ∩ E(α2
c) = ∅,

E(α2
h) ∩ E(α1

c) = ∅, and either α1
c = α2

c or V (α1
c) ∩ V (α2

c) = ∅.
Definition. Let A = (S, X, δ) be an automaton such that its alphabet is a
singleton, i.e. X = {x}. We say that A is a full (semi-full) automaton if for
each s ∈ S, δ(s, x) = S (respectively, δ(s, x) = S \ {s} with |S| > 1).

Theorem 8. Let G be a soliton graph with a single external vertex v. Then
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A(G) is either a full or a semi-full automaton. Moreover, A(G) is semi-full
iff G+ is a bipartite graph without double v-rackets.

The above result plays an important role in the elementary decomposition
of soliton automata, which is carried out with a special type of αε

0-product
(cf. [15], [16], [23]), called canonical product. The formal definition of this
product needs a few additional concepts.

Definition. Let A(G) = (S(G+), X × X, δ) be a soliton automaton. The
extension of A(G) is the automaton Ae(G) = (S(G+), X ×X, δe), where for
any state M of G and any pair of external vertices (v, w) ∈ X × X,

δe(M, (v, w)) =
{

δ(M, (v, w)), if v �= w
δ(M, (v, w)) ∪ {M}, otherwise

Definition. For i = 1, 2, let Xi be alphabets and Ai = (Si, Xi × Xi, δi) be
automata. We say that A1 and A2 are strongly isomorphic if there exists a
pair ψ = (ψS , ψX) of bijections ψS : S1 → S2 and ψX : X1 → X2 which
satisfies the equation

{ψS(s′) | s′ ∈ δ1(s, (x, x′))} = δ2(ψS(s), (ψX(x), ψX(x′)))

for every s ∈ S1 and every x, x′ ∈ X1.
We say that a soliton isomorphism exists between A1 and A2, if for i =

1, 2 there is a soliton automaton A(Gi) such that Ai is strongly isomorphic
with A(Gi), and Ae(G1) is strongly isomophic with Ae(G2). The existence
of a soliton isomorphism between automata A1 and A2 is expressed by A1

∼=s

A2.

Now we are ready to define the appropriate automata product.

Definition. Let G1, . . . , Gn(n ∈ N) be soliton graphs and for each i ∈ [n]
let Ai denote the soliton automaton associated with Gi, i.e. Ai = A(Gi)
with transition function δi and set of states Si = S(G+

i ). Furthermore,
let L = {An+1, . . . ,Am} (n ≤ m) be a system of (not necessarily soliton)
automata with Aj = (Sj , Xj , δ

j) (n + 1 ≤ j ≤ m), and τ be a mapping,
called canonical dependency, from L to the power set of the set of canonical
classes contained in some Gi (i ∈ [n]). Then a canonical product from
Q = {A1, . . . ,An} to L with respect to τ is a product A = (S, X × X, δ)
of Ae(G1), . . . ,Ae(Gn),An+1, . . . ,Am with alphabet X × X and feedback
function φ = (φ1, . . . φm) such that the following conditions hold.

(a) X = X1 � . . . � Xn, where for each i ∈ [n], Xi is the set of external
vertices of Gi



9

(b) S = S1 × . . . × Sm

(c) For each i ∈ [m], φi is a mapping subject to the following conditions:

(c1) If i ≤ n, then φi : X × X → (Xi × Xi) ∪ {ε} such that for
every v, w ∈ X,

φi((v, w)) =
{

(v, w), if v, w ∈ Xi

ε, otherwise

(c2) If n + 1 ≤ i ≤ m, then φi : S1 × . . . × Sn × (X × X) →
(Xi × Xi) ∪ {ε} such that for every M1 ∈ S1, . . . , Mn ∈ Sn,
and v, w ∈ X with v ∈ Xk and w ∈ Xl for some k, l ∈ [n],

φi(M1, . . . , Mn, (v, w)) = ε

iff one of the following conditions holds:

(c2/i) τ(Ai) ∩ PGk
(Mk, v) = ∅, where PGk

(Mk, v) denotes the
set of canonical classes of Gk containing a vertex accessible
from v in Mk.

(c2/ii) k �= l.

(c2/iii) k = l, v �= w and δk(Mk, (v, w)) = {Mk}.

(d) For every x, x′ ∈ X, and (s1, . . . , sm) ∈ S,

δ((s1, . . . , sm), (x, x′)) = δ1
e(s1, φ1((x, x′))) × . . . × δn

e (sn, φn((x, x′)))×
× δn+1(sn+1, φn+1(s1, . . . , sn, (x, x′))) × . . .
× δm(sm, φm(s1, . . . , sn, (x, x′)))

Furthermore, if n = m (i.e. L = ∅), then we speak of the disjoint product
of A(G1), . . . ,A(Gn).

Intuitively, a canonical product is a special type of αε
0-product such that

the automata in L are connected to the soliton automata in Q through
their canonical classes, according to the canonical dependency, from L to
the power set of the canonical classes of soliton automata in Q. A state
transition is induced in an automaton of L according to its ”accessibility”
from the first component of the input pair through a canonical class deter-
mined by the canonical dependency.

Theorem 9.[4] The class of soliton automata and the class S of automata
obtained by a canonical product from a system of soliton automata to a sys-
tem of full automata coincide up to soliton isomorphism.

It is important to note that the proof of the above theorem is constructive,
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it provides a procedure by which the suitable canonical product is obtained
for any soliton automaton.

Finally, we return to the problem posed as Question (a).

Automaton Description Problem (ADP): Given an arbitrary soliton
graph G. Give a formal description of the automaton A(G) associated with
G.

It is clear that ACP is a solution for the above problem, but the soliton
automata with a single external vertex show that both the computational
and the descriptional complexity can be significantly reduced by the knowl-
edge of the underlying graph structure. Such a reduction can be applied
for any soliton graph, as we showed it in [4]. As a further development of
this result, in the thesis we worked out the so-called Elementary Structure
Encoding. Such an encoding of a soliton graph G consists of the followings:
the external elementary components extended by some forbidden edges fol-
lowing certain rules, the set of interlinking vertices (vertices of the external
elementary components which are adjacent to some vertex of an internal
elementary component), the canonical partition of these components, the
identifiers of the full automata corresponding to the internal elementary
components with respect to their number of states, and a relation between
the canonical classes and the full automata. The above reduced structure
is equivalent to the automaton associated with G, but it provides a lower
complexity for ADP.

Because of space restrictions, we omit the formal definition of our struc-
ture encoding, but we state its consequences for ADP.

Theorem 10. Let G be a soliton graph such that each of its external ele-
mentary component has a polynomial number of states and the state com-
plexity of each internal elementary component of G+ can be determined in
polynomial time. Then ADP can be solved in polynomial time for G.

Deterministic soliton automata

In the analysis of complex systems it is a central question to describe the
characteristics which make a given system deterministic. The operation of
the internal part of any soliton automaton is captured by Theorem 9., hence
it is an obvious generalization of determinism to introduce partially deter-
ministic soliton automata as automata associated with a graph such that
each of its external elementary components is deterministic. In order to ob-
tain a matching independent characterization of deterministic and partially
deterministic automata, we introduce a reduction method for soliton graphs.
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Definition. A redex r in graph G consists of two adjacent edges e = (u, z)
and f = (z, v) such that u �= v are both internal and the degree of z is 2.
The vertex z is called the center of r, while u and v (e and f) are the two
focal vertices (respectively, focal edges) of r.

Let r be a redex in G. Contracting r in G means creating a new graph Gr

from G by deleting the center of r and merging the two focal vertices of r
into one vertex s. The vertex s is called the sink of r in Gr.

The above reduction procedure is extended by another natural simplifying
operation on graphs; which is the removal of a loop from around a vertex
v if the degree of v is greater than 3. Such loops will be called inner. Let
Gv denote the graph obtained from G by removing an inner loop at vertex
v. Clearly, if G is a soliton graph, then so is Gv, and the states of Gv are
exactly the same as those of G.

Definition. Graph G is called reduced if it does not contain a redex or
inner loop.

For an arbitrary graph G, contract all redexes and remove all inner loops
in an iterative way to obtain a reduced graph r(G). Then it can be proved
that for any soliton graph G, A(G) ∼=s A(r(G)), and if G is deterministic,
then A(G) and A(r(G)) are strongly isomorphic. Therefore, it is enough
to consider the reduced deterministic graphs for further analysis. The key
to the characterization of deterministic and partially deterministic soliton
automata is the following result.

Definition. A connected loop-free graph G is a generalized tree if it does
not contain even-length cycles.

Theorem 11.([7],[25]) A non-mandatory elementary soliton graph is de-
terministic iff it reduces to a generalized tree.

By the above result we can give the required characterization as products of
automata associated with baby chestnuts (chestnuts consisting of two par-
allel edges and a number of external edges having their internal endpoints
in common) and generalized trees.

Theorem 12. Let T denote the class of soliton automata associated with
either a reduced generalized tree or a mandatory elementary graph. Further-
more, let D denote the class of soliton automata A(G) such that either A(G)
belongs to T or G is a baby chestnut. Then the followings hold.

(i) The class of partially deterministic soliton automata and the class of
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automata obtained by a canonical product from a system of soliton
automata in T to a system of full automata coincide up to soliton
isomorphism.

(ii) The class of deterministic soliton automata and the class of automata
obtained by a disjoint product of soliton automata in D coincide up to
strong isomorphism.

The above characterization of the graph structure of reduced determinis-
tic elementary graphs results in a O(n3) time algorithm deciding if a graph is
deterministic, where n denotes the number of vertices. This algorithm con-
sists of three methods: the construction of the elementary decomposition of
the given soliton graph, the reduction procedure for the external elementary
components, and a method testing the existence of a cycle of even length in
the reduced external elementary components.

Theorem 13.[25] For any soliton graph G with n vertices, it can be checked
in O(n3) time if G is deterministic.

Conclusion

In this thesis we have given a detailed structural analysis of soliton graphs
and soliton automata on the basis of graph matchings. We believe that
the above results will have a real impact on the design and verification of
soliton circuits, as outlined by some algorithms obtained as consequences
of our structure theory. Nevertheless, the further improvement of these re-
sults towards practical applications needs consultation with the engineering
profession.
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