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Introduction

Integrable many-body systems in one spatial dimension form an im-

portant class of exactly solvable Hamiltonian systems with their di-

verse mathematical structure and widespread applicability in physics.

Among these models, the systems of Calogero-Ruijsenaars type occupy

a central position, due to their intimate relation with soliton theory

and since many other interesting models (e.g. Toda lattice) can be ob-

tained from them by taking various limits and analytic continuations.

Calogero-Ruijsenaars systems model interacting particles moving on a

line or circle. They come in different types called rational (I), hyperbolic

(II), trigonometric (III), and elliptic (IV) depending on the functional

form of their Hamiltonian. They exist in nonrelativistic and relativis-

tic form, and both at the classical and quantum level. There are other

extensions maintaining integrability, such as versions attached to root

systems or allowing internal degrees of freedom (spin).
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The schematics of Calogero-Ruijsenaars type systems and our work.
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Scientific background

Action-angle duality is a relation between two Liouville integrable sys-

tems, say (M,ω,H) and (M̃, ω̃, H̃), requiring the existence of canonical

coordinates (q, p) on M and (q̃, p̃) on M̃ (or on dense open subman-

ifolds of M and M̃) and a global symplectomorphism R : M → M̃ ,

the action-angle map, such that (q̃, p̃) ◦ R are action-angle variables

for the Hamiltonian H and (q, p) ◦ R−1 are action-angle variables for

the Hamiltonian H̃ . This means that H ◦ R−1 depends only on q̃

and H̃ ◦ R only on q. Then one says that the systems (M,ω,H) and

(M̃, ω̃, H̃) are in action-angle duality. In addition, for the systems of

our interest it also happens that the Hamiltonian H , when expressed

in the coordinates (q, p), admits interpretation in terms of interacting

‘particles’ with position variables q, and similarly, H̃ expressed in (q̃, p̃)

describes the interacting points with positions q̃. Thus q are particle

positions for H and action variables for H̃ , and the q̃ are positions for

H̃ and actions for H . The significance of this curious property is clear

for instance from the fact that it persists at the quantum mechanical

level as the bispectral character of the wave functions [2, 20], which are

important special functions.

Dual pairs of many-body systems were exhibited by Ruijsenaars in

the course of his direct construction [19, 21, 22, 23] of action-angle vari-

ables for the many-body systems (of non-elliptic Calogero-Ruijsenaars

type and non-periodic Toda type) associated with the root system

An−1. The idea to interpret these dualities in terms of Hamiltonian re-

duction was put forward in several papers in the 1990s, e.g. [10, 11]. In

the last decade or so, Fehér and collaborators undertook the systematic

study of dualities within the framework of reduction [6, 5, 1, 7, 8, 4, 9].

It seems natural to expect that action-angle dualities exist for many-

body systems associated with other root systems. Substantial evidence

in favour of this expectation was given by Pusztai [14, 15, 16, 17, 18].

This thesis presents results (see Publications) that were obtained in

connection to these earlier developments.
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Aims

The aims of the research presented in the thesis can be summarized as

follows:

I. Prove Sklyanin’s formula using reduction methods to obtain ex-

plicit expressions for the action-angle variables of the rational

Calogero-Moser.

II. Study in detail the action-angle duality for the trigonometric BCn

Sutherland system within the framework of Hamiltonian reduc-

tion.

III. Generalize the results of the previous point and Marshall’s earlier

work to derive an integrable deformation of the trigonometric

BCn Sutherland model.

IV. Extend the Lax formalism to hyperbolic Ruijsenaars-Schneider

systems with more than one coupling parameters.

V. Construct new compactified elliptic Ruijsenaars-Schneider mod-

els.

The above-mentioned research proposal has been successfully realized,

moreover further, originally not anticipated developments have been

made.
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Applied methods

We applied Hamiltonian reduction as well as direct methods to achieve

the above-mentioned goals.

In a nutshell, the complicated motion of these many-body systems

is derived from a carefully chosen projection of a free particle moving

in some higher dimensional space.

The reduction procedure starts with choosing a ‘big phase space’

of group-theoretic origin. This might be, say, the cotangent bundle

P = T ∗X of a matrix Lie group or algebra X . The natural symplectic

structure Ω of the cotangent bundle P permits one to define a Hamil-

tonian system (P,Ω,H) by specifying a Hamiltonian H : P → R. If H

is simple enough, then the equations of motion can be solved, or even

better, a family of Poisson commuting functions {Hj} be found, which

H is a member/function of. Then by choosing an appropriate group

action (of some group G) on X (hence P ), under which Hj are invari-

ant, one can construct the momentum map Φ: P → g
∗ corresponding

to this action. Fixing the value µ of the momentum map Φ produces a

level surface Φ−1(µ) in the ‘big phase space’. This constraint surface is

foliated by the orbits of the isotropy/gauge group Gµ ⊂ G of the mo-

mentum value. The reduced phase space (Pred, ωred) consists of these

orbits. The point is that the flows of the commuting ‘free’ Hamiltoni-

ans {Hj} preserve the momentum surface and are constant along obits.

Therefore they admit reduced versions Hj : Pred → R, which still Pois-

son commute and the resulting Hamiltonian system (Pred, ωred, H) is

Liouville integrable. In practice, we model the reduced phase space by

a smooth slice S of the gauge orbits. This slice S is obtained by solving

the momentum equation Φ = µ. Systems in action-angle duality can

emerge in this picture if one has two sets of invariant functions and two

models S, S̃ of the reduced phase space.
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New scientific results

Here we collect the main results of the thesis, going chapter by chapter.

In each title, we cite our related contribution.

I. Spectral coordinates of the rational Calogero-Moser

system [P6]

+ The canonical variables given by Falqui and Mencattini [3] were

identified in terms of the reduction picture.

+ A relation conjectured by Falqui and Mencattini [3] was proved.

+ Sklyanin’s formula [24] providing spectral Darboux coordinates

for the rational Calogero-Moser system was attained as corollary.

II. Action-angle duality for the trigonometric BCn

Calogero-Moser-Sutherland system [P1, P8, P5]

+ Using Hamiltonian we derived the action-angle dual of the trigono-

metric BCn Sutherland system, in which we recognized a real

form of the rational BCn Ruijsenaars-Schneider system.

+ We proved that the coordinates used in the local description of

the dual system form a canonical coordinate system [P8].

+ We gave an explicit expression for the Lax matrix of the dual

system.

+ A global characterization of the phase space and Lax matrix of

the dual model was presented [P1].

+ In terms of action-angle duality, we found the equilibrium config-

uration of the trigonometric BCn Sutherland model.
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+ As an additional application of action-angle duality, we showed

the existence of (n − 1) extra constants of motion in the dual

system, hence proving its maximal superintegrability.

+ Finally, we proved that the first integrals of the hyperbolic BCn

Sutherland model in involution that were constructed by Pusztai

[16] and the Poisson commuting set of functions found by van

Diejen [25] generate the same Abelian algebra [P5]. We estab-

lished a linear relation between these aforementioned family of

functions.

III. A Poisson-Lie deformation of the trigonometric

BCn Calogero-Moser-Sutherland system [P2, P3]

+ Generalising earlier work of Marshall on the hyperbolic case [12],

we derived a 1-parameter deformation of the trigonometric BCn

Sutherland system by applying generalised Marsden-Weinstein

reduction to the Heisenberg double of the Poisson-Lie group of

2n× 2n unitary matrices with determinant one

+ We solved the momentum equations by observing that previous

work of Fehér and Klimčík [7] can be applied to our situation.

+ The main result of this point is the global description of the re-

duced system [P2]. Consequently, we proved the reduced system

to be Liouville integrable.

+ In addition, we showed that our model can be obtained as a cer-

tain limit of van Diejen’s [25] system containing five couplings.

Hence we placed the reduced system into the scheme of Calogero-

Ruijsenaars type integrable systems.

+ Finally, we completed Marshall’s [12] recent work on the hyper-

bolic analogue of our system [P3].
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IV. Lax representation of the hyperbolic BCn Ruijsenaars-

Schneider-van Diejen system [P7]

+ We proved that our Lax matrix is an element in the Lie group of

pseudo unitary matrices with signature (n, n).

+ Using an earlier result of Pusztai [15], we showed that our Lax

matrix is positive definite.

+ By relying on Pusztai’s results on the scattering properties of the

system, we verified the equivalence between van Diejen’s [25] com-

muting family of Hamiltonians and the coefficients of the charac-

teristic polynomial of our Lax matrix.

+ Based on this technical result, we inferred that the eigenvalues

of the proposed Lax matrix provide a commuting family of first

integrals for the Hamiltonian system

V. Trigonometric and elliptic Ruijsenaars-Schneider

models on the complex projective space [P4]

+ We examined the the compactified Ruijsenaars-Schneider systems

with so-called type (i) couplings discovered by Fehér and Kluck

[9], and using only direct, elementary methods, we reconstructed

the corresponding compactification of the trigonometric systems

on the complex projective space.

+ Based on the trigonometric case, we explained that the direct

method is applicable to obtain type (i) compactifications of the

elliptic Ruijsenaars-Schneider system as well. This new result

extends the previous results of Ruijsenaars [20, 23].
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