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1. INTRODUCTION  

1.1. Hypertrophic cardiomyopathy 

Hypertrophic cardiomyopathy (HCM) is a complex and relatively common genetic cardiac 

disease characterised primarily by unexplained left ventricular hypertrophy [reviewed in 

detail in (1-4)]. The cavity of the left ventricle is typically narrow. According to current 

literature data the disease is more frequent, then it was previously thought as its prevalence 

was shown to be 1/500-1000 (5). The clinical phenotype is heterogeneous and clinically 

the patients may be asymptomatic, but the development of symptoms in form of dyspnea, 

chest pain, palpitation or syncope is more typical. HCM is an important cause of disability 

and death in patients of all ages, although sudden and unexpected death in young people is 

perhaps the most devastating component of its natural history. The overall risk of disease-

related complications such as sudden death, end-stage heart failure, and fatal stroke is 

roughly 1ï2% per year, but the absolute risk in individuals varies as a function of 

underlying genetic abnormality, age, myocardial pathology, and other pathophysiological 

abnormalities such as impaired peripheral vascular responses. 

1.2 Molecular and clinical genetics of hypertrophic cardiomyopathy 

Hypertrophic cardiomyopathy is an autosomal dominant inherited genetic disorder with 

variable expression and penetrance. Using molecular genetic methods specific alterations 

in genes encoding for mainly sarcomere proteins were found to cause the disease in 

approximately 60% of individuals with HCM [Table 1, reviewed in detail in (6,7)]. The 

most important affected genes implicated in the disease include the beta myosin heavy 

chain- (MYH7) (8), the alpha tropomyosin- (TPM1) (9), the troponin T- (TNNT2) (9), the 

myosin binding protein C- (MYBPC3) (10,11), the troponin I- (TNNI3) (12), the essential- 

(MYL3) and the regulatory myosin light chain- (MYL2) (13), the alpha-cardiac actin- 

(ACTC1) (14) and the titin (TTN) genes (15).  

1.3. Hypertrophic cardiomyopathy phenocopies  

Mutations affecting sarcomere genes are present in 40-60% of HCM patients. In 5-10% of 

the cases mutations affect genes which may lead to HCM phenocopies, i.e. diseases that 

mimic HCM but are caused by other etiologies capable of producing myocardial 

hypertrophy (e.g. Fabry disease, Danon disease, transthyretin amyloidosis, etc.) (16). In the 

remaining 20-25% of the cases the cause of HCM is still unknown. Some of the inherited 

syndromes, as well as metabolic and mitochondrial disorders, can present as clinical  
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Gene Symbol Locus Prevalence (%) 

beta myosin heavy chain MYH7 14q12 15-25 

myosin binding protein C MYBPC3 11p11.2 15-25 

troponin T TNNT2 1q32 <5 

troponin I TNNI3 19q13.4 <5 

troponin C TNNC1 3p21-p14 <1 

alpha-tropomyosin TPM1 15q22 <5 

alpha cardiac actin ACTC1 15q14 <1 

essential myosin light chain MYL3 3p21.31 <1 

regulatory myosin light chain MYL2 12q24.21 <2 

titin TTN 2q31 <1 

AMP activated protein kinase, ɔ2 

regulatory subunit 
PRKAG2 7q34-q36 <1 

Table 1. Affected sarcomere genes and their prevalence in hypertrophic cardiomyopathy. 

 

phenocopies and can be distinguished by their associated cardiac and noncardiac features 

and on the basis of their unique molecular genetics. The mode of inheritance, natural 

history and treatment of phenocopies can differ from those of HCM caused by mutations in 

sarcomere genes. Detailed clinical evaluation and mutation analysis are, therefore, 

important in providing an accurate diagnosis in order to enable genetic counseling, 

prognostic evaluation and appropriate clinical management. 

 

1.3.1. Danon disease 

Danon disease (OMIM# 300257) is a rare X-linked dominant disorder characterised by 

cardiomyopathy, skeletal myopathy, and mental retardation. In 1981, Moris J. Danon and 

colleagues reported two unrelated boys first with the clinical triad (17). Since then, there 

have been a number of additional case reports in the English literature. While skeletal 

myopathy is generally mild and the mental retardation variable, it is hypertrophic 

cardiomyopathy which dominates the clinical picture with intracytoplasmic vacuoles 

containing autophagic material and glycogen in skeletal and cardiac muscle cells and 

determines the outcome. Cardiac symptoms in male carriers usually begin during 

adolescence, and patients die of heart failure in their third decade. In contrast, skeletal 

myopathy is usually mild, weakness and atrophy predominantly affect shoulder girdle and 

neck muscles, but distal muscles may also be involved. Women are less severely affected 

than men, with disease onset in late adulthood and with slower progression (18). Women 
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tend to exhibit a dilated rather than a hypertrophic cardiomyopathy (19). The distal skeletal 

muscles are less commonly affected in men (18). Mild mental retardation and 

hepatomegaly are reported in 70% of male patients and 36% of female patients, 

respectively (20). Blood creatine kinase (CK) levels are usually elevated (ranging from 

300ï3,000 U/L). Myopathic motor unit changes and, occasionally, abnormal spontaneous 

activity has been described on electromyographic examination (20).  

Danon disease is caused by the primary deficiency of lysosome-associated membrane 

protein-2 (LAMP-2). Inheritance of Danon disease has been considered to be X-linked 

dominant because in most familial cases males are affected predominantly, affected 

mothers usually have milder and later-onset cardiac symptoms, and no male-to-male 

transmission has been described.  

The LAMP2 gene is located on the chromosome region Xq24. The LAMP-2 protein 

structurally consists of a small cytoplasmic tail with a lysosomal membrane targeting 

signal, a transmembrane domain, and a large intraluminal head with two internally 

homologous domains connected by a hinge region rich in proline, serine or threonine ð 

each domain contains four cysteine residues that form two disulphide bonds (21). LAMP-2 

proteins coat the inner surface of the lysosomal membrane (mainly LAMP-2B isoform) 

and are also abundant on the plasma membrane (mainly LAMP-2A and LAMP-2C 

isoforms) (22). The LAMP2 open reading frame consists of 1,233 nucleotides and encodes 

410 amino acids. Exons 1ï8 and part of exon 9 encode the luminal domain; the remainder 

of exon 9 encodes both the transmembrane domain and the cytoplasmic domain. 

Alternative splicing close to the three primed end of the primary transcript generates three 

isoforms which differs in the transmembrane and cytoplasmic domains (23). 

The molecular diagnosis of Danon disease has so far been based on the demonstration of 

LAMP-2 protein deficiency in skeletal or cardiac muscle and/or the identification for 

LAMP2 gene mutations. However, because of the rarity of the disease, clinical knowledge 

is relatively scarce with regard to phenotypic manifestation of the disease and therefore 

any additional clinical information is of value.  

 

1.3.2. Fabry disease 

Fabry disease (FD, OMIM# 301500) is a rare X-linked recessive disorder caused by 

mutations in the GLA gene (OMIM# 300644), encoding a lysosomal hydrolase enzyme, Ŭ-

galactosidase A [Ŭ-gal A; GLA; EC 3.2.1.22, reviewed in detail in (24)]. Mutations 
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affecting the GLA gene and enzyme will result in the accumulation of complex 

sphingolipids, mainly globotriaosyl-ceramide (Gb3) in the lysosome, which subsequently 

will lead to Fabry disease, a systemic disorder with multiple organ involvement. In the 

hemizygous patients, symptoms are typically first experienced in early childhood, 

consisting of acroparesthesia, abdominal pain and fever. During adolescence, the affected 

subjects may exhibit angiokeratomas, hypohidrosis, proteinuria, progressive renal 

insufficiency and cornea verticillata. Progressing with age, patients may manifest 

cardiomyopathy, arrhythmia and cerebrovascular complications in the fourth decade (24). 

Cardiac involvement as left ventricular hypertrophy, hypertrophic cardiomyopathy and 

conduction disturbances are detected in 60% of Fabry patients. The most common causes 

of death are renal failure, heart failure and/or heart attack, myocardial infarction and stroke 

caused by the deposited and accumulated lipid degradation products, the globotriaosyl-

ceramide in the vessels.  

The human lysosomal Ŭ-galactosidase A enzyme is encoded by an unique gene, GLA 

(OMIM#300644), located on the long arm of chromosome X (Xq21.3-q22). The major 

transcript of GLA gene consists of six introns and seven exons comprising 1318 base pairs 

(bp). It encodes a homodimeric glycoprotein composed of 429 amino acids. The major 

function of the enzyme is to hydrolyse the molecular parts of terminal alpha-galactosile 

from glycolipids and glycoproteins. Pathological changes in GLA ð both the gene and its 

encoded protein ð result in storage of complex sphingolipids in the lysosome, mainly 

globotriaosyl-ceramide, which in turn causes Fabry disease. Currently 664 GLA gene 

mutations are known in the literature, which may be associated with the development of 

Fabry disease. There is extensive allelic heterogeneity, but no genetic locus heterogeneity 

in the disease. 

According to the degree of enzyme deficiency the disease can clinically manifest in 3 

different forms. Homozygous males do not show any Ŭ-galactosidase activity in the 

plasma, leading to the manifestation of the classical form of Fabry disease. If low Ŭ-

galactosidase enzyme activity is observed in the homozygous males (5-35% of the normal 

activity), the disease can manifest in an atypical form. Probably this is the most common 

variant. Heterozygous females can present very variable enzyme levels (0-100%) and 

clinical manifestations due to random X-chromosome inactivation (25). 
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1.3.3. Transthyretin amyloidosis 

Amyloidoses are a group of diseases which are caused by extracellular deposition of 

morphologically indistinguishable materials, called amyloid. In approximately 95%, 

amyloid consists of fibrils formed by aggregation of misfolded insoluble proteins, the 

remaining 5% being the P component (pentameric protein, member of the pentraxins 

family of serum proteins) and other glycoproteins such as proteoglycans and sulfated 

glycosaminoglycans. Under the light microscope the amyloid appears as an eosinophilic 

amorphous substance in hematoxylin ï eosin stained sections. Amyloid binds Congo red 

dye and, when stained, produces apple-green birefringence under polarised light, which is 

used as óógoldôô standard for diagnosis (26). 

The precursor protein may be present in an abnormal form and quantity in the serum. It is 

unclear what makes these proteins amyloidogenic. Amyloid deposition can affect a variety 

of tissues, organs, most commonly the kidneys, liver, heart, autonomic nervous system, 

either multiple or isolated organs of the body. Clinical signs arise from the damaged 

function of the infiltrated organs and highly depends on the degree of involvement. 

According to statistics derived from autopsy series the prevalence of the disease is 0.5-

2.2%. 

The involvement of the heart is the most common in all three form of amyloidosis (Table 

2). Immunoglobulin light chain deposition occurs in AL amyloidosis. Wild-type 

transthyretin protein accumulates in SSA (senile systemic amyloidosis) amyloidosis, while 

mutant transthyretin protein is deposited in ATTR amyloidosis (27). In addition to the 

above, serum-amyloid-A amyloidosis (AA) and isolated atrial amyloidosis (AANF) forms 

further groups (28, 29).  

Familial TTR-linked amyloidosis (ATTR) is an autosomal dominant genetic disorder with 

incomplete penetrance, caused by mutations in the transthyretin gene (TTR) encoding 

transthyretin protein (30). The gene for human transthyretin (TTR; MIM# 176300) maps to 

chromosome 18 (18q12.1). The major transcript of TTR gene consists of 3 introns and 4 

exons comprising 957 base pairs (bp). It encodes a homotetrameric transthyretin protein of 

147 amino acids. Transthyretin is a 55 kDa homotetramer transport protein in the serum 

and cerebrospinal fluid that carries the thyroid hormone thyroxine (T4) and retinol-binding 

protein bound to retinol. The liver secretes transthyretin into the blood, and the choroid 

plexus secretes TTR into the cerebrospinal fluid. TTR has a ôdimer of dimersô quaternary 

structure. Each TTR monomer is a 127-residue polypeptide rich in beta sheet structure.  
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Type Precursor protein Site of synthesis Organ manifestation 

AL 
light chain kappa or 

lambda 
bone marrow 

kidney, heart, gastrointestinal 

tract, liver, nervous system, soft 

tissue 

ATTR mutant transthyretin liver nervous system, heart 

SSA wild type transthyretin liver heart 

AA serum amyloid A liver 

kidney, gastrointestinal tract, 

liver, nervous system, spleen 

(rarely heart) 

AANF atrial natriuretic peptide atrium atrium 

Table 2. Main forms of systemic amyloidosis affecting the heart 

 

Association of two monomers via their beta-strands forms an extended beta sandwich. 

Further association of two of these dimers in a face-to-face fashion produces the 

homotetrameric structure and creates the two thyroxine binding sites per tetramer. This 

dimer-dimer interface, comprising the two T4 binding sites, is the weaker dimer-dimer 

interface and is the one that comes apart first in the process of tetramer dissociation. 

In SSA the deposition of wild type transthyretin leads to symptoms typically at age of 70-

80 years, while in hereditary amyloidosis the disease usually manifests around age of 60 

years. Transthyretin amyloidosis typically affects two organ systems, therefore the disease 

leads to two main phenotypes: in familial amyloid polyneuropathy the phenotype is 

dominated by neuropathy, while in familial cardiac amyloidosis cardiomyopathy 

predominates. However, considerable overlap exists between the two major phenotypes. 

Besides the two main forms, oculo-meningeal forms of the disease are also known (30). 
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2. AIMS  

Previous to our work, no information was available with regard to the occurrence of HCM 

phenocopies in Hungarian patients with hypertrophic cardiomyopathy. As HCM 

phenocopies substantially differ from those of HCM caused by sarcomeric mutations with 

regard to genetic counseling, prognostic evaluation and appropriate clinical management, 

their accurate diagnosis by detailed clinical evaluation and mutation analysis is of great 

clinical importance. Therefore, our aim was to screen HCM patients with suspected 

multisystem symptoms suggesting HCM phenocopies. 

In my PhD work I aimed to: 

1. Identify mutations affecting the lysosome-associated membrane protein-2 (LAMP2) 

gene in patients with suspected Danon disease; 

2. Identify mutations affecting the Ŭ-galactosidase A (GLA) gene in patients with 

suspected Fabry disease; 

3. Identify mutations affecting the transthyretin (TTR) gene in patients with suspected 

transthyretin amyloidosis; 

4. Conduct clinical and genetic screening of family members of patients with LAMP2, 

GLA and TTR gene mutations. 
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3. PATIENTS AND METHODS  

3.1. Patients 

Patients with the suspicion of HCM phenocopies were analyzed. In all cases collection of 

case history data, physical examination, overview of available clinical documentation, 12-

lead ECG and transthoracic echocardiography were carried out. In selected cases patients 

were hospitalised for detailed in-hospital cardiology assessment (24-hour Holter 

monitoring, stress test, semi-supine bicycle stress echocardiography, cardiac MRI, 

coronarography, haemodynamic study). In all cases the diagnosis of HCM was based on 

internationally accepted diagnostic criteria (2-4). 

3.1.1. Screening for mutations in the LAMP2 gene in patients with suspected Danon 

disease 

We analysed two unrelated patients and their families with HCM morphology and the 

suspicion of Danon disease. 

Family A 

In Family A, the index patient, a Rumanian boy (Figure 1, subject III:1 in Family A), came 

to medical attention at the age of 12 years because of a heart murmur. His ECG (Figure 2, 

Panel A) showed a sinus rhythm with a short PR interval and a wide QRS complex with 

delta waves resembling the Wolff -Parkinson-White (WPW) pattern. Echocardiography 

revealed massive asymmetric left ventricular (LV) hypertrophy, predominantly of the free 

wall (interventricular septum thickness: 30 mm, and LV free wall thickness: 39 mm), 

preserved LV ejection fraction (LVEF: 64%), systolic anterior movement of the mitral 

valve, severe obstruction of the LV outflow tract (LVOT) with a peak systolic gradient of 

178 mmHg and severe mitral insufficiency (Figure 2, Panel C and Table 3). The 

hypertrophy involved the right ventricle, too.  

At the age of 14 years, progressive muscle weakness developed. The clinical assessment 

showed an asthenic body constitution (body mass index: 16.14) and proximal atrophy of 

the scapulohumeral muscles. He had a moderate mental retardation with an IQ of 48 

(Raven scale) and affective and cognitive immaturity. The neurological findings revealed a 

proximal motor deficit, severe muscular atrophy with deltoid and triceps 

pseudohypertrophy, bilateral talus varus and osteotendinous hyporeflexia. The laboratory 

findings indicated elevated levels of transaminases [GPT: 183 U/l (normal range: 2ï41 

U/l), GOT: 376 U/L (normal range: 2-38 U/l)], creatine phosphokinase (CK): 1236 UI/l 
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(normal range: 24ï270 U/L), and lactic dehydrogenase (LDH): 833 U/l (normal range: 40ï

300 U/l). On the basis of the above findings, limb-girdle muscular dystrophy was 

diagnosed. 

At the age of 15 years, still with preserved LV function (LVEF: 62%), an implantable 

cardioverter defibrillator (ICD) was implanted as primary prophylaxis for sudden cardiac 

death (SCD) according to recent guidelines (2,3). Three years later, the patient presented 

several episodes of atrial flutter, with variable 3:1, 4:1, 6:1 AV block, responding to 

cardioversion. In the last year of his 11-year-long follow-up, the proband (now 23 years 

old) progressed into a dilated phase, exhibiting left ventricular dilatation (LVEDD raised 

from 30 mm to 41 mm) and a decrease of the LVEF from 64% to 35%. There is also 

echocardiographic evidence of thrombi in the left atrium and ventricle, and because of this 

oral anticoagulant treatment was started. The patient has chronic atrial fibrillation with a 

low ventricular response rate of 61 beats/minute.  

Family screening revealed a rich family history. The maternal grandmother (Figure 1, 

subject I:2 in Family A) had a non-obstructive hypertrophic cardiomyopathy, heart failure 

of New York Heart Association (NYHA) functional class III and chronic atrial fibrillation. 

A VVI pacemaker was implanted at the age of 44 years as antibradycardia protection. 

Death occurred at 60 years because of heart failure. The mother of the index patient 

(Figure 1, subject II:1 in Family A) has ECG changes with negative T waves in V4ïV6, 

but no clinical signs of Danon disease. The maternal half-brother  (Figure 1, subject III:6 

in Family A) was diagnosed with hypertrophic non-obstructive cardiomyopathy, muscular 

dystrophy (elevated transaminases GOT: 360 U/l, GPT: 373 U/l, CK: 1739 U/l, CK-MB: 

11,7 ng/ml, and LDH: 1004 U/l) at 20 years of age. At the age of 25 years, ICD 

implantation was performed for the primary prevention of SCD and for atrial fibrillation 

with low ventricular response rates of 24-36 beats/minute. At 29 years of age, he died as a 

consequence of progression to severe heart failure and stroke. An uncle of the index 

patient (Figure 1, subject II:3 in Family A) was diagnosed with non-obstructive 

cardiomyopathy, atrial fibrillation, heart failure, and later third degree AV block at the age 

of 23 years. He received a pacemaker, and died at the age of 34 years. An aunt of the 

index patient (Figure 1, subject II:6 in Family A) was diagnosed with non-obstructive 

hypertrophic cardiomyopathy at the age of 18 years. Six years later, atrial fibrillation, 

LBBB and severe heart failure with LV dilatation and decreased LVEF (LVEDD: 59 mm, 
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and LVEF: 25%) occurred. A DDD pacemaker implantation was proposed, but she died 

suddenly. 

The cousin of the index patient (Figure 1, subject III:5 in Family A) presented with 

obstructive hypertrophic cardiomyopathy, mental retardation and muscular dystrophy of 

limbïgirdle type at the age of 13 years. His echo findings included severe LV hypertrophy, 

more pronounced at the free wall than at the septum (interventricular septum thickness: 25 

mm, and LV free wall thickness: 40 mm), and LV outflow tract obstruction with a gradient 

of 57 mmHg (Figure 2, Panel D and Table 1). His laboratory findings also showed 

increased levels of transaminases, CK and LDH (GOT: 234 U/l, GPT: 360 U/l, LDH: 1254 

U/l, and CK: 1329 U/l). An MRI assessment confirmed the massive LV hypertrophy (LV 

free wall: 42.3 mm and interventricular septum: 30 mm; Figure 2, Panel E and F). Late 

gadolinium enhancement revealed focal changes in the basal and apical septum, and also in 

the free wall of the LV. In the last year of his 4-year-long follow-up, progression into a 

dilated phase was observed with systolic dysfunction (LVEDD increased from 25 mm to 

56 mm, and LVEF decreased from 88% to 45%). 

 

 

Figure 1. Pedigrees of the LAMP2 gene mutation carrier Family A and Family B. Squares and circles denote 

males or females, respectively; filled symbols represent clinically affected family members. Arrow points to 

the index patients. Deceased individuals are slashed. Mutation carriers are labelled with a plus (+) sign, 

non-carriers with a minus (ï) sign. 

 

Family B 

In Family B, the index patient was a Hungarian boy (Figure 1, subject II:1 in Family B), 

who was first admitted at the age of 14 years because of exercise-induced tachycardia. 

ECG showed a sinus rhythm, a short PR interval and left ventricular hypertrophy. 

Echocardiography revealed non-obstructive hypertrophic cardiomyopathy with a LV wall 

thickness of 16 mm and a normal LV ejection fraction (LVEF: 73%). The laboratory 
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findings included elevated enzyme levels (CK: 729 U/l and LDH: 1149 U/l), with a normal 

CK MB fraction (41 U/l, 5.6%) and elevated transaminases (GOT: 240 U/l and GPT: 190 

U/l).  

On follow-up, elevated CK levels persisted in the range 650-1200 U/l, with normal MB 

fraction and troponin levels, but signs or symptoms of muscle wasting or weakness did not 

develop. Follow-up echocardiography recorded an increase in LV wall thickness (LV wall 

diameter 26-28 mm). Audiometry revealed a left-sided mild neural hearing loss; the 

ophthalmology was normal. Mild mental retardation was present.  

At the age of 15 years, cardiac arrest occurred on mild exercise, due to ventricular 

fibrillation (the first recorded rhythm in the ambulance), which was successfully 

defibrillated. For secondary prevention, a DDD ICD was implanted. After ICD 

implantation, an inappropriate ICD discharge occurred because of supraventricular 

tachycardia. An EP study was performed which revealed a concealed septal-parahisian 

accessory pathway and an inducible orthodromic AV tachycardia under isuprel infusion. 

Non-sustained atrial tachycardia was also induced. Ablation of the accessory pathway was 

attempted, and proved successful, but a second ablation was necessary three years later, 

after multiple episodes of ICD inappropriate discharges induced by supraventricular 

tachycardia. A detailed EP study was again performed and a second accessory pathway 

was eliminated successfully at the anterior segment of the mitral ring. 

At the age of 19 years LV dilatation was noted (LVEDD: 46 mm and LVESD: 37 mm) 

with a mild decrease in EF (EF: 44-48%), and the patient was evaluated for heart 

transplantation. On oxy-spiroergometry, the aerobic capacity was measured as 14.2 

ml/kg/min. In a 6-min walk test, he walked for 330 m without desaturation. An 

endomyocardial biopsy was also performed, which showed severe cardiomyocyte 

hypertrophy with extensive sarcoplasmic vacuolisation compatible with Danon disease 

(Figure 3, Panel A-D).  

Four months later, at the age of 20 years, left-sided hemiparesis occurred due to an acute 

ischemic stroke, which showed spontaneous regression without thrombolysis. Soon after, 

bi-ventricular heart failure and low-output syndrome developed, aggravated by 

bronchopneumonia, and the patient died because of intractable heart failure. The last 

echocardiography showed an LVEDD of 61 mm, and LVESD of 49 mm, and an EF of 

40%. 
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The mother of the index patient (Figure 1, subject I:1 in Family B) was first assessed at 

the age of 44 years when she exhibited normal echocardiography parameters 

(interventricular septum: 10 mm, LV free wall: 10 mm, LVEDD: 47 mm, LVESD: 31 mm 

and EF: 63%). An ECG showed a sinus rhythm of 44/min with biphasic T waves in V2-3. 

After having two syncopal episodes at the age of 48 years, atrial tachycardia and a 

junctional escape rhythm were found, leading to the performance of an EP study. This  

 

 

 

Figure 2. ECG and morphological appearance of Danon disease. 12-lead resting ECG of the index patient in 

Family A (subject III:1, Family A; Panel A) and his cousin (subject III:5, Family A; Panel B) showing sinus 

rythm, left axis, short PQ interval, and delta waves in leads I, aVL, and V4-6, resembling Wolff-Parkinson-

White syndrome. Paper speed 25 mm/s, calibration 5 mm/mV. Panel C: Parasternal short axis view of 

transthoracic echocardiography of the index patient of Family A (subject III:1, Family A) showing extreme 

concentric left ventricular hypertrophy, with left ventricular wall thickness of 27-36 mm, predominating at 

the left ventricular free wall. Panel D: Parasternal long axis view of transthoracic echocardiography of the 

cousin of the index patient (subject III:5, Family A), showing extreme concentric left ventricular hypertrophy, 

with left ventricular wall thickness of 20-36 mm, predominating at the left ventricular free wall. Panel E and 

F: Cardiac magnetic resonance imaging of the cousin of the index patient (subject III:5, Family A), showing 

massive hypertrophy of the left ventricle (LV free wall: 42.3 mm, interventricular septum: 30 mm) with late 

gadolinium enhancement revealing focal changes in the basal and apical septum, as well as in the free wall 

of the left ventricle. 
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study showed multiple atrial tachycardias (ATs) with divergent mechanisms and 

localisations. Altogether 3 different ATs were inducible and two of these tachycardias 

were ablated successfully (one right atrial cavotricuspidal-isthmus-dependent flutter and 

another focal left atrial tachycardia with a posterolateral origin). The most likely 

mechanism of the third tachycardia was a macro-reentry, propagating around the left atrial 

appendage, but this arrhythmia was not mappable completely because of spontaneous 

termination. 

The younger brother  of the index patient (Figure 1, subject II:2 in Family B) had no 

symptoms at the age of 12 years, and exhibited normal ECG and echocardiography.  

 

 

Figure 3. Histology of LAMP2 vacuolar cardiomyopathy. Panel A: Hypertrophied cardiomyocytes with 

myofiber disarray and sarcoplasmic vacuolisation. Hematoxylin-eosin; original magnification x20. Panel B: 

PAS-positive (proved diastase-resistant) sarcoplasmic inclusions (arrowheads), irregular widespread 

sarcoplasmic vacuolisation, and marked hypertrophy of the cardiomyocytes. Sarcoplasmic glycogen content 

seems not to be increased. Periodic acid-Schiff, original magnification x40. Panel C: Autophagic vacuoles 

among myofibrils, with disrupted limiting membranes. Electron microscopy, original magnification x7500. 

Bar represents 1 Õm. Panel D: Perinuclearly located autophagic vacuoles (asterisks), with discontinuous 

limiting membranes. The vacuoles contain glycogen particles (arrowhead) and degenerated cellular 

membranes. The autolysosome filled with dense material (arrow) corresponds to the PAS-positive inclusions 

shown in Panel B. Bar represents 1 Õm. 
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3.1.2. Screening for mutations in the GLA gene in patients with suspected Fabry 

disease 

A total of 21 patients (14 women, 7 men; mean age 52Ñ13 years), with suspected Fabry 

disease, underwent screening. Cardiac involvement was present in 18 cases as hypertrophic 

cardiomyopathy (9 women, 4 men; mean age 46Ñ14 years) or left ventricular hypertrophy 

(1 woman, 4 men; mean age 60Ñ7 years); while restrictive and dilated cardiomyopathy, 

one case each, was also included. In one case the diagnosis of cornea verticillata indicated 

the screening. Non-cardiac signs included neurological, renal, ocular or dermatological 

symptoms. During the screening protocol genetic analysis of the coding regions of the GLA 

gene was performed. In all cases the diagnosis of cardiomyopathies was based on 

internationally accepted diagnostic criteria (2-4). Non-cardiac manifestation included 

neurological symptoms in 9 cases (cerebrovascular insult, transient ischemic attack, 

acroparesthesia and white matter damage confirmed by CT), renal symptoms in 6 cases 

(proteinuria, nephropathy, renal failure), ocular symptoms in 2 cases (cornea verticillata, 

retinal dystrophy), dermatological symptoms in 2 cases and other, not HCM-specific 

cardiac symptoms in 3 cases (3rd degree AV block, marked restrictive physiology with the 

exclusion of amyloidosis). Family screening was available in two cases. 

 

3.1.3. Screening for mutations in the TTR gene in patients with suspected 

transthyretin amyloidosis 

We analysed two unrelated patients with HCM morphology and the suspicion of 

transthyretin amyloidosis.  

Patient A 

Past medical history of the 60-years-old male patient included hypertension. Four years 

before presentation carpal tunnel syndrome was detected with EMG which was initiated 

because of bilateral hand numbness necessitating operation. Laboratory findings revealed 

elevated liver function (ALP, GGT). Cardiac assessment was initiated because of effort 

dyspnea, angina pectoris and presyncope. His ECG showed 43-53/min bradycardia, due to 

II -III degree AV block. Echocardiography indicated enlarged left (61x65x69 mm) and 

right atria, concentric left ventricular (LV) hypertrophy (interventricular septum thickness: 

27 mm, left ventricle posterior wall thickness: 21 mm; Figure 4, Panel A and B), normal 

LV diameters, diffuse hypokinesia, mildly decreased ejection fraction (EF 48%), 2nd 

degree mitral- and tricuspidal regurgitation with restrictive diastolic dysfunction (E/A: 
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114/34, DCT: 118 ms, Ea: 6, E/Ea: 19). NT-pro-BNP (3511 pg/ml) and troponin T (0,042 

ug/l) levels were elevated. 

 

Figure 4. Transthoracic echocardiographic images of the patients with transthyretin amyloidosis. 

Parasternal long axis (Panel A: Patient A; Panel C: Patient B) and apical four-chamber views (Panel B: 

Patient A; Panel D: Patient B). Morphological appearance of hypertrophic cardiomyopathy with diffuse left 

ventricular hypertrophy, enlarged atria, papillary muscle and right ventricular hypertrophy. 

 

Coronarography did not confirm significant coronary disease. Hemodynamic examination 

showed increased end-diastolic left ventricular pressure (18-22 mmHg). Cardiac MRI 

showed preserved LV ejection fraction, concentric left ventricular hypertrophy, increased 

LV muscle mass and concentric, diffuse late contrast medium enhancement, suggesting 

amyloidosis. Assessment of a Jamshidi biopsy was negative towards multiple myeloma. 

Neurological electrophysiological assessment indicated predominant lower limb, axonal 

loss, motor polyneuropathy and bilateral carpal tunnel syndrome. DDD PM implantation 

was performed because of high degree AV block leading to syncope. Histological 

examination of myocardial biopsy showed accumulation of homogenic eosinophil, Congo 

red-positive material in the cardiac muscle, exhibiting green birefringence under polarised 

light, which was specific for amyloidosis (Figure 5, Panel A-C). Electron microscopy 

revealed dense, homogeneous material deposition in the cardiac muscle, which proved to 

be random set of resolved fibrils, without periodicity, on 35.000x magnification (average 

diameter of fibril s: 10.9 mm). The ultrastructural study confirmed the light microscopic 

diagnosis of amyloidosis. Immunohistochemistry examination gave positive reaction with 
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transthyretin antibody (Dako, polyclonal rabbit anti-human prealbumin, code A0002; 

antibody dilution 1:200; Figure 5, Panel D), but the serum amyloid A, the kappa and 

lambda light chain staining proved to be negative.  

 

 

 

Figure 5. Histological assessment of myocardial biopsy samples. Accumulation of homogenic eosinophil 

material (Panel A), showing Congo red-positive staining (Panel B) and green birefringence under polarised 

light (Panel C) in the cardiac muscle, which is specific for amyloidosis. Immunohistochemistry examination 

gave positive reaction with transthyretin antibody (Panel D). Electron microscopy study confirmed the 

presence of amyloid fibrils (see case history). 

 

Patient B 

Past medical history of the 70 years-old male patient included tonsillectomy, Guillian-

Barre syndrome, L III -IV spinal surgery, hypertension, inguinal herniotomy and right wrist 

surgery because of carpal tunnel syndrome. Cardiovascular assessment was initiated 

because of exercise intolerance. ECG showed I degree AV block and left bundle branch 

block. Echocardiography indicated enlarged atria, normal left ventricle, decreased global 

left (LVEF 31%) and right ventricular function. The morphological appearance of left 

ventricle was hypertrophic cardiomyopathy with hypertrophy in all of the left ventricular 

segments and also of the right ventricle. The maximum left ventricular wall thickness was 

20 mm (Figure 4, Panel C and D), without outflow tract obstruction, but increased 

pulmonary pressure (60 mmHg) and marked diastolic dysfunction (E/Ea: 15). Cardiac MRI 

confirmed the echocardiographic results, the appearance of late contrast enhancement was 
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specific for amyloidosis. NT-pro-BNP level was high (1977 pg/ml). During follow-up 

successful electrical cardioversion was performed because of multiple episodes of 

persistent atrial fibrillation. No significant coronary artery stenosis was seen on 

coronarography. Histological examination of myocardial biopsy showed extensive 

accumulation of homogenic eosinophil, Congo red-positive material in cardiac muscle, 

which exhibited green birefringence under polarised light, which was specific for 

amyloidosis. Electron microscopy study confirmed the light microscopic diagnosis of 

amyloidosis (average diameter of fibrils: 11 nm). Immunohistochemistry examination gave 

intensive positive reaction with the Congo red-positive material, but the kappa and lambda 

light chain staining gave background staining, which was caused by a non-specific 

infiltration. 
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3.2 Methods 

3.2.1. Molecular genetic analysis of LAMP2, GLA and TTR genes 

The family members and patientôs care-givers gave informed consent to molecular genetic 

investigations. Genomic DNA was isolated from peripheral blood samples according to 

standard methods (GeneJET Whole Blood Genomic DNA Purification Kit, Thermo 

Scientific). All the coding exons and flanking intronic regions of the LAMP2 (9 exons), 

GLA (7 exons) and TTR (4 exons) genes, comprising the whole coding sequence, were 

amplified by polymerase chain reaction with primers published in the literature. PCR 

products were directly cycle sequenced using BigDye Terminator v3.1 Cycle Sequencing 

Kit (Applied Biosystems) on an ABI Prism 310 Genetic Analyzer (Applied Biosystems). 

Electropherograms were analysed by Sequencing Analyzer v5.4 Software provided by the 

supplier.  

3.2.2. Restriction fragment analysis of the LAMP2 mutations  

As both of the identified LAMP2 mutations affected restriction sites for a commercially 

available restriction enzyme; both mutations were also analysed by restriction fragment 

analysis. In Family A, the mutation abolished the restriction site of the enzyme AlwNI, 

while in Family B, the mutation created an extra restriction site for enzyme BslI. 

Restriction analysis was done according to manufacturersô recommendations. 

3.2.3. Bioinformatics 

Nucleotide changes are reported according to the database of the European Molecular 

Biology Laboratory- European Bioinformatics Institute (Ensembl database, 

www.ensemble.org) using LAMP2-001 (ENST00000200639), GLA-001 

(ENST00000218516), and TTR-001 (ENST00000237014.7) as a reference sequence. The 

annotation of the TTR variants was performed by the new nomenclature (taking into 

account the length of signal peptide, which consists of 20 amino acids). 

3.2.4. Linkage analysis 

The size of the family and the presence of affected family members in all three generations 

carrying the GLA p.Ile239Met mutation allowed us to conduct linkage analysis. Linkage 

analysis was done with the FASTLINK program. Linkage between the affection status and 

the mutation was modelled with the following parameters: disease allele frequency: 

1:10.000, disease penetrance: 90%. 

 

http://www.ensemble.org/
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4. RESULTS 

4.1. Identification of LAMP2 mutations in patients with Danon disease 

4.1.1. Mutation data 

Two new mutations in the LAMP2 gene were identified in the two index cases. In the index 

patient of Family A, a G-A transition was detected (c.962G>A) in exon 8 of the gene 

(Figure 6, Panel A), which changes the tryptophan coding TGG codon to a stop codon 

TAG, at codon 321 (p.Trp321Stop, nonsense mutation). In the proband of Family B, a 1 bp 

insertion in exon 8 (c.973insC) was found (Figure 6, Panel B), leading to a frame-shift 

mutation. Prediction analysis indicates the inclusion of 24 extra amino acids and a 

premature stop codon after the last normal amino acid proline at codon 324 

(p.Pro324fs+24X). Corresponding base changes were present in the same position in the 

reverse strand. The two mutations were not present in 200 chromosomes of normal control 

subjects coming from the same geographical region.  

 

 

Figure 6. Sequence analysis of exon 8 of the LAMP2 gene. Panel A: In the index patient of Family A, 

sequencing shows a G-A transition in position 962 (c.962G>A) representing a stop codon TAG (upper 

sequence) as compared to the tryptophan coding normal TGG codon (lower sequence). Panel B: In the index 

patient of Family B, a 1 bp insertion in position 973 (c.973insC) is revealed (upper sequence) as compared 

to the normal sequence (lower sequence). 
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4.1.2. Restriction fragment analysis of the two LAMP2 gene mutations  

Both mutations altered restriction sites for a commercially available restriction enzyme; 

therefore, the two mutations were confirmed by restriction analysis. In Family A, the 

mutation abolished the restriction site (5ô-CAGNNNCTG-3ô) of the enzyme AlwNI, while 

in Family B, the mutation created an extra restriction site (5ô-CCNNNNNNNGG-3ô) for 

enzyme BslI. Restriction analysis pattern of amplified PCR products of mutation carriers 

were in full agreement with predicted effects of restriction site loss and gain, respectively 

(data are not shown).  

4.1.3. Bioinformatics 

Both mutations were predicted to lead to a truncated LAMP-2 protein with a complete loss 

of the transmembrane domain and the short cytoplasmic tail of the protein. This part of the 

protein is well conserved among different species and among human splice variants of the 

LAMP2 gene and is presumed to be deleterious.  

4.1.4. Genetic screening of Family A and Family B 

In Family A, DNA was available from the grandmother (subject I:2 in Family A), mother 

(subject II:1 in Family A), two sisters (subject III:2 and subject III:4 in Family A) and a 

cousin (subject III:5 in Family A). They all proved to be carriers of the mutation (Figure 

1). In Family B, DNA was available from the mother (subject I:1 in Family B) and the 

brother subject II:2 in Family B). The probandôs mother carried the mutation, while the 

brother did not (Figure 1).  

4.1.5 Clinical course of LAMP2 gene mutation carrier family members 

Altogether, 11 family members were screened in the two families, while genetic analysis 

was possible in 9 family members. Eight family members proved to be carriers of either 

LAMP2 gene mutations. Out of the eight mutation carrier family members, four proved to 

be clinically not affected (in terms of development of cardiomyopathy at last follow up). In 

addition to the four penetrant cases with DNA diagnosis we identified two additional 

family members with a suggestive manifestation of Danon disease (subjects II:3 and II:6 in 

Family A). This made up 6 patients in the two families with proven or likely diagnosis of 

the disease (Table 3).  

Average age at the onset of the disease was 21Ñ12 years, which was clearly lower in males 

than in females (16Ñ5 vs. 31Ñ18 years, no statistical comparison was made due to small



 
 

Table 3. Demographic and clinical characteristics of clinically or genetically affected family members of Family A and Family B 

 

Family Subject Sex 

Age (years, at 

diagnosis/last FU or 

death) 

Length 

of FU 

(years) 

Died of 

disease 

Clinically 

affected 

Genetically 

affected 

Cardiac 

phenotype 

LVmax  

(mm) 
Clinical course 

A I:2 female 44/60 16 yes yes yes HCM 15.4 AF, PM implantation, died of heart failure 

A II:1 female NA/44 NA no no yes normal 12 negative T waves in V4ïV6 

A II:3 male 23/34 11 yes yes ND HCM 25  AF, AVB, PM implantation, died at age 34 

A II:6 female 18/24 6 yes yes ND HCM 18 AF, progression into dilated phase, died of SCD 

A III:1 male 12/23 11 no yes yes HCM 39 
limb-girdle muscle dystrophy, mental retardation, 

AF, ICD implantation, progression into dilated 

phase 

A III:2 female NA/25 NA no no yes normal 10.7  

A III:4 female NA/21 NA no no yes normal 11.2  

A III:5 male 13/17 4 no yes yes HCM 42 WPW, limb-girdle muscle dystrophy, mental 

retardation, progression into dilated phase 

A III:6 male 20/29 9 yes yes ND HCM 23 
muscle dystrophy, AF, ICD implantation, 

progression into dilated phase, died of HF at age 

29 

B I:1 female NA/48 NA no no yes normal 10 RF ablation because of atrial flutter  

B II:1 male 14/20 6 yes yes yes HCM 28 CK rise, PSVT, accessory pathway, ICD 

implantation, died of intractable heart failure 

 
FU: follow-up; LVmax: maximal left ventricular wall thickness; NA: not applicable; ND: not done; HCM: hypertrophic cardiomyopathy; AF: atrial fibrillation; AVB: high-

degree AV block, PM: pace maker; SCD: sudden cardiac death; ICD: implantable cardioverter defibrillator; RF: radio-frequency; CK: creatine kinase; PSVT: paroxysmal 

supraventricular tachycardia 
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sample sizes). The cardiac manifestation was hypertrophic cardiomyopathy in all cases, 

including female patients. Atrial fibrillation was observed in 4 cases, and atrial flutter in 

one non-penetrant case. Sustained or non-sustained supraventricular tachycardia was noted 

in almost all cases. Pace-maker implantation was necessary in two cases, due to high 

degree AV block. An ICD was implanted in two cases, one for primary, one for secondary 

prevention.  

Out of the 6 clinically manifest patients, four patients (67%) died at an average age of 

35Ñ18 years. The age of death was clearly lower in males than in females (27Ñ10 vs. 

42Ñ25 years). The average time span from the time of diagnosis to death was 10Ñ5 years. 

The mode of death was heart failure in three cases and sudden cardiac death in one case. 

An additional aborted sudden cardiac death occurred in another case. 

 

4.2. Identification of GLA mutations in patients with Fabry disease 

We identified 4 GLA mutations in 4 patients (4/21, 19%) out of 21 patients we screened (4 

women, average age 49Ñ15 years) [p.Ile239Met (c.717A>G); p.Tyr397Stop (c.1191T>G), 

c.548-57_-56dupTA; p.Glu358Lys (c.1072G>A)]. Three mutations out of the 4 identified 

mutations were found in patients with the phenotype of left ventricular hypertrophy or 

hypertrophic cardiomyopathy comprising 18 cases, therefore the prevalence of GLA 

mutation in this sub-group was 17% (3/18). The fourth mutation (p.Glu358Lys) caused 

ocular symptoms (cornea verticillata), which indicated the screening, but without 

substantial cardiac alterations in a female patient.  

4.2.1. p.Ile239Met mutation 

We detected a previously unreported heterozygous mutation in exon 5 of the GLA gene in 

the index patient (c.717A>G; Figure 7). The mutation changes the ATA triplet at codon 

239, encoding for isoleucine, to ATG, encoding for methionine (p.Ile239Met, missense 

mutation). This mutation is located in a weakly conserved nucleotide and moderately 

conserved amino acid position, with small physicochemical differences between the amino 

acids isoleucine and methionine. Software analyses by PolyPhen-2, SIFT and Mutation 

Taster indicate that this mutation is probably damaging. Corresponding base changes were 

present in the same position in the reverse strand. To date, this mutation is not described in  
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Figure 7. Sequence analysis of exon 5 of the GLA gene illustrating a c.717A>G nucleotide transition. The 

mutation changes the ATA triplet at codon 239, encoding for isoleucine, to ATG, encoding for methionine 

(p.Ile239Met). The sequence of a mutation carrier, hemizygous male; of a mutation carrier heterozygous 

female, and of a non-carrier normal subject is shown. 

 

the Exome Aggregation Consortium, Exome Sequencing Project or the 1000 Genomes 

Browser.  

Past medical history of the p.Ile239Met mutation carrier Hungarian female index patient 

(subject H 332.0, see family tree in Figure 8 and Table 4) included nephrology assessment 

at age of 43 years because of proteinuria which was interpreted as to be due to 

mesangioproliferative glomerulonephritis. Angina pectoris, ischemic heart disease and left 

ventricular hypertrophy, diagnosed at age of 63 years, were also known. That time, renal 

insufficiency worsened and necessitated continuous ambulatory peritoneal dialysis, and 

later hemodialysis. At age of 67 years she received a successful renal transplant but 

rejection occurred 2 years later, and hemodialysis continued. At age of 69 years the patient 

came to cardiology attention because of syncopal episodes which proved to be caused by 

intermittent 2
nd

 degree, 2:1 atrio-ventricular (AV) block. Echocardiography revealed 

marked LV hypertrophy in the form of obstructive hypertrophic cardiomyopathy with a left 

ventricular outflow tract gradient of 120 mmHg measured at a heart rate of 40/min due to 

the 2:1 AV block. The morphology of the heart was hypertrophic cardiomyopathy with 

marked left ventricular hypertrophy (maximal LV wall thickness 27 mm), papillary  
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Figure 8. Pedigree of the p.Ile239Met GLA gene mutation carrier family. Squares and circles denote males 

and females, respectively; filled symbols indicate clinically affected family members. Arrow point to the 

index patient. Deceased individuals are slashed. Mutation carriers are labelled with a plus (+) sign, and 

non-carriers with a minus (ï) sign. 

 

muscle hypertrophy and right ventricular (RV) hypertrophy (maximal RV wall thickness 

14 mm) (Figure 9). NT-pro-BNP levels were extremely high (>35.000 pg/ml, upper limit 

of normal: <200 pg/ml). Because of the high degree AV block a dual-chamber pace-maker 

implantation was performed, and the outflow tract gradient decreased to 20 mmHg with the 

optimisation of the AV delay.  

Further examinations revealed neither angiokeratomas nor cornea verticillata on 

dermatological and ophthalmological assessments. Ear, nose and throat examination 

revealed perception hypoacusis. Neurological assessment indicated a left side dominant 

paraparesis which was more prominent distally, with a muscle strength of 3-4/5. 

Electromyography and electroneurography indicated primarily motor neuropathy with 

axonal loss, without myopathy. Current laboratory findings include elevated renal function 

(UN: 16.1 mmol/L; creatinine: 294 Õmol/L; eGFR: 13.7 mL/min/m
2
) and lyso-Gb3 level 

(10,6 ng/ml, upper limit of normal+2SD: <1.8 ng/ml). 

Family members 

The index patient belongs to a three-generation family (see family tree in Figure 8). 

Altogether, twelve family members (5 females, 7 males, average age: 45Ñ17 years, see 

family tree in Figure 8 and Table 4) were available for clinical and genetic screening. 

Three family members, including the index patient (subject H 332.0, H 332.2, and H 

332.4), manifested the cardiac phenotype of hypertrophic cardiomyopathy (defined as 



 
 

Table 4. Demographic and clinical characteristics of genetically affected family members carrying the GLA p.Ile239Met mutation 

 

 

ECG: electrocardiogram; LVmax: maximal left ventricular wall thickness; GLA: Ŭ-galactosidase A; lyso-Gb3: lysosomal globotriaosyl-ceramide;  

ND: not done; HCM: hypertrophic cardiomyopathy; LVH: left ventricular hypertrophy 

*
upper limit of normalÑ2SD: Ó2.6 Õmol/l/h 

**
upper limit of normal+2SD: Ò1.8 ng/ml 

Subject Sex 
Age 

(years) 

Cardiac 

morphology 
ECG changes 

LVmax 

(mm) 

LV mass 

(g) 

GLA enzyme 

level (Õmol/l/h)
*
 

lyso-Gb3 

level (ng/ml)
**

 

Other organ 

involvement 

H 332.0 female 69 HCM 
2nd degree AV block, LVH, 

intraventricular conduction delay 
27 ND ND 10.6 renal failure 

H 332.1 female 73 LVH 
negative T waves in leads I-aVL, 

V2-6 
13 107 ND 2.4 

non-significant 

proteinuria 

H 332.2 female 62 HCM 
LVH, negative T waves in leads 

I-aVL, V4-6 
16 131 ND 4.2 

non-significant 

proteinuria 

H 332.3 female 52 LVH 
negative T waves in leads II-III -

aVF, V4-6 
14 144 ND 2.9 - 

H 332.4 male 49 HCM 
LVH, negative T waves in leads 

II -III -aVF, V4-6 
20 268 <0.2 13.8 - 

H 332.11 female 26 none none 8 87 ND 3.2 - 
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maximal LV wall thickness Ó15 mm). The degree and distribution of cardiac hypertrophy 

was highly variable: while it was most marked at the interventricular septum in the index 

patient, it affected mostly the inferior septum and the infero-postero-lateral wall of the left 

ventricle in the son of the index patient (Figure 9). Two other family members (subject H 

332.1 and H 332.3) were diagnosed with LV hypertrophy (defined as maximal LV wall 

thickness Ó12 mm). ECG changes indicating LV hypertrophy and repolarisation changes 

were present in all patients with echocardiographic evidence of LV hypertrophy. A further 

family member, the 26-years-old niece of the index patient (subject H 332.11) did not 

exhibit cardiac phenotype, but showed increased lyso-Gb3 levels. Non-significant 

proteinuria was present in two family members. No other family member showed other 

extra-cardiac (renal, central and peripheral nervous system, skin, eye, etc.) manifestation of 

the disease. 

All the available twelve family members were genotyped for the GLA p.Ile239Met 

mutation. Six family members carried the mutation (5 females, 1 male, average age: 55Ñ16 

years, see family tree in Figure 8 and Table 4). Taken affection status as the presence of 

hypertrophic cardiomyopathy, LV hypertrophy or elevated lyso-Gb3 levels, all affected 

family members carried the mutation while all non-affected family members were non-

carriers. Linkage analysis of the family gave a two-point LOD score of 2.01 between the 

affection status and the presence of the p.Ile239Met GLA mutation, strongly supporting 

linkage. Lyso-Gb3 levels were elevated in all carrier family members (range: 2.4-13.8 

ng/ml; upper limit of normal+2 STD: Ò1.8 ng/ml). The GLA enzyme level was markedly 

reduced in the affected male family member (<0.2 Õmol/l/h; upper limit of normalÑ2 

STD): Ó2.6 Õmol/l/h). 

4.2.2. p.Tyr397Stop mutation 

The second mutation, a T-G transition in exon 7 of the GLA gene (c.1191T>G), which 

changes the tyrosine to a stop codon, at codon 397 (p.Tyr397Stop, nonsense mutation) was 

identified in a female patient (Figure 10). 

Past medical history of the 47 years-old female patient included known and treated 

hypercholesterinaemia. The patient was admitted to the hospital due to the symptoms 

comprising visual disturbance, tremor, numbness in arms and legs, and speech disorder. 

Symptoms ceased spontaneously within an hour, and the diagnosis of transient ischemic 

attack due to circulatory disturbance in the region of right medial cerebral artery was 

suggested on acute neurological and CT examination. 
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Figure 9. Transthoracic echocardiography images of hypertrophic cardiomyopathy in the index patient 

(subject H 332.1) and her son (subject H 332.4) illustrating heterogeneity in the extent and distribution of left 

ventricular hypertrophy. In the index patient marked left ventricular hypertrophy (maximal LV wall thickness 

27 mm) is seen, predominating at the interventricular septum, with papillary muscle hypertrophy and right 

ventricular hypertrophy (Panels A, C and E). In the affected son the hypertrophy affects mostly the inferior 

septum and the infero-postero-lateral wall of the left ventricle (Panels B, D and F). Parasternal long axis 

view (Panels A and B), parasternal short axis view (Panels C and D), and apical four-chamber view (Panels 

E and F) of transthoracic echocardiography. 

 

Doppler examination of carotid arteries did not show any abnormalities. ECG showed 

sinus rhythm, normal axis, left ventricular hypertrophy with signs of strain, negative T-

waves in leads V3-6 (Figure 11). Echocardiography indicated concentric left ventricular 

hypertrophy (septum: 15 mm, posterior wall thickness: 13 mm) with preserved global left 

ventricular function and signs of marked diastolic dysfunction (increased E/Eô ratio: >15, 

enlarged left atrium). During cardiac MRI late contrast enhancement in the ventricular 

muscle was not seen. Laboratory findings showed normal renal function, but proteinuria 

was confirmed. Further examinations revealed cornea verticillata on both sides during 

ophthalmology assessment, but angiokeratomas were not confirmed during dermatology 

examination. Cranial MRI described multiple white matter lesions and varicose veins. Ear, 

nose and throat examination did not reveal any spontaneous vestibular symptoms. The 

lyso-Gb3 level of the patient was elevated (9,41 ng/ml, reference <1,6 ng/ ml). In addition 
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to the conservative treatment including ACE inhibitor and beta-blocker, enzyme 

replacement therapy started (agalsidase alfa), and the clinical status of the patient is stable. 

During family screening two additional family members (the son and daughter of the 

proband) proved to be affected. 

 

 

Figure 10. Sequence analysis of GLA gene exon 7 in mutant and normal samples. In the position 1191 of the 

cDNA, a T-G transition was detected (c.1191T>G) in exon 7 of the gene, which changes the tyrosine codon 

to Stop codon, at codon 397 (p.Tyr397Stop, missense mutation). 

 

 

 

Figure 11. 12-lead resting ECG of the p.Tyr397Stop GLA mutation carrier Fabry patient. 

60/min sinus rhythm, normal axis, left ventricular hypertrophy with signs of strain, negative T-waves in leads 

V3-6. Paper speed 25 mm/s, calibration 1 mm/mV. 

 

 

mutant 

normal 
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4.2.3. c.548-57_- 56dupTA mutation 

The third variant, a two base-pair duplication in intron 3 of the gene (c.548-57_-56dupTA) 

was identified in a 40-year-old female patient with an atypical, rapidly-progressing, 

restrictive cardiomyopathy. Past medical history of the patient included treatment for 

systemic lupus erythematosus (SLE). Cardiac assessment was initiated because of elevated 

necroenzyme levels, but initially echocardiography revealed preserved systolic function 

with signs of mild diastolic dysfunction. Recurrent loss of consciousness due to III rd 

degree AV block necessitated pacemaker implantation. Despite medical therapy heart 

failure symptoms progressed quickly, and the patient progressed from NYHA I to NYHA 

III functional status in six months. Echocardiography that time showed severely impaired 

diastolic function with very high 7982 pg/ml NTproBNP values. Myocardial biopsy was 

performed, which revealed Fabry-like cardiomyopathy. Despite conservative therapy, rapid 

progression of the condition was observed, and the patient was referred for heart 

transplantation. After temporary ventricular assist device therapy, the patient received a 

successful heart transplant, but soon after the patient died because of rejection. 

4.2.4. p.Glu358Lys mutation 

The fourth GLA mutation, a G-A transition in exon 7 (c.1072G>A), which changes the 

acidic glutamate to basic lysine, at codon 358 (p.Glu358Lys, missense mutation) was 

identified in a female patient with cornea verticillata. 

Past medical history of the 28-years-old female patient included tonsillectomy because of 

tinnitus and chronic tonsillitis. Cornea verticillata was detected during ophthalmological 

examination, due to accidental foreign body in the eyes. Laboratory findings showed 

abnormally low alpha galactosidase enzyme activity value (3,7 nmol/mg/h, upper limit of 

normal: >15,6 nmol/mg/h). ECG revealed sinus rhythm, normal PQ and QT interval, 

narrow QRS width with flat, negative T-waves in lead III . Echocardiography showed 

normal-sized heart chambers, preserved global left ventricular function, without segmental 

wall motion abnormality. The maximum left ventricular wall thickness was 9 mm. Cardiac 

MRI did not prove hypertrophic cardiomyopathy or late contrast enhancement. Neither 

neurological nor nephrological examination revealed any abnormalities, suggesting Fabry 

disease.  
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4.3. Identification of TTR mutations in patients with transthyretin amyloidosis 

Two non-synonymous TTR gene variants were identified in the two patients with 

transthyretin amyloidosis. 

In Patient A, an A-G transition was detected (c.323A>G) in exon 3 of the gene, which 

changes the histidine coding CAT codon to an arginine coding CGT codon, at codon 108 

(p.His108Arg, missense mutation, Figure 12). Among the first-generation relatives of the 

index patient, the genetic analysis of his motherôs blood sample was possible, who died 

because of heart failure at age of 85 years. Her mutation carrier status was positive.  

In Patient B, a G-A transition in exon 2 (c.76 G>A) was found, which changes the glycine 

coding GGT codon to a serine coding codon AGT (p.Gly26Ser). Corresponding base 

changes were present in the same position in the reverse strand. A synonymous 

polymorphism, not changing the amino acid sequence, was also detected in the second 

proband (c.57G>A, Glu19Glu). 

 

 

Figure 12. Sequence analysis of TTR gene exon 3 in mutant and normal samples. In the position 323 of the 

cDNA of Patient A, a A-G transition was detected (c.323A>G) in exon 3 of the gene, which changes the 

histidine coding CAT codon to an arginine codon CGT, at codon 108 (p.His108Arg, missense mutation). 
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5. DISCUSSION 

5.1. Identification of LAMP2 mutations in patients with Danon disease 

By screening two HCM patients with marked concentric hypertrophy and pre-excitation on 

the ECG we identified two novel LAMP2 gene mutations in two families with Danon 

disease. Both mutations were predicted to lead to a truncated LAMP-2 protein lacking the 

transmembrane and cytoplasmic domains. We observed a highly malignant phenotype in 

both families characterised by a large proportion of disease related death. 

To the best of our knowledge, one of our families, Family A, is one of the largest family 

with Danon disease reported to date, in terms of number of affected family members with a 

proven DNA diagnosis. There are a small number of large families reported in the 

literature (31-34), beside numerous small families (10, 31, 32, 35). However, in the 

majority of large families a very significant number of the family members, supposed to be 

affected, were already deceased at the time of the report, with no material available for 

DNA investigation and therefore no chance to have a definite genetic diagnosis of the 

disease (32, 33). In these cases, although the affection status is suggestive, cannot be taken 

as proven, which leaves some uncertainty about the clinical phenotype described. In our 

two families, we identified altogether 8 gene mutation carriers (six in Family A and two in 

Family B) which clearly helped to draw conclusions about the clinical course of the disease 

in our families. 

In both index cases, the clinical manifestation of the disease was typical for Danon disease, 

with extreme concentric LV hypertrophy, pre-excitation on the ECG, muscle dystrophy or 

CK rise, and variable mental retardation (36, 37). The cardiac phenotype in the affected 

family members, including female family members was hypertrophic cardiomyopathy, and 

a high prevalence of arrhythmias or bradyarrhythmias, necessitating PM implantations. 

Four disease related deaths occurred in the families, at an average age of 35Ñ18 years, 

which was clearly lower in males than in females (27Ñ10 vs. 42Ñ25 years). 

Although RF ablation procedures have been used to treat arrhythmias in Danon disease, 

results of an electrophysiological study are surprisingly rarely reported in such patients. In 

one of our patients (subject II:1, Family B), an EP study was performed twice, with 

unusual findings. In one EP study, the accessory pathway was mapped to the anterior 

region of the left AV ring, which is a very unusual location of accessory pathways, present 

in 0-1% of patients with WPW syndrome. In addition to the induction of the AV 

tachycardia, non-sustained atrial arrhythmias were also inducible. Further to this, another 
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genetically affected family member (subject I:1, Family B), without manifesting 

cardiomyopathy, also underwent an EP study because of multiple atrial tachycardias with 

macro-reentrant circuits and focal origin involving both atria. This observation raises the 

possibility of the presence of a disease substrate affecting the atria, and pointing to atrial 

arrhythmias as one of the early manifestations of the disease. 

In our patient evaluated by cardiac biopsy, vacuolar cardiomyopathy was seen which 

displayed certain features that did not entirely fit to the published morphology of Danon 

disease. Although severely hypertrophied cardiac myocytes with extensive vacuolisation 

were seen in our case, the sarcoplasmic glycogen content was neither markedly increased, 

nor diastase-sensitive PAS-positive granules were encountered, thus the diagnosis of 

glycogen storage disease-induced cardiomyopathy was not proven on histological grounds. 

However, the ultrastructural analysis of the cardiomyocytes revealed increased number of 

lysosomal structures. Although normal hearts can display glycogen particles in lysosomes, 

the common presence of glycogen particles in the autophagic vacuoles and the frequent 

ruptures of these vacuoles indicated that the smoldering accumulation of diseased 

autolysosomes and subsequent chronic cellular injury could be a key process in the 

evolution of the vacuolar cardiomyopathy. Similar to the one of the patients with LAMP2 

gene mutation described in the paper of Arad et al. (19), distinct PAS-positive inclusions 

corresponding electron microscopically to autolysosomes filled with relatively 

homogeneous dense material were seen in the myocytes of our patient. We performed 

diastase digestion and the globules proved diastase-resistant thus these inclusions seemed 

not be engaged with glycogen accumulation in lysosomes. Nevertheless, we regard them as 

manifestation of altered cellular digestion in the cardiomyocytes. 

The characteristics of the two novel mutations, identified by us, are in agreement with 

literature data. The professional version of the Human Gene Mutation Database (HGMD, 

www.hgmd.org) lists 61 LAMP2 gene mutations causing Danon disease. About one quarter 

of the reported mutations are point mutations, the majority (about 80%) of them being 

nonsense mutations, predicted to lead to a stop-codon. Another one-third of the mutations 

are small insertions or deletions, leading to frame-shift. An additional one-quarter of the 

mutations represent splice site mutations, with a variable and unpredictable expression. 

Gross deletions and insertions are also reported in the literature (36, 38, 40, 41). According 

to this, the overwhelming majority of the mutations reported to date, represent loss of 

function mutations which lead to a complete or almost complete loss of LAMP-2 protein 

expression. Almost all of the mutations are private mutations, although some mutations 

http://www.hgmd.org/
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were reported to appear in multiple families. One of the mutation we identified, 

p.Trp321Stop, is a nonsense point mutation, presumably leading to premature stop codon 

at codon 321. The other mutation we described, p.Pro324fs+24X, is a one-base pair 

insertion which is predicted to lead a frame-shift and incorporation of 24 amino acids 

before activation of a hidden stop codon. Neither mutation has been described previously. 

Of note, the latter mutation has been found in the COSMIC database, in melanoma cells, 

perhaps delineating a higher mutation rate of this region. 

 

5.2. Identi fication of GLA mutations in patients with Fabry disease  

Various strategies have been used to estimate the prevalence of Fabry disease in patients 

presenting left ventricular hypertrophy or HCM, each yielding different results (Table 5). 

The first major study by Nakao et al examined 1603 men undergoing routine 

echocardiography. The measurement of Ŭ-galactosidase A activity in plasma samples 

revealed that seven (3%) out of 230 patients with otherwise unexplained LVH 

(interventricular septum or left ventricular wall thickness Ó13 mm) had clinically 

unsuspected Fabry disease (42). In a second retrospective analysis of 153 male patients 

attending a referral clinic for patients with HCM, the prevalence of Fabry disease based on 

plasma Ŭ-galactosidase A activity was 4%, rising to 6,3% in those first diagnosed over 40 

years of age (43). Ommen et al in 2003 examined consecutive HCM patients (44 men) who 

underwent septal myectomy. Transmission electron microscopy of myectomy tissue did 

not show any histological abnormalities indicating Fabry disease (44), which may suggest 

that asymmetrical hypertrophy, indicating surgical myectomy, is rare in Fabry disease. 

Chimenti et al in 2004 examined 96 (34 women, 62 men) HCM patients, in whom 

biventricular endomyocardial biopsy and measurement of leucocyte Ŭ-galactosidase A 

activity was performed. The prevalence of Fabry disease was found to be 6,2% in men and 

11,8% in women (45). The limitation of the study included that the screening was based on 

myocardial biopsies, which was selective for infiltrative diseases. Arad et al screened 75 

(30 women, 45 men) HCM patients with molecular genetic methods. No GLA mutation 

was found during the screening (16). Morita et al identified 50 patients (18% women) out 

of 1862 subjects with echocardiographic evidence of unexplained LVH (maximal LV wall 

thickness >13 mm). Molecular genetic analysis was performed, which resulted in a 2% 

prevalence for Fabry disease (46). Monserrat et al performed the screening of Ŭ-

galactosidase A activity in the plasma of 508 consecutive unrelated patients (328 men, 180 

women) with HCM from three regional centers in Spain and demonstrated 



 
 

Table 5. Summary of previous studies examining the prevalence of Fabry disease in patients with HCM 
 

 

 
LVH: left ventricular hypertrophy; HCM: hypertrophic cardiomyopathy, MLVWT: maximum left ventricular wall thickness, ESC: European Society of Cardiology

Authors Year Screened population Screening method Prevalence 

Nakao et al (6)  1995 

230 male patients with echocardiographic evidence of LVH 

(septum or left ventricular posterior wall thickness Ó13 mm) 

from cohort of 1603 male subjects 

Plasma Ŭ-galactosidase A activity 3.0% 

Sachdev et al (7) 2002 

79 consecutive men with HCM (unexplained LVH with a 

MLVWT Ó13 mm), first diagnosed Ó40 years of age and 74 

HCM men first diagnosed <40 years of age 

Plasma Ŭ-galactosidase A activity 

6.3% in patients diagnosed 

Ó40 years 1.4% in patients 

diagnosed <40 years 

Ommen et al (8) 2003 
100 consecutive HCM patients (44 men) who underwent septal 

myectomy 

Transmission electron microscopy 

of myectomy tissue 
0% 

Chimenti et al (9) 2004 
34 consecutive female patients with HCM (unexplained LVH 

with a MLVWT Ó13 mm) 

Biventricular endomyocardial 

biopsy and leucocyte Ŭ-

galactosidase A activity 

11.8% 

Arad et al (10) 2005 
75 consecutive patients with HCM (30 women, 45 men) 

(unexplained LVH with MLVWT Ó13 mm) 
Genetic analysis 0% 

Morita H et al (11) 2006 

50 patients (18% women) with echocardiographic evidence of 

unexplained LVH (MLVWT >13mm) from a cohort of 1862 

subjects 

Genetic analysis 2% 

Monserrat et al (13) 2007 
508 consecutive patients (328 men, 180 women) with HCM 

diagnosed according to the WHO/ESC criteria 
Plasma Ŭ-galactosidase A activity 1% 

Hagege et al (12) 2011 
392 patients with HCM (unexplained LVH with MLVWT Ó15 

mm) (278 men) aged 18-79 years 

Ŭ-galactosidase A assay on dried 

blood spot using a filter paper test 
1% 

Elliot et al (14) 2011 
1386 patients with HCM (885 men, unexplained LVH with a 

MLVWT Ó15 mm) 
Genetic analysis 0.5% 
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low Ŭ-galactosidase A levels in 15 patients (2.9%). However, subsequent genetic analysis 

demonstrated disease causing mutations in only 0.6% of men and between 1.2% and 2.4% 

(including two with an intronic deletion) of women (47). Hag¯ge et al examined the 

prevalence of Fabry disease in patients with LVH of 13 mm or greater using an Ŭ-

galactosidase A assay (48) and the overall prevalence in men was found to be 1.5%. No 

female heterozygotes were detected, but this method has a low sensitivity in women, and 

no systematic genetic sequencing was performed. So far, Elliott et al performed the largest 

similar screening in 2011, who performed molecular genetic mutation analysis on 1386 

(885 men, unexplained LVH with a MLVWT Ó15 mm) HCM patients. Seven GLA 

mutations were identified in the population, which gave a 0,5% prevalence (49).  

In our present work we carried out screening for Fabry disease in patients, who had 

cardiac, but at the same time other organ manifestations, which raised the suspicion of 

Fabry disease. We identified 4 GLA mutations in 4 patients (19%) out of 21 patients we 

screened (4 women, average age 49Ñ15). The prevalence of GLA mutations in Fabry 

disease considering the subgroup of patients with left ventricular hypertrophy or 

hypertrophic cardiomyopathy was 17%. The explanation for the much higher prevalence in 

the present study as compared to previous ones is that we selected patients not just with 

isolated cardiac involvement, but with signs of other organ manifestations (neurological, 

nephrological, dermatological, etc.). These data underlines the fact, that in the case of a 

"typical" HCM the possible prevalenece of Fabry disease is low (approx. 0.5-1%), but if 

other possible organ manifestation is present in addition to HCM, the chance for the 

presence of Fabry disease is significantly higher.  

One mutation out of four GLA mutations we identified is an already known mutation, 

while the other three are novel gene mutations. The GLA p.Glu358Lys mutation was 

earlier identified in a Japanese male patient (50), who had episodic pain in the extremities 

and angiokeratoma on his chest and also on both palms from the age of 10 years. His 

brother also had the same symptoms from the age of 12 years. The assumed causative 

effect of the p.Glu358Lys mutation is the damage of the protein ôfoldingô. 

The reported GLA p.Ile239Met mutation is a novel mutation, although an amino acid 

change at this position has already been described as disease-causing for Fabry disease by 

Kotanko in 2004 (c.716T>C, p.Ile239Thr, HGMD ID: CM044637) (51). The mutation was 

identified in a male patient, who experienced recurrent fever, pain, lymphadenopathy and 

acroparesthesia in early childhood. Later on shrunken right kidney and stage 4 chronic 

kidney disease were diagnosed, also acute hearing loss, dizziness, headache, dysphasia and 
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dysarthria developed. Multiple cerebral lesions detected by magnetic resonance imaging 

were related to stage 3 hypertension. Fabry disease was diagnosed during the course of the 

screening study. Reexamination of the kidney biopsy material by electron microscopy 

showed typical signs of Fabry disease that were previously not identified by light 

microscopy. The patient also had cornea verticillata and mild left ventricular hypertrophy. 

His 48-year-old mother (normal GLA activity) and his two daughters (aged 3 and 8 years; 

decreased GLA activity in both) exhibited the same mutation. These three female relatives 

do not show clinical signs and symptoms of Fabry disease.  

On the basis of the current recommendations of the American College of Medical Genetics 

and Genomics (ACMG) and the Association for Molecular Pathology (AMP) there are 

multiple lines of evidences to characterise the p.Ile239Met mutation as ópathogenicô for 

Fabry disease. First and most important, the observation of the markedly decreased GLA 

enzyme level in the affected male carrier and the increased lyso-Gb3 levels in all the 

mutation carriers provides evidence for the damaging consequences of the mutation on the 

gene product (PS3, strong evidence of pathogenicity). Second, the mutation is absent from 

controls in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation 

Consortium (PM2, moderately strong evidence of pathogenicity). Third, the mutation is a 

novel missense change at an amino acid residue where a different missense change 

(p.Ile239Thr, see above) determined to be pathogenic has been seen before (PM5, 

moderately strong evidence of pathogenicity). Fourth, cosegregation with disease in 

multiple affected family members in the GLA gene, definitively known to cause the 

disease, has been shown (PP1, supporting evidence of pathogenicity). It is of note, that the 

>2 LOD score we obtained by linkage analysis in the family is highly suggestive, although 

not conclusive in itself, for the causative role of the variant, as it provides substantial 

evidence for the cosegregation of the mutation with the disease phenotype. Fifth, multiple 

lines of computational evidence support a deleterious effect on the gene or gene product 

(PP3, supporting evidence of pathogenicity). By applying the rules of the ACMG/AMP 

guideline for combining criteria to classify sequence variants as ópathogenicô (1 Strong 

AND 2 Moderate AND Ó2 Supporting) the p.Ile239Met GLA variant that we have 

identified completely satisfy the criteria of being ópathogenicô. 

The third detected GLA mutation, p.Tyr397Stop, is a previously unpublished, novel 

mutation. The mutation presumably caused the interruption of the reading frame, 

consequently a shorter, truncated protein can be produced, which may not function 
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properly. The biomarker of Fabry disease, the lyso-Gb3 level was mildly increased in the 

mutation carrier patient.  

The fourth identified GLA variant, c.548-57_-56dupTA, is a previously unpublished 

heterozygous variant in intron 3 of GLA gene. The effect of the variant is neutral, based on 

a prediction analysis, because of the suspected indifferent effect on the mRNA ôsplicingô. 

The prediction analysis of the variant indicated the variant to be a ôvariant of unknown 

significanceô (VUS), although the histological examination of the patient confirmed the 

characteristics of Fabry disease. Although recommendations suggest to clarify the 

significance of these variants by family screening or functional analysis (52-54), 

unfortunately this was not possible in our case.  

As a specific enzyme replacement therapy (ERT) for Fabry disease is available, early 

diagnosis of a real Fabry patient is of great importance to initiate the otherwise invasive 

and expensive ERT. Both agalsidase-alpha and agalsidase-beta therapy can prolong disease 

manifestation, slow down the disease progression, and improve life quality of patients. In a 

recent study it was shown, that the progression of left ventricular hypertrophy was 

successfully slowed down on agalsidase-alpha therapy in Fabry patients during 10 years 

follow up (55).  

 

5.3. Identification of TTR mutations in patients with t ransthyretin amyloidosis 

According to the Human Gene Mutation Database, more than 100 mutations are known to 

affect the TTR gene. Different TTR gene mutations will lead to different phenotypes with 

neuropathic, cardiomyopathic, nephropathic, and ocular forms (30). Typical forms may be 

accumulated in specific populations. The clinical manifestation can be highly variable even 

in the case of the same genetic background: the disease process may remain nearly 

asymptomatic or it may be severe, may begin at older or at a younger age. Point (missense) 

mutations are the most typical mutations affecting the gene, but even small deletions and 

small indel mutations has been also described. In rare cases a Ănewò (ôde novoô) mutation 

can occur, which does not appear in any other family member. Mutations in the TTR gene 

can lead to conformational changes of the encoded protein, which is essential for amyloid 

fiber formation.  

The p.His108Arg TTR mutation, we identified in Patient A has already been described 

previously in a Swedish family (56). They reported a 65-years-old index patient with bi-

ventricular heart failure, with diffusely thickened ventricular walls (IVS: 21 mm), left 
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ventricular hypokinesis, and elevated NT-pro-BNP levels. Besides cardiac involvement, 

gastrointestinal and polyneuropathic symptoms were also present. The patient died at the 

age of 70 years after 5 years of follow-up. Six additional affected family member were 

confirmed during family screening, five had disease manifestation in the form of 

cardiomyopathy, which appeared dominantly at later ages (>50 years). Genealogical study 

showed that they all have common ancestors 9-10 generations back into the 17th century 

originating from Dalarna (Dalecarlia) in Sweden. So this mutation could be designated as a 

ôfounderô mutation in Sweden (57).  

Histidine at position 88 (His88) is an amino acid in TTR that is important for the stability 

of the TTR tetramer. A large hydrogen-bond network is formed by Thr75, Trp79, His88, 

Ser112, Pro113 and three water molecules (58, 59). In addition, His88 also forms a 

hydrogen-bond network with Thr118 of another TTR subunit. Through these two networks 

His88 is associated with both the dimer-dimer interface as well as the monomer-monomer 

interface in the TTR tetramer. His88 is also located in the EF-loop (amino acids 95-101) in 

TTR. Mutations within the EF-helix (amino acids 102-110, where 108His is located) and 

the EF-loop are disposed to TTR monomer aggregation into fibrils (60-63). Several amino 

acid residues, including His88, in this region are highly affected by conformational 

changes at acidic pH. Histidine is a basic amino acid characterized by its imidazole group, 

which makes it the only amino acid that functions in both acid and base catalysis. The 

imidazole side chain of histidine is a common coordinating ligand in metalloproteins, and 

His88 forms a Zn
2+

 binding site with His90, Glu92 and a water molecule (64), which 

enables TTR to function as a metallopeptidase (65, 66). A mutation that changes His88 

should have a profound impact on both TTR Zn
2+

 binding properties and monomer-

monomer binding, theoretically making it highly amyloidogenic. 

The p.Gly26Ser TTR gene variant identified in Patient B is not a rare variant worldwide, 

according to the literature. The allele frequency of p.Gly26Ser is 6-12% in an average 

Caucasian population, 4% in North American Ashkenazi Jews, 7% in North American 

non-Jews, 6% in Portuguese and 1% African-American population (67). Based on these 

evidences, the variant is considered to be a benign, non-amyloidogenic TTR variant (68). 

Considering the accumulation of the TTR demonstrated by immunohistochemistry assay 

and the lack of TTR gene mutation, the infiltration in the heart of Patient B corresponds to 

wild-type transthyretin and the case corresponds to senile amyloidosis.  
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6. SUMMARY AND CONCLUSIONS  

1. We identified two novel LAMP2 gene mutations in patients with Danon disease 

By screening two patients with extreme concentric LV hypertrophy, pre-excitation on the 

ECG, muscle dystrophy/CK rise, and variable mental retardation, we identified two 

families with two novel LAMP2 gene mutations, p.Trp321Stop and p.Pro324fs+24X, 

causing Danon disease. Both mutations were predicted to lead to a truncated LAMP-2 

protein that presumably lacks the transmembrane and cytoplasmic domains. We observed a 

markedly malignant phenotype in both families characterised by a large proportion of 

disease related death. 

 

2. We identified known and novel GLA gene mutations in patients with Fabry disease 

Screening patients with suspected Fabry disease, based on the presence of cardiac and 

extracardiac manifestations, we identified known (p.Glu358Lys) and novel (p.Ile239Met, 

p.Tyr397Stop, c.548-57_-56dupTA) GLA gene mutations. In particular, we described a 

family with a novel p.Ile239Met GLA gene mutation where cardiac involvement in the 

form of hypertrophic cardiomyopathy, LV hypertrophy and ECG changes was the most 

common manifestation of the disease and severe renal failure occurred in one family 

member. We concluded that the p.Ile239Met GLA mutation is a pathogenic mutation for 

Fabry disease and obviously associated with a late onset and predominantly a cardiac 

variant of the disease. 

 

3. We established a 17% prevalence rate of Fabry disease in patients with 

hypertrophic cardiomyopathy or left ventricular hypertrophy manifesting additional 

symptoms, indicating multi -organ involvement 

Screening patients with suspected Fabry disease, based on cardiac involvement (mostly in 

the form of hypertrophic cardiomyopathy or left ventricular hypertrophy) and additional 

signs of non-cardiac manifestation (neurological, renal, ocular or dermatological 

symptoms) we found a 17% prevalence of GLA mutations indicating Fabry disease. Our 

results suggest, that in case of unexplained left ventricular hypertrophy or hypertrophic 

cardiomyopathy and additional suspicious organ manifestations the possibility of Fabry 

disease should be higher.  
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4. We identified TTR gene mutations in patients with TTR amyloidosis 

Two non-synonymous transthyretin gene variants were identified in two patients with 

hypertrophic cardiomyopathy phenotype. In the first case a previously published, 

malignant missense mutation (p.His108Arg) was found in the index patient and also in his 

mother, therefore the case corresponded to familial transthyretin amyloidosis. Wild type 

transthyretin deposition was detected in the second case, thus in this case the patient had 

senile systemic amyloidosis. 
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