Szénhidrogén bontó *Rhodococcus erythropolis* törzsek funkcionális genomikai analízise és biotechnológiai alkalmazása

Doktori értekezés

Laczi Krisztián

Témavezetők:
Dr. Perei Katalin
egyetemi adjunktus
Dr. Rákhely Gábor
egyetemi docens

Biológia Doktori Iskola

Szegedi Tudományegyetem
Biotechnológiai Tanszék

Szeged
2016.
Tartalomjegyzék

Köszönetnyilvánítás .. 6

1. Rövidítések jegyzéke .. 7

2. Bevezetés .. 8

3. Irodalmi áttekintés ... 10

3.1. Szénhidrogének, mint környezeti szennyezőanyagok .. 10

3.1.1. A kőolaj keletkezése és összetétele .. 10

3.1.2. A szénhidrogén szennyeződések eredete, környezeti, egészségügyi és társadalmi hatása ... 11

3.1.3. A szénhidrogén szennyezés megelőzése illetve a szennyeződés eltávolítása 13

3.2. A bioremediáció .. 14

3.2.1. A bioremediáció általános bemutatása ... 14

3.2.2. A bioremediációs eljárások csoportosítása .. 15

3.3. Szénhidrogének mikrobiális lebontása .. 16

3.3.1. Oxigenáz enzimek ... 16

3.3.2. A alkánok oxidációjának módjai ... 18

3.3.3. Aromás szénhidrogének oxidációja ... 20

3.3.4. A szénhidrogének anaerob lebontása ... 20

3.4. A Rhodococcus nemzetség .. 21

3.4.1. A Rhodococcus nemzetség általános jellemzése ... 21

3.4.2. Felületaktív anyagok a Rhodococcus nemzetségben ... 23

3.4.3. Rhodococcus törzsek alkalmazási lehetőségei ... 24

3.4.4. R. erythropolis PR4 és MK1 törzsek .. 25

3.5. Transzkriptom analízis új generációs szekvenálási technikákkal .. 26

3.5.1. Új generációs szekvenáló módszerek .. 26

3.5.2. Teljes transzkriptom analízis új generációs szekvenálási technikákkal 27

4. Célkitűzések ... 29
5. Anyagok és módszerek .. 30

5.1. Felhasznált törzsek ... 30

5.2. Felhasznált anyagok és tápoldatok ... 30

5.2.1. Luria-Bertani (LB) tápoldat .. 30

5.2.2. Minimál tápoldat ... 30

5.2.3. Magas só koncentrációjú minimál tápoldat ... 30

5.2.4. Virágföld ... 30

5.3. Sejtkultúrák szaporítási körülményei ... 31

5.3.1. Törzsek fenntartása ... 31

5.3.2. Indító kultúrák szaporítása .. 31

5.3.3. R. erythropolis törzsek szénhidrogén-bontó képességének összehasonlítása minimál és nagy sókoncentrációjú minimál tápoldatban illetve virágföldben ... 31

5.3.4. R. erythropolis PR4 sejtkultúrák szaporítása fermentorban transzkriptomikai vizsgálatokhoz .. 31

5.4. Analitikai módszerek ... 32

5.4.1. Oxigén kimutatása a kultúrák légteréből .. 32

5.4.2. Szén-dioxid kimutatása a kultúrák légteréből .. 32

5.4.3. A gázok anyagmennyiségének kiszámítása térfogatuk alapján 33

5.4.4. n-hexadekán kivonása és mennyiségi meghatározása ... 33

5.4.5. Statisztikai módszerek ... 34

5.5. Molekuláris biológiai munkák .. 34

5.5.1. Primerek .. 34

5.5.2. Genomi DNS izolálás ... 34

5.5.3. Növekedési görbe meghatározása teljes nukleinsav koncentráció alapján 35

5.5.4. RNS izolálás .. 35

5.5.5. DNáz I kezelés ... 35

5.5.6. Agaróz gélelektroforézis ... 35

5.5.7. Polimeráz láncreakció ... 36
5.5.8. cDNS szintézis .. 36
5.5.9. RT-qPCR .. 36
5.6. *R. erythropolis* MK1 genom szekvenálása újgenerációs módszererekkel 36
 5.6.1. Teljes genom szekvenálás SOLiD platformon ... 36
 5.6.2. Teljes genom meghatározása Illumina MiSeq szekvenáló készülékké 37
5.7. *R. erythropolis* PR4 transzkriptomikai vizsgálata ... 37
5.8. Bioinformatikai módszerek .. 37
6. Eredmények és tárgyalásuk .. 39
 6.1. Szénhidrogének biodegradációja *R. erythropolis* MK1 és PR4 törzsekkel 39
 6.1.1. A két Rhodococcus törzs jellemzőinek összehasonlítása n-alkánok jelenlétében .. 39
 6.1.2. A sókonzentráció hatása a két *R. erythropolis* törzs szénhidrogén-bontó képességére ... 40
 6.1.3. A talaj nedvességtartalom hatása a két *R. erythropolis* törzs szénhidrogén-bontó képességére ... 41
 6.1.4. A n-hexadekán lebontásának oxigén és n-hexadekán mérlege a két Rhodococcus törzsben ... 42
 6.1.5. A két törzs szénhidrogén bontó képességének összehasonlítása dízelolaj frakciókon ... 45
6.2. *A R. erythropolis* MK1 genom szekvenálása .. 47
 6.2.1. *R. erythropolis* MK1 genomjának de novo összeszerelése .. 47
 6.2.2. Az *R. erythropolis* MK1 és PR4 törzsek alkán-1-monoxyigenáz génjeinek (alkB) filogenetikai vizsgálata ... 49
 6.2.3. Plazmidok a *R. erythropolis* MK1 törzsben ... 51
6.3. n-hexadekánon és gázolajon nevelt *R. erythropolis* PR4 összehasonlító transzkriptomikai analízise .. 52
 6.3.1. Sejtek növekedése a fermentáció során .. 52
 6.3.2. A teljes transzkriptom analízis eredményei .. 53
 6.3.3. Szénhidrogének oxidációja ... 54
6.3.4 Citokróm P450 monooxigenázok szerepe a gázolaj komponensek biodegradációjában .. 58
6.3.5. Zsírsav metabolizmus ... 60
6.3.6. Exopoliszacharid szintézis ... 62
6.3.7. Vas transzport és sziderofór szintézis .. 64
6.3.8. A génexpressziós vizsgálatok összefoglalása .. 64
7. Összefoglalás ... 67
8. Summary .. 70
I. Függelék: Oligonukleotidok listája .. 73
Irodalomjegyzék .. 75
Saját közlemények jegyzéke .. 92
Szakmai folyóiratban megjelent cikkek ... 92
A Ph.D. fokozatszerzéshez felhasznált publikációk .. 92
Egyéb publikációk ... 92
Konferencia absztraktok .. 93
Előadások ... 93
Poszterek .. 95
Egyéb közlemények .. 97
Köszönetnyilvánítás

Szeretném megköszönni témavezetőmnek, Dr. Perei Katalin egyetemi adjunktusnak, hogy doktori munkámat egy színvonalas kutatási témában folytathattam. Köszönöm továbbá munkám során nyújtott irányadó tanácsait és biztató szavait, melyek sokat jelentettek a kutatás nehéz időszakaiban.

Köszönet illeti Dr. Rákhely Gábor egyetemi docent, a Szegedi Tudományegyetem Biotechnológiai tanszékének vezetőjét, hogy támogatta munkámat, és lehetővé tette dolgozatom elkészítését. Köszönöm értékes tanácsait és a sok segítséget, melyet munkám során nyújtott, valamint hogy lehetővé tette, hogy részt vegyek más kutatási témákban, így számtalan gyakorlati technikával gazdagodott tudásm.

Köszönetet mondok minden kollégámnak, akik segítették munkámat. Külön szeretném megköszönni Zsiros Szilviának a sok technikai segítséget; Kis Ágnesnek a jó hangulatban telt közös munkát és hogy mindig bizalommal fordulhattam hozzá, ha gondom akadt; valamint Tengőlics Rolandnak az éjszakába nyúló szakmai beszélgetéseket, melyekből mindkettő sokat tanultunk.

Köszönöm édesanyámnak, nagyamámnak és testvéremnek, hogy mindig mellettem álltak és támogattak, bármilyen nehéz célt tűzt em ki magam elé. Köszönöm feleségemnek, Mosolygó Tímeának, hogy mindvégig velem volt és a legnehezebb pillanatokban is számíthattam rá; hogy együtt örülhettünk a sikereknek és nem hagyott búslakodni, ha kudarc ért.

A kutatás a TÁMOP-4.2.4.A/2-11/1-2012-0001 azonosító számú Nemzeti Kiválóság Program – Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program című kiemelt projekt keretében zajlott. A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.
1. Rövidítések jegyzéke

AlkB: alkán-1-monoxygenáz
AlmA: flavin-kötő monoxygenáz
CYP: citokróm P450
Dnase I: dezoxiribonukleáz I
DNS: dezoxi-ribonukleinsav
EDTA: etilén-diamin-tetraçetatsav
EtBr: etidium-bromid
FASI: I. típusú zsírsav szintáz
FASII: II. típusú zsírsav szintáz
HIV: humán immundeficiencia vírus
LadA: alkán monoxygenáz
LB: Luria-Bertani tápoldat
Mbp: megabázispár
MCO: multicopper oxidáz
MPSS: Massively Parallel Signature Sequencing
NADH: nikotinamid-adenin-dinukleotid (redukált)
OD_{600}: 600 nm hullámhosszon mért optikai denzitás
PAH: policiklikus aromás szénhidrogén
PCB: poliklorozott bifenilek
PCR: polimeráz láncreakció
RAST: Rapid Annotation using Subsystem Technology (gyors annotáció alrendszerek használatával)
RNS: ribonukleinsav
RPKM: leolvasás/ kilobázis/ millió leolvasás
RT-qPCR: reverz transzkripció kapcsolt kvantitatív polimeráz láncreakció
SDS: nátrium-dodecil-szulfát
SAGE: Serial Analysis of Gene Expression
SOLiD: oligonukleotid ligáláson alapuló szekvenálás (Supported Oligonucleotide Ligation and Detection)
Tris: Trisz-(hidroximetil)-aminometán
2. Bevezetés

Az elmúlt évszázadban az ipar rohamos fejlődésnek indult. A belső égésű motor feltalálása mérföldkövet jelentett a járműgyártásban, így a kőolajszármazékok üzemanyagként történő felhasználásában is. Ez meggyorsította az utazást, az áruszállítást és fellendítette a gazdaság fejlődését is. A kőolajszármazékokat üzemanyagként, fűtőanyagként, kenőanyagként vagy oldószereként használják az iparban és a hétköznapi életben egyaránt.

A nagymértékű felhasználás miatt az elmúlt fél évszázad során a kőolaj potenciális környezetszennyező anyaggá vált. Nemcsak az üzemanyagok égése során felszabaduló nagymennyiségű szén-dioxid vagy a savas esőket okozó kén- és nitrogén-oxidok jelentenek problémát, hanem a kőolaj kitermelése és szállítása alatt bekövetkező balesetek számtalan esetben sodorják veszélybe az élővilágot [1]. Az emberiség hamar rádöbbent, hogy a kőolajszármazékok minden előnyük mellett örlégi hátrányokkal is rendelkeznek. A súlyos egészségkárosító, mérgező komponensek nemcsak a természet, hanem a szennyezés környezetében élő emberek egészségét is veszélyezteti.

Mára már szigorú ENSZ egyezmény szabályozza például a szállításban résztvevő hajók paramétereit, így próbálva minimalizálni a balesetek számát [2]. Ugyanakkor nem minden baleset kerülhető el. A környezetbe jutó kőolajat alkotó szénhidrogének nagy része nehezen bomlik el, így sokáig fennmarad a környezetben. Mindemellett a környezetünk minden közegére veszélyt jelentenek, hiszen nemcsak a talajt vagy a vizet szennyezik, hanem illékony komponenseik révén a levegőt is. Ráadásul az illékony vegyületek közzét találhatóak a legmérgezőbb szénhidrogének [3,4].

A szénhidrogének környezetben tartósan fennmaradó jellege miatt a nagy mennyiségű szennyezőanyag eltávolítása emberi beavatkozást igényel. Az elmúlt néhány évtizedben sokféle módszert dolgoztak ki a kőolajjal szennyezett területek kármentesítésére. A fizikai és kémiai eljárásokkal szemben a szénhidrogének biológiai úton történő eltávolítása olcsóbb és nagy további előnye, hogy környezetbarát.

A biológiai kármentesítés során kiaknázó mikroorganizmusok azon képességét, hogy fel tudják használni a szennyezőanyagokat szén- és energiaforrásként. Sok esetben elegendő csak tápsokat juttatni a szennyezett területre, hiszen a “bennszülött” mikroflóra már rendelkezhet az adott szennyeződés lebontásához szükséges enzimrendszerekkel, csak más limitáló tényezők, például megfelelő mennyiségű és hozzáférhető nitrogén, foszfór, nyomelemek, vagy akár az oxigén hiánya akadályozza meg a hatékony lebontást. Más esetekben a helyi mikroflóra nem képes lebontani az adott szennyeződést, vagy nem elég
hatékony a lebontás. Ilyenkor egy nem őshonos, de a szennyezőanyagot nagy hatékonysággal metabolizáló mikroba törzset, konzorciumot alkalmaznak a terület kármentesítésére.

A kőolajszármazékok mikrobiális lebontása régóta ismert. A kőolajiparban egyes baktériumok éppen ezért okoznak problémát, hiszen jelenlétük rontja a kőolajipari termékek minőségét [5]. Más szempontból viszont ez a tulajdonságuk előnyös, hiszen a mikroba fajok széles tárháza áll rendelkezésünkre a szénhidrogénekkel szennyezett területek kármentesítésére.

A kőolajiparban egyes baktériumok éppen ezért okoznak problémát, hiszen jelenlétük rontja a kőolajipari termékek minőségét [5]. Más szempontból viszont ez a tulajdonságuk előnyös, hiszen a mikroba fajok széles tárháza áll rendelkezésünkre a szénhidrogénekkel szennyezett területek kármentesítésére.

A szénhidrogének biológiai átalakítása napjainkban is intenzíven kutatott terület. A vizsgálati módszerek fejlődése ebben a témakörben is új távlatokat nyitott. Újabb, jobb és nagyobb áteresztőképességű eljárások állnak rendelkezésünkre mind az egyedi mikroorganizmusok, mind pedig a mikrobaközösségek vizsgálatára. Ilyenek például az újgenerációs DNS szekvenáló rendszerek, melyek segítségével átfogó képet kaphatunk a szénhidrogének lebontásában résztvevő mikróbák genetikai állományáról [6–8], vagy a gének expressziós mintázatának változásáról a biodegradáció során [9]. Az expressziós mintázatok vizsgálatával megismerhetjük azokat a géneket, amelyek szerepet játszanak a szénhidrogének biodegradációjában illetve a toxikus komponensek elleni védelemben.
3. Irodalmi áttekintés

3.1. Szénhidrogének, mint környezeti szennyezőanyagok

A szénhidrogének emberi tevékenységéből kifolyólag, illeve természetes úton is a környezetbe kerülhetnek, ahol nagy mennyiségben előfordulnak. A szénhidrogének környezetre ártalmas és súlyos egészségkárosító hatású anyagok. Ezért fontos feladat eltávolításuk a környezetből.

3.1.1. A kőolaj keletkezése és összetétele

A kőolaj a tengerfenéken és a tavak mélyén felhalmozódó nagy mennyiségű elhalt állati és növényi szerves anyagból képződik. Erre az elméletre Alfred E. Treibs talált bizonyítéket 1936-ban. Treibs felismerte a hasonlóságot az élőlényekből származó porfirin vázas pigmentek és a kőolajban található porfirin vegyületek között (1. ábra) [10,11].

Az üledékkel betemetett állati és növényi maradványok oxigéntől elzárva, magas hőmérsékleten és nyomáson először kerogénné alakulnak át, ami az olaj alapközetének szerves anyaga. A kerogénből további hőmérséklet és nyomás emelkedés hatására jönnek létre a folyékony és gáz halmazállapotú szénhidrogének.

A kőolajat alkotó szénhidrogének két nagy csoportra, telített és telítetlen szénhidrogén vegyületekre oszthatók. A telített szénhidrogének lehetnek nyílt vagy zárt láncú vegyületek (2. ábra). Az előbbieket összefoglaló néven alkánoknak, az utóbbiakat cikloalkánoknak nevezzük. A kőolajból származó egyenes láncú alkánok a fosszilis üzemanyagok legnagyobb arányban jelen lévő komponensei.

![1. ábra: Kőolajból származó porfirin vázas vanádiyum vegyület (A) és a klorofill (B) szerkezete [12]](image-url)
A telítetlen szénhidrogének között található nyílt láncú vegyületek egyik csoportja az alkének, amelyek egy vagy több szén-szén kettős kötést tartalmaznak. A másik csoportot az alkinek alkotják, amelyek molekuláiban két szénatom között a σ- kötés mellett két π-kötés is kialakul. A telítetlen zárt láncú szénhidrogének közé tartoznak a cikloalkének és az aromás szénhidrogének.

Az aromás szénhidrogéneket csoportosíthatjuk a gyűrűk száma szerint, így megkülönböztethetünk egy gyűrűt tartalmazó monoaromás és több gyűrűből felépülő poliaromás szénhidrogéneket (PAH).

2. ábra: A szénhidrogének csoportosítása [13]

A kőolaj és származékainak összetevői között heteroatomot (kén, nitrogén, oxigén) tartalmazó vegyületeket is találhatunk. Ilyen vegyületek például a fenol származékok, a heterociklusos nitrogén vegyületek, mint a kinolin, vagy a kén tartalmú benzotiofének és dibenzotiofének.

3.1.2. A szénhidrogén szennyeződések eredete, környezeti, egészségügyi és társadalmi hatása

A világ energiatermelésének közel 80%-át a fosszilis energiahordozók (kőolaj, földgáz, köszén) adják. A kőolaj, mint különböző üzemanyagok és kenőanyagok alapja, fontos szerepet tölt be az élet minden területén. A kőolajban található aromás vegyületeket festékek, oldószerek, gyógyszerek, és robbanószerek gyártására használják fel. Az ipari léptékű használat elkerülhetetlen velejárója, hogy ezek az anyagok kikerülnek a környezetbe. A kitermelés és a szállítás során bekövetkező balesetek súlyos veszélyt jelentenek az érintett területek élővilágára. Mivel a kőolaj kitermelése és szállítása nagyrészt tengerekhez kötött, a tengeri környezet van kitéve a legnagyobb veszélynek.

A La-Manche csatornán, 1967-ben az első nagy tankhajó baleset következtében 120 ezer tonna nyersolaj ömlött a tengerbe [14]. Az ezt követő évtizedekben számos tanker
szenvedett balesetet, melyek közül az egyik legnagyobb az Exxon Valdez 1989. márciusi zátonyra futása volt Alaszka partjai mellett. 260 ezer hordó olaj jutott a tengerbe, több mint 1400 kilométer partvonalat szennyezve be. A mentésben több mint 10 ezer ember vett részt, a ráfordított összeg pedig meghaladta a 2 milliárd USD-t. Az új évezred eddigi legsúlyosabb olajkatasztrófája a Mexikói-öbölből történt 2010 áprilisában. A British Petrol tulajdonában lévő Deepwater Horizon olajfúró torony robbanása megközelítőleg 4,9 millió hordónyi olaj tengerbe jutását eredményezte [15].

Annak ellenére, hogy az olajkatasztrófák nagy hatással vannak az érintett területek élővilágára, gazdaságára és az emberiség olajiparról alkotott képére, a szénhidrogén szennyeződések mindössze negyede származik a kitermelés, szállítás illetve finomítás során történő balesetekből. Egy jóval nagyobb hányad származik más emberi tevékenységekből, például autómosók szennyvízéből, rossz műszaki állapotú gépekből és járművekből. A helytelenül tárolt üzemanyagok, oldószerek, illetve ipari alapanyagok szintén jelentős szennyezőforrások.

A szénhidrogének környezetbe jutásának van természetes módja is. Erdőtüzek vagy vulkáni tevékenység eredményeként políciklikus aromás szénhidrogének (PAH) keletkeznek [16]. Hasonlóképpen nyersolaj megjelenhet a környezetben az olajtározók szivárgása révén is. Az USA tudományos akadémiájának (National Academy of Science) becslései szerint az olajrezervoárok szivárgása a tengeri olajszennyezés 10%-át teszi ki, ami 600 ezer tonna olajat jelent évente [17].

Az olajszennyeződés egy adott terület gazdaságára és társadalmára is negatív hatással van. A Floridai Egyetem 2013-ban megjelent tanulmánya szerint a 2010-es Mexikói-öbölbeli olajkatasztrófa hatására megnőtt a depresszió és a szorongás az érintett területek lakossága.
körében. Ez a hatás főként azokat érintette, akik tartósan elveszítették jövedelmüket a katasztrófa miatt [25].

3.1.3. A szénhidrogén szennyezés megelőzése illetve a szennyeződés eltávolítása

Ugyanakkor nemcsak a megelőzés, hanem az olajszennyeződés eltávolítása is sürgető feladat. A szennyezett terület kármentesítésére többféle kémiai, fizikai és biológiai módszert is alkalmaznak. A kémiai eljárások közül az egyik legolcsóbb a kiömlött olaj ellenőrzött égetése, ami hatékonyan csökkentheti a szénhidrogén szennyeződést. Ugyanakkor az égetéssel nagy mennyiségű szén-dioxid és - az olajban található kén és nitrogén vegyületek miatt - kén- és nitrogén-oxidok kerülhetnek a levegőbe. Ez növeli az üvegházhatást és savas esőkhöz vezethet. A kémiai megoldások közé sorolják a diszpergáló anyagok használatát, melyek segítik az olaj a vízben emulzió kialakulását és növelik az olaj hozzáférhetőségét a mikrobák számára. Az egyik legnagyobb probléma az eljárással, hogy az alkalmazott diszpergáló anyagok nemcsak a biológiai alapú származékok számára teszik előnyetővé a kőolaj toxicus komponenseit, hanem más vízi élőlények szervezetébe is könnyebben bejutnak [26]. Mindemellett maguk a felületaktív anyagok is toxikusak lehetnek [27].

Egy másik megközelítés a szilárdító anyagok használatának, melyek segítik az olaj a vízben emulzió kialakulását és növelik az olaj hozzáférhetőségét a mikrobák számára. Az egyik legnagyobb probléma az eljárással, hogy az alkalmazott diszpergáló anyagok nemcsak a mikroorganizmusok számára teszik előnyetővé a kőolaj toxicus komponenseit, hanem más vízi élőlények szervezetébe is könnyebben bejutnak [26]. Mindemellett maguk a felületaktív anyagok is toxikusak lehetnek [27].

Egy másik megközelítés a szilárdító anyagok használata. Ezek az anyagok szilárd gélle alakítják a folyékony olajat, így megkönnyítik az eltávolítását. Öriási hátránya az eljárásnak, hogy nem minden olajtípusra működik ugyanolyan hatékonyággal és nagy mennyiségű szilárdító anyagot kell felhasználni a várt eredmény eléréséhez. Mindemellett a legtöbb szilárdító anyag erősen toxicus [28]. Jadhav és munkatársai 2010-ben egy új szorbitol és mannitol alapú szilárdító anyagot dolgoztak ki, mely nem toxicus, szelektív az olaj frakcióira és könnyen visszanyerhető belőle az olaj [29].

A felsorolt eljárások, bár folyamatosan fejlődnek, önmagukban nem tökéletes megoldások az olajszennyeződés eltávolítására. A legtöbbbük drága anyagok használatát követeli meg vagy hasonlóan környezetkárosító hatású, mint maga az olajszennyeződés. Mindemellett a legtöbb fizikai és kémiai eljárás főként a tengeri szennyeződések eltávolítására alkalmazható, a szennyezett talaj kezelésére kevésbé alkalmas.

A biológiai kármentesítés egy olsó és környezetbarát alternatívát nyújt az olajszennyeződések eltávolítására. A biológiai kármentesítés során mikroorganizmusokat, növényeket vagy azok termékeit használják fel a szennyező anyagok eltávolítására.

3.2. A bioremediáció

3.2.1. A bioremediáció általános bemutatása

A bioremediáció fogalma a múlt század közepén született meg. A dán származású amerikai kutató Claude E. ZoBell 1946-ban elsőként foglalta össze a szénhidrogének mikrobiális lebontásáról összegyűlt ismereteket [32]. Maga a bioremediáció viszont csak négy évtizeddel később az Exxon Valdez olajtanker katasztrofája kapcsán vált ismertté. A kármentesítés során főként nitrogén tartalmú tápanyagokat használtak, hogy felgyorsítsák az olaj biológiai úton történő lebontását [15]. Az elmúlt harmadik év során sok olyan mikroorganizmust izoláltak, amelyek képesek metabolizálni akár a legmérgezőbb környezeti szennyezőanyagokat is.

A mikroorganizmusok bioremediációban való alkalmazásának több oka is van: gyorsan szaporodnak, viszonylag olsó a szaporításuk, a szennyezett területekről izolált mikrobák már eredendően ellenállnak a toxikus anyagoknak és képesek lehetnek az adott szennyeződés bontására. A szennyezőanyagok mikrobiális biodegradációja történhet aerob vagy anaerob módon is. Az anaerob bioremediáció egyik nagy hátránya, hogy az átalakítás nem szén-dioxidig történik és a végtermék néha mérgezőbb, mint a kiindulási anyag. Erre példa a triklór-ecetsav biodegradációja során keletkező diklór-ecetsav és vinil-klorid [33]. Az aerob lebontás általában
a kiindulási anyag teljes oxidációjával végződik, tehát a végtermék szén-dioxid lesz, így nem marad veszélyes közti termék a környezetben.

Nemcsak a mikroorganizmusok használhatók fel bioremediációra, hanem a növények is, ezt nevezzük fitoremediációnak. A növények sok olyan előnyös tulajdonsággal rendelkeznek, ami miatt alakmasak erre a feladatra. Többek között képesek immobilizálni vagy akkumulálni a különböző szennyezőanyagokat. A növények képesek lehetnek néhány mérgező anyag, mint a DDT vagy a PCB lebontására is [33,34].

3.2.2. A bioremediációs eljárások csoportosítása

A szennyezett vizek és iszapot ex situ kármentesítésére bioreaktorokat használnak. A talajvíz kezelésére alkalmazható másik ex situ módszer az úgynevezett „pump and treat”, mely kombinálható a bioreaktorral. Az eljárás során kipumpálják a talajvizet, megtisztítják, majd visszasajtolják a talajba [35].

A talajműveléses technikának in situ változata is van, mely során a talajt helyben kezelik kitermelés nélkül. Az in situ módszerek jóval olcsóbbak, mint az ex situ eljárások, mivel nem kell megfizetni a kitermelés és a szállítás költségeit. Leggyakrabban biostimulációt és bioaugmentációt alkalmaznak az in situ módszerek kivitelezésekor. A biostimuláció során a szennyezett közégben őshonos mikrobaközösséget serkentik tápanyagokkal, illetve a megfelelő feltételek biztosításával, például levegőztetéssel. A bioventillációval levegőt pumpálnak a talajba, így növelve az aerob mikrobák biodegradációs aktivitását. Ezt az eljárást elsősorban gázolaj és kerozin eltávolításánál használják. Klórozott illetve aromás szénhidrogénekkel szennyezett talajok esetén ez az eljárás nem használható, mivel a toxikus illékonny anyagokat kihajtja a talajból, amelyek így légyszennyezést okoznak.

Bár a környezetben sok olyan mikroorganizmus található, amely képes egyedi szén- és energiaforrásként hasznosítani a környezetbe kikerülő szennyezőanyagokat, egy friss szennyeződéssel nem mindig képesek megbirkóznii. Abban az esetben, ha az őshonos mikrobatörzsek között nincs olyan, amelyik bontani képes a szennyezőanyagot, vagy csak kis hatékonyságú biodegradáció tapasztalható, bioaugmentációt alkalmaznak. A
bioaugmentációval egy vagy több - laboratóriumban felszaporított - mikrobatőrzsset juttatnak a környezetbe. Ezek a laboratóriumi törzsek már előzetesen alkalmazkodtak az adott szennyeződéshez, így gyorsan és hatékonyan metabolizálják azt. A bioaugmentációt a nagyobb hatásfok elérése érdekében kombinálni szokták a biostimulációval [36].

Egy harmadik fajta módszer - in situ eljárásnak tekinthető - a passzív bioremediáció. Ebben az esetben kizárólag az öshonos mikroorganizmusok végzik a munkát. Az ember nem avatkozik be a szennyezőanyagok eltávolításába, csak megfigyeli a természetes tisztulási folyamatot.

3.3. Szénhidrogének mikrobiális lebontása

A szénhidrogén szennyezések nemcsak antropogén eredetűek lehetnek, már jóval az ember megjelenése előtt jelen voltak a környezetben. A vulkánkitörések és az olajrezervoárak folyamatos szivárgása révén a mikroorganizmusok már évmilliók óta kapcsolatban vannak a szénhidrogénekkel. Ugyanakkor sok élőlény termel szénhidrogéneket számos okból, például a kiszáradás elleni védelemre, feromonként vagy energiaraktárként [37]. Így nem meglepő, hogy a mikroorganizmusok evolúciója során számos enzimrendszer specializálódott a szénhidrogének lebontására.

A szénhidrogén metabolizmust a legkülönbözőbb mikrobacsoportok, mint eubaktériumok, élesztők, gombák és egyes alga fajok esetében is leírták [38,39]. Az alkánok lebontására számos baktérium nemzetség, mint az Acinetobacter, Alcanivorax, Bacillus, Dietzia, Geobacillus, Pseudomonas, Rhodococcus stb. képesek [38]. A tengeri kőolajszennyeződések esetén az egyik leggyakoribb baktérium faj az Alkanivorax burcumensis, mely hosszú láncú alkánokat metabolizál [38,40]. A mérsékelt oxigénfaj a Thalassolutus oleivorans alkán-bontó jelentőségét is leírták [38]. A Rhodococcus fajok nemcsak tengerekben [41], hanem szénhidrogén szennyezett talajban is megtalálhatók [42], pszikrofil körülmények között is képesek az alkánok hasznosítására [43] és számos faj aromás szénhidrogének metabolizációjára is képes [39].

3.3.1. Oxigenáz enzimek

A szénhidrogén biológiai lebontása lehet anaerob vagy aerob. Az aerob biodegradáció első lépése a molekula oxidálása. Ezt a folyamatot speciális enzimek, ún. oxigenázok katalizálják. Az oxigenázokat csoportosíthatjuk aszerint, hogy hány oxigén atomot építenek be a szubsztrát molekulába [37]. Ez alapján megkülönböztetünk mono- és dioxigenázokat.
Mindkét enzimtípus molekuláris oxigént használ a szubsztrát oxidálására, azonban a monooxigenázok csak az egyik oxigén atomot építik be a szubsztrátjukba. A dioxigenázok viszont az oxigén molekula mindkét atomját a szubsztrához kapcsolják, létrehozva az adott szubsztrát dihidroxi származékát.

A monooxigenázok, melyek az enzimek egy heterogén csoportját alkotják, abban hasonlítanak egymásra, hogy a szubsztrát molekula oxidációját katalizálják molekuláris oxigén felhasználásával. A monooxigenáz reakció során az oxigén molekula egyik atomja - hidroxil csoport formájában beépül a molekulába és megfelelő alkohol képződik, a másik oxigén atom vízzé redukálódik [44]. A nyílt láncú szénhidrogénekből létrejött alkohol ezután több enzimreakció keresztül aldehidé, majd zsírsavvá alakul. A zsírsavat egy acil-CoA acetiltranszferáz CoA-hoz kapcsolva aktiválja, ami ezután a β-oxidációban metabolizálódik.

Az alifás szénhidrogének lebontásában résztvevő monooxigenázok több csoportra oszthatók. A legrövidebb szénláncú alkánok oxidációjában a metán, propán illetve a bután monooxigenázok vesznek részt. A hosszabb szénláncú alkánok oxidációjában a citokróm P450 monooxigenázok (CYP153) és az AlkB típusú alkán-1-monooxigenázok játszanak szerepet. Ezen kívül vannak olyan monooxigenázok, melyek a C20 feletti lánchosszúságú alkánokat oxidálják. [37,45,46]

Az AlkB monooxigenáz enzimet elsőként a Pseudomonas putida GPo1 törzsében írták és sokáig ez maradt az egyetlen jól jellemzett alkán-1-monooxigenáz [37]. Számos szénhidrogén-bontó mikroorganizmusban megtalálható, így a Pseudomonas nemzetségen kívül, az Alkanivorax, Acinetobacter, Mycobacterium, Gordonia és Rhodococcus fajokban is. Az AlkB típusú monooxigenázok membrán-kötött hem-nélküli enzimek, reakciócentrumukban két vas található. Az enzim működését két fehérje, a rubredoxin és a rubredoxin reduktáz segíti. A rubredoxin reduktáz elektronokat juttat a NADH-ról a rubredoxinra, ami pedig az enzimhez szállítja azokat [47]. Az elektrontranszportban résztvevő fehérjéket kódoló gének általában egy operonban vannak az alkB génnel, mely lehet plazmidon vagy kromoszómán kódolt is. A P. putida GPo1 esetében a pOCT plazmidon kódolt alkB génnel egy operonban találhatók a rubredoxin génen kívül az alkán oxidáció többi lépéseiében résztvevő enzimeket kódoló nyitott leolvasási keretek is (alkBFGHJKL operon), azonban a rubredoxin reduktáz külön lókusban van a transzkripciót szabályozó génnel együtt (alkTS). Jan B. van Beilen és munkatársai által végzett vizsgálatok szerint a GPo1 törzs AlkB fehérjéjének 55-ös pozícióban lévő triptofánja lehet felelős az enzim szubsztrát specificitásáért [48].

A citokróm P450 főcsalád a vas-hem tartalmú monooxigenázok egy széles körben elterjedt csoportját jelenti. Ebbe a hatalmas főcsaládban igen változatos reakciókat katalizáló

A dioxygenázok mind gyűrűs, mind pedig egyenes láncú alkánok oxidációját katalizálhatják. Az aromás szénhidrogének bontásában résztvevő dioxygenáz enzimek között megkülönböztetünk gyűrű-hidroxiláló és gyűrűhasító dioxygenázokat [53–56].

3.3.2. A alkánok oxidációjának módjai

Az egyenes láncú alkánok oxidációjára több módon végbemehet. A monoxygenázok három módon hidroxilálhatják a szénláncot (3. ábra). Az első és a legelterjedtebb reakció a terminális oxidáció, melynek a terméke egy elsőrendű alkohol. A szubterminális oxidáció
esetén az oxidációt az utolsó előtti szénatomra helyezik a hidroxil csoportot. Az így keletkező másodrendű alkohol ketonná, majd egy Bayer-Villiger monooxigenáz segítségével észterre alakul. Az észter hasítását követően egy elsőrendű alkohol keletkezik, ami tovább oxidálódik a terminális útvonalon. A reakcióból felszabaduló ecetsav pedig a Szent-Györgyi-Krebs ciklusban hasznosul, vagy a sejt felépítő folyamataiban vesz részt. A harmadik útvonal a diterminális oxidáció. Ebben az esetben az oxidáció a zsírsavig a hagyományos (terminális) útvonalon történik. A zsírsav ω szénatomját egy monooxigenáz hidroxilálja. A keletkező ω-hidroxi zsírsav több lépésben tovább oxidálódik ω,ω-dikarbonsavvá [57,58].

Az Acinetobacter sp. törzsök esetében leírtak egy dioxigenáz által katalizált útvonalat is, mely során alkil-hidroperoxid és peroxisav közttermékeken keresztül keletkezik a zsírsavak [59].

![Diagram](image)

3.3.3. Aromás szénhidrogének oxidációja

![Diagram of benzol oxidation](image)

4. ábra: A benzol oxidációja dioxigenázokkal. DO: gyűrűhidroxiláló dioxigenáz, DH: cis-dihidrodiol dehidrogenáz, EDO: extradiol dioxigenáz, IDO: intradiol dioxigenáz

Az első monooxigenáz reakciót követetheti egy dehidrogenáz reakció is, például a toluol oxidációja során. Ezt követően a kialakult 4-hidroxi-benzaldehid számos enzimatikus lépés után a vanillin útvonalon hasznosul [62].

3.3.4. A szénhidrogének anaerob lebontása

Az alkánok lebontásában résztvevő anaerob baktériumok szulfát- vagy nitrát-redukálók és általában szűk szubsztátspecifikitással rendelkeznek [57]. A nyílt láncú alkánok anaerob lebontása során fumársav épül be a szénhidrogén láncba. A folyamat két módon mehet végbe [57] (5. ábra). Az n-hexán esetében a fumársav a második szénatomiara épül rá, így jön létre az 1-metil-pentil-szukcinát, ami több lépésen keresztül koenzim A-hoz kapcsolódik és a β-
oxidációban hasznosul. Egy alternatív kapcsolódási pont lehet a 3. szénatom is, amit bizonyít az n-hexán lebontása közben megjelenő 1-etil-butil-szukcinát intermedier is [63,64]. Azt az útvonalat, melyben a szukcinát a láncvégi szénatomhoz kapcsolódik, eddig csak a propánra írták le [57].

Az aromás vegyületek anaerob lebontása több egymástól teljesen eltérő útvonalon történhet. A toluol és a xilolok fumársavval kapcsolódva aktiválódnak. Ez igaz a nitrát- és a szulfát-redukáló mikroorganizmusokra egyaránt. Ugyanakkor az etilbenzol anaerob lebontása már különbözik a két mikrobacsoportban. Míg a szulfát-redukálóknál fumaráttal kapcsolódik a molekula, a nitrát-redukálók egy dehidrogénező lépésben az etilbenzolt fenil-etanollá alakítják át [63].

A PAH vegyületek anaerob lebontása egy harmadik útvonalon történik. A kísérletes bizonyítékok arra utalnak, hogy a naftalin a lebontás első lépésében karboxilálódik a 2-es pozícióban. Ehhez hasonlóan a fenantrén lebontását is egy karboxilációs lépés iniciálhatja [63].

5. ábra: Az alkánok mikrobiális lebontása anaerob körülmények között [57]

3.4. A Rhodococcus nemzetség

3.4.1. A Rhodococcus nemzetség általános jellemzése

A Rhodococcus nemzetség neve a görög rhodon (rózsa) és coccus (szemcse) szavakból ered és egyes fajok rózsaszín telepeire utal. A nemzetség az Actinomycetales rend Corynebacterianae alrendjének Nocardiaceae családjába tartozik. Aerob, kemoorganotróf
életmódot folytató rövid pálca vagy gömb alakú sejtjeik képtelenek mozgásra, nem spóráznak. Sejtfaluk Gram-pozitív felépítésű, benne a peptidoglikánhoz egy arabinogalaktán polímer kapcsolódik egy összekötő elemen keresztül [65]. Mint a Corynebacterianeae alrend többi taxonja esetén, a Rhodococcus fajokban is az arabinogalaktánhoz általában mikolsavak kapcsolódnak. A mikolsavak egy R₁R₂-CH-COOH típusú zsírsavak, ahol R₁ egy hosszabb, különféle módosulásokat hordozó β-hidroxi-alkil lánc, R₂ egy rövidebb alkil lánc. Az R₁+R₂ teljes hossza 22-100 szénatom között lehet és jellemző az adott nemzettségre [66,67]. A rhodococcus mikolsavak 28-54 szénatom hosszúságúak lehetnek [68].

A Rhodococcus fajok igen változatos környezetben fordulhatnak elő, legtöbbjük kozmopolita. Élőhelyük a sarkköről a tengereken át a trópusi talajokig terjed [41,43,69]. Heald és munkatársai mélytengeri üledékből 1100-6500 méteres extrém mélységből is izoláltak számos törzset [70]. Egyes törzsek képesek alkalmazkodni a száraz körülményekhez, például patagóniai olajszennyezett talajban szárazságtűrő Rhodococcus és Gordonia fajokat találtak [71].

3.4.2. Felületaktív anyagok a Rhodococcus nemzetségben

A felületaktív anyagok szintézise számos mikroorganizmusra jellemző [74]. A mikroorganizmusok ezen amfifil molekulák segítségével teszik hozzáférhetővé a vízben nem oldódó szubsztrátokat.

A felületaktív anyagok egyik csoportját a glikolipidek alkotják [74]. A hidrofil fejet alkotó cukor molekulákhoz különböző zsírsavak kapcsolódnak, így épül fel a hidrofób farki rész. A glikolipideket a cukor csoport alapján nevezik el, amely mikrobacsoportonként változó. A Pseudomonas nemzetség tagjai rhammolipideket [75], a Corynebacterianeae alrendbe tartozó fajok így a Rhodococcus nemzetség tagjai is trehalolipideket állítanak elő [76]. A szoforolipidek az élesztők körében elterjedtek [77].

A Rhodococcus nemzetségre jellemzően, a kis molekulasúlyú glikolipidek hidrofil fejcsoporthatják egy α,α-1,1-glikozidos kötést tartalmazó diszacharid, a trehalóz alkotja. A hidrofób csoportok mikolsavakból, szukcinátból, vagy egyéb zsírsavakból épülhetnek fel [78–81]. A trehalolipidek felépítését a 6. ábra mutatja be. Ellentétben a Pseudomonas-ak által termelt rammolipidekkel, a Rhodococcus-ak trehalolipidjei főként sejtfal kapcsoltak, ugyanakkor egyes törzsek képesek sejtfal független felületaktív anyagok termelésére is [82].

![6. ábra: Szukcinoil-trehalolipid szerkezete Rhodococcus sp. SD-74 törzsben [79]](image)

A Rhodococcus törzsek által szénforrásként hasznosított kölőja származékok jelentős része toxikus anyagokat tartalmaz. Számos törzsga képes exopoliszaccharidok termelésére, mely az ellenálló sejtfal mellett védelmet nyújt a méreganyagokkal szemben, valamint segíthet a hidrofób szubsztrát emulzifikációjában. A Rhodococcus sejtek által termelt exopoliszaccharidok szerkezetét több törzs esetén megállapították [83–86].
3.4.3. Rhodococcus törzsek alkalmazási lehetőségei

A Rhodococcus fajok többsége szerves szennyezőanyagok széles skáláját képes felhasználni szén- és energiaforrásként. Emellett egyedülálló alkalmazkodó képességük, ellenálló, hidrofób sejtfaluk és felületaktívak anyagai kiváló jelöltekké teszik őket bioremediáció célokra. Ezek a baktériumok képesek hatékonyan lebontani kölaj származékokat [41,87,88], poliklorozott bifenileket [89,90], a környezetben sokáig fennmaradó gombaölő szereket, mint a karbendazim [91], vagy növényvédő szereket, mint a karbation [92].

A mezőgazdaságban jelentős károkat okoznak a különböző gombák által termelt toxinok, melyek súlyos egészségkárosító hatással bírnak az emberre és a haszonállatokra nézve. Egyes Rhodococcus törzsek képesek a gomba toxinok, mint a zearalenon [93] vagy az aflatoxin B₁ [94] bontására. Mindelemmel magas nehézfém toleranciával is rendelkeznek és képesek sejten belül is felhalmozni azokat. A Fukushima Daiichi atomreaktor balesetében 2011-ben nagy mennyiségű cézium radionuklid került a környezetbe. Ennek kapcsán Takei és munkatársai vizsgálták a különböző gélmátrixokban immobilizált R. erythropolis CS98 cézium akkumuláló képességét. Kísérleteik során jó akkumulációs rátát figyeltek meg agaróz gélnel immobilizált sejteknél [95].

Egy alternatív lehetőség az üzemanyagok kénmentesítésére a biológiai deszulfurizáció, mely során mikroorganizmusok segítségével eltávolítják a ként az üzemanyag fűtőértékének csökkenése nélkül. Elsőként a R. erythropolis IGTS8 törzsről írták le [96], hogy képes kénmentesíteni a dibenzo-tiofént (DBT). A folyamatot 4S útvonalnak nevezzük, mert 4 lépésben távolítja el a ként a DBT molekulából. Ezt követően számos más biodeszulfurizáló törzset izoláltak és azonosítottak, melyek főként a Rhodococcus, és Gordonia nemzetségekben tartoznak [97,98].

A változatos anyagcsere útvonalak egy másik igéretes példája a N-acil-homoszerin-laktonok (AHL) lebontása. A Rhodococcus sejtek által termelt laktonáz enzimek lebontják a más baktériumok kommunikációjában szerepet játszó AHL molekulákat [99,100]. A Rhodococcus törzsek homoszerin-laktonáz enzimei blokkolják az AHL közvetített quorum sensing-et azaz lokális denzításértékelést, ezáltal megakadályozva egyes növényi petogének, például a P. carotovorum által okozott kórfolyamat kialakulását [101,102].

Az élő szervezetek vagy a belőlük kinyert enzimek segítségével a vegyiparban és a gyógyszeriparban fontos sztereozomerek tiszta formában előállíthatók. A Rhodococcus fajok felhasználhatók a gyógyszeriparban fontos alapanyagok szintézisére. Például a Rhodococcus
sp. I24 az indént átalakítja 1.2-indándiollá, amely kulcsfontosságú kiindulási anyag a Crixivan nevű HIV elleni gyógyszer előállításában [103,104].

A Rhodococcus törzsek diagnostikai szempontból fontos enzimeket termelnek. A *Rhodococcus sp.* H1 törzsből izolált heroin észteráz enzim alkalmazható a heroin kimutatására [105]. Egy másik törzs, a *Rhodococcus sp.* M4 fenilalanin dehidrogenáz enzime segítségével diagnosztizálható a fenilketonuria [106].

Egyes baktérium csoportok, köztük a *Rhodococcus* nemzetség tagjai is képesek a biodízel gyártásban fontos triacil-glicerolok (TAG) szintézisére. Előnyük a növényekkel szemben, hogy gyorsan szaporodnak, így rövid idő alatt nagy mennyiségű TAG kinyerhető belőlük, valamint a növényi biomasszából származó glükózon is szaporíthatók. A *R. opacus* PD360 törzs igen nagy mennyiségű TAG felhalmozására képes, mely zárványokat képez a sejt citoplazmájában [107]. Az elmúlt évben több publikáció is megjelent a témával kapcsolatban. Azonosították a TAG felhalmozásban résztvevő metabolikus útvonalakat *R. opacus* PD630 törzsben [108]. Beállították a PD630-as törzs optimális növesztési körülményeit, hogy minél nagyobb TAG koncentrációt érjenek el a sejtükben [109]. Heterológ cellulóz, cellobióz és xilóz bontó fehérjék génjeinek a törzsbe juttatásával, közvetlenül növényi biomassza felhasználásával is történhet TAG akkumuláció [110–112].

3.4.4. *R. erythropolis* PR4 és MK1 törzsek

A csoportunk által izolált *R. erythropolis* MK1 törzs egy talajból származó baktérium. Az izolátum azonosítását a német törzsgyűjtemény (DSMZ) munkatársai végezték 16S rDNS alapú filogenetika és a sejtfal mikolsav összetétele alapján. Hasonlóan a PR4 törzshoz az *R. erythropolis* MK1 is jó hatékonysággal hasznosítja a hidrofób szubsztrátokat minimál tápoldatban [118]. Mindazonáltal a két törzs jelentősen különbözik, mind élettani, mind pedig morfológiai szempontból. Munkánk kezdetekor az *R. erythropolis* MK1 genomja még nem volt ismert, így a jól definiált *R. erythropolis* PR4 nemcsak a szénhidrogén bontási kísérletek referenciatorzsének, hanem a transzkriptomikai vizsgálatok modellorganizmusának is megfelelő volt.

3.5. Transzkriptom analízis új generációs szekvenálási technikákkal

3.5.1. Új generációs szekvenáló módszerek

A nagy áteresztőképességű szekvenálás története a 2000-es évek elején kezdődött. Brenner és munkatársai ekkor publikálták az első nagy áteresztőképességű szekvenálási technikát, a massively parallel signature sequencing-et (MPSS) [119]. A technológia 16-20 bp „szignó” szekvencia meghatározására alkalmas, mellyel a már ismert szekvenciák alapján be lehetett azonosítani az adott transzkriptet. A technológia alkalmas a transzkript mennyiségi meghatározására is, mert minden cDNS-hez egyedi adaptert kapcsolnak még a PCR-es sokszorosítás előtt, így az egy adott génhez tartozó transzkript minden kópiája egyedi azonosítót kap. A cDNS-t a specifikus adapterekkel (kb. 1 millió féle) mikrogyöngyökhöz rögzítik a PCR-es sokszorzást követően. Minden gyöngy csak egy adott egyedi adapterrel ellátott DNS-t képes megkötni. A szekvenálás hibridizációs próbákkal történik, melyeket a szekvenálni kívánt DNS túlnyúló végéhez ligálják. A hibridizációs próbákat fluoreszcens in situ szekvenálást alkalmaztak [120]. Shendure és munkatársai 2005-ben publikálták a polónia szekvenálás egy módosított változatát. A DNS-t gyöngyökhöz kötötték, a sokszorozáshoz pedig emulziós PCR-
t használtak. A szekvenálás itt már nem szintézis, hanem ligálás alapon történt fluorszcensen jelölt, degenerált próbákkal [121].

Az ezt követő években robbanásszerű fejlődésnek indultak a szekvenálási technikák. Ekkor alakultak ki a valódi új generációs módszerek. Számos vállalat állt elő a saját megoldásával, viszont mindegyik a régi technikákból merített ihletet. Az Roche 454 szekvenátora piroszekvenáláson alapuló szintézis közbeni szekvenálás, a DNS minta előzetes felsoszorozásához pedig emulziós PCR-t használnak. Az ABI SOLiD (Supported Oligonucleotide Ligation and Detection) esetében ugyancsak emulziós PCR-el sokszorozzák fel a mintákat, viszont a szekvenálás már ligáláson alapul. A Solexa megoldása eltér mindkét fent említett technológiától. A DNS felszaporításához úgy nevezett „hid” PCR-t alkalmaznak. Ez is egy szintézis közbeni szekvenálás, ugyanakkor itt reverzibilis lánctermináció alapul. Fluoreszcens festékkel blokkolják az új bázis beépülését, aminek az eltávolítása után folytatódik a szintézis [122,123].

A Helicos rendszere nem követel meg előzetes sokszorosítást, valódi egy-molekula szekvenálás történik. A DNS-t egy oligo dA adapterrel látják el, amely képes hibridizálni a hordozóra kötött oligo dT-vel. Az eljárás ugyancsak a szintézis közbeni szekvenálás elvét követi és a detektáláshoz fluoreszcensen festett nukleotidokat használ [123,124]. A felsoroltakon kívül sok más DNS szekvenáló eljárás is megjelent az elmúlt években. Ilyen a DNA nanobabdákon alapuló technológia [125], az ion félvezető szekvenálás (ion torrent), vagy a Pacific Bioscience forradalmi valós idejű egy-molekula szekvenálása [126]. A sort a lenyűgöző új technológia a Nanopore zárja [127].

3.5.2. Teljes transzkriptom analízis új generációs szekvenálási technikákkal

A transzkriptom a sejt teljes transzkript készlete egy adott sejtciklusbeli/kultúra növekedési fázisban, vagy élettani körülmények között. Vizsgálatával betekintést nyerhetünk abba, hogy milyen gének fejeződnek ki a sejtciklus bizonyos fázisaiban, hogyan reagál a sejt egyes környezeti tényezők megváltozására, a sejt számára toxikus anyagok jelenlétére, vagy az éhezésre. Vizsgálatára számos módszer áll a rendelkezésünkre. A hagyományos módszerek közé sorolható az hibridizáción alapuló microarray technika [128], vagy a címkezésen alapuló SAGE [129].

Az új generációs rendszerekkel végzett transzkriptom analízist RNA-Seq technikának nevezik [130]. Előnye, hogy a hagyományos microarray technikánál jóval érzékenyebb, így a kis koncentrációban jelen lévő cDNS-t is detektálhatjuk. Továbbá megismerjük a transzkriptek
szekvenciáját, így akár új mRNS-eket, vagy mRNS érési variánsokat is felfedezhetünk. Nagy áteresztő képessége miatt a teljes transzkriptomról nagy mennyiségű adatot kaphatunk egyetlen kísérletben. Az RNA-Seq technika elméletben minden meglévő új generációs platformon alkalmazható, de a legtöbb esetben az Illumina, ABI SOLiD és a Roche 454 technológiákkal alkalmazzák [130]. A Helicos egy molekula szekvenáló rendszerre kidolgozott RNA-Seq protokoll 2011-ben jelent meg [131]. A Helicos előnye a többi új generációs technikával szemben, hogy az eljárás nem igényel előzetes amplifikációt, így minden transzkriptről egyetlen leolvasás készül, és nem okoz szórást a hosszú és a rövid transzkriptek detektálása között.
4. Célkitűzések

Kutatómunkám során a szénhidrogének, főként az alkánok biodegradációjának fiziológiais és molekuláris biológiai hátterét vizsgáltam, melyhez két R. erythropolis törzset használtam modellorganizmusként. Doktori disszertációmban a következő kérdésekre keresem a választ:

- Van-e eltérés a R. erythropolis MK1 és PR4 törzs kultúrái között az alkánok modellvegyületeként használt n-hexadekán jelenlétében?
- Hogyan befolyásolja a magas sótartalom a két törzs szénhidrogén-bontó képességét?
- Talajban milyen hatékonysággal képes a két törzs felhasználni a rendelkezésére álló alkánt? Befolyásolja-e a talaj nedvességtartalma a szénhidrogének lebontásának hatékonyságát?
- Hogyan hasznosul a sejtek által felvett n-hexadekán és mi az oxigén mérlege a hexadekán biodegradációjának?
- Mely gázolaj frakciókon, mint egyedüli szénforráson képesek szaporodni a törzek?
- Milyen méretarányban képesek oxidálni az alkánokat?
- Miben tér el az R. erythropolis MK1 genomja a PR4 törzsétől a szénhidrogén metabolizmus szempontjából?
- A két genomban található alkB gének mennyire hasonlitanak egymásra és milyen rokonságban állnak más fajokban található alkB génekkel?
- Található-e plazmid az R. erythropolis MK1 törzs genomjában és van-e hasonlóság más Rhodococcus törzsek plazmidjaival?
- Melyek azok a gének, amelyek termékei részt vesznek a szénhidrogének oxidációjában, és van-e különbség ezek expressziójában ha gázolajon, vagy csak n-hexadekánon szaporodnak a kultúrák?
- Mi a szerepe az egyes citokró P450 monooxigenázoknak a gázolaj biodegradációja során?
- A szénhidrogének jelenléte hogyan befolyásolja a zsírsav metabolizmusért felelős gének expresszióját?
- Történik-e változás a felületaktív anyagok bioszintézisében résztvevő gének expressziós aktivitásában különböző szénhidrogének jelenlétében?
- Milyen egyéb gének aktiválódnak a R. erythropolis sejtekben különféle szénhidrogének jelenlétében?
5. Anyagok és módszerek

5.1. Felhasznált törzsek

R. erythropolis MK1: a Szegedi Tudományegyetem Biotechnológiai Tanszékén, szennyezett talajból izolált baktérium törzs.

5.2. Felhasznált anyagok és tápoldatok

5.2.1. *Luria-Bertani (LB)* tápoldat

Az LB tápoldat 10 g/L peptont, 5 g/L élesztőkivonatot és 10 g/L NaCl-t tartalmaz. Táplemezek készítéséhez 15 g/L bakteriológiai agart kevertünk a tápleveshez.

5.2.2. Minimál tápoldat

A minimál tápoldat a következő összetevőket tartalmazta: 0,217 g/L KH₂PO₄, 1,46 g/L K₂HPO₄, 0,585 g/L NaCl, 0,125 g/L MgSO₄ × 7 H₂O, 44 mg/L CaCl₂ × 2 H₂O, 0,2 mg/L ZnSO₄ × 7 H₂O, 0,06 mg/L MnCl₂ × 4 H₂O, 0,6 mg/L H₃BO₃, 0,4mg/L CoCl₂ × 6 H₂O, 0,02 mg/L CuCl₂ × 2 H₂O, 0,04 mg/L NiCl₂ × 6 H₂O, 0,046 mg/L NaMoO₄ × 4 H₂O, 14 mg/L FeSO₄, 9,3 mg/L EDTA × 2 H₂O, 1,2 g/L NH₄NO₃.

A lombikban végzett kísérletek esetén a minimál tápoldatot 1g/L NaHCO₃-al egészítettem ki.

5.2.3. Magas só koncentrációjú minimál tápoldat

A sós tápoldat a minimál tápoldat egy módosított változata, amelyben a NaCl koncentrációja 35 g/L.

5.2.4. Virágföld

A talajos kísérletek során felhasznált virágföld a kereskedelmi forgalomban elérhető Florimo általános virágföld (pH= 6,4 – 6,9) volt. A virágföldet a kísérlet előtt 70 °C-os szárítószerkeznyen öt napig súlyállandóságig száritottuk, majd tyndalлизással sterilizáltuk. A talaj nedvesség tartalmát friss minimál tápoldattal állítottuk be.
5.3. Sejtkultúrák szaporítási körülményei

5.3.1. Törzsek fenntartása

A napi munkákhoz a baktérium törzseket LB táplemezen tartottuk fenn 4 °C-on. A telepeket havi rendszerességgel oltottuk át friss táplemezre. 3-4 havonta -80 °C-ról friss tenyészetekeket indítottunk.

5.3.2. Indító kultúrák szaporítása

Az indító kultúrákat 25°C-on 160 rpm rázatási sebességgel szaporítottuk OD₆₀₀ = 1,00 értékig. Átoltás előtt a kultúrákat centrifugáltuk (13 000 rpm 4°C 10 perc) és az adott kísérletben használt tápoldattal mosjuk. Minden kísérletben 1 % (v/v) indító kultúrát oltottunk tovább. Ez alól csak az 5 L-es fermentálások jelentenek kivételt, melyek esetében 4 % (v/v) inokulumot alkalmaztunk.

5.3.3. R. erythropolis törzsek szénhidrogén-bontó képességének összehasonlitása minimál és nagy sókoncentrációjú minimál tápoldatban illetve virágföldben

A respirációs vizsgálatok során 160 mL ürtartalmú hypo- vialban 20 mL minimál vagy emelt sókoncentrációjú minimál tápoldatban szaporítottuk a két törzset 1 % (v/v) n-hexadekán, mint egyedüli szén- és energiaforrás jelenlétében. A talajban végzett kísérletek során 10 g száraz tömegű virágföld nedvesség tartalmát 50 %-ra állítottuk be. Az üvegek nyílását légmentezen lezártuk butil széptummal.

5.3.4. R. erythropolis PR4 sejtkultúrák szaporítása fermentorban transzkriptomikai vizsgálatokhoz

A minimál tápoldattal mosott indító kultúrát 5L minimál tápoldatba oltottuk Biostat C típusú fermentorba (B. Braun Biotech International GmbH, Melsungen, Németország). A leoltási arány 4 % (v/v) volt. Szén- és energiaforrás ként 3 % (m/v) nátrium-acetátot, 1 % (v/v) n- hexadekánt, vagy 1 % (v/v) gázolajat alkalmaztunk. A felhasznált szénhidrogénkeverékek a következő összetevőket tartalmazták: (a) gyűrűs szénhidrogénekkel kiegészített hexadekán keverék 1 % (v/v) n-hexadekánt, 0,0057 % (v/v) benzolt, 0,0057 % (v/v) toluolt, 0,0057 % (v/v) etil-benzolt, 0,0057 % (v/v) xilolt, 0,025 % (v/v) ciklohexánt, 0,02 % (m/v) naftalint, 0,02 % (v/v) tetralint és 0,022 % (v/v) dekalint tartalmazott, (b) az elágazó szénhidrogéneket tartalmazó keverékben 1 % (v/v) n-hexadekánt egészítettem ki 0,029 % (v/v) 2,2,4-trimetil pentánnal,
0,023 % (v/v) szkvalánnal és 0,023 % (v/v) szkvalénnel. A tápoldatot 0,5 g/L aminosav keverékkal (minden aminosavat 26,3 mg/L koncentrációban alkalmaztunk) is kiegészítettük, hogy félgyorsítsuk a sejt-szaporodást a fermentáció korai szakaszában. Az aminosav keverék glicint nem tartalmazott. A fermentálás hőmérséklete 25°C volt. A tápoldat kezdeti pH értéke 7,50 volt, amelyet 1 M NaOH és 1M HCl automatikus adagolásával tartottuk fent. Ebből az okból kifolyólag a 10 × NaHCO₃ puffer oldatot a fermentoros kíséreltekben elhagytuk a minimál tápoldatból. A fermentorokat 4,5-ös tisztaságú oxigénnel (Linde Gáz Magyarország Zrt., Budapest, Magyarország) levegőztettük 100 mL/perc áramlási sebességgel. A tápoldat oxigén telítettségét 20 %-on tartottuk a keverési sebesség automatikus emelésével, melynek szélső értékeit 100-360 rpm-re állítottuk. A vízben nem oldódó szénforrások hatékonyabb elkeverése érdekében n-hexadekánon és dízel olajon nevelt kultúra esetén a kezdeti keverési sebesség 200 rpm volt. A kultúrák szaporodásának késői exponenciális fázisában vettünk mintát össz-RNS kivonáshoz. A fermentálásokat három egymástól független kísérletben ismételtük meg.

5.4. Analitikai módszerek

5.4.1. Oxigén kimutatása a kultúrák légteréből

A kultúrák légterében történő oxigén fogyás kinetikáját Agilent 6890 (Agilent Technologies Inc. Santa Clara, CA, USA) típusú gázkromatográfia vizsgáltuk, mely HP Molesieve 5 Å (30 m x 0,53 mm x 25 µm) kolonnával és hővezetőképességi detektorral volt felszerelve. A készülék split/splitless injektorát 150°C hőmérsékletre melegítve split üzemmódban használtuk. A split arány 0,2:1 volt. A kályha hőmérsékletét 60 °C-on tartottuk. A közvetlen szűrőt 18,6 ml/percre állítottuk. A detektor hőmérséklete 150 °C volt. A méréseket 5.0 tisztaságú argon vivőgáz alatt végeztük.

5.4.2. Szén-dioxid kimutatása a kultúrák légteréből

A CO₂ koncentrációját Shimadzu GC 2010 (Shimadzu Corporation, Kyoto, Japán) típusú gázkromatográfia követtük nyomon, mely split/splitless injektorral, hővezetőképességi detektorral és egy HP PlotQ (30 m x 0,5 mm x 40 µm) típusú kolonnával rendelkezett. A mérések során split inlet üzemmódot alkalmaztunk 0,5:1 split aránymal. Az inlet hőmérséklet 200 °C volt, a kályha hőmérsékletét pedig 90°C-on tartottuk. A kolonna áramlási sebességet
8,44 ml/percre állítottuk. A detektor hőmérséklete 150°C volt. A méréseket 5.0 tisztaságú nitrogén vivőgáz alatt végeztük.

5.4.3. A gázok anyagmennyiségének kiszámítása térfogatuk alapján

Az oxigén anyagmennyiségének kiszámításához az ideális gáztörvényt alkalmaztuk:

\[pV = nRT \]

ahol a \(p \) az oxigén parciális nyomása a kultúra légterében (Pa), \(V \) az oxigén térfogata (m\(^3\)), \(n \) az anyagmennyiség (mol), R az egyetemes gázállandó, T pedig a hőmérséklet (°K)). Mivel a szén-dioxid szobahőmérsékleten nem ideális gázként viselkedik, anyagmennyiséget a van der Waals egyenlet alapján számítottuk ki egy internetes alkalmazás segítségével (http://www.webqc.org/van_der_waals_gas_law.html).

5.4.4. n-hexadekán kivonása és mennyiségi meghatározása

A 20 mL tápoldatból 7 mL n-hexán segítségével vontuk ki az n-hexadekánt. A 10 g talajhoz a könnyebb kezelhetőség érdekében 14 mL n-hexánt mértünk. A mintákat 2 perces intenzív rázással extraháltuk. Az extrahált mintát n-hexánnal 10× hígítottunk.

7. ábra: n-hexadekán kalibrációs egyenes: Az n-hexadekánból három nagyságrendet átfogó higitási sort készítettem n-hexánban oldva. A higitási sor tagjai rendre 0,5 µl/mL, 1 µl/mL, 5 µl/mL, 10 µl/mL, 50 µl/mL, 100 µl/mL. Az n-hexadekán sűrűségéből (0,77 g/cm³) és a bemért térfogatból kiszámoltam a koncentráció értékeit mg/mL-re vonatkoztatva.

5.4.5. Statisztikai módszerek

Az adatok statisztikai analízisét kétmintás t-próbával végeztük. A szignifikancia szintet p < 0,05 értéken határoztuk meg.

5.5. Molekuláris biológiai munkák

5.5.1. Primerek

A primereket a Primer Designer 3.0 illetve az IDT internetes primer tervező segítségével terveztük. A megtervezett oligonukleotidokat a Sigma-Aldrich, illetve az MTA SZBK oligonukleotid szintézis laboratóriumában készítették. Az oligonukleotidok listája az I. függelékben található.

5.5.2. Genomi DNS izolálás

LB tápoldatban OD₆₀₀= 0,7 értékre felszaporított R. erythropolis MK1 kultúrát 1 mg/ml ampicillin jelenlétében 2 órán keresztül 25 °C-on inkubáltuk. A sejteket centrifugálással gyűjtöttük össze (20 000 × g 10 perc 4°C), a sejtüledéket 50 mg/ml lizozim tartalmú Milli-Q vízben vettük fel. Teljes genomi DNS kivonását R. erythropolis MK1-ből hagyományos fenol-
kloroformos módszerrel végeztük el [132]. A minta minőségét és mennyiségét 0,6 % agaróz gélen elektroforézissel és NanoDrop 1000 (Thermo Fischer Scientific Inc, Waltham, USA) készülékkel is ellenőriztük.

5.5.3. Növekedési görbe meghatározása teljes nukleinsav koncentráció alapján

3 mL baktérium kultúrát centrifugáltunk (12 000×g szobahőmérséklet 2 perc). A hexadekán és a dízel olaj tartalmú mintákat centrifugálás előtt kloroformmal mostuk. A sejteket savval tisztított homokkal (Fluka Chemie AG, Buchs, Switzerland) dörzsöltük el és RLT pufferben (QiaGen RNeasy Mini Kit) vettük fel. A felülúszóhoz 70 %-os jéghideg etanolt mértünk. A nukleinsav mintákat a QiaGen RNeasy oszlopra kötöttük fel. A tisztítási lépéseket a gyártó által ajánlott protokoll szerint végeztünk. A nukleinsav koncentrációt a NanoDrop 1000 (Thermo Fischer Scientific Inc, Waltham, USA) segítségével határoztuk meg.

5.5.4. RNS izolálás

A Rhodococcus fajokhoz javasolt RNS tisztítási protokoll módosított változatát alkalmaztuk [133]. 12 mL baktérium kultúrát centrifugáltunk le (15 000 × g 4 °C 5 perc). A sejteket folyékony nitrogénben lefagyasztottuk és savval mosott tengeri homokkal (Fluka Chemie AG, Buchs, Svájc) eldörzsöltük. A feltárt sejtekből össz RNS-t RNeasy™ Plus Mini Kit (QiaGen; Germantown; MD, USA) segítségével vontuk ki a gyártó által javasolt protokoll szerint.

5.5.5. DNáz I kezelés

Az RNS mintákban maradó DNS-t RNáz mentes DNáz I (Invitrogen, Carlsbad, CA, USA) kezeléssel távolítottuk el a gyártó által javasolt protokol szerint. Az enzimet 2,5 mM EDTA jelenléteban 10 perces 65 °C-os hőkezeléssel inaktiváltuk.

5.5.6. Agaróz gélelektroforézis

A genomi DNS, az RNS és a PCR termékek ellenőrzése céljából végzett gélelektroforézisekhez 1 %, 1 µg/ml EtBr-ot tartalmazó agaróz gélt használtunk 1 x TAE (40 mM TRIS-acetát, 1 mM EDTA) pufferben, 6 V/cm futtatási feszültséggel. Az RT-qPCR primerek ellenőrzéséből származó PCR termékeket kis méretűkből kifolyólag 2 % agaróz gélen ellenőriztük.
5.5.7. Polimeráz láncreakció

Az RNS minták DNS tartalmának illetve a valós idejű PCR primerek működésének ellenőrzésére Eppendorf Mastercycler® pro (Eppendorf, Hamburg, Németország) készülékét használtunk. A reakciókban minden esetben DyNazyme II DNS polimeráz (Thermo Fischer Scientific Inc, Waltham, USA) enzimet alkalmaztunk a gyári pufferrel. A program az alábbiak szerint futott: 5 perces 95 °C-os elődenaturációt követően 40 cikluson keresztül 1 percig 95 °C-os denaturáció, 30 másodpercig 55 °C-os anelláció és 30 másodpercig 72 °C-os elongáció váltotta egymást.

5.5.8. cDNS szintézis

A RT-qPCR előtt az össz RNS-t Maxima First Strand cDNA Synthesis Kit (Thermo Fischer Scientific Inc, Waltham, USA) segítségével írtuk át cDNS-é. A reverz transzkripcióhoz 1 µg DNase I kezelt RNS mintát használtunk.

5.5.9. RT-qPCR

A qPCR-t ABI 7500 Real Time PCR System-ben (Life Technologies Co. Carlsbad, CA, USA) hajtottuk végre a gyártótól beszerzett Power SYBRGreen Master Mix segítségével. A reakciót az erre a célra gyártott 96 lyukas lemezen, relatív kvantitációs üzemmódban, a gyártó által javasolt programmal, 25 µL végtér fogatban végeztük el. A termékek tisztaságát a program végén olvadáspont analízissel ellenőriztük. Az eredményeket manuálisan Microsoft Excel táblázatkezelő szoftverrel értékeltem ki a Livak módszerrel [134].

5.6. R. erythropolis MK1 genom szekvenálása újgenerációs módszerrel

5.6.1. Teljes genom szekvenálás SOLiD platformon

A genomi DNS-t Covaris™ S2 (Covaris Inc., Woburn, MA, USA) ultraszonikátor készülékkel feldaraboltuk. A könyvtár készítést és a szekvenálást az erre a célra ajánlott SOLiD 5500XL (Life Technologies Co. Carlsbad, CA, USA) kitekkel végeztük el. A teljes genom szekvenálást a SOLiD 5500XL™ hajtottuk végre. A leolvasásokat rátérképező az NCBI adatbázisában található R. erythropolis PR4 törzs genomjára (NC_012490) CLC Genomic Workbench 4.0.2. szoftver segítségével.
5.6.2. Teljes genom meghatározása Illumina MiSeq szekvenáló készülékkel

A genomi DNS-t nebulizációval törtük megfelelő méretűre a Roche protokolja alapján (Rapid Library Preparation Method Manual GS FLX+ / LX+ May 2011.). A DNS könyvtár a TruSeq DNA PCR Free Library Preparation Kit (Illumina Inc., San Diego, CA, USA) segítségével készült a gyártó utasításai szerint. A párosított végű szekvenálást egy Illumina MiSeq asztali szekvenáló készülékkel hajtottuk végre a MiSeq reagent kit v3 kittel. A szekvenálás során 2×300 ciklus ment vége.

5.7. R. erythropolis PR4 transkriptomikai vizsgálata

A teljes transzkriptom analizist SOLiD 5500XL™ újgenerációs szekvenáló rendszerrel hajtottuk végre (Life Technologies Co.). Szekvenálás előtt a mintákból három biológiai párhuzamost összekevertünk. Könyvtárkészítés előtt a riboszómális RNS-t a Ribo-Zero™ rRNA Removal Kit for Gram-Positive Bacteria (Epicentre Biotechnologies, Medison, WI, USA) segítségével eltávolítottuk. A könyvtárkészítést és a szekvenálást az erre a célra ajánlott SOLiD 5500XL kitekkel végeztük el (Life Technologies). Mintánként 20-25 millió 50 nukleotid hosszú leolvasást generáltunk, melyből körülbelül 45-50 % bizonyult jó minőségűnek és R. erythropolis genomra térképezhetőnek.

A térképezést, az adatok normalizálását és az expressziós szintek meghatározását CLC Genomic Workbench 5.5.1. szoftver (CLC Bio A/S) segítségével végeztük el. Azért, hogy megállapítsuk a relatív expressziós szinteket, az RPKM értékeket (Reads Per Kilobase of gene model per Million mapped reads) hasonlítottuk össze. A dolgozatban bemutatott transzkriptomikai adatok hozzáférhetőek az NCBI GEO adatbázisában a GSE56474 azonosító szám alatt.

5.8. Bioinformatikai módszerek

konzervált domén adatbázisa és a SMART molekulaszerkezet jósló internetes eszköz (http://smart.embl-heidelberg.de) [138,139] segítségével történt.
6. Eredmények és tárgyalásuk

6.1. Szénhidrogének biodegradációja R. erythropolis MK1 és PR4 törzsekkel

6.1.1. A két Rhodococcus törzs jellemzőinek összehasonlítása n-alkánok jelenlétében

A nagyfokú genetikai hasonlóság ellenére a két törzs eltérően viselkedik az n-hexadekán tartalmú tápoldatban. A R. erythropolis MK1 esetén a teljes kultúra a szerves és a vizes fázis határán található, hozzátapad a hexadekánhoz, míg a R. erythropolis PR4 kultúra nagy része a vizes fázisban marad (8. ábra). Ez a különbség azzal magyarázható, hogy a PR4 törzs képes olyan felületaktiv anyagok termelésére, amelyek emulzióba viszik az oldhatatlan szénforrást. Így lehetővé válik, hogy a kultúra nagy része a vizes fázisban maradjon. Ezzel szemben az MK1-es törzs esetében jóval mérsékeltebb a vizes fázisban való szaporodás, helyette fehér pelyhek jelennek meg a kultúra felszínén. A vizes fázis kismértékű opálosodása csak az idősebb MK1 kultúráknál tapasztalható.

8. ábra: A R. erythropolis MK1 (A) és PR4 (B) törzsek 2 napos kultúrái 1% (v/v) n-hexadekán tartalmú minimál tápoldatban

9. ábra: Az n-hexadekán tartalmú minimál tápoldatban szaporított *R. erythropolis* MK1 (A) és PR4 (B) törzsek fénymikroszkópos képe (400 x-os nagyítás). A képen látható olajcseppek alakja különböző attól függően, hogy melyik törzset oltottuk a tápoldatba.

6.2.2. *A sókonzentráció hatása a két R. erythropolis törzs szénhidrogén-bontó képességére*

Az olajszennyeződéseknek legjobban kitett területek a tengerek és óceánok. Ezért fontos, hogy a bioaugmentációra alkalmazott szénhidrogén-bontó törzsek képesek legyenek a magas sókonzentráció elviselésére. Ebben a kísérlet sorozatban a két *Rhodococcus* törzset minimál tápoldatban és 3,5 % (m/v) NaCl tartalmú sós minimál tápoldatban szaporítottam. Szénforrásként 1 % (v/v) hexadecánt adtam a rendszerhez. Azért, hogy biztosítsam a folyamatos oxigén ellátást, a kísérleteket papírdugóval lezárt Erlenmeyer lombikokban végeztem. A kultúrákból a 0, 1, 3, 5, 7 és 15. napon 3-3 lombik hexadékan tartalmát extraháltam és gázkromatográf segítségével mértem.

A sejtmentes kontrollhoz viszonyítva mindkét törzs esetén jelentős n-hexadékán fogyást állapítottunk meg a tápoldatban az idő előrehaladtával (10. ábra). A *R. erythropolis* PR4 már a kísérlet 3. napjára elfogyasztotta a hexadékan jelentős részét minimál tápoldatban. Ezzel összevetve az MK1 törzs a 15. napra csak a rendelkezésére álló hexadékan 50 %-át bontotta le minimál tápoldatban. Erre az eredményre magyarázattal szolgálhat, hogy az MK1 törzs nem vagy csak igen gyengén képes emulziót, így kisebb felületen fér hozzá a szénforráshoz.

A nagy sókonzentráció mindkét törzs esetében csökkentette a n-hexadékan lebontásának sebességét, viszont egyik esetben sem gátolta azt. A *R. erythropolis* PR4 négy nappal később érte el a 90 %-os lebontási rátának megfelelő 0,8 mg/mL n-hexadékan koncentráció értékét sós tápoldatban, mint minimál tápoldatban. Az MK1 szénhidrogénbontó hatékonysága is közel 20 %-al csökkent. A 15. napra a kultúrákból a megmaradt n- hexadékan a kiindulási érték 69 %-a volt.
10. ábra: A só koncentráció hatása a *R. erythropolis* MK1 és PR4 törzsek szénhidrogén-bontó aktivitására. Sejmentes kontroll (sötétkék), *R. erythropolis* MK1 minimál tápoldatban (piros), *R. erythropolis* MK1 sós tápoldatban (zöld), *R. erythropolis* PR4 minimál tápoldatban (lila), *R. erythropolis* PR4 sós tápoldatban (világoskék) **p< 0,01

6.1.3. A talaj nedvességtartalom hatása a két *R. erythropolis* törzs szénhidrogén-bontó képességére

A talajban található szennyezőanyagok biológiai úton történő eltávolítására több környezeti tényező is hatással van. Ilyen a talaj pH értéke, a hőmérséklet, az oxigén ellátottság, illetve a nedvesség tartalom. Jelen kísérletben a talaj nedvességtartalmának hatását vizsgáltuk a szénhidrogénbontó hatékonyságra. A kísérlet másik célja, hogy összehasonlítsuk a két törzs viselkedését talaj közegben.

A kísérlet során a kiszárított virágföld nedvességtartalmát minimál tápoldattal állítottuk be 10, 20, 30, 40, 50, és 70 %-os értékre. A szénhidrogének modellezésére n-hexadekánt alkalmaztunk. Az 5. napon a baktériumok által fel nem használt hexadekánt extrahálással nyertük vissza. A két törzs hexadekán-bontó aktivitása a 30 és 40 % nedvesség tartalmú talajok között szignifikánsan megemelkedik (11. ábra). A magasabb nedvességtartalmú virágföldben (40 %, 50 %, 70 %) magasabb a biodegradációs hatékonyság is, mint az alacsonyabb nedvességtartalmú (20, 30 %) mintákban. Mindkét törzs számára egyaránt az 50 %-os
talajnedvesség a legoptimálisabb a szénhidrogén-bontás szempontjából. Ebben az esetben a bontási hatékonyság 90-97 % közé tehető.

11. ábra: A talaj nedvességtartalmának hatása *R. erythropolis* MK1 és PR4 törzsek szénhidrogénbontó aktivitására. *R. erythropolis* MK1 (zöld oszlopop), *R. erythropolis* PR4 (piros oszlopop) *p< 0,05

Az eredmények alapján az is elmondható, hogy a két törzs szénhidrogén-bontó hatékonysága között nincs szignifikáns különbség egyik vizsgált talajnedvességi értéknél sem.

6.1.4. A n-hexadekán lebontásának oxigén és n-hexadekán mérlege a két *Rhodococcus* törzsben

Azért, hogy fényt derítsek az elfogyasztott n-hexadekán és a felvett oxigén sorsára anyagnémet számoltam a két anyagra nézve. A kísérletet zárt hypo-vialben végeztem, virágföldben, sós és minimál tápoldatban. A virágföld nedvességtartalmát az előzetesen optimumként meghatározott 50 %-ra állítottam. A kultúrák légterének oxigén és szén-dioxid koncentrációját naponta mérettem. Annak érdekében, hogy elkerüljem az oxigén kiürülését a rendszerből, minden mérés után átfúvattam a kultúrákat sűrített levegővel és a visszamaradó szén-dioxidot és az oxigént is újból lemeríttem, ezt tekintve kiindulási értéknek a következő napi mérésnél. Az ötödik napi gázmérést követően a visszamaradó hexadekánt extrahálással visszanyertem és koncentrációját gázkromatográf segítségével határoztam meg.
A mért adatokból számolt anyagmennyiségek alapján meghatároztam az oxigenázz reakcióban résztvevő oxigén hanyadát. A monooxygenázz reakcióban egy alkán molekula oxidálására egy oxigén molekulát használ az enzim (12. ábra). Ez alapján a felvett hexadekán mennyisége megegyezik a monooxygenázz reakcióban felhasznált oxigén mennyiségével. A fennmaradó oxigén más oxidációs folyamatokban vesz részt, például az alkánok diterminális oxidációjában, vagy a légzési lánc elektron akceptoraként szerepel.

12. ábra: alkán-1-monooxygenáz \((alkB)\) által katalizált n-alkán oxidáció [37]

Az alkánok oxidációjának lehetséges útvonalait a 3. ábra mutatja be. Könnyű belátni, hogy akármelyik útvonalat követjük, 1 mol hexadekánból 8 mol acetil-S-CoA képződik, ebből pedig összesen 16 mol \(\text{CO}_2\). Tehát a nem biomasszként hasznosult, hanem szén-dioxidtermelésre fordított n-hexadekán mennyisége megegyezik a keletkezett szén-dioxid \(\frac{1}{16}\) részével. A teljes felhasznált n-hexadekánnal molárisan egyenértékű mennyiségű oxigént használt fel a sejt az alkán monooxidálására.

Az előző kísérletek alapján a vártak megfelelően mindkét két törzs hasonlóan viselkedett talajban, a kísérlet 5 napja alatt hozzávetőlegesen ugyanolyan mennyiségű oxigént vettek fel illetve ugyanannyi hexadekánt bontottak el. A sejtek az oxigén megközelítőleg 70 %-át használták a n-hexadekán oxidálására (13. ábra). A fennmaradó 30 % oxigén egyéb folyamatokban vesz részt, például elektron akceptorként funkcionál vagy esetlegesen az n-hexadekán diterminális oxidációjában játszik szerepet. Mindkét törzs esetén a felvett hexadekán túlnyomó részét biomassza produkcióra használják fel a törzsek, mindössze 2 % alakul szén-dioxidddá.
13. ábra: A két *R. erythropolis* törzs oxigén és n-hexadekán mérlege virágföldben. A bal oldali kördiagramokon a monooxigenáz reakcióban felhasznált oxigén (kék), illetve az egyéb reakciókban felhasznált oxigén (piros) aránya látható. A jobb oldali diagramokon a szén-dioxid által alakított n-hexadekán (sárga), valamint a biomasszavá alakított hexadekán (zöld) jelenik meg.

A sós és a minimál tápoldatban is megmarad a hexadekán felhasználás aránya minimális eltéréssel. A legnagyobb különbség a *R. erythropolis* MK1 esetében tapasztalható sós tápoldatban, ahol a szén-dioxid termelésre fordított hexadekán 1,1 %-ra csökkent a talajos mintában mért 2,2 %-hoz képest. Az oxigén egyensúly már másképpen alakul a különböző tápközegekben. *R. erythropolis* PR4 esetén minimális eltéréssel megmaradnak a virágföldben tapasztalható arányok minimál tápoldatban is. Azonban a nagy sókoncentráció hatására az oxigén egyensúly eltolódik a monooxigenáz reakció javára (14/A ábra). Ez azt jelenti, hogy az egyéb reakciókban felhasznált oxigén aránya a másik két tápközegeben tapasztalt 30 % körüli értékről 10,5 %-ra csökkent. A felhasznált n-hexadekán mennyisége alig változik a nagy sókoncentrációjú tápoldatban a minimál tápoldathoz viszonyítva, viszont a felvett oxigén 2/3 részére csökken (14/B ábra). Ez arra utal, hogy a sóstressz bizonyos oxigénfüggő folyamatokat gátolhat a sejtben.
14. ábra: A *R. erythropolis* PR4 oxigén egyensúly (A) a monooxigenáz reakcióiban felhasznált oxigén aránya (kék), egyéb reakciókban felhasznált oxigént aránya (piros). A *R. erythropolis* PR4 által 5 nap alatt elfogyasztott hexadekán és oxigén mennyisége (B) minimál tápoldatban nevelt *R. erythropolis* PR4 (zöld), sós tápoldatban nevelt *R. erythropolis* PR4 (sárga) **p< 0,01

Más a helyzet a *R. erythropolis* MK1 esetében. Ellentétben a talajos mintákkal, csak tized-annyi n-hexadekánt képes felhasználni öt nap alatt minimál tápoldatban, mint a *R. erythropolis* PR4. Az oxigén mérleg is eltolódik, 90,7 % fordítódik a n-hexadekán alkohollá való oxidálására, míg csak 9,3 % vesz részt egyéb reakciókban.

A sós tápoldatban a *R. erythropolis* MK1 által felvett oxigén és n-hexadekán mennyisége a harmadára csökken a minimál tápoldatban nevelt kultúrákban mérthez képest. Az oxigén felhasználási arány viszont nem változik jelentősen, 91,4 % fordítódik a n-hexadekán alkohollá való oxidálására, és 8,6 % vesz részt egyéb reakciókban.

6.1.5. A két törzs szénhidrogén bontó képességének összehasonlítása dizelolaj frakciókon

A szénhidrogén szennyeződések a természetben mindig összetett formában fordulnak elő. Ezért fontos, hogy a szénhidrogének lebontását ne csak egyetlen tiszta modellvegyületen (n-hexadekán) vizsgáljuk, hanem összetett, a toxikus komponenseket is tartalmazó
szénforráson is. Esetünkben ez a dízel olaj. Előzetes kísérleteink alapján tudjuk, hogy mindkét törzs képes a dízel olaj biodegradációjára [118]. Ugyanakkor az irodalomból tudjuk, hogy nem minden alkán-bontó baktérium képes egyforma hatékonysággal lebontani a különböző lánchozzású alkánokat [37]. Ebben a kísérletben összehasonlítottam a két törzs biodegradációs aktivitását négy különböző lánc hosszúságú szénhidrogéneket tartalmazó gázolaj frakcióján (petróleum: C_{10}-C_{14}, KGO: C_{10}-C_{20}, NGO: C_{10}-C_{27}, VGO: C_{14}-C_{27}). A törzsek aktivitását a CO2 koncentráció változásának mérésével követtem nyomon, butil-gumival lezárt hypo-vialban.

15. ábra: R. erythropolis PR4 szén-dioxid termelése gázolaj frakciókon. Petróleum frakció (lila), KGO (piros), NGO (zöld), VGO (viágos kék), sejtmentes kontroll (sötétkék)

A R. erythropolis PR4 kultúrák légterében egy napos lag fázis után gyors ütemben kezd termelődni a szén-dioxidot mind a négy szénforráson. VGO, NGO és KGO olajfrakciók jelenlétében a CO2 koncentráció emelkedése a második napra eléri a plató fázist. Egyedül a 10-14 szénatomos alkánokat tartalmazó petróleum frakció marad el kis mértékben a szén-dioxid termelés a többi szénforráson mértől. A petróleum frakció a harmadik napra éri el a törzs a 8,5 %-os maximális szén-dioxid koncentrációt (15. ábra). Az eredmények alapján a R. erythropolis PR4 gyorsan alkalmazkodik mind a négy szénforráshoz és hasonló ütemben képes metabolizálni őket.

Ezzel szemben a R. erythropolis MK1 törzs kultúráinak légterében az egy napos lag periódus után jóval lassabban emelkedik a szén-dioxid koncentrációja (16. ábra), mint R. erythropolis PR4 kultúráknál. A petróleum frakció a legalacsonyabb a biodegradációs
aktivitás. A szén-dioxid koncentráció csak lassan emelkedik és a 6. napra is csak 1,5 %-t (v/v) ér el. Ez az eredmény összhangban van azzal, hogy az MK1 törzs genomjában nem találtunk CYP153 családba tartozó monooxigenázt (ld később, 6.2 fejezet), ami az alacsonyabb szénatomszámú alkánok metabolizálásáért lenne felelős. Az, hogy a törzs mégis képes minimális szén-dioxid termelésre, arra utal, hogy a törzs AlkB monooxigenázai, vagy más monooxigenáz enzimek kis affinitással képesek oxidálni a 10-14 szénatomot tartalmazó alkánokat is.

16. ábra: *R. erythropolis* MK1 szén-dioxid termelése gázolaj frakciókon. Petróleum frakció (lila), KGO (piros), NGO (zöld), VGO (viágos kék), sejtmentes kontroll (sötét kék)

6.2. A *R. erythropolis* MK1 genom szekvenálása

6.2.1. *R. erythropolis* MK1 genomjának de novo összeszerelése

A szénhidrogének lebontása során tapasztalt különbségek felvetik a kérdést, hogy a két törzs genetikai hátttere mennyiben tér el egymástól. Annak érdekében, hogy az MK1 törzs teljes genomjának bázissorrendjét megismerhessük, szekvenálást végeztünk Illumina MiSeq új generációs szekvenáló platformon. A szekvenálásból kapott 978 788 párosított leolvasás összeszerelése után 40 különálló kontig keletkezett. A konszenzus teljes hossza 6 469 205 bp és a legnagyobb kontig 1 413 947 bp. A kontigokat RAST segítségével annotáltuk és 6 252 gént találtunk. Ez a szám összhangban van a teljes konszenzus méretével és a *R. erythropolis* PR4 törzs genomja alapján várható gének mennyiségével.
Az MK1 törzs genomja azonban megközelítőleg 0,5 Mbp-al rövidebb, mint a R. erythropolis PR4 teljes genomja. Ennek a méretkülönbségnek több oka van. A PR4 törzs 3 plazmidot is tartalmaz, amelyek egyike sem található meg az MK1 törzsben. Az MK1 genom szekvenciája még nem teljes, hiányoznak belőle a nehezen szekvenálható részek. Mindekként az PR4 törzs rendelkezik a legnagyobb genommal az eddig teljesen megszekvenált R. erythropolis törzsek közül [7,73,143,144]. A PR4 törzs kromoszómája bár nagyobb, mint az MK1 törzs teljes meglévő genomja, nagymértékű hasonlóságot mutatnak egymással (17. ábra).

![Diagram](image)

17. ábra: A R. erythropolis MK1 genom összehasonlítása a R. erythropolis PR4 kromoszómájával MAUVE szoftverrel. A referencia szekvenciaként használt R. erythropolis PR4 kromoszómája (felül), az R. erythropolis MK1 kontigjai (alul). A színes vonalak az egymáshoz hasonló részeket kötik össze. A függőleges piros vonalak a kontighatárokat jelölik.

A blastn programmal történt összehasonlítás eredmények alapján az MK1 törzs alkB1 génjének nukleotidsorrendje 97 %-ban az alkB2 96 %-ban az alkB3 95 %-ban az alkB4 pedig 98 %-ban megegyezik a PR4 genomjában található megfelelőjével. Az ötödik alkB gén 74 %-

Az alkB2 főleg Rhodococcus és Gordonia alkán-1-monoxygenázokat tartalmazó I. csoportba tartozik és egy ágon található a R. equi alkB génjével. A közeli rokonságot az is alátámasztja, hogy mindkét alkB operonból hiányzik a rubredoxin és a TetR transzkripciós regulátor közül a rubredoxin reduktáz gén. A tény hogy a csoportot alkotó más Rhodococcus és Gordonia alkB gén operonjában megtalálható a rubredoxin reduktázt kódoló nyitott leolvasási keret azt sugallja, hogy a két operon közös ösében veszett el a hiányzó reduktáz gén.

Az alkB3 és alkB4 génk a II. csoportban foglalknak helyet (18. ábra) a filogenetikai fa azonos ágán. A két gén nukleinsav sorrendje 72,9 %-ban azonos egymással R. erythropolis PR4 törzsben, illetve 77,0 %-ban az R. erythropolis MK1-ben. A nagymértékű szekvencia azonosság a két gén között génduplikációra utalhat.

Az MK1 törzs kromoszómáján található ötödik alkB gén a bootstrap érték alapján egyértelműen elkölölnél az alkB3 és alkB4 génektől, de szoros filogenetikai kapcsolat van közöttük (18. ábra).

Mivel az alkB gén filogenetikai kapcsolatai nem korrelálnak a gazdaajok 16S rDNS alapú rokonsági kapcsolataival és a genomban található paralógok is nagy mértékben divergensek, erősen feltételezhető, hogy horizontális géntranszferrel kerültek az R. erythropolis-ba [145].
6.2.3. Plazmidok a R. erythropolis MK1 törzsben

Négy teljes R. erythropolis szekvencia érhető el a GenBank adatbázisában [7, 73, 143, 144], ez 4 teljes kromoszómát és 9 plazmidot jelent. Mindemellett 3 másik teljes plazmid szekvencia is hozzáférhető. A MiSeq szekvenálásból származó leolvasásokat ráterképezve a kromoszómákra 90-94 %-ot fednek le 30-szoros átlagos lefedettséggel. Ez alátámasztja azon feltételezésünket, hogy a R. erythropolis MK1 a vizsgált törzsök (R. erythropolis PR4, R. erythropolis CCM2595, R. erythropolis BG4 és R. erythropolis R138) szoros rokoni kapcsolatban állnak egymással. Ugyanakkor a leolvasások csak 87-88 %-a térképeződik a kromoszómákra. Az irodalom alapján feltételezhető, hogy az MK1 törzs tartalmaz egy vagy akár több plazmidot is, mivel a Rhodococcus genusban általánosan elterjedt, hogy több különböző méretű lineáris és/vagy cirkuláris plazmid van jelen egyazon törzsben [73, 98]. A leolvasások csupán 0,5 %-a vagy ennél is kevesebb térképeződött a 12 vizsgált plazmid szekvenciájára, azok is szigetszerűen. A plazmidok teljes hosszára számított átlagos lefedettség is kisebb, mint 1-szeres volt. Ezek az eredmények azt sugallják, hogy az MK1 törzs a vizsgált plazmidoktól különböző plazmidot hordozhat. A MiSeq leolvasások 12-13 %-a nem térképeződött a referencia kromoszómára. Ezek egy része feltételezhetően az MK1 törzs kromoszómájának azon régiót fedik le, amelyek nem mutatnak hasonlóságot a referencia genomokkal, míg a másik részük épitheti fel a plazmidot. A referenciákról nem térképeződő leolvasásokat visszatérképezve az MK1 genomját alkotó egyedi kontigokra találtunk egy 105 331 bp hosszú szekvenciát (20. kontig) melyre a leolvasások 18.31 %-a ráterképeződött. A leolvasások egyenletesen oszlottak el a szekvencia teljes hosszán és az átlagos lefedettség 46,26-szoros volt. A blastn-el végzett szekvenciáösszehasonlítás eredményei alapján a kontig részleges szekvencia egyezéseket mutat más Rhodococcus törzsekben megtalálható plazmidokkal. 117 nyitott leolvasási keret azonosítható rajta, melyek pl. nehézfém toleranciáért felelős gének, glükóamiliáz, glukóz-6-foszfát dehidrogenáz és egy nagy affinitású szén transzporter génjei. Mindemellett DNS mótosító enzimeket, integrázokat és mobil elemeket is kódol. Az orf-k nagyobb része hipotetikus fehérjét kódol. Saját parA és parB génnek is rendelkezik, amelyek a plazmidok particiójában játszanak fontos szerepet. Ezek alapján feltételezhető, hogy a 20. kontig egy nagy plazmid, vagy annak egy része.
6.3. n-hexadekánon és gázolajon nevelt *R. erythropolis* PR4 összehasonlító transzkriptomikai analízise

6.3.1. Sejtek növekedése a fermentáció során

Mivel a *R. erythropolis* PR4 szaporodása a vízben oldhatatlan szénforrásokon biofilm képződéssel jár, a hagyományos telepképző egység vizsgálat, vagy az optikai sűrűség nyomon követése nem megfelelő módszerek a sejtszám meghatározására, illetve a kultúra szaporodásának nyomonkövetésére. Így a szaporodást a teljes nukleinsav koncentráció változásán keresztül jellemztem.

A szénhidrogének jelenléteben jóval hamarabb beindult a növekedés, mint a Na-acetátos tápoldatban. Mind a n-hexadekánt, mind pedig a dízel olajat tartalmazó tápoldatban a 18. órában indult el a szaporodás exponenciális fázisa és 4-5 óra alatt el is érte a plató fázist (19. ábra). Ezzel szemben a Na-acetátos tápoldatban az intenzív szaporodás a 28. óra után indul el. A lehetséges ok, hogy az alkánokból származó zsírsavakat közvetlenül fel tudja használni a sejt a felépítő folyamataiban, míg az acetátból, mint két szénatomos molekulából meg kell szintetizálni a hosszabb szénláncú vegyületeket, aminek van extra energia igénye.

A teljes RNS kivonáshoz a mintákat minden esetben az exponenciális fázis második felében vettem le (19. ábra).
6.3.2. A teljes transzkriptom analízis eredményei

A teljes transzkriptom analízis során legalább 20 millió leolvasást kaptunk minden mintából. A szénhidrogéneken nevelt kultúrák mintái esetén ez a szám még magasabb volt (pl.: 50 millió a dízeles mintákban). A leolvasások átlagos hossza 50 nukleotid volt. A leolvasásokat rátérképeztük a

R. erythropolis PR4 genomjára. A leolvasások genomi eloszlását meghatároztuk és az RPKM (Reads Per Kilobase of gene model per Million mapped reads) értékek összehasonlításával kiszámoltuk a relatív expressziót. Háromféle összehasonlítást végeztünk el: n-hexadekán az acetát ellenében, dízel olaj az acetát ellenében dízel olaj a n-hexadekán ellenében.

24 gén expressziós aktivitását RT-qPCR segítségével ellenőriztük. Ezek közül, 19 gén expressziós értéke volt összhangban a transzkriptom analízis eredményével. 5 gén taranszkript szintje nem egyezett az RNA-seq eredményeivel (20. ábra). Ez az 5 gén alacsony RPKM értékkel rendelkezett (<1.5), mind acetát, mind pedig hexadekán jelenlétében, ezért minden ilyen alacsony RPKM értékkel rendelkező gént kihagytunk a további vizsgálatokból, illetve adatértékelésből.

20. ábra: Transzkriptom és RT-qPCR eredmények összehasonlítása hőtérképen. HeD-A oszlop: hexadekán acetáttal; DiO-A oszlop: dízelolaj acetáttal; DiO-HeD oszlop: dízelolaj hexadekánnal összehasonlítva. Az ábrán láthatóak a színkódok a indukción ("fel"), a repressziót ("le") jelzik. A pirossal kiemelt géntermékek esetén az RT-qPCR nem bizonyítja a transzkriptom analízis eredményét.

6.3.3. Szénhidrogének oxidációja

Meglepő módon a másik két alkB gén RER_24030 (alkB3) és RER_54580 (alkB4) expressziós aktivitása érdemben nem változott a kontroll mintákhoz képest.

Az alkB1 és alkB2 géné szomszédságában 2-2 rubredoxin gén RER_07470, RER_07480, RER_21630 és RER_21640 található, valamint az alkB1 lókusz tartalmaz egy
rubredoxin reduktázt is (RER_07590). A legmagasabb expressziós emelkedést az összes vizsgált gén közül a RER_07470 rubredoxin gén mutatta n-hexadekánnon. A gén kifejeződési szintje 120 szor magasabb volt a Na-acetáton nevelt kultúrák mintáiban mérthez képest. Dízel olaj jelenlétében is ez maradt a legerősebben kifejeződő gén, ugyanakkor 75%-al csökkent kifejeződése az n-hexadekánnon szaporított kultúrák mintához viszonyítva.

Az alkB1 lókuszból található rubredoxin reduktáz génől (RER_07490) 3’ irányban található három további nyitott leolvasási keret, rendre a RER_07500, RER_07510 és RER_07520 (22. ábra), amelyeknek magas expressziós aktivitásuk volt n-hexadekán jelenlétében. RER_07500 egy feltételezhetően a TetR családba tartozó szabályozó fehérjét kódol. Az ebbe a családba tartozó fehérjék olyan negatív regulátorként ismeretesek, amelyek nemcsak a szomszédságukban található operon, hanem önmaguk expresszióját is szabályozzák [146]. A TetR szabályozó fehérje szubszztrát jelenlétében nem képes kötödni a szabályozó régióhoz, így mind az alkB gén mind pedig az őt szabályozó tetR gén kifejeződése beindul. Ez magyarázatul szolgál a tetR gén mRNS szintjének megemelkedésére. A tetR gén genomi kontextusa az alkB operonok viszonylatában konzervált a Rhodococcus törzsek és más aktinobaktériumok körében is. A TetR szabályozó szerepét a genomi helyzetének alapján jósolták Rhodococcus sp-ben [147], illetve a transzkripciója alapján Dietzia sp-ben [148]. Jelen munka egy újabb közvetett bizonyítékul szolgál a TetR fehérje transzkripció szabályozó szerepére az alkB operon esetében, bár a hipotézist még közvetlen kísérletes bizonyítékokkal meg kell erősíteni.

A két másik nyitott leolvasási keret a RER_07510 és a RER_07520 expressziós szintje is magas a kontrollhoz képest. A RER_07510 kifejeződése 146-szorosa a kontrol mintákban hexadekán jelenlétében, ugyanezen szénforráson a RER_07520 106-szoros expressziós különbséget ér el a Na-acetátos kultúrák mintáihoz viszonyítva. A két gén kifejeződése kisebb mértékű dízel olajon szaporított kultúrákban, de 29- és 25-ször magasabb, mint a kontrollban mért értékek. Mindkét nyitott leolvasási keret ismeretlen, hipotetikus fehérjét kódol. A RER_07510 génterméke egy 56 aminosav hosszú oligopeptid, míg a RER_07520 egy 277 aminosav hosszú proteint kódol. Az adatbázisokban nem találtunk a RER_07510 termékéhez hasonló fehérjét (a frissen publikált R. erythropolis CCM2595 genomjában sem szerepel [7]). Ezzel szemben a RER_07520 génterméke nagyfokú azonosságot mutat más Rhodococcus fajokban található hipotetikus fehérjékkel. A fehérje szekvenciát a SMART
egyszerű molekulaszerkezet vizsgáló eszköz) internetes keresőben megvizsgálva találtam egy 29 aminosav hosszúságú szignál peptidet az N-terminális régióban, ami azt sugallja, hogy ez egy szekretált fehérje. A fehérje funkciója azonban nem ismert.

22. ábra: Az alkB1 operon és környezete

6.3.4 Citokróm P450 monooxigenázok szerepe a gázolaj komponensek biodegradációjában

Hogy tisztázzuk, a gázolaj mely komponensei befolyásolják az egyes cyp gének expresszióját, további fermentációs kísérleteket végeztünk el. A fermentáció során a hexadekánhoz elágazó láncú szénhidrogéneket, vagy aromás szénhidrogéneket és cikloparaffinokat kevertünk. A kultúrák GC/MS analízise szerint az egyes komponensek átalakítása egy időben történik (24. ábra). Az ábrán feltüntetett reprezentatív komponensek mellett a többi hozzáadott komponens koncentrációja is szignifikánsan csökkent a tápoldatban.
Ez azt sugallja, hogy a sejteknek látszólag nincs prioritási sorrendje a vizsgált komponensek felhasználására.

24. ábra: Szubsztrát koncentráció változása a fermentáció során. A: n-hexadékán, B: monoaromás szénhidrogének *p<0,05; **p<0,01

megfigyelhető az összes szénhidrogénen nevelt kulturában, de a gyűrűs vegyületek jelenlétében magasabb expressziós aktivitást mutatott, mint az elágazó alkánokkal kevert hexadekánon, vagy tiszta hexadekánon. RER_33720, RER_33770, RER_33790 és RER_50030 gének expressziója jelentősen megemelkedett gázolaj és gyűrűs vegyületekkel kiegészített hexadekán jelenlétében, míg a gyűrűs vegyületeket nem tartalmazó szubsztrátokon nem változott. Ezek a génék feltételezhetően az aromás szénhidrogének és a cikloalkánok oxidációjában vehetnek részt. A RER_08960 gén, amely egy CYP102 monooxigenáz kódol, csekély expressziós emelkedést mutatott gyűrűs szénhidrogénekkel kiegészített hexadekán, viszont gázolajon csekély mértékben represszálódott. A gén expressziós változása mind negatív, mind pozitív irányban közel van a választott küszöbértékhez (3×). Három másik cyp gén (pREL1_0260, RER_07720 és RER_08060) csak gázolaj jelenlétében aktiválódott. Ezeknek a génnek feltételezhetően más szerepe lehet.

6.3.5. Zsírsav metabolizmus

Az alkánok oxidációjából származó acil-CoA több útvonalon is hasznosul. Beépülhet a membránba, alapul szolgálhat a mikolsavak szintéziséhez vagy β-oxidációban acetil-S-CoA keletkezhet belőle.

A β-oxidációért felelős génnek expressziója megemelkedett mindkét szénhidrogén szénforrás jelenlétében. Több acil-CoA dehidrogenáz gén (RER_52580, RER_27750, és RER_50060) indukálódott alkánok jelenlétében. Ezen enzimek által katalizált reakcióban az

Az I. típusú zsírsav szintáz enzim (FASI) génje (RER_38730), illetve a vele szomszédos acil-carrier protein transzaciláz gén (RER_38720) erős represszióját figyeltem meg az n-hexadekán hatására (30. ábra). A mikolsav tartalmú aktinobaktériumok egy jelentős részében két különböző zsírsav szintézis rendszer található. Az eukarióta típusú FASI egyetlen hatalmas polipeptid láncból áll, ami dimer formában aktiv és az összes zsírsav szintézishez szükséges aktivitása megvan. Ez az enzim felelős a közepes szénláncú zsírsavak (C16-26) szintéziséért Mycobacterium tuberculosis-ban és más Mycobacterium fajokban [150,151]. R. erythropolis PR4 törzs genomjában található fasI gén termékeinek aminosav szekvenciája 63-65%-ban
azonos a mikobakteriális homológokkal. A gén erős repressziója összhangban van azzal, hogy a n-hexadekánon szaporított baktériumban a zsírsav bioszintézisének igénye csökkent, hisz alternatív módon az alkánok oxidációjából jelentős mennyiségű zsírsavat állít elő. Ezzel szemben a dizel olaj jelenlétében a fasI 30-szor magasabb expressziót mutatott a n-hexadekánon nevelt kultúrákhoz viszonyítva, ugyanakkor ez az érték még mindig alacsonyabb volt, mint a kontroll mintákban. Feltételezésem szerint ez a különbség abból fakad, hogy a dizel olajban jóval alacsonyabb koncentrációban van jelen a hexadekán és a 16 szénatomnál hosszabb alkánok relatív koncentrációja is alacsony. Ebből adódóan a közepes lánchosszúságú zsírsavakból is jóval kevesebb keletkezik az alkán oxidáció során, így a sejteknek meg kell szintetizálni a hiányzó zsírsavakat.

A prokarióta típusú több különböző enzimből felépülő zsírsav szintáz rendszer (FASII) eltérően a prokarióták többségében betöltött szerepétől a mikolsav szintetizáló aktinobaktériumokban a meromikolát lánc szintéziséhez adaptálódott [152,153]. A meromikolát lánc a mikolsav szintézis egyik kiindulási molekulája. A mikolsav szintézis végző lépésében egy meromikolil-ACP Claisen típusú kondenzáció során egyesül egy acil-CoA-val, amit a poliketid szintáz 13 katalizál [154–156]. Ellentétben a FASI-gyel, sem a FASII rendszer elemei sem pedig a poliketid szintáz 13 homológ gén nem mutatott csökkent expressziós értékeket egyik szénforráson sem. Ez azzal magyarázható, hogy a mikolsavak létfonosságú elemei a rhodococcus sejtfalaknak, tehát génjeinek expressziója konstitutív kell legyen.

6.3.6. Exopoliszacharid szintézis

mérgező anyagot exportáló fehérje (*multidrug and toxic compound extrusion*, MATE). A MATE fehérjék elektrokémiai grádiens ellenében juttatnak ki molekulákat a sejtből [158].

A blastp programmal végrehajtott elemzések és a SMART domén jósítás eredményei alapján, azt feltételezem, hogy ebben a genomi régióban exopoliszacharid szintézisért felelős gének találhatók. Urai és munkatársai azonosították és jellemeztek a *R. erythropolis* PR4 által termelt exopoliszacharidokat [84,85]. Ezek a makromolekulák elősegítik a biofilm képződést, ezáltal megvédik a sejteket a mérgező anyagoktól. Bizonyos exolipopoliszacharidok a vízben nem oldható szubsztrátokat emulzióba viszik, így megkönnyítik azok felvételét. Az exopoliszacharid szintézisben résztvevő gének expressziója 4-10-szer magasabb volt dízel olaj jelenlétében, mint n-hexadekánon (25. ábra, 30. ábra). Feltételezésem szerint, a dízel olajban található mérgező anyagok miatt a sejteknek több exopoliszaccharidra van szükségük, mint hexadekánon. Ezt a feltételezést támasztja alá az is, hogy a gyűrűs vegyületekkel kiegészített n-hexadekán szénforráson is elérte a Wzz domén tartalmú fehérje expressziója a dízel olajon mért expresszió szintjét, míg az elágazó alkánok jelenlétében nem különbözőt a tiszta hexadekánon nevelt kultúrákban mért szinttől.

![Diagram](image)

26. ábra: Az exopoliszaharid szintézisben szerepet játszó génök relatív transzkripciója.
Több ABC transzporter gén emelkedett expressziós aktivitást mutatott szénhidrogének jelenlétében. A RER_01100 - RER_01130 közötti régió három ABC transzporter alegységet és egy MFS (major facilitator superfamily) transzportert kódol. Az aminosav szekvencia homológiáik alapján az ABC transzporter egy hidroxamát sziderofőr felvevő rendszer, amely a vastranszportban vesz részt. A RER_01100 által kódolt MFS transzporter 25 % azonosságot, illetve 41% hasonlóságot mutat a *Salmonella enterica* Ents enterobaktin export fehérjéjével, ami a sziderofőr molekulák sejtből való kijutattásában játszik szerepet [159].

Egy másik, 17 kb hosszú genomi régióban a RER_27010 és RER_27050 közötti gén expressziós aktivitása is megemelkedett szénhidrogének hatására. Ez a régió egy nem riboszómális peptid szintázt (RER_27010) és sziderofőr transzportban résztvevő géneket kódol. Egy mostanában publikált tanulmányban bizonyították, hogy a RER_27010 gén terméke a heterobaktin szintezíséért felelős [117]. A heterobaktinok vas sziderofóron, amelyek jelenlétét *R. erythropolis*-ban és *Nocardia tenerifensis*-ben is igazolták [160,161]. A vas transzport rendszerek génjeinek expressziós elmelkedése szénhidrogének hatására azzal magyarázható, hogy az oxidációban szerepet játszó redox enzimek vasat tartalmaznak. Tehát a sejtök vas-igénye megnő szénhidrogénbontó körülmények között. Mason és munkatársai hasonló eredményre jutottak. Mikor megvizsgálták a BP Deepwater Horizont olajfúró torony balesete nyomán felszabadult olajfelhő metatranszkriptomját, a vas transzportban résztvevő gének expresszióját figyelték meg [162].

6.3.8. A génexpressziós vizsgálatok összefoglalása

A transzkriptomikai adatok (20., 23., 30. ábra) és a RT-qPCR vizsgálatok (20. ábra, 1. táblázat) eredménye alapján elmondható, hogy az alkB1 operon kifejeződése emelkedik meg a legjobban szénhidrogének jelenlétében. Ez arra enged következtetni, hogy az alkB1 operonról átíródó fehérjék játszák a fő szerepet az alkánok oxidációjában. Mindemellett az alkB2 operon és a cyp153 és kisegítő génjei is emelkedett expressziós aktivitással rendelkeznek alkánok jelenlétében. Az alkán oxidációiból származó alkoholok több lépésen keresztül zsírsavakká alakulnak, majd a zsírsavak a β-oxidációban hasznosulnak. Az alkoholok oxidációját végző enzimek génjeinek aktivitása nem, vagy csak kis mértékben változik hexadekán jelenlétében az acetáton nevelt kontrolhoz viszonyítva, de a transzkriptomikai adatok alapján ezen enzimek expressziós értéke már eleve magas acetát jelenlétében is. Ezzel szemben dízel olajon nevelt
kultúrák esetén mind az alkohol dehidrogenáz, mind pedig az aldehid dehidrogenáz enzimek expressziós aktivitása megemelkedik (30. ábra). A β-oxidációban résztvevő gének expressziója hexadekán és dízel olaj jelenlétében is megemelkedik. Ezzel szemben a zsírsavak szintéziséért felelős enzimek expressziója jelentősen csökken az alkán oxidációból származó zsírsavak megjelenésének hatására.

1. Táblázat: Géntermék vizsgálatára különböző szénforrásokon RT-qPCR segítségével

<table>
<thead>
<tr>
<th>Lókusz címke</th>
<th>HeD vs. A</th>
<th>HeDB vs. A</th>
<th>HeDC vs. A</th>
<th>DiO vs. A</th>
<th>Géntermék</th>
</tr>
</thead>
<tbody>
<tr>
<td>RER_07460</td>
<td>1271,3±79,8</td>
<td>1232,8±292,9</td>
<td>558,2±147,1</td>
<td>601,9±12,9</td>
<td>alkán-1-monooxigenáz (alkB1)</td>
</tr>
<tr>
<td>RER_21620</td>
<td>53,1±7,0</td>
<td>81,2±17,0</td>
<td>97,8±26,6</td>
<td>37,5±3,3</td>
<td>alkán-1-monooxigenáz (alkB2)</td>
</tr>
<tr>
<td>RER_24030</td>
<td>-2,5±0,1</td>
<td>Nem vizsgált</td>
<td>Nem vizsgált</td>
<td>-2,6±0,2</td>
<td>alkán-1-monooxigenáz (alkB3)</td>
</tr>
<tr>
<td>RER_54580</td>
<td>1,5±0,3</td>
<td>Nem vizsgált</td>
<td>Nem vizsgált</td>
<td>1,9±0,2</td>
<td>alkán-1-monooxigenáz (alkB4)</td>
</tr>
<tr>
<td>RER_03790</td>
<td>1,8±0,6</td>
<td>1,3±0,2</td>
<td>-1,3±0,1</td>
<td>2,9±0,9</td>
<td>Multicopper oxydase</td>
</tr>
<tr>
<td>pREL1_0260</td>
<td>1,9±0,2</td>
<td>1,5±0,4</td>
<td>1,5±0,06</td>
<td>4,0±0,4</td>
<td>CYP 153_1</td>
</tr>
<tr>
<td>pREL1_0283</td>
<td>11,2±1,4</td>
<td>12,1±0,7</td>
<td>14,3±0,3</td>
<td>8,1±0,2</td>
<td>CYP 153_2</td>
</tr>
<tr>
<td>RER_08960</td>
<td>2,0±0,2</td>
<td>2,5±0,1</td>
<td>3,9±0,6</td>
<td>-3,1±0,3</td>
<td>CYP 102</td>
</tr>
<tr>
<td>RER_07720</td>
<td>1,5±0,4</td>
<td>1,3±0,2</td>
<td>1,9±0,08</td>
<td>6,9±0,3</td>
<td>CYP 105</td>
</tr>
<tr>
<td>RER_08060</td>
<td>-1,1±0,9</td>
<td>-1,3±0,2</td>
<td>2,2±0,3</td>
<td>8,2±2,5</td>
<td>CYP ???</td>
</tr>
<tr>
<td>RER_33720</td>
<td>-2,0±0,1</td>
<td>1,7±0,5</td>
<td>6,2±0,5</td>
<td>10,0±0,4</td>
<td>CYP125</td>
</tr>
<tr>
<td>RER_33770</td>
<td>-2,1±0,1</td>
<td>1,2±0,3</td>
<td>5,5±0,6</td>
<td>3,7±0,3</td>
<td>CYP51B</td>
</tr>
<tr>
<td>RER_33790</td>
<td>-2,0±0,1</td>
<td>1,9±0,4</td>
<td>11,2±1,0</td>
<td>6,5±0,3</td>
<td>CYP123</td>
</tr>
<tr>
<td>RER_50030</td>
<td>-1,1±0,06</td>
<td>1,0±0,08</td>
<td>20,3±0,05</td>
<td>30,4±1,6</td>
<td>CYP136</td>
</tr>
<tr>
<td>RER_07440</td>
<td>3,4±0,5</td>
<td>4,1±0,4</td>
<td>15,0±1,3</td>
<td>25,4±0,7</td>
<td>feltételezett monooxigenáz</td>
</tr>
<tr>
<td>RER_53990</td>
<td>2,8±0,2</td>
<td>Nem vizsgált</td>
<td>Nem vizsgált</td>
<td>14,8±0,3</td>
<td>monooxigenáz</td>
</tr>
<tr>
<td>RER_04320</td>
<td>11,2±0,9</td>
<td>Nem vizsgált</td>
<td>Nem vizsgált</td>
<td>1,9±0,3</td>
<td>flavin tartalmú monooxigenáz</td>
</tr>
<tr>
<td>RER_10380</td>
<td>1,1±0,08</td>
<td>Nem vizsgált</td>
<td>Nem vizsgált</td>
<td>-1,3±0,09</td>
<td>FMN függő monooxigenáz</td>
</tr>
<tr>
<td>RER_11630</td>
<td>-1,3±0,2</td>
<td>Nem vizsgált</td>
<td>Nem vizsgált</td>
<td>-2,8±0,5</td>
<td>szteroid monooxigenáz</td>
</tr>
<tr>
<td>RER_58590</td>
<td>-5,3±1,3</td>
<td>Nem vizsgált</td>
<td>Nem vizsgált</td>
<td>-3,2±0,3</td>
<td>ssuD (alkán szulfonát monooxigenáz)</td>
</tr>
<tr>
<td>RER_47700</td>
<td>-2,1±0,1</td>
<td>Nem vizsgált</td>
<td>Nem vizsgált</td>
<td>-2,4±0,2</td>
<td>FMN függő monooxigenáz</td>
</tr>
<tr>
<td>RER_13180</td>
<td>4,7±0,2</td>
<td>Nem vizsgált</td>
<td>Nem vizsgált</td>
<td>43,9±3,0</td>
<td>Wzy</td>
</tr>
<tr>
<td>RER_13200</td>
<td>8,0±0,09</td>
<td>12,7±0,8</td>
<td>90,4±10,6</td>
<td>72,6±1,1</td>
<td>MATE domén tartalmú fehérje</td>
</tr>
<tr>
<td>RER_13270</td>
<td>4,8±1,4</td>
<td>Nem vizsgált</td>
<td>Nem vizsgált</td>
<td>18,2±0,8</td>
<td>Wzz</td>
</tr>
</tbody>
</table>

Ha aromás és alifás gyűrűs szénhidrogének is megtalálhatóak a szénforrásban (dízel olaj vagy gyűrűs vegyületekkel kevert hexadekán esetén) egyéb citokróm P450 monooxigenázok expressziója is megemelkedik, amelyek sem hexadekán, sem pedig elágazó alkánok jelenlétében nem mutatnak magas expressziós aktivitást (25., 27. ábra és 1. táblázat). Ezek az enzimek vehetnek részt a gyűrűs vegyületek oxidálásában az ugyancsak magasabb expresszióval rendelkező gyűrű hidroxiláló és gyűrű hasító dioxigenázokkal együtt (23. és 27. ábra).

Az exopoliszaccharid szintézisben résztvevő gének expressziója is megemelkedik szénhidrogének jelenlétében. Azonban a gyűrűs alkánokat és aromás vegyületeket tartalmazó szénhidrogén keverékek jóval nagyobb mértékben indukálják az exopoliszaccharidok
szintézisét (26., 27. ábra és 1. táblázat), ami arra utal, hogy nemcsak emulgeálószereként játszanak fontos szerepet a vízben nem oldódó szubsztrátok biodegradációjában, hanem a toxikus komponensek elleni védelemben is elengedhetetlen a jelenléttük.

A szénhidrogének biodegradációjára során az oxigenáz enzimek működéséhez elengedhetetlen a vas, így a transzporjáért felelős gněk expressziója is megemelkedik (30. ábra).

7. Összefoglalás

• Kutatómunkámban két *Rhodococcus erythropolis* törzs szénhidrogén-bontó képességét hasonlíttottam össze és megvizsgáltam a szénhidrogének lebontásának molekuláris biológiai hátterét.

• A két törzs szénhidrogén jelenlétében eltérően viselkedik. Míg a *R. erythropolis* PR4 emulzióba viszi a n-hexadekánt és a vizes fázisban szaporodik, a *R. erythropolis* MK1 biofilmet képez a n-hexadekán körül és a kultúra a két fázis határán gyűlik össze.

• A mikroszkópos vizsgálatok alapján a mindkét törzs a n-hexadekán cseppek felszínén szaporodik, viszont a cseppek alakja különbözik egymástól. *R. erythropolis* PR4 kultúrában az olajcseppeknek szabályos gömb alakja van, ezzel szemben az MK1 kultúrából származó olajcseppek alakja amorf.-

• A kétségben szénhidrogén-bontó képessége is eltér egymástól. A *R. erythropolis* PR4 már három nap alatt lebontja a rendelkezésére álló n-hexadekán 90 %-át, míg a MK1 csak a szubsztrát 50 %-át hasznosítja két hét alatt.

• A magas sókoncentráció mindkét törzs esetén lassítja a bontás sebességét, a PR4 csak a 7. napra érte el a 90 %-os bontási hányadot, míg az MK1 15 nap alatt csak 31 %-ot bontott le.

• A talajban mindkét törzs hasonló szénhidrogén-bontó aktivitást mutat.

• A talaj nedvességtartalma befolyásolja a szénhidrogén-bontás hatékonyságát. Az optimális 50 %-os nedvességtartalom mellett mindkét törzs 90-100 %-os bontási hatékonyságot ér el, míg 20 % és 30 % talajnedvesség értékek mellett a szénhidrogén bontási aktivitás 40 %-kal csökkenn. Az oxidén- és szén-méreg alapján a felvett szénhidrogén hasznosulásának aránya mindkét törzsben hasonlóan alakul minden vizsgált tápközegben. A n-hexadekán megközelítőleg 2%-a alakul át szén-dioxidába, míg a szubsztrát 98 %-a a sejt felépítő folyamatáiban vesz részt.

• A két törzs talajban hasonló arányban hasznosítja a felvett oxigént. Az n-hexadekán oxidálására az oxigén megközelítőleg 70 %-át fordítja, míg egyéb oxidatív folyamatokban 30 % vesz részt.

• A *R. erythropolis* PR4 törzs minimál tápoldatban hasonló arányban használja fel az oxigént, mint talajban, viszont a magas sókoncentráció hatására ez az arány eltolódik. Az eredmények alapján a sós tápoldatban szaporított kultúrák a felvett
oxigén 89,5%-át hasznosítják a monooxigenáz reakcióban. Ezzel szemben a R. erythropolis MK1 törzs mindkét tápoldatban az oxigén 90 %-át fordítja monooxigenáz reakcióra.

- A kultúrák szén-dioxid termelésének vizsgálata alapján a két Rhodococcus törzs eltérően viselkedik különböző gázolaj frakciók jelenlétében is. Az R. erythropolis MK1 sokkal lassabban szaporodik mind a négy szénforrásként alkalmazott frakció, mint a PR4. A törzs szaporodása a petróleum frakció a leglassabb. Ez magyarázható a cyp153 gének hiányával, amik az alacsonyabb szénatom számú szénhidrogének oxidálására képesek.

- Az R. erythropolis MK1 genom de novo összerakásához hosszú párosított végű leolvasásokat eredményező szekvenálásokat végeztünk Illumina MiSeq új generációs szekvenáló rendszeren.

- A genom 40 kontigba szerelődött össze és 6 252 gén található rajta.

- A két törzs kromoszómája nagymértékben hasonlít. Ugyanakkor a R. erythropolis PR4 plazmidjaihoz hasonló szekvencia nem található az MK1 törzs genomjában.

- Mindkét törzs genomjában találhatók olyan monooxigenáz gének, amelyek az alkánok lebontását katalizálhatják. Ezek közül kiemelendők az alkB gének, melyekből a PR4 genomja négyet, az MK1 genomja pedig ötöt tartalmaz.

- A filogenetikai vizsgálatok alapján csak az alkB3 és alkB4 gén van közeli rokonságban egymással, a másik két alkB gén különböző csoportokba sorolható, ami felveti a horizontális géntranszfer lehetőségét.

- A szénhidrogének oxidációjában résztvevő másik enzim csoportja a citokróm P450 monooxigenázok csoportja, melyekből a PR4 törzs genomja 16-ot, míg az MK1 törzs genomja csupán 11-t kódol.

- A citokróm P450 fehérjecsaládba tartozó Cyp153 génje két kópiában található meg a R. erythropolis PR4 nagy lineáris plazmidján. A szekvenálási eredmények alapján ezeknek a géneknek a szekvenciájának hiányoznak a R. erythropolis MK1 genomjából.

- A megszekvenált R. erythropolis MK1 genomban található 20. kontig feltételezhetően egy orvosiplazmid, melyhez egyetlen ismert Rhodococcus plazmid sem hasonlít.

- Az R. erythropolis PR4-et teljes transzkriptom analízise alapján mind hexadekán, mind pedig gázolaj jelenlétében az alkB1 gén és a környezetében található kisegítő gének rendelkezett a legmagasabb expressziós aktivitással az oxigenázok közül.
• A genomban található másik három alkB gén közül csak az alkB2 kifejeződése emelkedett meg szénhidrogének jelenlétében. Az alkB3 és alkB4 expressziója változatlan maradt.
• A gázolajon szaporított kultúrákban 9 cyp gén expressziója változott, ezzel szemben a hexadekánon mindössze 1.
• A 9 cyp génből 5 indukálódott gyűrűs szénhidrogénekkel kevert hexadekánon nevelt kultúrákban, amiből az a következtetés vonható le, hogy ezek a gének játszhatnak szerepet a gyűrűs szénhidrogének oxidációjában.
• Egy feltételezett monooxigenáz gén (RER_07440) kifejeződése is erősebb volt gyűrűs vegyületeket tartalmazó szénforrásokon, mint hexadekánon, vagy elágazó szénhidrogénekkel tartalmazó szénforrásokon, ami arra utal, hogy ez a gén is a gyűrűs vegyületek oxidálásában játszik szerepet.
• A zsírsav metabolizmusban résztvevő gének közül azok expressziós aktivitása emelkedett meg mindkét szénhidrogén szénforrásban, melyeknek termékei a β-oxidációban játszanak szerepet.
• A zsírsavak felépítésében résztvevő FASI enzimet kódoló gén kifejeződését erősen gátolta a szénhidrogének jelenléte.
• A mikolsavak szintézisében résztvevő FASII enzimrendszer és a poliketid szintáz 13 expressziója nem változott egyik szénforrás jelenlétében sem.
• Az exopoliszacharid szintézisért felelős gének kifejeződésének megemelkedését is megfigyeltük mind n-hexadekánon, mind pedig dízel olajon. A dízel olaj 4-10-szer erősebben indukálta ezeket a géneket, ami a dízel egyes komponenseinek toxikus hatására vezethető vissza.
• A fentieken kívül a vas transzportban és sziderofór szintézisben résztvevő géneket is indukálták a szénhidrogének.
8. Summary

- During my research, I compared the efficiency of hydrocarbon biodegradation by two *Rhodococcus erythropolis* strains and examined the molecular biological background of the biodegradation process.
- The strains had different appearance in the presence of hydrocarbons. *R. erythropolis* PR4 emulsified the hexadecane in water while *R. erythropolis* MK1 formed biofilm on the n-hexadecane layer and grew on the border of the two phases.
- Light microscopic study of the cultures revealed that both strains have grown on the surface of the n-hexadecane droplets but the shapes of the droplets were different.
- The *R. erythropolis* PR4 degraded 90% of n-hexadecane until the third day of the incubation in minimal medium, while the strain MK1 degraded only 50% of it in two weeks.
- The efficacy of biodegradation dropped under high salinity conditions for both strains. Strain PR4 reached 90% biodegradation yield only in 7 days, while strain MK1 was able to utilize only 31% of the n-hexadecane in 15 days.
- In potting soil, both strains had similar hydrocarbon degrading activity.
- Soil moisture influenced the efficacy of the degradation. At 50% soil moisture, both strains reached 90-100% biodegradation yield. This moisture value was optimal for the hydrocarbon biodegradation. At 20% and 30% moistness the efficacy decreased with 40%.
- According to the calculations based on the oxygen and hexadecane consumption and CO₂ production, the utilization of the n-hexadecane had similar rates in both strains in all niches examined. Approximately 2% of the n-hexadecane was converted into carbon dioxide, while the other 98% was utilized in biomass formation.
- The strains could utilize the oxygen in various biochemical processes in similar ratios: 70% of the consumed oxygen is used for the monoterminal/subterminal oxidation of n-hexadecane, while 30% is harnessed in other oxidative reactions.
- The *R. erythropolis* PR4 strain capitalized the oxygen in minimal medium similarly as compared to potting soil, however, the ratio mentioned above was shifted by high salinity. In salty medium 89.5% of the oxygen is used in the monooxygenase
reaction. In contrast, this value is 90 % for *R. erythropolis* MK1 strain in both minimal and saltwater medium.

- Based on the carbon dioxide evolution of the cultures the two bacteria could distinctly grow on various gasoline fractions. The *R. erythropolis* MK1 could grow much slower on all the four diesel oil fractions than the PR4 strain could. The growth rate of the MK1 is the slowest on the petroleum fraction, which can be interpreted by the absence of the *cyp153* genes (see below).

- We performed a whole genome sequencing of *R. erythropolis* MK1 on Illumina MiSeq next generation sequencing platform, which yields long paired end reads suitable for *de novo* assembly.

- The genome was assembled into 40 contigs and 6’252 orfs could be identified by RAST.

- The chromosomes of the two strains highly substantially resembled, however there are no sequences could be detected in the *R. erythropolis* MK1 genome which are similar to the plasmids harboured by the strain PR4.

- Both genomes encode monooxygenases which may be involved in the oxidation of hydrocarbons. The *alkB* gene products can be the most relevant in alkane biodegradation from which there are 4 copies in the PR4 and 5 copies in the MK1 genome.

- Based on phylogenetic analysis, *alkB3* and *alkB4* are close to each other, while the other two *alkB* genes are on different branches of the phylogenetic tree. This suggests the possibility of horizontal gene transfer of *alkB* genes.

- The other enzyme group participating in hydrocarbon oxidation is the cytochrome P450 monooxygenase superfamily, the strain PR4 harbours 16 genes, while strain MK1 possesses only 11.

- Two *cyp153* cytochrome P450 monooxygenase genes are present on the large linear plasmid of *R. erythropolis* PR4. Sequencing data revealed that these genes are absent in the genome of *R. erythropolis* MK1.

- In the *R. erythropolis* MK1 genome, contig 20 is likely a megaplasmid which does not have similarity with any of known rhodococcal plasmids.

- Many genes involved in alkane oxidation had elevated mRNA level in the presence of diesel oil and n-hexadecane, as well. The *alkB1* possessed the highest expression level among monooxygenases on both carbon sources.
• From the other three alkB genes, only alkB2 had elevated expression level in the presence of hydrocarbons. The alkB3 and alkB4 genes were not induced on any hydrocarbon carbon sources.
• In cells grown on diesel oil, there were 9 cyp genes which had elevated expression. In contrast, only one cyp gene was induced by n-hexadecane.
• Out of these 9 cyp genes, 5 were induced by aromatics and cycloalkanes. These five genes can be involved in the oxidation of aromatic or aliphatic rings.
• A putative monooxygenase gene (RER_07440) had stronger expression in the presence of aromatics and cycloalkanes compared to hexadecane and branched chain alkanes. We concluded that this monooxygenase is also involved in the oxidation of aromatics and cycloalkanes.
• Among the genes involved in fatty acid metabolism, only those were upregulated which were involved in the β-oxidation
• The gene coding for FASI enzyme, being responsible for fatty acid biosynthesis was extremely downregulated in the presence of hydrocarbons.
• The expression of FASII enzyme system and the polyketid synthase 13 was not changed in the presence of hydrocarbons.
• We observed an upregulation of the genes involved in exopolysaccharide biosynthesis in cells grown on all examined hydrocarbon carbon sources. Fold change of the gene expression was 4-10 times higher in the presence of diesel oil and the artificial mixture containing aromatics and cycloalkanes. These results can be explained by the toxicity of the aromatic cycloalkane components.
• In addition, the genes involved in iron transport and siderophore biosynthesis were also induced by hydrocarbons.
<table>
<thead>
<tr>
<th>Lókusz azonosító</th>
<th>Oligonukleotid neve</th>
<th>Bázissorrend (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RER_07460</td>
<td>Oalkb1F3</td>
<td>GCCTTCTTCCCTGCTTGCTA</td>
</tr>
<tr>
<td></td>
<td>Oalkb1R3</td>
<td>CTCGACGCTCTCCTCTTTG</td>
</tr>
<tr>
<td>RER_21620</td>
<td>Oalkb2F</td>
<td>CTGCTCGAAACCGTGCAACTA</td>
</tr>
<tr>
<td></td>
<td>Oalkb2R</td>
<td>GGAAGATGTGTTGGACTGAG</td>
</tr>
<tr>
<td>RER_24030</td>
<td>OalkB3F</td>
<td>GCCAACTATATCGAGCCTAC</td>
</tr>
<tr>
<td></td>
<td>OalkB3R</td>
<td>CTGTGACGCTGAAGGTTGAG</td>
</tr>
<tr>
<td>RER_54580</td>
<td>OalkB4F</td>
<td>TCTCTCTAGGCAACTCTAC</td>
</tr>
<tr>
<td></td>
<td>OalkB4R</td>
<td>AGAAACTCCAGAACTCTCA</td>
</tr>
<tr>
<td>RER_r0040</td>
<td>ORE16SF3</td>
<td>GAATCCGTGCGTAGCATAAC</td>
</tr>
<tr>
<td></td>
<td>ORE16SR3</td>
<td>AAGGTTCCTTCGCTGGCATC</td>
</tr>
<tr>
<td>RER_03790</td>
<td>Omco1_F3</td>
<td>TACGACTCTCTCGAGATT</td>
</tr>
<tr>
<td></td>
<td>Omco1_R3</td>
<td>AACGCGGAGCATAGCTCTC</td>
</tr>
<tr>
<td>pREL1_260</td>
<td>OREL1_260F</td>
<td>ATGACCTGCGAAGGAGAG</td>
</tr>
<tr>
<td></td>
<td>OREL1_260R</td>
<td>GTCTGACGCTCTCGAGAGT</td>
</tr>
<tr>
<td>pREL1_283</td>
<td>OREL1_283F</td>
<td>GAGTTCTGGCAGACTTATA</td>
</tr>
<tr>
<td></td>
<td>OREL1_283R</td>
<td>GGTTCCCTTGGCAGCTCTC</td>
</tr>
<tr>
<td>RER_04320</td>
<td>ORER_04320F</td>
<td>GCGCAGACAGGTCAAAGA</td>
</tr>
<tr>
<td></td>
<td>ORER_04320R</td>
<td>AACCAGTCGTTGGACGAGA</td>
</tr>
<tr>
<td>RER_07440</td>
<td>ORER_07440F</td>
<td>CCGAAATGTGCTGAGAAGG</td>
</tr>
<tr>
<td></td>
<td>ORER_07440R</td>
<td>GAACGTTGCGACTGAGAA</td>
</tr>
<tr>
<td>RER_07720</td>
<td>ORER_07720F</td>
<td>AGCGGCTATTTCCTCGGTAG</td>
</tr>
<tr>
<td></td>
<td>ORER_07720R</td>
<td>GTCGACGAGTTCCTGGA</td>
</tr>
<tr>
<td>RER_08060</td>
<td>ORER_08060F</td>
<td>GACTCTCGATACGAAACCT</td>
</tr>
<tr>
<td></td>
<td>ORER_08060R</td>
<td>GTACCATGATCTTGCAGAG</td>
</tr>
<tr>
<td>RER_08690</td>
<td>ORER_08690F</td>
<td>CGGCAAGTGATCCGATGAA</td>
</tr>
<tr>
<td></td>
<td>ORER_08690R</td>
<td>TTGATGGCGGAGAGTGAAG</td>
</tr>
<tr>
<td>RER_10380</td>
<td>ORER_10380F</td>
<td>GGAATTCCAACCTCGGCTAC</td>
</tr>
<tr>
<td></td>
<td>ORER_10380R</td>
<td>TACGCGTGTGAGCTACT</td>
</tr>
<tr>
<td>Lókusz azonosító</td>
<td>Oligonukleotid neve</td>
<td>Bázissorrend (5’-3’)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>RER_13180</td>
<td>ORER_13180F</td>
<td>GTTGCCCTATCGCGGAATCT</td>
</tr>
<tr>
<td></td>
<td>ORER_13180R</td>
<td>CATGAGCATGACAGCAACAAG</td>
</tr>
<tr>
<td>RER_13200</td>
<td>ORER_13200F</td>
<td>CACTTGCACTCGTGACCTATAC</td>
</tr>
<tr>
<td></td>
<td>ORER_13200R</td>
<td>GCAAACGGCACGGATCTAT</td>
</tr>
<tr>
<td>RER_13270</td>
<td>ORER_13270F</td>
<td>GCAGCGAGTTCTGTCTCTATAC</td>
</tr>
<tr>
<td></td>
<td>ORER_13270R</td>
<td>CCAACTCTTCAGCCGACAT</td>
</tr>
<tr>
<td>RER_13630</td>
<td>ORER_13630F</td>
<td>ACGAACTACTACCAGAGCTACA</td>
</tr>
<tr>
<td></td>
<td>ORER_13630R</td>
<td>GCCGTCTTGATTCAGTCTC</td>
</tr>
<tr>
<td>RER_33720</td>
<td>ORER_33720F</td>
<td>ACACGTCTCCTCATCAAACAAGG</td>
</tr>
<tr>
<td></td>
<td>ORER_33720R</td>
<td>CCGACGCTATGTCTTCTGC</td>
</tr>
<tr>
<td>RER_33770</td>
<td>ORER_33770F</td>
<td>TTCATCTCGATGATGTTGTCG</td>
</tr>
<tr>
<td></td>
<td>ORER_33770R</td>
<td>CGTCGAGATGACATTGTGC</td>
</tr>
<tr>
<td>RER_33790</td>
<td>ORER_33790F</td>
<td>TACCACCTTTACGACGATCC</td>
</tr>
<tr>
<td></td>
<td>ORER_33790R</td>
<td>GAGACGCTTTGTGTTCTTGA</td>
</tr>
<tr>
<td>RER_14080</td>
<td>ORER_14080F</td>
<td>CAGTATGCGAGGCGATT</td>
</tr>
<tr>
<td></td>
<td>ORER_14080R</td>
<td>CTGATTCAGGAGGAGAAC</td>
</tr>
<tr>
<td>RER_46450</td>
<td>ORER_46450F</td>
<td>TGTGGTCAATCCGATGTCCA</td>
</tr>
<tr>
<td></td>
<td>ORER_46450R</td>
<td>ATGATTCGGCACGTTGTATC</td>
</tr>
<tr>
<td>RER_46530</td>
<td>ORER_46530F</td>
<td>GGAATTTCTACCCGACCTCAA</td>
</tr>
<tr>
<td></td>
<td>ORER_46530R</td>
<td>CAGAGCCTTCGCTTCTTCTT</td>
</tr>
<tr>
<td>RER_47700</td>
<td>ORER_47700F</td>
<td>GACACAGAAACACACGTACAA</td>
</tr>
<tr>
<td></td>
<td>ORER_47700R</td>
<td>GGAAATTCTCTCCGGTCCAAG</td>
</tr>
<tr>
<td>RER_50030</td>
<td>ORER_50030F</td>
<td>GATTGTTTCTCCGTCCTTGT</td>
</tr>
<tr>
<td></td>
<td>ORER_50030R</td>
<td>AAAGGGTGATCGTGAAGTG</td>
</tr>
<tr>
<td>RER_53990</td>
<td>ORER_53990F</td>
<td>CTACAACATCGACAAGGCGTAC</td>
</tr>
<tr>
<td></td>
<td>ORER_53990R</td>
<td>CCGATGACCACACTACCTTCTT</td>
</tr>
<tr>
<td>RER_58690</td>
<td>ORER_58690F</td>
<td>TTTCAACCAGGGTTCCTTC</td>
</tr>
<tr>
<td></td>
<td>ORER_58690R</td>
<td>CCTCCACCACCTGATGATGT</td>
</tr>
<tr>
<td>RER_38730</td>
<td>FASIO03</td>
<td>CTGTGCGTACGTCATGTC</td>
</tr>
<tr>
<td></td>
<td>FASIO04</td>
<td>ACGTTCGAACCTGTCATCT</td>
</tr>
</tbody>
</table>
Irodalomjegyzék

42. Zampolli J, Collina E, Lasagni M, Di Gennaro P. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in

Saját közlemények jegyzéke

Szakmai folyóiratban megjelent cikkek

A Ph.D. fokozatszerzéshez felhasznált publikációk

2015.
A dolgozat alapját képző elsőszerzős publikáció:

Impakt faktor: 3,337

A dolgozat alapjául nem szolgáló, de hozzá szorosan kapcsolódó publikáció:

Impakt faktor: 2,131

Egyéb publikációk

2014.
Gábor Rákhely, Balázs Bálint, Rita Béres, Ágnes Kis, Kornél Kovács, Krisztián Laczi, Andrea Nyilasi, András Fülöp, Zoltán Bagi, Etelka Kovács, Gergely Maróti, Katalin Perei. Production of gaseous biofuels and fine chemicals from food industrial wastes. New Biotechnology 2014. 31:S103

Impakt faktor: 2,898

2013.

Tímea Mosolygó; Gabriella Spengler; Valéria Endrész; Krisztián Laczi; Katalin Perei and Katalin Burián. IL-17E production is elevated in the lungs of BALB/c mice in the later stages of Chlamydia muridarum infection and re-infection. 2013. IN VIVO 27:(6) pp. 787-792.

2013.

Timea Mosolygó; Gabriella Spengler; Emese Petra Balogh; Valéria Endrész; Krisztián Laczi; Katalin Perei; Katalin Burián. (2013) IL-17E production is elevated in the lungs of BALB/c mice in the later stages of Chlamydia muridarum infection and reinfection. Acta Microbiologica et Immunologica Hungarica 60:(suppl.1) pp. 189-190. IV. CEFORM 2013. október 16-18. Keszthely, Magyarország

2012.

Krisztián Laczi; Ágnes Kis; Kornél L. Kovács; Gábor Rákhely; Katalin Perei. Microbial tools for removal of unctuous pollutants. Lacremed 2012.08.31. Szeged, Magyarország

Krisztián Laczi; Ágnes Kis; Emese Bató; Kornél L. Kovács; Gábor Rákhely; Katalin Perei. (2012) Biodegradation of food industrial and housekeeping wastes. Wastestorming "2012" An International Conference on Waste Management. 2012.03.01. Pécs, Magyarország

Ágnes Kis; Dominika Olasz; Krisztián Laczi; Gábor Rákhely and Katalin Perei. (2013) Effect of immobilization of cells and/or presence of cyclodextrin on biodegradation of hydrophobic comounds. Acta Microbiologica et Immunologica Hungarica 60:(Suppl.1) pp. 32-33.
Ágnes Kis; Krisztián Laczi; Kovács L. Kornél; Gábor Rákhely; Katalin Perei. **Microbial solution for removal of hydrocarbon.**
Wastestorming "2012" An International Conference on Waste Management. 2012.03.01. Pécs, Magyarország

Kis Ágnes; Laczi Krisztián; Tengőlcs Roland; Zsíros Szilvia; Kovács L Kornél; Rákhely Gábor; Perei Katalin. **Kőölaj és élelmiszeripari hulladékok biodegradációja.** Környezettudományi Doktori Iskolák Konferenciája 2012.08.30-31. Budapest, Magyarország ISBN: 978-963-315-066-5

Gábor Rákhely; B Hegedűs; M Magony; Krisztián Laczi; A Tóth; G Maróti; F K Medzihradszky; K L Kovács; K Perei. (2012) **Metabolism of sulfonated aromatic compounds in Novosphingobium subarcticum SA1 strain;** Environmental Engineering and Management Journal 11:(3/Suppl.) p. S5.

Poszterek
2015.

2013.
Ágnes Kis; Krisztián Laczi; Andrea Hajdú; Árpád Szilágyi; Gábor Rákhely; Katalin Perei. (2013) Efficient removal of unctuous wastes from wastewater. APCBEES 2013.04.21 Peking, Kína

2012.

András Tóth; Krisztián Laczi; Gábor Rákhely and Kornél L. Kovács. Production of glycoamylase enzyme variants in Pichia pastoris expression systems. Pichia 2012 Conference 2012.02.29-03.03. Alpbach, Austria

Botond Hegedűs; Katalin Perei; Mónika Magony; Krisztián Laczi; András Tóth; Kornél L Kovács; Gábor Rákhely. Metabolic and protein-protein interactions of sulfanilic acid

Egyéb közlemények

Laczi Krisztián; Kis Ágnes; Bodor Attila; Rákhely Gábor és Perei Katalin. „Olajfaló” baktériumokkal a szénhidrogén szennyeződések elleni harcban. Zöld Újság XI. évfolyam 3. szám (2013)