TiO$_2$-C kompozitok szerkezetének és fotokatalitikus tulajdonságainak vizsgálata

Ph.D. értekezés

Vajda Krisztina

Témavezető:
Dr. Pap Zsolt

Környezettudományi Doktori Iskola

Környezettudományi és Műszaki Intézet

SZTE TTIK

Szeged 2016
mottó

„Véletlen. Minden a véletlenen műlik. Ezt természetesen egyetlen tudós sem vallaná be, de a nagy találmányok többsége úgy jött létre, hogy a felfedező valami egészen más problémát kívánt megoldani.”

Julia Quinn
Tartalom

Rövidítések jegyzéke ........................................................................................................ 4

1. Bevezetés ...................................................................................................................... 5

2. Irodalmi áttekintés ...................................................................................................... 7

  2.1. Szennyezőanyagok átalakítása - heterogén fotokatalízis .................................. 7

  2.2. Félvezető anyagok ............................................................................................... 9

  2.3. Titán-dioxid .......................................................................................................... 10

    2.3.1. A TiO2 emberre gyakorolt hatása ............................................................... 11

    2.3.2. TiO2 a fotokatalízisben .............................................................................. 11

    2.3.3. A TiO2 előállítása ....................................................................................... 14

    2.3.4. A TiO2 kristályoldalainak fotokatalitikus aktivitásban játszott szerepe .... 15

  2.4. A TiO2 kombinálása különböző szénfajtákkal ..................................................... 23

    2.4.1. Titán-dioxid - szén nanocső kompozitok (TiO2-CNT) ................................. 27

3. Célkitűzés ...................................................................................................................... 30

4. Felhasznált anyagok és módszerek ....................................................................... 31

  4.1. Felhasznált anyagok ............................................................................................. 31

    4.1.2. A hidrotermális kristályosításnál alkalmazott anyagok ............................ 31

    4.1.3. Az előállított fotokatalizátorok tisztítására használt anyagok .............. 31

    4.1.4. Alkalmazott modellszennyezők ............................................................... 32

    4.1.5. Nagyhatékonyságú folyadékkromatográfiás eljárás során használt eluensek 32

    4.1.6. Alkalmazott szénfajták .............................................................................. 32

  4.2. Az anyagok előállításánál alkalmazott berendezések .......................................... 32

    4.2.1. Szárítószekrény ......................................................................................... 32

    4.2.2. Kalcináló kemence ..................................................................................... 32

    4.2.3. A fotokatalitikus aktivitás megállapításához használt berendezések .... 33

4.3. Az előállított minták jellemzésére használt módszerek ...................................... 34

    4.3.1. Röntgendiffrakciós mérések .................................................................... 34

    4.3.2. Fajlagos felület meghatározása N2 adszorpcióval .................................. 34

    4.3.3. Termogravimetria ...................................................................................... 35

    4.3.4. Elektronmikroszkópos vizsgálatok ............................................................ 35

    4.3.5. Röntgen-fotoelektron spektroszkópia (XPS) ............................................. 36

    4.3.6. Diffúz reflexiós spektrometria .................................................................. 36

    4.3.7. Fotokatalitikus mérések során használt eszközök ................................. 37

5. Kísérleti rész .............................................................................................................. 38
5.1. TiO$_2$-szén nanocső kompozitok előállítása mechanikai keveréssel: Ultrahangozás .................................................................................................................................................................................. 38
5.1.1. Ultrahangozásos módszer I. .............................................................................................................................. 38
5.1.2. Ultrahangozásos módszer II. .......................................................................................................................... 38
5.2. Hidrotermális kristályosítás ..................................................................................................................................... 38
5.2.1. Nano-, ill. mikroméretű TiO$_2$ lapok előállítása .................................................................................................. 38
5.2.2 TiO$_2$ nanorészecske-aggregátumok előállítása ............................................................................................... 39
6. Eredmények és értékelésük ........................................................................................................................................ 40
6.1. Fizikai keveréssel előállított TiO$_2$ -CNT kompozitok vizsgálata .............................................................................. 40
6.1.1. Ultrahangozás I. módszerrel készült kompozitok vizsgálata .............................................................................. 40
6.1.2. Ultrahangozásos módszer II. módszerrel készült kompozitok vizsgálata ......................................................... 46
6.2. Hidrotermális kristályosítással előállított TiO$_2$-CNT kompozitok vizsgálata ................................................... 48
6.2.1. A hidrotermális kezelési idő hatása ................................................................................................................ 49
6.2.2. A HF szerepe ............................................................................................................................................... 51
6.2.3. A kalcinálás hatása ....................................................................................................................................... 54
6.2.4. Az átkristályosodás lehetséges mechanizmusa .......................................................................................... 62
6.2.5. A fenol fotokatalitikus átalakítása UV-megvilágítás hatására ......................................................................... 64
6.3. Hidrotermális kristályosítással előállított TiO$_2$ aggregátumok és egyedi kristályok tulajdonságainak összehasonlítása ............................................................................................................ 67
6.3.1. A tojás alakú TiO$_2$ agglomerátum szerkezete ............................................................................................... 67
6.3.2. A TiO$_2$ egyedi kristálylapok szerkezete ...................................................................................................... 71
6.3.4. Agglomerátumok - egyedi kristályok optikai tulajdonságai ......................................................................... 73
6.3.5. Agglomerátum - egyedi kristályok fotokatalitikus aktivitása ......................................................................... 73
6.4. Hidrotermális TiO$_2$ kristályosítás különböző szénfajtákon .................................................................................. 77
6.4.1. Kristályszerkezeti és morfológiai vizsgálatok ............................................................................................... 77
6.4.2. Termogravimetriás mérések eredménye ....................................................................................................... 82
6.4.3. Optikai tulajdonságok meghatározása .......................................................................................................... 82
6.4.4. TiO$_2$ -C minták fotokatalitikus aktivitásának vizsgálata ................................................................................ 83
Köszönetnyilvánítás ......................................................................................................................................................... 86
Irodalomjegyzék ......................................................................................................................................................... 87
Összefoglalás ....................................................................................................................................................... 97
Summary .............................................................................................................................................................. 99
Függelék ............................................................................................................................................................ 101
Rövidítések jegyzéke

Ae: Aerogél - Aerogél
AC: Activated carbon - Aktív szén
CAe: Carbon Aerogel - Szén aerogél
CF: Carbon Fiber - Szénszál
HPLC: High-performance liquid chromatography - Nagyhatékonyságú folyadékkromatográfia
HRTEM: High resolution transmission electron microscopy - Nagyfelbontású transzmissziós elektronmikroszkópia
Gr: Graphite - Grafit
MWCNT: Multi Walled Carbon Nanotube - Többfalú szén nanocső
ML: Mikrolap
MT: Mikrotojás
SEM: Scanning electron microscopy - Pásztázó elektronmikroszkópia
SWCNT: Single-walled carbon nanotube - Egyfalú szén nanocső
TEM: Transmission electron microscopy - Transzmissziós elektronmikroszkópia
TG: Thermogravimetry - Termogravimetria
UH: Ultrahang
UV: Ultraviolet - Ultraibolya
VOC: Volatile Organic Compounds
XRD: X-ray diffraction - Röntgendiffrakció
1. Bevezetés

Földünk utóbbi évtizedeinek legaggasztóbb problémái közé tartozik a tiszta víz, az elegendő élelem és a hasznosítható energia kérdésköre; valamint a különböző, környezetünket szennyező káros anyagok ártalmatlanításának megoldása. Korunk kutatóinak feladata, hogy hatékony és fenntartható módszereket dolgozzanak ki ezek megoldására, a környezet további szennyezése nélkül.

Költség-, és egyben energiahatékony módszer olyan technológia alkalmazása, amely során az energiát valamely megújuló forrásból fedezzük. Ezek egyike a napenergia, amelynek hasznosítása számított kutatás tárgya, szükebb területe pedig a napfény energiájának átalakítása félvezetők segítségével, különböző kémiai folyamatokban. Itt kapcsolódik össze a tiszta ivóvíz és a napfény kihasználásának lehetősége, ugyanis bizonyos félvezető anyagokban megfelelően nagy energiájú fénnyel való megvilágítás (≥ 390 nm) hatására (pl. a napfény által gerjesztve) gerjesztődnek és elektron-lyuk párok (e⁻/h⁺) keletkeznek. Az így előállított töltéshordozók pedig a velük érintkező anyagokkal reagálva reaktív gyököket generálnak, amelyek különböző szennyezőanyagok átalakítását segítségével előállítják.

Nagy kihívást jelentő terület tehát a napfény energiaja egy részét elvezető félvezető tulajdonságú titán-dioxid, amelyet nemcsak víz- és levegőtisztítási célokat, hanem másra is, mint például baktériumok ártalmatlanítására is hatékonynak találtak. A TiO₂-dal kapcsolatos probléma, hogy a napsugárzás UV-komponensének energiája elegendő csak a gerjesztéséhez (ami az e⁻/h⁺ párt létrehozza), valamint a keletkező töltéshordozók rekombinációja igen gyors. Megoldást jelent erre a félvezető tulajdonságú titán-dioxid, amelyet nemcsak víz- és levegőtisztítási célokat, hanem másra is, mint például baktériumok ártalmatlanítására is hatékonynak találtak. A TiO₂-dal kapcsolatos probléma, hogy a napsugárzás UV-komponensének energiaja elegendő csak a gerjesztéséhez (ami az e⁻/h⁺ párt létrehozza), valamint a keletkező töltéshordozók rekombinációja igen gyors. Nagy kihívást jelentő terület tehát a napfény energiaja egy részét elvezető félvezető tulajdonságú titán-dioxid, amelyet nemcsak víz- és levegőtisztítási célúak, hanem másra is, mint például baktériumok ártalmatlanítására is hatékonyának találtak. A TiO₂-dal kapcsolatos probléma, hogy a napsugárzás UV-komponensének energiaja elegendő csak a gerjesztéséhez (ami az e⁻/h⁺ párt létrehozza), valamint a keletkező töltéshordozók rekombinációja igen gyors.

A heterogén fotokatalizátorok aktivitásának növelése (a szennyezőanyagok hatékonyabb ártalmatlanítása) más “oldalról” is megközelíthető, azaz a félvezető fémosidok megfelelő (aktiv) kristályoldalainak maximalizálásán keresztül. A munkám ennek a részében többfázis szén nanocsövet (MWCNT), alkalmaztam kristályosítást előállítására, amelyet a fémosidokkal reaktív reagensként, egy egyszerű, biztonságos előállítási módszernél, amely során TiO₂ nano/mikrokristályokat állítottam elő, domináns (001) kristályoldallal, már az első lépésben. A hidrotermális eljárásnál a szén nanocső nemcsak, mint gerjesztéskor a töltések rekombinációját csökkentő komponens, hanem, mint göképző is jelen
volt a rendszerben. Ezt a kísérleti megközelítést más szentípussal is kipróbáltam annak céljából, hogy megvizsgáljam, a promotőr hatással van-e a keletkező titán-dioxid részecskék tulajdonságaira. Attól függően, hogy milyen hosszú volt a kristályosítási idő, illetve milyen szentípust használtam, különböző tulajdonságú TiO$_2$-”C” kompozit anyag keletkezett. A kristályosítás fokát növelendő, utólagos kalcinálást is alkalmaztam, amelynek részletesebb vizsgálata a kristályosítás átalakulásába engedett betekintést. Következő lépésnél a kristályossági fok növelése céljából kalcináltam a katalizátorokat, ezzel sajátos struktúrákat állítottam elő a kristályok felszínén és belsejében, amelyek az átkristályosodás hatására keletkeztek. Ezek az anyagok a fotokatalitikus aktivitás vizsgálata során jelentősebb aktivitást képviseltek, mint a nem-kalcinált katalizátorok. A kompozitok fotokatalitikus aktivitását fenol és rodamin B modellvegyületen végeztem, az előbbi felszín alatti vizeink gyakori szennyezőanyag típusa, utóbbi pedig egy széles körben alkalmazott festék molekula.

A fotokatalitikus hatékonyság növelésének egyik módja tehát az egyedi kristályok alakjának szabályozása, amely az aktív kristályoldal „növesztését” is magába foglalja. A másik lehetőség, amikor az egyedi, nanoméretű kristályokból felépülő nagyobb, hierarchikus rendszer (azaz polikristályos részecskék összekapcsolódása), aggregátum alakjának szabályozására összpontosítunk. Összehasonlítottuk a kétféle megközelítési módszerrel előállított fotokatalizátorokat és kimutattuk, hogy mindkét módszer alkalmas fotokatalizátor előállítására, illetve mindkét megközelítésnek vannak előnyei, illetve korlátai is.
2. Irodalmi áttekintés

2.1. Szennyezőanyagok átalakítása - heterogén fotokatalízis

Napjainkban a fogyasztói társadalom és az egyre növekvő lakosság igényeinek ellátása igazi kihívást jelent. Az egyre fokozódó emberi tevékenység következtében vízkészleteink és a levegő szennyezettsége jelentős környezeti terhelést jelent, amely nem feltétlenül a keletkezési helyénél okoz gondot. Mivel a környezetünk (különböző szférái) sokféle és változó mennyiségű anyagot tartalmaz, ezért az ott lejátszódó fotokémiai folyamatok igen összetettek.

Mindezt arra ösztönzi a kutatókat, hogy fenntartható, hatékony módszereket dolgozzanak ki vizeink és a levegő tisztaságának megóvására. Azon technológiai megoldások, amelyek megújuló energiaforrásokat (napfény, víz, szél) alkalmaznak, nemcsak költséghatékonyak, de ökológiai megfontolásból is előnyök, mivel működésükkel nem terhelik tovább környezetünket. A környezeti kémia körén belül a környezeti fotokémia foglalkozik a napenergia által közvetlenül (fotoszintézis) vagy közvetve kiváltott folyamatokkal, amelyek a természeti környezetben játszódnak le, az ott előforduló vegyületek részvételével.

A földi élet kialakulásában és elterjedésében szerepet játszó napsugárzás az egyik kimeríthetetlennek tűnő energiaforrás, amelyet nem használunk ki eléggé. Az utóbbi évtizedekben egyre nagyobb figyelmet fordítanak világszerte a napenergia kémiai energiává történő átalakítására, hiszen használata kevés káros anyag kibocsátással jár, viszont korlátlanul rendelkezésünkre áll. A napenergia hasznosításának egyik módja a heterogén fotokatalízis, amely hatékony módszer a környezetbe jutó káros anyagok csökkenésére is. 1972-ben Fujisima és Honda [1] publikáltak olyan vízbontási reakciót, amelynél a fény energiáját használták fel és a reakció félvezető segítségével (\( \text{TiO}_2 + 2 \text{hv} \rightarrow 2 \text{e}^- + 2 \text{h}^+ \)) játszódott le fotokémiai cellában (\( 2\text{p}^+ + \text{H}_2\text{O} \rightarrow ½ \text{O}_2 + 2\text{H}^+ - \) a \( \text{TiO}_2 \) elektródon, illetve: \( 2 \text{e}^- + 2\text{H}^+ \rightarrow \text{H}_2 \) – a Pt elektródon). Ezek az eredmények új utat nyitottak a napenergia hasznosításában és azóta számos káros anyag lebontását (átalakítását) célzó kutatás látott napvilágot a heterogén fotokatalízis témakörében, amely mára az egyik legintenzívebben kutatott tudományos terület. Napjaink egyik jelentős környezeti problémája az egyre növekvő energiafogyasztás megoldása, valamint a tisza (ivó) víz kérdése. Természetes vízkészletünket különböző ipari (pl. festékek [2]), mezőgazdasági (növényvédelmésészerek [3], állatoknak adott gyógyszerek [4]) termelés útján, illetve más antropogén forrásból (fogamzásgátló szerek, antibiotikumok [5]) származó
kezeletlen szennyvíz terheli, amely a hidroszférát és így a bioszférát károsan befolyásolja. Ezeknek a vegyületeknek egy része hatékonyan eltávolítható hagyományos fizikai, illetve biológiai szennyvíztisztítási eljárásokkal, például olyan mikroorganizmusokkal, amelyek környezeti hőmérsékleten, esetenként a vízben „égetnek el” oxigén aktiválásával az alacsony koncentrációban levő szennyezőket. Azonban vannak olyan anyagok, amelyek megmérgezik a lebontó mikroorganizmusokat, valamint bizonyos esetekben olyan nagytiszaságú víz előállítása szükséges, amelyet nem tudunk a hagyományos módszerekkel elérni. Erre kínál hatékony alternatívát a heterogén fotokatalízis. Ennek során az átalakuláshoz szükséges energiát a feny szolgáltatja, azaz megfelelő hullámhosszúságú / energiájú fény aktiválja a katalizátort, amit a reakció után változatlan formában kapunk vissza. A folyamat heterogén, mert a reakció során a katalizátort és az átalakítandó anyag eltérő fázisban van: folyadék/szilárd vagy gáz/szilárd [6], illetve ezek kombinációja.

Az ilyen típusú rendszerekben a katalizátor olyan félvezető, amelyet bizonyos hullámhosszúságú fényvel megvilágítva, a vegyértéksávjából elektron (e⁻) lép a vezetési sávjába, egy pozitív töltésű ún. „hibahelyet” vagy más néven lyukat hagyva maga után (h⁺). Ennek feltétele, hogy a félvezető vegyérték-, és vezetési sávja közti energiaszint-különbség (tiltottság – szélesség) kisebb legyen, mint a besugárzó fény energiája. Ha a katalizátor érintkezik olyan anyaggal, amely a vezetési sávból elvezeti (e⁻ - akceptor) és a vegyértéksávba leadja (e⁻ - donor) az elektront, akkor ez a folyamat kémiai reakciók sorozatát indíthatja el. Az alábbi ábra ezt a folyamatot szemlélteti (1. ábra).

1. ábra, A heterogén fotokatalizist indító folyamat sematikus ábra

A fotokatalizátorokkal szemben általános követelmény, hogy legyenek fotostabilak, a megvilágítás degradációs hatásának/ fotokorróziónak ellenállóak; továbbá nagy mennyiségben és olcsón előállíthatóak, kémiaiag és biológiaiag inertnek kell lenniük.
2.2. Félvezető anyagok

Félvezetőket az elektronikai iparban már több mint 50 éve használnak, pl. diódákban (2-rétegű félvezető), tranzisztorokban (3-rétegű félvezető), LED-ekben (light emitting diode: fénykibocsátó dióda), chip-ekben, napelemekben stb.1 Makroszkopikus félvezetőkben az atomok energiaszintjei felhasadnak és ez az egyéni diszkrét szintek energiasávokká történő kiszélesedéséhez vezet. Az elektronsáv-szerkezeten belül azokat a helyeket, ahol az elektronok számára megengedett energiaértékek folytonosak: vegyérték- vagy vezetési sávoknak nevezzük. Ezek között található a tiltott sáv, amelyhez tartozó energiaértékeket (félvezetők v. szigetelőknél) nem vehetik fel az elektronok. A külső sáv egyáltalán nem, vagy csak részben betöltött, az idetartozó elektronok vehetnék részt az áramvezetésben, ez tehát a vezetési sáv. A szigetelők nem, a félvezetők szobahőmérsékleten gyengén vagy egyáltalán nem vezetik az áramot, ugyanis vannak olyan elektronok, amelyek szobahőmérsékleten már rendelkeznek akkora termikus energiával, hogy áttépjenek a vezetési sávba. Az üres vezetési sáv és a betöltött vegyértéksáv közötti tiltott sáv szélessége szigetelő anyagok esetén általában 5 eV-nál nagyobb, félvezetőknél ennél kisebb (2. ábra). A félvezetők vezetőképessége jelentősen nőhet (ellenállással csökken), ha a kristályt kismértékben szennyezik (adalékolják) olyan anyaggal, amelynek egyel több, vagy kevesebb vegyértékelektronja van, mint a félvezetőnek. N-típusú félvezetőről van szó, amennyiben a többségi töltéshordozó az $e^{-}$ - (donor adalékolás), ill. p-típusú a félvezető, ha a töltéshordozó a lyuk (akceptor adalékolás). A sávmellében a donor által szolgáltatott elektronok energiaszintje közvetlenül a kristályos anyag vezetési sávja alatt helyezkedik el. Az elektronok már szobahőmérsékleten annyi energiát nyernek, hogy átkerülnek a vezetési sávba.

2. ábra. Vezető, félvezető, szigetelő anyagok tiltott sáv szélességének ábrázolása²

---

1 https://www.mozaweb.hu/Lecke-FIZ-Fizika_10-2_4_Felvezeto_eszkozok-99793 (2016.03.16)
2 http://vili.pmmf.hu/jegyzet/villtan/13.html (2016.03.16)
Vannak olyan anyagok, melyek tiszta állapotukban is félvezetők: Ge (0,7 eV), Si (1,1 eV), illetve ismerünk szilárd-oldat típusúakat: GaAs, InSb, SiC, PbTe; vegyületek közül példa erre a TiO₂, Cu₂O, PbS, SnO₂, SiO₂, WO₃ [7-9].

2.3. Titán-dioxid


lebontása). Továbbá felhasználható szenzorok készítésére [27], illetve egyes technológiákban TiO₂ nanorészecskéket alkalmaznak ivóvíz-, és szennyvíztisztításban is [28].

2.3.1. A TiO₂ emberre gyakorolt hatása

A TiO₂ (főként az ultrafinom) részecskék belégzése alveoláris (tüdő-hólyagocska) gyulladást okozhat, amely következményes fibrózissal járhat együtt (ennek során a szerv saját szövetállománya elpusztul, a helyét érszegény kötőszövet veszi át). A vegyület bőrgyógyászati jelentőségét az adja, hogy a TiO₂ fizikai fotoprotektív tulajdonsága miatt fényvédőkben használatos, emellett különféle egyéb kozmetikumok alkotórésze. A bőr legkülső rétege hatásos védelmet nyújt az ilyen részecskék ellen, viszont amennyiben sérült, napégett hámmal rendelkező bőrön alkalmazzák, a fotokatalitikus hatás az „élő sejtek” környezetében jelentkezik és a bőrben található különböző sejteket károsíthatja [29].

Ennek ellenére a széleskörű alkalmazása nem jelent túl nagy kockázatot, ugyanis Az (EC) 1272/2008 sz. rendelete szerint nem minősül veszélyes anyagnak.

2.3.2. TiO₂ a fotokatalízisben

Fotokatalízis során tehát a megfelelő energiájú (hullámhosszúságú) fényvel megvilágított félvezető vegyértéksávjából e⁻ lép a vezetési sávba, és egy pozitív töltésű, úgynevezett lyukat (h⁺) hagy hátra, ezek a töltéshordozók pedig további (oxidációs-redukciós) reakciókat válthatnak ki. Az e⁻-ok egy elektron akceptorral (pl. oldott O₂) lépnek kölcsönhatásba és azt közvetlenül redukálják; ugyanekkor a lyukak közvetlenül oxidálják (e⁻-t vonnak el) a felszínre adsorbeálódott szennyezőanyagot. A reakciók kritikus tényezője, hogy versenyképesnek kell lenniük a töltések (e⁻/h⁺) rekombinációjával. Ezek az egymástól nem független folyamatok során, a szennyezőanyagoktól - különböző köztermékeken keresztül - eljuthatunk a szervetlen végtermékekhez (CO₂, víz, szervetlen sók) [30]. Egyes, kísérletben bevált módszereket már a gyakorlatban is alkalmaznak. Ezek közé tartozik a mikropórosus szerkezetű TiO₂ film [31], TiO₂ tartalmú papír, öntisztító, TiO₂ bevonatú lámpabúra vagy öntisztító festékek használata. Az illékony szerves vegyületek, az úgynevezett „VOC”-k eltávolítására is használnak TiO₂ alapú fotokatalizátorokat [32-33].

Amint már említettem, a TiO₂ [34] gerjesztéséhez (ezzel a fotokatalitikus reakciók végbemeneteléhez) a vegyérték-, és a vezetési sáv közötti tiltott sáv energiájával azonos, vagy annál nagyobb energiájú fotonokra van szükség. Az anatáz tiltott sáv szélessége 3,2 eV (387
nm), míg a rutil 3,02 eV (410 nm) [35]. A titán-dioxid n-típusú félvezető, mert az áramot az elektronok vezetik, ellenben a p-típusú félvezetőkkel, ahol az ún. lyukák. A 3. ábrán látható a Föld felszínét éró napfény spektrális összetétele, amelynél látható, hogy az UV komponens csak 5 %, míg a látható fény hullámhossztartománya 40 % (400-800 nm).

Sok kísérlet van arra vonatkozólag, hogy a TiO$_2$-ot alkalmassá tegyük a látható fény általi aktiválásra, pl. a kristályszerkezet módosításával, vagy felületére nemesfém (Au, Pt) nanorészecskék leválasztásával. Ez utóbbiak további kedvező hatása, hogy képesek a töltések csapdázására, így csökkentve az elektron-lyuk rekombinációt (ezáltal növelve a szennyezőanyagok átalakításának hatékonyságát is). Az egyes módosulatok fotoaktivitásbeli különbsége a felületi hidroxilocsoportok eltérő számára [38], illetve a különböző O$_2$-adszorpciós képességére [39-41] vezethető vissza. A gerjesztéskor létrejövő elektronok és pozitív töltészű lyukak rekombinálódhatnak ($e^- + h^+ \rightarrow h\bar{o}$), vagy Ti$^{3+}$ centrumokat hoznak létre [39].

A gerjesztést követően lejátszódó oxidációs-redukciósi folyamatok feltételei:

1. a félvezető vegyértéksav potenciáljának pozitivábbnak kell lenni az akceptor vezetési sáv potenciáljánál, a félvezető vezetési sáv potenciáljának pedig negatívvábbnak kell lenni a redoxirendszer donor szintje potenciáljánál;

2. a redoxi-folyamatok töltésátviteli sebessége legalább olyan gyors legyen, mint az $e^-/h^+$ pár rekombinációjának sebessége. A töltéshordozók mindkét tagja reakcióba lép, így a gátoltabb folyamat lesz a sebesség meghatározó lépés.
A TiO₂ gerjesztése (vizes közegben, UV-sugárzás által):

\[
\text{TiO}_2 + \hbar \nu \rightarrow \text{TiO}_2 (e^-/h^+) \rightarrow e^-_{\text{vez.s}} + h^+_{\text{vegy.s}} \tag{1}
\]

(vez.s: vezetési sáv; vegy.s: vegyérték sáv)

O₂ jelenléteben (a TiO₂-dal érintkezésben) a fotogenerált elektron az oxigén molekulát redukálja, szuperoxid-gyökiont eredményezve (4. ábra):

\[
e^-_{\text{vez.s}} + \text{O}_2 \rightarrow \text{O}_2^- \tag{2}
\]

amely vízmolekulával elreagálva hidroxilgyök képződését eredményezi:

\[
2 \text{O}_2^- + 2 \text{H}_2\text{O} \rightarrow 2 \text{HO}^- + 2 \text{OH}^- + \text{O}_2 \tag{3}
\]

A folyamat nem tisztázott teljesen, kutatócsoportunk korábbi eredményei alapján azt feltételezzük, hogy a hidroxilgyök keletkezése a szuperoxid gyökion és víz reakciójával valósul meg [25].

![4. ábra, Lehetséges folyamatok a gerjesztett TiO₂ felületén](image)

A keletkező „lyukak” felhasználódhatnak vízmolekulák vagy hidroxid-ionok jelenléteiben:

\[
h^+_{\text{vegy.s}} + \text{H}_2\text{O} \rightarrow \text{OH}^- + \text{H}^+ \tag{4}
\]

\[
h^+_{\text{vegy.s}} + \text{OH}^- \rightarrow \text{OH}^- \tag{5}
\]

A TiO₂ felületén adszorbeálódott szerves anyag (S) redoxi sajátságaitól függően mind az elektronnal, mind a lyukkal reagálhat, közvetlen töltésátvitellel:

\[
S + e^- \rightarrow \text{S}^- \tag{6}
\]

\[
S + h^+ \rightarrow \text{S}^+ \tag{7}
\]
Ezek a gyökök további reakciókban vesznek részt, amelyek során a szerves anyag (szennyező) lebomlik. Az említett reakciók egy egyszerűbb képet adnak a töltéshordozók ki-, és átalakulásáról, ennél természetesen többféle reakciót létezik; pl. a TiO₂ esetében a vízmolekula adszorbeálódhat, illetve diszsoziatív adszorpcióval is megkötődhet a TiO₂ felületén, attól függően, hogy melyik kristályoldalról van szó [42].

Előfordulhat olyan eset, amikor a beeső foton abszorpciója és az indukált redoxreakció nem ugyanazon a részecskén megy végbe. A töltéshordozók ugyanis (ha nem rekombinálódnak) képesek részecskéről részecskére vándorolni akkor, ha a részecskék között közvetlen fizikai kapcsolat van, illetve azonos kristályorientációval rendelkeznek. Ez a jelenség az antenna-hatás [43], amely jól megfigyelhető keverék katalizátorok (pl. TiO₂-WO₃) esetében [44].

2.3.3. A TiO₂ előállítása

Kristályos TiO₂ előállítására több módszer is alkalmas, mint a szol-gél eljárás vagy éppen a hidrotermális kristályosítás. A szol-gél eljárás során a (1–500 nm átmérőjű) részecskékére prekurzorból folyadék közegben állítjuk elő. Ennek egyik legelterjedtebb változata, amikor nemvizes (alkoholos) közegben hidrolizáltatjuk el a szerves titán-vegyületet (alkoxid), majd a kapott gél kavitációit kitöltő oldószert (szuperkritikus állapotban lévő folyadékkal, pl. CO₂) eltávolítjuk.

A részecskék keletkezésének folyamata minden esetben két mozzanatból áll, amely akár párhuzamosan is végbejut: a prekurzor molekulák hidrolízise következik be, illetve a nanoméretű részecskék kondenzációs lépéseken alakulnak ki. Az eljárás során gondot jelenthet a fotokatalitikus alkalmazás szempontjából, ha a leválasztott titán-dioxid amorf szerkezetű. Ennek kiküszöbölése véget szárítási és hőkezelési eljárásokat alkalmazva jutunk a szilárd (por) kristályos részecskékhez [45].

A hidrotermális kristályosítás az utóbbi évtizedekben elterjedt módszeré vált, mivel nemcsak egyedi nanorészecskék, hanem nanokompozitok előállítására is alkalmas. A reakció szintén a folyadéktágulású prekurzorból indul, vizes közegben (hidrotermális) vagy más oldószerben (szolvotermális), 1 atm-nál nagyobb nyomáson és 25 °C-nál magasabb hőmérsékleten [46-48] játszódik le.

A TiO₂ tulajdonságai nagymértékben függene a kristály szerkezetétől [49], a részecskék méretétől és alakjától [50]. Többféle módosulata közül általában a rutil a termodynamikailag stabilabb [50], de a 14 nm alatti részecskemérettel rendelkező anatáznak is hasonló stabilitást
tulajdonítanak [51]. Az anatáz módosulat a gyakrabban használt, ennek hátránya viszont, hogy csak az UV tartományból képes hasznosítani a fénnyt [52]. Mivel a kristály morfológiája, szerkezete meghatározza a TiO$_2$ fotokatalitikus tulajdonságait, számos kutatás irányult a TiO$_2$ kristályszerkezetének, illetve a felszínének a módosításra például fémekkel [53-56], illetve nemfémekkel [57-59] történő adalékolás.

2.3.4. A TiO$_2$ kristályoldalainak fotokatalitikus aktivitásban játszott szerepe

A TiO$_2$ módosulatai közül az anatáz fázis a legjelentősebb, amelynek számos energetikai és környezetvédelmi alkalmazása van [1, 60-61]. A kristályoldalak tulajdonságainak ismerete igen fontos, mivel a felszín atomok elrendeződése, koordinációja meghatározza:

- a reaktáns molekulák adszorpcióját,
- a fotoaktivált elektronok és a reaktáns / szubsztrát közötti elektronátmenetet,
- a keletkező termékmolekula deszorpcióját a felületről [62].

Az anatáz szerkezetének hatékony kiaknázása érdekében érdemes megvizsgálnunk kialakulását, módosításának lehetőségeit, ugyanis az egyes kristályoldalak eltérő tulajdonságaik miatt különböző reaktivitással rendelkeznek. Az egykristályos nanoszerkezetek alakja árulkodik az őt alkotó anyag kristályrácsáról. Általában a természetes anatáz TiO$_2$ kristályt típusban {101}, {100}, {010} és {001} kristályoldalak határolják.

A kristálytani síkok indexeinek jelölése a következő: (h k l) az adott sík, {h k l} pedig a síkcsalád jelölése, [h k l] adott irányt, <h k l> pedig iránycsáladot jelöl. Ennek alapján a TiO$_2$-nál a lapcsalád jelölése: {}-el történik, a konkrét oldalt ()-lel jelöljük. Elméleti számítások alapján ezek közül a {001} Miller-indexűt tartják a legreaktívabbnak [47, 63].

A legtöbb anatáz TiO$_2$ kristályban a termodinamikailag stabilabb {101} Miller-indexű oldal fordul elő túlnyomórészt (> 94 %), amely a jól ismert négyzetes dipiramis szerkezetet eredményezi [64-66] (5. c ábra).
Általánosan elmondható, hogy a kristályok felszínének szerkezete és felületi energiája a kristály orientációjának megfelelően változik. Emiatt az egyedi kristályok reaktivitása, illetve más fizikai-kémiai tulajdonságai is a kristály alakjától függenek, amelyet meghatároz az uralkodó/legnagyobb mennyiségben jelenlevő/ kristályoldal. Egy kristály alakját döntően a kristályt alkotó kristálylapokhoz kapcsolódó relatív fajlagos felületi energiája határozza meg. Egyensúlyi rendszerben a Wulff-szabály teljesül, azaz a kristálylapok úgy növekednek, hogy a felületi többletenergiájuk minimális legyen [68]. A folyamat hátránya, hogy a nagyobb felületi energiájú (és potenciálisan aktívvabb a fotokatalitikus folyamatokban) kristályoldal mérete a kristályosodás előrehaladtával gyorsan csökken. Ennek oka, hogy a kristálygenezes folyamán a nagyobb energiájú kristálylap gyorsabban növekszik, ami által távolabbi kerül a kristály centrumától és területe kisebb lesz. A nanokristály alakját meghatározza a kristálylapok relatív növekedési sebessége, így a kristály alakja a növekedés kinetikájára utalhat, hiszen a gyorsan növekvő kristálysíkok eltűnnek és a lassan növekvők maradnak vissza [69]. Ez anatáz esetében a csonka, tetragonális bipiramisként valósul meg, nyolc egyenlő szárú trapéz alakú lapokkal {101}, valamint alul-felül két négyzetlappal {001} határolva (5. ábra), amely alak a természetben is megtalálható [70-71].

A TiO₂ fotokatalitikus aktivitása nemcsak a felszíni atomok szerkezetétől/elhelyezkedésétől, hanem a méret, alak, kristályosság és a reaktiv kristályoldalak százalékos arányától függenek [67, 72-73]. A jelenlegi adatok alapján az átlagos felületi energia sorrendje a következő: 0,90 J·m⁻² a {001}-es oldalnál, > 0,53 J·m⁻² az {100} illetve, > 0,44 J·m⁻² az {101} oldalnál [67, 71].

5. ábra. (a) TiO₂ csonka, tetragonális bipiramis [67], (b) geometriai modell, (c) természetes anatáz kristály (101)-es oldalakkal

---

3 http://underthescopeminerals.tumblr.com/post/93232367683/anatase-by-gianfranco-ciccolini (2016.03.16)
4 http://inlovewithgeosciences.tumblr.com/post/2168070158/anatase-tio2-locality-france (2016.03.16)
Ezzel összhangban van a Xu és munkatársai által számolt CO$_2$ molekula adszorpciós energia sorrendje: 1,820 eV a {001}-es, 0,311 eV az {100}-es és 0,224 eV az {101}-es oldalon. Kisérleteik során kocka alakú anatáz egykristályt vizsgáltak (6. ábra).

Megállapításuk szerint, bár a CO$_2$ préferáltan a {001}-es oldalon adsorbeálódik, fotoredukció reakciója (a CO$_2$-nak) az {100} és az {101} oldalakon történik [74]. Tehát egy reakció végbemenetele egy adott kristályoldalon nemcsak az átlagos felületi energiájától, hanem annak oxidatív/reduktív és adszorpciós tulajdonságaitól is függ. Az egész rendszerre (sok kis kristály együtt) vetítve pedig a katalitikus tulajdonságot meghatározza a reaktívabb oldalak méretbeli aránya (főlénye) a többiehez képest.

Mivel a nagy reaktivitású oldalak várhatóan növelik a fajlagos felületre vonatkozó reakció katalizáló képességét, ezért számos kutató nagy erőfeszíttést tesz, hogy olyan TiO$_2$-ot állítsanak elő, amely nagy részben {001} Miller indexű lapokból áll [73, 75-79].

A TiO$_2$ kristályok aktivitása a kristály oldalainak függvénye is. Jiang és munkatársai vizsgálataik során például azt tapasztalták, hogy a nagy reaktivitású oldalak arányának emelése a kristályban jelentős „paraméter” a katalitikus aktivitás növelésének. Ők maguk úgynevezett magas indexű oldalal (105) rendelkező TiO$_2$ anatáz kristályokat állították elő (TiCl$_4$-ot használva prekurzorként) [80]. A kapott kristályokat Pt-val adagolva jelentős mennyiségű H$_2$ fejlődést tapasztaltak az (105) kristályoldalnak köszönhetően. A fotokatalitikus aktivitás növelésének céljából szükséges lenne növelni a már ismert nagy reaktivitású felszín arányát, vagy új, kedvező tulajdonságú felületet kell előállítanunk.

Gyakran alkalmazott módszer a kristály alakjának oly módon történő szabályozása, amikor kristályoldalra specifikusan adsorbeálódó anyagféléset alkalmazunk. Ennek a szerepe abban nyilvánul meg, hogy adott kristályoldalt stabilizál a kristály növekedése során (angol

6. ábra, Kocka alakú TiO$_2$ anatáz egykristály

Megállapításuk szerint, bár a CO$_2$ préferáltan a {001}-es oldalon adsorbeálódik, fotoredukció reakciója (a CO$_2$-nak) az {100} és az {101} oldalakon történik [74]. Tehát egy reakció végbemenetele egy adott kristályoldalon nemcsak az átlagos felületi energiájától, hanem annak oxidatív/reduktív és adszorpciós tulajdonságaitól is függ. Az egész rendszerre (sok kis kristály együtt) vetítve pedig a katalitikus tulajdonságot meghatározza a reaktívabb oldalak méretbeli aránya (főlénye) a többiehez képest.

Mivel a nagy reaktivitású oldalak várhatóan növelik a fajlagos felületre vonatkozó reakció aktivitást, ezért számos kutató nagy erőfeszíttést tesz, hogy olyan TiO$_2$-ot állítsanak elő, amely nagy részben {001} Miller indexű lapokból áll [73, 75-79].

A TiO$_2$ kristályok aktivitása a kristály oldalainak függvénye is. Jiang és munkatársai vizsgálataik során például azt tapasztalták, hogy a nagy reaktivitású oldalak arányának emelése a kristályban jelentős „paraméter” a katalitikus aktivitás növelésének. Ők maguk úgynevezett magas indexű oldalal (105) rendelkező TiO$_2$ anatáz kristályokat állították elő (TiCl$_4$-ot használva prekurzorként) [80]. A kapott kristályokat Pt-val adagolva jelentős mennyiségű H$_2$ fejlődést tapasztaltak az (105) kristályoldalnak köszönhetően. A fotokatalitikus aktivitás növelésének céljából szükséges lenne növelni a már ismert nagy reaktivitású felszín arányát, vagy új, kedvező tulajdonságú felületet kell előállítanunk.

Gyakran alkalmazott módszer a kristály alakjának oly módon történő szabályozása, amikor kristályoldalra specifikusan adsorbeálódó anyagféléset alkalmazunk. Ennek a szerepe abban nyilvánul meg, hogy adott kristályoldalt stabilizál a kristály növekedése során (angol


5 http://pubs.rsc.org/en/Content/ArticleLanding/2015/CC/c5cc01087j#!divAbstract (2016.03.16)
kifejezése: „capping agent” [81] [82]. A megkötődő részecske pedig hatással van a kristályoldal relatív stabilitására, vagy a különböző irányokba történő növekedés mértékére. Ezek a különböző kristály-felszínek szabad energiájának megváltoztatásával, azok növekedési sebességét is meghatározzák. Ezeket a ténylegőket egyedi módon határozza meg az adszorbeálódó anyagféleség anyagi minősége és koncentrációja. Ezt a megközelítést publikálták Yang és munkatársai a Nature-ben, 2008-ban közölt cikkükben, ahol a kialakuló kristályoldalra preferálta kötődő anyagként HF-ot alkalmaztak, így érve el azt, hogy az adott kristályoldal {001} egy kitüntetett síkban növekedett tovább [72]. Ezzel a módszerrel körülbelül 1 μm-es oldalhosszúságú kristályokat kaptak, amely sokkal kiterjedtebb, mint általában az anatáz esetén. Ennél a HF, pontosabban a F^- ion, mint a kristályosodást szabályozó reagens volt tehát jelen, hiányában nem tapasztaltak kristályoldal növekedést kontrolláló hatást (gömb alakú TiO_2 keletkezett). A HF-nak két fontos szerepet tulajdonítottak: egyrészt a Ti-prekurzor hidrolizisét lassítja, másrészt csökkenti a felületi energiát. Ez utóbbi azt eredményezzi, hogy a F^- ion a {001} oldalra kötődik, így a kristály izotropikusan, vagyis a <010> és az <100> irányba azonos relatív sebességgel növekszik [83].

Mivel az épülő {001}-es oldalon oxigén hiány van, így ott hiányzik a Ti koordinációs szférájának egy része, itt a Ti +3 oxidációs számú. Ezzel alakít kötést a F^- ion, (HF→ H^+ + F^- [84]), így stabilizálva azt a kristályoldalt, amely tehát nem tud tovább építeni a rá merőleges irányba, csak a kitüntetett/stabilizált (001)-es oldalon, ezt szemléltei a 7. ábra.

7. ábra, Az anatáz kristály növekedésének iránya F^- ion jelenlétében

Az {101} és {001} oldalak közös jellemzője, hogy oxigénhiányosnak találták a felszín alatt [85-86]. Továbbá, a {001} oldal több, ligandumhiányos (alacsonyabb koordinációjú) Ti-atommal rendelkezik, ami összefüggésben van azzal, hogy bizonyos reaktánsok disszociatív adszorpciója esetén, mint pl. a víz, metanol, hangyasav (poláros oldószereknél) [64, 66, 87-89] nagyobb reaktivitású, mint az {101} oldal.
Redukált TiO\textsubscript{2} esetén (TiO\textsubscript{2-x}) [90], amelyek tartalmznak Ti\textsuperscript{3+}-ot vagy oxigén hiányosak, a látható fény abszorpcióját állapították meg [91-92]. Ilyen, redukált TiO\textsubscript{2} előállításnak többféle módja ismert, például vákuumban történő hevítés [93], gázban történő redukció [94] lézeres besugárzás [95], illetve a nagy energiájú részecskékkel, például elektronokkal történő „bombázás” [96]. Ugyanakkor nagy kihívást jelent a redukált TiO\textsubscript{2}-nál a felszíni oxigénhiány (oxigén hibahelyek) stabilitása, mert a levegő O\textsubscript{2} tartalma könnyen oxidálhatja a Ti\textsuperscript{3+}-ot [97]. A Ti\textsuperscript{3+} centrumok megléte gyakran jelenti az oxigén hibahelyek jelenlétét is, amely a fotokatalitikus hatékonyságot növelni tudja [98-99]. A fotokatalizátorok felületén levő nagy Ti\textsuperscript{3+} koncentráció jelentősége pedig, hogy reaktív gyökök kialakulásához vezet (mert a Ti\textsuperscript{3+} centrum reagálni tud az oldatban levő O\textsubscript{2}-nel). Ilyen reaktív gyökök pl. a O\textsuperscript{-2}, HO\textsuperscript{-} és a OH\textsuperscript{-}, amelyek közvetlenül felélelőek a szerves szennyezőanyagok bontásáért. Jelenleg több kutatócsoport arra összpontosít, hogy a reaktív, {001} indexű kristályoldalt nagy arányban tartalmazó anatáz kristályt állítsanak elő, pl. F\textsuperscript{-}-ion tartalmú vegyületeket (pl. HF) használva a kristályszerkezetet szabályozó ágensként [72]. Emellett más F\textsuperscript{-} forrásokat is alkalmaztak: 1-butil-3-metil-imidazolum-tetrafluoroborát [100], ammónium-bifluorid (NH\textsubscript{4}HF\textsubscript{2}) [77], ammónium-fluorid [101] és a titán-tetrafluorid [102]. Mivel a HF erősen maró hatású, toxikus és korrozív, ezért pl. Chang és munkatársai F-ion mentes előállítási módszert alkalmaztak, amellyel nagyobb arányban kaptak {001}-es oldalú, mikrométeres anatáz részecskéket [63]. Az oldalak arányának változtatása hatással van a kristály egészének oxidációs-redukciós képességére, ami a tiltottsáv-szélesség változását is okozza. Az anatáz kristály UV-Vis fényelnyelési spektruma 72 % {101}-es indexű oldal jelenlétében eltolódást mutat az alacsonyabb hullámhossz irányba (blue shift) ahhoz képest, ha 72 % {001}-es indexű oldal van jelen [103]. Ebből azt feltételezték, hogy az {101} oldalnak nagyobb a tiltott sáv szélessége. További vizsgálatok azonban azt igazolták, hogy az {101} oldalnak ugyanott van a vegyértéksav maximum energiája, mint a {001} oldalnak, de kicsit magasabban van a vezetési sávjának minimuma. Ez azt jelenti, hogy az {101} oldal tiltottsáv-szélessége nagyobb lesz [103-104], amint ez látható a következő ábrán (8. ábra). Ez a sávszélesség-különbözős az atomok koordinációjával együtt bizonyosan befolyásolja a kristály fotokatalitikus tulajdonságait. Tehát, vélhetően a különböző kristályoldalak ({{101}, {001}}) optimális aránya a kulcsa a töltések hatékony szeparációjának [105].
Az egyes oldalakon adszorbeálódó molekuláknál a megkötődés eltérő lehet, pl. víz, metanol és hangyasav esetén az {101} lapon anatáz esetén az adszorpció disszociáció nélkül történik [106]. Más kutatócsoport arról számolt be, hogy a {001}-es indexű lapon adszorbeált vízmolekula részleges disszociációja következett be a felszínnel közvetlen érintkezésbe kerülő vízrétegnél [107-108]. Ezt állapították meg mások is, akik szerint az {100} és {101} oldalak vízmolekulákat, míg az {110} és {001} oldalak disszociált vízet kötnek meg: „OH-csoport párokat” hozva létre [42].

Figyelembe véve, hogy a disszociált vízmolekulák elősegíthetik a fotogenerált töltések vándorlását, azt várjuk, hogy a {001} oldal sokkal hatékonyabb legyen, mint az {101} indexű oldal [47]. A hidroxilgyökök ('OH) koncentrációját a felületegységre vonatkoztatva azt kapjuk, hogy a TiO₂ kristály lapok fotokatalitikus hatékonysága több, mint ötször nagyobbnak bizonyult a Degussa P25 -nél, amely csak 5 % {001}-es oldalt tartalmaz. Tehát a TiO₂ F⁻-nélküli nanolapok kiemelkedő fotokatalitikus aktivításúak, mert jelentős mértékben termelik a 'OH gyököket, amely egyértelműen a telítetlen koordinációs szférájú Ti-atomok jelenlétre enged következtetni, melyek a {001}-es oldalon találhatók és felelősek a hatékonyabb fotokatalitikus aktivitásért az anatáz TiO₂ egyedi kristály nanolapok esetében. Mások vízbontási reakció esetén figyeltek meg aktivitásnövekedést TiO₂ mikro-/nanolapok esetén a {001}-es oldalon, amelynél a kristályokat különböző Ti-prekurzorból állították elő HF jelenlétében, hidrotermális körülmények között [103]. Az említett anyagok alkalmazásával a fotonoxidációs készség, a hidroxilgyök termelése, illetve a szerves szennyezők lebontása megnövekedett a {001}-es oldalon jelenlétében [100, 109].

A reaktásmolekulák disszociatív adszorpciója a {001} oldalon úgy látszik, hogy csökkenti az aktiválási energiát és molekuláris szinten befolyásolja a reakciómechanizmust a fotokatalitikus folyamatoknál. Továbbá, a disszociált molekulák hatékonyabban tudnak reagálni a rövid

8. ábra. Az anatáz {001} és az {101}-es indexű kristályoldalainak tiltottsáv-szélessége
élettartamú hidroxil-gyökökkkel a TiO₂ felületén, amelyek gyorsan átalakulnak katalitikusan inaktív, a felszínen kötött hidroxílesoprttá.

Qi és munkatársai egyforma anatáz TiO₂ nanokockákat állítottak elő szolvotermális úton aktív {100} és {001} oldalakkal [110], amelyek élhosszúsága viszonylag széles mérettartományban (600-830 nm) szabályozható. Ehhez titán-tetraizopropoxidot hidrolizáltattak ecetsavas közegben, ahol a bépülő ionos komponens 1-butil-3-metilimidazol-tetrafluoroborát ([bmim][BF₄]) volt. Tapasztalataik szerint a TiO₂ „nanokockák” mérete, vastagsága és a kristályoldalak aránya könnyedén változtatható az előállítási paraméteréinek változtatásával, ezek: a F⁻ ion „forrás” szerkezete, a víz és sav mennyisége (HAc). Fontos szabályszerűséget állapítottak meg: egyrészt a [bmim][BF₄], mint F⁻ ion forrás stabilizálja a {001} oldalt, másrészt a [bmim]+ ionok hatékony ágensek az {100} oldalak stabilizálására. Ezeknek az anatáz nanokristályoknak rendkívül nagy a kristályfázis stabilitása, ugyanis az anatáz fázis még 900 °C-on történő kalcinálás során is megmarad, ugyanakkor megnövekedett fotokatalitikus aktivitást tapasztaltak.

Mások ultravékony (001) kristályoldallal rendelkező TiO₂ nanolapokat állítottak elő, egylépéses, szolvotermális módszerrel [111]. A lapok hossza és szélessége 1,5-2 μm, amíg a vastagságuk 2-4 nm volt. Ezek az anatáz TiO₂ nanolapok kiváló fotokatalitikus hatást mutattak azofestékek (rodamin B, RhB) átalakításában. Ezen túlmenően Wu és kollégái kevesebb, mint 1 nm-es vastagságú TiO₂ lapokat állítottak elő úgy, hogy csökkentették a vastagságot a <001>-es irányban (z), ugyanakkor növeelve a kétdimenziós oldalméretet a (001) síkon (x-y) [75]. Lou és kollégái szokatlan alakú, egyforma, {001}-es oldalú TiO₂-nanolapokból álló üreges gömböket szintetizáltak [112]. Ezek a különös alakú nanorészecskék nagy fajlagos felülettel rendelkeztek (134,9 m²∙g⁻¹), amelyek által nagy töltésátviteli hatékonyság valósulhat meg. Ezt a tulajdonságot például kiváló teljesítményt nyújtó, gyorsan töltődő Li-ion akkumulátoroknál használhatjuk ki, a speciális kristálylapokból álló üreges gömb szerkezet eredményeként.

Ezek a tudományos áttörések csak az alacsony Miller-indexű {001} vagy {100} oldalak arányának növekedéséhez járólnak hozzá, amelyek az anatáz kristályoldalainál a Wulff modellben leírtak szerint alakulnak [113-114]. (Azaz: a kristályok úgy növekednek, hogy a kristály (összes) felületi többletenergiája minimális legyen. A nagyobb energiájú kristálylap gyorsabban növekszik, aminek következtében távolabb kerül a kristály centrumától és területe kisebb lesz. A kristálylapok egyensúlyi növekedésére Wulff a múlt század elején állította fel ezt a szabályt [114].)
Az anatázban található kristályoldalak között nem csak reaktivitásbeli különbség van, hanem abban is elkülönülnek, hogy az oxidációs, vagy a redukciós folyamatokat segítségével elő. A következőkben ezeket tárgyalom.

Domináns {100} kristályoldallal rendelkező TiO$_2$ anatáz egykristály nanorudakat állított elő J. Li és D. Xu, titán/alkáli-titán (NaOH jelenléteben) nanocsövek hidrotermális átalakításával [115]. Ebben az esetben a folyamatot a hidroxid-ionok befolyásolták, mert adszorbeálódtak az {100} oldalra, ezzel gátolva az x-y síkbeli (keresztirányú) növekedését, így a kristály hosszanti irányban (z-tengely mentén) fejlődött. Hua Xu és munkatársai viszont 95 %-ban {100} oldalú, nagyreaktivitású, ultravékony (2 nm) TiO$_2$ anatáz nanolapokat állítottak elő [116]. Az eddig publikációban megjelentek közül az {100} indexű oldal vonatkozásában ez az arány (95 %) a legmagasabb. Még fontosabb, hogy ezen eljárással készült TiO$_2$ lapokkal sikerült 5-ször nagyobb hatékonyságot elérni H$_2$ és CO$_2$ redukciójánál, mint a referenciaéértéknél használt köbös (kocka) TiO$_2$ esetében, amelynél ez az arány 53 % volt a {100} oldalra vonatkozóan. A TiO$_2$ nanolapok esetében mind a kitüntetett {100} oldal nagyobb aránya, mind a nagyobb fajlagos felület több aktív helyet jelent, ahol a fotokatalitikus reakció bekövetkezhet. A különböző oldalak meghatározott aránya pozitív hatású a fotogenerált elektronok és lyukak elkülönülésének tekintetében, azaz lehetővé teszi a töltések szeparációját az anatáz TiO$_2$ alapú anyagoknál. Ismert, ugyanis, hogy a (001)-es oldal oxidáló, az (100) és (101)-es pedig redukáló tulajdonságú [74, 117], amelyet a 9. ábrán szemléltettem.

![9. ábra](image.png)

9. ábra, Az anatáz {001}, {101} és {100} oldalai oxidációs/redukciós tulajdonságainak sematikus ábrázolása

Ezt igazolták Matsumura és munkatársai, akik Pt és PbO$_2$ szelektív leválasztását végezték el anatáz és rutil részecskéken. Eredményeik szerint az anatáz TiO$_2$-on a Pt$^{4+}$ fotoredukciója következett be és Pt vált le (Pt$^{4+} + 4$ e$^-$ → Pt) az {101} indexű kristályoldalon, míg PbO$_2$
részecskék keletkeztek (Pb$^{2+} + 2$ H$_2$O+ 2 h$^+$→PbO$_2$ + 4 H$^+$) a \{001\} oldalon az Pb$^{2+}$ ionok fotooxidációjakor [118].

Mindezek után kijelenthető, hogy a nagy felületi energiájú (\{001\}-es indexű) kristályoldal a kristályosítás korai szakaszában kialakul és el is tűnik, illetve nem fejlődik tovább a kristályosodási folyamat előrehaladtával. Ezért az anatáz általában a termodinamikailag stabilabb \{101\}-es kristályoldalt tartalmazza túlnyomórészt. Mivel fotokatalitikusan aktivabbnak a \{001\}-es oldalt tartják, ezért az TiO$_2$ anatáz hatékonyságának növelésekor célunk, hogy ennek a kristályoldalnak a méretét növeljük a kristályokban. Tekintettel arra, hogy a különböző oldalaknak eltérő az adszorpciós, illetve oxidáló/redukáló képessége, ezért másik lehetőség egy adott reakció végbemenetelének elősegítésére, ha megtaláljuk a különböző oldalak optimális arányát a TiO$_2$ kristályokban.

\section*{2.4. A TiO$_2$ kombinálása különböző szénfajtákkal}

Amint már említettem, a gerjesztés során keletkező töltések (e$^-$/h$^+$) élettartamát úgy is növelhetjük, ha egy másik félvezető / vezető anyag segítségével szeparáljuk őket, amely el tudja vezetni a keletkező elektronokat, így növelve a fotokatalizátort hatékonyságát [119]. Erre példa, ha szén nanocsővel hozzuk érintkezésbe a TiO$_2$-ot. Más szénfajtákkal mint például grafénnel, graffitallen, fullerenél, szén-aerogéllel is kombinálható a TiO$_2$. Ezeket az anyagokat az irodalomban titán-"C" hibrideknek is hívják [120]. A félvezető oxid és a nanocső (vagy más szén) szinergizmusa akkor is megfigyelhető, ha a szénfajta, mint adszorbens szerepet kap a rendszerben. Ebben az esetben elsődleges funkciója a szennyezőanyagok lokális koncentrációjának növelése, „csapdázása” a TiO$_2$ közélében (felszínén), így biztosítva a gerjesztett elektronok hatékonyabb hasznosulását rekombináció helyett [121].

Vizsgáltak hasonló megfontolás alapján amorf aktív szenet (AC), mert nagy fajlagos felülete miatt széleskörűen használt adszorbensként [122-123]. Ez rendkívül hasznos lehet például a már tisztított vizeknél, nyomnnyi (ppm: 10$^{-6}$ M) mennyiségben levő szerves szennyezőanyagok ártalmatlanításánál. Számos példát találhatunk, amelyeknél a kompozitokban aktív szenet kombináltak fémt-oxidokkal, pl. TiO$_2$, WO$_3$-dal, amelyeket elterjedten alkalmaznak különböző szerves szennyezők fotokatalitikus lebontásánál. Adott esetben Fe-AC katalizárt fenol [124], ZnO-AC kompozitot pedig metilénkék átalakítására is használtak [125]. Különböző porozitású aktív szénen rögzített nano TiO$_2$–on a metinlarnces bomlását is vizsgálták [126]; mások pedig a TiO$_2$–AC kompozitját pedig rodamin B lebontására találtak alkalmaznak [127]. Azt tapasztalták, hogy a kompozitok katalitikus hatékonysága nagymértékben függ az AC
adszorpciós kapacitásától, valamint a fémoxidok aktivitásától, illetve ezek arányától az adott kompozitban.

A grafit olyan kis sűrűségű szénfajta [128], amely számos egyedi, különleges tulajdonsággal rendelkezik, úgyminth kémai állandóság agresszív közegben, nagy fajlagos felület, jó vezetőképesség, rugalmasság, illetve magas hőmérsékletnek is ellenáll. (10. ábra)

![10. ábra, A grafit és szerkezete](http://alag3.mfa.kfki.hu/mfa/nyariiskola/07F_Szen_kompozitok/index.htm)

A grafit is szokatlan tulajdonságokkal rendelkező anyag, nem lehet besorolni a vezetők, vagy a félvezetők kategóriájába, ugyanis átmenetet képe a fémes vezetők és a félvezetők között. Fotoelektrokémiai oxidáció során, grafit-TiO₂ elektródot alkalmaztak p-nitrofenol átalakítására, melynél 62 %-os eltávolítási hatékonyságot érték el [129].

Másik, nagy fajlagos felülettel rendelkező széntípus a szén aerogél (Carbon Aerogel, 11. ábra). Aerogéleknek az olyan, nagyon kis sűrűségű szilárd anyagokat nevezik, amelyek valamilyen gélből származnak, folyékony összetevőjük azonban gázformában anyaggal cserélődik le az előállítás során. Jellemzőjük, hogy tartalmaznak grafitizálódott rétegeket is, azaz olyan részeket, amely szabályos szerkezettel (graffit) rendelkezik.

---


Elviekben ideális megoldás lehet az olajszennyeződések eltávolítására, mert kis mennyiségük is nagy tömegű folyadékop képes magába szívni (1 g aerogél 900 g olajat), azonban ezeket a terveket mindeddig nem követte tényleges megvalósulás. Tachikawa és munkatársai sikeresen előállították nanoméretű (50 nm) anatáz TiO$_2$-ot szén aerogél hordozón, amellyel a metilénkék fotokatalitikus átalakítását vizsgálták. Eredményeik azt mutatták, hogy az ilyen típusú (Ae-TiO$_2$) kompozitban levő TiO$_2$ hatékonysága nőtt, ha a részecskék mérete a nanométeres tartományba esett.

Napjainkban ugyancsak széleskörűen kutatott szénfajta a grafén (12. ábra, A grafén szerkezete), amely 1 réteg grafit szerkezetének köszönhetően kompressziótűrő, flexibilis, hő-, és korrózióálló [130]. Különleges tulajdonságát például újgenerációs energiatároló rendszerben (TiO$_2$-dal kombinálva) használják [131].

11. ábra, Szén aerogél fényképe

12. ábra, A grafén szerkezete

---

8 https://ipon.hu/hir/egy_ujfajta_karbon_aerogel_a_vilag_legkonnyebb_szilard_anyaga/24670 (2016.03.16)
9 http://www.extremetech.com/extreme/185737-researchers-may-have-solved-graphenes-production-problems-cleared-way-for-mass-production (2016.03.16)
A fémoxidokkal (pl. TiO$_2$) kémiai kötésben levő grafén fotokatalitikus folyamatban pedig még hatékonyabb katalizátor lehet [132]. Grafén-oxid-TiO$_2$-ból álló hatékony fotokatalizártórt állítottak elő Martínez [133] és kollegái, amely gerjeszthető volt közeli-UV és látható fénytel is, és a difenhidramin bontására használták, amely napjaink egyik jelentős vízszennyezője [134]. Ezt az antihisztamin hatású, gyógyszeripari és szépségápoláshoz használt anyagot, a harmadik legnagyobb mennyiségben mutatták ki halhúsban és májban (1-10 μg·kg$^{-1}$ mennyiségben), őt különböző helyszínén az Egyesült Államok területén, így jelentős hatású lehet a vízi szervezetekre [134]. Az utóbbi két évtized ugyancsak különleges mechanikai és elektromos tulajdonsággal rendelkező, intenzíven kutatott anyaga a szén nanocső, amelyet kiemelkedő hő- és kémiai stabilitás jellemzi [135].

A szén nanocsövet, mint egy hengerré feltekert egyetlen grafit síkok írhatjuk le, ebben az esetben egyfalú nanocsőről van szó (SWCNT). Többfalú szén nanocsövet (MWCNT) több, koncentrikus elhelyezkedésű nanocső alakít ki, melyeknél a csövek falainak távolsága ~0,34 nm, amely hasonló a grafitban levő rétegek távolságához (0,335 nm) [136]. Átmérőjük 1-2 nm az egyfalú csöveknél, többfalúaknál pedig általában néhány tíz nanométer, míg a hosszúságuk μm-es tartományba esik (13. ábra).

13. ábra, Egyfalú és többfalú szén nanocső


10 http://jnm.snmjournals.org/content/48/7/1039/F1.large.jpg (2016.03.08)
gyártása), a nanomechanikában (mesterséges izmok előállítása), de a verseny sportszergyártásban is egyes kerékpárok, szénszálas vázát szén nanocsővekkel még erősébbé és könnyebbé tették (1 kg-os váz). Ugyanezen az elv alapján felhasználásuk a gépkocsi, ill. repülőgépgyártásban is megvalósulhat, ha előállításuk olcsóbbá és nagy mennyiségüvé válik. A szén nanocsőveket változatos optikai és elektromos tulajdonságaióból adódóan polimerkompozitok diszperz fázisaként [138], elemekben, szenzorokban [139-140] is alkalmazzák. Kompozit anyagként igen sok lehetőség van használatukra, nemcsak polimerekkel, hanem szervetlen vegyületekkel is kombinálva [141], vagy fém-mátrixban alkalmazva, szerkezet erősítő anyagként [142].


2.4.1 Titán-dioxid - szén nanocső kompozitok (TiO2-CNT)

metilénkék, metilnara, rodamin B stb.) vizsgálják a TiO$_2$-CNT nanokompozitok fotokatalitikus hatékonyságát. Többféle elmélet ismert, hogy a kompozitot alkotó anyagok milyen szerepét töltenek be a reakciók során. A szén nanocsövek szerepe egyrészt adszorpciós lehet, azaz a szennyezőanyagok megkötésében vesznek részt, amelyet aztán a vele kapcsolatban levő TiO$_2$ részecskék (megfelelő hullámhosszúságú fény hatására) át tudnak alakítani. TiO$_2$-CNT nanokompozitokat alkalmazva a hidrogénezési reakciók során a TiO$_2$ katalizátorhordozó szerepe mellett a szén nanocsövek adszorpciós tulajdonságai is szerepet játszhatnak a katalitikus folyamatokban. A TiO$_2$-szén nanocskó kompozit együttes „működése” még nem tisztázott teljesen [156-157]. Az egyik elképzelés szerint a nanocskó elektron- „elvezetőként” viselkedik: mikor a TiO$_2$ részecskében fénybesugárzás hatására elektron kerül a vezetési sávba, akkor ez onnan a CNT-re eljuthat [158]. Mivel a szén nanocsövek jó elektromos vezetők, így az elektron a cső hosszában el tud vándorolni, ami késlelteti, hogy az elektron visszajusszon a TiO$_2$-ra. Ezzel növekszik az elektron-lyuk párral élettartama, így a fotokatalitikus reakciók bekövetkezésének valószínűsége. Másik álláspont (amelyet Wang és munkatársai képviselnek [34]) szerint a többfalú szén nanocskó (MWCNT) fotoérzékenyítő szerepet tölt be, azaz gerjesztett elektronokat juttat a TiO$_2$ vezetési sávjába, míg a pozitíván töltött MWCNT elektronokat vesz át a TiO$_2$ vegyértéksávjából és a pozitív töltésű lyukak a TiO$_2$ részecskén maradnak vissza. Mivel az MWCNT jó adsorbens, a nagy fajlagos felületének köszönhetően, fontos, hogy az adsorpciós képességét is vizsgáljuk. Következésképpen a TiO$_2$-CNT kompozit adszorpciós tulajdonsága kulcsfontosságú szerepet tölt be a fotokatalitikus tulajdonságuk alakulásában [153].

Több lehetőség van TiO$_2$-CNT kompozitok előállítására, ezek például az impregnálás [159], a szol-gél eljárás [34], illetve a hidrotermális út [160]. Réti és munkatársai [35, 155] kíséreltekben igazolták, hogy a TiO$_2$-MWCNT (szol-gél eljárással készült) kompozitok fotokatalitikus aktivitása függ a modellszennyezéstől és a kompozit szén nanocső tartalmától. Eredményeik szerint fenol átalakításakor az 1 % CNT-tartalmú kompozit, amíg oxálsav esetén az 5 % CNT tartalmú kompozit működött hatékonyabban, és a nanocskó tartalmú kompozitok mindkét esetben hatékonyabbak voltak, mint a csak TiO$_2$-ot tartalmazó fotokatalizátor. Bizonyították, hogy az alacsony (1 illetve 5 %) MWCNT tartalom a kompozitban fontos tényező a fotokatalitikus hatékonyság szempontjából. A szén nanocskó ezekben a kísérletekben, mint vezető, illetve elektron raktározó anyag viselkedik, így növeli a szétnvaló töltések élettartamát és ezzel a fotokatalitikus hatékonyságát a TiO$_2$-nak a kompozitban.

Kísérleteim során meghatározó jelentőséggel bírt a Guo és munkatársai [161] által publikált eredmény, amelynél TiO$_2$ nanolapokat szintetizáltak szénszállakon, titán-tetrabutoxid
prekurzorból kiindulva és HF-ot használtak a TiO$_2$ szerkezetét befolyásoló reagensként [72, 162].
3. Célkitűzés

Hatékonyan működő TiO₂ fotokatalizátor előállítását különböző szemszögőből is megközelíthetjük, hiszen a fotokatalitikus átalakítás folyamatát több tényező befolyásolja. Ezek például a kristályméret, morfológia és kristály-(őn)szerveződés, a TiO₂ felületi minősége, fajlagos felülete, az alkalmazott fény spektrális összetétele, illetve kritikus tényező, hogy milyen az átalakítandó anyag (anyagi)minősége.

Munkám tervezésekor az foglalkoztatott, hogy a TiO₂, mint fény hatására gerjesztődő félvezető és a szén nanocső (CNT), mint elektron vezető anyag, hogyan hatnak egymásra bizonyos anyag fotokatalitikus átalakítása során. A szakirodalom alapján feltételezem, hogy a két anyag szinergizmusa javítja a TiO₂-CNT kompozit fotokatalitikus hatékonyságát, a TiO₂-hoz képest. Ennek feltételezett mechanizmusa, hogy a szén nanocső elvezeti a fény hatására a TiO₂ vezetési sávjába lépő elektronokat, így csökkentve a töltések rekombinációjának sebességét. Ennek eredekében vizsgálni kívánom a két anyag egymásra gyakorolt hatását különböző eljárásokkal előállított anyagkeverékek, kompozitok esetén.

Az említett folyamat vizsgálata érdekében a következő célokat tűzem ki:
1. A TiO₂ és CNT egymásra gyakorolt hatásának tanulmányozását különböző, fizikai (mechanikai vagy ultrahangos homogenizálás) keveréssel előállított kompozitokban. Ezen belül vizsgálok:
   a., melyik alapkatalizátor (TiO₂) hatását javítja a szén nanocsővel való kombináció,
   b., a szén nanocső típusának illetve mennyiségének hatását a TiO₂-dal való kompozitban, illetve
   c., az ultrahangos körülményeinek hatását a kialakuló kompozit tulajdonságaira.
2. A TiO₂-CNT kompozitok előállítását hidrotermális kristályosítással, ahol a nanocső kristályosítási göcként van jelen. Ezen belül tanulmányozom:
   a., a hidrotermális kezelési idő hatását a keletkező kristályok morfológiájára, és fotokatalitikus tulajdonságaira, valamint
   b., a kristály alakját irányító HF szerepét a kristályosítási folyamatban és
   c., az utólagos hőkezelés hatását a TiO₂-CNT kompozitokra.
3. Céloknak a TiO₂ morfológiai változásának vizsgálata a szén (nanocső) nélkül megvalósuló hidrotermális előállítás esetén.
4. Továbbá annak felmérése, hogy a hidrotermális kristályosításnál alkalmazott különböző széntípusok jelenléte befolyásolja-e a kialakuló TiO₂ kristályok alakját.
4. Felhasznált anyagok és módszerek

4.1. Felhasznált anyagok

4.1.1. A kereskedelmi forgalomban lévő titán-dioxidok, amelyeket ultrahangozásos homogenizálással készült kompozitok előállításánál alkalmaztam.
Az alapkatalizátoroként használt, kereskedelmi forgalomban is kapható TiO\textsubscript{2}-ok listáját és legfőbb jellemzőit az 1. táblázat tartalmazza.

1. táblázat, A felhasznált TiO\textsubscript{2} katalizátorok és legfőbb jellemzőik

<table>
<thead>
<tr>
<th>Név</th>
<th>Gyártó</th>
<th>Anatáz (m/m %)</th>
<th>Rutil (m/m %)</th>
<th>Fajlagos felület (m\textsuperscript{2}/g)</th>
<th>Átlagos kristályméret (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerioxide P25</td>
<td>Evonik Industries AG</td>
<td>90</td>
<td>10</td>
<td>50,0</td>
<td>27</td>
</tr>
<tr>
<td>Aldrich anatáz AA</td>
<td>Sigma-Aldrich Co.</td>
<td>100</td>
<td>-</td>
<td>9,9</td>
<td>&gt;85</td>
</tr>
<tr>
<td>Aldrich rutil AR</td>
<td>Sigma-Aldrich Co.</td>
<td>4</td>
<td>96</td>
<td>2,7</td>
<td>315</td>
</tr>
<tr>
<td>Hombikat</td>
<td>Sigma-Aldrich Co.</td>
<td>99</td>
<td>-</td>
<td>215</td>
<td>10</td>
</tr>
</tbody>
</table>

4.1.2. A hidrotermális kristályosításnál alkalmazott anyagok

Hidrogén-fluorid, (HF) > 40 % Sigma-Aldrich (Reagent Grade)
Sósav, HCl 37 % (Reagent Grade) Analar NORMAPUR, VWR CHEMICALS
Titán-izobutoxid; 97 %, Aldrich, USA, (Reagent Grade)
Nátrium dodecilsulfát (SDS), 99%, Sigma-Aldrich, USA, (Reagent Grade)
Tiokarbamid (H\textsubscript{2}NCSNH\textsubscript{2}), 98%, Sigma-Aldrich, USA, (Reagent Grade)
Titán-tetraklorid (TiCl\textsubscript{4}), 99,9%, Sigma-Aldrich, USA, (Reagent Grade).

4.1.3. Az előállított fotokatalizátorok tisztítására használt anyagok

A munkám során használt minden oldat illetve szuszpenzió készítésénél ultraszűrt (Milli Q) vizet használtam. Hidrotermális kristályosítás után a kapott anyag mosása 2-propanoll (Reanal NORMAPUR, 69 %), víz elegyével történt.
A szén nanocsövek (CNT) funkcionálisítására salé tromsavat (HNO\textsubscript{3}, 70 %, ACS reagent) alkalmaztak.
4.1.4. Alkalmazott modellszennyezők
Az előállított katalizátorok hatékonyságának vizsgálatára a következő modellszennyezők átalakítását tanulmányoztam:
Fenol (*AnalaR NORMAPUR, VWR CHEMICALS*, analitikailag tiszta);

4.1.5. Nagyhatékonyságú folyadékkromatográfias eljárás során használt eluensek
Metanol (CH$_3$OH); (*HiPerSolv CHROMANORM, HPLC célra*) és víz elegye (35:65=metanol:víz) volt.

4.1.6. Alkalmazott szénfajták
Kísérleteim során a különböző előállítási módszereknél a következő szénfajtákat alkalmaztam:
Többfalú szén nanocső (MWCNT), egyfalú szén nanocső (SWCNT), grafit, szén-aerogé (CAe: K$_1$, K$_2$) aktív szén, szénspirál.
A szén aerogélt a Babes-Bolyai Tudományegyetem Interdisziplináris Bio-Nano Tudományok Intézetében (Kolozsvár), a szénspirálokat a SZTE Alkalmazott és Környezeti Kémiai Tanszékén, az egy-, és többfalú szén nanocsöveket pedig az EPFL Institute of Physics of Complex Matter (Lausanne, Svájc) intézetben állították elő.

4.2. Az anyagok előállításánál alkalmazott berendezések

4.2.1. Szárítószekrény
A hidrotermális kristályosítás során használt szárítószekrény *Memmert* típusú volt, ebbe helyeztem meghatározott időre az autoklávot. A hőkezelés után vízfürdőben lehűtöttem, ezután dolgoztam fel/tisztítottam a mintákat.

4.2.2. Kalcináló kemence
A kalcinálás célja alapvetően a kristályossági fok növelése, mert nem minden hidrotermális előállított minta kristályos teljes mértékben. Az előállított port kerámiaacsónakba tettem, amit *Thermolyne 21100* kalcináló csökmencébe (64 cm, belső átmérője 5,5 cm) rögzített kvarccsöbe (kvarccső hossza: 38 cm, átmérője: 4 cm) helyeztem. A kalcináló cső tetszőleges minőségű és mennyiségű gázárammal öblíthető a hőkezelés alatt. A kísérleteim során ez 24 mL·s$^{-1}$ áramlási sebességű levegővel történt. Minden minta esetében a
kalcinálást 2 órán át, 400 °C-on végeztet 10 °C·perc⁻¹ felfűtési sebességgel. A minták nevében a C jelzi a kalcinálást.

4.2.3. A fotokatalitikus aktivitás megállapításához használt berendezések

A fotokatalitikus vizsgálatokat minden esetben atmoszférifikus nyomáson, szobahőmérsékleten végeztet. A mérések ismételhetőségét egy párhuzamos méréssel ellenőriztem. A párhuzamos mérések között jelentős különbség nem volt (< ± 5 %).

4.2.3.1. „Gyorsteszt”

Az egyes mintákat először ún. „gyorsteszt” (15 férőhelyes mágneses keverőt és a felette levő, UV-fényt biztosító eszköz: 3 db LighTech 40 W féncső: λ_{max} ≈ 365 nm) segítségével vizsgáltam, amelynél a minták lámpáktól való távolsága 15 cm, a mérés ideje 180 perc volt. A szuszpenzió 1 g·L⁻¹ katalizátor és 0,5 mM fenolt tartalmazott, térfogata pedig 50 mL volt. Rodamin B esetén az oldat koncentrációja 0,01 mM volt. Az ultrahangozással előállított minták fenol-átalakításának vizsgálata, illetve később, a rodamin B átalakításakor (különböző szénfajták jelenléteben előállított minták vizsgálata) esetén ezt a berendezést használtam.

4.2.3.2. A használt fotoreaktor

A további fotokatalitikus vizsgálatokat egy 100 mL-es, felülről nyitott, dupla falú, Pyrex üvegből készült reaktorban végeztetem, amelynek köpenyében vizet áramoltatva biztosítottam a rendszer állandó hőmérsékletét: 25,0 ± 0,5 °C – t. A reaktort 6 db. „Vilber-Lourmat T-6L UV-A” típusú 6W-os lámpával világítottam meg (λ_{max} = 365 nm). A lámpák a reaktor körül egyenlő távolságban és egyenletesen elosztva voltak rögzítve. A lámpa bekapcsolása előtt fél órával már összeállított és kevertettem a szuszpenziót, időt hagya a szorpciós egyensúly beállásának. A fényforrás felkapcsolása után, a levegő további bevezetése mellett mágneses keverővel is biztosítottam a szuszpenzió folytonos homogenizálását, amelyből meghatározott időközönként mintát vettem. Ezt a berendezést a hidrotermális kristályosítással előállított minták esetén alkalmaztam. Mindkét módszernél - az összehasonlítatóság céljából - referenciaként Aeroside P25 katalizátor használtam.
4.3. Az előállított minták jellemzésére használt módszerek

4.3.1. Röntgendiffrakciós mérések

A röntgendiffrakciós mérés (XRD) a kristályos fázisok jellemzésére, a kristályméret, valamint fázisösszetétel meghatározására szolgáló eljárás. Diffrakciós vizsgálatoknál csak a rövid hullámhossztartományba eső sugárzást alkalmazunk ($\lambda \leq 100$ pm), mert a legtöbb kristályos anyag rácsállandója is ebbe a tartományba esik, így alkalmas a kristályokon való diffrakciós (elhajlás) jelenségek előidézésére. A röntgensugarak intenzitását ábrázolva az úgynevezett $\Theta$ szög függvényében (a kristálysíkok és a beesési sugár által bezárt szög), kapjuk a diffaktogrammot. A 100 nm alatti kristályok méretének meghatározására alkalmas ez a módszer, a kristályméretet a röntgendiffrakciós csúcs adataiból (a csúcsok félértékszélessége fordítottan arányos a szemcsemérettel) számolhatjuk a Scherrer-egyenlet segítségével:

$$D = \frac{K\lambda}{\beta \cos \Theta}.$$ 

D az átlagos részecskeátmérő [nm]
K a Scherrer állandó (dimenziómentes)
$\lambda$ a röntgensugárzás hullámhossza [nm]
$\beta$ a diffrakciós csúcs félértékszélessége, ill.
$\Theta$ a Bragg-szög [fok, °].

A katalizátorok vizsgálatához a röntgendiffraktogramot egy „Rigaku Miniflex II” típusú diffraktometéren mértünk 20° ≤ 2\(\Theta\) ≤ 40° szögtartomány között, a sugárforrásra jellemző kísérleti paraméterek mellett: $\lambda_{CuK\alpha} = 0,15406$ nm, feszültség: 30 kV, és az áramerősség: 15 mA volt. Jellemző reflexiói a különböző TiO\(_2\)-nak: anatáz (AA) 25,3° 2\(\Theta\) értéknél (101), rutil (AR) 27,5° (110) 2\(\Theta\)-nál és brookit (AB) 30,8° 2\(\Theta\) értéknél (121) található.

4.3.2. Fajlagos felület meghatározása N\(_2\) adszorpcióval

A szilárd adszorbensek felületének minősítésekor alkalmazott egyik módszer az alacsony hőmérsékleten meghatározott nitrogén-adszorpciós-, és -deszorpciós izotermáinak elemzése a Brunauer-Emett-Teller (BET) egyenlet alapján. Ennek háttér, hogy a nitrogénmolekula gyenge, másodlagos kölcsönhatásba lép a szilárd felülettel (fiziszorbeálódik), ezért feltételezik, hogy monomolekuláris réteget képez a felületen, s így valamennyi molekula azonos helyet foglal el. A mérések Sorptomatic 1990 típusú berendezéssel történtek. A minta tömegét amennyire lehet maximalizáltuk (150 mg), mert nagyméretű részecskekről lévén szó, alacsony fajlagos felületet ($a_{BET} < 1$ m\(^2\)·g\(^{-1}\)) vártunk.
4.3.3. Termogravimetria

A termogravimetria a legalapvetőbb termoanalitikai módszer, amelynél a hőmérséklet változtatása közben (kemencében) analitikai mérlegen mérjük a minta tömegváltozását, a műszer pedig a tömegváltozást rögzíti a hőmérséklet függvényében. Automatizált műveletként végezhető pl. kristályvíz, széntartalom meghatározásra, ez utóbbit kívántuk meghatározni. A mintamennyiség általában 8-50 mg, esetünkben a minták 10 mg körüli voltak. A mérés különböző gázban történhet (levégő, N₂, O₂, He), melyek közül a levegőt alkalmaztuk. A készülék SETARAM LABSYS 1600 típusú volt, felfűtési sebessége 5 °C·perc⁻¹, referenciaként pedig MgO-ot használtunk.

4.3.4. Elektronmikroszkópos vizsgálatok

4.3.4.1. Transzmissziós elektronmikroszkópos vizsgálat (TEM)

Széles körben alkalmazott módszer félvezetők, kerámiák, nanórészek, vékonyrétegek és kompozitok tanulmányozására, melyénél a megfelelően előkészített mintán nagy feszültséggel (100-300 kV) felgyorsított, és jól fókuszált (lehetőleg koherens) elektronnyalábot bocsátunk át, majd az eltérített (diffraktálódott) elektronokat elektromos és mágneses lencsék segítségével leképezzük egy fluoreszkáló képernyőre. A transzmissziós elektronmikroszkópos vizsgálat során elektrondiffrakciós felvételt is készíthetünk, amelyek segítségével, akár az adott kristály szerkezete és orientáltsága iselderíthető.

A mintáim egy részénél a kristályok alakjának és méretének meghatározását a SZTE ÁOK Pathológiai Intézetében lévő Phillips CM 10 típusú transzmissziós elektronmikroszkóppal (TEM) végeztük, 100 kV gyorsítófeszültség mellett. A mintáim másik részét az SZTE Alkalmazott és Környezeti Kémiai Tanszéken lévő FEI Technai G2 20 X-TWIN, készülékkel végezt, 200 kV gyorsítófeszültség alkalmazásával. A mintákat 5-15 perc ultrahangos rázatással homogenizáltunk (~ 1 cm³ ultraszűrt vízben), majd hártiasított réz mintatartóra (Formvar grid) cseppentettém a szuszpenziót és beszárítottam szobahőmérsékleten. A minták részecskeméretét AnalySIS software segítségével állapítottuk meg.

4.3.4.2. Nagyfelbontású elektronmikroszkóp (HRTEM)

A lényeg ugyanaz, mint az előző fejezetben, csak részletesebb felvételeket kapunk jóval nagyobb felbontást mellett. Az alkalmazott gyorsítófeszültség, akár 300 kV is lehet. A minták vizsgálata JEM ARM 200F TEM készülékkel történt elektrondiffrakciós üzemmódban (SAED).
4.3.4.3. Pásztázó elektronmikroszkópos vizsgálatok (SEM)

Ugyancsak széleskörűen használt módszer a pásztázó elektronmikroszkóp, amellyel a részecskék morfológiáját deríthetjük fel, ugyanis a vizsgált tárgy felszínének meghatározott területét fókuszált, vékony elektronnyalábbal végigpásztázza. Ennek során az elektronok kölcsönhatásba kerülnek a mintával, amelynek hatására másodlagos elektronok lépnek ki, amelyeket az adott detektor érzékel. Legalapvetőbb a felületi „domborzatot” megjelenítő sekunder elektron kép; a SEM tehát tömbi minták felszíni morfológiájának, felszínhez közeli rétegeinek vizsgálatára alkalmas.

Az általam előállított porminták felületi sajátosságait egy Hitachi S-4700 Type II típusú pásztázó elektronmikroszkóppal vizsgáltuk 25 kV gyorsítófeszültség mellett.

4.3.5. Röntgen-fotoelektron spektroszkópia (XPS)

A módszer a röntgen fotonoknak a szilárd fázissal bekövetkező kölcsönhatásán alapul, és a felületen (1-10 nm mélységben) található atomok típusáról, vegyértékállapotáról és kémiai környezetéről ad információt. A mérés során egy röntgencsőből származó monokromatikus, fókuszált (kb. 10-100 µm átmérőjű) és irányított röntgen fotonnnyalábbal sugározzuk be a mintát, ami ennek hatására fotoelektronokat bocsát ki, ezeket detektáljuk. A mérés feltétele, hogy a besugárzó röntgen foton energiájának nagyobbna kell lennie az anyagban található legnagyobb kötési energiánál. A méréseket egy Specs Phoibos 150 MCD 9 spektroszkóppal végeztük Al Kα röntgenforrással (h∙ν = 1253,6 eV) segítségével, 10⁻⁹ mbar alatti vákuumban, 0,05 eV-os spektrum felbontás mellett. Az adatok CasaXPS software segítségével letek kiértékelve.

4.3.6. Diffúz reflexiós spektrometria

Ez a módszer a vizsgált anyag optikai tulajdonságát derítí fel, amelynek során a spektrumból a félvezető anyagok tiltottsáv-szélessége is meghatározható. Ez, a titán-dioxid esetében fontos, hiszen meghatározza, hogy milyen minimális energiájú fényre van szükség a félvezető (TiO₂) gerjesztéséhez. A DRS spektrum a reflektált fényt méri, ezáltal megmutatja az ismert abszorpciós sávokat, amelyek a tiltott sávok szélesség értékeire utalnak a mintában. A visszavert fény hullámhossz szerinti intenzitásából megállapíthatóak a gerjesztéshez hatékonyan alkalmazható hullámhosszak. A lehetséges elektronátmenetek megállapításához a dR/dλ változást ábrázoltam a λ függvényében, ahol R a reflektancia és λ a hullámhosszúság. A spektrum első deriválja még érzékenyebb bármely jellegű spektrális változásra, így összekapcsolható a lehetséges elektronátmenetekkel is.
A műszer egy spektrofotométer, amelynek a küvetta rögzítője helyén térintegráló detektor van, amely a szótő fotonokat (a szilárd mintán történő diffúz reflexiós jelenség miatt) érzékeli. Referencia anyagként fehér BaSO$_4$ pasztillát használtam.

A porminták UV-Vis (λ = 300-800 nm) reflexiós spektrumainak vizsgálatához egy ILV-724 típusú diffúz reflexiós modullal ellátott JASCO-V650 típusú diódasoros (SpectraManager szoftverrel ellátott) spektrofotómétert alkalmaztam, 0,5 nm-es felbontással és 100 nm-pers$^{-1}$ pásztázási sebességgel. A spektrumokat 220-800 nm között rögzítettem, a spektrum elsőrendű deriválását 310-460 nm között végeztem, valamint a tiltott-sáv értékeket a Kubelka Munk-féle megközelítéssel számoltam [163].

4.3.7. Fotokatalitikus mérések során használt eszközök

4.3.7.1. Spektrofotometria

A modell vegyületek bomlásának menetét UV-Vis abszorpciós spektrumok felvételével követtem nyomon, amelyhez egy Agilent 8453 típusú diódasoros spektrofotómétert használtam. Detektáláskor rodamin B esetén az alkalmazott hullámhossz 553 nm volt. A mérések 1 cm-es kvarc küvettában történtek, a hátteret pedig ultratiszta (Milli-Q) víz szolgáltatta.

4.3.7.2. Nagyhatékonyságú folyadékkromatográfia (HPLC)

A nagyhatékonyságú folyadékkromatográfia különböző vegyületek elválasztására szolgál. Lényege, hogy a mozgófázisban levő komponensek milyen erősen és mennyi ideig lépnek kölcsönhatásba az oszlopba töltött állófázissal. Ez minden összetevő esetében eltérő, így a retenciós idők alapján azonosítani tudjuk az egyes anyagokat, valamint az adott retenciós időhöz tartozó jel intenzitása mennyiségi információt hordoz. A mintavétel után (még az injektálás előtt) a 1,5 mL szuszpenziót centrifugáltam, majd a felülúszót szűrtem Whatman Anotop 25 0,02 μm-es pórusméretű szűrőn. A katalizátorszemcsékétől elválasztott folyadékminták szerves modellszennyezőinek koncentrációját egy UV-látható fény detektorral felszerelt Agilent 1100 series HPLC-vel határoztam meg. A detektálás fenol esetében 210 nm-en történt. Az elválasztást LiChrospher RP-18, 5 μm részecske átmérőjű (fordított fázisú) töltetes (4 mm × 125 mm) oszlopon valósítottam meg, ahol az eluens metanol: (ultraszűrt) víz = 35: 65 arányú elege, az injektált minta térfogata 20 μL, az eluens áramlási sebessége pedig 0,8 mL pers$^{-1}$ volt. A kiértékelés során a tapasztalt hiba 4-7 % volt.
5. Kísérleti rész

5.1. TiO$_2$-szén nanocső kompozitok előállítása mechanikai keveréssel: Ultrahangozás

5.1.1. Ultrahangozásos módszer I.

A TiO$_2$- szén nanocső kompozit előállítása során ultratisztta szűrt vízbe tettem a szén nanocsővet, majd 1 órán keresztül ultrahangoztam szobahőmérsékleten, hogy a nanocső kellőképp szuszpendálódjon, majd ehhez adtam a TiO$_2$ port, együtt kevertettem 1 órán keresztül mágneses keverőn, ezután szárítószekrényben szárítottam (105 °C-on), majd porítottam az anyagot és lemérttem a tömegét.

5.1.2. Ultrahangozásos módszer II.

A kompozitokat előállítottam másik, merülőfejes ultrahangos készülékkel is. Ennél a módszernél többféle tényező hatását vizsgáltam, ezek: a hozzáadott víz mennyisége (100 mL - 500 mL), a szén nanocső szuszpendálásának (ultrahangozással) időtartama (1-10 perc), a hozzáadott TiO$_2$ ultrahangozás időtartama (1-10 perc), és az alkalmazott ultrahangozó készülék teljesítménye (250 W - 1 kW) voltak. Leghatékonyabbnak bizonyult a CNT ultrahangozása 5 percig, ezután TiO$_2$-dal együtt még 1 percig. Ezt követően szárítószekrényben szárítottam (105 °C -on), majd porítottam és lemérttem a kapott anyag tömegét.

5.2. Hidrotermális kristályosítás

5.2.1. Nano-, ill. mikroméretű TiO$_2$ lapok előállítása

A hidrotermális kristályosítás acélköpenyes, autoklávban történt. Első lépésként a TiO$_2$-prekurzort (elsőként: 8 mL titán-tetrabutoxidot) csepegtettem kevertetés közben 124 mL mennyiségű 5 M-os sósav oldatba, 300 mL-es műanyag edényben. Fél óra elteltével 2,48 mL, 40 %-os hidrogén-fluoridot (HF) adtam hozzá cseppenként, majd további 5 percig kevertettem [161]. Eközben 15 mg funkcionalizált többfalú szén nanocsövet (FMWCNT) adtam a maradék ≈ 20 mL 5 M-os sósavhoz, majd ezt ultrahangos kádban 10 percig kezeltem, ezzel segítve elő a szén nanocső szuszpendálását. Ezt követően öntöttem a FMWCNT szuszpenziót, illetve a TiO$_2$-prekurzoros, savas elegyet a teflon autoklávba. Az általam alkalmazott kristályosítási idő: 1, 5 valamint 24 óra volt, a kristályosítási hőmérséklet pedig 180 °C. A megadott idő elteltével az autoklávot 30 perc alatt vízfürdő segítségével szobahőmérsékletre hűtöttem. Az autoklávot felnyitva a már szilárd TiO$_2$-ot tartalmazó szuszpenziót centrifugálással ülepitettém, a felülúsztót leöntve mostam 2-propanol: Milli-Q víz 2:1-es elegyével. A centrifugálást és mosást
addig végeztem, amíg a kész katalizátort tartalmazó elegy pH-ja el nem érte a 6-os értéket. A kapott szuszpenziót beszáritottam 80 °C-on. Száradást követően porítottam és lemerített a kapott anyag tömegét.

5.2.2 TiO₂ nanorészecske-aggregátumok előállítása

Ezeket a nanorészecskéket szintén hidrotermális kristályosítással állítottam elő. Első lépésben 5,3 g nátrium dodecil szulfátot (SDS) oldottam fel ultratiszta szűrt (Milli-Q) vízben és kevertettem 7 g tiokarbamiddal. Miután teljesen feloldódott, jeges fürdőn erőteljes kevertetés közben hozzáfűgtettem a TiCl₄-ot (vegyifülkében). Az elegyet tovább kevertettem 50 °C-on 1 órán keresztül, amíg egy átlátszó szolt kaptam. Az előbbi keverékhez 1 mL (37 %-os) HCl-at adtam három alkalommal, a kevertetési idő (1 óra) utolsó 15 percében (1 mL HCl 5 percenként). A végső mólarány, amelyet így kaptam: TiCl₄: SDS: tiokarbamid: HCl: H₂O = 1:2:10:11:300. Az oldatot ezután teflonbevonatú autoklávba tettem és 180 °C-on tartottam 36 órán keresztül. A kivált fehér csapadékot desztillált vízzel mostam, amíg a H₂S már nem érzékelhető, ill. a szerves melléktermékeket teljesen el nem távolítottam. A kapott anyagot ezután szárítószekrényben száríttottam 80 °C-on 24 órán át, majd a nanokristályokat 3 óra hosszáig kemencében kalcináltam 4 különböző hőmérsékleten (500, 650, 800 és 1000 °C-on), a felfűtési sebesség 4 °C-perc⁻¹ volt.
6. Eredmények és értékelésük

6.1. Fizikai keveréssel előállított TiO$_2$-CNT kompozitok vizsgálata

A kutatásnak ebben a szakaszában azt vizsgáltam, hogy melyik kereskedelmi forgalomban kapható TiO$_2$ és szén nanocső esetében valósulhat meg minél hatékonyabban a két anyag szinergizmusa. Yao és munkatársai megállapították, hogy az elektronok és lyukak rekombinációja késleltetett a titán-dioxidról a szén nanocsövekre történő elektrontranszfer folyamat következtében [156]. Azaz minél jobban érintkezik a két anyag, az UV-megvilágítás hatására keletkező elektronok hatékonyabb elvezetése valósul meg, ami növelheti TiO$_2$ fotokatalitikus aktivitását.

6.1.1. Ultrahangozás I. módszerrel készült kompozitok vizsgálata

6.1.1.1. Különböző TiO$_2$-CNT kompozitok összehasonlítása

Ebben az alfejezetben a többféle, kereskedelmi forgalomban kapható TiO$_2$ katalizátorok és szén nanocső felhasználásával előállított kompozitokat mutatom be. A CNT tartalma a kompozitoknak 1 % volt, illetve funkcionálizált többszöveten nanocsöveket alkalmaztam. Az így előállított kompozitok pásztázó elektronmikroszkópos felvételeit a 14. ábra mutatja.

![14. ábra](image_url)

14. ábra. AA+FMWCNT és AR+FMWCNT pásztázó elektronmikroszkópos felvételei, eltérő nagyításban
A felvételeken több helyen is látható a többszögű szén nanocső, de jórészt rejtve marad, mert a TiO\textsubscript{2} befedi. A felvételeken piros nyíl mutat a szén nanocsőre. A mintában nem homogén a nanocső eloszlása. A következő ábrán (15. ábra) a Hombikat és a P25 katalizátor és a funkcionálzált, többszögű szén nanocső elegye látható, amely ultrahangos homogenizálással készült. A felvételeken jól látható, hogy a TiO\textsubscript{2} részek mérete az előzőekhez képest jelentősen kisebb; a nanocsövek eloszlása a mintán belül ezeknél sem homogén.

![15. ábra, Hombicat+FMWCNT és P25+FMWCNT pásztázó elektronmikroszkópos felvétele](image)

Következőkben az elkészített kompozitok hatékonyságát fenol átalakítása esetén vizsgáltam, ennek eredményét szemlélteti a 16. ábra.

![16. ábra, Különböző CNT-TiO\textsubscript{2} kompozitok hatása fenol átalakítására, UV megvilágítás alatt](image)
Egy kompozit kivételével az összes kevésbé volt hatásos fenol átalakítására, mint a megfelelő alapkatalizátor. Kivétel az Aldrich anatáz volt, amely esetében kifejezetten hatékonyabbnak bizonyult a kompozitja a szén nanocsővel. Az is megfigyelhető, hogy a funkcionalizált egyfalú szén nanocsővel kialakult (AA+FSWCNT) kompozit hatékonyabb volt ($c_{maradt\ fenol}= 22,5\cdot10^{-3}$ mM), mint a többfalú ($c_{maradt\ fenol}= 47,4\cdot10^{-3}$ mM) esetén. A 2. táblázatban a fenol bontásának konverzió értékei láthatóak, amelyekből kiolvasható, hogy a jelenleg kereskedelmi forgalomban kapható TiO$_2$ katalizátorok közül a P25 bizonyul a leghatékonyabbnak (80,76 %-os konverzió).

2. táblázat. A kompozitok és alapkatalizátorok jellemzői és fotokatalitikus hatékonyságuk

<table>
<thead>
<tr>
<th>Név</th>
<th>(r) [(\mu\text{M/(dm}^3\text{s}))]</th>
<th>Konverzió (%)</th>
<th>Anatáz (m/m %)</th>
<th>Rutil (m/m %)</th>
<th>Fajlagos felület (m$^2$/g)</th>
<th>Átlagos kristályméret (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroxide P25</td>
<td>0,0662</td>
<td>80,76</td>
<td>90</td>
<td>10</td>
<td>50</td>
<td>27</td>
</tr>
<tr>
<td>P25+FMWCNT</td>
<td>0,0622</td>
<td>68,86</td>
<td>90</td>
<td>10</td>
<td>50</td>
<td>27</td>
</tr>
<tr>
<td>Aldrich anatáz</td>
<td>0,0635</td>
<td>74,87</td>
<td>100</td>
<td>-</td>
<td>9,9</td>
<td>&gt;85</td>
</tr>
<tr>
<td>AA+FMWCNT</td>
<td>0,1075</td>
<td>90,51</td>
<td>100</td>
<td>-</td>
<td>9,9</td>
<td>&gt;85</td>
</tr>
<tr>
<td>AA+FSWCNT</td>
<td>0,1203</td>
<td>95,50</td>
<td>100</td>
<td>-</td>
<td>9,9</td>
<td>&gt;85</td>
</tr>
<tr>
<td>Aldrich rutil</td>
<td>0,0576</td>
<td>51,06</td>
<td>4</td>
<td>96</td>
<td>2,7</td>
<td>315</td>
</tr>
<tr>
<td>AR+FMWCNT</td>
<td>0,0415</td>
<td>40,36</td>
<td>4</td>
<td>96</td>
<td>2,7</td>
<td>315</td>
</tr>
<tr>
<td>Hombikat</td>
<td>0,0714</td>
<td>80,45</td>
<td>100</td>
<td>-</td>
<td>35-65</td>
<td>&lt;25</td>
</tr>
<tr>
<td>Homb.+FMWCNT</td>
<td>0,0579</td>
<td>64,01</td>
<td>100</td>
<td>-</td>
<td>35-65</td>
<td>&lt;25</td>
</tr>
</tbody>
</table>

Általánosan elmondható, hogy a szén nanocső jó adsorbensként viselkedik (MW: \(a^S_{\text{BET}} = 182\ m^2\cdot g^{-1}\) [35][183]). A mi esetünkben azonban nem ennek tulajdonítható a kompozitok fotokatalitikus aktivitásának különbsége, mivel ugyanannyi (1 %) nanocsővet tartalmaztak. A különbség tehát a TiO$_2$ jellemzőiből adódhatott. A táblázatból és az alapkatalizátorok röntgendiffraktogramjából (17. ábra) is látható, hogy a P25 tartalmaz anatáz és rutil fázist, az AR tartalmaz egy nagyon kis mennyiségű anatázt, valamint az AA TiO$_2$ csak anatáz fázisú.
17. ábra. A különböző titán-dioxid alapkatalizátorok röntgendiffraktogramja

A táblázatból az is kitűnik, hogy a viszonylag nagyméretű, kis fajlagos felületű anatáz-CNT kompozit esetén lett hatásosabb a CNT-vel való érintkezés, az összes többi alapkatalizátoron rontott a szén nanocső jelenléte, tehát AA esetében megvalósult a két anyag szinerigizmusa. Az eredmények azt mutatják: meghatározó, hogy milyen TiO$_2$-dal hozzuk érintkezésbe a szén nanocsövet. A nanocső átmérőjével (SW: $d < 2$ nm, MW: $d \approx 20$–60 nm [183]) ugyanis a P25 és a Hombicat mérete jobban összemérhető, mint a nagyobb méretű anatáz, vagy rutil részecsék. Ugyanakkor a P25 és a Hombicat fajlagos felülete (amely szintén kritikus tényező a heterogén fotokatalízis folyamatában) lényegesen nagyobb, mint az Aldrich anatázé, mégis az AA+CNT kompozit lett a leghatékonyabb. A legalacsonyabb konverziót AR esetében kaptuk (51 %), a szén nanocsővel létrejövő kompozitja pedig még ezt az értéket is alulmúltja (40,3 %).

Az is megállapítható, hogy az (funkcionalizált) egyfalú (SWCNT) szén nanocső bár kisebb átmérőjű, kompozitja hatékonyabban működött fenol átalakításánál, mint a többfalú nanocsövet tartalmazó kompozit. Tehát a szén nanocső típusának (MW vagy SW) egyértelmű szerepe van a TiO$_2$ gerjesztése folyamán keletkező elektronok elvezetésében, amely megakadályozza/csökkenti a töltések rekombinációját. Ez megerősíti Wang azon elméletét, amely szerint a TiO$_2$ gerjesztett elektronja átvándorol a szén nanocsőre, amíg a pozitív töltésű „lyuk” a titán-dioxidon marad [164], tehát a töltések szétválasztása, így a fotokatalitikus reakciók hatékonysága nő.
Érdekes módon a különböző TiO\textsubscript{2} részecskék közül nem a kisebb méretű P25 vagy Hombicat (< 30 nm) és nem is nagyobb méretű Aldrich rutíl javított a szén nanocső, hanem a köztes mérettartományú (> 85 nm) Aldrich anatázon. Megfigyelésem összhangban van azzal is, hogy az anatáz fotoaktivább a rutílnál, amelyet a kutatók a felületi hidroxílosoportok eltérő mennyiségére, valamint a különböző oxigén-adszorpciós és fényabszorpciós tulajdonságaikkal magyaráznak [165]. Mivel az Aldrich anatáznál tapasztaltam előnyös változást a szén nanocsővel alkotott kompozitjában, ezért ezzel a fajta TiO\textsubscript{2}-dal végeztem a további kísérleteket.

6.1.1.2. Különböző szén nano cső tartalmú AA-CNT kompozitok összehasonlítása

Annak érdekében, hogy felmérjük melyik a leghatékonyabb AA-CNT kombináció, meg kell határoznunk a nanocső optimális mennyiségét a kompozitban. A nagyobb szén nanocső tartalom ugyanis megvilágítás esetén a TiO\textsubscript{2}-ról nagyobb eséllyel vezeti el a vezetési sávba lépő elektronokat, ezáltal növelve a folyamat hatékonyságát. A túl sok szén nanocső jelenléte azonban hátrány is lehet, mivel árnyékoló hatást fejtethet ki a megvilágításkor, mivel fékete színű, így a kompozit sötétszürke lesz. Az AA-CNT kompozitot 1-2-5-10 %-os nanocső tartalommal állítottam elő, amelyek közül az 1 % és a 10 % FMWCNT tartalmú minták transzmissziós elektronmikroszkópos felvétele a 18. ábra mutatja.

18. ábra. AA-FMWCNT (1 %) illetve AA-FMWCNT (10 %) transzmissziós elektronmikroszkópos felvétele

Az elektronmikroszkópos felvételeken látható, ahogy a szén nanocsővek véletlenszerűen „hálózzák be” a TiO\textsubscript{2} részecskékét; csak a felvételekről nem megállapítható, hogy melyik tartalmaz 1 illetve 10 % nanocsővet. A következő ábrán (19. ábra) látható az egyes AA-MWCNT kompozitok fenol átalakítására gyakorolt hatása a szén nanocsővel valamint az
AA-zal összevetve. Ebből kiolvasható, hogy az 1 % FMWCNT tartalmú kompozit lett a leghatékonyabb.

19. ábra, Aldrich anatázt és különböző mennyiségű szén nanocsövet tartalmazó kompozitok fenol átalakítási hatékonysága

A fenti eredményekből kiindulva, funkcionalizált egyfalú szén nanocső (FSWCNT) esetében 0,1 és 1 %-nyi mennyiséggel, majd funkcionalizált többfalú nanocsövel (FMWCNT) 0,1, 0,5, 1 és 5 %-nyi mennyiséggel elkészítettem a kompozitokat. Az említett arányú AA-CNT keverékek (0,5·10^{-3} M) fenol oldat átalakítására gyakorolt hatását a 20. ábra mutatja.
A kísérletből megállapítható, hogy a fenol esetén leghatékonyabb kompozit Aldrich anatáz és 1 % funkcionalizált egyfalú szén nanocső felhasználásával készült. Ha figyelembe vesszük az egyfalú szén nanocső árát (pl. 1 g nanocsőSWCNT ≈ 287700 Ft, 2g nanocsőMWCNT ≈ 30600 Ft\(^{11}\)), akkor gazdaságosabb 0,1 % nanocsövet tartalmazó kompozitot előállítani, mert ennek hatékonysága majdnem azonos az 1 %-ot tartalmazó kompozítéval. Az ábrán látható, hogy az 5 % -ot tartalmazó mintákhoz képest mindegyik szén nanocső mennyiség javított az Aldrich anatáz hatékonyságán, tehát igen jó érintkezés valósult meg köztük anélkül, hogy a nanocső tartalom túlságosan beárnyszere volna (a nagyobb szén nanocső tartalmú minta már sötétszürke színű) a TiO\(_2\)-ot, ezzel csökkentve hatékonyságát.

**6.1.2. Ultrahangozásos II. módszerrel készült kompozitok vizsgálata**

A kompozitokat előállítottam szintén ultrahangozást alkalmazva, amelynél ultrahangos fejjel végeztem a minták előállítását. A következőket vizsgáltam: hozzáadott víz mennyiségét (100 mL - 500 mL), a szén nanocső szuszapendálásának (ultrahangozással) időtartamát (1 perc

---

\(^{11}\) http://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=16376687 (2016.08.20)
- 10 perc), a hozzáadott TiO$_2$ rázatási időtartamát (1-10 perc), és az alkalmazott ultrahangozó teljesítményt (250 W ill. 1 kW). Mindegyik AA+CNT minta fenol átalakításában hatékonyabbnak bizonyult, mint az AA szén nanocső nélkül. Az eredmények alapján a legjobb előállítási módnak bizonyult, amikor 100 mL ultratiszta szürt vízben, 5 percig, 250 W teljesítményű ultrahangfejjel kezeltem a szén nanocsövet, amelyhez ezután adtam a por alakú TiO$_2$-ot és újabb 1 percig ultrahangoztam.

A 21. ábra mutatja az I. és II. ultrahangozási módszerrel előállított AA-CNT minták fotokatalitikus hatékonyságát az Aldrich anatázzal együtt.

![21. ábra](image)

Az ábrán látható, hogy fenol átalakításában mindegyik kompozit hatékonyabbnak bizonyult, mint a kiindulási Aldrich anatáz. Az ultrahangfejjel (UHII.) előállított minták közül az UHII. FSWCNT5p+AA1p lett a leghatékonyabb (c$_{maradt \ fenol} = 9,17 \cdot 10^{-3}$ mM), amelyet a szintén egyfalú szén nanocsövet tartalmazó változat FSWCNT1p+AA1p követ (c$_{maradt \ fenol} = 17,4 \cdot 10^{-3}$ mM), mindkettő aktivitása jobb, mint a többfalú nanocsövet tartalmazó változaté (FMWCNT5p+AA1p: c$_{maradt \ fenol} = 32,9 \cdot 10^{-3}$ mM; ill. FMWCNT1p+AA1p: c$_{maradt \ fenol} = 34,7 \cdot 10^{-3}$ mM). Az UHI. módszerrel előállított minták ez utóbbiakhoz hasonlóak, itt is megállapítható,
hogy a SW nanocsövet tartalmazó kompozit hatékonyabb, mint az ugyanolyan módszerrel előállított MW nanocsöves változat (UHI. FSWCNT: \( c_{\text{maradt fenol}} = 23,7 \times 10^{-3} \text{ mM}, \) UHI. FMWCNT: \( c_{\text{maradt fenol}} = 35,06 \times 10^{-3} \text{ mM}. \) 

6.2. Hidrotermális kristályosítással előállított TiO\(_2\)-CNT kompozitok vizsgálata

A TiO\(_2\) kristályosításának, felületi és kémiai tulajdonságai, a jelenlevő különböző kristályfázisok, a porozitás, a felületi oxidációs állapotok, a kristály alakja mind-mind befolyásoló tényezői a fotokatalitikus tulajdonságának.

A munkám ennek a szakaszában célom az volt, hogy morfológia-kontrollált anatáz TiO\(_2\) kristályokat állítsak elő szén nanocső jelenlétében. A szén nanocső annál ennél az előállítási módszernél, mint gócképző van jelen, amelyen az első részecskék ki tudnak válni. A következő mintáknál minden esetben funkcionalizált többfalú szén nanocsövet használtam (FMWCNT), a rövidebb forma kedvéért a továbbiakban a „CNT” jelölést alkalmaztam.

A kristályosítási stratégia

A kristályosítás során több tényezőt is vizsgáltam:

- a hidrotermális kezelés időtartamát: 1-5-24 óra;
- a HF koncentrációjának hatását;
- az utólagos kalcinálás hatását;
- a kapott TiO\(_2\) kristályokat összehasonlitom más morfológiájú, hierarchikus TiO\(_2\) fotokatalizátorokkal,
- vizsgáltam a különböző kristálygócok ( eltérő szénfajták) hatását.

Amint már említettem, titán-dioxidot csak akkor kaptunk, ha volt a hidrotermális kristályosításkor jelen a rendszerben szén nanocső. A szén nanocső adagolása előtt, a prekurzor (Ti(X)\(_4\), ahol X lehet szerves vagy szervetlen rész) hidrolízise következik be az erősen savas (HCl, HF) közeg hatására [166].

\[
\text{Ti(X)}_4 + y\text{HOH} \rightarrow \text{Ti(OH)}_y\text{(X)}_{4-y} + y\text{H(X)} \quad (a)
\]

Ilyen körülmények között a hidrolizátum (hidrolizált termék: Ti(OH))\(_{y}\)(X)\(_{4-y}\), ahol y=2 vagy 3) stabil. Ezek a komplexek adszorbeálódnak a jelenlevő szén nanocsövön (SMWCNT) (b).
\[ \text{Ti(OH)}_y(X)_{4-y} + S_{\text{MWCNT}} \rightarrow \text{Ti(OH)}_y(X)_{4-y} - S_{\text{MWCNT}} \]  
(b)

Mikor az elegyet az autoklávba helyezve elkezdjük melegíteni, a komplexek elbomlanak (c), majd TiO\(_2\) részecskék formájában kiválnak a szén nanocső felületén.

\[ \text{Ti(OH)}_y(X)_{4-y} - S_{\text{MWCNT}} \rightarrow (4-y) \text{HX} + \text{TiO}_2 - S_{\text{MWCNT}} + (y-2) \text{H}_2\text{O} \]  
(c)

Így a nanocső felületén megjelennek az első kristályok, amelyek növekedésnek indulnak. A rendszerben jelenlevő F\(^-\) ionok a savas közegben jellemzően az anatáz (001) oldalát stabilizálják, amelynek eredményeként ezek az oldalak dominánsak lesznek és TiO\(_2\) nano/mikrolapokat kapunk. Szén nanocső hiányában a TiO\(_2\) kristályok nem válnak ki.

6.2.1. A hidrotermális kezelési idő hatása

Az első vizsgált, kristályosítást befolyásoló tényező a kristályosítási idő változtatása volt. A róluk készült fotók a 22. ábrán láthatók.

22. ábra, A szén nanocsővön 1, 5, 24 óra alatt kivált TiO\(_2\)-okról készült fotó

23. ábra, A szén nanocsővön 1, 5, 24 óra alatt kivált TiO\(_2\)-ok pásztázó elektronmikroszkópos felvétele
A 23. ábra mutatja, hogy a kristályosítási idő változtatásával mennyire különböző geometriájú kristályokat kaptunk. Az 1 óra hidrotermális kezelés után kapott minták (TiO$_2$-CNT 1ó) élei lekerekítettek, csak a {001} kristály oldal volt nagy kiterjedésű, míg más oldalak kevésbé. Az élek ugyanakkor nem voltak kifejlődve, ami arra utal, hogy a kristályosodási folyamat nem ment végbe teljesen. A minta láthatóan egyforma kristályokat tartalmazott (monodiszperz), a részecskék mérete 1 μm körüli. Az 5 órán át tartó hidrotermális kristályosítással kapott katalizátor részecskék (TiO$_2$-CNT 5ó) esetében már láthatóak határozott élek és az {101}-es oldalak is megjelentek. A kristályosodás azonban még folytatódott, hiszen kristály fragmentumokat is láthatunk, a kristályméret nagyobb tartományon belül (1,5 - 2 μm) változott. A 24 óráig tartó kristályosítási folyamat után kapott mintáknál (TiO$_2$-CNT 24ó) az élek ugyanakkor megfigyelhetők, a kristályok mérete igen széles tartományban változik (100 nm - 1,5 μm), ill. számos esetben láthatók ıkók, összenövesek. A minták röntgendiffrakciós vizsgálatát elvégezve megbizonyosodhattunk, hogy mindegyik anatáz kristályfázissal rendelkezik.

![Röntgendiffraktogram](attachment:diffractionogram.png)

**24. ábra**, A különböző kristályosítási idővel keletkezett TiO$_2$-ok és az Aldrich anatáz röntgendiffraktogramja
A különböző idejű hidrotermális kristályosítással előállított minták diffúz reflexiós spektruma

A kristályszerkezet kialakulása során további befolyásoló tényező lehet a HF mennyisége, valamint az utólagos hőkezelés.

6.2.2. A HF szerepe

A fluorid ionok szerepét tanulmányozva a kristályosítást elvégeztük HF hozzáadása nélkül, illetve kétszeres HF mennyiséggel, 24 órás hidrotermális kezelési időt alkalmazva. A kísérlet menete hasonlóképpen történt, mint a többi esetben, csak a HF mennyiségének megfelelő térfogatot tettem még a HCl-ból a kiinduláskor, hogy a térfogatarányok miatt az autoklávban uralkodó nyomás ne változzon.

A HF mennyiségére, ezzel együtt a F⁻ ionok beépülése az elektronmikroszkópos felvételeken (26. ábra, 27. ábra) is jól láthatóan befolyásolja a kialakuló kristályok alakját, morfológiai tulajdonságát. HF nélkül hosszúkás, „tü”-alakú kristályokat kapunk a 24 óráig tartó kristályosítás után, amelyek gömbökbé rendeződnek, de megfigyelhetők egyedi tűk, amelyek mérete nagy mérettartományon belül változik: 500 nm - 6 μm-ig.
26. ábra. HF nélkül kristályosított TiO₂ részecskék transzmissziós elektronmikroszkópos felvétele

27. ábra. HF nélkül kristályosított TiO₂ részecskék transzmissziós elektronmikroszkópos felvétele – egyedi kristályok

Egyszeres HF (eredeti reakcióelegy szerinti összetétel) mennyiségénel az 1 napos szintézis után kapott minta nagyrészt önálló, keskeny lapokból áll, néhol ikerkristályok láthatók (28. ábra), méretük: 500 nm - 1,5 μm között változik.

28. ábra. A 24 óráig tartó hidrotermális szintézis után kapott minták pásztázó elektronmikroszkópos felvételei a.) HF nélkül; b.) HF; c.) 2· HF koncentráció alkalmazásával
Az eredeti mennyiséghez képest kétszeres mennyiségű HF-dal kapott minta tömege jellemzően nagyon kevés volt (≈50 mg alatti), mert az oldat túl töménynek bizonyult (a HF szempontjából), a kisebb kristályok valószínűleg feloldódtak átkristályosodáskor és így csak igen kis mennyiség tudott kikristályosodni. Azonban a sikeresen kivált kristályok mérete igen nagy: ≈ 4 μm, míg a vastagsága elhanyagolható a HF {001}-es kristályoldal stabilizációs hatása miatt.

A 28. a) ábrán látható, hogy a titán-dioxid előállítása közben a hidrogén fluorid hiánya érdekes „brokkoli”-szerű szerkezetet eredményezett. Az aggregátumok átlagos átmérője 5 μm. Ha jobban megfigyeljük, az aggregátumok látszólag egy pontból kiinduló négyzletes hasábokból állnak, amelyek átmérője 100 nm körüli. Ez azért lehet, mert a hidrogén fluorid hiánya miatt a növekvő kristály termodinamikailag stabilisabb oldalai fejlődnek ki, azaz a {100} és a {010}-ás kristályfelületek.

Az egyes minták röntgendiffraktogramjait felvéve a 0 HF esetében látható reflexió a 27 és 36 2Θ foknál azt jelenti, hogy Fˉ -ionok hiányában a kristályosodó TiO₂ rutil fázisú lesz, amely a termodinamikai kontrollra utal a kristályosodáskor. Ha a rendszerben HF van jelen, akkor a Fˉ -ionok beépülnek a {001}-lapra, azaz megakadályozzák, hogy ezen lapok a „z-tengely” irányába növekedjenek tovább, így ebben az esetben kiterjedt {001} lapokat kapunk. Ezek, a diffraktogram alapján egyértelműen anatáz kristályfázisúak, mivel reflexiójuk 25,4; 37, 38, illetve 38,6 2Θ foknál található.

A továbbiakban így az eredeti előállítási mód szerint haladtam tovább, azaz 1· HF koncentrációt alkalmaztam, hogy megfelelő mennyiségű és kristályszerkezetű részecskéket kapjak.
6.2.3. A kalcinálás hatása

Amint a bevezetőben említettem, számos publikációban kiegészítő módszer alkalmazásával, azaz utólagos kalcinálással növelhető a katalizátor kristályossági foka [98, 167]. Mivel a hőkezelés egy egyszerű, de hatékony módszer az aktivabb fotokatalizátor előállítására, ezért a hidrotermális kristályosítás után kapott (TiO₂-szén nanocső) mintáinkat ennek vetettük alá. Kalcinálás után a mintákat először pásztázó elektronmikroszkóppal vizsgáltuk meg. Az 1 órán át tartó hidrotermális kezelés során előállított minta esetén az egyedi lapok a kalcinálást követően (TiO₂-CNT 1óC) aggregátumokká / többszörös ikrekké álltak össze, azonban az élek és sarkok még mindig lekerekítettek maradtak. Az 5 órán keresztül hidrotermálisan kezelt katalizátor (TiO₂-CNT 5ó) esetén sem láttuk a jellemző kristályalak változását, azonban érdekes másodlagos szerkezeti elemeket: pórusokat/ lyukakat figyeltünk meg (30. ábra) az 1 (TiO₂-CNT 1ó) és 5 órás (TiO₂-CNT 5ó) hidrotermális kezelés utáni

29. ábra, A különböző TiO₂-CNT minták röntgendiffraktogramjai
mintánál. Első pillantásra ezek alakja szabálytalannak, elhelyezkedésük véletlenszerűnek tűnt. A 24 órán át kristályosított esetben (TiO$_2$-CNT 24oC) ugyanakkor ezeket a képződményeket (lyukakat) nem tapasztaltuk. Transzmissziós elektronmikroszkóppal megvizsgálva azonban, az üregek már láthatóak voltak a kristálylapok belséjében, ennél a mintánál is (31. ábra).

![30. ábra. A TiO$_2$-CNT minták pásztázó elektronmikroszkópos felvételei](image1)

![31. ábra. A TiO$_2$-CNT minták transzmissziós és pásztázó elektronmikroszkópos felvételei](image2)
A lyukak kialakulási körülményeinek vizsgálata érdekében kalcinálási sor készítettem, amely során a korábbiakban is használt 10 °C perc⁻¹-es felfűtési sebesség mellett ugyanazon mintát (TiO₂-CNT 10) hőkezeltem különböző hőmérsékletig, majd amikor elértem a 400 °C-ot, az adott hőmérsékleten tartás idejét változtattam (uyganolyan felfűtési profil mellett). Az alkalmazott hőkezelési idők és a kiválasztott hőmérsékletek a következők: 150 °C-ig 0 perc, 250 °C-ig 0 perc, 300 °C-ig 0 perc, 350 °C-ig 0 perc, 400 °C-ig 0 perc, majd 400 °C-on tartva 5, 10, 20, 30, 60, 90 és 120 perc kalcinálási idő. A kalcinálási sor, és a felfűtési időhöz tartozó pásztázó elektronmikroszkópos felvételeket a 32. ábra mutatja. Jól kivehető, hogy az a) és b) képen lyukak nincsenek jelen. Kialakulásuk 300 °C felett kezdődik és 350 °C-nál már egyértelműen jelen vannak, tehát e két hőmérséklet között indul meg a kialakulásuk, amíg 400 °C felett tömegesen fordulnak elő.

32. ábra, Kalcinálási sor: a) 150 °C-ig, b) 300 °C-ig, c) 350 °C-ig, d) 400 °C-on kalcinált minta

Hasonló szerkezeti sajátosságokat (pórusokat) tapasztaltak Jo és munkatársai is [168]. A TEM felvételeken (31. ábra) jól látszik, hogy a lyukak bizonyos rendezettséggel rendelkeznek: a lapok közepén levők nagyobbak, amíg a lapok szélei felé haladva számuk és méretük is csökken, éleik párhuzamosak a lapok szélével. A megfigyelt nagy rendezettség - ami a kristályosítással előállított mintákra jellemző - világosan mutatja, hogy a kialakulásuk mechanizmusa nincs kapcsolatban az eddig ismert kalcinálási jelenség magyarázatával, mint pl. a víz vagy más anyag távozása. Ha így lenne, akkor vulkánszerű krátereket láthattnak volna a mintában [98], illetve nem lenne ennyire szabályos elrendeződésű és négyzet alakú. Másik
lehetőség, hogy a kristályosodási gócként szolgáló szén nanocső helye marad ott a részecskék felszínén, de ennek kicsi a valószínűsége, hiszen a szén nanocső 400 °C-on stabil.

Mindez arra enged következtetni, hogy többszörös átkristályosodás történt a hidrotermális eljárás alatt (a nagyon kicsi és nagy lapok együttes jelenléte), majd a kalcinálás alatt is. A korábban említett belső átkristályosodási folyamatot szintén megerősíti azt, hogy a lyukak többsége valódi leképzése nanometeres mértartományban a mikrométeres részecske alakjának. Ennek szemléltetésére egy háromdimenziós ábrát készítettünk a TEM felvételek alapján (33. ábra).

33. ábra, A kétdimenziós TEM/HR-TEM leképzése három dimenzióban a ML-246C minta esetén: a lyukak mélységének ábrázolása

Ahogy a 33. ábrán látható, a kifejlődött, lyukszerű képződmények négyzet alakúak, a lap közepén kissé lekerekített sarkokkal, legnagyobb lyuk mérete ≈ 20 nm volt, míg a legkisebb csak ≈ 5 nm. A nagyobb képződmények (becsült) mélysége 50-80 nm, amíg a kisebb átmérőjű lyukak mélysége 30-60 nm, ami összevethető a mikrokristályok vastagságával, amelyet a pásztázó elektronmikroszkópos felvételekből ≈ 100 nm-nek állapítottunk meg. A lapszélhez közelebb levők - hasonlóan, mint a korábban említettek, egyre kisebb méretűek. Az átmérőjük csökkenésével egyidejűleg a lyukak alakja fokozatosan gömbölyödik.

Méreteiket összevetettük a kristálylapon történő elhelyezkedésükkel, aminek eredményét a 34. ábra mutatja.
34. ábra. A kristálylapokon látható „lyukak” mérete és távolságuk a kristálylap közepétől (4 irányból: D1-D4); 25 részecské vizsgálatából

A nagyfelbontású transzmissziós elektronmikroszkópos felvételek (35. ábra) elemzése további érdekes eredményt adott a „lyukakról”, ugyanis a TiO$_2$-CNT 56°C mintában a nagyobb lyukaknál látható, hogy azok széle egy adott kristályoldallal párhuzamos.

35. ábra. A lyukak HR-TEM vizsgálata és orientációjuk meghatározása
Ezt a megfigyelést a nagyfelbontású transzmissziós felvétel megerősítette. A TEM felvételek bizonyítják, hogy a képződmények valójában szabályos lyukak, ugyanis az elektron diffrakciós felvételen tiltott diffrakciós pontok jelennek meg (35. ábra). Érdemes módon a TiO$_2$-CNT 240C jelzésű minta TEM felvételein megfigyelhetők azok a lyukak, amelyek a SEM felvételeken nem voltak észlelhetők. Ez arra enged következtetni, hogy a 24 óráig hidrotermális kezelésben részesülő minta esetében a kalcinálás szabályos üregek megjelenéséhez vezet a TiO$_2$ belsejében. A lyukak és üregek átmérője 10 és 40 nm között mozog, valamint jól látható, hogy a kristály belsejétől a széle felé haladva a lyukak és üregek mérete egyre kisebb lesz, ahogy az előbb is említettük.

Feltételezésem szerint a lyukak alakja „utánozza” a mikrokristály alakját. Figyelembe véve azt, hogy ezek a képződmények a kalcinálás során jöttek létre, akár azt is mondhatjuk, hogy a kristályrendszer "saját stabilitása érdekében" hozta létre ezeket az üregeket.

A 24 órás kristályosítás során kapott minta (TiO$_2$-CNT 246) esetében a kalcinálás után az látszik, hogy a lyuk „széle” 90 fokos szög zár be a részecske szélével, amelyek a lapok közepéhez közel találhatók. Nyomon követve a kristálytani orientációjukat elmondható, hogy a TiO$_2$-CNT 10 és TiO$_2$-CNT 50 jelű minta esetében a lyukak párhuzamosak voltak a {010} és a {100} Miller indexű kristályoldallal. A TiO$_2$-CNT 240C minta esetén „elfordulás”/irányváltás tapasztalható, így az abban található lyukak orientációja az {110} Miller indexű kristályoldallal megegyező. Ez annak a jele, hogy a kialakuló TiO$_2$ részecskékben a kristályosítási idő előrehaladával egy stabilizációs folyamat, átkristályosodás megy végbe, amely összhangban van a bevezetőben már említett termodinamikai kontroll általi stabilizációval. (Általában a kalcinálás alatt egy adott hőmérsékleten a termodinamikailag stabilabb kristályparaméterek lesznek jellemzőek az adott katalizátorra.) Ez maga után vonja az alak- és a méretváltozást, valamint a jellemző kristályoldal-összetételt és más szerkezeti változásokat (itt: lyukak) a mintában. Az 5 és 24 órás időtartam közötti kristályosítási idejű mintákat nem vizsgáltam. Ezeknek a szempontoknak a tekintetében, a klasszikus szerkezetvizsgálati módszerekkel bizonyítéket kaptunk tehát a lyukak meglétéről és orientációjáról.

Jelen esetben a röntgendiffraktogramból (36. ábra) a kristályfázisra tudunk csak következtetni, mivel a kristályméretet nem meghatározható a Scherrer egyenlettel (a részecskék nagyobbak 100 nm-nél, amely kívül esik az egyenlet által meghatározható mérettartományon). A vizsgált minták mindegyikénél kizárólag az anatáz fázis volt megfigyelhető.
Annak felderítése érdekében, hogy a kalcinálás során kialakult lyukak miatt változott-e a minták optikai tulajdonsága, diffúz reflexiós spektrometriát alkalmaztam (a tiltott sáv szélességének meghatározása). Elgondolásunk szerint ugyanis a (lyukaknak nevezett) másodlagos szerkezeti elemek a kristály optikai tulajdonságát is megváltoztathatják. Az egyes minták diffúz reflexiós spektrumainak első deriváltja látható a 37. ábra. A DRS spektrumon jól látszik, hogy minden esetben az elsőrendű derivált maximuma ugyanazon hullámhosszúságnál (≈372 nm, ≈3,25 eV) található, kivéve a P25 referencia katalizátor esetében, ugyanis ebben a katalizátorban rutil is található. Ebből az következik, hogy a minták tiltott sávszélessége a kalcinálást követően nem változik, azaz az optikai tulajdonságai sem változnak meg. Továbbá az is kiderült, hogy az igen kevés szén nanocső jelenléte nem befolyásolja a minta egészének optikai tulajdonságait.

36. ábra, A minták röntgendiffraktogramja
Következő vizsgálat, amely az egyes anyagok szerkezetének jellemzésére szolgál, a minták N\textsubscript{2} adszorpciós izotermáinak meghatározása volt, amelyből a (tömeget ismerve) a fajlagos felületre tudunk következtetni (illetve kiszámolni). Mivel a kiindulási anyagok viszonylag nagy részecskéket/kristályokat tartalmaztak, ezért igen alacsony fajlagos felületre számítottunk. (Az 1. táblázatban láthatók a kereskedelmi forgalomban kapható TiO\textsubscript{2} ezen értékei, amelyek szintén viszonylag kis fajlagos felületet jelentenek.) Az 5, 24 órás (TiO\textsubscript{2} 5\textdegree, 24\textdegree) minták esetében a kalcinálás után (TiO\textsubscript{2} 5\textdegreeC, 24\textdegreeC) elvileg nő a fajlagos felület, de ezt a részecskeméret növekedése kompenzálja, így ebben a fajlagos felület mérettartományban a N\textsubscript{2}-adszorpció nem alkalmazható. Ezidáig tehát - az elektronmikroszkópos felvételek kivételével - nincsenek tényleges, kimutatható jelei a kristályosítással kapott lyukaknak, amelyek igazolnák a jelenlétüket. Habár a hidrotermális eljárással előállított TiO\textsubscript{2}-nál tapasztalt lyukak a kalcinálási folyamat eredményei, létrejöttük egyértelműen a kristályosodási folyamatok kapcsolódik [7-8].

A lyukak kialakulását felderítendő, további anyagszerkezeti vizsgálatokat végeztünk, amely során a kristályban levő Ti atomok kémiai környezetét kívántuk meghatároznia, röntgen fotoelektron spektroszkópia segítségével. Ebben az esetben a minták Ti 2p (héjról származó elektronok) röntgen fotoelektron spektrumait (XPS) vizsgáltuk, melyeket a 38. ábra mutatja be. Elsőként a nem kalcinált (TiO\textsubscript{2}-CNT 1\textdegree, 5\textdegree, 24\textdegree) minták Ti 2p\textsuperscript{3/2} spektrumát vizsgáltuk.
Ezeknek a mintáknak a Ti$^{3+}$ tartalma viszonylag alacsony (0,35 %) és nem változott jelentősen a hidrotermális kezelési idő növekedésével. A kalcinált minták (TiO$_2$-CNT 1óC, 5óC, 24óC) vizsgálatkor azonban a +3-as oxidációs állapotú Ti atomok számának növekedését mértük 0,38 %-ról (TiO$_2$-CNT 1óC) 0,57 %-ra (TiO$_2$-CNT 5óC esetében). Az TiO$_2$-CNT 24óC jelű minta esetében, amelynél a „lyukak” elfordulását tapasztaltuk, a Ti$^{3+}$ mennyiségére az előbbi értékek közel háromszorosát, azaz 1,1 %-ot mértünk. Mivel a nem kalcinált minták esetén (TiO$_2$-CNT 1ó, 5ó, 24ó) nem tapasztaltunk növekedést a Ti$^{3+}$ mennyiségében, de a kalcinált minták esetében igen, ez arra utal, hogy a Ti$^{3+}$ koncentráció a lyukak jelenlétével van összefüggésben, illetve a koncentrációjuk drasztikus növekedése a 24 órás mintánál a lyukak elfordulásával van kapcsolatban.

38. ábra, A TiO$_2$-CNT 1óC, 5óC, 24óC minták XPS-spektruma

6.2.4. Az átkristályosodás lehetséges mechanizmusa

Az eddigi alapján a lyukas TiO$_2$ lapok keletkezésének fázisait következőképpen összegezhetjük:

a.) a TiO$_2$ kristálylapok a szén nanocsővön kezdenek növekedni;
b.) a mikrorészecskék {001} oldala “négyzetes” alakú, amely azt sugallja, hogy egyenletes növekedési sebesség jellemzi az oldalt a 4 irányban (34. ábra D1, D2, D3 és D4 irányai);
c.) végül, a kristályosodás irányát tekintve a kiindulási pont a lap közepé volt.
A kalcinálás során tehát egy átkristályosodási folyamat ment végbe, mert a kristálynövekedéshez (hő) energia többletre van szükség. Ahogy a \{001\}-es indexű oldalakat stabilizáják a F⁻ ionok, lyukak jelennek meg. A lyukak jelenlétével a \{001\}-es oldalak mennyisége nem csökkent, mert a lyukak „alja és teteje” szintét az uralkodó lapcsaláddal egyezik meg (szintén \{001\}-es indexű).

Az átalakulás mechanizmusá feltételezéseink szerint három lépésből áll (I.-III.), amelyeket sematikusan ábrázoltam a 39. ábrán:

a.) Első lyukak megjelenése (I.→II.)
b.) A lyukak széleinek stabilizálódása (II'.→III. →III.‘)
c.) Még több lyuk kialakulása (III’.→IV).

39. ábra, A kalcinálás alatti másodlagos szerkezet ki/átalakulásának lehetséges mechanizmusa

Ezeknek a lépések mindegyike magában foglal egy átrendeződést/átkristályosodást, ami azt jelenti, hogy az új élek/sarkok kialakulásakor a rácsban hibák jelenhetnek meg, amely egyezik az XPS által kimutatott Ti³⁺ koncentrációval. Amint a 35. ábra is mutatja, a lyukak orientációja
a TiO$_2$-CNT 246°C jelű mintában különböző volt, azaz 90°-kal elfordult a másik két mintában (TiO$_2$-CNT 16°C ill. TiO$_2$-CNT 50°C) levő lyukakhoz képest. Az {110} kristályoldal (az „elfordult”, vagy irányt váltó lyukak belső oldala) rendelkezik a legmagasabb felületi energiával a TiO$_2$ alacsony indexű kristályoldalai közül, illetve gyakran előfordul kötés növekedési állapotban, mint határoló kristályfelület [169]. Az ilyen típusú kristályoldalak jelenléte mutatja a már elemzett/bemutatott átkristályosodási folyamatok nagyobb számát. Ez pedig, a lyukak „elfordulásával” együtt a Ti$^{3+}$ koncentrációjának emelkedését vonja maga után a kristályban.

6.2.5. A fenol fotokatalitikus átalakítása UV-megvilágítás hatására

Ebben a részben a vizsgált minták fotokatalitikus teljesítményét és szerkezeti paramétereit összesítem. Az előállított anyagok fotokatalitikus hatékonyságának elemzését több oldalról is meg lehet közölteni. Ezek közül két megfontolás mentén indulhatunk el, az egyik, a „klasszikus”, amely a fotokatalitikus hatékonyságot (kinetikai paramétereit) az anyag tömegére vonatkoztatja, a másik a felületre normalizált, azaz felületnagysághoz viszonyított paraméter (általakult anyag mennyisége). Mindkét módszernek megvan a maga előnye illetve hátránya is. Mivel ebben a munkában bizonyos kristályoldal felületének maximalizálását tűztük ki célul (ezért volt érdekes a lyukak megjelenése), így a felületnagyságra számított fenolbomlási értékeket vizsgáltuk. Az 1 órás hidrotermális kristályosítással kapott (TiO$_2$-CNT 10, ill. 10°C) minták fotokatalitikus tulajdonságát azonban nem vizsgáltuk, ugyanis ezeknél a széntartalom (szemmel is) láthatóan magasabb volt a többinél. Ugyancsak ezeknél a mintáknál a kristályossági fok alacsonyabbnak mutatkozott, emiatt összehasonlításuk megbízhatatlan lenne a többi mintával fotokatalitikus szempontból.

Előző közelítésben a hidrotermális kezelési idő hatását figyeltük meg, azaz a különböző (5, 24 óra) kristályosítási idő alatt keletkezett TiO$_2$ részecskek közötti különbséget, a fenol átalakítása során. A kísérleti eredmények szerint a kalcinálás utáni minták esetében, a lyukak megjelenésével a részecskek aktivitása jelentősen megnőtt (5,81·10$^{-4}$-ről 9,27·10$^{-4}$ mM·min$^{-1}$·m$^{-2}$ értékre, illetve 6,16·10$^{-4}$-ről 13,66·10$^{-4}$ mM·min$^{-1}$·m$^{-2}$-re), amint az a 3. táblázatban is látható. Sőt, lényeges megjegyezniük, hogy az itt kapott értékek kiugróan magasabbak, mint a kereskedelmi forgalomban kapható TiO$_2$ P25 katalizátoré (ugyancsak fajlagos felületre vonatkoztatva), azaz közel 30-szoros növekedést tapasztaltunk ehhez képest. Továbbá, ha összehasonlítjuk a TiO$_2$-CNT 246°C és TiO$_2$-CNT 50°C jelű mintákat, akkor láthatjuk, hogy az előbbi 32 %-kal aktívvabb a fenol UV fény alatti fotokatalitikus átalakításában (40. ábra). Az
aktivitás alakulására úgy tűnik, hogy a fő morfológiai jellemzők vannak hatással, azaz a {001}-es Miller indexű lapok aránya mintában, illetve a keletkező és „irányt váltó” lyukak jelenléte.

40. ábra, Fenol átalakítása TiO$_2$-CNT 5, 24ó mintákkal és kalcinált változataikkal

Mivel a {001}-es indexű kristálytani oldalak százalékos aránya közel azonos az említett mintákban, így nem ez a különbségük oka a fenol bontásakor (73 % a TiO$_2$-CNT 5óC jelű mintában és 71 % a TiO$_2$-CNT 24óC - 50 kristály vizsgálata mintánként).

3. táblázat, Az 1, 5, 24 órás TiO$_2$-CNT minták és kalcinált változatuk összehasonlítása

<table>
<thead>
<tr>
<th>Minta neve</th>
<th>Lyuk</th>
<th>Szén-tartalom (tömeg %)</th>
<th>Fajlagos felületre normalizált fotokatalitikus aktivitás (mM·min$^{-1}$·m$^{-2}$)·10$^{-4}$</th>
<th>Fajlagos felület* (m$^2$·g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>-</td>
<td>0</td>
<td>0,41</td>
<td>49,10</td>
</tr>
<tr>
<td>TiO$_2$-CNT 1ó</td>
<td>-</td>
<td>&gt;50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TiO$_2$-CNT 5ó</td>
<td>-</td>
<td>2</td>
<td>5,81</td>
<td>0,57</td>
</tr>
<tr>
<td>TiO$_2$-CNT 24ó</td>
<td>-</td>
<td>2</td>
<td>6,16</td>
<td>0,49</td>
</tr>
<tr>
<td>TiO$_2$-CNT 16C</td>
<td>van</td>
<td>&gt;50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TiO$_2$-CNT 56C</td>
<td>van</td>
<td>2</td>
<td>9,27</td>
<td>0,52</td>
</tr>
<tr>
<td>TiO$_2$-CNT 246C</td>
<td>van</td>
<td>2</td>
<td>13,66</td>
<td>0,45</td>
</tr>
</tbody>
</table>

(*becsült érték)
Ez a megfigyelés igen fontos, mivel az egyetlen szerkezeti különbség a két minta között tehát a lyukak irányában van, ami azt mutatja, hogy a lyukak helyzete (új orientáció és kialakulása, amelyet a kék nyíl mutat: 35. és 39. ábra) okozta az aktivitásbeli különbséget. Emellett a lyukak megjelenésével nem volt mérhető releváns felületnövekedés sem, amely szintén megerősíti az előbbi állítást. Érdekes módon a lyukak megjelenésével együtt a Ti\textsuperscript{3+} mennyiségének növekedését is tapasztaltuk a mintában, amíg a lyukak „elfordulása” utáni mintánál ez az érték megkétszereződött. Ennek a jelentősége, hogy a Ti\textsuperscript{3+} centrumok megjelenése gyakran jár együtt oxigén hiánnyal, amely a fotokatalitikus hatékonyságot növelni tudja [98].

Általánosan elmondható, hogy a katalizátor fajlagos felületének növelése kivánatos folyamat. Ennek egyik módja a katalizátor szemcseméretének csökkentése, másik lehetőség egy pórusos szerkezetű katalizátor kialakítása (bár ez esetben a pórusok belseje nehezen megvilágítható). A felület növelésétől a fotokatalitikus aktivitás növekedését várjuk, mivel a szennyezők átalakítása nagyrészt a katalizátor felületén játszódik le. Az általam előállított katalizátor bár igen kicsi fajlagos felülettel rendelkezik, az üregekben a Ti\textsuperscript{3+} koncentráció növekedését tapasztaltuk. Ez pedig a TiO\textsubscript{2} felületén igen jelentős hatású, mivel a Ti\textsuperscript{3+} centrum reagálni tud az oldatban levő O\textsubscript{2}-nel (amely a kísérleteink során szintén jelen volt) és reaktiv gyökök kialakulásához vezet. Ezek pl. az irodalmi áttekintésben is bemutatott "O\textsubscript{2}⁻⁻", HO\textsubscript{2}⁺ és a 'OH gyök, amelyek közvetlenül felelősek a szerves szennyezőanyagok bontásáért.

A jól adszorbeálódó, alacsony illetve nagy molekulatómégből szennyezőanyagok heterogén fotokatalizátorral történő átalakítása során kritikus tényező az adszorpció, amelyet befolyásolhatnak a lyukak méretei. A kisebb méretű szennyezők (pl. szalicilsav, mely 5,8 Å) könnyen eljutnak a belsejébe, mivel a lyukak átmérője: d < 5 nm. A nagyobb méretűek pedig, mint például a huminsav, nem tudják kihasználni az összes rendelkezésre álló „felületet”, mivel nem jutnak be a lyukakon, ahol több Ti\textsuperscript{3+} fordul elő. A fenol molekula mérete ezekhez képest lényegesen kisebb (4,2 Å), így biztosan be tud félni (bár kevésbé jól adszorbeálódó szubsztrátum). A kapott fotokatalitikus aktivitás értékei azt mutatják, hogy az ilyen típusú katalizátorfelszín lényegesen nagyobb aktivitással rendelkezik, mint a polikristályos részecskék felszíne. Eredményeink azt mutatják, hogy a morfológia ilyen jellegű kontrollálása meghatározó jelentőségű a félvezető fotokatalizátorok hatékonyságának növelésében. Ha ilyen, morfológiát befolyásoló tényezőket (kristály alak és a kristályosítással kapott lyukak) alkalmazni tudnánk kisebb mérettartományban, akkor igen kiváló aktivitással rendelkező anyagokat tudnánk előállítani a közeljövőben.
6.3. Hidrotermális kristályosítással előállított TiO\textsubscript{2} aggregátumok és egyedi kristályok\textsuperscript{12} tulajdonságainak összehasonlítása

Korábban már említettem, hogy a TiO\textsubscript{2} fotokatalitikus aktivitását a részecskeméret, kristályfázis, a reaktív kristályoldalak és a reaktáns anyagi minősége is befolyásolja. A \{001\} kristályoldalnak a nanométeres méretartományban kifejezetten nagyobb fotokatalitikus hatást/aktivitást tulajdonítunk az \{100\} vagy az \{101\} oldalakhoz képest. A kristály alakjának szabályozása igen hatásos eszköze a fotokatalitikus hatékonyság növelésének. Egy másik “szint”, amikor az egyedi, nanoméretű kristályokból felépülő nagyobb egység alakját befolyásoljuk. Ebből következően elengedhetetlen jobban megismernünk a kétféle megközelítés (hierarchikus szerkezet illetve egyedi kristályok), hatását a TiO\textsubscript{2} fotokatalitikus aktivitására. Ezen minták elnevezése a külső megjelenésükből adódott: MT (mikrotojások) X (a kalcinálás hőmérséklete); ML (mikrolapo) Y (az előállítás ideje).

6.3.1. A tojás alakú TiO\textsubscript{2} agglomerátum szerkezete

A 41. ábra mutatja a TiCl\textsubscript{4}-ből előállított és kalcinált katalizátorok röntgendiffraktogramjait. Az MT jelű minták kizárólag anatáz kristályfázist tartalmaztak, amelyet a diffraktogramok megfelelő reflexióiból azonosítottunk (JCPDS card nr. 00-075-1537). A mintákat több hőmérsékleten kalcináltuk a nagyobb kristályossági fok elérséért, amely a jobb fotokatalitikus aktivitással van kapcsolatban. Látható, hogy az anatáz reflexiói egyre élesednek, amint magasabb volt a kalcinálás hőmérséklete, azaz sikerült a minták kristályossági fokát növelni a hőmérséklettel. Érdekes, hogy az anatáz fázis 800 °C-on is stabil maradt (más kutatócsoportok is beszámoltak nagy stabilitású anatáz részecskék alól [193, 194]), illetve egyik minta sem tartalmazott rutil reflexiót (JCPDS card nr. 00-075-1748), habár a teljes rutilizálódás végbement 1000 °C-on (ME-1000 jelű minta) és ez a csúcsgyorsodás éleséből, mint a többi. A TiO\textsubscript{2} nanorészecskék méretét a Debye-Scherrer féle egyenlettel számoltuk; a kiindulási és a kalcinált minták (500, 650, 800 °C) 15 (ME) - 21 (ME-800) nm méretűek voltak, ezek az értékek láthatóak a 4. táblázatban.

\textsuperscript{12} Az egykristály: definíció szerint ráchibáktól, díszlokatiónktól mentes, folytonos rácsszerkezetű kristály, amely ezért nem vesz részt reakcióban. A dolgozatban ezért a mintáimat egyedi kristályoknak nevezem, de nem egykristályt hasonlítok össze az agglomerátumokkal.
4. Táblázat, A „mikrolapok” (ML) és „mikrotojások” (MT) jellemzői

<table>
<thead>
<tr>
<th>Minta</th>
<th>Kristály-fázis</th>
<th>Tiltott sáv szélesség (eV)</th>
<th>Részecske-méret #/(nm) -#/(μm)</th>
<th>Fajlagos felület (m²-g⁻¹)</th>
<th>Kezdeti bomlás sebesség (r₀) (mM-min⁻¹)-10⁻³</th>
<th>Felszínre normalizált bomlás sebesség (rₚ) (mM·m²-min⁻¹)-10⁻⁴</th>
<th>Átalakított fenol( %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT</td>
<td>anatáz</td>
<td>3,12</td>
<td>15,4#</td>
<td>91,51</td>
<td>3,31</td>
<td>0,18</td>
<td>39,4</td>
</tr>
<tr>
<td>MT-500</td>
<td>anatáz</td>
<td>3,16</td>
<td>17,1#</td>
<td>82,94</td>
<td>1,18</td>
<td>0,25</td>
<td>46,0</td>
</tr>
<tr>
<td>MT-650</td>
<td>anatáz</td>
<td>3,20</td>
<td>16,8#</td>
<td>84,43</td>
<td>3,24</td>
<td>0,28</td>
<td>48,8</td>
</tr>
<tr>
<td>MT-800</td>
<td>anatáz</td>
<td>3,24</td>
<td>20,7#</td>
<td>68,52</td>
<td>3,72</td>
<td>0,37</td>
<td>61,2</td>
</tr>
<tr>
<td>MT-1000</td>
<td>rutil</td>
<td>3,00</td>
<td>≈2</td>
<td>0,22</td>
<td>Inaktív</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ML-56</td>
<td>anatáz</td>
<td>3,15</td>
<td>≈1-2</td>
<td>0,57</td>
<td>0,33</td>
<td>5,81</td>
<td>11,3</td>
</tr>
<tr>
<td>ML-56C</td>
<td>anatáz</td>
<td>2,74</td>
<td>≈1-2</td>
<td>0,52</td>
<td>0,47</td>
<td>9,27</td>
<td>13,6</td>
</tr>
<tr>
<td>ML-246</td>
<td>anatáz</td>
<td>2,83</td>
<td>≈1-2</td>
<td>0,49</td>
<td>0,15</td>
<td>6,16</td>
<td>12,9</td>
</tr>
<tr>
<td>ML-246C</td>
<td>anatáz</td>
<td>3,09</td>
<td>≈1-2</td>
<td>0,45</td>
<td>0,59</td>
<td>13,66</td>
<td>19,4</td>
</tr>
<tr>
<td>P25</td>
<td></td>
<td>3,10</td>
<td>40</td>
<td>49,1</td>
<td>6,71</td>
<td>0,41</td>
<td>70,2</td>
</tr>
</tbody>
</table>

- - SEM felvételekről; - 89 tömeg % anatáz és 11 tömeg % rutil

41. ábra, A TiO₂ tojások porröntgen diffraktogramjai
A kalcinálási hőmérséklet növelése a kristályok méretének fokozatos növekedésével járt, amíg az anatáz nem rutilizálódott. Csak a diffraktogramok elemzésével nem tudtuk eldönteni, hogy vajon a kristályok alakját változtattuk-e, vagy együtt egyfajta másodlagos szerkezetet alakítanak ki. Ezt eldöntendő pásztázó és transzmissziós elektronmikroszkóppal is megvizsgáltuk a mintákat (42. ábra, 43. ábra).

42. ábra, Pásztázó elektronmikroszkópos felvétel a tojás (MT) alakú kalcinált TiO$_2$ -ről (sárga) és a lapos (ML) TiO$_2$ mintáról (zöld)
Az MT mintákban a tojás alakú részecskék az összes mennyiség 76 %-át teszik ki, habár volt néhány véletlenszerűen összetapadt kristály és nem meghatározható alakú agglomerátum is. A külsőjük monodiszperznak mondható, átlagos szélességük (D) 2,2 μm (± 13 %) hosszúsága pedig (L) 3,3 (± 15 %) μm. A hosszúság/szélességük aránya 1 és 2 között változott. A kalcinálás hőmérséklete és a hosszúság/szélesség hányados között nem volt felfedezhető kapcsolat. A 44. ábra mutatja a szélesség/hosszúság arányát egy mintán belül (ME-800) 80 db tojás alakú részecskénél vizsgáltuk. Az L/D arány jellemzően 1,33-1,83 közé esett. A bemutatott TEM/SEM felvételeken szintén megfigyelhető, hogy a tojás alakú mikrokészecskék poliéderes nanokrystallyokból épülnek fel, amelyet a röntgendiffraktogramok is igazoltak.

43. ábra, Transzmissziós elektronmikroszkóp felvétel a tojás (MT) alakú kalcinált TiO₂ -ról (sárga) és a lapos (ML) TiO₂ mintákról (zöld)
44. ábra, Hosszúság/szélesség (H/Sz) arányok eloszlásának/előfordulásának ábrázolása egy kiválasztott mintában (ME-800)

A következő kalcinálási hőmérsékleten előállított minták esetén (ME - 500, 650, 800 °C-on) a tojás alak szintén megmaradt, a nanoméretű kristályok mérete viszont kissé növekedett (XRD adatokkal alátámasztva). Ugyanakkor 1000 °C-on kalcinálva a mintákat, a rutilizáció teljesen végbe ment, amint a 41. ábra mutatja. Ezen a hőmérsékleten az egyedi részecskék összeolvadása is megfigyelhető volt, amellyel változatos alakúak, 3 μm-nél nagyobb átmérőjű mikrokristályokat kaptunk. Meg kell jegyezzük, hogy a rutil kristályok mérete az XRD-adatokból nem volt meghatározható, mert a részecskék mérete ezeknek a mintáknak az esetében is nagyobb, mint 100 nm (d > 100 nm), így csak a SEM/TEM felvételekre támaszkodtunk.

6.3.2. A TiO₂ egyedi kristálylapok szerkezete

A korábbi fejezetben már bemutattam az TiO₂ kristályok vizsgálati eredményeit, ebben a fejezetben továbbiakkal egészítem ki.

Bár világosan látszott a részecskeméret növekedése a SEM felvételeken, azonban konkrét bizonyítékra volt szükség a minta kristályosságáról is. Ezen túlmenően a hidrotermális előállítás során előfordulhat (bár kevessé valószínű), hogy a részecskék nem lesznek teljesen kristályosak, a Raman spektrumok alapján ezt ellenőrizni tudjuk. Az ML-1ó és ML-1óC jelű
minták esetében (45. ábra) a karakterisztikus sávok, amelyek a TiO$_2$-hoz tartoznak: 144, 394, 512 és 635 cm$^{-1}$-nél láthatóak. Figyelembe véve, hogy a TiO$_2$-ra (és annak kristályossági fokára) nagyon érzékeny a Raman spektrometria: a jel láthatóan erősödik, ahogy a TiO$_2$ kristályossági foka nő. Következésképpen a különösen alacsony jelű Raman spektrumú minták (ML-1ó és ML-1óC) nagy valószínűséggel amorf TiO$_2$-ot is tartalmaznak, emiatt a fotokatalitikus tulajdonság vizsgálatánál kihagytuk ezeket a mintákat.

A minták Raman spektruma látható a következő ábrán (45. ábra), amelyen megfigyelhető a TiO$_2$ anatáz jelenléte: a 144, 394, 512 és 635 cm$^{-1}$-nél [170]. Mindemellett a kristályossági foka az imént említett mintáknak alacsony, különösen a TiO$_2$-CNT 1ó minta esetében.

45. ábra, A TiO$_2$ mikrolapok Raman spektruma
6.3.4. Agglomerátumok - egyedi kristályok optikai tulajdonságai

Mielőtt a TiO₂ agglomerátum fotokatalitikus aktivitásának elemzésére rátérmé, fontos ismerni a minta optikai tulajdonságait. Ha nincs szignifikáns különbség az optikai sajátosságaikban, akkor a korábbi (6.3.) részben javasolt összehasonlítás megalapozott.

A TiO₂ mikrolapok esetében (46. ábra) egy csúcs figyelhető meg 372 nm-nél. Ugyanez mondható el a tojás alakú mintákról (bár egy enyhe emelkedés figyelhető meg 376 nm-nél, amely ez esetben elhanyagolható). Amint már volt róla szó (az előbbi részben), az 1000 °C-on kalcinált minta (MT-1000) csak rutil fázisú TiO₂-ot tartalmazott. Ezt a tényt megerősíti, a P25 TiO₂ (amely tartalmaz 5 % rutilt is) DRS spektrumának elsőrendű deriváltja, amelyben 376 nm-nél szintén (anatáz) csúcs figyelhető meg, illetve egy másik (rutil) 400 nm-nél. Mivel nem látunk lényeges különbséget az egyes minták optikai tulajdonságaiban (tiltottsáv-szelésség értékei), így a fotokatalitikus hatékonyságuk magyarázata egyértelműbb.

6.3.5. Agglomerátum - egyedi kristályok fotokatalitikus aktivitása

A tojás alakú és a TiO₂ mikrolapos minták fotokatalitikus hatékonyságát fenol átalakítása során vizsgáltuk, UV megvilágítás alatt. Kétféle megfontolás mentén indulhatunk el...
a fotokatalitikus tulajdonság vizsgálatakor: a klasszikus megközelítés alapján a katalizátor tömegére vonatkoztatjuk a kinetikai paramétereket (bomlási sebesség), vagy a másik, ha a katalizátor fajlagos felületét (azaz a megvilágított felületet) vesszük viszonyítási alapul. Az iparban pl. általánosan bevett a tömegre vonatkoztatott érték, mert (alkalmazása egyszerűbb, illetve) a katalizátor- (és más vegyszer-) árak mindig bizonyos tömegre vonatkoztatottak annak ellenére, hogy a katalizátorok hatékonysága a felületen lejátszódó folyamatoktól függ [171]. A katalitikus folyamatokat a felszín anyagi minősége, mérete határozza meg, ezért a fenol átalakításának sebességét a felületre vonatkoztattunk (normalizáltuk) és a felület hatékonyságának bomlásgöribéit ábrázoltuk.

47. ábra, A tojás alakú TiO₂ anatáz agglomerátumok felületre számolt fotokatalitikus aktivitása

A tojás alakú, mikrométeres TiO₂ részecskék fotokatalitikus aktivitását fenol bomlásával vizsgáltuk UV fény besugárzással, P25 TiO₂-ot használva referenciakatalizátorként. A kalcinálási hőmérséklet növelésével a fotokatalitikus aktivitás növekedését figyeltük meg (47. ábra). A fenol átalakulás a tojás alakú minták esetén 39,4 % (MT jelű minták) - 61,2 % között változott, azonos megvilágítási körülmények (idő, hőmérséklet) mellett. Az 1000 °C-on kalcinált mintha, amely rutilizálódott, inaktívnak bizonyult, a nagy részecskéméretnek és az anatáz fázis hiányának köszönhetően. A következő ábra (48. ábra) a mikrolapok felületre számolt fotokatalitikus aktivitását mutatja, illetve a fenol átalakítását %-ban (49. ábra).
48. ábra, A „lap”- alakú TiO₂ anatáz felületre számolt fotokatalitikus aktivitása

49. ábra, Fenol átalakulása a mikrotojás (MT) és a mikrolapos (ML) minták esetén (azonos körülmények mellett)
A kezdeti bomlási sebességre vonatkozóan a P25 katalizátor 6,70·10⁻³ mM perc⁻¹ m⁻², amíg a hatékonyabb mikrotojás alakú minta (MT-800) is csak 3,71·10⁻³ mM perc⁻¹ m⁻² értéket ért el. Habár a különbség a kétféle bomlási hatékonyság között szignifikáns, a MT-800 és P25 minták hatékonysága összemérhető volt (a kezdeti sebességre vonatkozóan). Ebből következően a felületre számolt fenol- átalakítási hatékonyságot határoztam meg, amelyek aktivitása fordított sorrendű volt a tojás alakú minták esetében (50. ábra). A felületre vonatkoztatott sebességállandók rendkívül alacsonyak voltak, az értékük 0,18·10⁻⁴ - 0,37·10⁻⁴ mM perc⁻¹ m⁻² között változott. Ezek kisebbek voltak a P25 TiO₂-nál, mely 0,41·10⁻⁴ mM perc⁻¹ m⁻².

A TiO₂-lapok (ML) esetében a hidrotermális kristályosítási idő növelésével és az azt követő (400° C-on történő) kalcinálással együtt járt a kristályossági fok növekedése is. A fotokatalitikus reakciók eredményeinek a kiértékelése alapján megállapítottam, hogy a kristályosítási idő növelésével és a kalcinálással kapott minták mindegyikénél határozottan megnőtt a fenol átalakításának hatékonysága (felületre vonatkoztatva): 5,81-ről 9,27 mM perc⁻¹ m⁻²-re és 6,16-ről 13,66 mM perc⁻¹ m⁻²-re. Meg kell említenem, hogy a „mikro-lapok” fajlagos felülete mérhetetlenül kicsi, így a felületre számolt fotokatalitikus hatékonyság értéke (13,66 10⁻⁴ mM perc⁻¹ m⁻²) így sokkal nagyobb lesz, mint a P25 esetében (0,41 10⁻⁴ mM perc⁻¹ m⁻²).

50. ábra, Felületre vonatkoztatott sebességállandók a fenol átalakítása esetén a mikrotojás (MT) és a mikrolapos (ML) mintákkal
Az eredmények azt mutatják, hogy az anatáz ML-jelű minták hatékonyabbak lehetnek a P25-tel, vagy a „tojásos” (agglomeráatumokkal) mintákkal összehasonlítva. Kiértékeléshez a (mértani) felületet használtam, amely közvetlenül elérhető a fény és a reakcióközeg (víz) számára. A SEM felvételekből látható, hogy a mikrotojásos minta rendelkezik olyan hőzagokkal, amely szintén lehet aktiv a fotokatalitikus reakció alatt. Ez további két reakciótat feltételez, melyek a következők:

a.) polikristályos minta (tojásos) részecskéinek „tömbi fázisa” is „használva van”, amelyet megerősít, hogy a fotokatalitikus reakciók végbemennek a tömbi rész beljebb levő részecskéinek felszínén;

b.) a töltéshordozók jól szeparáltak a részecskék közötti érintkezésnek köszönhetően (elvezetődnek) és a geometriai felszínnek köszönhetően az aktivitás nő. Ennek a magyarázata, hogy a tojás alakú részecske felszínén levő nanokristályok aktiválódnak, mert azokat tudjuk megvilágítani, amíg a tömbi fázisban (beljebb) levők nagyobb valószínűséggel „csak” a töltés-szeparációban játszanak szerepet. Illetve meg kell fontolnunk azt az esetet is, hogy az a.) és b.) lehetőség mindegyike fennáll és egymást kiegészítik.

6.4. Hidrotermális TiO$_2$ kristályosítás különböző szénfajtákon


6.4.1. Kristályszerkezeti és morfológiai vizsgálatok

6.4.1.1. Röntgendiffrakciós mérések

A diffraktogramok alapján (51. ábra) elmondható, hogy a minták jelentős többségben anatáz fázist tartalmaznak, az arra jellemző reflexiókkal (25 2Θ °, ill. hármas csúcs: 37, 37,8 és 38,3 2Θ °-nál).
Látható, hogy amint növeltük a kristályosítás idejét, az anatáz reflexiói egyre élesednek minden minta sorozat esetében, amelyek közül kivételt képez a grafit tartalmú kompozit. Ebben az esetben 1 órán keresztül (Gr 1 jelű minta) hidrotermális kezelés során előállított katalizátor rutil módosulatú (27,3; 36, és 39,2 2Θ° reflexióknál), az 5 órán át tartó hidrotermális kezelés pedig rutil és anatáz kristályfázist is eredményezett. A 24 órán át kristályosított katalizátor már csak anatáz módosulatot tartalmaz.

**51. ábra**, A különböző szénfajták jelenlétében 1, 5, 24 órás kristályosítási idő alatt keletkezett minták röntgendiffraktogramjai

6.4.1.2. Pásztázó elektronmikroszkópos vizsgálatok
A többfalú szén nanocso jelenlétében kristályosított mintákat már korábban tárgyalta (6.2.1. fejezet), így ezekre itt nem térk ki. Alább a róluk készült elektronmikroszkópos felvétel (52. ábra) látható, (a könnyebb) összehasonlítás végett a többi szénfajtát tartalmazó mintával. Az 53. ábra mutatja (a grafit jelenlétében kristályosított TiO₂-ok közül), hogy a TiO₂-Gr 1ó jelzésű katalizátor igen hasonlóan mutatkozott a korábban bemutatott MWCNT 1 (szén nanocsővön növesztett 1 órás) jelzésű katalizátortoz, de a porrőntgen diffraktogramok alapján rutil fázisú kristályokat kaptunk.
52. ábra, Szén nanocső tartalmú: TiO\(_2\)-CNT 1ó, 5ó, 24ó jelű minták pásztázó elektronmikroszkópos felvételei (utólag színezettek)

Az élek és sarkok itt még kevésbé fejlettek, jobban lekerekítettek, a méretük elmarad a szén nanocső tartalmú mintához képest (d \(\approx\) 300-400 nm). A kristályalak befolyásolhatósági szintje ennél a sorozatnál kismértékű.

53. ábra, Grafit tartalmú: TiO\(_2\)-Gr 1ó, 5ó, 24ó jelű minták pásztázó elektronmikroszkópos felvételei

54. ábra, Aktív szén tartalmú minták: AC 1ó, AC 5ó, AC 24ó jelű minták pásztázó elektronmikroszkópos felvételei
Az aktív szén jelenlétében előállított katalizátorok esetén (54. ábra) az 1 órán át tartó kristályosítás után kapott kristályok hasonlóak a GR 1ó minták alakjához, különbség viszont, hogy 1 μm-es labdaszerű képződményekbe tömörültek. A kristályosodási folyamat aktív szén esetén tehát úgy történhetett, hogy az amorf szén felületén elkezdődött a részecskék kiválása, majd a már kialakulóban lévő (AC 1ó) kristályra vált ki a többi. Az 5 órás mintánál már találunk fejlett {001} Miller-indexű oldalakat, amit előző esetben (1 órás mintánál) csupán az elektronmikroszkópos felvételek tekintve nem igazolhatunk (csak oldalról láthatjuk az összetapadt részecskéket). A 24 órás kristályosítás után kapott minta (AC 24ó) polimorf, ez esetben egységes kristályalakot nem tapasztalunk. Ezek a minták szintén többszöri átkristályosodáson mehettek keresztül, sok kisebb-nagyobb TiO\textsubscript{2} részecske látható, átlagos kristályméretet nem tudunk meghatározni.

55. ábra, Szén aerogél tartalmú minták: AeK1 1ó, AeK1 5ó, AeK1 24ó jelű minták pásztázó elektronmikroszkópos felvételei

Szén aerogél (AeK1) esetében az 1 órás hidrotermális kezelés után keletkezett TiO\textsubscript{2} részecskék nagyon egységes alakúak és mérettők, jól láthatóan (55. ábra) kifejlett {001} oldallal. Az 5, 24 órás mintáknál a {011} és az {101} oldalak is kifejlődtek, határvonalaiak élesek, és a korábbiakkal ellentétben ezek az oldalak már nagyobb arányban vannak jelen a mintában (mérettük egymással összemérhető); illetve mindkettő esetén megfigyelhetők nagyobb (3-4 μm) kristályok, de letöredezett, kis „részek” is.
Az AeK₂-jelzésű aerogéles TiO₂ minták esetén (56. ábra) az 1 órás hidrotermális kezelésben részesülő mintáról nem sikerült nagyobb felbontású elektronmikroszkópos felvételt készíteni, az 5, 24 óráig kristályosított mintákról viszont igen. Ezeknél szintén látszik a \{001\}-es indexű oldal túlnyomó jelenléte, 5 órás (AeK₂ 5ó) esetben az oldal szélénél láthatóan megjelenik a \{011\} és az \{101\} oldal éles határvonallal, amelyek a 24 órás mintáknál arányainban nagyobbak, ami a kristályok méretéről is elmondható (az 5 óráig tartó szintézis során előállítotthoz képest).

Kísérletet tettem mikrospirálok [172] jelenlévében is TiO₂ részecskék előállítására, azonban a pásztázó elektronmikroszkópos felvételen (57. ábra) látható, hogy a minta igen heterogén. Ahogy vártuk, a szénszálak mérete túl nagy a keletkezett TiO₂-hoz képest (szén nanocső esetében fordítva volt), így vélhetően rosszabb kontaktus valósul meg a két anyag között, s mivel nem fedeztünk fel sem egységes alakú, sem egységes méretű kristályokat, így ezeket a mintákat nem vizsgáltuk a későbbiekben.
6.4.2. Termogravimetriás mérések eredménye

A termogravimetriás mérésektől azt várhattuk, hogy az egyes minták széntartalmát elégetve meghatározzuk pontos mennyiségüket a mintákból. Mivel az 1, 5, 24 óráig tartó kristályosítás után különböző tömegű TiO$_2$-C kompozitokat kaptunk, így várható volt, hogy az egyes minták széntartalma arányaiban van eltérés. Az 1 órás minták jellemzően nagyon kis tömegűek voltak (≈ 30-50 mg) színük is sötétszürke-fekete, így azok széntartalma igen jelentősnek tűnt, de olyan kis mennyiségben állítottam elő, hogy az 5, 24 órás mintákat tudtam behatósan (többféle módszerrel) vizsgálni. Az 5 órás minták tömege 1 g körül változott, míg a 24 órás kristályosítás után kapott minták tömege 1,6 g körül.

A TG görbén a hőmérséklet emelkedésével együtt látnunk kellene a víz párolgását, ill. a szén égését (amely 400 °C körül történik), azonban ez utóbbbit egyik mintánál sem tapasztaltuk, nem jelentkezett kiugró érték az exoterm folyamatok vizsgálatkor. Egy tipikus Termogravimetriás görbét mutat az 58. ábra (Aerogél 5 óra jelű minta).

6.4.3. Optikai tulajdonságok meghatározása

A termogravimetriás mérések eredménye alapján, hogy a különböző kristálypromótorok okoznak-e változást a keletkező TiO$_2$ (minták) optikai tulajdonságában, diffúz reflexiós spektrometriát alkalmaztam. A tiltott sáv szélességének lehetséges változását tudjuk meghatározni a spektrumokból (elsőrendű deriváltból), amely a lehetséges elektronátmenetekhez kapcsolódó
energiát mutatja meg. Az 59. ábra szemlélteti a titán-dioxidok diffúz reflexiós spektrumait, amelyekről leolvasható, hogy az egyes katalizátorok milyen hullámhossztartományba eső fotonokat képesek reflektálni/elnyelni. Meg kell említenünk azonban, hogy a fényelnyelés nem jelenti feltétlenül azt, hogy az adott fotokatalizátor valóban gerjesztődik az adott hullámhosszú fotonnal, mert nem minden elnyelt foton hasznosul [173]. Az összes minta színe szürke, az 1 órásaké sötét, míg az 5 órásaké világosszürke, a 24 órásak pedig már majdnem fehérek, ami annak köszönhető, hogy a hosszabb kristályosítási idő alatt a bevitt (0,15 mg) szénmennyiség mellett egyre több TiO₂ kristály keletkezett.

59. ábra, Különböző TiO₂-C minták diffúz reflexiós spektrumai

6.4.4. TiO₂-C minták fotokatalitikus aktivitásának vizsgálata

Fenol átalakítását vizsgálva nem tapasztaltak jelentős fotokatalitikus aktivitást. Ezért másik modellszennyezőt választottam, a rodamin B-t, melyet mások is alkalmaztak a TiO₂ aktivitásának felderítésére. Rodamin B UV-fény alatti átalakításának vizsgálatokor ki tudtunk mutatni különbségeket az eltérő szénfajták jelenlétében előállított TiO₂ mintákkal (60. és 61. ábra), bár a P25 hatékonyabbnak bizonyult.
Az eredmények alapján legjobb a (funkcionalizált) többfalú nanocső jelenlétében, 24 óra alatt keletkezett TiO$_2$ lett, de hozzá közeli értéket mutat az aktív szenet tartalmazó, szintén 24 óra alatt keletkezett TiO$_2$. Hozzá kell tennem, hogy (mivel az előző fejezetekben szó volt a fajlagos felületre vonatkozott elbomlott szennyezőanyag-mennyiségről) ebben az esetben nem végeztünk fajlagos felület meghatározást, így csak a katalizátor tömegére tudunk szennyezőanyag-bomlást vonatkoztatni.

Az optikai vizsgálat alapján a tiltott sáv szélesség értékeit is bemutatom (5. táblázatban), melyeket szintén a Kubelka-Munk féle számítással kaptam [163]. A táblázatban levő tiltottsáv
szélesség értékek azonban alacsonyabbak, mint a már általam bemutatott, 8. ábrán (20. oldalon) levők. Valószínűleg itt ez a jelenlevő szénfajták tulajdonítható be, amely a minta fényelnyelő-képességét befolyásolja, de a TiO<sub>2</sub> tiltott sávszélességét valójában nem változtatja meg.

5. táblázat, A TiO<sub>2</sub>-, „C” kompozitok jellemzői

<table>
<thead>
<tr>
<th>Kristályosító promótor</th>
<th>Szintézis ideje</th>
<th>Kristályméret (μm)</th>
<th>Tiltott sáv szélesség (eV)</th>
<th>Kristályfázis</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWCNT</td>
<td>1</td>
<td>0,5</td>
<td>3,04</td>
<td>Anatáz</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1,0</td>
<td>3,07</td>
<td>Anatáz</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2,0</td>
<td>3,14</td>
<td>Anatáz</td>
</tr>
<tr>
<td>Grafit</td>
<td>1</td>
<td>0,4</td>
<td>2,98</td>
<td>Anatáz</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2,0</td>
<td>3,08</td>
<td>Anatáz</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2,0</td>
<td>3,11</td>
<td>Anatáz</td>
</tr>
<tr>
<td>Aktív szén</td>
<td>1</td>
<td>0,4</td>
<td>2,97</td>
<td>Rutil</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1,0</td>
<td>2,92</td>
<td>Anatáz</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2,0</td>
<td>3,01</td>
<td>Anatáz</td>
</tr>
<tr>
<td>Szén aerogélK1</td>
<td>1</td>
<td>0,2</td>
<td>-</td>
<td>Anatáz</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2,0</td>
<td>3,06</td>
<td>Anatáz</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3,0</td>
<td>3,12</td>
<td>Anatáz</td>
</tr>
<tr>
<td>Szén aerogélK2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Anatáz</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5,0</td>
<td>3,09</td>
<td>Anatáz</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5,0</td>
<td>3,10</td>
<td>Anatáz</td>
</tr>
</tbody>
</table>
Köszönetnyilvánítás

Hálával tartozom Dr. Dombi András professzor úrnak, akinek köszönhetem, hogy a Környezetkémiai Kutatócsoport tagja lettém, és szakmai fejlődésemet észrevételeivel a kezdetektől segítette.

Ezúton köszönöm témavezetőmnek, Dr. Pap Zsoltnak, aki szakmailag és emberileg is mindvégig támogatott, biztatott és lehetőséget adott saját ötleteim megvalósításához.

Köszönettel tartozom Dr. Hernádi Klára professzor asszonynak, aki mentorálásával támogatott, és akihez bármikor bizalommal fordulhattam problémáimmal, kérdéseimmel.

Köszönöm Dr. Könya Zoltán professzor úrnak az Alkalmazott és Környezeti Kémiai Tanszék vezetőjének, aki lehetővé tette számomra, hogy a tanszéken végezhessem a kísérleteim egy részét.

Köszönettel tartozom kutatócsoportunk korábbi tagjának, Dr. Mogyorósi Károlynak aki segítőkész iránymutatása mellett kezdem meg munkámat.

Köszönöm továbbá doktorandusz társaimnak Szabó Emesének, Veréb Gábornak, Karácsonyi Évnánk, Kása Zsoltának, Németh Zoltának, Réti Balázsnak, és Berki Péternek a kutatómunkám során nyújtott segítséget, valamint a kutatócsoport további tagjainak is a mindennapok kellemes légkörét.

Köszönettel tartozom a Kolozsváron, a Babes-Bolyai Tudományegyetemen működő, Prof. Dr. Baia Lucian által vezetett “Materials for Environmental Applications-MFEA” kutatócsoportnak a különböző méréstechnikákban nyújtott segítségért, külön köszönöm Saszet Katának és Kedves Zsolt Endrének a közös munkát.

Köszönettel tartozom Dr. Berkesi Ottónak, valamint Dr. Magyari Klárának az Infravörös spektroszkópiai mérésekért.

Továbbá köszönetet mondok pénzügyi támogatóinknak: a Svájci-Magyar Hozzájárulásnak (SH/7/2/20), amelynek keretében a kutatásomat végeztem. Köszönöm a Campus Hungary pályázatnak, hogy lehetővé tette számomra a külföldi méréseket, valamint a Nemzeti Kutatási, Fejlesztési és Innovációs Hivatalnak (NKFP DA THERM TECH 08 A4).

Köszönöm családomnak: szüleimnek a lehetőséget és a támogatást egyetemi és doktori tanulmányaim során. Különböző hálás vagyok férjemnek a sok bízatásért, a munkámhoz szükséges háttér megteremtéséért, s nem utolsósorban gyermekeimnek: Máténak, Zsófinak és Flórinak is az irántam tanúsított megértésükért. 😊
**Irodalomjegyzék**


Összefoglalás

Munkám során sikeresen állítottam elő TiO$_2$-C kompozitokat ultrahangos rázatással, majd hidrotermális kristályosítással, amely során a szén, mint kristálypromótor játszott szerepet. Vizsgáltam a különböző szénfajták, valamint a fluorid-ion (F$^-$), mint alakszabályozó reagens hatását a kialakuló kristályokra; valamint bizonyos mintáknál utólagos kalcinálást alkalmaztam az átkristályosodás hatásait vizsgálva. A kompozitok hatékonyságának felderítésére fotokatalitikus méréseket végeztem különböző modellszennyezőkkel. Munkámhoz 3 tudományos szakfolyóiratban megjelent közlemény és 13 külföldi konferenciarészvétel kapcsolódik.

Ultrahanggal homogenizált és így előállított kompozitok esetében bizonyítottam, hogy abban az esetben tapasztaltam hatékonyságnövekedést fenol bontása esetén, mikor az egyes anyagok érintkezése minél teljesebb volt. A kisebb méretű, nagyobb fajlagos felületű TiO$_2$-ok katalitikus aktivitása csökkent a szén nanocső jelenléteben fenol bontásánál. A funkcionalizált szén nanocsővel képezett kompozit Aldrich anatáz esetén jobbnak bizonyult minden más vizsgált alapkatalizátornál (pl. P25 vagy Hombicat), vagy ezek kompozitjainál.

Bebizonyosodott, hogy hidrotermális módszerrel, funkcionalizált szén nanocső jelenlétében végzett előállítással kapott TiO$_2$-CNT mintáknál a kristályosítási idő változtatása a TiO$_2$ morfológiai változásával járt.

A hidrotermális kristályosítást szabályozó ágens (HF) mennyiségének vizsgálatakor azt tapasztaltam, hogy F$^-$-ionok hiányában a kristályosodó TiO$_2$ rutil fázisú lett, amely a termodinamikai kontrollra utal a kristályosodáskor. Ha a rendszerben HF van jelen, akkor a F$^-$-ionok stabilizálják és elősegítik a {001} lapok kiépülését.

A hidrotermális kristályosítással előállított, nanocsővet tartalmazó mintákat kalcinálásnak is alávetettel, amelyek pásztázó elektronmikroszkópos vizsgálatokat üregek megjelenését tapasztaltuk az 1 és 5 órás (TiO$_2$-CNT 10°C, 5°C) minták esetén. Megállapítottam, hogy a lyukak kialakulása 300 °C felett kezdődik és 350 °C-nál már egyértelműen jelen vannak. A 24 órás hidrotermális kezelésnek alávetett mintáknál viszont ezeket csak a transzmissziós elektronmikroszkóppal tudtuk szemügyre venni, amely segítségével látható volt, hogy a lyukak elhelyezkedése és alakja bizonyos rendezettséggel bír. Kialakulásukat összefüggésbe hoztam a kristály kalcinálása során bekövetkező szerkezeti változással, egyfajta stabilizációval, amelyre lehetséges mechanizmust javasolunk.
A lyukak orientációját atomi szinten is megvizsgálva bebizonyosodott, hogy a TiO$_2$-CNT 10°C, 50°C minták esetén a lyukak oldala párhuzamos volt a [010] és az [100] iránnyal, míg a TiO$_2$-CNT 240°C esetén elfordult és az [110] iránnyal lett párhuzamos.

Röntgen fotoelektron spektroszkópiás (Ti 2p$^{3/2}$) vizsgálatból kiderült, hogy a nem kalcinált mintáknak a Ti$^{3+}$ tartalma viszonylag kicsi és nem változott jelentősen a hidrotermális kezelési idő növekedésével. A kalcinált minták (TiO$_2$-CNT 10°C, 50°C, 240°C) esetében viszont a +3-as oxidációs állapotú Ti atomok számának növekedését mutattam ki. A TiO$_2$-CNT 240°C jelű (elfordult lyukak) minta esetében a Ti$^{3+}$ mennyiségére az 1 órás és az 5 órás minták értéke közel kétszeresét kaptam. A nem kalcinált minták esetén nem tapasztaltam növekedést a Ti$^{3+}$ mennyiségében, viszont a kalcinált mintánál igen, így arra következtettem, hogy a Ti$^{3+}$ koncentráció a lyukakkal van összefüggésben. Koncentrációjuk jelentős növekedése pedig a 24 órás mintánál a lyukak elfordulásával van kapcsolatban.

Igazoltam, hogy a hosszabb előállítási idejű (24 óra) és kalcinált TiO$_2$-CNT 32 %-kal hatékonyabb fenol-átalakítása során (UV A fény alatt), mint a rövidebb (5 óra) idő alatt keletkezett kompozit. Mivel az egyetlen szerkezeti különbség a két minta között a lyukak irányában volt, ez azt mutatja, hogy a lyukak iránya illetve a Ti$^{3+}$ növekvő mennyisége okozta az aktivitásbeli különbséget. A magas Ti$^{3+}$ koncentráció pedig igen előnyös mert a Ti$^{3+}$ centrum reagálni tud az oldatban levő O$_2$-nel és reaktiv gyökök kialakulásához vezet, amely elősegíti az oldatban levő szennyezőanyagok átalakítását.


A különböző szén jelenlétében előállított TiO$_2$-ok esetében a rodamin B átalakításánál különböző fotokatalitikus aktivitást tapasztaltam, meglepetésünkre az aktív szén jelenlétében előállított TiO$_2$ kompozit majdnem olyan hatékonyak bizonyult, mint a szén nanocsovet tartalmazó kompozit. Szerkezetük vizsgálatával bizonyítottam, hogy a különböző szénfajták jelenlétében előállított TiO$_2$ kristályok közül a grafit jelenlétében, 1 óráig kristályosított minta
Summary

During my work different type of TiO₂-C composites were successfully prepared by ultrasonication, or by hydrothermal crystallization, where the used carbons acted as crystallization promotor. I also investigated the importance of the used carbon types and the impact of the fluoride ions (F⁻) as shape-tailoring agent. Calcination method was also applied in order to study the mechanism of recrystallization process. I investigated the degradation of different model pollutants to clarify the photocatalytic performance of the composites. The results were presented at several national and international scientific conferences (13) and published in scientific journals (3).

In case of those TiO₂ composites which were obtained by ultrasonication (used as a homogenization process) method, we found that the efficiency of the phenol degradation significantly increased due to the better/improved contact of the CNT and TiO₂ materials. The photocatalytic activity of TiO₂ with smaller particle size (higher specific surface area) was decreased in the presence of CNT’s during phenol degradation. The composite samples which contained functionalized carbon nanotubes and Aldrich anatase showed better performance than other composites and bare TiO₂ (e.g. P25, Hombicat).

In the case of hydrothermal crystallization it was concluded that changing the duration of the crystallization process the morphology of the TiO₂ crystals changed significantly in the TiO₂-CNT composites.

Investigating the quantity of the shape-tailoring agent (HF) I observed that the obtained TiO₂ microcrystals were rutile in the absence of F⁻ ions which suggests a thermodynamic control of the hydrothermal crystallization process. In the presence of HF the F⁻-ions stabilized and favored the growth of {001} facets.

The samples obtained by hydrothermal crystallization in the presence of CNT were calcined. In these samples peculiar secondary morphological features were observed, e.g. holes (TiO₂-CNT 1HC, 5HC) by SEM. The formation of the holes started...
above/around 300 °C and their presence was obvious at 350 °C. In the case of TiO$_2$-CNT 24HC samples, the holes were observed by TEM only and their position and shape were well-defined. Their origin might be linked to structural stabilization of a repeated recrystallization process, and a possible formation mechanism was proposed for it. The holes orientation was examined at atomic level also and it was observed that in case of sample TiO$_2$-CNT 1H-C and TiO$_2$-CNT 5H-C were parallel with the crystallographic directions of [010] and [100], while in the case of TiO$_2$-CNT 24H-C, they suffered a rotation and became parallel with the [110] direction.

XPS measurements (Ti 2p$^{3/2}$ spectra) indicated that Ti$^{3+}$ concentration did not change with the increase of the hydrothermal treatment, but investigating the calcined materials’ (TiO$_2$-CNT 1H-C, TiO$_2$-CNT 5H-C and TiO$_2$-CNT 24H-C) spectra and increase of the Ti$^{3+}$ amount was noticed (with the increase of the hydrothermal treatment time). As the holes rotated (TiO$_2$-CNT 24H-C), the concentration of Ti$^{3+}$ was nearly threefold compared to TiO$_2$-CNT 1H-C, TiO$_2$-CNT 5H-C. I found that the Ti$^{3+}$ concentration of non calcinated samples did not increase during the hydrothermal treatment in time while the Ti$^{3+}$ concentration of calcinated samples did increase. My assumption points out that this significant improvement in Ti$^{3+}$ concentration is assigned to the rotation of the holes what had been obtained in the calcined samples.

I claim that the phenol degradation of the (TiO$_2$-CNT) the calcinated composite obtained by longer (24 hours) hydrothermal crystallization time was 32 % more efficient (under UV-A), than the other (TiO$_2$-CNT 5HC) composites. Since the only morphological difference among the samples was the orientation of the holes, my conclusion was that the orientation of the holes and the increased concentration of Ti$^{3+}$ were the main factors responsible for the photocatalytic activity. The high concentration of Ti$^{3+}$ is very prosperous, due to the Ti$^{3+}$ centers reaction with the available dissolved O$_2$ and leads to the formation of reactive radicals which are directly responsible for the degradation of organic pollutants.

The different shape manipulation methods can be executed at crystallite level (single crystals), or at aggregation levels of the nanocrystallites - hierarchical shapes. We demonstrated that both of the synthesis procedures can produce efficient photocatalysts. We confirmed that the single crystal anatase (MP series) were more active compared to P25 and hierarchical egg-like (ME series) structures. The geometrical area was used for this estimation, and it may gain additional active area during the photocatalytic process, due to the pores’ internal surface.

The investigations of the photocatalytic performance of the TiO$_2$-C composites, which were produced in the presence of various carbon types by hydrothermal crystallization, were different in the case of rhodamine B. Interestingly the efficiency of TiO$_2$-AC composite was
very similar to the efficiency of TiO$_2$-CNT composite. Furthermore, in this experimental set rutile was obtained when graphite was applied for 1 hour as the crystallization promoter, in the other cases only anatase was obtained.

In the future it might be intriguing to investigate the rhodamine B degradation trends with these TiO$_2$-C composites.

Függelék

A szén nanocsővek előállítása
A szén nanocsővek előállítása az EPFL Institute of Physics of Complex Matter (Lausanne, Svájc) intézetben, az úgynevezett CCVD-eljárással (Catalytic Chemical Vapour Deposition) történt. A reakció acetilén bontásával, CaCO$_3$ hordozós Fe/Co katalizátor jelenlétében, N$_2$ atmoszférában zajlott 720 °C-on. Ennek a katalizátorra előnye, hogy a kapott anyag tisztítása könnyen elvégezhető hig savas mosással, és növeli a többfalú szén nanocsővek képződésének szelektivitását, így kevesebb amorf szén keletkezik [174]. A CaCO$_3$ hordozó előnye, hogy nem pórusos szerkezetű, tehát a pórusokban nem tud amorf szén lerakódni, ami a terméket szennyezhetné. Az így elkészült szén nanocsővek típusos szennyezői a katalizátorhordozó és a katalizátorként alkalmazott fémek szintézis utáni maradéka. Ezek eltávolíthatóak 10 %-os sósavval történő mosással: főzőpohárban kevertetve egy éjszaka alatt, majd vízszugárszivattyúval ellátott membránszűrő-bérendezéssel PVDF (Millipore, Durapore PVDF membrán, 47 mm átmérő, 0,1 μm pórusméret) membránon szűrve. A kapott anyagot pH≈7-re mosuk, majd szárítjuk 110 °C-on.

A szén nanocső funkcionalizálása
A szén nanocső (CNT) funkcionalizálására azért volt szükség, hogy elősegítsük a vízben való szétoszlattasukat, illetve, hogy aktívabbak legyenek olyan reakciókban, melyeknél a kiindulási szén nanocsővek kevésbé. Ennek során funkciós csoportokat (pl.: hidroxil-, karboxil-) alakítottunk ki a nanocsővek felszínén, ezzel növelve hidrofilitásukat [175]. Ennek menete a következő volt: 201 mg (egyfalú, többfalú) CNT-hoz 135 mL tömény (65 %) salétromsavat öntöttem, majd ezt vegyifülke alatt 6 órán át kevertettem. A funkcionalizálás után ultraszűrt vízzel addig tisztítottam (mosás és centrifugálás), amíg a pH≈6-os érték körüli lett. Ezek után a kapott funkcionalizált szén nanocsövet (FSW és FMW CNT) 80 °C-on száritottam. A funkcionalizálás során a veszteség kevesebb volt, mint 3 %.
Szén-aerogél előállítása

A szén-aerogél szintézise kolozsvári partnerünknel történt. Ez rezorcinol és formaldehid polikondenzációs reakcióján alapul, melyet Na₂CO₃ katalizátor segít elő, majd CO₂-ban való szárítás (szuperkritikus körülmények között) és pirolízis lépés követ.

A folyamat: rezorcinolt oldottak kétszer desztillált vízben (R/H₂O = 0,65 g cm⁻¹ K₁ és 0,2 g cm⁻¹ K₂ jelű minta esetén), melyhez formaldehidet adtak (R/F=0,5), majd Na₂CO₃-ot (R/C=100 K₁ és 500: K₂). Ezt követően jól zárható csökmencébe (7 cm hosszú, 1 cm belső átmérőjű) tették, majd 80 °C-on tartották 4 napig. A kapott rezorcinol-formaldehid aerogélt etanollal mosták, majd szárították folyékony CO₂-ban (37-40 °C, 90-100 atm). A kapott polimer-aerogélt 1050 °C-on pirolízisnek vetették alá 2 órán át Ar gázban, így kapták a szén-aerogélt [176].