
Gossip-Based Machine Learning in

Fully Distributed Environments

István Hegedűs

Supervisor

Dr. Márk Jelasity

MTA-SZTE Research Group on Artificial Intelligence

and the University of Szeged

PhD School in Computer Science

University of Szeged

A thesis submitted for the degree of

Doctor of Philosophy

Szeged

2016

List of Algorithms

2.1 Peer Sampling Service . 10

2.2 Searching Minimal Value . 12

3.3 Gossip Learning Framework . 15

3.4 Logistic Regression . 16

3.5 Pegasos SVM . 17

3.6 Perceptron . 18

3.7 Naive Bayes . 19

3.8 One vs. All Classifier . 20

3.9 Artificial Neural Network . 21

4.10 FILTERBOOST(INIT(), UPDATE(·, ·, ·, ·), T, C) 30

4.11 Diversity Preserving GoLF . 35

5.12 GoLF with drift handling . 47

5.13 AdaGoLF . 48

5.14 CDDGoLF . 50

6.15 P2P low-rank factorization at node i 74

6.16 rank-k update at node i . 75

6.17 rank-k SVD update at node i . 77

6.18 Iterative synchronized rank-k SVD 78

ii LIST OF ALGORITHMS

List of Figures

3.1 Experimental results without failure, with extreme failure (AF) and

applying local voting. 25

4.1 The effect of parameter C in online FILTERBOOST (Algorithm 4.10). 37

4.2 Comparison of boosting algorithms (left column) and P2P simula-

tions (right column). FB and AF stand for FilterBoost and the “all

failures” scenario, respectively. 38

4.3 The improvement due to estimating the best model based on train-

ing performance. The Segmentation dataset is shown. 39

5.1 The burn in effect as a motivation for adaptivity. 58

5.2 The drift detection and the classification performance of the pro-

posed method on synthetic and real datasets. 59

5.3 The effect of sampling rate under sudden drift (the lines marked

with△ belong to cache based baselines). 60

5.4 The effect of sampling rate under incremental drift (the lines marked

with△ belong to cache based baselines). 61

5.5 The effect of sampling rate over the real database (the lines marked

with△ belong to cache based baselines). 62

5.6 Prediction performance under failure. 63

iv LIST OF FIGURES

5.7 The effect of network size (with sampling rate 1/∆). 64

5.8 The effect of the churn. 65

5.9 Model age histograms over online nodes for long session lengths. . 67

5.10 Model age histograms over online nodes for short session lengths. . 68

6.1 Convergence on the real data sets. Error is based on cosine similar-

ity. In the scaled version of GRADSVD the number of iterations is

multiplied by log10 m (see text). 80

6.2 Convergence on the real data sets. Error is based on the Frobe-

nius norm. Horizontal dashed lines in top-down order show the

FNORM value for the optimal rank-i approximations for i = 1, . . . , k. 81

6.3 Results on synthetic data sets using networks of different dimen-

sions. We set k = 1, and all the matrices had a rank of 16. 83

6.4 Results when only the 50/33% randomly sampled instances were

used from the data set. 84

6.5 Results in different failure scenarios using a 1024× 1024 synthetic

matrix with a rank of 16. We set k = 1. 85

List of Tables

1.1 The relationship between the chapters and the corresponding pub-

lications (where • and ◦ refer to the basic and the related publica-

tions, respectively). 4

3.1 The main properties of the data sets and the prediction error (0-1

error) of the baseline sequential algorithm. In the case of Malicious

URLs dataset the results of the full feature set are shown in paren-

theses. 23

4.1 The main properties of the data sets, and the prediction errors of

the baseline algorithms. 36

5.1 The main properties of the baseline and the adaptive algorithms. . 54

6.1 The main properties of the real data sets 80

vi LIST OF TABLES

Contents

List of Figures iii

List of Tables v

Contents vii

1 Introduction 1

2 Background 5

2.1 Supervised Learning . 5

2.2 Gradient Based Search . 7

2.3 System Model and Data Distribution 8

2.4 An Overview of Fully Distributed Algorithms 10

2.4.1 Peer Sampling . 10

2.4.2 Calculating Global Functions 11

3 Gossip-Based Machine Learning 13

3.1 Related Work . 13

3.2 Gossip Learning . 14

3.3 Learning Components . 16

viii CONTENTS

3.3.1 Logistic Regression . 16

3.3.2 Pegasos SVM . 17

3.3.3 Perceptron . 18

3.3.4 Naive Bayes . 18

3.3.5 One vs. All Metaclassifier . 19

3.3.6 Artificial Neural Network . 20

3.4 Evaluating Algorithms . 21

3.5 Experiments . 22

3.5.1 Experimental Setup . 22

3.5.2 Results . 24

3.6 Conclusions . 25

4 Fully Distributed Boosting 27

4.1 Background and Related Work . 28

4.2 Multi-Class Online FilterBoost . 29

4.3 Multi-Class Online Base Learning . 31

4.4 GoLF Boosting . 34

4.5 Experimental Results . 35

4.6 Conclusions . 39

5 Handling Concept Drift 41

5.1 Related Work . 43

5.1.1 Non-Distributed Concept Drift Handling 43

5.1.2 Handling Concept Drift in Fully Distributed Environments 44

5.2 Background . 44

5.2.1 Concept Drift . 45

5.2.2 Diversity Preserving GoLF 45

5.3 Algorithms . 46

5.3.1 AdaGoLF: Maintaining a Fixed Age Distribution 46

5.3.2 CDDGoLF: Detecting Concept Drift 49

5.3.3 The Learner Component . 51

5.3.4 Communication Complexity 51

5.4 Experimental Setup . 52

5.4.1 Drift Dynamics and Drift Types 52

CONTENTS ix

5.4.2 Baseline Algorithms . 53

5.4.3 Data Sets . 54

5.4.4 Evaluation Metrics . 56

5.4.5 Simulation Scenarios . 56

5.5 Experimental Results . 57

5.5.1 Adaptivity . 57

5.5.2 Drift Detection . 57

5.5.3 The Effect of Sampling Rate 59

5.5.4 Fault Tolerance . 63

5.5.5 Scalability . 64

5.5.6 Churn Revisited . 65

5.6 Conclusions . 66

6 Singular Value Decomposition 69

6.1 Contributions . 70

6.2 Related Work . 71

6.3 Problem Definition . 72

6.3.1 Low-Rank and Singular Value Decomposition 72

6.3.2 Data Distribution . 73

6.4 Algorithm . 74

6.4.1 Update Rule for General Rank-k Factorization 75

6.4.2 Update Rule for Rank-k SVD 76

6.4.3 Synchronized Rank-k SVD . 77

6.5 Experiments . 78

6.5.1 Algorithms . 78

6.5.2 Error Measures . 79

6.5.3 Data Sets . 79

6.5.4 Convergence . 82

6.5.5 Scalability . 83

6.5.6 Failure Scenarios . 84

6.6 Conclusions . 86

7 Summary 87

x CONTENTS

7.1 Gossip-Based Machine Learning . 87

7.2 Fully Distributed Boosting . 88

7.3 Handling Concept Drift . 89

7.4 Singular Value Decomposition . 90

7.5. Pletykaalapú gépi tanulás . 91

7.6. Teljesen elosztott turbózás . 92

7.7. Fogalomsodródás kezelése . 93

7.8. Szinguláris felbontás . 94

References 97

CHAPTER 1

Introduction

Data mining and machine learning algorithms are present in our digital life even

if we do not recognize this. For example, these algorithms are the spam filtering

methods in our e-mail client, the automatic moderation in a social site or in a

blog, the autocompletion mechanisms in a web search engine or in a text editor

and the recommendations on a movie or on a web-shop site. Other algorithms

help us or protect our health in a medical application or just amuse us in a game.

They can recognize spoken words and handwritten letters. Without a detailed

description of its workings, let us quote a definition from Tom M. Mitchell for

machine learning [83]:

”A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E“

On the basis of this definition, the goal is to learn from the examples. These

examples are usually generated by us when we drag and drop a mail into the

spam folder, when we click on a search result or an advertisement on a website

or in a mobile application. These examples can form a database that can be used

to train the machine learning algorithms to extract information from the data or

2

identify patterns in the databases. This information and these patterns can help

us to understand how things work around us, identify and predict the trends and

optimize the traffic in a city.

Although the huge amount of data is usually stored on servers, clusters or

clouds owned by firms, it was generated on our devices (PCs, laptops, tablets,

smart phones, wearable devices, sensors in a smart house, etc.). The processing

of this data is an even more challenging task due to its size and restricted ac-

cessibility. Parallel computing techniques can still handle the size problem, but

as time goes by, the data accumulates and the companies need more and more

resources to store and process it. They have to have bigger and bigger servers

and data farms, which have sufficient space to store our data, sufficient compu-

tational capacity to serve our queries and sufficient memory to run data mining

tasks. Moreover, the access to the collected data is often forbidden even to re-

searchers. The motivation for using fully distributed (i.e. peer-to-peer (P2P)) ma-

chine learning algorithms partly comes from the above-mentioned reasons. Since

the data is generated on the device that we use in our everyday life, these devices

should work collectively and solve the data processing tasks together. Machine

learning algorithms should be also trained on our devices as well in a distributed

manner. The other motivation for the P2P algorithms is the privacy issue. No-

body wants their search history, private photos from a cloud or the list of movies

that you saw ever to be leaked out just because a hacker has found a backdoor

in a server. Distributed methods allow us to keep our private data in our device

instead of uploading our files into data centers, but they can still build a machine

learning model based on the data. Here, we demonstrate a possible method for

fully distributed machine learning.

This thesis is organized as follows. First, we give an overview in Chapter 2,

which summarizes the necessary background, includes an introduction to super-

vised learning, an outline of the applied system model and the data distribution;

and we introduce the fully distributed algorithms through some examples. Later,

in chapters 3 – 6, we present the main parts of this thesis, where we introduce

a fully distributed learning scheme that can be applied with any data modeling

algorithm that can be trained in an online manner. We present several learn-

ing algorithms that can provide these kinds of online models, including sophis-

CHAPTER 1. INTRODUCTION 3

ticated models. Afterwards we present state-of-the-art machine learning algo-

rithms such as boosting and matrix factorization. Then, we describe a modifica-

tion of the framework for achieving higher efficiency and capability for concept

drift handling.

The gossip learning approach that we propose in Chapter 3 involves models

that perform random walks in the P2P network, and which are updated each time

they visit a node, using the locally stored data. Here, there are as many models

in the network as the number of nodes. Any online algorithm can be applied as a

learning algorithm that is capable of updating models using a continuous stream

of examples. Besides this, the proposed framework builds models on distributed

data and it supports privacy preservation as well.

We present a boosting algorithm in Chapter 4, which also demonstrates the

viability of gossip learning for implementing state-of-the-art machine learning

algorithms. A boosting algorithm constructs a classifier incrementally by adding

simple classifiers to a pool. The weighted vote of these classifiers determines the

final classification. Here, we propose a pure online version of the FILTERBOOST

boosting algorithm and we highlight the importance of model diversity in the

P2P network.

In Chapter 5, we focus on the problem of concept drift, which occurs when

the data patterns change. We propose two approaches to follow concept drift in

the above mentioned framework. The first approach manages the distribution of

the lifetime of the models in the network, hence we have both young (and thus

adaptive) models and old models (which have a high performance) at all times.

As our second contribution, we propose a mechanism that can detect the occur-

rence of concept drift by estimating and monitoring changes in the performance

of the models.

In Chapter 6, we propose the singular value decomposition (SVD), an ap-

proach for the low-rank decomposition of a matrix A into low rank matrices

(X, Y), which consist of orthogonal vectors. The low-rank and singular value de-

composition of a matrix are important tools in data mining and they are widely

used in areas such as recommender systems, graph clustering, dimension reduc-

tion and the topic modeling of documents. Here we present a stochastic gradient

descent (SGD) algorithm to find the SVD, where matrices A and X are stored in

4

Table 1.1. The relationship between the chapters and the corresponding publications
(where • and ◦ refer to the basic and the related publications, respectively).

Chapter 3 Chapter 4 Chapter 5 Chapter 6

CCPE 2013 [89] • ◦ ◦ ◦

EUROPAR 2012 [52] ◦ •

SASO 2012 [53] ◦ •

SISY 2012 [50] ◦ •

ACS 2013 [51] ◦ •

P2P 2014 [49] ◦ •

EUROPAR 2011 [88] ◦

ICML 2013 [106] ◦

ESANN 2014 [18] ◦

TIST 2016 [47] ◦ ◦

PDP 2016 [48] ◦

PDP 2016 [8] ◦ ◦

a fully distributed way and instances of the matrix Y perform random walks in

the network. When a Y visits a node, it gets updated based on the local row of A,

and the local row of X gets updated as well.

Finally, in Chapter 7 we summarize our contributions. Above, Table 1.1 de-

picts the relation between the relevant publications and the chapters 1.

1The implementation of the proposed algorithms in this thesis is available online at:
https://github.com/isthegedus/Gossip-Learning-Framework

CHAPTER 2

Background

In this chapter we give a brief introduction to the problem we tackle, namely the

problem of supervised machine learning. We describe an optimization mecha-

nism for solving the above-mentioned problem. Then we describe our fully dis-

tributed system model and data distribution. After, we present an overview of

some well-known fully distributed algorithms.

2.1 Supervised Learning

Throughout this thesis we address the problem of supervised learning in a fully

distributed manner. For this, here we introduce the basic notations and the def-

inition of supervised learning as follows. We are given a labeled data set that

consists of the data examples or instances. Each instance is a feature vector with

a corresponding class label generated by an unknown underlying probability dis-

tribution D.

The above means that we are given objects which are described by features

(or attributes). These objects belong to different classes. For example, consider

the so-called “play tennis” database that was originally introduced in [94]. Here,

6 2.1. SUPERVISED LEARNING

we have to group days into positive and negative classes based on their weather

properties (like temperature and wind speed). Another example might be the e-

mail spam filtering problem, where we would like to decide whether the received

mail is a spam mail or not. To describe an e-mail with a feature vector we can use

the well-known bag-of-words method, which transforms the text into a binary

vector.

More formally, let us denote this data set by S = {(x1, y1), . . . , (xn, yn)} ⊂

R
d × C where d is the dimension of the problem (the number of the features that

describe an instance of the data set) and C is the domain of the class labels. In the

case of binary classification the number of classes (K) is exactly 2, C = {0, 1} (or

using a different notation but having the same meaning C = {−1, 1}). In multi-

class classification problems, where K > 2 (e.g. in the case of optical character

recognition (OCR) the number of classes is the same as the number of possible

letters to be recognized), C = {0, 1, . . . , K} (or C = {−1, 1}K). That is, the class

label may be a number that equals i if the data instance corresponds to the ith

class; or a vector, where just the ith element has a value of 1 and the others have a

value of−1. In summary, every element of the data set is represented by a feature

vector (x) and the corresponding class label (y).

The main goal when solving a classification problem is to find the patterns or

rules that explain why an object belongs to a specific class (why an e-mail become

spam or not). In other words, the task is to identify how the representation of the

object (the features) correlates with the class labels. A more precise description

of the classification is that we seek a parametric function fw : R
d → C using the

observations from S that can classify any samples including those that are not in

the data set, but are also generated by the same probability distribution D. This

property is known as generalization and we would use this function to predict the

label of yet unseen objects (decide whether the received mail is a spam, or what

letters are on a scanned page). The function fw is called the model of the data,

and the vector w is the parameter of the model. These parameters are learned

in the model training phase, or the parameters of the model are selected from a

hypothesis space by a searching method (called the learning algorithm). When

the data samples are available as a stream, the training process is known as online

learning.

CHAPTER 2. BACKGROUND 7

The labeled data set mentioned above is usually split into two disjoint sets

called the training and test sets. The training set is applied in the model training

process and the test set is used for model evaluation purposes only. Using this

technique we can objectively compare the different learning algorithms with each

other based on their performance on the test set.

2.2 Gradient Based Search

After introducing the problem of classification, we now describe an optimiza-

tion method for solving the above-mentioned task (finding the parameters of a

model).

The gradient descent (GD) method is an optimization method for seeking the

local maximum (minimum) of a parametric function F(z) by iteratively taking

steps in the direction of the (negative) gradient. In other words, this method

looks for the parameter z of function F(z) where it has its local maxima (minima).

Let consider the problem of classification, where we look for the parameter

vector w of a machine learning model fw that allows the model to classify the

instances of a data set most precisely. For this, we define the empirical risk (or

objective) function

E(fw) =
1
n

n

∑
i=1

l(ŷi, yi), (2.1)

where the ŷ = fw(x) is the lable predicted by the model of the sample (x, y) and l is

a loss (or cost) function. The loss function measures the cost if the model predicts

ŷ for the expected label y of the sample x. To find the parameters of the model we

have to find the minimum of the risk function (E(fw)). The GD method can find

these parameters by iteratively updating the parameters based on the gradient of

the this function, which is computed using the training data set.

Here, different loss functions can be used (like squared loss) without loss of

generality. The update rule for the parameter vector w at iteration t is

wt+1 = wt − η∇wE(fw) = wt − η
1
n

n

∑
i=1
∇wl(fw(xi), yi), (2.2)

where η is the learning rate (the size of the gradient step) and n is the number of

8 2.3. SYSTEM MODEL AND DATA DISTRIBUTION

the training instances. With an appropriately chosen learning rate, the method

will converge to a local optima of the objective function [21]. If this function is

convex, then all local optima are also global optima, where the function has its

minimal value.

The stochastic gradient descent (SGD) method uses a simplification, namely the

update step is based on (and the gradient is computed on) a single (usually) uni-

form randomly selected training instance instead of computing the gradient on

the whole training set:

wt+1 = wt − ηt∇wl(fw(xt), yt) (2.3)

For the convergence of the stochastic gradient method, the learning rate (η) has

to satisfy the conditions: ∑t η2
t < ∞ and ∑t ηt = ∞ [21, 95]. If we assume that

the training instances in a data stream follow a uniform random sampling from

the underlying distribution, then the stochastic gradient method is a possible so-

lution for the online classification problems as well.

In classification problems we look for the model that has the minimal error,

as mentioned above, but the method may find a parameter vector that is very

specific to the training data set, since the risk function is optimized on this set.

This means that the model, after the training phase becomes more accurate on the

training set, but it may have a worse performance measured on unseen samples

and loses its generalization capability. When this happens it is called overfitting.

A commonly applied technique to have a better generalization of the model is to

add extra constraints to the parameter vector w in the objective function which are

often called regularization. This extension can help the model to avoid overfitting

on the training data set [20].

2.3 System Model and Data Distribution

As our system model and in general as a P2P system we consider a network of

nodes (called peers) – where the number of nodes can be potentially very large

– which are typically individual personal computing devices such as personal

computers, laptops, smart phones, tablets and wearable devices. Each node in

CHAPTER 2. BACKGROUND 9

the network has a unique network address; and every node can communicate to

other nodes through messaging if the address of the target node is locally avail-

able.

The messages in the network can be delayed or lost; moreover, nodes can

leave and join the network again (node churn) without prior warning. The only

assumptions are that the message delay has an upper bound and that the mes-

sage drop rate is smaller than one. Of course these assumptions are also necessary

conditions since the messages with an unbounded delay or with a drop probabil-

ity that is one will never reach the receiver. Thus communication will halt among

the nodes. Furthermore, we assume that when re-joining the network, a node has

the same state as at the time of going offline.

Regarding data distribution, we assume that the records of the database are

distributed horizontally; that is, all the nodes store full records (i.e. a d dimen-

sional feature vector and the corresponding class label as well). In addition, we

assume here that all the nodes store exactly one record (although the algorithms

can be trivially adapted to a more general case and in fact profit from it, if a node

has several data records).

Another important assumption is that the data never leaves the nodes; that

is, collecting the data at a central location is not allowed. This assumption is

motivated by privacy preservation concerns. This is especially important in smart

phone applications [2, 70, 93], where the key motivation is to give the user full

control over personal data. Also, collecting this data into a central server is pre-

vented in systems like sensor and mobile ad hoc networks due to the physical

constraints on communication.

In the applications, it is also common for a user to provide only a single record,

like a personal profile, private documents, a search history, ratings, sensor values

or location information of a smart phone. Having access to a single local record

excludes the possibility of any local statistical processing of the whole data set,

i.e. finding the maximal value of records or averaging them. Besides this, com-

plex problems (like recommendation and spam filtering) require more advanced

aggregations and models on the data.

10 2.4. AN OVERVIEW OF FULLY DISTRIBUTED ALGORITHMS

Algorithm 2.1 Peer Sampling Service
1: view← init()
2: loop
3: wait(∆)
4: p← selectPeer()
5: send view ∪ me to p
6: end loop

7: procedure ONRECEIVE(descriptors)
8: view←merge(view, descriptors)
9: end procedure

2.4 An Overview of Fully Distributed Algorithms

When using P2P algorithms as described above, given a network of nodes, these

nodes usually run the same algorithm at any time and only with message passing

solve global tasks together without any central control. Here, we have a commu-

nication graph that defines which nodes can send messages to each other and we

call them neighbors. This graph is called the overlay network and is created by a

peer sampling service that is also a distributed algorithm. Some protocols describe

how we can build a specific overlay on the nodes, while others use the overlays

as a service. Here, we describe algorithms that build overlays and algorithms

that compute global functions in a fully distributed manner.

2.4.1 Peer Sampling

Since gossip-based algorithms and protocols work through message passing among

the nodes in the network, we assume that an additional middleware (peer sam-

pling service) is also available. These services can provide addresses of peers

from the network. The addresses are stored locally and they were selected appro-

priately from the network. There are numerous peer sampling protocols [59, 60,

107] available and here we give an outline of two algorithms that highlight the

usefulness of distributed algorithms.

These two methods are the T-MAN and the NEWSCAST protocols. Their algo-

rithms are very similar, but they have a very different behavior and they result in

different overlay networks. The skeleton of a general peer sampling service can

be seen in Algorithm 2.1. Both the T-MAN and the NEWSCAST protocols manage

a list of neighbors; these are node addresses and the corresponding descriptors

called the view. Every peer in the network has a local view with size k. Initially,

CHAPTER 2. BACKGROUND 11

this view is filled by the addresses and descriptors of randomly selected nodes or

by a bootstrap protocol. Every peer in the network performs the following steps

periodically (the ∆ at line 3 is the delay between two periods). It selects a peer

taken from its local view (line 4), sends its local view and its own descriptor to

the selected peer (line 5). If a node receives a list of descriptors, then it merges

with its local view (line 8).

T-MAN In a part of the fully distributed algorithms, a peer should commu-

nicate with in some way similar peers from the network. In the P2P literature, a

possible solution for building a similarity overlay is the T-MAN protocol that was

published in [59]. This protocol extends the peer descriptors in Algorithm 2.1 by

a similarity value which is computed between the descriptor of a neighbor and

the descriptor of the current node. Next, after the merge the peer keeps the top k

most similar neighbors. This way, this protocol converges to a similarity overlay.

NEWSCAST There are protocols that can provide addresses of probably avail-

able (online) peers at any time which are selected uniformly at random from the

network. The NEWSCAST protocol is a peer sampling service that is capable of

providing addresses of nodes that satisfy the conditions nemtioned previously. A

fully distributed implementation of the protocol was published in [60, 107]. Here,

the extension of the descriptor is a timestamp t. A node sends its own descriptor

to the selected peer and sets t to the current time. After the merge of the lists,

the node keeps the top k youngest neighbors. This protocol provides an overlay

where the neighbors of nodes are uniformly selected and probably online.

2.4.2 Calculating Global Functions

The main goal of this thesis is to apply machine learning algorithms in a fully dis-

tributed environment. That is, to compute a global function on fully distributed

data or data sets. Before we present our contributions in the next sections, we

propose solutions for some basic problems.

Searching the minimal value The first example is the minimum search in a

set of numbers. Let given n real numbers, chosen uniformly at random. Every

12 2.4. AN OVERVIEW OF FULLY DISTRIBUTED ALGORITHMS

Algorithm 2.2 Searching Minimal Value
1: value← init()
2: loop
3: wait(∆)
4: p← selectPeer()
5: send value to p
6: end loop

7: procedure ONRECEIVE(rValue)
8: value←min(value, rValue)
9: end procedure

peer in the network has one of these numbers. The centralized solution is to ask

the peers to send their number to the cloud, and in the cloud we can iterate on

the numbers and find the minimum. But this problem can be solved in a fully

distributed manner as well. The idea is the following. Every peer thinks that

its number is the minimum in the network, called the value in Algorithm 2.2. A

peer iteratively chooses one of its neighbors and sends its value to the selected

neighbors. When a peer receives a number it checks that whether the received

number is smaller than its own value. If it is, the peer changes the value to the

received number and so on. After several sending phases every peer will have

the minimum value of the network.

Other examples and solutions for more complex problems, such as searching

maximal value, computing average or the PageRank, can be found in [57, 58, 63].

In the next chapters we present machine learning algorithms that are applica-

ble in the above-described systems and are capable of solving complex problems.

CHAPTER 3

Gossip-Based Machine Learning

Here we first present gossip learning, a conceptually simple and powerful generic

framework for designing efficient, fully distributed, asynchronous, local algo-

rithms for learning models on fully distributed data. This framework is based on

multiple models taking random walks over the network in parallel, while apply-

ing an online learning algorithm to improve themselves. Afterwards, we present

a set of different machine learning algorithms that can be applied in this frame-

work and we highlight the key parts of their implementation.

3.1 Related Work

In the area of P2P computing, a large number of fully distributed algorithms

are known for calculating global functions over fully distributed data, gener-

ally referred to as aggregation algorithms. The literature of this field is vast, we

mention only two examples, namely Astrolabe [109] and gossip-based averag-

ing [58]. These algorithms are simple and robust, but are capable of calculating

only simple functions such as the average. Nevertheless, these simple functions

can serve as key components for more sophisticated methods, such as the EM

14 3.2. GOSSIP LEARNING

algorithm [69], unsupervised learners [101] and the collaborative filtering-based

recommender algorithms [14, 46, 87, 108]. However, here we seek to provide a

rather generic approach that covers a wide range of machine learning models,

while maintaining robustness and simplicity.

In the past few years there have been an increasing number of proposals for

P2P machine learning algorithms as well, like those in [5, 6, 7, 28, 54, 77, 101].

The usual assumption in these studies is that a peer has a subset of the train-

ing data on which a model can be learned locally. After learning the local mod-

els, algorithms either aggregate the models to allow each peer to perform local

predictions, or they assume that prediction is performed in a distributed way.

Clearly, distributed prediction is a lot more expensive than local prediction; how-

ever, model aggregation is not needed, and there is more flexibility in the case of

varying data.

3.2 Gossip Learning

The skeleton of the Gossip Learning Framework (GOLF) we propose is shown in

Algorithm 3.3. This algorithm is run by every node in the network. When join-

ing the network, the node generates an initial model as its CURRENTMODEL (in

line 1). After the initialization each node starts to periodically send its current

model to a neighbor, the time length of a period is ∆. The neighbor is selected

using a peer sampling service (in line 4). As we mentioned in Section 2.3, we use

the NEWSCAST gossip-based peer sampling protocol, which can provide node

addresses selected uniformly at random from the network. When receiving a

model, the node updates it (in line 8) based on the training sample (x, y) that

it has locally, and subsequently stores the model (in line 9). The node selection

mechanism results in the models taking random walks in the network and the

update step improves the model in the meantime.

In GoLF, every model that is performing a random walk is theoretically guar-

anteed to converge so long as we assume that peer sampling service is working

correctly. Since the nodes in the network store locally the received models (as its

CURRENTMODEL or the latest models can be collected in a bounded queue), they

can use them to predict the labels of new instances without additional commu-

CHAPTER 3. GOSSIP-BASED MACHINE LEARNING 15

Algorithm 3.3 Gossip Learning Framework
1: currentModel← initModel()
2: loop
3: wait(∆)
4: p← selectPeer()
5: send currentModel to p
6: end loop

7: procedure ONRECEIVEMODEL(m)
8: m.updateModel(x, y)
9: currentModel← m

10: end procedure

nication cost. Moreover, incoming models can be combined as well, both locally

(e.g., merging the received models, or implementing a local voting mechanism

on the models in the queue) [88, 89] or globally (e.g., finding the best model in

the network) [52].

We make no assumptions about either the synchrony of the periodic loops at

the different nodes or the reliability of the messages. It is only assumed that the

length of the period of the loop (called cycle) is the same (∆) at all nodes. This

framework can be applied for every machine learning model that can be trained

in an online manner (instance by instance). The methods to be implemented are

the INITMODEL() for creating a new initial learning model, the UPDATEMODEL()

that performs the online update based on the training instance stored by the node

and the PREDICT() function for label prediction.

Finally, a few words about the computation and communication costs of the

framework. First, for the communication cost; each node in the network sends

exactly one message in each ∆ time unit (one cycle). The size of a message de-

pends on the selected hypothesis space, which normally contains the parameters

of a single model. For example a linear model in a binary classification scenario,

which uses a linear discriminant function, needs d + 1 parameters that represent

the separating hyperplane. In addition, the message also contains a small con-

stant number of network addresses as defined by the NEWSCAST protocol (which

is typically around 10 – 20). The computational cost of a model update depends

on the selected online learner and the number of received messages by a node

that follows a Poisson distribution with parameter λ = 1.

16 3.3. LEARNING COMPONENTS

Algorithm 3.4 Logistic Regression
1: procedure UPDATEMODEL(x, y)
2: η ← 1/(λ · t)
3: err ← y−prob(x)
4: w← (1− η · λ)w− η · err · x
5: t← t + 1
6: end procedure

7: procedure PROB(x)
8: return 1/(1 + exp(wT x))
9: end procedure

10: procedure INITMODEL

11: m.t← 0
12: m.w← (0, . . . , 0)T

13: return m
14: end procedure

15: procedure PREDICT(x)
16: return round(prob(x))
17: end procedure

3.3 Learning Components

In this section we describe several online learning algorithms that can be used in

the above-mentioned framework. Furthermore, we give a possible implementa-

tion of the required methods for the different learning algorithms.

3.3.1 Logistic Regression

First, we present a commonly used classification algorithm, called the logistic re-

gression method [20], which looks for the parameter vector w that maximizes the

logarithm of the conditional data likelihood. The optimization function is given

in Equation 3.1, where we applied a conventional technique to prevent w from

having large values and which helps the model to achieve a better generaliza-

tion. That is the so-called regularization.

max
w

1
n

n

∑
i=1

yi log fw(xi) + (1− yi) log(1− fw(xi)) −
λ

2
||w||2 (3.1)

To optimize the parameter vector w, we used the stochastic gradient method,

which updates w with a uniform randomly chosen data point. In Algorithm 3.4

we presented the main functions that should be used for training a logistic re-

gression model. Here, the UPDATEMODEL updates the model m based on the

training sample (x, y); PROB returns the probability of x belonging to the posi-

tive (y = 1) class; finally, PREDICT returns the label of x based on the state of the

CHAPTER 3. GOSSIP-BASED MACHINE LEARNING 17

Algorithm 3.5 Pegasos SVM

1: procedure UPDATEMODEL(x, y)
2: η ← 1/(λ · t)
3: w← (1− η · λ)w
4: if y · wTx < 1 then
5: w← w + η · y · x
6: end if
7: t← t + 1
8: end procedure

9: procedure INITMODEL

10: m.t← 0
11: m.w← (0, . . . , 0)T

12: return m
13: end procedure

14: procedure PREDICT(x)
15: return sign(wT x)
16: end procedure

current model.

3.3.2 Pegasos SVM

Next, we present an instantiation of an algorithm taken from the Support Vector

Machines (SVM) [27] family. The SVM solvers are mainly applied in binary clas-

sification problems and look for a hyperplane which maximizes the margin that

separates the examples of the positive and the negative classes.

min
w,b,ξi

1
2
‖w‖2 + C

n

∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi and ξi ≥ 0 (∀i : 1 ≤ i ≤ n)

(3.2)

A formal description of this problem can be seen in Equation 3.2, where the pa-

rameter w ∈ R
d represents the normal vector of the separating hyperplane with

the bias b ∈ R. Here, ξi is the slack variable of the ith sample, which can be in-

terpreted as the amount of misclassification errors of the ith sample, and C is a

trade-off parameter between generalization and error minimization. The Pegasos

algorithm [100] is an SVM training method that optimizes the above-described

problem using the stochastic gradient descent approach. An implementation of

the required methods for incorporating this algorithm into our framework can be

seen in Algorithm 3.5, here y ∈ {−1, 1}.

18 3.3. LEARNING COMPONENTS

Algorithm 3.6 Perceptron

1: procedure UPDATEMODEL(x, y)
2: η ← 1/(λ · t)
3: grad ← (f (wT x)− y) · f ′(wT x)
4: w← (1− η · λ)w− η · grad · x
5: t← t + 1
6: end procedure

7: procedure INITMODEL

8: m.t← 0
9: m.w← (0, . . . , 0)T

10: return m
11: end procedure

12: procedure PREDICT(x)
13: return f (wT x)
14: end procedure

3.3.3 Perceptron

The perceptron learning algorithm is a binary classification method that opti-

mizes the parameter w for separating two classes from each other. The mecha-

nism was introduced by Rosenblatt [98].

Here, we present a general algorithm that optimizes the square of the error

and uses regularization as well (see Equation 3.3). The function f is the so-called

activation function (e.g. sigmoid, step, tanh) that is applied on the inner product

of the parameter vector w and the instance vector.

min
w

1
2n

n

∑
i=1

(f (wT xi)− yi)
2 +

1
2
||w||2 (3.3)

The pseudo code of the corresponding procedures for the stochastic gradient

training of the model is presented in the Algorithm 3.6.

3.3.4 Naive Bayes

The naive Bayes [83] machine learning algorithm is a probability-based classifier.

It predicts the label for an instance that has the maximal conditional probability;

namely,

max
y∈C

P(y|x) (3.4)

Approximating this probability is quite difficult in practice. Because of this, the

naive Bayes algorithm makes the assumption that the features are conditionally

independent of each other. Applying this assumption, we have to approximate

CHAPTER 3. GOSSIP-BASED MACHINE LEARNING 19

Algorithm 3.7 Naive Bayes

1: procedure UPDATEMODEL(x, y)
2: t← t + 1
3: p[y]← p[y]+1
4: µ[y]← µ[y]+x
5: σ[y]← σ[y]+x2

6: end procedure

7: procedure PREDICT(x)
8: µ← µ[i]/t; σ←

√
σ[i]/t− µ2

9: return argmaxi p[i]/t ∏
d
j=1 probN(µ,σ)(xj)

10: end procedure

11: procedure INITMODEL(K)
12: m.t← 0
13: for i=0; i<K; i++ do
14: m.p[i]← 0
15: m.µ[i]← (0, . . . , 0)T

16: m.σ[i]← (0, . . . , 0)T

17: end for
18: return m
19: end procedure

the probability values in Equation 3.5 based on our observations (the training

instances) to solve the classification problem.

max
y∈C

P(y)
d

∏
i=1

P(xi|y) (3.5)

In our algorithm (Algorithm 3.7) we made a further assumption, namely that the

features follow normal distributions. Therefore we have to model these distri-

butions by approximating their parameters (the mean – µ and the variance – σ)

based on the training instances for all dimensions.

Naturally, for higher numerical precision the sum of the logarithmic probabil-

ity values can be used instead of the product in Equation 3.5 and in the prediction

function of the algorithm as well.

3.3.5 One vs. All Metaclassifier

In Algorithm 3.8 we present an extension of our framework that allows the use of

binary classifiers for multi-class problems. This method solves the task that has

K classes as K binary classification problems in the following way. An instance

that has the label 0 ≤ y < K will be a positive sample for the yth classifier and

a negative sample for all other classifiers [20]. In the case of prediction, the label

that will be assigned to the instance is the index of the classifier that classifies it

the most reliably as a positive sample.

20 3.3. LEARNING COMPONENTS

Algorithm 3.8 One vs. All Classifier

1: procedure UPDATEMODEL(x, y)
2: for i=0; i<K; i++ do
3: if i==y then
4: m[i].update(x,1)
5: else
6: m[i].update(x,0)
7: end if
8: end for
9: end procedure

10: procedure INITMODEL(K)
11: Models[] m
12: for i=0; i<K; i++ do
13: m[i]←initModel()
14: end for
15: return m
16: end procedure

17: procedure PREDICT(x)
18: return argmaxi m[i].predict(x)
19: end procedure

3.3.6 Artificial Neural Network

In our framework we also implemented another multi-class supervised learner

method, namely the Artificial Neural Network (ANN). This algorithm can be

interpreted as a directed acyclic network of perceptrons that are grouped into

so-called layers. In general, an ANN contains an input layer, which has d (the

dimension of the instances) neurons, some hidden layers and an output layer

which has K (the number of classes) neurons. Increasing the number (using more

hidden layers) or the size (using more neurons in the hidden layers) of the hidden

layers allows the network to search in a higher hypothesis space, so it can increase

the representation power of the network.

max
Θ

1
n

n

∑
i=1

K

∑
k=1

yi,k log fΘ(xi)k + (1− yi,k) log(1− fΘ(xi)k) (3.6)

To train the neural network we used the SGD method as well, where the net-

work propagates forward the training instance and computes the error at the out-

put layer (e.g. the misclassification error). Afterwards, it updates the weights

of the neurons by backpropagating this error to optimize the function in Equa-

tion 3.6 [20]. The corresponding functions of the learning algorithm can be seen

in Algorithm 3.9. Here, the Θs represent the weights between the layers that

should be optimized and the function f is the activation function. The weights

are the part of the model and are initialized by taking uniform random numbers

from [0, 1]. Here, we do not mention regularization, but it can also be used to

CHAPTER 3. GOSSIP-BASED MACHINE LEARNING 21

Algorithm 3.9 Artificial Neural Network

1: procedure UPDATE(x, y)
2: ŷ←evaluate(x)
3: δ← ŷ− y
4: for i=numLayers-1; i>0; i- - do
5: grad← f (zi−1)Tδ

6: δ← Θ(i)Tδ ◦ f ′(z(i−1))

7: Θ(i) ← Θ(i) − η·grad
8: end for
9: grad← xδT

10: Θ(0) ← Θ(0) − η·grad
11: end procedure

12: procedure EVALUATE(x)
13: z(0) ← xTΘ(0)

14: a← f (z(0))
15: for i=1; i<numLayers; i++ do

16: z(i) ← aTΘ(i)

17: a← f (z(i))
18: end for
19: return a
20: end procedure

21: procedure PREDICT(x)
22: return argmaxi evaluate(x)i

23: end procedure

handle the problem of overfitting.

3.4 Evaluating Algorithms

The most conventional method for evaluating machine learning algorithms is by

spliting our database into two non-overlapping sets, called the training set and

the test set. The training dataset is used to build the machine learning model

while the test set is used to measure its performance. In the case of classification

problems, the most common method for measuring the efficiency of a learning

method is by counting the correct and the incorrect instance classifications on the

test data set. To measure this, various methods are available in the literature, and

some of them will be described below.

In our framework we implemented a mechanism for evaluating the models

stored by the peers in the network. In the initialization phase we distribute only

the training data set among the nodes in the network in the above-defined man-

ner (every node gets exactly one instance). In every ∆ time (cycle), every node

in the network uploads the latest (last received and updated) models to a central

machine to evaluate them. In this central machine the expected class labels (y) of

the test data set is known and the PREDICT method of the model returns the pre-

dicted label (ŷ). Based on these labels we can use numerous evaluation metrics

22 3.5. EXPERIMENTS

that can characterize the performance of the models.

In our framework we implemented the following evaluation metrics:

0-1 Error

E =
1
n

n

∑
i=1

δ(yi = ŷi),

where δ is the Kronecker delta.

Root Mean Square Error (RMSE)

E =

√
1
n

n

∑
i=1

(yi − ŷi)2

These methods measure the degree of misclassification of a trained model on the

test data set in two different ways.

Confusion Matrix

(ŷ\y 0 1

0 TN FN

1 FP TP

)

Here TN means true negative; that is, the number of test instances that were cor-

rectly classified as a negative sample. FN is the false negative, FP is the false pos-

itive and TP is the true positive metrics, respectively. Furthermore y means the

expected label of an instance and ŷ is predicted by using the trained model. Ob-

viously, this evaluation method can easily be extended to more than two classes

and other interesting metrics can be derived as well [36, 103].

3.5 Experiments

Here, we present the effectiveness of the proposed framework by applying the

Pegasos SVM as the learning algorithm. In our experiments, we used the PEER-

SIM event-based P2P simulator [84].

3.5.1 Experimental Setup

Data Sets. We used three different data sets; namely Reuters [45], Spambase, and

the Malicious URLs [78] data sets, which were obtained from the UCI database

CHAPTER 3. GOSSIP-BASED MACHINE LEARNING 23

Table 3.1. The main properties of the data sets and the prediction error (0-1 error) of the
baseline sequential algorithm. In the case of Malicious URLs dataset the results of the full
feature set are shown in parentheses.

Reuters SpamBase Malicious URLs (10)
Training set size 2,000 4,140 2,155,622
Test set size 600 461 240,508
Number of features 9,947 57 10
Class label ratio 1,300:1,300 1,813:2,788 792,145:1,603,985
Pegasos 20,000 iter. 0.025 0.111 0.080 (0.081)

repository [12]. These data sets are of different types including small and large

sets containing a small or large number of features. Table 3.1 shows the main

properties of these data sets, as well as the prediction performance of the Pegasos

algorithm.

The original Malicious URLs data set has a huge number of features (∼ 3,000,000),

therefore we first performed a feature reduction step so that we can carry out sim-

ulations. Note that the message size in our algorithm depends on the number of

features, so in a real application this step might also be useful in such extreme

cases. We applied the well-known correlation coefficient method for each feature

with the class label, and kept the ten features with the maximal absolute values.

If necessary, this calculation can also be carried out in a gossip-based fashion [58],

but we performed it offline. The effect of this dramatic reduction on the predic-

tion performance is shown in Table 3.1, where the results of the Pegasos algorithm

on the full feature set are shown in parenthesis.

Evaluation metric. The evaluation metric we focus on is prediction error. To mea-

sure prediction error, we need to split the datasets into training sets and test sets.

The proportions of this splitting are shown in Table 3.1. In our experiments, we

track the misclassification ratio over the test set of 100 randomly selected peers.

The misclassification ratio of a model is simply the number of the misclassified

test examples divided by the number of all test examples, which is the so called

0-1 error.

Modeling failure. In a set of experiments we model extreme message drop and

message delay. Drop probability is set to be 0.5. This can be considered an ex-

24 3.5. EXPERIMENTS

tremely large drop rate. Message delay is modeled as a uniform random delay

from the interval [∆, 10∆], where ∆ is the gossip period in Algorithm 3.3. This

is also an extreme delay, orders of magnitudes higher than what can be expected

in a realistic scenario, except if ∆ is very small. We also model realistic churn

based on probabilistic models in [105]. Accordingly, we approximate online ses-

sion length with a lognormal distribution, and we approximate the parameters

of the distribution using a maximum likelihood estimate based on a trace from a

private BitTorrent community called FileList.org obtained from Delft University

of Technology [97]. We set the offline session lengths so that at any moment in

time 90% of the peers are online. In addition, we assume that when a peer comes

back online, it retains its state that it had at the time of leaving the network.

3.5.2 Results

The experimental results for the Pegasos algorithm are shown in Figure 3.1. Note

that all variants can be mathematically proven to converge to the same result, so

the difference is in convergence speed only. As can be seen, the algorithm variants

converge to the performance of the sequential method (horizontal dashed line).

Moreover, since the nodes can remember the models that pass through them at

no communication cost, we can cheaply implement a simple voting mechanism,

where nodes will use more than one model to make predictions. This voting

mechanism improves the speed of the convergence of the algorithm, in our ex-

periments we used a cache of size 10.

Figure 3.1 also contains results from our extreme failure scenario. We can

observe that the difference in convergence speed is mostly accounted for by the

increased message delay. The effect of the delay is that all messages wait 5 cycles

on average before being delivered, so the convergence is proportionally slower.

In addition, half of the messages get lost too, which adds another factor of about

2 to the convergence speed. Apart from slowing down, the algorithms still con-

verge to the correct value despite the extremely unreliable environment, as was

expected.

CHAPTER 3. GOSSIP-BASED MACHINE LEARNING 25

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100 1000 10000

A
v
er

ag
e

o
f

0
-1

 E
rr

o
r

Number of Iterations (∆)

Results on SpamBase

P2PegasosRW
P2PegasosRW, Voting10

P2PegasosRW AF
P2PegasosRWVoting10 AF

Pegasos

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100 1000 3000

A
v
er

ag
e

o
f

0
-1

 E
rr

o
r

Number of Iterations (∆)

Results on Reuters

P2PegasosRW
P2PegasosRW, Voting10

P2PegasosRW AF
P2PegasosRWVoting10 AF

Pegasos

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100 200

A
v
er

ag
e

o
f

0
-1

 E
rr

o
r

Number of Iterations (∆)

Results on Malicious URLs

P2PegasosRW
P2PegasosRW, Voting10

P2PegasosRW AF
P2PegasosRWVoting10 AF

Pegasos

Figure 3.1. Experimental results without failure, with extreme failure (AF) and applying
local voting.

3.6 Conclusions

We proposed a possible way of applying machine learning in a fully distributed

environment, which is provided by a framework called GOLF. This framework

allows us to model fully distributed data stored by nodes in a network, based on

stochastic gradient search. The key point is that many models take random walks

in the network and update themselves when reaching a node by its locally stored

data. The model that visits a node is subsequently stored.

We presented several machine learning algorithms that can be incorporated

into this framework and can be used for distributed data modeling. Further-

more, we presented an instantiation of the framework based on the Pegasos SVM

algorithm. The results indicate that the algorithm is robust for extreme failures

and that the local voting technique improves its performance.

26 3.6. CONCLUSIONS

The framework makes it possible to compute predictions locally at every node

in the network at any point in time, yet the message complexity is acceptable:

every node sends one model in each gossip cycle. The main characteristics that

distinguish this approach from related work are the focus on fully distributed

data and its modularity, generality and simplicity.

An important aspect of the approach is the support for privacy preservation,

since data samples are not observed directly and never leave the nodes. The

only feasible attack is the multiple forgery attack [79], where the local sample is

guessed based on sending specifically crafted models to nodes and observing the

result of the update step.

CHAPTER 4

Fully Distributed Boosting

In this chapter we present a well-known technique in GOLF, called boosting,

which was published in our paper [52]. Boosting techniques have attracted grow-

ing attention in machine learning due to their outstanding performance in many

practical applications. Here we develop a boosting algorithm, which proves the

viability of gossip learning also for implementing state-of-the-art machine learn-

ing algorithms. In a nutshell, a boosting algorithm constructs a classifier in an in-

cremental fashion by adding simple classifiers (that is, weak classifiers) to a pool.

The weighted vote of the classifiers in the pool determines the final classification.

Our contributions are the following. First, to enable P2P boosting via gossip,

we derive a purely online multi-class boosting algorithm, based on FILTERBOOST,

which can be proven to minimize a certain negative log likelihood function. So

this online boosting algorithm can be employed in GOLF. We also introduce ef-

ficient multi-class weak learners to be used by the online boosting algorithm.

Second, we improve GOLF to make sure that the diversity of the models in the

network is preserved. This makes it meaningful to spread the current best model

in the network; a technique we propose to improve local prediction performance.

We evaluate the robustness and the convergence speed of the algorithm empir-

28 4.1. BACKGROUND AND RELATED WORK

ically over three benchmark databases. We compare the algorithm with the se-

quential ADABOOST algorithm and we test its performance in a failure scenario

involving message drop and delay, and node churn.

4.1 Background and Related Work

Here we consider the multi-class classification problem, where the labels are rep-

resented as a vector (see section 2.1). Furthermore, we will denote the index of

the correct class by ℓ(xi). In classical multi-class classification the elements of f(x)

are treated as posterior scores corresponding to the labels, so the predicted label

is ℓ̂(x) = argmax
ℓ=1,...,K fℓ(x) where fℓ(x) is the ℓth element of f(x). The function

f is called the model of the data.

As mentioned before, in this chapter we focus on online boosting in GOLF.

A few proposals for online boosting algorithms are known. An online version

of ADABOOST [38] is introduced in [35] that requires a random subset from the

training data for each boosting iteration, and the base learner is trained on this

small sample of the data. The algorithm has to sample the data according to

a non-uniform distribution making it inappropriate for pure online training. A

gradient – based online algorithm is presented in [11], which is an extension of

Friedman’s gradient – based framework [39]. However, their approach is for bi-

nary classification, and it is not obvious how it can be extended to multi-class

problems. Another notable online approach is Oza’s online algorithm [90], whose

starting point is ADABOOST.M1 [37]. However, ADABOOST.M1 requires the base

learning algorithm to achieve 50% accuracy for any distribution over the training

instances. This makes it impractical in multi-class classification since most of the

weak learners used as a base learner do not satisfy this condition.

We also discuss work related to fully distributed P2P data mining in general.

We note that we do not overview the extensive literature of parallel machine

learning algorithms because they have a completely different underlying system

model and motivation. We do not discuss those distributed machine learning

approaches either that assume the availability of sufficient local data to build

models locally (a survey can be found in [92]).

One notable and relevant research direction is gossip – based algorithms where

CHAPTER 4. FULLY DISTRIBUTED BOOSTING 29

convergence to global functions over fully distributed data is achieved through

local communication. Perhaps the simplest example is gossip – based averag-

ing [58, 63], where the gossip approach is extremely robust, scalable, and efficient.

However, gossip algorithms support more sophisticated algorithms that compute

more complex global functions. Examples include the EM algorithm [69], LDA [9]

or PageRank [57]. Numerous other P2P machine learning algorithms have also

been proposed, as in [77, 101]. A survey of many additional ideas can be found

in [28]. This work builds on the Gossip Learning Framework (GOLF, see Chap-

ter 3), which offers an abstraction to implement a wide range of machine learning

algorithms.

4.2 Multi-Class Online FilterBoost

This section introduces our main contribution, a multi-class online boosting al-

gorithm that can be applied in GOLF. We build on FILTERBOOST [22], where the

main idea is to filter (sample) the training examples in each boosting iteration

and to give the base learner only this smaller, filtered subset of the original train-

ing dataset, leading to fast base learning. The performance of the base classifier

is also estimated on an additional random subset of the training set resulting in

further improvement in speed.

Our formulation of the FILTERBOOST algorithm is given as Algorithm 4.10.

This is not yet in a form to be applied in GOLF, but the transformation is trivial

as discussed in Section 4.4. This fully online formulation is equivalent to FILTER-

BOOST, except that it handles multi-class problems as well. To achieve this, while

ensuring that the algorithm can still be theoretically proven to converge, our key

contribution is the derivation of a new weight formula calculated in line 22. First

we introduce this formula, then we explain Algorithm 4.10 in more detail.

A boosting algorithm can be thought of as a minimization algorithm of an

appropriately defined target function over the space of models. The target func-

tion is related to the classification error over the training dataset. The key idea

is that we select an appropriate target function that will allow us to both derive

an appropriate weight, as well as argue for convergence. Inspired by the logis-

tic regression approach of [25], we will use the following negative log likelihood

30 4.2. MULTI-CLASS ONLINE FILTERBOOST

Algorithm 4.10 FILTERBOOST(INIT(), UPDATE(·, ·, ·, ·), T, C)

1: f(0)(x)← 0
2: for t← 1→ T do

3: Ct ← C log(t + 1)
4: h(t)(·)← INIT

()

5: for t′ ← 1→ Ct do ⊲ Online base learning
6:

(
x, y, w

)
← FILTER

(
f(t−1)(·)

)
⊲ Draw a weighted random instance

7: h(t)(·)← UPDATE
(
x, y, w, h(t)(·)

)

8: end for

9: γ← 0, W ← 0
10: for t′ ← 1→ Ct do ⊲ Estimate the edge on a filtered data
11:

(
x, y, w

)
← FILTER

(
f(t−1)(·)

)
⊲ Draw a weighted random instance

12: γ← γ + ∑
K
ℓ wℓh

(t)
ℓ
(x)yℓ, W ←W + ∑

K
ℓ wℓ

13: end for

14: γ← γ/W ⊲ Normalize the edge
15: α(t) ← 1

2 log 1+γ
1−γ

16: f(t)(·) = f(t−1)(·) + α(t)h(t)(·)
17: end for
18: return f(T)(·) = ∑

T
t=1 α(t)h(t)(·)

19: procedure FILTER(f(·))
20: (x, y)← RANDOMINSTANCE() ⊲ Draw random instance
21: for ℓ← 1→ K do

22: wℓ ←
exp
(

fℓ(x)− fℓ(x)(x)
)

∑
K
ℓ′=1 exp

(
f
ℓ′(x)− fℓ(x)(x)

)

23: end for

24: return (x, y, w)
25: end procedure

function as our target function:

RL
(
f
)
= −

n

∑
i=1

ln
exp

(
fℓ(xi)

(xi)
)

K

∑
ℓ′=1

exp
(

fℓ′(xi)
)

=
n

∑
i=1

ln

1 +

K

∑
ℓ 6=ℓ(xi)

exp
(

fℓ(xi)− fℓ(xi)
(xi)

)

(4.1)

Note that the FILTERBOOST algorithm returns a vector-valued classifier f : R
d →

R
K.

CHAPTER 4. FULLY DISTRIBUTED BOOSTING 31

FILTERBOOST builds the final classifier f as a weighted sum of base classifiers

h(t) : R
d → {−1,+1}K returned by a base learner algorithm which has to be able

to handle weighted training data. The class-related weight vector assigned to xi

in iteration t is denoted by w
(t)
i and its ℓth element is denoted by w

(t)
i,ℓ . It can be

shown that selecting w
(t)
i,ℓ so that it is proportional to the output of the current

strong classifier

w
(t)
i,ℓ =

exp
(

f
(t)
ℓ

(xi)− f
(t)
ℓ(xi)

(xi)
)

∑
K
ℓ′=1 exp

(
f
(t)
ℓ′

(xi)− f
(t)
ℓ(xi)

(xi)
) . (4.2)

ensures that our target function in (4.1) will decrease in each boosting iteration.

The proof is outlined in the Appendix of our paper [52].

The pseudocode of FILTERBOOST is shown in Algorithm 4.10. Here, the algo-

rithm is implemented according to the practical suggestions given in [22]: first,

the number of randomly selected instances is C log(t + 1) in the tth iteration

(where C is a constant parameter), and second, in the FILTER method the in-

stances are first randomly selected then re-weighted based on their scores given

by f(t)(·). Procedure INIT() initializes the parameters of the base classifier (line

4), and UPDATE(·, ·, ·, ·) updates (line 7) the parameter of the base classifier using

the current training instance x given by FILTER(·). The input parameter T is the

number of iterations, and C controls the number of instances used in one boost-

ing iteration. α(t) is the base coefficient, h(t)(·) is the vector-valued base classifier,

and f(T)(·) is the final (strong) classifier. Procedure RANDOMINSTANCE() selects

a random instance from the training data.

Let us point out that there is no need to store more than one training instance

anywhere during execution. Second, the algorithm does not need any global

information about the training data, such as the size, so this implementation can

be readily applied in a pure online environment.

4.3 Multi-Class Online Base Learning

For the online version of FILTERBOOST, we need to propose online base learners

as well. In FILTERBOOST, for theoretical reasons, the base classifiers are restricted

to output discrete predictions in {−1,+1}K and, in addition, they have to mini-

32 4.3. MULTI-CLASS ONLINE BASE LEARNING

mize the weighted exponential loss

E
(
h, f(t)

)
=

n

∑
i=1

K

∑
ℓ=1

w
(t)
i,ℓ exp

(
−hℓ(xi)yi,ℓ

)
. (4.3)

We follow this approach and, in addition, we build on our base learning frame-

work [62] and assume that the base classifier h(x) is vector-valued and repre-

sented as hΘ(x) = sign(vϕΘ(x)), parameterized by v ∈ R
K (the vote vector), and

ϕΘ(x) : R
d → R, a scalar base classifier parameterized by Θ. The coordinate-wise

sign function is defined as sign : R
K → {−1,+1}K. In this framework, learning

consists of tuning Θ and v to minimize the weighted exponential loss (4.3).

Since it is hard to optimize the non-differentiable function hΘ even in batch

mode, we take into account only ĥΘ(x) = vϕΘ(x). This approach is heuristic as

it is hard to say anything about the relation between E
(
hΘ, f(t)

)
and E

(
ĥΘ, f(t)

)
,

but in practice this base learning approach performs quite well.

Since ϕΘ(·) is differentiable, the stochastic gradient descent (SGD) [21] algo-

rithm provides a convenient way to train the base learner in an online fashion.

The SGD algorithm updates the parameters iteratively based on one training in-

stance at a time. Let us denote Q(x, y, w, v, Θ) = ∑
K
ℓ=1 wℓ exp

(
− yℓvℓϕΘ(x)

)
.

Then the gradient based parameter update can be calculated as follows:

Θ(t′+1) ← Θ(t′) + γ(t′)
▽ΘQ(x, y, w, v, Θ) (4.4)

v(t′+1) ← v(t′) + γ(t′)
▽vQ(x, y, w, v, Θ) (4.5)

This update rule can be used in line 7 of FILTERBOOST to update the base classi-

fier. A simple decision stump or ADALINE [114] can be easily accommodated to

this multi-class base learning framework. In the following we derive the update

rules for a decision stump, that is, a one-decision two-leaf decision tree having

the form

ϕj,b(x) =

1 if x(j) ≥ b,

−1 otherwise,
(4.6)

where j is the index of the selected feature and b is the decision threshold. Since

ϕj,b(x) is not differentiable with respect to b, we decided to approximate it by the

differentiable sigmoidal function, whose parameters can be tuned using SGD.

CHAPTER 4. FULLY DISTRIBUTED BOOSTING 33

The sigmoidal function can be written as

sj,θ(x) = sj,(c,d)(x) =
1

1 + exp
(
− cx(j) − d

) .

where Θ = (c, d). And ϕj,b(·) can be approximated by ϕj,b(x) ≈ 2sj,θ(x) − 1.

Then the weighted exponential loss of this so-called sigmoidal decision stump for a

single instance can be written as

Qj = Qj (x, y, w, v, Θ) =
K

∑
ℓ=1

wℓ exp
(
−vℓ

(
2sj,θ(x)− 1

)
yℓ
)

and its partial derivatives are

∂Qj

∂vℓ
= − exp

(
−vℓ

(
2sj,θ(x)− 1

)
yℓ
)

wℓ

(
2sj,θ(x)− 1

)
yℓ

∂Qj

∂c
= −2

K

∑
ℓ=1

exp
(
−vℓ

(
2sj,θ(x)− 1

)
yℓ
)

wℓvℓyℓx(j)sj,θ(x)
(
1− sj,θ(x)

)

∂Qj

∂d
= −2

K

∑
ℓ=1

exp
(
−vℓ

(
2sj,θ(x)− 1

)
yℓ
)

wℓvℓyℓsj,θ(x)
(
1− sj,θ(x)

)

The initial value of c and d were set to 1 and 0, respectively (line 4 of Algo-

rithm 4.10).

So far, we implicitly assumed that the index of feature j is given. To choose

j, we trained sigmoidal decision stumps in parallel for each feature and we es-

timated the edge of each of them using the sequential training data as γ̂j =

∑
Ct
t′=1 ∑

K
ℓ=1 wt′,ℓyt′,ℓsign

(
v
(t′)
ℓ

ϕ
j,Θ(t′)

j

(xt′)
)
. Finally, we chose the feature with the

highest edge estimate j∗ = argmaxjγ̂j.

In every boosting iteration we also train a constant learner (also known as y-

intercept) and use it if its edge is higher than the edge of the best decision stump

we found. The output of the constant learner does not depend on the input vector

x, that is ϕ(·) ≡ 1, in other words it returns the vote vector v itself. Thus only

v has to be learnt but this can be done easily by calculating the classwise edge

vℓ = ∑
Ct
t′=1 wt′,ℓyt′,ℓ.

34 4.4. GOLF BOOSTING

4.4 GoLF Boosting

In order to adapt Algorithm 4.10 to GOLF (Algorithm 3.3), we need to define

the permanent state of the FILTERBOOST model class, and we need to provide an

implementation of the UPDATEMODEL method. This is rather straightforward:

the model instance has to store the actual strong learner f(t) as well as the state

of the inner part of the two for loops in Algorithm 4.10 so that UPDATEMODEL

could simulate these loops every time a new sample is processed.

This way, every model that is performing a random walk is theoretically guar-

anteed to converge so long as we assume that peer sampling works perfectly.

However, there is a catch. Since in each iteration some nodes will receive more

than one model, while others will not receive any, and since the number of mod-

els in the network is kept constant if there is no failure (since in each iteration

all the nodes send exactly one model) it is clear that the diversity of models will

decrease. That is, some models get replicated, while others “die out”. Introduc-

ing failure makes things a lot worse, since we can lose models due to message

loss, delay, and churn as well, which speeds up homogenization. This is a prob-

lem, because diversity is important when we want to apply techniques such as

combination or voting [88, 89]. Without diversity these important techniques are

guaranteed not to be effective.

The effects of decreasing diversity are negligible during the timespan of a few

gossip cycles, but a boosting algorithm needs a relatively large number of cycles

to converge (which is not a problem, since the point of boosting is not speed,

but classification quality). So we need to tackle the loss of diversity. We propose

Algorithm 4.11 to deal with this problem.

This protocol works as follows. A node sends models in an active cycle (line 4)

only in two cases: it sends the last received model if there was no incoming model

until 10 active cycles (line 6), otherwise it sends all of the models received since

the last cycle (line 14). If there is no failure, then this protocol is guaranteed to

keep the diversity of models, since all the models in the network will perform

independent random walks. Due to the Poisson distribution of the number of

incoming models in one cycle, the probability of bottlenecks is diminishing, and

for the same reason the probability that a node does not receive messages for 10

CHAPTER 4. FULLY DISTRIBUTED BOOSTING 35

Algorithm 4.11 Diversity Preserving GoLF

1: currentModel ← initModel()
2: modelQueue.add(currentModel)
3: counter ← 0
4: loop

5: wait(∆)
6: if modelQueue.isEmpty() then

7: if counter = 10 then

8: p← selectPeer()
9: sendModel(p, currentModel)

10: counter ← 0
11: else

12: counter ← counter + 1
13: end if

14: else

15: for all m ∈ modelQueue do

16: p← selectPeer()
17: sendModel(p, m)
18: modelQueue.remove(m)
19: end for

20: counter ← 0
21: end if

22: end loop

23: procedure ONRECEIVEMODEL(m)
24: m.updateModel(x, y)
25: modelQueue.add(m)
26: currentModel ← m
27: end procedure

cycles is also practically negligible.

If the network experiences message drop failures or churn, then the number

of models circulating in the network will converge to a smaller value due to the

10 cycle waiting time, and the diversity can also decrease, since after 10 cycles a

model gets replicated in line 9. Interestingly, this is actually useful because if the

diversity is low, it makes sense to circulate fewer models and to wait most of the

time, since information is redundant anyway. Besides, with reliable communi-

cation channels that eliminate message drop (but still allow for delay), diversity

can still be maintained.

Finally, note that if there is no failure, Algorithm 4.11 has the same total mes-

sage complexity as Algorithm 3.3 except for the extremely rare messages sent in

line 4. In case of failure, the message complexity decreases as a function of failure

rate; however, the remaining random walks do not get slower relative to Algo-

rithm 3.3, so the convergence rate remains the same on average, at least if no

model-combination techniques are used.

4.5 Experimental Results

In our experiments we examined the performance of our proposed algorithm as

a function of gossip cycles, which is about the same as the number of training

samples seen by any particular model. To validate the algorithm, we compared

36 4.5. EXPERIMENTAL RESULTS

Table 4.1. The main properties of the data sets, and the prediction errors of the baseline
algorithms.

CTG PenDigits Segmentation
Training set size 1,701 7494 2100
Test set size 425 3,492 210
Number of features 21 16 19
Class labels 1325/233/143 10 classes (uniform) 7 classes (uniform)
AdaBoost (DS) 0.109347 0.060715 0.069048
FilterBoost (DS, C30) 0.094062 0.071657 0.062381

it with three baseline multi-class boosting algorithms, all using the same deci-

sion stump (DS) weak learner. The first one is the multi-class version of the well

known AdaBoost [99] algorithm, the second one is the original FilterBoost [22]

method implemented for a single processor, with the setting C = 30, and the

third one is the online version of FILTERBOOST (Algorithm 4.10). We used three

multi-class classification benchmark datasets to evaluate our method, namely the

CTG, the PenDigits and the Segmentation databases. These were taken from the

UCI repository [12] and have different size, number of features, class distribu-

tions and characteristics. The basic properties of the datasets can be found in

Table 6.1.

In the P2P experiments we used the PeerSim [84] simulation environment to

model message delay, drop and peer churn. We used two scenarios: a perfect net-

work without any delay, drop or churn; and a scenario with heavy failure where

the message delay was drawn uniformly at random from the interval [∆; 10∆],

a message was dropped with a probability of 0.5 and the online/offline session

lengths of peers were modeled using a real P2P bittorrent trace [1]. As our per-

formance metric, we applied the well known 0-1 error (or error rate), which is the

proportion of test instances that were incorrectly classified.

Figure 4.1 illustrates the effect of parameter C. Larger values result in slower

convergence but better eventual performance. The setting C = 30 represents a

good tradeoff in these datasets, so from now on we fix this value.

We compared our online boosting algorithm to baseline algorithms as can be

seen in Figure 4.2 (left hand side). The figure shows that the algorithms converge

to a similar error rate, which was expected. Moreover, our online FILTERBOOST

CHAPTER 4. FULLY DISTRIBUTED BOOSTING 37

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24

 100 1000 10000 100000 1e+06

E
rr

o
r

R
at

e

Num. of Samples

CTG - C Trade-off

C=5
C=10
C=30

C=100 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 100 1000 10000 100000 1e+06

E
rr

o
r

R
at

e

Num. of Samples

PenDigits - C Trade-off

C=5
C=10
C=30

C=100

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 100 1000 10000 100000 1e+06

E
rr

o
r

R
at

e

Num. of Samples

Segmentation - C Trade-off

C=5
C=10
C=30

C=100

Figure 4.1. The effect of parameter C in online FILTERBOOST (Algorithm 4.10).

converges faster than the AdaBoost algorithm and it has almost the same conver-

gence rate as that for the sequential FilterBoost method. Note that since two of

these algorithms are not online, we had to approximate the number of (not neces-

sarily different) training samples used in one boosting iteration. We used a lower

bound to be conservative.

In our P2P evaluations of GOLF BOOSTING we used the mean error rate of

100 randomly selected nodes in the network to approximate the performance of

the algorithm. Figure 4.2 (right hand side) shows that without failure the perfor-

mance is very similar to that of our online FILTERBOOST algorithm. Moreover,

in the extreme failure scenario, the algorithm still converges to the same error

rate, although with a delay. This delay can be accounted for using a heuristic

argument: since message delay in itself represents a slowdown of a factor of 5 on

average, message drop and churn contributes approximately another factor of 2.

Finally, we demonstrate a novel way of exploiting model diversity (see Sec-

tion 4.4): through gossip-based minimization one can spread the model with the

38 4.5. EXPERIMENTAL RESULTS

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 100 1000 10000 100000 1e+06

E
rr

o
r

R
at

e

Num. of Samples

CTG - Comparision

AdaBoost
FilterBoost
Online FB 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 100 1000 10000 100000 1e+06

E
rr

o
r

R
at

e

Num. of Samples

CTG - P2P Results

P2P FB AF
Online FB

P2P FB

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000 1e+06

E
rr

o
r

R
at

e

Num. of Samples

PenDigits - Comparison

AdaBoost
FilterBoost
Online FB 0.1

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000 100000 1e+06

E
rr

o
r

R
at

e

Num. of Samples

PenDigits - P2P Results

P2P FB AF
Online FB

P2P FB

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

E
rr

o
r

R
at

e

Num. of Samples

Segmentaion - Comparision

AdaBoost
FilterBoost
Online FB

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

E
rr

o
r

R
at

e

Num. of Samples

Segmentaion - P2P Results

P2P FB AF
Online FB

P2P FB

Figure 4.2. Comparison of boosting algorithms (left column) and P2P simulations (right
column). FB and AF stand for FilterBoost and the “all failures” scenario, respectively.

best training performance, thus the best model can be made available to all nodes

at all times. Figure 4.3 demonstrates this technique for different algorithms. We

include results over the segmentation database only, the other two datasets pro-

duce similar results.

The top left plot shows results with GOLF BOOSTING. It can be seen that the

best model based on training performance is not necessarily the best over the test

set, but it is reasonably good, and results in a speedup of about a factor of 2.

The top right plot belongs to the original GOLF implementation (Algorithm 3.3).

Due to the complete lack of diversity, the best model’s performance is almost

CHAPTER 4. FULLY DISTRIBUTED BOOSTING 39

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 1000 10000 100000

E
rr

o
r

R
at

e

Num. of Samples

Diversity Preserving GoLF

Estimated Min.
Average

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 1000 10000 100000

E
rr

o
r

R
at

e

Num. of Samples

Original GoLF

Estimated Min.
Average

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 1000 10000 100000

E
rr

o
r

R
at

e

Num. of Samples

Online FilterBoost

Estimated Min.
Average

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 1000 10000 100000

E
rr

o
r

R
at

e

Num. of Samples

Comparison of Minimums

Original GoLF
Div. Pres. GoLF

Online FB

Figure 4.3. The improvement due to estimating the best model based on training perfor-
mance. The Segmentation dataset is shown.

identical to the average one. The bottom left plot is a baseline experiment that

represents the case with the maximal possible diversity, based on 100 completely

independent runs of the online FILTERBOOST algorithm. Finally, the bottom right

plot collects the most interesting curves from the other three plots allowing a

better comparison.

4.6 Conclusions

We demonstrated that GOLF is suitable for the implementation of multi-class

boosting. The significance of this result is that boosting is a state-of-the-art ma-

chine learning technique from the point of view of the quality of the learned mod-

els, which is now available in the P2P system model with fully distributed data.

To achieve this, we proposed a modification of FILTERBOOST that allows it to

40 4.6. CONCLUSIONS

learn multi-class models in a purely online fashion, and we proved theoretically

that the resulting algorithm optimizes a suitably defined negative log likelihood

measure. Our experimental results demonstrate the robustness of the method.

We also identified the lack of model diversity as a potential problem with GOLF.

We provided a solution that was demonstrated to be effective in preserving the

difference between the best model and the average models; this allowed us to

propose spreading the best model as a way to benefit from the large number of

models in the network.

CHAPTER 5

Handling Concept Drift

Here we focus on the problem of concept drift [116] that occurs when the data pat-

terns we wish to learn in the network change either continuously or suddenly.

This can happen due to different reasons. For example, the set of users of an ap-

plication can change, or external factors (such as the weather) can vary. This has

an effect on how people react to, for example, traffic situations, it can influence

what kind of movies they want to watch, it can affect their mobility patterns, and

so on. People can also behave differently during their normal daily routine, or

during a demonstration, for example. Such external factors cannot always be ex-

plicitly captured, and thus they can be considered a source of uncertainty and

dynamism. The applied data mining algorithms have to follow these changes

adaptively to provide up-to-date models at all times.

We are interested in scenarios, where data owned by a node cannot be moved

outside the node. Currently the norm is that data is uploaded to data centers,

where it is processed [15, 29, 76]. However, this practice raises serious privacy

issues [26], and on a very large scale it can also become very expensive, which

seriously reduces the set of potential applications.

In addition, we assume that data is distributed horizontally, that is, full data

42

records (e.g. profiles, personal histories of sensor readings, etc) are stored at all

nodes, but very few, perhaps only a single record is available at any given node.

In addition, only a limited amount of new data can be sampled in order to follow

concept drift. These assumptions are natural in the systems mentioned above,

where, for example, a mobile device stores information only about its owner like

user profiles, purchasing events, or mobility patterns. Besides, in applications,

where people are even required to manually enter training data samples we can-

not expect a huge amount of input at all nodes, especially if these samples corre-

spond to rare events.

In Chapter 3 we have proposed the gossip learning framework (GoLF) for

massively distributed data mining targeted to those environments that are char-

acterized above [88, 89], where models of the data perform random walks in the

network, while being improved using an online learning algorithm. However,

one major limitation of GoLF was that it supported only one-shot algorithms,

without taking adaptivity into account. This is a problem, because – as we argued

above – in a realistic environment we are typically not able to take all relevant fea-

tures into account when we learn data patterns, thus the validity of a pattern can

change continuously or suddenly, in which case the learned data models need to

be updated or refreshed. This can be achieved through a manual restart, but on

a large scale, an automated method is necessary that allows the system to adapt

to changes without human intervention. This would allow the system to scale

both in terms of the size of the network, as well as the number of learning tasks

supported simultaneously.

We propose two orthogonal approaches to follow concept drift in GoLF. The

idea behind our first approach is that we manage the distribution of the lifetime

of the models in the network, making sure that we have both young (and thus

adaptive) models and old models at all times. This approach provides a very

simple and efficient adaptive mechanism which makes it possible to seamlessly

follow the changing data patterns. However, if change in the data patterns has to

be detected explicitly, this solution is not suitable. For this reason, as our second

contribution, we propose a mechanism that estimates and monitors the changes

in the performance of the current data models and discards those ones that show

a deteriorating performance.

CHAPTER 5. HANDLING CONCEPT DRIFT 43

Our contribution is twofold. First, we extend GoLF with components that

allow it to deal with concept drift. With these changes, the algorithm can run

indefinitely in a changing environment without any central control. Second, we

perform a thorough experimental analysis. We compare the proposed algorithms

with several baseline algorithms that idealize the main techniques for achieving

adaptivity from related work. We show that in the domain where the number

of independent samples available locally is low relative to the speed of drift, our

solutions are superior to all the baselines and their performance approximates

the theoretical maximum. We also demonstrate the fault tolerance of the method.

5.1 Related Work

We discuss the state-of-the-art related to concept drift in general, as well as in the

area of P2P learning.

5.1.1 Non-Distributed Concept Drift Handling

A good overview of concept drift can be found in [116]. Many algorithms apply

chunk based learning techniques [66, 104, 111], that is, they teach a new classi-

fier when a new set of samples (a chunk) becomes available via the stream of

samples. This approach could be suitable when the stream of samples produces

a large number of samples relative to the speed of concept drift, that is, when

the method can collect enough samples quickly enough to build an up-to-date

classifier. Moreover, determining the chunk size is not easy, yet this parameter is

crucial for the prediction performance.

One improvement of chunk based techniques is to detect drift, that is, to use

some performance related measures to decide when to trigger the drift handling

method [13, 40, 66]. The early approaches use a single model which is discarded

when drift is detected and a new one is constructed immediately. Recently, en-

semble learning has also been proposed [82]. In this case, when drift is detected,

a new model is created but this new model is added to an ensemble pool that also

contains older models. This pool is used to perform prediction, possibly involv-

ing a weighting mechanism as well.

44 5.2. BACKGROUND

Due to our system model, we are not able to collect chunks since there is not

enough local data available. However, as we explain later, we will use a form of

drift detection in which nodes cooperate with each other to detect drift.

5.1.2 Handling Concept Drift in Fully Distributed Environments

Learning in P2P systems is a growing area, some examples include [5, 6, 7, 28,

54, 77, 88, 101]. Very few works address issues related to concept drift in a P2P

network. A fully distributed decision tree induction method was proposed by

Bhaduri et al. [19]. The proposal involves drift detection, which triggers a tree

update. The proposed solution is a distributed adaptive threshold detection al-

gorithm that – although elegant – is a special purpose approach that does not

generalize to arbitrary learning algorithms like our approaches do.

Another solution was proposed by Ang et al. [7]. This method implements the

so-called RePCoDE framework which detects drift (reactive behavior) and simul-

taneously predicts it as well (proactive behavior). The basic learning mechanism

is performed by chunk-based learning, but the models taught on previous data

chunks are also kept and used during prediction (ensemble based aspect). As the

extensive evaluations show, the proposed approach works well in various sce-

narios, although its communication cost is rather high, since it involves network

wide model propagation. A number of heuristics are proposed to reduce this

cost. In this paper we assume that chunk based approaches are not viable due to

the lack of sufficient amounts of local data.

Our main contribution w.r.t. related work is to propose two generic methods

to efficiently deal with the scenario, when samples arrive only very rarely at any

given node, but in the overall network there are enough samples to learn high

quality models.

5.2 Background

Here we briefly introduce an outline of the concept drift with the basic nota-

tions and our previous work on the field of distributed machine learning. In our

presentation we used the supervised learning problem (see Chapter 2 for more

CHAPTER 5. HANDLING CONCEPT DRIFT 45

details), where the drifting concepts occure.

5.2.1 Concept Drift

The distribution D mentioned above may change over time. For this reason we

parameterize the distribution of the samples by the time t, that is, at time t a sam-

ple (x, y) ∈ R
d × C comes from Dt. This means that any learned prediction func-

tion f might become outdated if new samples are not used to update or replace it.

The challenge is to design an adaptive algorithm that provides a good model ft at

any given time t. However, in some scenarios more might be required, for exam-

ple, we might have to identify the time moment t∗ when a sudden drift occurs.

This problem is known as the drift detection problem.

Let us now elaborate on the types of concept drift that one can observe in

the real world. The first type occurs when we are not using all the relevant and

important features that are needed to provide accurate prediction. The reason

can be that we do not know that the given feature is useful, or we might know

it, but we might be unable to have access to the feature value. Examples include

the age of users that is known to have an influence [96, 112] or sudden changes

in weather conditions [113]. This type of drift can have very diverse time-scales

from very quick (an environmental disaster) to very slow (the change of fashion)

drift.

The second type of drift has to do with “arms race” situations when an ad-

versary constantly changes strategy to overcome some security measures. The

typical examples are the problem of spam filtering [30] and IT security [71]. In

these cases, the models used to detect suspicious behavior or spam need to be

updated constantly. This type of drift is typically rather slow.

5.2.2 Diversity Preserving GoLF

In GoLF the diversity of models will decrease, which is a problem, because di-

versity is important when we want to apply techniques such as combination or

voting [88, 89]. More importantly, diversity is the key to achieve adaptation as

well, the goal of this chapter. Algorithm 5.12 contains techniques to deal with this

problem. These ideas to maintain diversity were first introduced in [52] and the

46 5.3. ALGORITHMS

detailed description can be seen in Chapter 4. Apart from the two commented

lines that deal with concept drift (to be discussed later), the changes w.r.t. the

original version are the mentioned diversity preservation techniques.

Finally, note that if there is no failure, Algorithm 5.12 has the same total mes-

sage complexity as Algorithm 3.3 except for the extremely rare messages trig-

gered by the timeout. In case of failure, the message complexity decreases as a

function of failure rate; however, the remaining random walks do not get slower

relative to Algorithm 3.3, so the convergence rate remains the same on average,

at least if no model-combination techniques are used.

The discussion of the components of Algorithm 5.12 that deal with concept

drift is delayed until Section 6.4.

5.3 Algorithms

In this section we present two alternative extensions to the original GoLF algo-

rithm. The first one is an extremely simple approach that is independent of the

drift pattern. Without trying to detect drift, we maintain a fixed age-distribution

in order to keep the adaptivity and diversity of the models at a certain level. In

the second approach, we explicitly detect drift via monitoring models and dis-

carding the ones that perform badly. While this is a more complex approach (and

therefore potentially more sensitive to the actual drift pattern), it is able to pro-

vide information about the actual drift in the system as well.

In Algorithm 5.12 we show the skeleton of the GoLF algorithm extended with

two abstract methods to handle drift: INITDRIFTHANDLER and

DRIFTHANDLER. The two approaches mentioned above are both implemented in

this framework.

5.3.1 AdaGoLF: Maintaining a Fixed Age Distribution

It is well known that online algorithms must be less and less sensitive to new

samples with time, otherwise they are unable to converge. However, this also

means that after a certain point they are not able to adapt to a changing data

distribution. To avoid models becoming too old, in our approach we achieve

CHAPTER 5. HANDLING CONCEPT DRIFT 47

Algorithm 5.12 GoLF with drift handling

1: c← 0
2: m← initModel()
3: currentModel← initDriftHandler(m) ⊲ drift handling: initialization
4: receivedModels.add(currentModel)
5: loop
6: if receivedModels = ∅ then
7: c← c + 1
8: end if
9: if c = 10 then

10: receivedModels.add(currentModel)
11: end if
12: for all m ∈ receivedModels do
13: p ← selectPeer()
14: send m to p
15: receivedModels.remove(m)
16: c← 0
17: end for
18: wait(∆)
19: end loop

20: procedure ONRECEIVEMODEL(m)
21: m← driftHandler(m) ⊲ main drift handling method
22: currentModel← updateModel(m)
23: receivedModels.add(currentModel)
24: end procedure

adaptivity by controlling the lifetime distribution of the models available in the

network.

The implementation of age-based drift handling is shown in Algorithm 5.13.

Note that this approach works independently of the learning algorithm applied in

GoLF, and independently of the drift pattern as well. From now on, we will call

the GoLF framework extended with age-based drift handling ADAGOLF.

The algorithm works by adding a new time-to-live (TTL) field to each model.

When a new model is created, this field is initialized (at line 2 of Algorithm 5.13)

to a value generated from a predefined probability distribution that we call the

Model Lifetime Distribution (MLD). The age of the model increases with each

hop. When the model age reaches the TTL value, the model is discarded and a

48 5.3. ALGORITHMS

Algorithm 5.13 AdaGoLF

1: procedure INITDRIFTHANDLER(m)
2: m.TTL← generateTTL()
3: return m
4: end procedure

5: procedure DRIFTHANDLER(m)
6: m.age ← m.age + 1
7: if m.age = m.TTL then
8: m← initModel()
9: m← initDriftHandler(m)

10: end if
11: return m
12: end procedure

new one is created (at line 8 of Algorithm 5.13) with a newly generated, indepen-

dent TTL value (at line 9 of Algorithm 5.13).

The MLD can be selected arbitrarily by a particular implementation to achieve

optimal adaptivity. If the drift pattern is not known, then the MLD should have

a reasonably heavy tail, so that we always have old models in the system as well

as new ones. Such distributions are more robust to the speed and the pattern of

concept drift given that a wide range of model ages are always available.

We would like to characterize the distribution of the age of the models in the

network at some time point t, given the MLD. Consider a sequence of mod-

els m1, m2, . . . according to a random walk where mi is removed and mi+1 is

started by method DRIFTHANDLER. The lifetime sequence of these models m1.TTL,

m2.TTL, . . . forms a renewal process. Let the age of the model that is “alive” at time

t be the random variable At; we are interested in the distribution of At. More for-

mally, let St be the birth time of the model alive at time t:

St = max
k
{Vk : Vk =

k

∑
i=1

mi.TTL and Vk < t}, (5.1)

in which case At = t− St. Applying results from renewal theory [44] (the renewal

equation and the expectation equation) we get the expected model age and its

CHAPTER 5. HANDLING CONCEPT DRIFT 49

variance as the time tends to infinity:

E(At)
t→∞
−−→

E(X2)

2E(X)

D
2(At)

t→∞
−−→

E(X3)

3E(X)
−

(
E(X2)

2E(X)

)2

,

(5.2)

where random variable X is from the MLD.

We selected the lognormal distribution as our MLD with parameters µ = 8

and σ2 = 0.5, which gives us an expected age of E(At) ≈ 3155, and D(At) ≈

3454. This distribution has a reasonably long tail, so we are guaranteed to have

old as well as new models at all times. For this reason we expect this distribution

to perform well in a wide range of drift scenarios.

5.3.2 CDDGoLF: Detecting Concept Drift

We propose Algorithm 5.14 for detecting drift explicitly. Note that the algorithm

is still independent of the applied learning algorithm so it can be used along with

any GoLF implementation.

We extended the models with a queue of a bounded size, called history, that

stores performance related data based on the previously seen examples. The main

idea is that – when a node receives a model – we can use the sample stored at the

node for evaluating the model before we use the sample to actually update the

model. Storing these evaluations in the history, we can detect the trend of the

performance of the model, in particular, we can detect whether the performance

is decreasing.

Let us explain the algorithm in more detail. Procedure DRIFTHANDLER uses

the locally stored sample as a test sample and evaluates the model (line 6 of Al-

gorithm 5.14). Then it updates the model history by storing an error score (value

1 if the predicted and real class labels are different; 0 otherwise) in line 7 of Algo-

rithm 5.14. Applying this technique we can accumulate a bounded size series of

independent error scores in the history. We have to make two important observa-

tions about the history. First, the error sequence stored in the history is biased in

the sense that the model we measure is continuously changing while we collect

50 5.3. ALGORITHMS

Algorithm 5.14 CDDGoLF

1: procedure INITDRIFTHANDLER(m)
2: m.history ← ()
3: return m
4: end procedure

5: procedure DRIFTHANDLER(m)
6: ŷ← m.predict(x) ⊲ (x, y) is the local sample
7: m.history.add(ŷ = y ? 0 : 1) ⊲ history update
8: if driftOccurred(m) then
9: m← initModel()

10: m← initDriftHandler(m)
11: end if
12: return m
13: end procedure

14: procedure DRIFTOCCURRED(m)
15: errorRates ← smooth(m.history)
16: slope ← linearReg(errorRates)
17: if rand([0; 1]) < σc,d(slope) then
18: return true
19: end if
20: return f alse
21: end procedure

the error scores. In other words, this is merely a heuristic approach to charac-

terize the performance trend. Second, we have to use a bounded size queue to

keep the message size constant, since the history is a part of the model, so it is

sent through the network each time we pass the model on. In our case we used a

history size of 100.

After updating the history, method DRIFTOCCURRED is used to decide whether

a concept drift occurred (line 8 of Algorithm 5.14). In this method we first perform

a preprocessing step (line 15 of Algorithm 5.14) by applying a sliding window-

based averaging with window size history.size()/2 on the raw data. This step is

necessary for noise reduction reasons. Second, we apply linear regression [83]

on the smoothed error rates (line 16 of Algorithm 5.14) to extract the trend in the

performance history using the slope of the fitted linear approximation. Finally,

we convert the slope value into a drift probability by applying a sigmoid func-

CHAPTER 5. HANDLING CONCEPT DRIFT 51

tion mapping it onto the interval (0, 1). We then issue a concept drift alert with

this probability. The sigmoid function we used is σc,d(x) = (1 + e−c(x−d))−1, with

parameters c = 20 and d = 0.5. These parameters were not fine-tuned (noting

that d = 0.5 is needed for a symmetric mapping).

The geometrical interpretation is that if the slope is negative or 0, then the

model in question is still improving (learning phase) or stable (converged phase),

respectively. Otherwise, if the slope is positive, then the performance of the

model is decreasing, which is most likely due to concept drift.

When drift occurs (i.e. method DRIFTOCCURRED returns true), we reinitialize

the model, that is, we discard the old one and start a fresh one.

5.3.3 The Learner Component

So far we have discussed only abstract algorithms that were independent of the

actual machine learning algorithm that is implemented in GoLF. However, to

evaluate our proposals, we need to implement an actual learning algorithm. In

this paper, we opted for logistic regression. In our previous work we have pro-

posed support vector machine (SVM) and boosting implementations as well [52,

89], but any online learning algorithm is suitable that has a constant or slowly

growing model size. In Chapter 3 we presented some useful machine learning

algorithms.

5.3.4 Communication Complexity

The expected communication cost for a single node in a period of ∆ time (one

cycle) is at most two. To see this, consider that there are M models in the entire

network, and there are N ≥ M nodes (with N = M if there is no message drop

and no churn), and that every model performs a random walk with exactly one

hop in each cycle. Since we assume a good quality peer sampling service, the

number of incoming messages will follow a Poisson distribution with λ = 1 if

M = N, and less if M < N. Since each incoming message also generates an

outgoing message, the overall number of messages will be twice the number of

the incoming ones.

52 5.4. EXPERIMENTAL SETUP

The space complexity of a model, which directly determines message size,

strongly depends on the selected learning algorithm, as well as the dimensional-

ity of the data samples. In the case of a linear model we apply in this section, the

size of a model is the same as the size of a data sample. In addition, a model might

also contain drift handling information such as the age value or a performance

history of a bounded size.

5.4 Experimental Setup

5.4.1 Drift Dynamics and Drift Types

Our algorithm is not the optimal choice in all possible concept drift scenarios,

however, in certain important cases we will show it to be the most favorable op-

tion. To be able to characterize the different drift scenarios, let us first identify a

few key features of drift.

As of dynamics, there are two important properties that characterize an envi-

ronment involving concept drift: the speed of drift, and the sampling rate. The speed

of drift defines how much the underlying concept changes within a unit time in-

terval. The sampling rate defines how many new independent samples become

available within a unit time interval. We need to stress that only independent

samples count in this metric, that is, samples that are drawn from the underlying

distribution independently at random.

A third speed-related parameter is the cycle length ∆ of GOLF. However,

these three parameters can be considered redundant, since in the range of reason-

able cycle lengths ∆ (where ∆ is significantly greater than message transmission

time) we can always choose a ∆ that keeps drift speed (or sampling rate) con-

stant. For this reason, we will choose ∆ as the unit of time, and we will define

drift speed and sampling rate in terms of ∆, leaving us with two remaining free

parameters.

However, in this paper we do not investigate the speed of drift independently,

since the interesting scenarios are differentiated more by the ratio of drift speed

and sampling rate. If drift is too fast relative to the sampling rate, then there is no

chance to learn a reasonable model with any method. If drift is too slow relative

CHAPTER 5. HANDLING CONCEPT DRIFT 53

to the sampling rate, then the problem is not very challenging, since even the

simplest baselines can achieve a very good performance [116].

The type of the drift is another important property. In our scenarios drift can

be incremental or sudden [116]. The actual drift types are described later in this

section.

5.4.2 Baseline Algorithms

We selected our baseline algorithms so as to represent the most typical approaches

from related work with a simpler, but optimistic version, which is guaranteed to

perform better by construction than the corresponding published algorithm.

Our simplest baseline is LOCAL, where each node simply collects its local sam-

ples during a cycle and builds a model based on this sample set at the end of each

cycle. If a node does not observe any training samples during a cycle, then the

previous model is used for prediction. This solution involves no communication,

but with low sample rates it performs poorly.

CACHEBASED is a more sophisticated baseline which uses a limited size mem-

ory, a FIFO queue (called cache) in which it collects samples. For maximal fair-

ness, the memory size was optimized during preliminary experiments, and was

set to 100. Note that our test datasets are learnable from 100 samples very well.

Due to the optimized cache size, this baseline represents the chunk based as well

as the trigger based approaches mentioned in Section 5.1. The cache size can be

considered an optimized chunk size, which is the optimal solution of the trigger

based approaches as well assuming continuous drift. Thus the result of this base-

line can be considered as an upper bound of the performance of the local chunk

and trigger based approaches. This baseline still uses no communication, but it

performs better than LOCAL.

The baselines VOTE and CACHEDVOTE are natural extensions of the previous

baselines: they use collaboration within the network. All the nodes send their

models they create at the end of the cycle to every other node, and the predic-

tion is performed by voting. These are powerful baselines in terms of predic-

tion performance, although their communication costs are extremely large due

to a full broadcast of all the models in each cycle. It is easy to see that these

54 5.4. EXPERIMENTAL SETUP

Table 5.1. The main properties of the baseline and the adaptive algorithms.

Name Computational complexity # models used Communication
of learning / cycle for prediction complexity / cycle

LOCAL O(chunkSize) 1 0
CACHEBASED O(sampleCacheSize) 1 0

VOTE O(chunkSize) N O(N)
CACHEDVOTE O(sampleCacheSize) N O(N)

VOTE WD O(chunkSize) modelCacheSize O(1)
CACHEDVOTE WD O(sampleCacheSize) modelCacheSize O(1)

GLOBAL O(chunkSize*N) 1 O(N)

ADAGOLF O(1) 1 O(1)
CDDGOLF O(1) 1 O(1)

voting-based baselines represent the ensemble based approaches mentioned in

Section 5.1, hence the performance of these idealized variants can be considered

an upper bound of the result of the ensemble based approaches.

VOTE WD and CACHEDVOTE WD are the communication-effective versions

of VOTE and CACHEDVOTE (WITH DELAY), respectively. They work exactly the

same way like their ancestors but the model spreading process is slowed down:

in each cycle each node sends its model to exactly one neighbor. These models

are collected in a FIFO queue of a fixed size (the model cache) and prediction is

based on the voting of the models in the model cache. We set the model cache

size to be 100, similarly to the sample cache described above.

The last baseline called GLOBAL is an algorithm that can observe all the sam-

ples observed in the network in a cycle and can build a model based on them. The

implementation of this algorithm is infeasible and its result can be considered as

a theoretical upper bound on the performance of the distributed baselines and

adaptive algorithms.

The complexity of these algorithms is summarized in Table 5.1. The network

size is denoted by N, CHUNKSIZE is the number of samples observed by a node

in a cycle, which depends on the sampling rate. The last two lines show the same

properties for our algorithms.

5.4.3 Data Sets

In our evaluations we used synthetically generated as well as real world data sets.

In both cases we modeled drift by changing the labeling of the data set. That is,

CHAPTER 5. HANDLING CONCEPT DRIFT 55

drift itself was synthetic even in the case of the real world database. The nodes

can get random samples according to the given sampling rate from a training

pool.

The synthetic database was generated by drawing uniform random points

from the d-dimensional uniform hypercube. The labeling of these points is de-

fined by a hyperplane that naturally divides the examples into a positive and

negative subset. Drift is modeled by moving the hyperplane periodically over

time [55]. A hyperplane at time t is defined by its normal

wt = (1− αt)ws + αtwd, (5.3)

where wt, ws, wd ∈ R
d, 0 ≤ αt ≤ 1, and ws and wd are the source and the desti-

nation hyperplanes, respectively, which are orthogonal to each other. The normal

ws is generated at random with all coordinates drawn from [0, 1] uniformly, and

wd = (1, . . . , 1)T −ws.

In the case of incremental drift the hyperplane is moved smoothly back and

forth between ws and wd. This can formally be defined as

αt =

{
1− (tv− ⌊tv⌋) if ⌊tv⌋ mod 2 = 1

tv− ⌊tv⌋ otherwise
(5.4)

where v is the speed of drift. When sudden drift was modeled, we used the same

dynamics for αt but rounded it to implement discontinuity: α′t = round(αt). This

results in switching back and forth between ws and wd with a period of 2/v time

units.

We used one real world data set, namely the Image Segmentation [12] data set

from the UCI Machine Learning Repository. The database has 19 real valued fea-

tures and 7 class labels. The class label ratio is balanced. Originally this data set

does not support the evaluation of concept drift. We implemented a mechanism

proposed by [31, 110] to add synthetic drift to this data set. This simple mecha-

nism consists of rotating the class labels periodically. This results in a variant of

sudden drift.

56 5.4. EXPERIMENTAL SETUP

5.4.4 Evaluation Metrics

For performing evaluations we split all the databases into a training and an eval-

uation set. The proportion of this splitting was 80/20% (training/evaluation)

except in the case of the real data set where the training/evaluation split was

provided by the owners of the database. In all cases the splitting was performed

before the simulations since all the evaluation sets are obviously independent

from the training sets.

Our main evaluation metric is prediction error. In the case of ADAGOLF and

CDDGOLF, we track the misclassification ratio over the test set of 100 randomly

selected peers. The misclassification ratio of a model is simply the number of the

misclassified test examples divided by the number of all test examples, which is

also called the 0-1 error.

5.4.5 Simulation Scenarios

The experiments were performed using the event-based engine of PeerSim [84].

Apart from experiments involving no failure, we model the effect of message

drop, message delay, and churn. In all the failure scenarios we modeled realis-

tic churn, that is, the nodes were allowed to join and leave the network. While

offline, the nodes retain their state. The length of the online sessions was drawn

at random from a lognormal distribution. The parameters of this distribution

were given by the maximum likelihood estimation over a private BitTorrent trace

called the FileList.org collected by Delft University of Technology [1]. For ex-

ample, the average session length is around 5 hours. Note that in mobile phone

networks, one can expect similarly long, or even longer sessions on average.

So far our unit of time was ∆ (the cycle length), but here we need to specify

∆ in order to be able to model churn in simulation. A normal value of ∆ in an

implementation would be around 10 seconds. However, with an average session

length of 5 hours, this would result in practically no churn from our point of view,

since convergence occurs at a much faster timescale. So, in order to push our

algorithms to the limit, we set ∆ to be the average session length, which results

in an extreme churn scenario with nodes joining and leaving very frequently. In

most of the experiments, except those in Section 5.5.6, we set the offline session

CHAPTER 5. HANDLING CONCEPT DRIFT 57

lengths so that at any moment in time 10% of the nodes are offline. In Section 5.5.6

we experiment also with scenarios where 50% or 80% of the peers are offline.

In the scenario we call AF mild (all failures mild), message drop probability

was set to be 0.2, and message delay is modeled as a uniform random delay from

the interval [∆, 2∆], where ∆ is the cycle length. Moreover we applied a very

heavy failure scenario as well where the message drop probability was 0.5 and

message delay was uniform random from [∆, 10∆]. We refer to this scenario as

AF hard.

The default value for the sampling rate parameter was 1/∆, and the default

for network size is N = 100. Both of these values are explored in our experimen-

tal study.

5.5 Experimental Results

5.5.1 Adaptivity

First we illustrate the problem that is caused by the lack of adaptivity. Online

learners exhibit a burn in effect when run for a long time, as demonstrated by

Figure 5.1, where we present the prediction error (averaged over the network)

of GOLF (without drift handling), ADAGOLF, and CDDGOLF as a function of

time. We can see that ADAGOLF and CDDGOLF show no burn in effect (these

two algorithms have very similar performance producing mostly overlapping

curves).

5.5.2 Drift Detection

We start with evaluating the drift detection heuristic of CDDGOLF. Here we fo-

cus on the sudden drift scenarios. The results are shown in Figure 5.2, where the

rows represent different databases and the columns represent different network

sizes. In each figure we present the average 0-1 error (Error), and the cumulative

proportion of drift alarms over all the models that are processed in the network

(Cum. det.) as a function of time. This metric is computed by calculating the

proportion of those calls to DRIFTHANDLER that result in an alarm in each cycle,

58 5.5. EXPERIMENTAL RESULTS

sudden drift on synthetic data set

4k 4.25k 4.5k 4.75k 5k

0
-1

 E
rr

o
r

Number of cycles (∆)

999k 999.25k 999.5k 999.75k 1m
 0

 0.1

 0.2

 0.3

 0.4

 0.5

Number of cycles (∆)

incremental drift on synthetic data set

4k 4.25k 4.5k 4.75k 5k

0
-1

 E
rr

o
r

Number of cycles (∆)

999k 999.25k 999.5k 999.75k 1m
 0

 0.1

 0.2

 0.3

 0.4

 0.5

Number of cycles (∆)

CDDGoLF
AdaGoLF

GoLF

sudden drift on real data set

4k 4.25k 4.5k 4.75k 5k

0
-1

 E
rr

o
r

Number of cycles (∆)

999k 999.25k 999.5k 999.75k 1m
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Number of cycles (∆)

Figure 5.1. The burn in effect as a motivation for adaptivity.

and summing these proportions over the cycles up to the next underlying sudden

drift, when we reset the sum to zero.

In the case of the real world database, the speed of drift detection is extremely

fast: the cumulative detection curve increases very sharply when drift occurs. In

the case of the synthetic database, the detection is slower. A possible reason is

that drift is less dramatic (note that in the synthetic case the maximal error is 0.5,

CHAPTER 5. HANDLING CONCEPT DRIFT 59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

Number of cycles (∆)

100 peers, synthetic data

Error
Cum. det.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

Number of cycles (∆)

10000 peers, synthetic data

Error
Cum. det.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 4250 4500 4750 5000

Number of cycles (∆)

100 peers, real data

Error
Cum. det.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 4250 4500 4750 5000

Number of cycles (∆)

10000 peers, real data

Error
Cum. det.

Figure 5.2. The drift detection and the classification performance of the proposed method
on synthetic and real datasets.

while in the real database it is 1) since half of the labels remain correct after the

sudden change. Based on both databases, these results indicate that CDDGOLF

detects the drift accurately and quickly.

Let us now turn to the discussion of the effect of network size: We cannot

see any significant difference in the error rate between the simulations for sizes

100 and 10,000 (left and right column, respectively). This observation implies the

scalability of CDDGOLF. This is not a surprise, since GOLF actually only benefits

from scale because there are more independent learning samples and there is a

higher diversity of models.

5.5.3 The Effect of Sampling Rate

We now turn to the problem of identifying those scenarios, in which GOLF is

preferable over the alternative approaches for dealing with concept drift. We

60 5.5. EXPERIMENTAL RESULTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 0.01 samples/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 0.1 samples/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 1 sample/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 10 samples/∆

AdaGoLF
Local

DelayedVote
Vote

Global

Figure 5.3. The effect of sampling rate under sudden drift (the lines marked with △
belong to cache based baselines).

focus on sampling rate, as described in Section 5.4. We performed evaluations

using all our database and drift-type configurations (synthetic-sudden, synthetic-

incremental and real world-sudden). The results are shown in Figures 5.3, 5.4

and 5.5. In each result set we selected four distinct sampling rates: 0.01, 0.1, 1, 10

samples per cycle.

We have performed these experiments both with ADAGOLF and CDDGOLF.

Since these two algorithms show almost identical performance, from now on we

include only ADAGOLF in the discussion.

When the sampling rate is 0.01, all the nodes receive only a single new sam-

ple on average in every 100 iterations. While the baseline methods build models

only based on local samples, ADAGOLF can take advantage of many more sam-

ples due to the models performing a random walk. This allows ADAGOLF to

approximate the performance of GLOBAL that has the best possible performance

CHAPTER 5. HANDLING CONCEPT DRIFT 61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 0.01 samples/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 0.1 samples/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 1 sample/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 10 samples/∆

AdaGoLF
Local

DelayedVote
Vote

Global

Figure 5.4. The effect of sampling rate under incremental drift (the lines marked with△
belong to cache based baselines).

by construction. Increasing the sampling rate results in a gradually decreasing

difference between the baseline algorithms and ADAGOLF. In fact, with high

sampling rates, ADAGOLF is outperformed by most of the baselines in the case

of the sudden change scenarios.

We need to note here that in the present version of the algorithm all models

use exactly one sample for the update in each hop, even if more samples are

available. This means that there are lots of possibilities to enhance ADAGOLF to

deal with high sample rates better. Nevertheless, ADAGOLF is clearly the best

option if the sampling rate is low.

In the incremental drift scenario, we should mention the remarkable stability

of ADAGOLF under each sampling rate. Here, ADAGOLF remains competitive

even in the highest sampling rate scenario. This is rather interesting, given that

ADAGOLF ignores most of the samples in that case, as mentioned before.

62 5.5. EXPERIMENTAL RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 0.01 samples/∆

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 0.1 samples/∆

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 1 sample/∆

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 4250 4500 4750 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sampling rate: 10 samples/∆

AdaGoLF
Local

DelayedVote
Vote

Global

Figure 5.5. The effect of sampling rate over the real database (the lines marked with △
belong to cache based baselines).

We would like to stress again, that the scenario in which there are relatively

few local independent samples relative to the speed of drift is practically very rel-

evant. In the majority of important applications in P2P or mobile networks there

is practically one sample throughout the entire participation of a certain user (in

which case drift originates mostly from the changing membership). For example,

when the data consists of relatively stable personal preferences, stable mobility

patterns (work-home), and so on. It is important to note that although one cov-

ers the work-home path almost each day, we still have only one example, since

these repeated examples cannot be considered independent samples from the un-

derlying distribution of all the work-home paths. In addition, many user related

events, for example, car accidents, are also very rare relative to drift speed, which

can be rather fast due to, for example, weather conditions. With our method –

in a very large network – one can still produce an up-to-date accident prediction

CHAPTER 5. HANDLING CONCEPT DRIFT 63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4200 4400 4600 4800 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sudden drift on synthetic database (AdaGolf)

NF
AF mild
AF hard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4200 4400 4600 4800 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sudden drift on synthetic database (CDDGolf)

NF
AF mild
AF hard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4200 4400 4600 4800 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Incremental drift on synthetic database (AdaGolf)

NF
AF mild
AF hard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4200 4400 4600 4800 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Incremental drift on synthetic database (CDDGolf)

NF
AF mild
AF hard

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 4000 4200 4400 4600 4800 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sudden drift on real database (AdaGolf)

NF
AF mild
AF hard

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 4000 4200 4400 4600 4800 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sudden drift on real database (CDDGolf)

NF
AF mild
AF hard

Figure 5.6. Prediction performance under failure.

model based on these examples. Finally, in cases when users need to enter data

explicitly, it is very likely that the average rate of samples will be relatively very

low.

5.5.4 Fault Tolerance

We performed simulations with the failure scenarios described previously. Fig-

ure 5.6 contains the results. From this we can observe that the effect of the fail-

64 5.5. EXPERIMENTAL RESULTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 3000 3500 4000 4500 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sudden drift on synthetic database

10 peers
100 peers

1000 peers
10000 peers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 3000 3500 4000 4500 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Incremental drift on synthetic database

10 peers
100 peers

1000 peers
10000 peers

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3000 3500 4000 4500 5000

0
-1

 E
rr

o
r

Number of cycles (∆)

Sudden drift on real database

10 peers
100 peers

1000 peers
10000 peers

Figure 5.7. The effect of network size (with sampling rate 1/∆).

ures is a slower convergence speed. This effect can mostly be accounted for by the

message delay, since all the random walks will be proportionally slower. This has

the same effect as if the cycle length ∆ was proportionally larger in a failure-free

scenario.

5.5.5 Scalability

In Figure 5.7 we present the results of ADAGOLF in different network sizes. For

CDDGOLF we obtain identical results (not shown). We cannot identify any sig-

nificant effect of the network size in most of the scenarios. In the case of the real

dataset (that is harder to learn) we can realize that larger networks result in a

slightly better performance, which is most likely due to the fact that more inde-

pendent samples are available in larger networks.

CHAPTER 5. HANDLING CONCEPT DRIFT 65

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4500 5000 5500 6000

0
-1

 E
rr

o
r

Number of cycles (∆)

Evaluating all the nodes using long session lengths

Offline 0%
Offline 10%
Offline 50%
Offline 80%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4500 5000 5500 6000

0
-1

 E
rr

o
r

Number of cycles (∆)

Evaluating online nodes only using long session lengths

Offline 0%
Offline 10%
Offline 50%
Offline 80%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4500 5000 5500 6000

0
-1

 E
rr

o
r

Number of cycles (∆)

Evaluating all the nodes using short session lengths

Offline 0%
Offline 10%
Offline 50%
Offline 80%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4500 5000 5500 6000

0
-1

 E
rr

o
r

Number of cycles (∆)

Evaluating online nodes only using short session lengths

Offline 0%
Offline 10%
Offline 50%
Offline 80%

Figure 5.8. The effect of the churn.

5.5.6 Churn Revisited

Our last set of experiments focuses on the effect of churn on ADAGOLF. Our ap-

proach to modeling churn is described in Section 5.4.5. We briefly mentioned

there that we opted for modeling extremely short online session lengths as a

worst case scenario. Here we justify this decision by showing that indeed if ses-

sion lengths are longer (closer to the realistic value), then the performance is very

close to that of the scenario without churn. For this reason, we added a scenario

where the average session length was 100∆. Note that this still results in ∆ = 3

minutes, which is still very long.

Figure 5.8 shows the results. In this figure we show our experiments with 0%,

10%, 50% and 80% of the peers offline on average at any given time. In addition,

we also present the 0-1 error over both the set of all the nodes (including those

that are offline) and over the set of online nodes.

It is clear from the plot that increasing the proportion of the nodes that are

66 5.6. CONCLUSIONS

offline results in a slower convergence if we consider also the nodes that are of-

fline. In the case of long session lengths, this is because nodes that are offline

are unable to adapt to concept drift, and hence will have a very poor prediction

performance after their models get out of date. However, if we consider only the

performance of the online nodes, then the performance remains essentially the

same even for the highest proportion of offline nodes. This is because nodes are

online long enough (compared to the speed of convergence) so that most models

in the system are able to perform long random walks without getting stuck on a

node that is going offline before reaching convergence.

In the case of extremely short short session lengths, it does not matter whether

we examine online or offline nodes. In scenarios with a high proportion of offline

nodes convergence will slow down anyway, because most random walks will be

able to make only one or two steps before getting stuck on a node that is going

offline, which results in an overall slowdown of the convergence of all the models.

Note however, that this scenario is highly unrealistic.

Another interesting aspect of churn is its effect on the age distribution of mod-

els. The case without churn is discussed theoretically in Section 6.4. Figure 5.9

shows the histogram of the model age distribution in the case of churn, averaged

over a set of 10,000 snapshots during the simulation, which were taken in every

10th cycle during a simulation of 100,000 cycles. Note that model age is defined

by the number of samples a given model has been trained on (as opposed to the

number of cycles elapsed after its initialization). We can observe that the age dis-

tribution remains very similar to the case without churn. As before, this is due to

the fact that churn events are rare so they do not interfere with the ageing of mod-

els much. However, in Figure 5.10 we can see that if session lengths are extremely

short, then the distribution gets biased towards the younger models. Note that

the histograms that consider all the nodes (including those that are offline) are

very similar (not shown).

5.6 Conclusions

In this paper we proposed adaptive versions of our GOLF framework: ADAGOLF

and CDDGOLF. In the case of ADAGOLF the adaptivity is implemented in a very

CHAPTER 5. HANDLING CONCEPT DRIFT 67

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2000 4000 6000 8000 10000

R
el

at
iv

e
F

re
q

u
en

cy

Experiential Model Age

Offline 0%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2000 4000 6000 8000 10000

R
el

at
iv

e
F

re
q

u
en

cy

Experiential Model Age

Offline 10%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2000 4000 6000 8000 10000

R
el

at
iv

e
F

re
q

u
en

cy

Experiential Model Age

Offline 50%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2000 4000 6000 8000 10000

R
el

at
iv

e
F

re
q

u
en

cy

Experiential Model Age

Offline 80%

Figure 5.9. Model age histograms over online nodes for long session lengths.

simple manner through the management of the age distribution of the models in

the network, making sure that there is a sufficient diversity of different ages in

the pool. This is not a usual approach, as most of the related work focus on build-

ing and combining local models, and on detecting and predicting drift explicitly.

CDDGOLF also restarts some of the models, but this decision is not blind as in

the case of ADAGOLF, but instead it is based on the performance history of the

model in question.

We performed a thorough experimental study in which we compared ADAGOLF

and CDDGOLF with a set of baseline algorithms that represented idealized ver-

sions of the main techniques that are applied in related work. Our main con-

clusion is that in those scenarios, where the sampling rate from the underlying

distribution is low relative to the speed of drift, our solutions clearly outperform

all the baseline solutions, approximating the “God’s Eye view” model, which

represents the best possible performance.

68 5.6. CONCLUSIONS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2000 4000 6000 8000 10000

R
el

at
iv

e
F

re
q

u
en

cy

Experiential Model Age

Offline 0%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2000 4000 6000 8000 10000

R
el

at
iv

e
F

re
q

u
en

cy

Experiential Model Age

Offline 10%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2000 4000 6000 8000 10000

R
el

at
iv

e
F

re
q

u
en

cy

Experiential Model Age

Offline 50%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2000 4000 6000 8000 10000

R
el

at
iv

e
F

re
q

u
en

cy

Experiential Model Age

Offline 80%

Figure 5.10. Model age histograms over online nodes for short session lengths.

One surprising observation is that, although completely blind, ADAGOLF has

practically the same performance as CDDGOLF in the scenarios and databases

we examined. This suggests that it is an attractive option if we need to issue no

explicit alarms in the case of drift. CDDGOLF detects drift explicitly, but its im-

plementation is slightly more complicated, and it could in principle be sensitive

to certain patterns of drift since its drift detection heuristic depends on the drift

pattern.

We also indicated that our algorithms can be enhanced to deal with (or rather,

be robust to) higher sample rates as well, although in that case purely local model

building can also be sufficient.

CHAPTER 6

Singular Value Decomposition

Finding a low-rank decomposition of a matrix is an essential tool in data min-

ing and information retrieval [10]. Prominent applications include recommender

systems [34], information retrieval via Latent Semantic Indexing [17, 91], Klein-

berg’s HITS algorithm for graph centrality [65], clustering [32, 80], and learning

mixtures of distributions [3, 61].

Collaborative filtering forms one of the most prominent applications of low

rank matrix approximation. To implement a recommender algorithm, one can

define a matrix A of dimensions m× n with one row assigned to one of m users,

and one column assigned to one movie out of a set of n movies. The essence

of the ratings matrix A is given by a low rank decomposition A ≈ XYT , where

matrices X and YT are of dimensions m× k and k× n, respectively, and where k

is small [68]. A row of X can be interpreted as a compressed representation (fea-

tures) of the corresponding user, and a column of YT contains features of a movie.

This representation can be applied to calculate missing ratings to offer recom-

mendations. In addition to recommender systems, low rank approximation finds

applications in summarizing adjacency matrices for social network analysis or

term-document matrices for text classification.

70 6.1. CONTRIBUTIONS

Data such as movie ratings, lists of friends, or personal documents is often

very sensitive. It is argued in [85] that it is paramount for privacy that users keep

their data (e.g. ratings and user factors) local. Instead of uploading such data to

cloud servers, it is a natural idea to store it only on personal devices and process it

in place in a fully distributed way suitable for P2P services. This would increase

the level of privacy and remove any dependence on central infrastructure and

services. However, such an algorithm has to be extremely robust as networks of

personal devices are unreliable with users entering and leaving dynamically. In

addition, the communication costs should remain affordable as well.

The problem we tackle is implementing singular value decomposition (SVD) –

a popular method for low rank approximation – in large fully distributed systems

in a robust and scalable manner. We assume that the matrix to be approximated is

stored in a large network where each node knows one row of the matrix (personal

attributes, documents, media ratings, etc). We do not allow this personal infor-

mation to leave the node, yet we want the nodes to collaboratively compute the

SVD. Methods applied in large scale distributed systems such as synchronized

parallel gradient search or distributed iterative methods are not preferable in our

system model due to their requirements of synchronized rounds or their inherent

issues with load balancing.

6.1 Contributions

To meet these goals, we implement singular value decomposition (SVD), an ap-

proach to low rank decomposition with the attractive property that the matrices

X and Y in the decomposition consist of orthogonal vectors. We present a stochas-

tic gradient descent (SGD) algorithm to find the SVD, where several instances of

the matrix Y perform a random walk in the network visiting the data (the rows

of A), while matrices A and X are stored in a fully distributed way with each

row at different nodes. The rows of matrices A and X are accessed only locally

by the node that stores them. Note that the public matrix Y carries no sensitive

information. When Y visits a node, it gets updated based on the local row of A,

and the local row of X gets updated as well.

To the best of our knowledge, we present the first fully distributed SGD al-

CHAPTER 6. SINGULAR VALUE DECOMPOSITION 71

gorithm that keeps X and A strictly local. As a special feature, our algorithm

updates several versions of Y by sending them around over the network, result-

ing in a convergence much faster than a single instance of SGD for SVD. The

algorithm is fully asynchronous: messages can be delayed or lost. We only rely

on random walks that can perform every transition in a bounded time. We show

that the only stable fix points of the search algorithm correspond to the SVD. In

addition, we perform an experimental analysis and demonstrate the convergence

speed and the scalability of the protocol.

6.2 Related Work

Calculating the SVD is a well studied problem. One approach is based on con-

sidering it as an optimization problem (see Section 6.3) and using gradient search

to solve it [43]. In general, parallel versions of gradient search often assume the

MapReduce framework [23] or a similar, less constrained, but still centralized

model [72]. In these approaches, partial gradients are calculated over batches of

data in parallel, and these are either applied to blocks of X and Y in the map

phase or summed up in the reduce phase. Zinkevich et al. propose a different ap-

proach in which SGD is applied on batches of data and the resulting models are

then combined [115]. Gemulla et al. [41] propose an efficient parallel technique

in which blocks of X and Y are iteratively updated while only blocks of Y are

exchanged. In contrast to these approaches, we work with fully distributed data:

we do not wish to make X public, and we do not rely on central components or

synchronization, a set of requirements ruling out the direct application of earlier

approaches.

Another possibility is using fully distributed iterative methods. GraphLab [75]

supports iterative methods for various problems including SVD. In these ap-

proaches, the communication graph in the network is defined by the non-zero

elements of matrix A, in other words, A is stored as edge-weights in the network.

This is feasible only if A is (very) sparse and well balanced; a constraint rarely

met in practice. In addition, iterative methods need access to AT as well, which

violates our constraint that the rows of A are not shared. Using the same edge-

weight representation of A, one can implement another optimization approach

72 6.3. PROBLEM DEFINITION

for matrix decomposition: an iterative optimization of subproblems over over-

lapping local subnetworks [73]. The drawback of this approach is, again, that the

structure of A defines the communication network and access to AT is required.

The approach of Ling et al. [74] also needs global information: in each iteration

step a global average needs to be calculated.

The first fully distributed algorithm for spectral analysis was given in [64]

where data is kept at the compute nodes and partial results are sent through the

network. That algorithm, however, only computes the user side singular vec-

tors but not the item side ones and hence insufficient, for example, to provide

recommendations. Similarly, [67] computes the low rank approximation but not

the decomposition. This drawback is circumvented in [56] by assigning compute

nodes not just for users but for items as well. In their gradient descent algorithm,

item vectors are also stored at peers, which means that all items must know the

ratings they receive, and this violates privacy.

We overcome the limitations of earlier fully distributed and gossip SVD algo-

rithms by providing an algorithm without item-based processing elements, i.e.

our algorithm is fully distributed in the sense that processing is exclusively done

at the users, who may access their own ratings and approximations of the item

factor vectors.

6.3 Problem Definition

6.3.1 Low-Rank and Singular Value Decomposition

The problem we tackle is rank-k matrix approximation. We are given a matrix

A ∈ R
m×n. Matrix A holds our raw data, such as ratings of movies by users,

or word statistics in documents. We are looking for matrices X ∈ R
m×k and

Y ∈ R
n×k such that the error function

J(X, Y) =
1
2
‖A− XYT‖2

F =
1
2

m

∑
i=1

n

∑
j=1

(aij −
k

∑
l=1

xilyjl)
2 (6.1)

CHAPTER 6. SINGULAR VALUE DECOMPOSITION 73

is minimized. We say that the matrix XYT for which this error function is min-

imized is an optimal rank-k approximation of A. Clearly, matrices X and YT

– and hence XYT – have a rank of at most k. Normally we select k such that

k ≪ min(m, n) in order to achieve a significant compression of the data. As a

result, matrices X and YT can be thought of as high level features (such as topics

of documents, or semantic categories for words) that can be used to represent the

original raw data in a compact way.

Singular value decomposition (SVD) is related to the above matrix decompo-

sition problem. The SVD of a matrix A ∈ R
m×n involves two orthogonal matrices

U ∈ R
m×m and V ∈ R

n×n such that

A = UΣVT =
r

∑
i=1

σiuiv
T
i = σ1u1vT

1 + σ2u2vT
2 + · · ·+ σrurvT

r (6.2)

where the columns of the matrices U = [u1u2 · · · um] and V = [v1v2 · · · vn] are the

left and right singular vectors, and Σ ∈ R
m×n is a diagonal matrix containing the

singular values σ1, σ2, . . . , σr ≥ 0 of A (r = min(m, n)). The relationship of SVD

and low rank decomposition is that UkΣkVT
k is an optimal rank-k approximation

of A, where the matrices Uk ∈ R
m×k and Vk ∈ R

n×k are derived from U and V

by keeping the first k columns, and Σk ∈ R
k×k is derived from Σ by keeping the

top left k× k rectangular area, assuming without loss of generality that σ1 ≥ σ2 ≥

· · · ≥ σr [102].

Our goal in this paper is to find X∗ = UkΣU and Y∗ = VkΣV such that ΣU and

ΣV are diagonal and ΣUΣV = Σk. In other words, although X∗ and Y∗ are not

uniquely defined, we require them to contain orthogonal columns that are scaled

versions of left and right singular vectors of A, respectively.

6.3.2 Data Distribution

As of data distribution, we assume that each node has exactly one row (but note

that our algorithms can be applied – and in fact profit from it – if a node has

several rows). Our data distribution model is motivated by application scenarios

in which potentially sensitive data is available locally, such as private documents

or ratings that naturally define rows of a matrix A, but where a decomposition

74 6.4. ALGORITHM

Algorithm 6.15 P2P low-rank factorization at node i

1: ai ⊲ row i of A
2: initialize Y
3: initialize xi ⊲ row i of X
4: loop
5: wait(∆)
6: p← selectPeer()
7: send Y to p
8: end loop

9: procedure ONRECEIVEY(Ỹ)
10: Y ← Ỹ
11: (Y, xi)← update(Y, xi, ai)
12: end procedure

needs to be found collectively without blatantly exposing this private data.

6.4 Algorithm

Our algorithm has its roots in the GOLF framework [89]. Algorithm 6.15 contains

a version of the GOLF algorithm adopted to our problem. Each node i has its

own approximation of the full matrix Y∗ and an approximation of row i of X∗: xi.

Thus, the nodes collectively store one version of the matrix X (the approximation

of X∗) distributed just like matrix A with each node storing one row. At the same

time, at every point in time every node has a possibly different approximation of

the full matrix Y∗ locally.

These different approximations of Y∗ perform random walks in the network

and get updated at the visited nodes using the local data of the given node (a row

of A and X). First, each node i in the network initializes Y and xi uniformly at

random from the interval [0, 1]. The nodes then periodically send their current

approximation Y to a randomly selected peer from the network. The period is

denoted by ∆. To select a random peer, we rely on a peer sampling service as

mentioned in Section 2.3. When receiving an approximation Ỹ (see procedure

ONRECEIVEY) the node stores this approximation and subsequently it updates

both Y and xi using a stochastic gradient rule.

CHAPTER 6. SINGULAR VALUE DECOMPOSITION 75

Algorithm 6.16 rank-k update at node i

1: η ⊲ learning rate
2: procedure UPDATE(Y, xi , ai)
3: err← ai − xiY

T

4: x′i ← xi + η · err · Y
5: Y′ ← Y + η · errT · xi

6: return (Y′, x′i)
7: end procedure

The algorithm involves periodic message sending at every node with a period

of ∆. Later on, when we refer to one iteration or round of the algorithm, we simply

mean a time interval of length ∆. Note that we do not require any synchronization

of rounds over the network. Messages are sent independently, and they can be

delayed or dropped as well. We require only that the delays are bounded and

that the message drop probability is less than one. This allows the random walks

to progress.

Algorithm 6.15 requires an implementation of the procedure UPDATE. We will

now elaborate on two different versions that implement different stochastic gra-

dient update rules.

6.4.1 Update Rule for General Rank-k Factorization

Let us first consider the error function given in equation (6.1) and derive an up-

date rule to optimize this error function. The partial derivatives of J(X, Y) by X

and Y are
∂J

∂X
= (XYT − A)Y,

∂J

∂Y
= (YXT − AT)X. (6.3)

Since only xi is available at node i, the gradient is calculated only w.r.t. xi instead

of X. Accordingly, the stochastic gradient update rule with a learning rate η can

be derived by substituting xi as shown in Algorithm 6.16. Although function J is

not convex, it has been shown that all the local optima of J are also global [102].

Thus, for a small enough η, any stable fix point of the dynamical system imple-

mented by Algorithm 6.15 with the update rule in Algorithm 6.16 is guaranteed

to be a global optimum.

76 6.4. ALGORITHM

6.4.2 Update Rule for Rank-k SVD

Apart from minimizing the error function given in Equation (6.1) let us now also

set the additional goal that the algorithm converges to X∗ and Y∗, as defined in

Section 6.3. This is indeed a harder problem: while (X∗, Y∗) minimizes (6.1), any

pair of matrices (X∗R−1, Y∗RT) will also minimize it for any invertible matrix

R ∈ R
k×k, so Algorithm 6.16 will not be sufficient.

From now on, we will assume that the non-zero singular values of A are all

unique, and that the rank of A is at least k. That is, σ1 > · · · > σk > 0. This makes

the discussion simpler, but these assumptions can be relaxed, and the algorithm

is applicable even if these assumptions do not hold.

Our key observation is that any optimal rank-1 approximation X1YT
1 of A is

such that X1 ∈ R
m×1 contains the (unnormalized) left singular vector of A that

belongs to σ1, the largest singular value of A. Similarly, Y1 contains the corre-

sponding right singular vector. This is because for any optimal rank-k approx-

imation XYT there is an invertible matrix R ∈ R
k×k such that X = X∗R and

YT = R−1Y∗T[102]. For k = 1 this proves our observation because, as defined in

Section 6.3.1, X∗ ∼ u1 and Y∗ ∼ v1. Furthermore, for k = 1,

X1YT
1 = X∗Y∗T = σ1u1vT

1 , (6.4)

which means that (using Equation (6.2)) we have

A− X1YT
1 =

r

∑
i=2

σiuiv
T
i . (6.5)

Thus, a rank-1 approximation of the matrix A − X1YT
1 will reveal the direction

of the singular vectors corresponding to the second largest singular value σ2. A

naive approach based on these observations would be to first compute X1YT
1 , a

rank-1 approximation of A. After this has converged, we could compute a rank-1

approximation X2YT
2 of A−X1YT

1 . This would give us a rank-2 approximation of

A containing the first two left and right singular vectors, since according to the

above observations [X1, X2][Y1, Y2]
T is in fact such a rank-2 approximation. We

could repeat this procedure k times to get the desired decomposition X∗ and Y∗

CHAPTER 6. SINGULAR VALUE DECOMPOSITION 77

Algorithm 6.17 rank-k SVD update at node i

1: η ⊲ learning rate
2: procedure UPDATE(Y, xi , ai)
3: a′i ← ai

4: for ℓ = 1 to k do ⊲ yℓ : column ℓ of Y
5: err← a′i − xiℓ · y

T
ℓ

6: x′iℓ ← xiℓ + η · err · yℓ
7: y′

ℓ
← yℓ + η · errT · xiℓ

8: a′i = a′i − xiℓ · y
T
ℓ

9: end for
10: return (Y′, x′i)
11: end procedure

by filling in one column at a time sequentially in both matrices.

A more efficient and robust approach is to let all rank-1 approximations in this

sequential naive approach evolve at the same time. Intuitively, when there is a

reasonable estimate of the singular vector corresponding to the largest singular

value, then the next vector can already start progressing in the right direction,

and so on. This idea is implemented in Algorithm 6.17.

6.4.3 Synchronized Rank-k SVD

As a baseline method in our experimental evaluation, we will use a synchro-

nized version of Algorithm 6.15 with the update rule in Algorithm 6.17. In this

version (shown in Algorithm 6.18), the rank-1 updates are done over the entire

matrix A at once, and there is only one central version of the approximation of Y

as opposed to the several independent versions we had previously. As in Algo-

rithm 6.15, the matrices X and Y are initialized with uniform random values from

[0, 1]. Note that this algorithm listing uses a different notation: here xℓ denotes

the ℓ-th column, not the ℓ-th row.

Note that – although it is formulated as a centralized sequential algorithm –

this algorithm can easily be adapted for the MapReduce framework, where the

mappers compute parts of the gradients (e.g., the gradients of the rows of A as in

Algorithm 6.17) while the reducer sums up the components of the gradient and

executes the update steps.

78 6.5. EXPERIMENTS

Algorithm 6.18 Iterative synchronized rank-k SVD

1: A ⊲ The matrix to be factorized
2: η ⊲ learning rate
3: initialize Y
4: initialize X
5: while not converged do
6: A′ = A
7: for ℓ = 1 to k do
8: err← A′ − xℓ · y

T
ℓ

⊲ xℓ : column ℓ of X
9: ⊲ yℓ : column ℓ of Y

10: x′
ℓ
← xℓ + η · err · yℓ

11: y′
ℓ
← yℓ + η · errT · xℓ

12: A′ = A′ − xℓ · y
T
ℓ

13: end for
14: X = X′; Y = Y′

15: end while

6.5 Experiments

Here we demonstrate various properties of our algorithm including convergence

speed, scalability and robustness. Our testbed of matrices includes standard ma-

chine learning test data sets as well as synthetic matrices with controllable prop-

erties.

In the case of the distributed algorithms the number of nodes in the network

equals the number of rows of the matrix to be factorized, since every node has

exactly one row of the matrix. We used the PeerSim [84] simulator with the event-

based engine, and we implemented the peer sampling service by the NEWS-

CAST [107] protocol.

6.5.1 Algorithms

Here we provide names for the algorithms we include in our experiments. Algo-

rithm 6.15 with the update rule in Algorithm 6.17 (our main contribution) will be

referred to as Fully Distributed SVD (FUDISVD). Replacing Algorithm 6.17 with

Algorithm 6.16 we get Fully Distributed Low Rank Decomposition (FUDILRD).

Recall that this algorithm will converge to a rank-k decomposition that is not nec-

CHAPTER 6. SINGULAR VALUE DECOMPOSITION 79

essarily the SVD of A. Algorithm 6.18 will be called Gradient SVD (GRADSVD).

Recall that this algorithm can be parallelized: for example, the gradient can be

calculated row by row and then summed up to get the full gradient.

Finally, we introduce a baseline algorithm, Stochastic Gradient SVD (SGSVD).

This algorithm uses the update rule in Algorithm 6.17 but we have only a single

approximation Y at any point in time, and there is only one process which repeat-

edly gets random rows of A and then applies the update rule in Algorithm 6.17

to the current approximation Y and the corresponding row of X.

6.5.2 Error Measures

Cosine similarity To measure the difference between the correct and the approx-

imated singular vectors, we used cosine similarity, because it is not sensitive to

the scaling of the vectors (recall that our algorithm does not guarantee unit-length

columns in X and Y). The formula to measure the error of a rank-k decomposition

XYT is

Error(X, Y) =
1
2k

k

∑
i=1

1−

∣∣∣∣∣
yT

i vi

‖yi‖

∣∣∣∣∣+ 1−

∣∣∣∣∣
xT

i ui

‖xi‖

∣∣∣∣∣ , (6.6)

where xi, yi, ui and vi are column vectors of X, Y, Uk and Vk, respectively. Matrices

Uk and Vk are orthogonal matrices defined in Section 6.3.

Frobenius norm Another measure of error is given by function J(X, Y) defined

in Equation (6.1). The advantage of this measure is that it can be applied to Al-

gorithm 6.16 as well. However, obviously, this error measure does not reflect

whether the calculated matrices X and Y contain scaled singular vectors or not;

it simply measures the quality of rank-k approximation. On the plots we call this

error measure FNORM.

6.5.3 Data Sets

Synthetic data We included experiments on synthetic data so that we can evalu-

ate the scalability and the fault tolerance of our method in a fully controlled way.

We first generated random singular vectors producing matrices U and V with the

80 6.5. EXPERIMENTS

Table 6.1. The main properties of the real data sets

Iris Pendigits Segmentation
Number of instances (m) 150 10992 2310
Number of features (n) 4 16 19
Minimal k such that 2 10 5
∑

k
i=1 σ2

i / ∑
n
i=1 σ2

i > 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

E
rr

o
r

Number of Iterations (∆)

Results on Iris data set

GradSVD
FuDiSVD

GradSVD (scaled)
SGSVD

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

E
rr

o
r

Number of Iterations (∆)

Results on Pendigits data set

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

E
rr

o
r

Number of Iterations (∆)

Results on Segmentation data set

Figure 6.1. Convergence on the real data sets. Error is based on cosine similarity. In the
scaled version of GRADSVD the number of iterations is multiplied by log10 m (see text).

help of the butterfly technique [42]. Since matrices to be decomposed often orig-

inate from graphs, and since the node degrees and the spectrum of real graphs

usually follow a power law distribution [24, 81], the expected singular values

in the diagonal of Σ were generated from a Pareto distribution with parameters

xm = 1 and α = 1. This way we construct a matrix A = UΣVT where we know

and control the singular vectors and values.

CHAPTER 6. SINGULAR VALUE DECOMPOSITION 81

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 100 1000 10000

F
N

o
rm

Number of Iterations (∆)

Results on Iris data set

FuDiSVD
FuDiLRD

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 100 1000 10000

F
N

o
rm

Number of Iterations (∆)

Results on Pendigits data set

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10 100 1000 10000

F
N

o
rm

Number of Iterations (∆)

Results on Segmentation data set

Figure 6.2. Convergence on the real data sets. Error is based on the Frobenius norm.
Horizontal dashed lines in top-down order show the FNORM value for the optimal rank-
i approximations for i = 1, . . . , k.

Real data These matrices were constructed from data sets from the well known

UCI [12] machine learning repository. In these applications the role of SVD is di-

mensionality reduction and feature extraction. The selected data sets are the Iris,

the Pendigits (Pen-Based Recognition of Handwritten Digits) and the Segmen-

tation (Statlog (Image Segmentation)) data sets. Parameter k was set so that the

approximation has at least 90% of the information in the data set, that is, we set

the minimal k such that ∑
k
i=1 σ2

i / ∑
n
i=1 σ2

i > 0.9 [4]. Table 6.1 illustrates the main

properties of the selected data sets. In order to be able to compute the error over

these matrices, we computed the exact singular value decomposition using the

Jama [86] library.

82 6.5. EXPERIMENTS

6.5.4 Convergence

The experimental results are shown in Figures 6.1 and 6.2. We tested the con-

vergence speed of the algorithms over the real data sets with parameter k set

according to Table 6.1.

Figure 6.1 illustrates the deviation from the exact singular vectors. GRADSVD

is the fastest to converge, however, it either needs a central database to store A,

or it requires a synchronized master-slave communication model when paral-

lelized. We also show a reference curve that is calculated by scaling the number

of iterations by log10 m for GRADSVD. The motivation is a more scalable poten-

tial implementation of GRADSVD in which there is a hierarchical communication

structure in place where nodes propagate partial sums of the gradient up a tree

(with a branching factor of 10) instead of each node communicating with a central

server as in [16]. This curve almost completely overlaps with that of FUDISVD,

our fully distributed robust algorithm.

We also illustrate the speedup w.r.t. SGSVD. The major difference between

SGSVD and FUDISVD is that in FUDISVD there are m different approximations

of Y all of which keep updating the rows of X simultaneously, while in SGSVD

there is only one version of Y. Other than that, both algorithms apply exactly the

same gradient update rule. In other words, in FUDISVD any row of X experi-

ences m times as many updates in one unit of time.

Figure 6.2 illustrates the difference between FUDILRD and FUDISVD. Both

optimize the same error function (that is shown on the plots), however, FUD-

ISVD introduces the extra constraint of aiming for the singular vectors of A. For-

tunately this extra constraint does not slow down the convergence significantly

in the case of the data sets we examined, although it does introduce a bumpier

convergence pattern. The reason is that the singular vectors converge in a se-

quential order, and the vectors that belong to smaller singular values might have

to be completely re-oriented when the singular vectors that preceed them in the

order of convergence have converged.

CHAPTER 6. SINGULAR VALUE DECOMPOSITION 83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

E
rr

o
r

Number of Iterations (∆)

Results on different size data sets

16x16
128x16

1,024x16
16,384x16

131,072x16
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

E
rr

o
r

Number of Iterations (∆)

Results on different feature size data sets

16x16
16x128
16x1,024
16x16,384
16x131,072

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

E
rr

o
r

Number of Iterations (∆)

Results on different size data sets

16x1,024
128x1,024

1,024x1,024
16,384x1,024

131,072x1,024
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

E
rr

o
r

Number of Iterations (∆)

Results on different feature size data sets

1,024x16
1,024x128
1,024x1,024
1,024x16,384
1,024x131,072

Figure 6.3. Results on synthetic data sets using networks of different dimensions. We set
k = 1, and all the matrices had a rank of 16.

6.5.5 Scalability

For evaluating the scalability of FUDISVD we generated a range of synthetic ma-

trices of various sizes using the method described earlier. Figure 6.3 shows the

outcome of the experiments. Clearly, the method is somewhat more sensitive to

changing the number of nodes (that is, to varying the first dimension m) than to

varying the second dimension n (the length of a row). This is not surprising as the

full row of A is always used at once in an update step, irrespective of its length,

whereas a larger m requires visiting more nodes, which takes more iterations.

However, when m is large, we can apply sampling techniques [33]. That is,

we can consider only a small sample of the network drawn uniformly or from

an appropriately biased distribution and calculate a high quality SVD based on

that subset. To illustrate such sampling techniques, we implemented uniform

sampling. When we wish to select a given proportion p of the nodes, each node

84 6.5. EXPERIMENTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

E
rr

o
r

Number of Iterations (∆)

Results on Iris data set

FuDiSVD
50% sampled
33% sampled

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

E
rr

o
r

Number of Iterations (∆)

Results on Pendigits data set

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

E
rr

o
r

Number of Iterations (∆)

Results on Segmentation data set

Figure 6.4. Results when only the 50/33% randomly sampled instances were used from
the data set.

decides locally about joining the sample with a probability p. The size of the

resulting sample will follow the binomial distribution B(N, p).

Figure 6.4 shows our experimental results with p = 1/2 and p = 1/3. Clearly,

while communication costs overall are decreased proportionally to the sample

size, on our benchmark both precision and convergence speed remain almost un-

changed. The only exception is the Iris data set. However, that is a relatively

small data set over which the variance of our uniform sampling method is rel-

atively high (note, for example, that the run with p = 1/3 resulted in a better

performance than with p = 1/2).

6.5.6 Failure Scenarios

We used two different failure scenarios: a mild and a hard one. In the two scenar-

ios message delay was drawn uniformly at random from between ∆ and 5∆ or

CHAPTER 6. SINGULAR VALUE DECOMPOSITION 85

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

E
rr

o
r

Number of Iterations (∆)

Results in mild failure scenarios

No Failure
Delay 5∆

Churn 50%
Drop 20%
All Failure

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

E
rr

o
r

Number of Iterations (∆)

Results in hard failure scenarios

No Failura
Delay 10∆

Churn 80%
Drop 50%
All Failure

Figure 6.5. Results in different failure scenarios using a 1024× 1024 synthetic matrix with
a rank of 16. We set k = 1.

10∆ time units, respectively. Messages were dropped with a probability of 20%

or 50%, respectively.

Node churn was modeled taking into account statistics from a BitTorrent trace [97]

as well as known empirical findings [105]. We draw the online session length for

each node independently from a lognormal probability distribution with param-

eters µ = 5∆ and σ = 0.5∆. Offline session lengths are determined implicitly by

fixing the number of nodes that are offline at the same time. For the two scenarios

50% or 80% of the nodes were offline at the same time, respectively.

The results of the algorithms in these extreme failure scenarios can be seen in

Figure 6.5. As we can see, the different types of failures (whether examined sepa-

rately or combined together) result only in delay on the convergence rate, but the

algorithm still converges. This is in sharp contrast with competing approaches

that require synchronization, such as GRADSVD, for example.

An interesting observation is that when only churn is modeled, at the begin-

ning of the simulation convergence is actually faster. This effect is due to the fact

that since most of the nodes are offline, the effective network is smaller, but this

small sample still allows for an approximation of the SVD. However, convergence

eventually slows down as full precision cannot be reached without taking most

of the nodes into account in the particular matrix we experiment with.

86 6.6. CONCLUSIONS

6.6 Conclusions

In this chapter we proposed an SGD algorithm with an update rule that is based

on the GOLF idea and has stable fix points only in the SVD of a matrix A. The

output of the algorithm for rank k are two matrices X and Y that contain scaled

versions of the first k left and right singular vectors of A, respectively. Matrices X

and Y are unique apart from the scaling of the columns.

The most important feature of the algorithms is a P2P sense privacy preserva-

tion: we operate over fully distributed data where each network node stores one

full row of A as its private data. The output matrix X is also fully distributed:

node i that stores row i of A computes row i of X, the private model for the node.

Matrices A and X are private in that only the node that stores a given row has

access to it. A version of the matrix Y is available in full at all nodes.

Through experimental evaluation we studied the convergence speed of the

algorithm, and showed that it is competitive with other gradient methods that

require more freedom for data access. We also demonstrated the remarkable ro-

bustness of the method in extreme failure scenarios.

Our future work includes addressing interesting challenges such as dynam-

ically changing data, and investigating methods for further improving the ef-

ficiency of the protocol, for example, through sampling from the rows and/or

columns of A using several sampling techniques.

CHAPTER 7

Summary

The main goal of this thesis was to present a possible way of machine learning on

fully distributed data without collecting and storing it in a central location. Here,

we expect that a huge number of computational units solve machine learning

tasks together and communicate with each other via message passing only. We

presented a gossip-based framework to handle this learning problem. Within

this framework, various algorithms can be applied. In Chapter 3 we described

this framework and possible instantiations of several learning algorithms. Then

in the later chapters we presented more sophisticated methods and applications

of this framework.

Here we give a short summary of this study, where each section corresponds

to a thesis point. At the end of these sections we give an itemized list of the main

contributions and the corresponding publications. Later in this chapter we give

a summary of our research in Hungarian as well.

7.1 Gossip-Based Machine Learning

We proposed gossip learning as a generic framework used to learn models, based

on stochastic gradient search, on fully distributed data in large scale P2P sys-

tems. The basic idea behind gossip learning is that many models perform random

88 7.2. FULLY DISTRIBUTED BOOSTING

walks in the network, while being updated at every node they visit. We presented

numerous instantiations of gossip-based learning algorithms e.g. Pegasos SVM,

Logistic Regression and ANN.

The framework makes it possible to compute predictions locally at every node

in the network at any point in time without additional communication cost. Fur-

thermore, it has an acceptable message complexity: each node sends one message

in each gossip cycle.

The proposed framework supports privacy preservation, since the data never

leaves the node that stores it. The private data can be observed only by sending

specific models for a node and monitoring its results.

Main contributions:

• A fully distributed learning framework (GOLF);

• Numerous implemented algorithms;

• The models can be used locally for every node;

• The framework supports privacy preservation;

• The corresponding paper is: [89]

7.2 Fully Distributed Boosting

We demonstrated that the above-described gossip learning framework is suitable

for the implementation of a multi-class boosting algorithm. To achieve this, we

proposed a modification of the original FILTERBOOST which allows it to learn

multi-class models in a purely online way, and we proved theoretically that the

resulting algorithm optimizes a suitably defined negative log likelihood measure.

The significance of this result is that a state-of-the-art machine learning technique

from the point of view of the quality of the learned models is available in fully

distributed systems.

We also pointed out the lack of model diversity as a potential problem with

GOLF. We provided a solution that is effective in preserving the difference be-

CHAPTER 7. SUMMARY 89

tween the best model and the average models. This allowed us to propose spread-

ing the best model as a way of benefitting from the large number of models in the

network.

Main contributions:

• An implementation of a fully distributed multi-class boosting method;

• An online version of the FILTERBOOST and the theoretical derivation;

• The model diversity preservation aspect of the GOLF;

• The corresponding paper is: [52]

7.3 Handling Concept Drift

Here, we proposed adaptive versions of our GOLF framework: ADAGOLF and

CDDGOLF. With these methods the framework is capable of handling the change

in the data patterns that we want to learn. In the case of ADAGOLF, the adaptiv-

ity is implemented through the management of the age distribution of the models

in the network, ensuring that there is sufficient diversity of different ages in the

pool. This method results that in the network there will be young (adaptive) and

old (high performance) models. CDDGOLF also restarts some of the models, but

this decision is based on the performance history of the model. This method can

detect the occurrence of the concept drift as well.

Our main conclusion is that in those scenarios where the sampling rate from

the underlying distribution is low relative to the speed of drift, our solutions

clearly outperform all the baseline solutions, approximating the “God’s Eye view”

model, which represents the best possible performance.

We also showed that our algorithms can be enhanced to deal with (or rather,

be robust to) higher sample rates as well, although in this case purely local model

building can also be sufficient.

Main contributions:

• Two adaptive learning mechanism for GOLF, based on model restarts

90 7.4. SINGULAR VALUE DECOMPOSITION

– One of them maintains the age distribution of the models

– The other resets the models that have low performance;

• Drift handling and detection capabilities;

• High performance on low sampling rate;

• The corresponding papers are: [50, 51, 53]

7.4 Singular Value Decomposition

Here, we proposed an SGD algorithm with an update rule that solves the problem

of the low-rank decomposition of a matrix in a fully distributed manner. Addi-

tionally, we proposed a modification that has stable fix points only in the SVD

of a matrix A. The output of the algorithm for rank k are two matrices X and

Y that contain scaled versions of the first k left and right singular vectors of A,

respectively. Matrices X and Y are unique apart from the scaling of the columns.

Matrices A and X are private, that is only the node which stores a given row

has access to it. A version of the matrix Y is available in full at all nodes.

Through experimental evaluation we studied the convergence speed of the

algorithm, and showed that it is competitive with other gradient methods that

require more freedom for data access. We also demonstrated the remarkable ro-

bustness of the method in extreme failure scenarios.

Main contributions:

• An SGD based matrix low-rank decomposition technique in GOLF;

• A method that converges to a solution that corresponds to the singular

value decomposition;

• The node related parts of matrices (the sensitive data) never leave the nodes;

• The corresponding paper is: [49]

Összefoglaló

A tézis fő célkitűzése egy olyan módszer bemutatása, amely segítségével telje-

sen elosztott adatbázisokon alkalmazhatunk gépi tanuló módszereket anélkül,

hogy az adatokat egy központi helyre összegyűjtenénk. Az elvárásunk az, hogy

a nagyszámú számítástechnikai eszköz együttműködve oldja meg a gépi tanulási

problémákat kizárólag üzenetküldések segítségével. Bemutattunk egy pletyka-

alapú keretrendszert, amely képes megoldani a fent említett problémát. A har-

madik fejezetben részletesen bemutattuk e keretrendszert, valamint számos, a

keretrendszerben alkalmazható tanuló algoritmust. A későbbi fejezetekben pe-

dig fejlettebb módszereket és a keretrendszer alkalmazhatóságát vizsgáltuk.

Ebben a fejezetben adunk egy összefoglalót a disszertációról, melynek az al-

fejezetei az egyes tézispontokhoz tartozó eredményeket mutatják be. Ezen al-

fejezetek végén pontokba szedve kiemeljük az elért eredményeket, valamint a

kapcsolódó publikációkat.

7.5. Pletykaalapú gépi tanulás

Bemutattunk egy pletykaalapú általános keretrendszert, amely gépi tanuló mo-

dellek sztochasztikus gradiens alapú tanítását teszi lehetővé P2P rendszerekben,

teljesen elosztott adatok felett. A pletykaalapú tanulás alapötlete, hogy model-

92 7.6. TELJESEN ELOSZTOTT TURBÓZÁS

lek vándorolnak a hálózat elemein véletlen sétát leírva, miközben az eszközök

frissítik a fogadott modelleket. A fejezetben bemutattunk számos gépi tanuló al-

goritmust, amelyek beilleszthetők ebbe a keretbe, mint például: Pegasos SVM,

Logistic Regression, ANN.

A keretrendszer lehetővé teszi a hálózati csomópontok számára a predikció

lokális kiszámítását, bármilyen üzenet küldése nélkül. Továbbá a kommunikáci-

ós költsége is kielégítő, csomópontonként egy-egy üzenet elküldés történik min-

den ciklusban.

Azáltal, hogy a lokális adat sosem hagyja el az eszközt, amely tárolja azt, a

keretrendszer támogatja az érzékeny adatok védelmét. Ezen adatok csak speciá-

lisan kialakított modellek segítségével figyelhetők meg.

Fő eredmények:

• Teljesen elosztott tanuló keretrendszer (GOLF);

• Számos megvalósított tanuló algoritmus;

• Lokálisan használható modellek;

• Érzékeny adatok védelmének támogatása;

• Kapcsolódó publikáció: [89]

7.6. Teljesen elosztott turbózás

Bemutattuk, hogy a fenti keretrendszer alkalmas a többosztályos turbózás meg-

valósítására is. Ennek elérése érdekében bemutattunk egy módosított FILTERBO-

OST algoritmust, amely így teljesen online módon képes többosztályos modellek

tanítására. Elméletileg igazoltuk, hogy a definiált módszer optimalizálja a meg-

adott negatív log-likelihood mértéket. Az eredmények jelentősége, hogy a gépi

tanuló modell minősége szempontjából fejlett algoritmusok is alkalmazhatók tel-

jesen elosztott rendszerekben.

Továbbá rámutattunk, hogy a modellek diverzitásának csökkenése lehetséges

probléma a GOLF keretrendszerben. Adtunk egy megoldást, amely segítségével

fenntartható a hálózatban jelen lévő modellek változatossága. Ez lehetővé teszi a

CHAPTER 7. SUMMARY 93

legjobb modellek elterjesztését az eszközökön, kihasználva a hálózatban rendel-

kezésre álló modellek számát.

Fő eredmények:

• Elosztott többosztályos turbózás megvalósítása;

• Online FILTERBOOST algoritmus és elméleti levezetése;

• A modellek változatosságának fenntartása a GOLF keretrendszerben;

• Kapcsolódó publikáció: [52]

7.7. Fogalomsodródás kezelése

Bemutattuk a GOLF keretrendszer két adaptív változatát, melyek az ADAGOLF

és a CDDGOLF. Ezekkel a módszerekkel a keretrendszer alkalmas az adatokban

rejlő azon minták változásának kezelésére, amelyeket meg akarunk tanulni. Az

ADAGOLF esetén az adaptivitást a hálózatban jelen lévő modellek életkoreloszlá-

sának fenntartásával értük el, figyelve a megfelelő változatosság fenntartására az

életkorokban. Így a hálózatban lesznek fiatal (adaptív) és idős (jó teljesítményű)

modellek. A CDDGOLF szintén a modellek újraindításával éri el az adaptivi-

tást, viszont a döntés itt a modell teljesítményének az előzményétől függ. Ezen

módszer képes jelezni az eloszlás változását is.

A legfőbb eredményünk azon esetekhez köthető, amikor az eloszlás mintázá-

sának a sebessége viszonylag alacsony az eloszlás változásának a sebességéhez

képest. Ebben az esetben a módszerünk teljesítménye jelentősen felülmúlja az

alap algoritmusok eredményeit és megközelíti az elérhető legjobb teljesítményt.

Továbbá bemutattuk, hogy nagyobb mintavételezési sebesség esetén is alkal-

mazható a módszerünk, habár ebben az esetben a lokális adaton tanított modell

is kielégítő eredményt ér el.

Fő eredmények:

• Kétféle adaptív módszer a GOLF keretrendszerhez, melyek

– Egyike fenntartja a modellek életkorának eloszlását

94 7.8. SZINGULÁRIS FELBONTÁS

– A másik pedig újraindítja az alacsony teljesítményű modelleket;

• Eloszlás változásának követése, valamint detektálása;

• Kiemelkedő teljesítmény az eloszlás ritka mintavételezése esetén;

• Kapcsolódó publikációk: [50, 51, 53]

7.8. Szinguláris felbontás

Bemutattunk egy SGD alapú módszert, amely segítségével alacsony rangú mát-

rixfaktorizáció feladata oldható meg, teljesen elosztott környezetben. Továbbá a

módszer egy módosítását, amely egy A mátrix SVD felbontásához konvergál. Az

algoritmus eredménye k rang esetén azon X és Y mátrixok, amelyek az A mátrix

első k jobb és bal szinguláris vektorainak skálázott változatát tartalmazzák. Az X

és Y mátrixok egyediek, eltekintve az oszlopaik hosszától.

Az A és X mátrixok sorait csak azok az eszközök érik el, amelyek tárolják azt.

Az Y mátrix egy-egy példánya pedig lokálisan elérhető a hálózat összes eleme

számára.

A tapasztalati kiértékelések alapján vizsgáltuk az algoritmus konvergenciá-

jának sebességét, és bemutattuk, hogy versenyképes más gradiens alapú mód-

szerekhez képest, amelyek ráadásul extra adathozzáférést igényelnek. Továbbá a

módszer hálózati hibatűrő képessége is figyelemre méltó.

Fő eredmények:

• SGD alapú alacsony rangú matrixfelbontó módszer a GOLF keretben;

• Egy módszer, amely az SVD eredményéhez konvergál;

• Az érzékeny adatok nem hagyják el az eszközöket;

• Kapcsolódó publikáció: [49]

Acknowledgements

This thesis could not have been written without the support and inspiration of

numerous people. Here I would like to thank all of them.

Fist of all, I would like to thank my supervisor Márk Jelasity for his guid-

ance, for supporting my work with useful comments and letting me work at the

Research Group on Artificial Intelligence.

I would like to say thank you to my colleagues and friends who helped me

discovering interesting fields of science, which allowed me to find my own path.

They are listed here in alphabetic order: András Bánhalmi, Róbert Busa-Fekete,

Richárd Farkas, Róbert Ormándi and György Szarvas. Moreover, I would like to

thank Veronika Vincze for correcting this thesis from a linguistic point of view.

I would also like to thank to Emese Varga for her support and inspiration.

Last, but not least I wish to thank my parents for their love, support and for

believing in me.

References

[1] Filelist. http://www.filelist.org, 2005.

[2] Tarek Abdelzaher, Yaw Anokwa, Peter Boda, Jeff Burke, Deborah Estrin, Leonidas
Guibas, Aman Kansal, Samuel Madden, and Jim Reich. Mobiscopes for human
spaces. IEEE Pervasive Computing, 6(2):20–29, April 2007.

[3] Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of distri-
butions. In Proc. 18th Annual Conference on Learning Theory (COLT), pages 458–469,
2005.

[4] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition,
2010.

[5] Hock Ang, Vivekanand Gopalkrishnan, Steven Hoi, and Wee Ng. Cascade RSVM
in peer-to-peer networks. In Walter Daelemans, Bart Goethals, and Katharina
Morik, editors, Machine Learning and Knowledge Discovery in Databases (ECML
PKDD), volume 5211 of Lecture Notes in Computer Science, pages 55–70. Springer,
2008.

[6] Hock Ang, Vivekanand Gopalkrishnan, Wee Ng, and Steven Hoi. Communication-
efficient classification in P2P networks. In Wray Buntine, Marko Grobelnik, Dunja
Mladenic, and John Shawe-Taylor, editors, Machine Learning and Knowledge Discov-
ery in Databases (ECML PKDD), volume 5781 of Lecture Notes in Computer Science,
pages 83–98. Springer, 2009.

[7] Hock Ang, Vivekanand Gopalkrishnan, Wee Ng, and Steven Hoi. On classifying
drifting concepts in P2P networks. In José Balcázar, Francesco Bonchi, Aristides
Gionis, and Michèle Sebag, editors, Machine Learning and Knowledge Discovery in

http://www.filelist.org

98 REFERENCES

Databases (ECML PKDD), volume 6321 of Lecture Notes in Computer Science, pages
24–39. Springer, 2010.

[8] Árpád Berta, István Hegedűs, and Márk Jelasity. Dimension reduction methods
for collaborative mobile gossip learning. In 2016 24th Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing (PDP), pages 393–397,
Feb 2016.

[9] Arthur U. Asuncion, Padhraic Smyth, and Max Welling. Asynchronous distributed
estimation of topic models for document analysis. Statistical Methodology, 8(1):3 –
17, 2011.

[10] Yossi Azar, Amos Fiat, Anna R. Karlin, Frank McSherry, and Jared Saia. Spectral
analysis of data. In Proc. 33rd Symposium on Theory of Computing (STOC), pages
619–626, 2001.

[11] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. A family of online boosting
algorithms. In Computer Vision Workshops (ICCV Workshops), pages 1346–1353, 2009.

[12] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[13] Manuel Baena-García, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, Ricard
Gavaldá, and Rafael Morales-Bueno. Early drift detection method. In Fourth Inter-
national Workshop on Knowledge Discovery from Data Streams, volume 6, pages 77–86,
2006.

[14] Arno Bakker, Elth Ogston, and Maarten van Steen. Collaborative filtering using
random neighbours in peer-to-peer networks. In Proceeding of the 1st ACM inter-
national workshop on Complex networks meet information and knowledge management
(CNIKM ’09), pages 67–75, New York, NY, USA, 2009. ACM.

[15] Ron Bekkerman, Mikhail Bilenko, and John Langford, editors. Scaling up Machine
Learning: Parallel and Distributed Approaches. Cambridge University Press, Decem-
ber 2011.

[16] Austin R. Benson, David F. Gleich, and James Demmel. Direct qr factorizations for
tall-and-skinny matrices in mapreduce architectures. CoRR, 2013.

[17] Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. Using linear algebra
for intelligent information retrieval. SIAM Review, 37(4):573–595, 1995.

[18] Árpád Berta, István Hegedűs, and Róbert Ormándi. Lightning fast asynchronous
distributed k-means clustering. In 22th European Symposium on Artificial Neural Net-
works, ESANN 2014, pages 99–104, 2014.

[19] Kanishka Bhaduri, Ran Wolff, Chris Giannella, and Hillol Kargupta. Distributed
decision-tree induction in peer-to-peer systems. Stat. Anal. Data Min., 1:85–103,
June 2008.

REFERENCES 99

[20] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[21] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Yves Lechevallier and Gilbert Saporta, editors, Proceedings of the 19th International
Conference on Computational Statistics (COMPSTAT’2010), pages 177–187, Paris,
France, August 2010. Springer.

[22] Joseph K. Bradley and Robert E. Schapire. FilterBoost: Regression and classification
on large datasets. In Advances in Neural Information Processing Systems, volume 20.
The MIT Press, 2008.

[23] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, An-
drew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning on multicore.
In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19 (NIPS 2006), pages 281–288. MIT Press, 2007.

[24] Fan Chung, Linyuan Lu, and Van Vu. Eigenvalues of random power law graphs.
Annals of Combinatorics, 7(1):21–33, 2003.

[25] M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Breg-
man distances. Machine Learning, 48:253–285, 2002.

[26] Terence Craig and Mary E. Ludloff. Privacy and Big Data. O’Reilly Media, Septem-
ber 2011.

[27] Nello Cristianini and John Shawe-Taylor. An introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, 2000.

[28] Souptik Datta, Kanishka Bhaduri, Chris Giannella, Ran Wolff, and Hillol Kargupta.
Distributed data mining in peer-to-peer networks. IEEE Internet Comp., 10(4):18–26,
July 2006.

[29] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, January 2008.

[30] Sarah Jane Delany, Pádraig Cunningham, Alexey Tsymbal, and Lorcan Coyle. A
case-based technique for tracking concept drift in spam filtering. Know.-Based Syst.,
18(4-5):187–195, August 2005.

[31] Anton Dries and Ulrich Rückert. Adaptive concept drift detection. Stat. Anal. Data
Min., 2(56):311–327, December 2009.

[32] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V. Vinay. Clus-
tering large graphs via the singular value decomposition. Machine Learning, pages
9–33, 2004.

[33] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo algo-

100 REFERENCES

rithms for matrices ii: Computing a low-rank approximation to a matrix. SIAM J.
Comput., 36(1):158–183, 2006.

[34] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. Competitive recom-
mendation systems. In Proc. 34th Symposium on Theory of Computing (STOC), pages
82–90, 2002.

[35] Wei Fan, Salvatore J. Stolfo, and Junxin Zhang. The application of AdaBoost for
distributed, scalable and on-line learning. In Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’99, pages
362–366, New York, NY, USA, 1999. ACM.

[36] Tom Fawcett. An introduction to ROC analysis. Pattern recognition letters, 27(8):861–
874, 2006.

[37] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.
In Proceedings of the Thirteenth International Conference on Machine Learning (ICML
1996), pages 148–156, 1996.

[38] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. J. of Comp. and Syst. Sci., 55:119–139, 1997.

[39] Jerome H. Friedman. Stochastic gradient boosting. Comput. Stat. Data Anal.,
38(4):367–378, February 2002.

[40] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with
drift detection. In Advances in Artificial Intelligence, Proceedings of SBIA 2004, volume
3171 of LNCS, pages 286–295. Springer, 2004.

[41] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale
matrix factorization with distributed stochastic gradient descent. In Proc. 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 69–77. ACM, 2011.

[42] Alan Genz. Methods for generating random orthogonal matrices. In H. Niederre-
iter and J. Spanier, editors, Proc. Monte Carlo and Quasi-Monte Carlo Methods (MC-
QMC 1998), pages 199–213. Springer, 1999.

[43] Genevieve Gorrell. Generalized Hebbian algorithm for incremental singular value
decomposition in natural language processing. In Diana McCarthy and Shuly
Wintner, editors, Proc. 11th Conference of the European Chapter of the Association for
Computational Linguistics (EACL). The Association for Computer Linguistics, 2006.

[44] Geoffrey Grimmett and David Stirzaker. Probability and Random Processes. Texts
from Oxford University Press. Oxford University Press, 2001.

[45] Isabelle Guyon, Asa Ben Hur, Steve Gunn, and Gideon Dror. Result analysis of the

REFERENCES 101

nips 2003 feature selection challenge. In Advances in Neural Information Processing
Systems 17, pages 545–552. MIT Press, 2004.

[46] Peng Han, Bo Xie, Fan Yang, Jiajun Wang, and Ruimin Shen. A novel distributed
collaborative filtering algorithm and its implementation on P2P overlay network.
In Honghua Dai, Ramakrishnan Srikant, and Chengqi Zhang, editors, Advances
in Knowledge Discovery and Data Mining, volume 3056 of LNCS, pages 106–115.
Springer, 2004.

[47] István Hegedűs, Árpád Berta, Levente Kocsis, András A. Benczúr, and Márk Jela-
sity. Robust decentralized low-rank matrix decomposition. ACM Trans. Intell. Syst.
Technol., 7(4):62:1–62:24, May 2016.

[48] István Hegedűs and Márk Jelasity. Distributed differentially private stochastic gra-
dient descent: An empirical study. In 2016 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP), pages 566–573, Feb 2016.

[49] István Hegedűs, Márk Jelasity, Levente Kocsis, and András A. Benczúr. Fully dis-
tributed robust singular value decomposition. In Proceedings of the 14th IEEE Four-
teenth International Conference on Peer-to-Peer Computing (P2P), P2P’14. IEEE, 2014.

[50] István Hegedűs, Lehel Nyers, and Róbert Ormándi. Detecting concept drift in
fully distributed environments. In 2012 IEEE 10th Jubilee International Symposium
on Intelligent Systems and Informatics, SISY’12, pages 183–188. IEEE, 2012.

[51] István Hegedűs, Róbert Ormándi, and Márk Jelasity. Massively distributed concept
drift handling in large networks. Advances in Complex Systems, 16(4&5):1350021,
2013.

[52] István Hegedűs, Busa-Fekete Róbert, Ormándi Róbert, Jelasity Márk, and Kégl
Balázs. Peer-to-peer multi-class boosting. In Christos Kaklamanis, Theodore Pa-
patheodorou, and Paul Spirakis, editors, Euro-Par 2012 Parallel Processing, volume
7484 of Lecture Notes in Computer Science, pages 389–400. Springer Berlin / Heidel-
berg, 2012.

[53] István Hegedűs, Ormándi Róbert, and Jelasity Márk. Gossip-based learning under
drifting concepts in fully distributed networks. In 2012 IEEE Sixth International
Conference on Self-Adaptive and Self-Organizing Systems, SASO’12, pages 79–88. IEEE,
2012.

[54] Chase Hensel and Haimonti Dutta. GADGET SVM: a gossip-based sub-gradient
svm solver. In International Conference on Machine Learning (ICML), Numerical Math-
ematics in Machine Learning Workshop, 2009.

[55] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data
streams. In Proceedings of the seventh ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD ’01, pages 97–106, New York, NY, USA, 2001.
ACM.

102 REFERENCES

[56] Sibren Isaacman, Stratis Ioannidis, Augustin Chaintreau, and Margaret Martonosi.
Distributed rating prediction in user generated content streams. In Proc. Fifth ACM
Conf. on Rec. Sys., pages 69–76. ACM, 2011.

[57] Márk Jelasity, Geoffrey Canright, and Kenth Engø-Monsen. Asynchronous dis-
tributed power iteration with gossip-based normalization. In Euro-Par 2007, vol-
ume 4641 of LNCS, pages 514–525. Springer, 2007.

[58] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based aggregation
in large dynamic networks. ACM Trans. on Computer Systems, 23(3):219–252, August
2005.

[59] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-Man: Gossip-based fast
overlay topology construction. Computer Networks, 53(13):2321–2339, 2009.

[60] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and
Maarten van Steen. Gossip-based peer sampling. ACM Transactions on Computer
Systems, 25(3):8, August 2007.

[61] Ravindran Kannan, Hadi Salmasian, and Santosh Vempala. The spectral method
for general mixture models. In Proc. 18th Annual Conference on Learning Theory
(COLT), pages 444–457, 2005.

[62] Balázs Kégl and Róbert Busa-Fekete. Boosting products of base classifiers. In Intl.
Conf. on Machine Learning, volume 26, pages 497–504, Montreal, Canada, 2009.

[63] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of
aggregate information. In Proc. 44th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’03), pages 482–491. IEEE Computer Society, 2003.

[64] David Kempe and Frank McSherry. A decentralized algorithm for spectral analy-
sis. In Proc. 36th Symposium on Theory of Computing (STOC), pages 561–568. ACM,
2004.

[65] Jon Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, 1999.

[66] J. Zico Kolter and Marcus A. Maloof. Dynamic weighted majority: An ensemble
method for drifting concepts. J. Mach. Learn. Res., 8:2755–2790, December 2007.

[67] Satish Babu Korada, Andrea Montanari, and Sewoong Oh. Gossip PCA. In Proc.
ACM SIGMETRICS joint int. conf. on Measurement and modeling of comp. sys., pages
209–220. ACM, 2011.

[68] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, 2009.

REFERENCES 103

[69] Wojtek Kowalczyk and Nikos Vlassis. Newscast EM. In 17th Advances in Neural
Information Processing Systems (NIPS), pages 713–720, Cambridge, MA, 2005. MIT
Press.

[70] N.D. Lane, E. Miluzzo, Hong Lu, D. Peebles, T. Choudhury, and A.T. Campbell.
A survey of mobile phone sensing. Communications Magazine, IEEE, 48(9):140–150,
September 2010.

[71] Terran Lane and Carla E. Brodley. Approaches to online learning and concept drift
for user identification in computer security. In Proceedings of the 4th International
Conference on Knowledge Discovery and Datamining, 1998.

[72] Quoc Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg
Corrado, Jeff Dean, and Andrew Ng. Building high-level features using large scale
unsupervised learning. In John Langford and Joelle Pineau, editors, Proc. 29th In-
ternational Conference on Machine Learning (ICML), pages 81–88. Omnipress, 2012.

[73] Yongjun Liao, Pierre Geurts, and Guy Leduc. Network distance prediction based
on decentralized matrix factorization. In Mark Crovella, LauraMarie Feeney, Dan
Rubenstein, and S.V. Raghavan, editors, Proc. 9th Int. IFIP TC 6 Netw. Conf., volume
6091 of LNCS, pages 15–26. Springer, 2010.

[74] Qing Ling, Yangyang Xu, Wotao Yin, and Zaiwen Wen. Decentralized low-rank
matrix completion. In Proceedings of the 2012 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 2925–2928, March 2012.

[75] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. Graphlab: A new parallel framework for machine learn-
ing. In Conf. on Uncertainty in Artif. Intel., 2010.

[76] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. Distributed graphlab: A framework for machine learn-
ing and data mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727,
2012.

[77] Ping Luo, Hui Xiong, Kevin Lü, and Zhongzhi Shi. Distributed classification in
peer-to-peer networks. In Proceedings of the 13th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’07, pages 968–976, New York,
NY, USA, 2007. ACM.

[78] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying
suspicious URLs: an application of large-scale online learning. In Proceedings of the
26th Annual International Conference on Machine Learning (ICML ’09), pages 681–688,
New York, NY, USA, 2009. ACM.

[79] David A. McGrew and Scott R. Fluhrer. Multiple forgery attacks against message
authentication codes. IACR Cryptology ePrint Archive, 2005:161, 2005.

104 REFERENCES

[80] Frank McSherry. Spectral partitioning of random graphs. In Proc. 42nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 529–537, 2001.

[81] Milena Mihail and Christos Papadimitriou. On the eigenvalue power law. In
José D.P. Rolim and Salil Vadhan, editors, Rand. and Approx. Tech. in Comp. Sci.,
volume 2483 of LNCS, pages 254–262. Springer, 2002.

[82] Leandro L Minku, Allan P White, and Xin Yao. The impact of diversity on online
ensemble learning in the presence of concept drift. Knowledge and Data Engineering,
IEEE Transactions on, 22(5):730 –742, May 2010.

[83] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 2 edition, 1997.

[84] Alberto Montresor and Márk Jelasity. Peersim: A scalable P2P simulator. In Proc.
9th IEEE Int. Conf. on Peer-to-Peer Comp., pages 99–100. IEEE, 2009. extended ab-
stract.

[85] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina Taft, and
Dan Boneh. Privacy-preserving matrix factorization. In Proc. 2013 ACM SIGSAC
Conf. on Comp. and Comm. Security (CCS’13), pages 801–812. ACM, 2013.

[86] T. Nis. JAMA: A Java matrix package, 1999.

[87] Róbert Ormándi, István Hegedűs, and Márk Jelasity. Overlay management for
fully distributed user-based collaborative filtering. In Proceedings of the 16th inter-
national Euro-Par conference on Parallel processing: Part I, EuroPar’10, pages 446–457,
Berlin, Heidelberg, 2010. Springer-Verlag.

[88] Róbert Ormándi, István Hegedűs, and Márk Jelasity. Asynchronous peer-to-peer
data mining with stochastic gradient descent. In Proceedings of the 17th international
conference on Parallel processing - Volume Part I, Euro-Par’11, pages 528–540, Berlin,
Heidelberg, 2011. Springer-Verlag.

[89] Róbert Ormándi, István Hegedűs, and Márk Jelasity. Gossip learning with linear
models on fully distributed data. Concurrency and Computation: Practice and Experi-
ence, 25(4):556–571, 2013.

[90] N.C. Oza and S. Russell. Online bagging and boosting. In Proc. Eighth Intl. Workshop
on Artificial Intelligence and Statistics, 2001.

[91] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh Vem-
pala. Latent semantic indexing: A probabilistic analysis. Journal of Computer and
System Sciences, 61(2):217–235, 2000.

[92] Byung-Hoon Park and Hillol Kargupta. Distributed data mining: Algorithms, sys-
tems, and applications. In Nong Ye, editor, The Handbook of Data Mining. CRC Press,
2003.

REFERENCES 105

[93] Alex (Sandy) Pentland. Society’s nervous system: Building effective government,
energy, and public health systems. Computer, 45(1):31–38, January 2012.

[94] John R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, March 1986.

[95] Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann.
Math. Statist., 22(3):400–407, 09 1951.

[96] Thomas Rodenhausen, Mojisola Anjorin, Renato Domínguez García, and
Christoph Rensing. Context determines content: an approach to resource recom-
mendation in folksonomies. In Proceedings of the 4th ACM RecSys workshop on Rec-
ommender systems and the social web, RSWeb ’12, pages 17–24, New York, NY, USA,
2012. ACM.

[97] Jelle Roozenburg. Secure decentralized swarm discovery in Tribler. Master’s thesis,
Parallel and Distributed Systems Group, Delft University of Technology, 2006.

[98] Frank Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain mech-
anisms. Report (Cornell Aeronautical Laboratory). Spartan Books, 1962.

[99] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297–336, 1999.

[100] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos:
primal estimated sub-gradient solver for SVM. Mathematical Programming B, 2010.

[101] Stefan Siersdorfer and Sergej Sizov. Automatic document organization in a P2P
environment. In Advances in Information Retrieval, volume 3936 of LNCS, pages
265–276. Springer, 2006.

[102] Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Proc.
20th International Conference on Machine Learning (ICML), pages 720–727. AAAI
Press, 2003.

[103] Stephen V Stehman. Selecting and interpreting measures of thematic classification
accuracy. Remote sensing of Environment, 62(1):77–89, 1997.

[104] W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-
scale classification. In Proceedings of the seventh ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, KDD ’01, pages 377–382, New York,
NY, USA, 2001. ACM.

[105] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks.
In Proc. 6th ACM SIGCOMM conf. on Internet Measurement (IMC), pages 189–202.
ACM, 2006.

[106] Balázs Szörényi, Róbert Busa-Fekete, István Hegedűs, Ormándi Róbert, Jelasity

106 REFERENCES

Márk, and Kégl Balázs. Gossip-based distributed stochastic bandit algorithms. In
Proceedings of The 30th International Conference on Machine Learning, volume 28(3) of
ICML’13, page 19–27. JMLR Workshop and Conference Proceedings, 2013.

[107] Norbert Tölgyesi and Márk Jelasity. Adaptive peer sampling with Newscast. In
Euro-Par 2009, volume 5704 of LNCS, pages 523–534. Springer, 2009.

[108] Amund Tveit. Peer-to-peer based recommendations for mobile commerce. In Proc.
1st Intl. workshop on Mobile commerce (WMC ’01), pages 26–29. ACM, 2001.

[109] Robbert van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A robust
and scalable technology for distributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems, 21(2):164–206, May 2003.

[110] Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. Characterising the differ-
ence. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’07, pages 765–774, New York, NY, USA, 2007. ACM.

[111] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting
data streams using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’03, pages 226–
235, New York, NY, USA, 2003. ACM.

[112] Geoffrey I. Webb, Michael J. Pazzani, and Daniel Billsus. Machine learning for user
modeling. User Modeling and User-Adapted Interaction, 11(1-2):19–29, March 2001.

[113] Guiying Wei, Tao Zhang, Sen Wu, and Lei Zou. An ensemble classifier method for
classifying data streams with recurrent concept drift. In Proceedings of the 4th Inter-
national Conference on Awareness Science and Technology (iCAST), pages 3–9, 2012.

[114] Bernard Widrow and Marcian E. Hoff. Adaptive Switching Circuits. In 1960 IRE
WESCON Convention Record, volume 4, pages 96–104, 1960.

[115] Martin A. Zinkevich, Alex Smola, Markus Weimer, and Lihong Li. Parallelized
stochastic gradient descent. In Advances in Neural Information Processing Systems 23
(NIPS 2010), pages 2595–2603, 2010.

[116] Indre Zliobaite. Learning under concept drift: an overview. Technical Report
1010.4784, arxiv.org, 2010.

	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background
	2.1 Supervised Learning
	2.2 Gradient Based Search
	2.3 System Model and Data Distribution
	2.4 An Overview of Fully Distributed Algorithms
	2.4.1 Peer Sampling
	2.4.2 Calculating Global Functions

	3 Gossip-Based Machine Learning
	3.1 Related Work
	3.2 Gossip Learning
	3.3 Learning Components
	3.3.1 Logistic Regression
	3.3.2 Pegasos SVM
	3.3.3 Perceptron
	3.3.4 Naive Bayes
	3.3.5 One vs. All Metaclassifier
	3.3.6 Artificial Neural Network

	3.4 Evaluating Algorithms
	3.5 Experiments
	3.5.1 Experimental Setup
	3.5.2 Results

	3.6 Conclusions

	4 Fully Distributed Boosting
	4.1 Background and Related Work
	4.2 Multi-Class Online FilterBoost
	4.3 Multi-Class Online Base Learning
	4.4 GoLF Boosting
	4.5 Experimental Results
	4.6 Conclusions

	5 Handling Concept Drift
	5.1 Related Work
	5.1.1 Non-Distributed Concept Drift Handling
	5.1.2 Handling Concept Drift in Fully Distributed Environments

	5.2 Background
	5.2.1 Concept Drift
	5.2.2 Diversity Preserving GoLF

	5.3 Algorithms
	5.3.1 AdaGoLF: Maintaining a Fixed Age Distribution
	5.3.2 CDDGoLF: Detecting Concept Drift
	5.3.3 The Learner Component
	5.3.4 Communication Complexity

	5.4 Experimental Setup
	5.4.1 Drift Dynamics and Drift Types
	5.4.2 Baseline Algorithms
	5.4.3 Data Sets
	5.4.4 Evaluation Metrics
	5.4.5 Simulation Scenarios

	5.5 Experimental Results
	5.5.1 Adaptivity
	5.5.2 Drift Detection
	5.5.3 The Effect of Sampling Rate
	5.5.4 Fault Tolerance
	5.5.5 Scalability
	5.5.6 Churn Revisited

	5.6 Conclusions

	6 Singular Value Decomposition
	6.1 Contributions
	6.2 Related Work
	6.3 Problem Definition
	6.3.1 Low-Rank and Singular Value Decomposition
	6.3.2 Data Distribution

	6.4 Algorithm
	6.4.1 Update Rule for General Rank-k Factorization
	6.4.2 Update Rule for Rank-k SVD
	6.4.3 Synchronized Rank-k SVD

	6.5 Experiments
	6.5.1 Algorithms
	6.5.2 Error Measures
	6.5.3 Data Sets
	6.5.4 Convergence
	6.5.5 Scalability
	6.5.6 Failure Scenarios

	6.6 Conclusions

	7 Summary
	7.1 Gossip-Based Machine Learning
	7.2 Fully Distributed Boosting
	7.3 Handling Concept Drift
	7.4 Singular Value Decomposition
	7.5 Pletykaalapú gépi tanulás
	7.6 Teljesen elosztott turbózás
	7.7 Fogalomsodródás kezelése
	7.8 Szinguláris felbontás

	References

