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1 Introduction

The thesis is devoted to the study of goodness of �t in the case of various dis-
tributions. Let X1, . . . , Xn be a sample (independent identically distriduted random
variables) from an unknown distribution with distribution function F . The simple hy-
pothesis is

H0 : F = F0,

where F0 is a given distribution function, and the composite hypothesis is

H0 : F ∈ F ,

where F denotes the family of probability distributions.
In Chapter 2 we collect the historical preliminaries using the comprehensive sum-

mary provided by del Barrio, Cuesta-Albertos and Matrán [9]. For the overview we
recall the �rst tests which are suitable for goodness of �t to a �xed distribution paying
special attention to the development of the asymptotic theory of goodness of �t tests.
The goodness of �t to the family of distributions and their asymptotic theories are
considered focusing to two classes of this procedure: tests of �t based on the empirical
distribution function (EDF), and the regression and correlation tests of �t.

In Chapter 3 we suggest a goodness of �t procedure to the uniform distribution on
[0, 1] and to the uniform family. The idea is the following: consider a random uniform
sample on [0, 1], let the simple size be n. Moreover, there is a given deterministic
distance level dn ∈ (0, 1) for all n. We push through this distance level on [0, 1] and
we observe how many nonempty disjoint classes breaks up the elements of the order
statistics into. The elements of the order statistics belong to the same class, where the
distance between any two neighbouring elements is not greater than dn. The classes
belong to a given sample at a given distance level is called the number of clusters.
S. Csörg® and Wu showed that the number of clusters is asymptotically normal for
three di�erent distance level sequences. We extend the results of S. Csörg® and Wu [6]
to multivariate limit theorems for uniform distributions on di�erent intervals. These
theorems are applied for testing uniformity on a known and an unknown interval. We
prove that the joint cluster count vector is asymptotically normal in all cases. Thus,
these tests de�ne asymptotically χ2 tests for a uniform distribution or for the uniform
family. We simulated powers of the new tests as well.

In Chapter 4 we investigate a goodness of �t test to the normal family, based
on the L2-Wasserstein distance, proposed by del Barrio, Cuesta-Albertos, Matrán and
Rodrí- guez-Rodríguez [10]. They obtained the location- and scale-free test statistic
for the null hypothesis H0 : F ∈ N, where N denotes the normal family. A simulation
study was performed to evaluate the power of the BCMR-test and to make comparisons
with other tests of normality.

In Chapter 5 we present the weighted version of the quantile correlation test for
goodness of �t to the logistic family, introduced by del Barrio, Cuesta-Albertos, Matrán
and Rodríguez-Rodríguez [10], and del Barrio, Cuesta-Albertos and Matrán [9]. The
use of weight functions in the test statistics were suggested independently from each
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other by de Wet in [7] and [8] and by S. Csörg® [4] and [5]. We prove the results of S.
Csörg® [5] for location and scale logistic family with the weight function for location
family suggested by de Wet. Del Barrio, Cuesta-Albertos and Matrán [9] obtained the
asymptotic distribution as the Karhunen�Loève expansion of the weighted Brownian-
bridge. With the same technique we determine the in�nite series representation of our
limiting distribution. Similarly to the previous results a simulation study was performed
to evaluate the power of the tests.

The author has written three papers on the subject of the thesis. Joint cluster
counts from uniform distribution is published in Krauczi [16]. Krauczi [14] contains the
study of the quantile correlation test for normality. Finally, the results of the weighted
quantile correlation test for the logistic family are from Balogh and Krauczi [2].

All convergence relations are understood throughout the thesis as n→∞, and let
→D denote convergence in distribution and let →P denote convergence in probability.

2 Historical preliminaries

As an overview we recall the �rst tests which are suitable for goodness of �t
to a �xed distribution paying special attention to the development of the asymptotic
theory of goodness of �t tests. The �rst goodness of �t procedure is the χ2-test proposed
by Pearson [17]. Under the null-hypothesis, this test has asymptotic distribution χ2.
The EDF-tests and the recovery of their asymptotic distribution have received special
attention. These tests use di�erent functional distances to measure the discrepancy
between the hypothesized distribution function and the empirical distribution function.
A section is devoted to the problem of the goodness of �t to the family of distributions
and their asymptotic theories. The �rst studies are occurred in the most interesting
case, for the Gaussian family. Then we adapt all the procedures considered in the �rst
subsection for the case of the parametric family. The simple idea is choosing an adequate
estimator of the parameter and replacing the �xed distribution by the distribution with
the estimated parameter. Finally we recall the regression and correlation tests, the
very popular Wilk�Shapiro-test of normality [19] and it's further modi�cations. The
asymptotic result are also considered.

3 Goodness of �t to the uniform family

Introduction and preliminary results

We suggest a goodness of �t procedure to the uniform distribution on [0, 1] and
to the uniform family. The idea is the following: let U1, . . . , Un be a random uniform
sample (independent uniformly distributed on [0, 1] random variables). Moreover, there
is a given deterministic distance level dn ∈ (0, 1) for all n. We push through this
distance level on [0, 1] and we observe how many nonempty disjoint classes breaks up
the elements of the order statistics into. The elements of the order statistics belong
to the same class, where the distance between any two neighbouring elements is not
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greater than dn. The classes belong to a given sample at a given distance level is called
the number of clusters and denoted Kn(dn).

We recall that S. Csörg® and Wu [6] showed that the number of clusters is asymp-
totically normal for three di�erent distance level sequences.

Theorem 1 (Csörg® and Wu [6]) (i) If ndn→ 0 and n2dn→∞, then

∆n = sup
x∈R

∣∣∣∣∣P
(

Kn − ne−ndn√
ne−ndn(1− e−ndn)

≤ x

)
− Φ(x)

∣∣∣∣∣
= O

(√
(ndn + εn) log

1

ndn
+

log(n
√
dn)

n
√
dn

)
,

where εn =
√

(4 log n)/n, and so (Kn − ne−ndn)/(n
√
dn)

D−→N (0, 1).
(ii) If 0 < lim infn ndn ≤ lim supn ndn <∞, then

sup
x∈R

∣∣∣∣∣P
(

Kn − ne−ndn√
ne−2ndn(endn − 1− n2d2n)

≤ x

)
− Φ(x)

∣∣∣∣∣ = O

(
log3/4 n

n1/4

)
,

and hence if ndn→ c ∈ (0,∞), then (Kn−ne−ndn)/
√
n
D−→N (0, σ), where σ = e−2c[ec−

1− c2].
(iii) If ndn→∞ and ne−ndn→∞, then

∆n = O

(
(ndn)3/2√

endn
+
√
εnndn log(ne−ndn) +

√
endn

n
log(ne−ndn)

)
,

where ∆n is as in the case (i) and εn =
√

(4 log n)/n again, and so

Kn − ne−ndn√
ne−ndn

D−→N (0, 1).

We extend the results of S. Csörg® and Wu [6] to multivariate limit theorems
for uniform distributions on di�erent intervals. These theorems are applied for testing
uniformity on a known and an unknown intervals.

Theoretical results

We investigate the joint behaviour ofKn's for sequences of di�erent distance levels.
Set J ≥ 1 and let dn1 ≤ dn2 ≤ · · · ≤ dnJ , n ∈ N, be distance levels. If the sample
comes from the uniform distribution on the unit interval [0, 1], then Knj(dnj) denote
the numbers of clusters corresponding to the distance levels dnj for all n and j. Consider
the random vector

Kn =
1√
n

(
Kn1(dn1)−mn1

σn1
, ...,

KnJ(dnJ)−mnJ

σnJ

)>
, n ∈ N, (1)

with the sequences mnj = ne−ndnj and

σ2
nj = e−2ndnj(endnj − 1− n2d2nj), j = 1, . . . , J.
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Theorem 2 Let dn1 ≤ dn2 ≤ · · · ≤ dnJ , n ∈ N, be distance levels satisfying one of the
following conditions:

(T1) ndnj → 0, n2dnj →∞;
(T2) 0 < lim infn ndnj ≤ lim supn ndnj <∞;
(T3) ndnj →∞, ne−ndnj →∞.

Moreover, assuming additionally

sij := lim
n→∞

e−ndni−ndnj(endni − 1− n2dnidnj)

σniσnj
∈ R, 1 ≤ i < j ≤ J, (2)

and let sjj := 1 and sji := sij. Then

Kn
D−→NJ(0,Σ) (3)

with the covariance matrix Σ = (sij)i,j=1,...,n.

One of the corollary of this theorem is that the limiting distribution can be ob-
tained with the block diagonal matrix Σ.

Corollary 3 Suppose J ≥ 2, and 0 ≤ J1 ≤ J2 ≤ J are such, that distance levels dnj
satisfy condition (T1) for j ≤ J1 and condition (T3) for j > J2. Moreover, assume
additionally the following conditions:

(i) For i < j ≤ J1 it holds sij := limn→∞
√
dni/dnj ∈ R.

(ii) For J1 < j ≤ J2 cj := limn→∞ ndnj ∈ R exists. Then for J1 < i < j ≤ J2 it
holds

sij :=
(eci − 1− cicj)√

(eci − 1− c2i )(ecj − 1− c2j)
.

(iii) For J2 < i < j sij := limn→∞ e
−n(dnj−dni)/2 ∈ R also exists.

And let sji := sij and sjj := 1. Then (3) holds with the block diagonal matrix

Σ =

 Σ1 0 0
0 Σ2 0
0 0 Σ3

 ,

where the dimensions of blocks Σ1, Σ2 and Σ3 are the respectively J1 × J1, (J2 − J1)×
(J2−J1) and (J−J2)× (J−J2). The components of blocks are de�ned with sij's above.

We apply Corollary 3 to typical sequences suggested by S. Csörg® and Wu in [6],
hereby we choose the parameters to obtain a diagonal covariance matrix. S. Csörg® and
Wu give well-behaving examples called typical sequences. A typical sequence (dn)n=1,2...

for the case (T1) is dn = n−α for some α ∈ (1, 2). In particular, we take dnj = n−αj for
j ≤ J1, with α1 > α2 > · · · > αJ1 resulting in sij = 0 for i < j ≤ J1. In the case (T2)
the existence of the limit c := limn→∞ ndn ∈ R gives the typical sequence (dn)n=1,2....
Here let 0 ≤ J2 − J1 ≤ 2 which means that Σ2 is at most a 2 × 2 matrix and take
cJ2 = (ecJ1+1 − 1)/cJ1+1 in the case J2 − J1 = 2. A typical sequence (dn)n=1,2... for the
case (T3) is dn = β(log n)/n for some β ∈ (0, 1). So we take dnj = βj(log n)/n for
j > J2, with βi < βj for J2 < i < j resulting again sij = 0. Under these special choices
Corollary 3 reduces to the following one.
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Corollary 4

Kn
D−→NJ(0, EJ),

where EJ denotes the unit matrix with dimension J .

If the sample comes from the uniform distribution on the known interval [a, b]
with a, b ∈ R, a < b, then we prove with applying a linear transformation of the
interval [a, b] onto the interval [0, 1], that the transformed cluster count vector is also
asymptotically normal distributed under the correctly transformed assumptions.

Let V1, V2, . . . , Vn be independent random variables, each uniformly distributed on
the interval [a, b] with a, b ∈ R, a < b, known. Set J ≥ 1 and let dn1 ≤ dn2 ≤ · · · ≤ dnJ
be distance levels. Let Ka,b

nj (dnj) be numbers of clusters corresponding to the distance
levels dnj, j = 1, . . . , J . Set

ma,b
nj = ne−

ndnj
b−a , σa,bnj =

√√√√e−2
ndnj
b−a

(
e

ndnj
b−a − 1−

(
ndnj
b− a

)2
)
,

and

Ka,b
n =

1√
n

(
Ka,b
n1 (dn1)−ma,b

n1

σa,bn1
, . . . ,

Ka,b
nJ (dnJ)−ma,b

nJ

σa,bnJ

)>
.

Theorem 5 Suppose each dnj satis�es one of the conditions (T1), (T2) or (T3'),
where

(T3') ndnj →∞, ne−
ndnj
b−a →∞.

In addition, sij's exist for which

e−
ndni
b−a
−

ndnj
b−a

(
e

ndni
b−a − 1− ndni

b− a
ndnj
b− a

)
/σa,bni σ

a,b
nj → sij, 1 ≤ i < j ≤ J, (4)

and let sii := 1 and sji := sij.Then it holds

Ka,b
n

D−→NJ(0,Σ) (5)

with the covariance matrix Σ = (sij)i,j=1,...,J .

Finally, the sample comes from the uniform distribution on the unknown interval.
Let V1, . . . , Vn be independent, uniformly distributed random variables on the interval
[a, b] with a < b being unknown and let V1,n, . . . , Vn,n be the ordered sample. We
investigated a counterpart of Theorems 2 and 5 when the endpoints of the interval are
estimated by ân = V1,n and b̂n = Vn,n. In an analogue to the previous notations, for
given J ≥ 1 and distance levels dn1 < · · · < dnJ denote K̂nj(dnj) numbers of clusters
corresponding to the distance levels dnj, j = 1, . . . , J , set

m̂nj = ne
−

ndnj

b̂n−ân , σ̂nj =

√√√√e
−2

ndnj

b̂n−ân

(
e

ndnj

b̂n−ân − 1−
(

ndnj

b̂n − ân

)2
)
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and

K̂n =
1√
n

(
K̂n1(dn1)− m̂n1

σ̂n1
, . . . ,

K̂nJ(dnJ)− m̂nJ

σ̂nJ

)>
.

Theorem 6 The assumptions of Theorem 5 are satis�ed, and consider the covariance
matrix Σ from there. Then

K̂n
D−→NJ(0,Σ). (6)

Statistical results

It follows from theoretical results that we obtain asymptotically χ2 test for good-
ness of �t under the simple and the composite null hypotheses.

First consider the simple null hypothesis asserting that a sample X1, . . . , Xn has
the uniform distribution on [0, 1]. Given J ≥ 1 and distance levels dn1 ≤ · · · ≤ dnJ , n ∈
N, each satisfying one of the conditions (T1), (T2) or (T3) such that the condition (2)
holds. The covariance matrix Σ as in Theorem 2 is nonsingular. Let Kn be the vector
given by (1). Then from (3) it follows that under the simple null hypothesis

Cn := K>nΣ−1Kn
D−→χ2

J ,

where χ2
J is a random variable with the chi-square distribution with J degrees of free-

dom. So, Cn de�nes a test for uniformity on [0, 1], called here the cluster test and
denoted by Cn.

Now, consider the composite null hypothesis asserting that a sample comes from
the family of all uniform distributions on R. Distance levels dn1 ≤ · · · ≤ dnJ , n ∈ N,
each satisfy the conditions of Theorem 6, then under the simple null hypothesis we
obtain

Ĉn := K̂>nΣ−1K̂n
D−→χ2

J .

Accordingly it may seemed, that the composite hypothesis may be tested like the
previous paragraph. The problem is that as we don't know the explicit value a and
b, so the component of the covariance matrix Σ can't be determined, hence the test
statistics Ĉn can't be counted based on a given sample. Therefore we test the composite
null hypothesis with another procedure. Here, we propose a possible solution based on
the random transformation of the sample V1, . . . , Vn coming from an unknown interval
into the unit interval as follows:(

V2,n − V1,n
Vn,n − V1,n

, . . . ,
Vn−1,n − V1,n
Vn,n − V1,n

)
.

Here K̃n−2,j(dnj) denote the numbers of clusters corresponding to the distance levels
dnj for the randomly transformed sample, j = 1, . . . , J , and let

K̃n−2 :=
1√
n

(
K̃n−2,1(dn1)−mn−2,1

σn−2,1
, . . . ,

K̃n−2,J(dnJ)−mn−2,J

σn−2,J

)>
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be a vector of normalized numbers of clusters of the randomly transformed sample.
In addition let Σ̃ be the covariance matrix computed using the randomly transformed
sample. Then

Cmod
n := K̃>n−2Σ̃

−1K̃n−2
D−→χ2

J .

So, Cmod
n de�nes a test for uniformity, called here the modi�ed cluster test and denoted

by Cmod
n . These tests de�ne asymptotically χ2 tests for a uniform distribution or for

the uniform family. This means that asymptotic critical values of these tests are given
by quantiles of the chi-square distribution with J degrees of freedom.

We simulated powers of the new tests against some continuous alternative dis-
tributions on [0, 1] and we compared these tests with the data driven smooth test
introduced in Inglot and Ledwina [12]. The conclusion is that the cluster tests perform
less well than other procedures unless some highly oscillating alternatives.

4 Goodness of �t to the normal family

Introduction and preliminary results

We perform a simulation study of the goodness of �t test to the normal family
based on the L2-Wasserstein distance, proposed by del Barrio, Cuesta-Albertos, Matrán
and Rodríguez-Rodríguez [10]. They obtained the location- and scale-free test statistic
for the null hypothesis H0 : F ∈ N, where N denotes the normal family. This testing
procedure belongs to the class of minimum distance tests (using the distance of quantile
functions); on the other hand it is asymptotically equivalent with a correlation test. The
name of this test derives from these two di�erent approaches: the quantile correlation
test.

To describe their proposal, let P2(R) be the set of probabilities on R with a �nite
second moment. For probabilities P1 and P2 in P2(R) the L2-Wasserstein distance
between P1 and P2 is

W(P1, P2) = inf
{

[E(X1 −X2)
2]1/2,L(X1) = P1,L(X2) = P2

}
,

where L(X) denotes the probability distribution of the random variable X. It can be
explicitly obtained in terms of quantile functions:

W(P1, P2) =

[∫ 1

0

(F−11 (t)− F−12 (t))2dt

]1/2
,

where F−11 and F−12 are quantile function associated with the probabilities P1 and P2.
If P is a probability distribution in P2(R) with distribution function F , mean µ0

and standard deviation σ0, then L2-Wasserstein distance-square between F and the
class of all normal laws N is

W2(P,N) := inf{W2(P,Nµ
σ ), Nµ

σ ∈ N} = σ2
0 −

(∫ 1

0

F−1(t)Φ−1(t)dt

)2

,
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where Φ−1 is the standard normal quantile function. The ratio W2(P,N)/σ2
0 is not

a�ected by location or scale changes of F . Hence, it can be considered as a measure of
dissimilarity between F and N.

Given a random sample X1, . . . , Xn from F , now the empirical version of the ratio
W(P,N)/σ0 may be obtained. Then the location- and scale-free BCMR-test statistic
for the null hypothesis H0 : F ∈ N is

Tn :=
W2(Fn,N)

S2
n

= 1−

[∫ 1

0
Qn(t)Φ−1(t)dt

]2
S2
n

= 1−

[∑n
k=1Xk,n

∫ k
n
k−1
n

Φ−1(t) dt
]2

S2
n

,

where S2
n denotes the empirical variance.

Del Barrio, Cuesta-Albertos, Matrán and Rodríguez-Rodríguez [10] investigated
the asymptotic distribution of the test statistic under the null-hypothesis. They man-
aged to produce the limit distribution in two di�erent forms. The �rst form is func-
tionals of the Brownian bridge, the second is a series of random variables. Let ϕ denote
the standard normal density function and B denote the Brownian bridge, and let

an =
1

n

∫ n
n+1

1
n+1

t(1− t)
[ϕ(Φ−1(t))]2

dt.

Theorem 7 (del Barrio, Cuesta-Albertos, Matrán and Rodríguez-Rodríguez[10])
If F ∈ N, then

n(Tn − an)
D−→
∫ 1

0

B2(t)− E(B2(t))

ϕ2(Φ−1(t))
dt−

[∫ 1

0

B(t)

ϕ2(Φ−1(t))
dt

]2
−
[∫ 1

0

B(t)Φ−1(t)

ϕ2(Φ−1(t))
dt

]2
D
=− 3

2
+
∞∑
j=3

Z2
j − 1

j
,

where (Zj)
∞
j=3 is a sequence of independent standard normal random variables.

Simulation results

In the simulation study the distribution function of the limiting random variable
above is computed numerically in two di�erent ways. You can see the asymptotic
distribution in Fig. 1. Next, using di�erent sample sizes from n = 10 to n = 100 000,
we simulate the distribution function of the BCMR-test statistic n(Tn− an). As shown
in Fig. 2, we �nd that the convergence is overall very slow.

A simulation study was performed to evaluate the power of the BCMR test against
many continuous alternative distributions and make comparisons with �ve other tests
of normality. The �rst of these tests is Shapiro�Wilk's W test [19], for which there is
a speci�c interest in the comparison for the small n = 20 and 50, while for n = 100
we use the Shapiro�Francia [18] extension of the W test, denoted by W ′. Among the
EDF tests we considered the Kolmogorov�Smirnov D test [13], with the modi�cation
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Figure 1: The asymptotic distribution function (left) and its density (right)

Figure 2: The distribution functions of the BCMR-test statistic n(Tn− an) for n = 10,
20 (dotted line), 50 and the asymptotic distribution function the thicker line marked
with A on the left (left). The same for n = 100 and 100 000 (right)
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Figure 3: Power of the BCMR, W , ISE, BHEP, D and A2 test as a function of λ for
CN(λ, 4) (left) and the same for CN(λ, 9): 1=BCMR test; 2=W test; 3=ISE test;
4=BHEP test; 5=D; 6=A2 test (right)

suggested by Stephens [20], and the Anderson-Darling A2 test [1]. The fourth test we
have chosen is based on density estimation, the integrated squared error (ISE) test
of Bowman and Foster [3] with �xed kernels. The �fth test is based on the empirical
characteristic function, the BHEP test from Epps and Pulley [11]. The two �gures in
Fig. 3 contain a comparison of the powers of �ve tests against contaminated normal
alternatives for n = 20 and α = 0.05 signi�cance level. The symbol CN(λ, σ2) stands
for the contaminated normal distribution F (x) = (1 − λ)Φ(x) + λΦ(x/σ), x ∈ R, for
all 0 < λ < 1 and σ > 0.

A rough general conclusion of this study is that the BCMR-test usually per-
forms better than the other tests, except for the combination of the Wilk�Shapiro-
and the Shapiro�Francia-test. In most cases the properties of the latter combination
and the properties of the BCMR quantile correlation test appear to be very similar
to each other. Since under the null hypothesis the asymptotic distribution for Wilk�
Shapiro-test is the same as for the BCMR-test, thus the result of the power study isn't
surprising.

5 Goodness of �t to the logistic family

We present the weighted version of the quantile correlation test statistics for good-
ness of �t to the logistic family, introduced by del Barrio, Cuesta-Albertos, Matrán and
Rodríguez-Rodríguez [10], and del Barrio, Cuesta-Albertos and Matrán [9]. The use of
weight functions in the test statistics were suggested independently from each other
by de Wet in [7] and [8] and by S. Csörg® in [4] and [5]. It is an interesting fact that
there the authors' motivations were considerably di�erent. S. Csörg® showed that the
suitably weighted versions of the correlation tests have limiting distribution for more
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family of probability distributions; de Wet expected �the loss of degrees of freedom� in
the limiting null distribution (in the case of the normal family this means that the �rst
two terms are missing in the in�nite series representation of the asymptotic distribu-
tion). We prove the results of S. Csörg® [5] for location and scale logistic family with
the weight function for location family suggested by de Wet.

For a given distribution function G(x), x ∈ R, and for θ ∈ R and σ > 0, let
Gθ
σ(x) = G((x− θ)/σ), x ∈ R, and consider the location-scale family

Gl,s = {Gθ
σ : θ ∈ R, σ > 0}.

Denote by QG(t) = G−1(t), 0 < t < 1, the quantile function of G. Consider a weight
function w : (0, 1) → [0,∞) satisfying

∫ 1

0
w(t) dt = 1, and de�ne the weighted r-th

moment

µr(G,w) :=

∫ 1

0

(QG(t))rw(t) dt =

∫ ∞
−∞

xrw(G(x))dG(x).

Assume that µ1(G,w) and µ2(G,w) are �nite, and de�ne also the weighted variance:

ν(G,w) := µ2(G,w)− µ2
1(G,w) ≥ 0.

The weighted L2-Wasserstein distance with weight function w of two distributions F
and G can be de�ned as

Ww(F,G) :=

[∫ 1

0

(QF (t)−QG(t))2w(t) dt

] 1
2

.

Therefore the weighted L2-Wasserstein distance Ww(F,Gl,s) = inf{Ww(F,G) : G ∈
Gl,s} between F and location-scale family Gl,s, scaled to F is

W2
w(F,Gl,s)
ν(F,w)

= 1−

[∫ 1

0
QF (t)QG(t)w(t)dt− µ1(F,w)µ1(G,w)

]2
ν(F,w)ν(G,w)

,

as derived in [5].
Consider a random sample X1, . . . , Xn with common distribution function F , and

let a �xed distribution function G. We would like to test the null hypothesis H0 : F ∈
Gl,s. Letting Qn be the sample quantile function, in order to de�ne the following test
statistics

Vn := 1−

[∫ 1

0
Qn(t)QG(t)w(t)dt− µ1(G,w)

∫ 1

0
Qn(t)w(t)dt

]2
ν(G,w)

[∫ 1

0
Q2
n(t)w(t)dt−

(∫ 1

0
Qn(t)w(t)dt

)2]

= 1−

[∑n
k=1Xk,n

{∫ k
n
k−1
n

QG(t)w(t)dt− µ1(G,w)
∫ k

n
k−1
n

w(t)dt
}]2

ν(G,w)

[∑n
k=1X

2
k,n

∫ k
n
k−1
n

w(t)dt−
(∑n

k=1Xk,n

∫ k
n
k−1
n

w(t)dt
)2] ,
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derived from the weighted L2-Wasserstein distance between the empirical distribution
of the sample and the location-scale family Gl,s.

Csörg® determined the limiting behaviour of this statistics, below we use the
following general result due to Csörg® [5].

Theorem 8 (Csörg® [5]) Let w be a nonnegative integrable function on the interval

(0, 1), for which
∫ 1

0
w(t) dt = 1. Suppose that G has �nite weighted second moment and

that it is twice di�erentiable on the open interval (aG, bG) such that g(x) = G′(x) > 0
for all x ∈ (aG, bG), and let B denote the Brownian bridge. If the conditions

sup
0<t<1

t(1− t)|g′(QG(t))|
g2(QG(t))

<∞,
∫ 1

0

t(1− t)
g2(QG(t))

w(t)dt <∞,

and

n

∫ 1
n+1

0

[Y1,n −QG(t)]2w(t)dt
P−→0, n

∫ 1

n
n+1

[Yn,n −QG(t)]2w(t)dt
P−→0

are satis�ed, the following asymptotic is valid:

If F belong to Gl,s generated by G, then

nVn
D−→Vg :=

1

ν(G,w)

{∫ 1

0

B2(t)

g2(QG(t))
w(t)dt−

[∫ 1

0

B(t)

g(QG(t))
w(t)dt

]2}

−
[

1

ν(G,w)

∫ 1

0

B(t)QG(t)

g(QG(t))
w(t)dt− µ1(G,w)

ν(G,w)

∫ 1

0

B(t)

g(QG(t))
w(t)dt

]2
.

This theorem was used to establish the asymptotic distributions of the test statistics
specialized to the logistic family.

Results

Consider the logistic distribution function G(x) = 1/(1 + e−x), x ∈ R, and Gl,s
denotes the logistic location-scale family as de�ned above. With the weight function
suggested by de Wet [8] for the logistic location family w(t) = 6t(1 − t), 0 < t < 1,
with the weighted �rst moment µ1(G,w) = 0 and with the weighted second moment
µ2(G,w) = π2/3− 2 the location-scale-free test statistic specializes to

Vn = 1−

[
n∑
k=1

ak,nXk,n

]2
(
π2

3
− 2

) n∑
k=1

bk,nX
2
k,n −

(
n∑
k=1

bk,nXk,n

)2
 ,
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where the coe�cients are given explicitly by

ak,n =

∫ k
n

k−1
n

6t(1− t) ln

(
t

1− t

)
dt

=
k2(3n− 2k)

n3
ln

k

n− k
− (k − 1)2(3n− 2k + 2)

n3
ln

k − 1

n− k + 1

+ ln
n− k

n− k + 1
+

1− 2k

n2
+

1

n
,

bk,n =

∫ k
n

k−1
n

6t(1− t)dt =
3(2k − 1)

n2
+

2(−3k2 + 3k − 1)

n3
.

As a corollary to the asymptotic results from [5] we obtain the following limiting
distribution of the test statistics Vn.

Theorem 9 If the distribution function F of the sample belongs to the logistic location-
scale family Gl,s then the rescaled statistic nVn has the asymptotic distribution

nVn
D−→V :=

1

π2/3− 2

{∫ 1

0

6B2(t)

t(1− t)
dt−

[∫ 1

0

6B(t) dt

]2}

−
[

1

π2/3− 2

∫ 1

0

6B(t) ln

(
t

1− t

)
dt

]2
,

where the integrals exists with probability 1.

Del Barrio, Cuesta-Albertos and Matrán [9] obtained the asymptotic distribution
as the Karhunen�Loève expansion of the weighted Brownian-bridge. With the same
technique we determine the in�nite series representation of our limiting distribution.

Theorem 10 The limiting distribution V can be represented alternatively as

V
D
=

1
π2

3
− 2

∞∑
k=2

6

k(k + 1)
Z2
m −

[
1

π2

3
− 2

∞∑
l=1

3
√

4l + 1

l(l + 1)(2l − 1)(2l + 1)
Z2l

]2
,

where (Zm)∞m=1 is an in�nite sequence of independent identically distributed standard
normal random variables, and the series converges with probability 1.

Simulation results

Similarly to the previous section a simulation study was performed to evaluate
the power of the tests. The numerical results is presented in Table 1. We compare the
new test with Meintanis-tests based on the empirical characteristic function and the
empirical momentum generating function from [15].

A rough general conclusion of this study is that a simply computable test statistic
is obtained, the asymptotic critical values may be used and the test seems to be average
powerful.
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