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1   Introduction 

1.1   Formation of brain metastases 

Brain metastases of malignant tumors have a very poor prognosis and are frequent 

complications for cancer patients. Only in the United States, about 170,000 metastatic brain 

tumors are diagnosed annually (Platta et al, 2010), whereas primary brain tumors represent 

17,000 new cases/year. During metastasis formation, tumor cells successfully infiltrating the 

brain parenchyma overcome several obstacles, including survival in the circulation (Lorger & 

Felding-Habermann, 2010), extravasation through brain capillaries and resisting deleterious 

signals of the reactive brain stroma (Valiente et al, 2014). However, cancer cells able to 

migrate into and to survive in the brain will benefit of a supportive and protective 

microenvironment, including the dense vasculature with the opportunity of vessel co-option 

(Bugyik et al, 2011) and chemoprotection mediated by astrocytes and endothelial cells (Kim 

et al, 2014). As a consequence, brain metastases have a poor prognosis. The survival of 

patients with central nervous system (CNS) metastases is low: the median survival time is 4-6 

months, and only 20-40% of patients are alive at 1 year after the diagnosis (Pestalozzi, 2009). 

The most common cancers that spread to the brain are lung cancer (40-50% of brain 

metastases originate from lung carcinomas), breast cancer (15-25%) and melanoma (5-20%) 

(Wen et al, 2011).  

Breast cancer is the second most common type of cancer, the most frequent in women 

and worldwide causes more than half a million deaths annually. Usually breast cancer either 

begins in the cells of the lobules or in the ducts, these cancer types are carcinomas. Less 

commonly, breast cancer can begin in the stromal tissues, these cancer types are sarcomas. 

Within carcinomas, there are many different types of breast cancer. In situ carcinoma is "pre-

invasive" carcinoma that has not yet invaded the breast tissue. Invasive carcinomas have the 

potential to spread to other sites of the body, including the brain. 

Breast cancer metastases to the CNS include the clinically distinct situations of 

multiple brain metastases (78%), solitary brain metastases (14%) and leptomeningeal 

metastases (8%) (Pestalozzi, 2009). CNS metastases occur in 10-16% of stage IV patients, 

while they are found in 30% of patients in autopsy series (Pestalozzi, 2009). In most cases, 

brain metastases represent a late relapse in breast cancer patients who already have liver, lung 
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or bone involvement. Previous studies have identified several risk factors of brain metastases. 

Especially, estrogen receptor (ER) negative status is associated with high incidence of brain 

metastases. Overexpression of epidermal growth factor receptor 2 (EGFR2, also known as 

HER2) is reported as another risk factor. Some other factors were also reported to associate 

with brain metastases of breast cancer: p53 positivity, high EGFR expression, lower BCL-2 

expression and expression of basal CK5/6 (cytokeratin 5/6) (Chang et al, 2003; Hicks et al, 

2006; Stemmler et al, 2006). Triple-negative breast cancers, which are very aggressive tumors, 

are characterized by lack of ER, of progesterone receptor (PR), and of HER2 overexpression. 

They are typically associated with poor prognosis and give brain metastases with high 

frequency. This type of breast cancer has only partial response to chemotherapy and to 

targeted therapies (Cetin & Topcul, 2014). 

Melanoma is a malignant tumor which develops from melanocytes. This is one of the 

most aggressive types of skin cancer. Melanomas are usually caused by DNA damage 

resulting from exposure to ultraviolet (UV) light from the sun, but genetics also plays an 

important role. A number of rare mutations, which often run in families, greatly increase 

melanoma susceptibility. One class of mutations affects the gene CDKN2A (cyclin-dependent 

kinase inhibitor 2A), which acts as tumor suppressor. MC1R (melanocortin 1 receptor) gene 

mutation also increases the risk. Proteins involved in the MAPK (mitogen activated protein 

kinase) pathway that regulate transcription of genes involved in cell proliferation and survival 

also take part in melanoma development. Mutations in NRAS and BRAF, two proteins in the 

MAPK pathway, are found in 20% and 60% of melanomas, respectively. The most commonly 

seen BRAF mutation is a substitution of valine with glutamate (V600E). It has also been 

demostrated that upregulation of the PI3K (phosphoinositide 3-kinase) pathway 

(PTEN/phosphatase and tensin homolog deletion or Akt activation) and subsequent inhibition 

of apoptosis also increases the risk of melanoma development (Lee et al, 2014). 

Based on the depth of the primary tumor and on the distance the cancer has spread to, 

melanoma is divided into four stages. Breslow thickness is the depth of the tumor mass 

calculated perpendicularly from the skin surface (in mm) 

(http://www.americanskin.org/resource/melanoma.php). In situ melanomas have a better 

prognosis after surgical excision with a sufficient surgical margin. Invasive melanomas are far 

more serious. Melanoma can spread to the liver, bones, abdomen or distant lymph nodes, and 

these tumor cells have an unexpectedly high affinity to the brain. This is partly due to the fact 

that the neural environment plays a key role in the protection and growth of melanoma cells, 

https://en.wikipedia.org/wiki/P16_%28gene%29
https://en.wikipedia.org/wiki/MC1R
http://www.americanskin.org/resource/melanoma.php
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which are of ectodermal origin, similar to the CNS. 

Melanoma brain metastases are diagnosed in 40-50% of the patients, which, after 

autopsy, increases with an additional 30-40% (Fidler et al, 1999). Melanoma causes 4% of all 

skin cancers but is responsible for 74% of skin cancer deaths, and this is mainly due to the 

high incidence of brain metastases. Of melanoma brain metastases 49% are intraparenchymal, 

22% are leptomeningeal and 32% are dural (Fidler et al, 1999). The number of diagnosed 

melanoma cases is constantly increasing (Douglas & Margolin, 2002). Mean survival from 

diagnosis of melanoma brain metastasis varies from 2 to 16 months, while the mean 1-year 

survival is estimated to be only about 20% (Fidler et al, 1999). 

Approximately 60% of patients with brain metastases have subacute symptoms. 

Symptoms are usually related to the location of the tumor and may include the following: 

headache, seizure, nausea, vomiting, nuchal rigidity, photophobia, cognitive dysfunction and 

motor dysfunction (Saha et al, 2013). Longer survival, improved quality of life and 

stabilization of neurocognitive function for patients with brain metastasis is the goal of 

treatments. Unfortunately not even these goals are completely met by current therapies, which 

include surgery, whole-brain radiation therapy, chemotherapy, stereotactic radiosurgery and 

targeted therapies (Leone & Leone, 2015). In most tumor types chemotherapy shows limited 

or no activity in brain metastases, because many systemically used chemotherapeutic agents 

do not cross the blood-brain barrier (BBB), and therefore do not reach a therapeutically 

relevant concentration in the brain metastatic lesion. Others may transiently weaken the BBB 

(Blecharz et al, 2015). Trastuzumab – a monoclonal antibody against HER2, approved for the 

first line treatment of HER2 positive breast cancers – is not able to cross the BBB, thus it is 

inefficient in inhibiting the growth of brain metastatic lesions of breast cancer. Some new 

chemotherpeutic agents have been developed which can pass the BBB and target tumor cells, 

e.g. temozolomide, an alkylating agent, which is a basic compound in the therapy of brain 

metastases. According to clinical studies, the combination of temozolomide with 

radiotheraphy or with other cytotoxic agents shows a few months prolonged median survival 

(Owonikoko et al, 2014). However, these results are far from the final goal of total remission; 

therefore, it is necessary to further optimize current methods. In the treatment of melanoma 

one of the most important targeted therapeutic agents is vemurafenib, which is an inhibitor of 

V600E BRAF mutation in metastatic melanoma, and is often used in combination with radio- 

and immunotherapy (Owonikoko et al, 2014). It has been recently shown that vemurafenib 

can be safely and effectively used in patients with brain metastatic melanoma (Dummer et al, 
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2014). However, the responses are frequently unsatisfactory, rangig from substantial side-

effects and toxicity to no impact of the treatment on the metastatic lesion. Therefore, 

prevention of the formation of brain lesions would be of great clinical benefit. 

Since the CNS parenchyma lacks a lymphatic circulation, the only possibility for 

cancer cells to reach the brain is via the blood stream. Brain metastases can be formed both in 

the parenchyma and the meninges. Leptomeningeal metastases resulting from solid tumors 

occur late and usually coexist with CNS parenchymal disease. Metastatic cells invading the 

CNS parenchyma, however, have to pass the BBB. During transmigration through the BBB, 

arrest of tumor cells was found to take place at the level of capillaries and postcapillary 

venules, where the diameter of the vessels is comparable to those of the metastatic cells, 

predominantly at vessel branches (Kienast et al, 2010). 

1.2   The blood-brain barrier 

1.2.1   Cellular structure of the blood-brain barrier 

The BBB is located at the level of cerebral capillaries in the forefront of the defense 

line of the CNS and restricts the free movement of solutes and cellular elements between the 

systemic circulation and neuronal tissue. The most important cellular elements of the BBB are 

endothelial cells, astrocytes and pericytes, which together with the extracellular matrix and 

neurons form the neurovascular unit (Figure 1A). 

Endothelial cells lining brain capillaries are thin, flat cells interconnected by tight 

junctions (TJs) (Brightman & Reese, 1969) and characterized by a high number of 

mitochondria (Oldendorf et al, 1977) and low number of caveolae (Nag, 2003). The contact 

region of brain endothelial cells is usually overlapping, and the border between the apical and 

basolateral cell membranes is interconnected by a continuous line of tight junctions. This 

limits the free transport of different solutes and cellular elements between adjacent cells. 

Cerebral endothelial cells (CECs) share common features with other endothelia (presence of 

factor VIII, high alkaline phosphatase and γ-glutamyl transpeptidase activity, uptake of 

acetylated-low density lipoprotein) and epithelia as well (high transendothelial electrical 

resistance (TEER), continuous line of TJs, low level of pinocytosis), these latter being 

indispensable for the barrier function. 
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Figure 1. Schematic diagram of the blood-brain barrier. The core anatomical structure of the BBB is 

formed by cerebral endothelial cells, which share common basal membrane with pericytes, and are 

covered by astrocytic endfeet (A). Endothelial cells are interconnected by a continuous line of tight 

junctions. The inset illustrates the molecular structure of the junctional complex (B). ABC transporters 

and SLC transporters in brain endothelial cells (C). 
 

Endothelial cells are framed by a basal membrane, which consists mainly of collagen 

IV, fibronectin, proteoglycans and laminin. The extracellular matrix (ECM) participates in the 

maintanence of endothelial barrier integrity. Disruption of the basal membrane might lead to 

alterations affecting the junctional proteins of the BBB (Hawkins & Davis, 2005). The integ-

rin β1-mediated attachment of endothelial cells to the basement membrane is critical for clau-

din-5 stabilisation (Osada et al, 2011). Furthermore, during brain metastasis formation the 

basal membrane is involved in the survival of tumor cells (Carbonell et al, 2009). 
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Pericytes are located in the duplication of the basement membrane, in close contact 

with endothelial cells. Even gap junctions have been described between the two cell types 

(Cuevas et al, 1984). Pericytes are contractile cells able to synthesize a plethora of 

biologically active substances. Although the exact function of pericytes in the formation and 

function of the BBB is insufficiently understood, they can participate in the regulation of 

blood flow, endothelial proliferation, angiogenesis or inflammatory processes. Absence of 

pericytes leads to endothelial hyperplasia, abnormal vasculogenesis (Hellström et al, 2001) 

and increased BBB permeability (Armulik et al, 2010). Pericyte-endothelial cell interactions 

were found to be critical in the regulation of the BBB during development (Daneman et al, 

2010). 

Astrocytes play a crucial role in the induction of barrier properties of CECs (Abbott et 

al, 2006; Haseloff et al, 2005; Krizbai et al, 2012). Astrocytic endfeet nearly completely 

ensheath the capillary walls, thereby covering not only endothelial cells, but also the 

intimately associated pericytes (Kacem et al, 1998). The coverage is not complete, allowing a 

direct contact of nerve endings with the basal membrane (Cohen et al, 1997; Paspalas & 

Papadopoulos, 1996). Astrocytic endfeet express a high level of several specific proteins at 

their capillary side, like glucose transporter 1, P-glycoprotein (P-gp), aquaporin-4, connexin-

43 and Kir 4.1 K+ channel. Astrocytes have an indispensable role in the maintenance of BBB 

properties of CECs. 

On the other hand, astrocytes have a protective role for brain metastases. Reactive 

astrocytes immediately localize to individual breast cancer cells even before extravasation and 

continue to associate with metastatic cells during the transmigration process and throughout 

the growth of the lesions (Lorger & Felding-Habermann, 2010). Moreover, astrocytes secrete 

soluble factors that stimulate the proliferation of tumor cells in the brain microenvironment. 

In this respect, neurotrophins have a special importance in supporting the growth of 

melanoma cells (Menter et al, 1995). Astrocytes have been shown to protect tumor cells 

through gap junctional communication (Lin et al, 2010), upregulation of survival genes (Kim 

et al, 2011) and secretion of soluble factors like inflammatory cytokines (Seike et al, 2011). 

In the brain distinct immune cells interact with the BBB. The most frequent CNS 

innate immune cells are microglia cells (Spindler & Hsu, 2012). They are localised in 

physical association with the brain capillaries and participate in angiogenic processes. 

Microglia cells influence BBB function in health and disease, but it is not completely 

understood how. Some in vitro co-culture experiments demonstrated influence of microglia 



7 

 

 

 

activation on barrier disturbances though modifications of TJ proteins (Nishioku et al, 2010; 

Sumi et al, 2010). 

1.2.2   Functions of the blood-brain barrier 

The main function of the BBB is to maintain the homeostasis of the CNS and to 

protect the brain from harmful compounds coming from the systemic circulation. The BBB 

has dual role, operates both as a barrier and as a carrier too. This latter function refers to the 

transport of nutrients to and removal of metabolites from the brain, and is mainly assured by 

solute-like carrier (SLC) transporters. 

Transport across the brain endothelium is strictly limited through a four-fold defense 

line (Wilhelm et al, 2011): the paracellular barrier (represented by interendothelial junctions); 

the transcellular barrier (assured by the low level of endocytosis and transcytosis); the 

enzymatic barrier (including acetylcholinesterase, alkaline phosphatase, γ-glutamyl 

transpeptidase, monoamine oxidases and drug metabolizing enzymes); and the efflux 

transporters (ABC-B1, -C1, -C4, -C5 and -G2). Small gaseous molecules, such as O2 and CO2, 

can freely diffuse through the lipid membranes, and this is also a route of entry for small 

lipophilic agents, including barbiturates, nicotine and ethanol. However, specific blood-to-

brain influx transport systems exist to supply nutrients, like glucose, amino acids and 

nucleotides, which cannot freely diffuse to the brain. Endothelial cells also express several 

ABC (ATP-binding cassette) transporters, which are mainly efflux transpoters (Figure 1C). 

The main role of the ABC transporters in the CNS is to work as active pumps 

consuming ATP and transporting a wide range of lipid-soluble compounds out of the brain 

capillary endothelium and the CNS. These transporters remove from the brain potentially 

neurotoxic endogenous or xenobiotic molecules and carry out a vital neuroprotective and 

detoxifying function (Abbott et al, 2010). In addition, certain efflux transporters are able to 

pump out chemotherapeutic agents as well; therefore, they decrease the effectiveness of 

chemotherapy. As a consequence, ABC transporters play a crucial role in the development of 

multidrug resistance (Löscher & Potschka, 2005). 

Integrity of the BBB has been reported to be disturbed in several disorders including 

cerebral ischemia, inflammation and brain tumors. Moreover, during inflammation and 

metastasis formation, the BBB is actively involved in the transmigration of leukocytes and 

tumor cells. 
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1.2.3   Molecular structure of the tight junctions (TJs) 

The paracellular permeability is mainly regulated by the TJs between endothelial cells 

(Figure 1B). Key components of the TJs are the transmembrane proteins, which form three 

protein families. These are the four transmembrane proteins (occludin, claudins, 

tricellulin/marvelD2, marvelD3), which are perhaps the most important from the point of 

view of paracellular permeability; molecules belonging to the immunoglobulin superfamily 

(JAM-Junctional adhesion molecule, CAR-Coxsackie and adenovirus receptor, ESAM-

Endothelial cell-selective adhesion molecule); and non-immunoglobulin-like molecules with a 

single transmembrane domain (CRB3-Crumbs homolog 3; Bves-Blood vessel epicardial 

substance). Best characterized in CECs are occludin, claudins and JAMs (Bauer et al, 2011). 

Occludin, the first identified transmembrane TJ protein (Furuse et al, 1993), is a 

65 kDa molecule. It is characterized by four transmembrane regions, two extracellular loops, 

a shorter N-terminal and a longer C-terminal cytoplasmic domain. The two extracellular loops 

are rich in tyrosine and glycine, playing a role in sealing the junctions (Lacaz-Vieira et al, 

1999; Wong & Gumbiner, 1997), while the C-terminal region is important in the interaction 

with other junctional proteins. 

Claudins, first described by Furuse et al. (Furuse et al, 1998), are small proteins (20-

27 kDa), which show a similar membrane topology to occludin; however, there is no 

sequence homology between them. Interactions of claudins are largely determined by the C-

terminal intracellular region, which contains PDZ (Psd95/Discs large 1/Zonula Occludens) 

binding domains. Furthermore, claudins are able to form homophylic interactions as well 

needed for the formation of TJ strands (Piontek et al, 2008). The principal claudin in brain 

endothelial cells is claudin-5, but other claudins (especially claudin-1, -3 and -12) have also 

been detected (Ohtsuki et al, 2008). The exact role of individual claudins is not known; 

absence of claudin-5 leads to a selective opening of the BBB to molecules smaller than 

800 Da (Nitta et al, 2003). 

Junctional adhesion molecules (JAMs) are single-span molecules belonging to the 

immunoglobulin superfamily, characterized by homophilic binding and two extracellular 

loops, first described by Martin-Padura et al. (Martìn-Padura et al, 1998). Brain endothelial 

cells express mainly JAM-1 (JAM-A) and JAM-3 (JAM-B) (Aurrand-Lions et al, 2001), but 

also JAM-C. They are involved in the extravasation of leukocytes. Endothelial cells also 

express ESAM, another immunoglobulin-like molecule localized to the TJs. JAM-C and 
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ESAM have been shown to promote melanoma lung metastasis formation (Cangara et al, 

2010; Langer et al, 2011). 

Zonula Occludens (ZO) proteins are peripheral proteins of TJs. There are three 

members of the zonula occludens family: ZO-1 (Stevenson et al, 1986), ZO-2 (Gumbiner et al, 

1991) and ZO-3 (Haskins et al, 1998). Common structural features of the ZO family include 

three PDZ domains in the N-terminal region, a SH3 (Src homology 3) domain and an 

enzymatically inactive GUK (guanylate kinase) domain. ZO proteins are important scaffold 

proteins, but are essential in signaling processes as well (Balda & Matter, 2000; Bauer et al, 

2011; Traweger et al, 2003). 

1.3   Interaction of tumor cells with the blood-brain barrier 

1.3.1   Transmigration routes 

Great amount of data is available regarding motility and migration of cancer cells, but 

information about the mechanisms involved in the migration of cancer cells across endothelial 

barriers is limited. Even less is known about the transmigration of tumor cells through the 

BBB. The process of transendothelial migration has been intensively studied using 

leukocytes. Although the steps of transmigration (rolling, adhesion and 

transmigration/diapedesis) may show some similarities, due to different physiological, 

molecular and mechanical characteristics of immune and metastatic cells, there may be 

significant differences (Strell & Entschladen, 2008). 

Transendothelial migration of cells can occur by two routes: the paracellular pathway 

(through the interendothelial junctions between endothelial cells) and the transcellular one 

(through single endothelial cells). Leukocytes are able to use both routes during their 

migration through peripheral and brain endothelia as well (Carman, 2009; Dejana, 2006; 

Reijerkerk et al, 2006; Wolburg et al, 2005). Paracellular transmigration of metastatic cells is 

possible only with the involvement of endothelial TJs and junctional proteins. Using an in 

vitro system, we have previously observed that melanoma cells damaged the integrity of the 

brain endothelial monolayer and decreased the transendothelial electrical resistance (TEER) 

which is a widely used indicator of junctional integrity (Fazakas et al, 2011). The mechanisms 

by which metastatic cells are able to disrupt TJs are incompletely understood; however, 

proteolytic processes probably play an important role. It is less known, whether breast cancer 
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cells are able to disrupt the TJs or migrate preferentially transcellularly. So far, transcellular 

migration of tumor cells has only been described in the case of intravasation of breast cancer 

cells into an artificial vascular network prepared from calf pulmonary artery endothelial cells 

(Khuon et al, 2010) and migration through umbilical cord endothelial cells (Arvanitis et al, 

2014). However, no data on the transmigration pathway of breast cancer cells through BBB 

endothelial cells exist. 

1.3.2   Molecular mechanisms involved in the extravasation of tumor cells 

through the blood-brain barrier 

Mechanisms of extravasation of tumor cells through the BBB are largely 

uncharacterized. According to our current knowledge, both metastatic and endothelial cells 

actively participate in this process by modulating the expression of surface molecules, 

secretion of soluble factors and activation of diverse signaling pathways. 

Attachment of tumor cells to the endothelium depends on the expression of adhesion 

molecules. Cancer cells, similar to leukocytes, express selectin ligands, which may play an 

important role in their adhesion to CECs. Selectin-dependent mechanisms are also important 

in the interaction of tumor cells with platelets and leukocytes, which facilitates attachment of 

tumor cells to the vessel wall. Moreover, heparin – which inhibits not only coagulation, but 

selectin-mediated interactions as well – was shown to inhibit adhesion of melanoma cells to 

brain endothelial cells (Fazakas et al, 2011) and to delay melanoma brain metastasis formation 

(Maraveyas et al, 2010). In addition, several integrins were shown to be involved in cancer 

progression, metastasis formation, transendothelial migration of tumor cells and angiogenesis 

in different metastatic sites. Activation of integrin αvβ3 was observed to support efficient 

brain metastatic growth of breast cancer cells through continuous upregulation of VEGF 

(vascular endothelial growth factor), without influencing the growth of primary lesions 

(Lorger et al, 2009). Cadherin dysfunction may also be involved in tumor progression and 

metastasis formation, e.g. metastatic brain tumors were shown to express high levels of E-

cadherin (Shabani et al, 2003). Transendothelial migration of melanoma cells through human 

lung microvascular endothelial cells has been shown to involve N-cadherin-mediated 

adhesion (Qi et al, 2005). A similar mechanism is possible in the case of brain endothelial 

cells as well. 

Different proteolytic enzymes have also been implicated in brain metastasis formation 

and migration of tumor cells through the BBB, including matrix metalloproteinases (MMPs), 
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serine proteases and heparanase. Tumor cell-secreted MMPs might have special importance, 

because TJ proteins can be targets of MMP degradation. According to literature data, MMP-2, 

MMP-3 and MMP-9 are implicated in the development of breast cancer brain metastases 

(Mendes et al, 2005). In addition, heparanase is considered a critical molecular determinant of 

brain metastasis in melanoma (Roy & Marchetti, 2009) and breast cancer (Zhang et al, 2010) 

as well. According to our previous results, during transmigration through the brain 

endothelium melanoma cells produce and release large amounts of gelatinolytic serine 

proteases, including seprase (Fazakas et al, 2011). These proteases facilitate the 

transendothelial migration of tumor cells. 

1.3.3   Signaling pathways involved in the extravasation 

Several signaling pathways (Rho and Rac signaling, the PI3K-Akt-PTEN pathway, 

MAPK signaling, Src signaling), alone or in combination, can underlie the extravasation 

process. Understanding the role of pathways activated either in tumor cells or in endothelial 

cells will help to identify molecular targets for cancer therapy. In our investigations we 

focused on the role of Rac, Rho/ROCK and PI3K signaling in the migration of tumor cells 

through the BBB. 

1.3.3.1   Role of Rho/ROCK and Rac signaling in the interaction of tumor cells 

with the BBB 

During invasion of tissues and migration through vessel walls and ECM components, 

metastasizing tumor cells require increased motility, which is dependent on the remodeling of 

the cytoskeleton. In this respect, members of the Rho family small GTPases were shown to 

have an indispensable role by regulating the two major modes of tumor cell movement, 

characterized by mesenchymal and amoeboid phenotype. The mesenchymal type of tumor 

cell movement requires elevated Rac1 activation and reduced Rho/ROCK signaling and is 

characterized by elongated cell morphology, formation of large membrane protrusions and 

dependence on integrins and extracellular proteolysis (Figure 2A). On the other hand, the 

amoeboid migration type mimics movement of leukocytes, with a rounded morphology and 

generation of Rho/ROCK-dependent actomyosin contractile forces (Sahai & Marshall, 2003; 

Sanz-Moreno et al, 2008; Wolf et al, 2003). These two types of movement are 

interconvertible and depend on the environment the cancer cells are move in (Symons & 

Segall, 2009). 
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Figure 2. Schematic representation of the two types of movement of cancer cells and signaling pathways 

implicated. Characterization of the amoeboid and mesenchymal types of cancer cell movement (A). 

Rho/ROCK and Rac signaling in the amoeboid and mesenchymal phenotypes (B). PI3K/Akt/mTor 

signaling and PI3K/P-Rex1/Rac signaling in breast cancer cells (C). 

 

The activity of Rho family GTPases is controlled by activators, guanine nucleotide 

A 

B 

C 
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exchange factors (GEFS) and inactivators, GTPase accelerating proteins (GAPs). Rac 

activation is mediated through the adaptor protein NEDD9 and the Rac GEF DOCK3, which 

drive mesenchymal movement and suppress amoeboid movement through the Rac effector 

WAVE2. In amoeboid movement a Rac GAP, ARHGAP22 suppresses the mesenchymal 

movement through inactivation of Rac (Sanz-Moreno & Marshall, 2009) (Figure 2B). 

Our previous results indicated that during transmigration through the brain 

endothelium, melanoma cells favor the mesenchymal type of cell movement. By inhibiting 

Rho/ROCK signaling, and therefore triggering the mesenchymal phenotype, we observed a 

significant increase in the number of transmigrated melanoma cells through brain endothelial 

monolayers. The question whether tumor cells prefer Rho/ROCK or Rac-dependent 

transendothelial migration is of clinical importance, since inhibitors of both Rho/ROCK (e.g. 

fasudil) and Rac pathways (Wertheimer et al, 2012) are emerging as potential therapeutic 

agents. 

1.3.3.2   Role of the PI3K signaling in the interaction of tumor cells with the 

BBB 

The pathway most frequently altered in human cancer is the PI3K signaling pathway. 

Genes encoding proteins in this pathway are mutated in more than 70% of breast cancers. 

Therefore, several potential therapeutic agents targeting nearly every aspect of this pathway 

are under development, clinical or preclinical assessment (http://am.asco.org/exploring-

pathway-despite-lukewarm-clinical-benefit-pi3k-inhibitors-optimism-remains-regarding). 

Class IA PI3Ks phosphorylate phosphatidylinositol (4,5)-bisphosphate (PIP2) in the 

inner side of the plasma membrane and produce phosphatidylinositol (3,4,5)-trisphosphate 

(PIP3). This activity is directly opposed by the tumor suppressor PTEN (phosphatase and 

tensin homolog). Akt/mTOR has canonically been regarded as the primary downstream 

pathway of PI3K, regulating cell growth, proliferation, survival and motility of cancer cells. 

However, PI3K regulates other pathways as well, e.g. the Rac activator PIP3-

dependent Rac exchange factor 1 (P-Rex1) (Figure 2C). Levels of P-Rex1 correlate with PI3K 

activation. P-Rex1 creates a positive feedback loop to activate PI3K/Akt and promotes 

viability of breast cancer cells (Dillon et al, 2015). Therefore, PI3K signaling may also be 

involved in the regulation of the amoeboid vs. mesenchymal type of cancer cell movement. 

In a recent study, a novel inhibitor of downstream PI3K was found to effectively 

control metastatic growth of HER2 positive breast cancer cells in multiple organs and 
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resulting in a significant proportion of mice free from brain and bone metastases (Nanni et al, 

2012). In addition, brain metastases of melanoma were shown to have significantly higher 

levels of phosphorylated Akt and lower PTEN than lung or liver metastases (Davies et al, 

2009). This pathway was shown to be activated not only in brain metastatic melanoma cells, 

but also in brain endothelial cells coming in contact with melanoma cell-conditioned media, 

inducing increased endothelial cell proliferation and motility (Anfuso et al, 2009). Moreover, 

the PI3K inhibitor LY294002 was shown to reduce the number of ECM-invading breast 

cancer cells in the presence of pulmonary microvascular endothelial cells (Mierke, 2011). It 

was also shown that melanoma cell-associated VE-cadherin breakdown in human umbilical 

vein endothelial cells (HUVECs) was not sensitive to LY294002, whereas transendothelial 

migration of melanoma cells was reduced in the presence of the PI3K inhibitor (Peng et al, 

2005). However, inhibition of PI3K had no effect on the transmigration of small cell lung 

cancer cells through brain endothelial cells (Li et al, 2006). 

1.3.3.3   Other pathways involved in the interaction of tumor cells with the BBB 

Several other signaling pathways have been shown to influence transendothelial 

migration of metastatic cells. Src signaling is known to participate in many aspects of tumor 

progression and metastasis. It plays an important role in the promotion of mesenchymal and 

inhibition of amoeboid motility (Ahn et al, 2012) and in the phosphorylation of N-cadherin 

and dissociation of β-catenin during transendothelial migration (Qi et al, 2005). 

In melanoma, transforming growth factor-beta 2 (TGF-β2) was found to be crucial, 

since its expression was found indispensable for the formation of parenchymal brain 

metastases (Zhang et al, 2010). Stat3 activation was also found to play an important role in 

angiogenesis, invasion and brain metastasis formation of melanoma cells through 

dysregulated expression of bFGF (basic fibroblast growth factor), VEGF and MMP-2 (Xie et 

al, 2006). VEGF and its receptors may also be involved in the transmigration process. In 

breast cancer cells HER2 increases VEGF protein production, which induces the disruption of 

interendothelial junctions (Fan et al, 2011). In addition, VEGF was shown to increase the 

adhesion of highly metastatic MDA-MB-231 breast cancer cells to brain endothelial 

monolayers and to enhance their transmigration through an in vitro BBB model (Li et al, 

2013). 
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2   Aims 

In our studies we aimed at understanding the mechanisms of transmigration of tumor 

cells through the BBB. We focused on two tumor types with high incidence of brain 

metastasis formation, i.e. melanoma and breast cancer. Breast cancer is the second most 

common cancer type giving cerebral metastases; however, in comparison to melanoma it has a 

much lower propensity to metastasize to the brain. Comparison of the interaction of these two 

different tumor cell types with the cerebral endothelium might help in understanding whether 

the transendothelial migration step of metastasis formation has any role in the higher tropism 

of melanoma cells towards the CNS. In addition, we investigated the impact of Rac, Rho-

ROCK and PI3K signaling on the diapedesis of melanoma and breast cancer cells into the 

brain. Understanding the role of these signaling pathways might lead to the elaboration of new 

preventive and treatment strategies in metastatic diseases of the brain. 

Our investigations had five specific aims: 

1. to compare the transmigration properties of melanoma and breast cancer cells through 

the brain endothelial monolayer under static and dynamic conditions, 

2. to compare the effects of melanoma and breast cancer cells on the tight junctions of 

confluent cerebral endothelial cells, 

3. to understand the role of Rac signaling and of amoeboid vs. mesenchymal phenotype 

in the transmigration of melanoma and breast cancer cells through the BBB,  

4. to investigate the impact of PI3K inhibition on the transmigration of tumor cells 

(melanoma and breast cancer cells) through the cerebral endothelium during brain 

metastasis formation, 

5. to observe the effect of Rac and PI3K inhibitors on the barrier integrity of the brain 

endothelium. 
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3   Materials and methods 

3.1   Cell culture and treatments 

MDA-MB-231 and MCF-7 human breast cancer cells were kept in DMEM medium 

(Sigma) supplemented with 5% FBS (Lonza). A2058 human melanoma cells (obtained from 

the European Collection of Cell Cultures) were maintained in EMEM (Sigma) supplemented 

with 5% FBS (Sigma). A375 human melanoma cells were kept in DMEM medium (Sigma) 

supplemented with 10% FBS (Lonza). 4T1 mouse breast cancer cells were kept in RPMI 

medium (Lonza) supplemented with 5% FBS (Lonza). The hCMEC/D3 human microvascular 

cerebral endothelial cells (abbreviated as D3) (Weksler et al, 2005) were grown on rat tail 

collagen-coated dishes in EBM-2 medium (Lonza) supplemented with EGM-2 Bullet Kit 

(Lonza) and 2.5% FBS (Sigma). Rat brain endothelial cells (RBECs) were used for 

immunofluorescence experiments because of their superior barrier characteristics. Primary rat 

brain endothelial cells (RBECs) were isolated from 2-week old rats. Briefly, after removal of 

meninges cerebral cortices were cut into small pieces and digested with 1 mg/ml collagenase 

type 2 (Sigma). After separation of myelin by centrifugation in 20% bovine serum albumin 

(BSA), a second digestion was performed with 1 mg/ml collagenase/dispase (Roche). 

Microvessel fragments were collected after 10 min 1000•g centrifugation on Percoll (Sigma) 

gradient, and plated onto fibronectin/collagen-coated dishes. Endothelial cells growing out of 

the microvessels were cultured in DMEM/F12 (Life Technologies), 10% plasma-derived 

serum (First Link) and growth factors. In the first two days, 4 µg/ml puromycin was added to 

remove contaminating cells. 

ROCK inhibitors (Y27632, Tocris and fasudil, Santa Cruz) were used in a final 

concentration of 10 μM. EHT1864 (Tocris), an inhibitor of the Rac family GTPases, was 

applied in a 20 µM concentration. LY294002 (Cell Signaling Technology) – a reversible and 

highly selective inhibitor of phosphatidylinositol 3 kinase (PI3K) – was used in a 

concentration of 25 µM. 
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3.2   Adhesion experiments 

Brain endothelial cells (D3) were grown until confluence in 24-well plates. Tumor 

cells (MDA-MB-231, MCF-7, A2058 or A375 cells) were fluorescently labeled using Oregon 

Green 488 carboxylic acid diacetate succinimidyl ester (Life Technologies) using the protocol 

supplied by the manufacturer. 5•10
4
 tumor cells/well were plated onto the endothelial 

monolayer in serum-free medium and incubated for 90 min. Non-attached cells were washed 

and the remaining cells were fixed using ethanol/acetic acid (95/5) at -20°C for 5 min. Tumor 

cells adhered to endothelial cells were photographed and counted using the Image-Pro Plus 

software (Media Cybernetics). 

3.3   Static transmigration experiments using time-lapse video 

imaging 

Human cerebral endothelial cells (D3) were cultured until confluence in 12-well 

plates. 2•10
4
 tumor cells/well were plated onto the endothelial monolayer in Leibovitz’s L-15 

medium (Sigma). Cells were monitored for 6 h using an Andor NEO sCMOS camera 

connected to a Nikon Eclipse Ti-E inverted microscope, equipped with a home built incubator 

set to 37°C. Phase-contrast images were made every 5 min from 5 optical fields/well and 

time-lapse videos were constructed. The movement of each tumor cell was evaluated and 

transmigrated cells were counted. 

3.4   Dynamic transmigration experiments using microfluidics 

3.4.1   Design and fabrication of microdevices 

To investigate the transmigration of tumor cells under low shear stress conditions we 

designed and constructed a biocompatible artificial capillary network. The schematic 

representation of the microfluidic setup is shown in Figure 3. 
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Figure 3. Dynamic transmigration experimental setup: schematic representation of the microfluidic 

device. 

 

The microfluidic capillary device was fabricated from poly-dimethylsiloxane (PDMS, 

Sylgard 184, Dow Corning) using standard photolithography and soft lithography techniques. 

(Qin et al, 2010) Imprints of the microdevices were built by creating 100 µm high SU8-2050 

negative photoresist (MicroChem) layers on silicon wafers. The photoresist layers were 

exposed to UV light through a chromium mask (JD Photo-Tools), using a flood exposure 

source with mask aligner (500W Hg lamp, i-line, model 97435, Newport & Digital Exposure 

Controller model 68945, Newport). In order to prevent the attachment of PDMS to the SU8 

molds, the molds were treated with tridecafluoro-1,1,2,2-tetrahydrooctyl-trichlorosilane 

(Gelest) under vacuum overnight. Positive replicas were fabricated by PDMS molding. The 

PDMS replicas were cured, inlet holes and bubble traps were punched and the devices were 

bound to PDMS-covered microscope glass slides using oxygen plasma treatment. 
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3.4.2   Cell seeding and microfluidic cell culture 

Prior to seeding of brain endothelial cells, the inner surface of the channels was coated 

with rat tail collagen. 10
6
 D3 cells were collected in 100 μl Leibovitz’s L-15 media completed 

with 2.5% FBS (Sigma), growth factor mix (Lonza), hydrocortisone and gentamicin-

amphotericin-B and injected into the microchannels. The microfluidic devices were placed in 

a home built incubator installed on a microscope stage set to 37°C. Cells were kept in “static 

conditions” for 24-36 h to reach a confluent layer. During this static state the medium was 

refreshed every 8 h. When the confluent endothelial layer fully developed, a continuous flow 

of 300 μl/h rate was started and maintained for 24 h to mimic the blood circulation. 

During transmigration experiments, 3•10
5
 tumor cells (A2058 or MDA-MB-231) were 

collected in 100 μl media and injected manually (with syringe). After the injection, a 

continuous flow with 100 μl/h rate was established and maintained for 6 h. Considering the 

physical parameters of the device (channel height of ~100 μm, channel width of ~240-

480 μm) and the used fluid flow rates (100-300 μl/h), we can estimate the shear stress (based 

on Song et al, 2005) acting on the endothelial cells in the microchannels. The applied fluid 

flow generated a low stress regime in our device, in which the shear stress was around ~0.3-

2 dyn/cm
2
. 

3.4.3   Microscopy 

Phase contrast microscopy images were taken during cell growth and transmigration 

phase, using an Andor NEO sCMOS camera and a Nikon Eclipse Ti-E microscope (Nikon), 

equipped with a 20× Plan Fluor phase contrast objective and a Proscan II motorized 

microscope stage (Prior Scientific). We used the Nikon NIS Elements AR software (Nikon) to 

control the microscope setup during the recordings. Microscopy images were taken every 

30 min during the endothelial cell attachment phase and every 5 min during the 

transmigration experiments (representative images are shown in Figure 4). 

3.5   Immunofluorescence studies 

RBECs were cultured until confluence on collagen/fibronectin-coated filter inserts. 

Tumor cells (MDA-MB-231, A2058 or 4T1) were fluorescently labeled using CellTracker™ 

Red (Life Technologies) and plated onto the endothelial monolayer. After 5 h or 8 h cells were 
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washed and fixed with ethanol/acetic acid. After blocking with 3% BSA, filter inserts were 

incubated with anti-claudin-5 primary antibody (Life Technologies). The staining was 

visualized using Alexa488-conjugated secondary antibody (Jakson Immunoresearch). Nuclei 

were stained with Hoechst 33342 (Sigma). Samples were mounted in FluoroMount-G 

(SouthernBiotech) and studied with a Nikon Eclipse TE2000U microscope connected to a 

digital camera (Spot RT KE, Diagnostic Instruments). 

3.6   Cell viability assay 

Viability of tumor cells and endothelial cells was quantified with the EZ4U non-

radioactive cell proliferation and cytotoxicity assay (Biomedica). D3, A2058, A375, MDA-

MB-231 and MCF-7 cells were seeded in 96-well plates. Next day cells were treated for 5 h 

with 20 μM EHT1864 or 25 μM LY294002 in serum-free, phenol red-free DMEM (Life 

Technologies). After incubation with the EZ4U substrate for 45 min, the absorbance (OD at 

450 nm) was detected using a BMG FLUOstar OPTIMA microplate reader. 

3.7   Wound healing assay 

Tumor cells (MDA-MB-231, MCF-7 or A2058) were seeded into 24-well plates. After 

attachment the cell layer was wounded by scratching with a pipette tip, washed with PBS, and 

exposed to treatments with 20 μM EHT1864 or 25 μM LY294002 in serum-free Leibovitz’s 

L-15 medium. Cells were monitored over 24 h, and phase contrast images were taken every 

30 min with an Andor NEO sCMOS camera connected to the Nikon Eclipse Ti-E inverted 

microscope equipped with a home-built incubator set to 37°C and a 20× Nikon Plan Fluor 

objective, all placed onto a Prior Proscan II motorized stage (Prior Scientific Instruments). 

The wound healing effect was quantified by averaging the number of migrating cells counted 

in five wounded areas. 

3.8   Real-time impedance monitoring 

To monitor the effects of EHT1864 and LY294002 on D3 cells in real-time, we 

measured the electrical impedance using the xCELLigence system following the 

manufacturer’s instructions (Acea Biosciences). Briefly, cells were seeded at a density of 
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10
4
 cells/well into 100 μl of media in an E-Plate® (i.e., 96-well tissue culture plates having 

micro-electrodes integrated on the bottom) and allowed to attach onto the electrode surface 

over time. The electrical impedance was recorded every 15 min. When the impedance reached 

plateau (i.e. confluent monolayer with well-formed junctions), the cells were treated with 

20 μM EHT1864 or 25 μM LY294002 for an additional 10 h. The cell impedance (which 

depends on cell number, degree of adhesion, spreading and proliferation of the cells and also 

on the tightness of the junctions), expressed in arbitrary units (cell index), was automatically 

calculated by the software of the instrument. 

3.9   Western-blot analysis 

Confluent D3 brain endothelial cells were treated with 20 μM EHT1864 or 25 μM 

LY294002 for 5 h. Cells were washed with PBS and scraped into ice-cold RIPA buffer 

(20 mM Tris, 150 mM NaCl, 0.5% Triton X-100, 1% sodium deoxycholate, 0.1% sodium 

dodecyl sulphate, 1 mM sodium vanadate, 10 mM NaF, 1 mM 

EDTA/ethylenediaminetetraacetic acid, 1 mM Pefabloc®) and incubated on ice for 30 min. 

Lysates were clarified by centrifugation at 10,000•g for 10 min at 4°C. Proteins were 

electrophoresed and blotted onto nitrocellulose (Bio-Rad) membranes. Blocking was carried 

out at room temperature for 30 min in TBS-T containing 3% BSA. Anti-claudin-5 (Life 

Technologies), primary antibody was used. After washing the membranes in TBS-T (Tris-

buffered saline and Tween 20), blots were incubated with the HRP (horseradish peroxidase)-

conjugated secondary antibody (BD Transduction Laboratories) diluted in TBS-T. The 

immunoreaction was visualized using Clarity ECL Western-Blot Substrate kit (Bio-Rad) in a 

Bio-Rad ChemiDoc MP Imaging System. 
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4   Results 

4.1   Comparison of the adhesion and transmigration properties of 

breast cancer cells and melanoma cells in vitro 

The first step in the process of brain metastasis formation is the adhesion of tumor 

cells to cerebral CECs. To compare metastatic mammary carcinoma and melanoma cells’ 

adhesion ability we applied an in vitro model of the blood-brain barrier. Since melanoma cells 

have higher propensity to metastasize to the brain than breast cancer cells, we aimed to 

understand whether there is any difference in the interaction of melanoma cells or breast 

cancer cells with the brain endothelium. 

We first aimed to compare the adhesion properties of breast cancer and melanoma 

cells to the brain endothelium. 90 min after plating the tumor cells upon brain endothelial 

cells, significantly more melanoma cells than breast cancer cells were able to attach to the 

endothelium (Table 1). 

 

 

Table 1. Comparison of the adhesion of breast cancer (MDA-MB-231, MCF-7), and melanoma cells 

(A2058, A375) to D3 brain endothelial monolayers. % of plated cells is represented (mean and SD); P 

value was assessed using ANOVA and Bonferroni’s post-hoc test. 

 

Therefore, we wanted to test whether the increased adhesion of melanoma cells in 

comparison to breast cancer cells results in an increased transmigration as well. First, under 

static conditions we studied the transmigration properties of melanoma and breast cancer cells 

and we used a novel in vitro approach based on a time-lapse video setup described in the 

Materials and Methods section. This innovative assay developed in our laboratory makes 

possible to follow the fate of each individual cell in time (adhesion, migration, division, etc.). 

This approach eliminates the drawbacks of assays using filter inserts, where cells migrating 

through the endothelial monolayer but not moving through the pores of the filter cannot be 

considered. Moreover, several cell types (including D3 cells) cannot be properly grown on 

D3+MDA-MB-231 D3+MCF-7 D3+A2058 D3+A375

average 18.44% 18.15% 34.64% 35.05%

st dev 8.66% 8.92% 7.41% 0.75%

p <0.05 vs. A2058 or A375 <0.05 vs. A2058 or A375 <0.05 vs. MDA or MCF <0.05 vs. MDA or MCF
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large pore-size filters due to the formation of a double monolayer on both sides of the 

membrane. 

Comparing the transmigration properties of breast cancer and melanoma cells using 

the static transmigration assay, we observed that fewer breast cancer cells than melanoma 

cells were able to migrate through the brain endothelium (Table 2). The difference was 

significant: 27-28% of plated melanoma cells completed the transmigration process, while 

only 16% of breast cancer cells migrated through. 

 

 

Table 2. Comparison of transmigration of MDA-MB-231, A2058 and A375 cells through D3 brain 

endothelial monolayers under static conditions. % of plated cells is represented (mean and SD); P value 

was assessed using ANOVA and Bonferroni’s post test. 

 

To confirm our results in physiologically more relevant conditions, we constructed a 

dynamic transmigration model. Brain endothelial cells were cultured in a microfluidic device 

(Figure 3; described in details in the Material and Methods section) until confluence (Suppl. 

video 1). After reaching confluence, a slow, physiologically relevant flow of the culture 

medium was initiated (300 µl/h, 1-2 dyn/cm
2
) for 24 h. Shear stress induced elongation of 

endothelial cells (Figure 4A). This morphological change to fluid shear stress has been 

observed in earlyer studies with different endothelial cells (Dewey et al, 1981). 

After injection of MDA-MB-231 or A2058 cells, the flow was re-started with a rate of 

100 μl/h, phase-contrast images were taken and time-lapse videos were constructed to analyze 

the movements of the tumor cells (Figure 4B, Suppl. video 2 and 3). 

 

 

 

 

 

D3+MDA-MB-231 D3+A2058 D3+A375

average 15.78% 26.99% 28.28%

st dev 0.82% 2.54% 4.72%

p <0.05 vs. A2058 or A375 <0.05 vs. MDA-MB-231 <0.05 vs. MDA-MB-231
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B 

 

Figure 4. Confluent D3 monolayer before (a) and after (b) exposed to continuous flow (A). Dynamic 

transmigration experimental setup: images used for constructing the time lapse videos. D3 cells were 

cultured until confluence in the microfluidic device, exposed to medium flow, then tumor cells were 

injected and left under a continuous flow of 100 µl/h for 6 h. Phase contrast images were taken every 

5 min. Individual tumor cells are marked as follows: white circle = no attachment, black circle = no 

transmigration, white arrow = transmigration in 20 min, black arrow = transmigration in >20 min, black 

box = division. The red dotted stars delineate clusters of transmigrating melanoma cells (B). 
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In these conditions approximately 50% of breast cancer cells and 42.5% of melanoma 

cells showed no attachment and were washed away by the flow of the culture medium in early 

stages of the experiment (Figure 4: white circles, Table 3: no attachment). The percentage of 

tumor cells not washed away from the optical fields studied, but not able to transmigrate in 

6 h, was significantly more in case of breast cancer cells than in case of melanoma cells (15% 

vs. 4.5%, respectively) (Figure 4: black circles, Table 3: no transmigration). Taken together, 

53% of melanoma and 35% of breast cancer cells transmigrated through the brain endothelial 

monolayer in these conditions. The difference in the transmigration between the two cell types 

was the most pronounced in early time points: 23.5% of the total number of melanoma cells 

migrated through the brain endothelium in the first 20 min, while the percentage of breast 

cancer cells transmigrating in this time frame was only 3% (Figure 4: white arrows, Table 3: 

transmigr. in 20 min). 

 

 

Table 3. Comparison of transmigration of A2058 and MDA-MB-231 cells through D3 brain endothelial 

monolayers under dynamic conditions. MDA-MB-231 breast cancer cells or A2058 melanoma cells were 

injected into the microchannels already containing confluent D3 monolayers. Tumor cells were monitored 

for 6 h under a continuous medium flow of 100 μl/h. Tumor cells were divided into four groups: cells 

washed away by the flow of the culture medium (no attachment), cells not transmigrating in 6 h (no 

transmigration), cells migrating through the brain endothelium in the first 20 min (transmigr. in 20 min) 

and cells transmigrating after 20 min (transmigr. in >20 min). % of plated cells is represented (mean and 

SD); P value (comparing D3+MDA-MB-231 and D3+A2058) was assessed with ANOVA and Bonferroni’s 

post-hoc test. 

 

Melanoma cells tended to attach and transmigrate in small groups (Figure 4: red dotted 

star), as we have previously observed in static conditions (Fazakas et al, 2011). After 

transmigration, several melanoma cells continued to move beneath and between endothelial 

cells (as previously seen in static conditions (Fazakas et al, 2011)), sometimes rounding up 

disappearance no transmigration transmigr. in 20 min transmigr. in >20 min

average 50.00% 15.00% 2.80% 32.20%

st dev 4.24% 4.04% 1.73% 3.54%

disappearance no transmigration transmigr. in 20 min transmigr. in >20 min

average 42.50% 4.50% 23.50% 29.50%

st dev 7.21% 1.00% 4.95% 5.12%

p <0.05 <0.05

D3 + MDA-MB-231

D3 + A2058
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and flattening again (Figure 4: cells 1 and 2). A few divisions were also observed (Figure 4: 

black boxes) and the daughter cells usually transmigrated rapidly after division (Figure 4: 

cell 3). Taken together, these results show that melanoma cells are able to adhere to and to 

migrate through the brain endothelium more effectively than breast cancer cells. This might 

be partly responsible for the higher propensity of melanoma cells to metastasize to the brain. 

4.2   Differences in the effects of breast cancer cells and melanoma 

cells on the tight junctions of brain endothelial cells 

We have previously observed that during transmigration melanoma cells are able to 

disrupt the TJs of CECs and use (at least partly) the paracellular way of migration (Fazakas et 

al, 2011). We were interested to understand whether breast cancer cells are also able to impair 

the junctional integrity of the cerebral endothelium. Therefore, we performed claudin-5 

immunostaining on primary rat brain endothelial cell (RBEC) monolayers challenged with 

MDA-MB-231 breast cancer, A2058 melanoma cells, or 4T1 mouse breast cancer cells. We 

have left the tumor cells on the RBEC monolayers for different time intervals (5 h and 8 h). 

As shown in Figure 5, melanoma cells could breach the junctions of RBECs as indicated by 

focal loss of claudin-5 staining. This was not observed in case of breast cancer cells. 

These data suggest that differences in the transendothelial migration of mammary 

carcinoma and melanoma cells might be partly due to differences in their ability to impair 

interendothelial junctions. 
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Figure 5. Effect of breast cancer and melanoma cells on the tight junctions of brain endotheial cells. MDA-

MB-231 human breast cancer cells, A2058 human melanoma cells or 4T1 mouse breast cancer cells 

(labeled in red) were plated onto confluent RBEC monolayers and left for 5 h or 8 h. Tight junctions of 

endothelial cells were stained in green using anti-claudin-5 antibodies. Arrows indicate disappearance of 

claudin-5 staining. 
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4.3   Effect of Rac or PI3K inhibition on the adhesion of breast cancer 

cells and melanoma cells to the brain endothelium 

The small GTPases Rho and Rac play important role in the movement of tumor cells. 

Rho/ROCK signaling was shown to be involved in the ameboid invasion phenotype of cancer 

cells, which is characterized by rounded morphology and increased actomyosin contractility. 

During mesenchymal type of cell movement, tumor cells gain an elongated morphology, and 

activate extracellular proteolytic mechanisms, and the small GTPase Rac. Tumor cells are 

able to switch between the ameboid and mesenchymal type of cell movement (Symons & 

Segall, 2009). We aimed to understand which mechanism is applied by breast cancer cells 

during transmigration through CECs. We have previously shown that inhibition of the ROCK 

in melanoma cells increases their adhesion to brain endothelial cells. In case of breast cancer 

cells ROCK inhibitors (10 µM Y27632 or 10 µM fasudil) were not able to influence the 

number of breast cancer cells adhering to the brain endothelium (Figure 6A and B). On the 

other hand, the Rac inhibitor EHT1864 (20 µM) hampered the adhesion of both MDA-MB-

231 and MCF-7 breast cancer cells (Figure 6A and B). As expected, mainly the number of 

elongated adherent cells was decreased, which have a mesenchymal phenotype. When both 

ROCK and Rac inhibitors were applied, a similar reduction in the adhesion of tumor cells was 

seen as with the Rac inhibitor alone (Figure 6A). We also observered that the Rac inhibitor 

EHT1864 decreased the number of adherent melanoma cells (Figure 6C).  

In addition, the PI3K inhibitor LY294002 in a concentration of 25 µM significantly 

reduced the number of breast cancer and melanoma cells attaching to the brain endothelium. 

The reduction was approximately 40% compared to control in case of both breast cancer and 

melanoma cells, and mainly affected tumor cells with elongated (flattened, mesenchymal) 

phenotype (Figure 6A,B and D,E). In case of A375 melanoma cells, which presented a 

rounded morphology during adhesion, LY294022 could also significantly reduce the number 

of adherent cells (Figure 6E). 
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Figure 6. Effect of Rac- or PI3K-inhibition on the adhesion of breast cancer cells or melanoma cells onto 

the brain endothelium. Fluorescently labeled MDA-MB-231 (A) or MCF-7 (B) breast cancer cells, A2058 

(C, D) or A375 (E) melanoma cells were plated onto confluent D3 monolayers and left for 90 min. Results 

are expressed as % control and given as mean ± SD. N = 3, ** = P<0.01, * = P<0.05, as assessed by ANOVA 

and Bonferroni’s post-hoc test or Student’s t-test. 
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4.4   Effect of Rac or PI3K inhibition on the transendothelial 

migration of breast cancer cells and melanoma cells in static conditions 

Since inhibition of Rac or PI3K decreased the adhesion of both melanoma and breast 

cancer cells, we tested the effect of Rac or PI3K inhibitors on the transmigration of melanoma 

and breast cancer cells through brain endothelial monolayers as well (Figure 7). In this assay 

we used two invasive melanoma cell lines (A2058 and A375) and the MDA-MB-231 breast 

cancer cell line, which is more invasive than the MCF-7 cell line. Inhibition of Rac with 

EHT1864 significantly reduced the transmigration of both tumor cell types to approximately 

20% in case of breast cancer cells (Figure 7A) and to 15% in case of melanoma cells (Figure 

7C). LY294002 had similar effects: the transmigration percentage was 30% and 40%, 

respectively, compared to control (Figure 7B,D,E). 
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Figure 7. Effect of Rac or PI3K inhibition on the transmigration of breast cancer and melanoma cells 

through the brain endothelium in static conditions. MDA-MB-231 breast cancer cells (A, B), A2058 (C, D) 

or A375 (E) melanoma cells were plated onto confluent D3 monolayers and left for 6 h. Phase-contrast 

images were made every 5 min and transmigrating tumor cells were counted. Results are expressed as % 

control and given as mean ± SD. N = 3, ** = P<0.01, * = P<0.05 as assessed by Student’s t-test. 
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4.5   Effect of Rac or PI3K inhibition on the transendothelial 

migration of breast cancer cells and melanoma cells in dynamic conditions 

Using our dynamic model, we explored which step of transmigration of breast cancer 

or melanoma cells was inhibited by EHT1864 or LY294002. As previously discussed 

(Table 3), only 8% of total transmigrating breast cancer cells completed transmigration in the 

first 20 min (2.8% of 35%), while this was significantly higher in case of melanoma cells 

(44.34%, i.e. 23.5% of 53%). This suggests that melanoma cells can transmigrate more 

rapidly through the brain endothelium than breast cancer cells (Figure 8). Nevertheless, 

EHT1864 and LY294002 inhibited the rapid transmigration of melanoma cells. However, in 

case of breast cancer cells the number of cells transmigrating after 20 min was reduced by 

inhibitors of Rac and PI3K (Figure 8). 

 

 

Figure 8. Effect of Rac or PI3K inhibition on the transmigration of breast cancer cells or melanoma cells 

through the brain endothelium in dynamic conditions. Results are expressed as % control and given as 

mean ± SD. N = 3, * = P<0.05 compared to control, # = P<0.05 A2058 cells compared to MDA-MB-231 

cells, as assessed by ANOVA and Bonferroni’s post-hoc test. 
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Taken together, our results indicate that inhibition of Rac or PI3K impairs the ability 

of both breast cancer and melanoma cells to adhere to and to migrate through the brain 

endothelium. Differences exist however, between the velocities of the transmigration of the 

two tumor cell types. 

4.6   Effects of Rac and PI3K inhibitors on the viability, proliferation 

and migration of tumor cells and brain endothelial cells 

We wanted to exclude that the inhibitory effect of EHT1864 and LY294002 on the 

adhesion and transmigration of breast cancer and melanoma cells was due to toxicity on 

tumor cells. Using the EZ4U assay no toxic effect of either EHT1864 or LY294002 on A2058, 

A375, MDA-MB-231 and MCF-7 cells was observed. Moreover, the EZ4U assay did not 

show any toxicity of EHT1864 or LY294002 on D3 brain endothelial cells (Figure 9). In 

addition, as assessed during the time-lapse video experiments, the number of dividing cells 

was approximately 2.5% in case of MDA-MB-231 cells and 1% in case of A2058 cells. 

Therefore, the observed changes in the adhesion and transmigration are unlikely to be the 

result of an anti-proliferative effect of EHT1864 or LY294002. Moreover, the wound healing 

assay indicated no change in the migratory properties of melanoma or breast cancer cells in 

response to EHT1864 or LY294002 (not shown). 

 

 

Figure 9. Effect of the Rac and PI3K inhibitors on the viability of endothelial and tumor cell lines. 

Viability of the cells was measured using the EZ4U kit. Data are expressed as mean ± SD. 
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4.7   Effect of Rac or PI3K inhibition on the junctional integrity of the 

brain endothelium 

We observed that EHT1864 induced a decrease in the impedance of D3 cells, as 

reflected by the cell index (Figure 10A). After an initial drop induced by the medium change, 

the impedance of control and LY294002-treated D3 cells recovered rapidly. However, in case 

of EHT1864-treated cells the recovery was not complete, and after 5 h a significant drop in 

the impedance was seen. The cell impedance reflects changes in the cell number, viability and 

tightness of the junctions. Since no change in the viability of D3 cells was observed using the 

EZ4U assay, we next investigated the possible damaging effect of the Rac inhibitor on the 

TJs. We observed a significant down-regulation of claudin-5 protein in D3 cells with Western-

blot, in response to EHT1864 (Figure 10B). LY294002 did not significantly affect the amount 

of claudin-5 protein in D3 cells. 
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Figure 10. Effect of the Rac inhibitor EHT1864 and of the PI3K inhibitor LY294002 on the junctional 

integrity of the brain endothelium. Impedance of D3 brain endothelial cells (represented by the cell index) 

was assessed by the ACEA xCELLigence system. Results are expressed as % control and given as mean ± 

SD. N = 3, * = P<0.05 compared to control, as assessed by ANOVA and Bonferroni’s post-hoc test (A). D3 

cells were treated with 20 μM EHT1864 or 25 μM LY294002 for 5 h. Claudin-5 Western-blot was 

performed from the RIPA-soluble fractions. One representative blot and densitometry based on three 

independent experiments is shown. * = P<0.05 compared to control, as assessed by ANOVA and 

Bonferroni’s post-hoc test (B).  
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5   Discussion 

Brain metastases are devastating complications of lung cancer, breast cancer, 

melanoma and other malignancies. Among all solid tumors, melanoma has the highest affinity 

to the CNS. This has been explained by the specific brain environment which supports the 

growth of cells of ectodermal origin (Denkins et al, 2004; Fidler et al, 1999). However, 

besides soluble and cellular elements of the central nervous system, other factors might also 

contribute to the neurotropism of melanoma cells. One of the most important steps in the 

process of brain metastasis formation is the diapedesis of metastatic cells through the barriers 

of the CNS, mainly the BBB-forming microvascular endothelium. The role of the BBB in the 

formation of cerebral metastases is largely unexplored and probably very complex. Being the 

tightest endothelial barrier in the organism, it hinders the transmigration of tumor cells into 

the brain. On the other hand, unique brain endothelial properties might differentially affect the 

diapedesis of different cancer cell types. In order to understand the mechanisms of melanoma 

and breast cancer brain metastasis formation we applied two different in vitro models to study 

the interaction between tumor cells and brain endothelial cells. 

5.1   Model systems used. Comparison of the adhesion and 

transmigration properties of breast cancer and melanoma cells 

The static and dynamic in vitro BBB models used in our experiments are based on the 

culture of hCMEC/D3 (D3) human cerebral endothelial cells. This cell line has been widely 

used as a human BBB model (Carl et al, 2010; Förster et al, 2008), thus this is the most well 

characterized human brain endothelial cell line (Weksler et al, 2013). 

To study the effect of the tumor cells on brain endothelial TJs we used cultures of 

primary rat brain endothelial cells (RBECs). Primary cells in culture maintain the main in 

vivo characteristics of the brain endothelium, i.e. expression of von Willebrand factor, 

presence of a continuous line of TJs, high TEER and low permeability values and high 

activity of P-gp, preserving superior permeability characteristics to cell lines. 

 The time-lapse videos indicated that melanoma cells have increased ability to attach 

to the brain endothelium than breast cancer cells under static and dynamic conditions as well. 

In order to exclude the possibility that this is due to differences in the invasive and metastatic 

capacities between the melanoma and breast cancer cell lines used, we used two different 
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human breast cancer cell lines: the less invasive MCF-7 and the highly migratory and 

metastatic MDA-MB-231 (Wertheimer et al, 2012). We also used two different human 

melanoma cell lines, A2058 and A375, both invasive BRAF V600E mutants, having similar 

propensity to metastasize to different organs (Rozenberg et al, 2010), A2058 being 

vemurafenib resistant, while A375 vemurafenib sensitive (Boussemart et al, 2014). 

The difference between the adhesive properties of melanoma cells and either of the 

breast cancer cell lines was significant. Moreover, such a difference was not observed when 

other endothelial cell types (HUVECs, dermal microvascular cells, lymphatic endothelial 

cells) were used: melanoma cells had similar adhesion properties to non-cerebral endothelial 

cells as breast cancer cells (Safuan et al, 2012). We have also observed a significant difference 

in the number of transmigrating melanoma and breast cancer cells under static and dynamic 

conditions as well. The number of cells not able to migrate through the brain endothelium was 

much higher in case of breast cancer cells than in case of melanoma cells. Moreover, invasive 

melanoma cells tended to complete the transmigration process much more rapidly than 

invasive breast cancer cells.  

The fact that melanoma cells can more easily overcome the BBB may be one of the 

factors leading to the high tropism of melanoma cells towards the CNS. The high proportion 

of brain metastases in melanoma patients has been reported to be a consequence of the so-

called “homing” influence (Denkins et al, 2004), i.e. the ectodermal origin of both 

melanocytes and the CNS. According to our results, the higher ability of melanoma cells to 

impair brain endothelial TJs might also play a role in the higher ability of melanoma cells to 

form brain metastasis in comparison to breast cancer cells. 

5.2   Effect of tumor cells on interendothelial junctions 

Differences between the ability of the two tumor cell types to migrate through the 

brain endothelium might be partly due to their different ability to impair the TJs. 

Our data indicate that melanoma cells are more effective in breaking down the 

paracellular barrier than breast cancer cells. In order to exclude species-specific effects, we 

used both human and mouse breast cancer cell lines. Neither human, nor mouse mammary 

carcinoma cells were able to disrupt the junctions of CECs. On the other hand, human 

melanoma cells induced a time-dependent disappearance of junctional proteins from the 

membranes of brain endothelial cells. Moreover, we have previously shown that mouse 
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melanoma cells (the B16/F10 cell line) had similar effects (Fazakas et al, 2011). Therefore, 

we conclude that melanoma cells are more effective in disrupting the paracellular barrier of 

the brain endothelium than breast cancer cells, independent of species. 

We have previously shown that both breast cancer and melanoma cells are able to 

induce endothelial-mesenchymal transition in CECs (Krizbai et al, 2015), which results in 

loss of junctional integrity. On the other hand, activation of the proteolytic cascade during 

transmigration through the cerebral endothelium seems to be more effective in melanoma 

cells than in breast cancer cells (our unpublished results). Since junctional proteins are targets 

of proteolytic degradation, this difference may be partly responsible for the differences in the 

induction of junctional breakdown. 

On the other hand, breast cancer cells were previously shown to be able to use not 

only the paracellular pathway (through interendothelial junctions), but also the transcellular 

pathway (through the endothelial cell body) during migration through non-cerebral endothelia 

(Arvanitis et al, 2014; Khuon et al, 2010). In this process endothelial myosin light chain 

kinase was activated at the invasion site. 

Our results suggest that breast cancer cells might be more effective in the transcellular 

type of migration than melanoma cells, these latter having increased ability to use the 

paracellular pathway than mammary carcinoma cells. Further analyses will clarify this 

possible difference between the two tumor cell types. 

5.3   Role of Rac and PI3K in the extravasation of tumor cells 

We have also assessed the role of two signaling molecules (Rac and PI3K) in the 

transmigration of melanoma and breast cancer cells through the BBB. In a recent study we 

showed that melanoma cells prefer the Rac-dependent mesenchymal type of cell movement to 

the Rho/ROCK-dependent amoeboid one during transmigration through the BBB. We also 

showed that inhibition of Rac not only impedes the adhesion and transmigration of melanoma 

cells, but of breast cancer cells as well. Interestingly, the ROCK inhibitor Y27632 – which 

significantly facilitated the adhesion of melanoma cells – did not affect the adhesive 

properties of breast cancer cells. This may be the consequence of the very high basal activity 

of the P-Rex1/Rac signaling pathway, which is highly overexpressed in human luminal 

mammary tumors, particularly those expressing HER2 and ER (Wertheimer et al, 2012). 
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The effect of Rac inhibition was similar in case of both melanoma and breast cancer 

cells: a significant decrease in the number of tumor cells attaching to and transmigrating 

through CECs was observed. This supports the idea that inhibition of the mesenchymal 

movement of tumor cells might be beneficial in reducing the diapedesis of different metastatic 

cells through the BBB. Unfortunately, Rac inhibitors – in contrast to ROCK inhibitors, which 

prevent the disruption of the TJs of CECs – might impair the integrity of the BBB.  

The effect of induction of the mesenchymal phenotype on tumor cell motility and 

invasion are contradictory and seem to depend on the tumor cell type. Inhibition of ROCKs 

(i.e. induction of the mesenchymal phenotype) has been shown to decrease the invasion and 

migration of lung (Yang et al, 2012; Yang et al, 2010; Zhu et al, 2011), breast (Wyckoff et al, 

2006), and hepatocellular carcinoma cells (Chen et al, 2011; Itoh et al, 1999; Ying et al, 

2006). In contrast, in case of osteosarcoma (Yui et al, 2010), pancreatic carcinoma (Fujita et 

al, 2011) and colon carcinoma (Adachi et al, 2011; Vishnubhotla et al, 2012), ROCK 

inhibitors improved invasive and migratory properties of the cells. In general, the ameboid 

type of movement appears to more favourable movement for the tumor cells, but this depends 

on the surrounding tissues, properties of the extracellular matrix or the endothelial barrier they 

need to cross (Symons & Segall, 2009). According to our results the mesenchymal phenotype 

seems more effective in case of overcoming the BBB. 

Besides Rac, we tested the role of the PI3K/Akt/PTEN pathway, which is a key 

regulator of tumorigenesis and metastasis formation. BRAF-mutant melanoma cells have been 

shown to have higher levels of pAkt-Ser473, pAkt-Thr308 and decreased expression of PTEN 

(Davies et al, 2009). The A2058 cell line used in our experiments is a V600E BRAF mutant 

expressing high amounts of phosphorylated Akt and low levels of PTEN (Xing et al, 2012). It 

has been shown that inhibition of PI3K results in a reduction of melanoma cell transmigration 

through HUVECs (Peng et al, 2005). Since brain metastases of melanoma have been shown to 

have significantly higher pAkt and lower PTEN levels than extracerebral metastases (Davies 

et al, 2009; Niessner et al, 2013), we aimed to test whether inhibition of this pathway impedes 

the transmigration of melanoma cells through CECs. We observed a marked inhibition of 

melanoma cells able to attach to and to migrate through the brain endothelium in response to 

PI3K inhibition. According to our results, breast cancer cell transendothelial migration could 

be partly blocked using the PI3K inhibitor LY294002 – similarly to melanoma cells. 

The morphology of PI3K-inhibited tumor cells was similar to that of Rac-inhibited 

cells, i.e. we could see a reduction in the number of elongated, flattened cells. This suggests 
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that PI3K inhibition – similar to Rac inhibition – induces an amoeboid-like phenotype in both 

melanoma and breast cancer cells. This is not surprising because PI3K has been shown to 

regulate Rac through P-Rex1 in breast cancer cells (Ebi et al, 2013) and several PI3K lipid 

products have been shown to interact with different RacGEFs (Campa et al, 2015). Moreover, 

a positive feed-back loop exists between P-Rex1 and PI3K (Dillon et al, 2015). 

5.4   Effect of Rac and PI3K inhibitors on the barrier integrity 

Unfortunately, inhibition of Rac impaired the integrity of brain endothelial junctions. 

TJ proteins – which are one of the main elements of barrier properties of CECs – are linked to 

the actin-cytoskeleton and are influenced by small G-proteins. Inhibition of Rho/ROCK 

signaling was shown to prevent disruption of epithelial and endothelial TJs in different 

pathological conditions, e.g. Ca
2+

-depletion (Samarin et al, 2007; Wilhelm et al, 2007) or HIV 

infection (Xu et al, 2012). We have also observed that ROCK inhibition induces increase of 

TEER in CECs. Although interactions between the two pathways is complex, activation of 

Rho usually leads to inactivation of Rac and vice versa (Burridge & Wennerberg, 2004). 

Therefore, it is not suprising that while inhibition of the Rho/ROCK pathway strengthens the 

junctions, Rac inhibition has an opposite effect. 

In contrast to the Rac inhibitor (EHT1864), the PI3K inhibitor (LY294002) did not 

affect the integrity of the BBB. We observed that EHT1864 decreased the impedance of 

endothelial cells, and we also demostrated a significant down-regulation of claudin-5 protein 

in D3 cells in response to EHT1864, but not in response to LY294002. Many PI3K inhibiting 

agents are in different phases of clinical trials for the treatment of different cancer types 

(Rodon et al, 2013). Based on our results, PI3K inhibitors might turn out to have clinical 

benefits not only in the treatment of primary tumors, but also in preventing brain metastasis 

formation of breast cancer and melanoma. 

 

In conclusion, we have shown that invasive melanoma cells have an increased 

capacity to: 

(1) attach to, 

(2) migrate through and 

(3) impair the tight junctions of  

the brain endothelium than breast cancer cells. 
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In addition, inhibition of Rac or PI3K decreases the number of both melanoma and 

breast cancer cells able to transmigrate through cerebral endothelial cells; however, Rac 

inhibition (but not PI3K inhibition) impairs the junctional integrity of the blood-brain barrier. 

Since inhibitors of the PI3K/Akt pathways are emerging as candidates for anti-cancer therapy, 

the mechanism described here might be of clinical relevance.  
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6   Summary 

Metastatic cells invading the CNS parenchyma have to overcome the blood-brain 

barrier. Tumor cells meet a supportive environment in the brain, protected from 

chemotherapeutics and antitumoral immune response. It is not surprising, therefore, that brain 

metastases of malignant tumors have limited therapeutic options. Hence, it would be of 

crucial importance to prevent the formation of brain metastases. One of the possible strategies 

is to target the step of migration of metastatic cells through the blood-brain barrier. The 

mechanisms of this process are largely uncharacterized. In order to understand these 

mechanisms involved in this process we have used in vitro experimental setups based on the 

culture of cerebral endothelial cells and tumor cell lines.  

We have demonstrated that melanoma cells have enhanced ability of adhesion to and 

transmigration through the brain endothelium than breast cancer cells under static and 

dynamic conditions as well. Moreover, melanoma cells tend to complete the transmigration 

process more rapidly than invasive breast cancer cells.  

Our experiments revealed that melanoma cells are more effective in breaking down the 

tight junctions of cerebral endothelial cells than breast cancer cells. 

Our data indicated that inhibition of Rac impedes the adhesion and transmigration of 

melanoma and breast cancer cells as well. 

We observed a reduction of melanoma and breast cancer cells able to attach to and to 

migrate through the brain endothelium in response to PI3K inhibition. 

In addition, considering their potential therapeutic effects, we have investigated the 

effect of Rac and PI3K inhibitors on the barrier integrity of cerebral endothelial cells. We 

have shown that the Rac inhibitor EHT1864 decreases the amount of junctional protein 

claudin-5, while the PI3K inhibitor LY294002 does not affect the integrity of the BBB. 
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