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API – active pharmaceutical ingredient 
average Z – average height of the particles 
BCS – biopharmaceutical classification system 
CI(%) – crystallinity index 
d(0.1), d(0.5), d(0.9), d(0.95) and d(0.99) – diameters of 10%, 50%, 90%, 95% and 99% of 
the particles are below the measured size value 
DDS – drug delivery system 
DL% – drug loading 
DSC – differential scanning calorimetry 
EE% – entrapment efficiency 
FT-IR spectroscopy – Fourier transform infrared spectroscopy 
GRAS – generally recognized as safe 
HLB – hydrophilic–lipophilic balance  
HPLC – high-performance liquid chromatography 
IBU – ibuprofen 
IBU-NLC – ibuprofen-loaded nanostructured lipid carrier 
IFT – interfacial tension 
LD – laser diffraction 
LDC – lipid drug conjugate 
LNP – lipid nanoparticle 
MWCO – molecular weight cut-off 
NLC – nanostructured lipid carrier 
NSAID – nonsteroidal anti-inflammatory drug 
PBS – phosphate buffer solution 
PCS – photon correlation spectroscopy 
PDI – polydispersity index 
PLN – polymer-lipid hybrid nanoparticle 
PS – particle size 
RSM – response surface methodology 
SC – stratum corneum 
SLN – solid lipid nanoparticle 
XRD – X-ray diffraction 
Zave – effective particle size 
ZP – zeta potential 



1 
 

1. INTRODUCTION 

The topical application of drugs is a favorable administration route in the treatment of skin 

diseases and musculoskeletal disorders. The advantage of dermal preparations is their 

administration at the site where the effect is needed [1]. 

Lipid nanoparticles (LNPs) are intensively studied drug delivery systems (DDSs) derived 

from o/w emulsions; they combine the advantages of polymeric nanoparticles, conventional 

emulsions and liposomes, while simultaneously avoiding their disadvantages [2-7]. They are 

capable of improving the insufficient physicochemical properties of biopharmaceutical 

classification system (BCS) class II (low water solubility and high permeability) active 

pharmaceutical ingredients (APIs), such as nonsteroidal anti-inflammatory drugs 

(NSAIDs) [1, 8-13], enhancing their bioavailability. The second generation of LNPs 

comprises the nanostructured lipid carriers (NLCs). The dermal use of NLC systems offers a 

number of advantages, such as physical stability of the applied topical formulations, 

enhancement of the chemical stability of the incorporated APIs, improved dermal 

bioavailability, the skin targeting of the APIs, and film formation on the skin, accompanied 

by controlled occlusion and skin hydration in vivo [14, 15]. UV-reflecting properties (e.g. the 

possibility of using these carriers in sunscreens to help increase their protective effect against 

UV light) and the possibility of modulating API release into the skin have also been 

reported [2, 16]. 

However, formulation of an NLC-based drug delivery system is a complex and long-lasting 

procedure, since the physicochemical properties of NLCs are altered by many factors, such as 

the quality and quantity of the selected lipids and surfactants or the ratio of lipids to API in 

the formulation. In view of their significant effects on the physicochemical properties of the 

nanoparticles, the selection of the proper ingredients is a crucial step in the formulation of 

NLCs. Optimization of the formulation via a factorial design could facilitate this process [2, 

17]. Response surface methodology (RSM) is an appropriate tool with which to evaluate the 

correspondence between the response and independent variables and to optimize the 

processes or products [18]. RSM requires less experimentation and provides estimates of the 

relative significance of the different variables [19]. 
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2. LITERATURE BACKGROUND 

2.1 Lipid nanoparticles 

LNPs are colloidal carriers which were introduced in the early 1990s. They are derived from 

o/w emulsions by replacing the liquid lipid with a solid lipid [4, 5, 14, 20, 21]. They range in 

size from 50 to1000 nm. LNPs are composed of physiologically tolerable lipids and they 

usually possess the GRAS (generally recognized as safe) grade [6]. The particles are in the 

solid state at both room and body temperature. The mobility of the incorporated drug is 

therefore reduced, which predicts controlled drug release from these systems [3]. 

LNPs possess the advantages of other colloidal carriers and avoid their disadvantages, such 

as [2]: 

• the nanoparticles are not taken up readily by the cells of the reticulo-endothelial 

system and hence they bypass liver and spleen filtration [22], 

• the possibility of controlled drug release and drug targeting [3, 4, 23], 

• increased drug stability [24, 25], 

• a high drug payload [7], 

•  the incorporation of both lipophilic and hydrophilic drugs [26-28], 

• no biotoxicity of the carrier [29, 30], 

• the avoidance of organic solvents [31], 

• no problems with respect to large-scale production and sterilization [32-34]. 

2.1.1 Types of lipid nanoparticles 

There are four groups of LNPs: the first generation are called solid lipid nanoparticles 

(SLNs). The lipid matrix of this DDS consists of only one type of solid lipid or blend of solid 

lipids, which is stabilized by surfactant(s) in an outer aqueous phase. The drawback of using 

lipids in the solid state is that they tend to form a perfect crystal lattice during storage, which 

will lead to low drug incorporation capacity and drug expulsion [25]. To overcome these 

limitations of the SLNs, a second generation, nanostructured lipid carriers (NLCs) was 

introduced. The lipid phase of an NLC formulation contains both solid and liquid lipids, 

which ensures that NLC systems possess certain advantages as compared with SLNs, such as 

a higher drug-loading capacity and steady drug entrapment during storage [35]. The use of 

only one lipid as matrix for an SLN tends to lead to the formation of a relatively perfect 

crystal lattice, which will result in drug expulsion [2, 3, 14, 35, 36]. In contrast, the matrix of 
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an NLC consists of a mixture of lipids with differently structured molecules, so that the 

formation of a perfect crystal is limited [14]. Since SLNs and NLCs are highly lipophilic 

carriers, they can encapsulate lipophilic drugs effectively [21, 37]. Figure 1 depicts the 

structures of the first two generations of LNPs: 

 
Fig. 1: Structures of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers 

(NLCs). 

Hydrophilic drugs can be incorporated into these DDSs only in very low concentrations. Due 

to the low drug-loading capacity of hydrophilic drugs, only those with high potency at low 

concentrations (e.g. proteins and peptides) are appropriate for use in SLNs and NLCs. In 

order to overcome these limitations of LNPs, lipid drug conjugates (LDCs) have been 

developed. In order to increase the lipophilicity, the hydrophilic drugs are conjugated with a 

lipid molecule and incorporated into the nanoparticles. Polymer−Lipid Hybrid Nanoparticles 

(PLNs) are suitable for the encapsulation of hydrophilic drugs in their salt forms. The cationic 

charges of these APIs may lead to low drug incorporation. Through the addition of a counter-

ionic polymer, a drug−polymer complex is formed, which demonstrates good partitioning 

into the lipid matrix [14, 20, 37-39]. 

2.1.2 Structure of lipid nanoparticles 

Depending on the physicochemical properties of the chosen ingredients (the lipid matrix, the 

surfactant and the API) and on the preparation method, there are three drug incorporation 

models (Fig. 2) [4, 37]: 

• the solid solution (homogenous matrix) model; 

• the drug-enriched shell model; and 

• the drug-enriched core model. 
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Fig. 2: Drug distribution in the lipid matrix of LNPs: homogenous matrix (a); drug-enriched 

shell (b); drug-enriched core (c). 

The solid solution model can be obtained (the API is molecularly dispersed in the lipid 

matrix) by the cold homogenization technique [2] without the use of a surfactant or drug-

solubilizing agent [4]. API enrichment within the shell occurs when the lipid precipitates, 

leading to re-partitioning during the cooling process and the lipid can form an API-free core. 

In contrast, a drug-enriched core may result when the API starts precipitating first and the 

shell will contain distinctly less of the API. This should be obtained when an API (e.g. 

prednisolone) is dissolved in the lipid melt at or close to its saturation solubility [40]. The 

chemical nature and the concentration of any ingredient (API, lipid and surfactant) 

additionally greatly influence the structure of the LNPs, as do the production conditions (hot 

or cold homogenization). Depending on the structure, both burst and prolonged drug release 

can be achieved [4, 15]. 

2.1.3 NLC models 

Based on the lipid compounds used in their production, three NLC models have been 

proposed (Fig. 3) [21, 37, 41]. These theoretical models have been established based on 

analytical data, which can be used to physicochemically characterize the matrices of the NLC 

systems [41]. 

 
Fig. 3: NLC type I: imperfect crystal model (a), NLC type II: amorphous model (b), and 

NLC type III: multiple model (c). 
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The NLC type I is called the imperfect crystal model and can be obtained when solid lipids 

are mixed with a sufficient amount of liquid lipids (oils). Its matrix consists of many voids 

and vacancies. High concentrations of API can be incorporated by increasing the number of 

imperfections. The API is accommodated either in molecular form or as amorphous clusters. 

Such imperfections can be increased by using glycerides composed of different fatty acids 

(e.g. mixtures of mono-, di- and triacylglycerols). The matrix of NLC is not able to form a 

highly ordered structure, thus creating available spaces (structural imperfections) [5, 37, 41]. 

The NLC type II, or the amorphous model (Fig. 3, b), can be obtained when special lipids are 

mixed (e.g., hydroxyoctacosanyl-hydroxystearate, isopropyl myristate, dibutyl adipate) that 

do not recrystallize after homogenization. These lipids create solid, but non-crystalline NLCs, 

the lipid core congeals in an amorphous nature. The amorphous nanoparticles avoid/delay the 

recrystallization phenomenon of lipids on cooling and during shelf life, thus minimizing API 

expulsion during storage time [37, 41]. 

The NLC type III is defined as the multiple model because it is composed of very small oily 

nano-compartments created inside the solid lipid matrix of the nanoparticles by a phase 

separation process [5]. In this type of NLC, higher amounts of oil are blended in solid lipids. 

At low concentrations, oil molecules are easily dispersed into the lipid matrix. During the 

cooling of the nanoemulsion the lipid droplets reach the miscibility gap (40 °C), and the oil 

precipitates forming tiny oil droplets. Subsequent solidification of the solid lipid surrounding 

these droplets leads to fixation of the oily nano-compartments. Such models allow controlled 

drug release and the lipid matrix prevents drug leakage. Lipophilic drugs can be solubilized 

in the oils and multiple types of NLCs are formed during the cooling process of a hot 

homogenization process. The advantage of this model is the increase of entrapment efficiency 

(EE%) for APIs of higher solubility in liquid lipids than in solid lipids [37, 41]. 

2.2 The skin as a possible drug administration route for lipid nanoparticles 

The skin is a widely used route of delivery for local and systemic drugs and is potentially a 

route for their delivery of nanoparticles [16]. The outermost layer of the skin is the stratum 

corneum (SC), which provides a natural physical barrier against particle penetration, but there 

are opportunities to deliver therapeutic nanoparticles, especially in diseased skin and to the 

openings of the hair follicles [42-44]. 
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 Drug penetration through the hair follicles 2.2.1

Whilst nanoparticle drug delivery has been touted as an enabling technology, its potential in 

treating local skin and systemic diseases has yet to be realized. Previously published reports 

support the hypothesis that nanoparticles >10 nm in diameter are unlikely to penetrate 

through the SC into viable human skin, but will accumulate in the hair follicle openings (see 

Fig. 4), especially after massage [43, 44]. 

 
Fig. 4: Accumulation of nanoparticles and drug delivery in the skin [43]. 

 Nanostructured lipid carriers and (trans)dermal drug delivery 2.2.2

NLCs may serve as a solution to overcome the limitations of the dermal permeation of some 

drugs and to avoid the SC barrier function. This DDS offers numerous advantages for topical 

application [45, 46]. Figure 5 summarizes the positive effects of NLC systems when applied 

on human skin. 
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Fig. 5: Effects of NLCs on the skin: NLCs adhere and form a film on the skin, which protects 

against hazards from the environment and increases the dermal penetration of APIs [46]. 

The small size of the LNPs ensures close contact between the lipid particles and the lipid 

bilayer of the SC, resulting in the penetration of an increased amount of drug into the deeper 

layer of the skin. Sustained and burst release of the drug incorporated in the NLC system may 

also be achieved [47]. As a result of the film formation that occurs after topical application, 

occlusive properties have also been reported for NLC formulations [48, 49], and these favor 

further enhanced penetration through the dermal layers. The NLC particles protect against 

environmental effects such as UV radiation, and they can function as physical UV filters [46, 

50]. 
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3. EXPERIMENTAL AIMS 

The aim of my Ph.D. work was to investigate ibuprofen-loaded nanostructured lipid carriers 

(IBU-NLC), optimizing the composition so as to achieve increased API penetration. 

1. In the first part of my Ph.D. work, the excipients were selected and the composition 

was optimized in order to prepare an NLC system loaded with IBU in the highest 

concentration. The following aims were set: 

• to select a suitable solid lipid and a suitable liquid lipid which are compatible 

with IBU and incorporate it in the highest concentration;  

• to select a suitable surfactant which stabilizes the LNPs in the aqueous phase. 

providing a stable NLC system; 

• to develop an NLC system suitable for transdermal use; 

• to optimize the composition by using a 23 full factorial design; 

• to evaluate the drug–excipient compatibility via: 

o differential scanning calorimetry (DSC) measurements, 

o X-ray diffraction (XRD) analysis, 

o Fourier transform-infrared (FT-IR) spectroscopy measurements. 

2. The second part of my Ph.D. research was to characterize the properties of the IBU-

NLC system. The aims were: 

• to determine the particle sizes (PSs) of the IBU-free (blank) and IBU-NLC 

formulations by photon correlation spectroscopy (PCS), laser diffraction (LD) 

and atomic force microscopy (AFM) methods; 

• to measure the zeta potential (ZP), using the electrophoretic mobility method; 

• to examine the crystalline properties of the lipid matrix and the state of the 

incorporated drug through XRD measurements; 

• to study the occurrence of possible interactions between the components of the 

prepared samples by using FT-IR and Raman spectroscopy; 

• to localize the drug in the lipid matrix via Raman mapping; 

• to study the permeability of the drug through in vitro, ex vivo and in vivo studies 

in comparison with a  reference formulation. 
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4. MATERIALS AND METHODS 

4.1 Materials 

4.1.1 Ibuprofen 

NLC formulations were loaded with IBU, a potent NSAID, which was provided by 

PannonPharma Ltd (Pécsvárad, Hungary). Although IBU is not the most potent active API in 

this group, it offers the best balance between safety and the therapeutic effect [51]. IBU is 

less potent than diclofenac, for example, but the higher flux of IBU through the skin means 

that it is a better candidate for topical delivery [52]. It is relatively lipophilic (log P = 4.0), 

and has low water solubility (21 mg/l at 25 °C) [51, 53] and low bioavailability [54]. The 

chemical structure of IBU is shown in Fig. 6: 

 
Fig. 6: Chemical structure of ibuprofen (IBU). 

4.1.2 Solid lipids and liquid lipids 

Since the lipids are the main ingredients of LNPs, they have a huge influence on the drug-

loading capacity, the stability and the sustained release behavior of the formulations. A huge 

variety of lipid materials, such as fatty acids, glycerides and waxes have been investigated to 

serve as the lipid matrix of NLC dispersions [2, 55-59]. Most of these lipids, with the 

exception of cetyl palmitate, are GRAS-listed and well tolerated physiologically. Selection of 

appropriate lipids is one of the key steps before the preparation of lipid-based nanoparticulate 

systems. No specific guidelines have been proposed, but empirical values, including  the 

solubility of the API in the lipid matrix, seem to be suitable criteria in the selection of the 

optimal composition [60]. The solubility of the drug in the lipid components is critical as 

concerns the performance of the NLC system, because it influences the drug EE% and 

loading capacity, and subsequently the usefulness in drug delivery [61]. A high drug loading 

(DL%) can be achieved if the API displays high solubility in the lipid(s) used, or a high 

partition coefficient. Since the solubility of the drug in different types of lipid matrices can 

vary appreciably, its apparent partition coefficients in those lipids will also differ, leading to 
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different loading capacities for the same API. In the course of the selection of the optimal 

composition, lipid polymorphism must also be taken into consideration, since this too 

influences the properties of an LNP system. Multiple crystalline forms in solid lipids are 

useful as they provide structural defects in the continuous crystal lattice in which drug 

molecules can be accommodated. However, they are less thermodynamically stable as 

compared with the perfect crystalline lattice [62]. These factors pose a significant challenge 

during the development of an SLN system since transformation of the metastable polymorphs 

to stable ones can result in drug expulsion during storage or burst release after administration. 

There are no definitive guidelines that would help in the choice of appropriate lipids on the 

basis of these properties. It may be noted that lipids with longer fatty acid chains crystallize 

more slowly than those with shorter fatty acid chains [63]. LNPs produced from waxes are 

physically more stable, though they can exhibit significant drug expulsion due to their more 

crystalline nature [64]. As mentioned before, NLC systems were devised in order to 

overcome such problems with lipid crystallinity and polymorphism [36, 65, 66]. 

With use of the literature data, lipid screening was performed in order to choose the most 

appropriate lipids, which would dissolve IBU in the highest concentration and form a stable 

lipid matrix. The examined solid and liquid lipids with their major properties are listed in 

Table 1 [67]. 

Table 1: The main properties of the solid and liquid lipids used. 

Lipid type Examined lipids Chemical name Melting point (°C) 

so
lid

 li
pi

ds
 

Compritol 888 ATO glyceryl behenate/dibehenate 70-72 

Cutina CP cetyl palmitate 55-56 

Precirol ATO 5 glycerol palmitostearate 52-55 

Witepsol E85 hard fat – hydrogenated vegetable glycerides 42-44 

liq
ui

d 
lip

id
s Miglyol 812 caprylic/capric triglyceride < 0 

Oleic acid oleic acid 13-14 

Walcer special sunflower-seed oil -18 
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4.1.3 Surfactants 

Surfactants are the other critical components of the LNP formulations. They adsorb in low 

concentrations onto the surface or interface of the system, thereby reducing the surface or 

interfacial free energy, and consequently decreasing the surface or interfacial tension (IFT) 

between the lipophilic and hydrophilic phases [37, 68]. 

The surfactants used in the formation of NLCs have two important roles:  

• to disperse the lipid melt in the aqueous phase during production; and 

• to stabilize the LNPs in dispersions after cooling. 

The selection of the surfactants for the nanoparticle preparation depends on a number of 

factors, including [37]: 

• the intended route of administration; 

• the hydrophilic-lipophilic balance (HLB) value of the surfactant; 

• the effects on the lipid modification and the PS; and 

• their role in the in vivo degradation of the lipid. 

The main properties of the surfactants used during my research work are summarized in 

Table 2. 

Table 2: Main properties of the surfactants used. 

Name Chemical name Type HLB value 

Tego Care 450 polyglyceryl-3 methylglucose distearate ionic 12 

Cremophor EL macrogolglycerol ricinoleate nonionic 12-14 

Cremophor RH 60 PEG-60 hydrogenated castor oil nonionic 15-17 

Lutrol F68 Poloxamer 188 nonionic 29 

Tween 20 Polysorbate 20 nonionic 16.7 

Tween 80 Polysorbate 80 nonionic 15 

4.1.4 Other excipients 

Carbopol 971P NF supplied by Azelis Hungary Ltd (Budapest, Hungary) was used as gelling 

agent in the formulation of IBU gels and IBU-NLC gels. Macrogol 400 obtained from 

Hungaropharma Ltd (Budapest, Hungary) was applied to dissolve the IBU in the reference 

formulation used in the drug diffusion studies. Purified water high-performance liquid 

chromatography (HPLC) grade, produced with a TKA Smart2Pure system (TKA GmbH, 

Niederelbert, Germany) was used to prepare all the formulations. 
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4.2 Preformulation studies 

4.2.1 Lipid screening 

To determine the most suitable solid lipid and liquid lipid (oil) which would dissolve IBU in 

the highest concentration, increasing concentrations of IBU were added to the solid or liquid 

lipid and the mixture was stirred with a Thermomixer Comfort (Eppendorf, Hamburg, 

Germany) for 90 min at 500 rpm at a temperature least 5 °C above the melting point of the 

examined lipid. The solubility of IBU in the examined lipids was analyzed visually. The 

following step was to evaluate the miscibility of the chosen solid lipid and liquid lipid, and 

the solubility of IBU in the lipid mixture under the previously mentioned conditions. The 

details of the experiment were described earlier [61, 69]. 

4.2.2 Contact angle measurements 

Contact angles were measured with an Easy Drop G1 instrument (A.Krüss Optronic GmbH, 

Hamburg, Germany) to select a suitable surfactant for the NLC composition. Cover slides 

were coated with a thin film of one or other of the four different bulk lipid mixtures (ratios 

10:3, 10:5, 7:3 and 7:5). 10 µl of purified water (as reference) or different 0.5% (w/v) 

surfactant solutions (in HPLC water) were applied to the lipid film and the contact angle of 

the droplet was assessed. 

4.3 Size measurements and zeta potential analysis 

The effective PSs (Zave) of the prepared NLC formulations were analyzed by PCS, using a 

Zetasizer Nano ZS (Malvern Instruments, Malvern, UK). The polydispersity index (PDI) was 

also assessed. 

Particles in the micrometer range were excluded through LD measurements with a 

Mastersizer 2000 (Malvern Instruments, Malvern, UK). The diameters of 10%, 50%, 90%, 

95% and 99% (d(0.1), d(0.5), d(0.9), d(0.95) and d(0.99)) of the particles were evaluated. The 

Span value, which corresponds to the width of the PS distribution, was also calculated. The 

medium was purified water.  

To obtain information concerning the stabilities of the prepared samples, their ZPs were 

determined with a Zetasizer Nano ZS (Malvern Instruments, Malvern, UK). The medium was 

double distilled water. 
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4.4 Atomic force microscopic measurements 

The PSs of the IBU-NLC samples were also determined by AFM for comparison with the 

results obtained from PCS and LD measurements. The tapping mode was used on a SOLVER 

Scanning Probe Microscope (NT-MDT Co., Zelenograd, Moscow, Russia) under ambient 

conditions. PPP-NVHAuD-10 (NANOSENSORS™, Neuchatel, Switzerland) AFM tips with 

a nominal radius of curvature of 2 nm and a length of 15 µm were used. 

4.5 DSC measurements 

To obtain information on the melting behavior of the chosen solid lipid, the lipid mixture and 

the bulk mixture of IBU dissolved in the lipid mixture were investigated; DSC measurements 

were performed with a DSC 204 F1 Phoenix instrument (Netzsch Group, Selb, Germany). 

2−5 mg samples were measured into aluminum pans which were than sealed; an empty 

aluminum pan was used as reference. The samples were heated from 20 °C to 65 °C at a 

heating rate of 5 K/min under constant nitrogen flushing (80 ml/min). The melting point of 

IBU has been reported to be between 75 and 77 °C, and it immediately starts to decompose 

on further heating [70]. The lipids and drug compatibilities were therefore monitored up to 

65 °C. The crystallinity index (CI(%)) was calculated from the DSC thermograms obtained 

via Eq. 1 [71, 72]. Before the measurements, the lipid mixtures and lipid−drug mixtures were 

melted and left to cool to room temperature. The solid lipid was examined as received, 

without any treatment. 

CI(%) = �∆Hbulk material ∙ solid lipid ratio
∆Hsolid lipid

�  ∙100 Eq. (1) 

where ΔH is the enthalpy of the examined material. 

4.6  XRD analysis 

To characterize the crystalline structures of the raw materials, the physical mixtures and the 

NLC compositions, XRD analysis was performed with a Bruker D8 Advance diffractometer 

(Bruker AXS GmbH, Billerica, MA, USA) system with Cu K λI radiation (λ = 1.5406 Å). 

The samples were scanned at 40 kV and 40 mA from 3 to 40° 2θ, at a scanning speed of 

0.1°/s and a step size of 0.010°. 
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4.7 DXR Raman spectroscopy measurements 

Raman spectroscopy was employed to confirm the physical state of the IBU and to study the 

possible physicochemical interactions between the components. Raman spectra were 

recorded with a Thermo Fisher DXR Dispersive Raman spectrometer (Thermo Fisher 

Scientific, Waltham, MA, USA) attached to an Olympus MPlan 10x/0.25 BD microscope 

(Olympus Corporation, Tokyo, Japan). At least 5 measurements were made at 532 nm with 

the in-built fluorescence and cosmic ray correction to ensure low background noise. Samples 

were packed into an aluminum sample holder and spectra were collected for a total of 48 

scans at a spectral resolution of 4 cm-1. For the characterization of IBU and NLC samples, the 

full spectral range (3000−200 cm-1) was used. IBU-NLC and blank NLC compositions were 

investigated by Raman mapping to localize the IBU inside the formulation. The Raman 

spectra were then normalized to eliminate the intensity deviation between the measured areas. 

The detailed parameters were published earlier [73]. 

4.8 FT-IR spectroscopic analysis 

FT-IR spectra of the excipients, the physical mixtures and the prepared NLC formulations 

were recorded to obtain information about the possible newly formed interactions between 

the excipients, the IBU and the matrix of the nanoparticles. FT-IR spectra were recorded with 

a Bio-Rad Digilab Division FTS-65A/896 FT-IR spectrometer (Bio-Rad Laboratories Inc., 

Hercules, CA, USA) between 4000 and 400 cm−1, with 128 scan size. The detailed 

parameters were reported previously [69, 73]. 

4.9 Drug loading and entrapment efficiency measurements 

It is essential to investigate the drug DL% and EE% of the nanoparticles, since these have a 

huge influence on the performance of the nanocarriers. 100 µl of IBU-NLC sample and 

400 µl of phosphate buffer solution (PBS) were transferred into a Nanosep 3K ultrafilter 

Eppendorf tube having a molecular weight cut-off (MWCO) of 3kDa (Pall Co., Port 

Washington, NY, USA) and centrifuged at 5055 rpm for 10 min [74]. The solution obtained 

was filtered through a 0.20-µm polyether-sulfone syringe membrane filter and injected 

directly into the HPLC system [73]. 

DL% and EE% were evaluated by the indirect method, with measurement of the free API 

concentration in the external aqueous phase, using Eqs. 2 and 3 [75]: 
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DL% ൌ	
	୛౟౤౟౪౟౗ౢ	ౚ౨౫ౝ	ି	୛౜౨౛౛	ౚ౨౫ౝ

୛ౢ౟౦౟ౚ
∙ 100%   Eq. (2) 

EE% ൌ	
	୛౟౤౟౪౟౗ౢ	ౚ౨౫ౝ	ି	୛౜౨౛౛	ౚ౨౫ౝ

୛౟౤౟౪౟౗ౢ	ౚ౨౫ౝ
	 ∙ 100%  Eq. (3) 

where W is the weight in mg. 

4.10 Drug permeability studies 

 In vitro release studies 4.10.1.

The in vitro drug release study was carried out by using the dialysis bag method [76, 77]. 

Briefly, 200 µl of the IBU-NLC formulation was sealed in a Spectra/Por® 4 dialysis 

membrane with Spectra/Por® Closures (Spectrum Laboratories Inc., Rancho Dominguez, CA, 

USA), and placed into 25 ml of PBS (pH = 7.4). The system was held at 32 °C to mimic in 

vivo conditions, and continuously stirred at 450 rpm. At selected time intervals during 6 h, 

1 ml of bulk solution was taken. The withdrawn samples were each replaced by 1 ml of PBS 

to maintain sink conditions. Blank NLC served as blank and was analyzed in the same way as 

IBU-NLC. A previously prepared 1% IBU suspension was subjected to the same procedure, 

to serve as a reference. 

 Ex vivo penetration studies 4.10.2.

The ex vivo penetration studies were performed with a vertical Franz diffusion cell system 

(Hanson Microette TM Topical & Transdermal Diffusion Cell System, Hanson Research 

Corporation, Chatsworth, CA, USA). 0.300−0.400 g of 0.5% IBU-NLC gel or 0.5% IBU gel 

(which served as a reference) was measured as donor phase on pretreated excised human skin 

[78, 79] supported by a Porafil® CM membrane (pore diameter 0.45 µm; Macherey-Nagel 

GmbH & Co. KG, Düren, Germany).The detailed description was published earlier [73]. The 

samples were analyzed at 263 nm with a Unicam Evolution 201 UV/Vis spectrophotometer 

(Thermo Fisher Scientific Inc., Waltham, MA, USA). 

 In vivo animal studies 4.10.3.

The in vivo animal studies were performed on 11−13-week-old male SKH-1 hairless mice 

(body weight: 28–34 g). The procedures and protocols applied were approved by the Ethical 

Committee for the Protection of Animals in Scientific Research at the University of Szeged 

(license number: V./145/2013). The modified dorsal skin fold chamber was used to determine 

IBU penetration through living animal skin by a previously described method [80, 81]. This 
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experimental setup provides an effective means of performing in vivo examinations of 

permeation. The detailed steps of the experiment were published earlier [73]. 

4.11 Preparation of ibuprofen-loaded nanostructured lipid carriers 

The first batch of IBU-NLCs was prepared by a hot high-pressure homogenization method [5, 

14, 76], using a Panda K2 NS1001L Spezial modified for NLC production (GEA Niro Soavi, 

Germany). Briefly, 5% drug was dissolved in a mixture of the chosen solid and liquid lipid at 

65 °C. The surfactant was dissolved in purified water at the same temperature. The aqueous 

phase was added to the lipid phase and was stirred with an Ultra Turrax T25 (IKA-Works, 

Staufen im Breisgau, Germany) for 30 s at 12500 rpm. The pre-emulsion obtained was 

subjected to high-pressure homogenization, applying 5 cycles at 600 bar and 65 °C. The hot 

oil-in-water pre-emulsion was cooled in an ice bath to recrystallize the lipid and form the 

NLC [69]. 

Another series of NLC formulations containing 1% IBU, the solid lipid and  the oil in a ratio 

of 7:3 stabilized by the surfactant Lutrol F68 were prepared by a hot high-pressure 

homogenization method, using an Emulsiflex C-3 High-Pressure Homogenizer (Avestin 

Europe GmbH, Mannheim, Germany), with the same method as described above. Blank NLC 

samples were prepared by the same procedure as for the first and second series of NLC 

formulations. 

An IBU suspension containing 1% of IBU dispersed in purified water was prepared as a 

reference for in vitro diffusion studies of IBU-NLC. For the ex vivo permeation and in vivo 

animal studies, IBU-NLC was gelled with a previously prepared 3% Carbopol 971P NF gel 

in a ratio of 1:1. For comparison, 0.5% IBU was dissolved in Macrogol 400 and gelled with 

the same polymer [73]. 

4.12 Experimental design 

During the experimental design, 8 different NLC samples (NLC 1−8) were prepared 

according to the 23 full factorial design to evaluate the effects of the three IBU-NLC 

formulation factors. These factors were: A (the solid lipid concentration), B (the liquid lipid 

concentration) and C (the surfactant concentration). The optimization parameters (dependent 

factors) were the measured ZP and mean d(0.5) value of the prepared nanoparticles. The 

effects of the chosen factors were examined at two levels (+1 and -1). Table 3 shows the 
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applied factorial table with the values of the independent and dependent factors. Statistical 

data analysis was performed using Statistica for Windows software version 10. 

Table 3: Values of the examined independent factors (A, B and C) and dependent factors (ZP 

and d(0.5)) and compositions of the NLC systems used in the factorial design. 

Sample 

name 

Solid lipid 

concentration 

% (w/w) 

Liquid lipid 

concentration 

% (w/w) 

Surfactant 

concentration 

% (w/w) 

Zeta potential 

(mV) 

Particle size 

(nm) 

NLC 1 7 (-1) 3 (-1) 4 (-1) -14.2 135 

NLC 2 10 (+1) 3 (-1) 4 (-1) -9.5 160 

NLC 3 7 (-1) 5 (+1) 4 (-1) -11.2 143 

NLC 4 10 (+1) 5 (+1) 4 (-1) -11.7 140 

NLC 5 7 (-1) 3 (-1) 5 (+1) -14.2 129 

NLC 6 10 (+1) 3 (-1) 5 (+1) -10.9 152 

NLC 7 7 (-1) 5 (+1) 5 (+1) -11.4 147 

NLC 8 10 (+1) 5 (+1) 5 (+1) -12.1 150 

Besides these 8 samples, 8 other formulations belonging in the same parameter space were 

prepared (Table 4) to check whether there was a possibility of a simpler model with which to 

optimize these formulations. 

Table 4: Values of the examined independent factors (A, B and C) and dependent factors (ZP 

and d(0.5)) and compositions of the NLC systems randomly picked out from the parameter 

space. 

Sample 

name 

Solid lipid 

concentration 

% (w/w) 

Liquid lipid 

concentration 

% (w/w) 

Surfactant 

concentration 

% (w/w) 

Zeta 

potential 

(mV) 

Particle 

size 

(nm) 

blank NLC 10 5 5 -7.54 149 

NLC 9 7 3.5 4 -12.4 131 

NLC 10 10 4 4 -12.3 137 

NLC 11 10 4 5 -15.4 143 

NLC 12 7 4.5 5 -9.64 130 

NLC 13 10 4.5 4 -12.0 136 

NLC 14 10 4.5 5 -12.3 141 

NLC 15 7 4 4 -9.97 158 
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4.13 Statistical analysis  

The results were evaluated and analyzed statistically with the 2-way ANOVA test 

(Bonferroni’s multiple comparison), using Prism for Windows 5 software (GraphPad 

Software Inc, La Jolla, CA, USA). The data are the averages of the results of at least 5 

experiments ± standard deviation (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001 

versus the control). 

5. RESULTS AND DISCUSSION 

I. OPTIMIZATION OF THE NLC FORMULATION 

5.1 Lipid screening 

A large variety of solid and liquid lipids (natural, semisynthetic and synthetic lipids with 

various structures, e.g. triglycerides, partial glycerides, fatty acids, waxes and steroids) which 

could be suitable as matrices for NLC production are accessible on the market [2, 5]. 

However, the lipids used as matrix lipids must be carefully selected as they will directly 

influence the performance of the carrier system [82]. The properties to be considered: the 

toxicity and biocompatibility through the selection of well-tolerated physiological and 

biodegradable lipids; the drug payload and EE% through the choice of lipids which can 

solubilize high amounts of the drug; drug expulsion during storage, which can be minimized 

or avoided through the use of lipid matrices with a low tendency to crystallize or a less-

ordered structure; controlled drug release properties through incorporation of the drug into 

the lipid matrix (i.e. a drug-enriched core, a drug-enriched shell or homogenous API 

distribution in the matrix); and increased chemical drug stability if photosensitive drugs or 

drugs sensitive to hydrolysis or oxidation are incorporated in the matrix [2, 5, 20]. 

Apart from oleic acid, all of the investigated lipid melts dissolved IBU in a very high amount 

(50% (w/w)). The samples were cooled to room temperature and analyzed visually after 24 h. 

With most of the examined lipids, the IBU underwent recrystallization (Table 5). No IBU 

crystals were found in Witepsol E85 and Miglyol 812, and these materials were therefore 

chosen as lipid matrix for NLC formulation. The solid lipid and liquid lipid mixtures were 

tested in ratios of 10:3, 7:3, 10:5 and 7:5. No oil droplets were observed on the filter paper. 

No recrystallization was observed visually after the addition of the drug. 
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Table 5: Results of lipid screening. 

Lipid type Examined lipids Solubility of IBU Recrystallization after 24 h 

solid lipid Compritol 888 ATO soluble yes 

solid lipid Cutina CP soluble yes 

solid lipid Precirol ATO 5 soluble yes 

solid lipid Witepsol E85 soluble no 

liquid lipid Miglyol 812 soluble no 

liquid lipid oleic acid insoluble yes 

liquid lipid Walcer soluble yes 

5.2 Contact angle measurements and determination of surfactant concentration 

The nature and the concentration of the surfactant have a great influence on the fineness and 

physical stability of the NLCs, as the surfactant can reduce the IFT between the lipid particles 

and the aqueous phase [82, 83]. The IFT can be determined via contact angle measurements. 

The IFT is directly proportional to the contact angle: the lower the IFT between the lipid 

matrix and the water phase, the smaller the contact angle. Contact angle measurements were 

performed to evaluate the surfactant displaying the best wetting with the Witepsol E85 and 

Miglyol 812 mixture. Contact angle measurements were performed for each of the solid 

lipid:liquid lipid ratios used in the factorial design (10:3, 7:3, 10:5 and 7:5). Since there was 

no significant difference between the results, the contact angles measured for films with a 

solid lipid:liquid lipid ratio of 10:5 are shown in Fig. 7. For all of the examined surfactant 

solutions, smaller contact angles could be reached than with distilled water (which was used 

as reference). These results correspond with the fact that surfactant solutions exhibit a smaller 

surface tension than that of purified water. Cremophor RH60 exhibited the best wetting 

properties with the lipid mixture (75.02 ± 2.49°), although similar results could be achieved 

with Lutrol F68 (77.4 ± 4.29°). NLC formulations were therefore prepared with both 

emulsifiers, and Lutrol F68 was chosen for further investigations on the basis of the d(0.5) 

and ZP values (Cremophor RH60: d(0.5) = 214.4 nm, ZP = -9.17 mV, and Lutrol F68: d(0.5) 

= 112.4 nm, ZP = -12.4 mV). 
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Fig. 7: Contact angles of 0.5% (w/v) surfactant solutions applied to the 10:5 

Witepsol E85:Miglyol 812 mixture. 

The emulsifier concentration has a great influence on the particle size distribution, stability 

and toxicological properties of lipid nanoparticles [83-85]. A high surfactant concentration 

results in a lower particle size, a narrower particle size distribution (which means a smaller 

PDI and a smaller Span value) and the better long-term stability of lipid nanoparticles, 

although it simultaneously increases the toxicological potential. Consequently, a balance is 

needed: the use of a sufficient amount of surfactant that ensures the desired small particle size 

and appropriate physical stability during storage, but does not demonstrate toxicity. The 

optimal emulsifier concentration was chosen by factorial design (see section 5.7, B). 

5.3 DSC measurements 

Lipid crystallization plays a very important role in the performance of NLC carriers. Other 

research groups have emphasized the importance of the characterization of the degree of lipid 

crystallinity and the modification of the lipid, because these parameters are closely correlated 

with the incorporation and release rates of the drug [2, 86]. 

Figure 8 shows the DSC data of the different samples. Witepsol E85 is a mixture of mono-, 

di- and triglycerides. It has been reported that the presence of mono- and diglycerides in the 

matrix of the lipid can facilitate the solubilization of the drug [4, 87]. Lipids which consist of 

a mixture of different di- and triglycerides or lipids which contain fatty acids of different 

chain lengths form less perfect crystals with many imperfections, offering spaces to 

accommodate drugs [87]. Witepsol E85 exhibited a broad endothermic event (melting range: 
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around 42 °C), as described in the literature [87]. The bulk mixtures of the lipids, 

Witepsol E85 and Miglyol 812 in all investigated ratios gave a broader endothermic peak, 

with lower onset and peak values, as expected. The four lipid mixtures yielded similar DSC 

curves; that of the lipid mixture with a ratio of 10:5 is shown in Fig. 7. 

 
Fig. 8: DSC curves of bulk materials: Witepsol E85:Miglyol 812:IBU 10:5:5 (1), 

Witepsol E85:Miglyol 812 10:5 (2), and Witepsol E85 (3). 

The normalized integral area under the curve, the onset, the peak, the endset and the CI(%) of 

the pure Witepsol E85, the 10:5 lipid mixture and the lipid mixture with IBU in a ratio of 

10:5:5 were  evaluated and are listed in Table 6: 

Table 6: Normalized integral area, onset, peak, endset and CI(%) of pure Witepsol E85, the 

lipid mixture in a ratio of 10:5, and the lipid mixture with IBU in a ratio of 10:5:5. 

Sample 
Integral 

(normalized) 
(J/g) 

Onset 
(°C) 

Peak 
(°C) 

Endset 
(°C) CI(%) 

Witepsol E85 -135.29 37.46 42.78 44.24 100 

Witepsol E85:Miglyol 812 10:5 -59.60 36.36 39.16 41.95 29.37 

Witepsol E85:Miglyol 812:IBU 10:5:5 -42.12 33.03 36.77 41.00 15.57 
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After the addition of the oil, the melting point of the solid lipid decreased from 42.78 °C to 

39.16 °C, and CI(%) fell from 100% to 29.37%. A further decrease in the melting point from 

42.78 °C to 36.77 °C was observed after IBU was added to the lipid mixture. CI(%) also fell 

further from 29.37% to 15.57%. Both the addition of Miglyol 812 and the incorporation of 

IBU in the lipid matrix can result in an increase in the number of defects in the lipid crystal 

lattice, causing decreases in CI(%) and the melting point of Witepsol E85 [87]. A less 

ordered crystalline structure predicts a higher loading capacity of the lipid matrix. A lipid 

mixture consisting of very differently structured molecules will prevent the formation of a 

perfect crystal, providing spaces in which to accommodate the drug in molecular form or as 

amorphous clusters [14]. 

5.4 XRD analysis 

(RS)-(±)-IBU, (RS)-2-(4-(2-methylpropyl)phenyl)propanoic acid, crystallizes with two 

molecules in the asymmetric unit to form a cyclic hydrogen-bonded dimer. Within the dimer, 

each molecule demonstrates subtle conformational differences via rotations about the C(1)---

C(2) and the C(10)---C(11) bonds. The bond distances and angles in (RS)-(±)-IBU are in 

close agreement with those found for the structure of the racemic compound [88]. For 

semisolid fat products (e.g. ice cream, margarine and chocolate), the solid lipids, which 

normally exist as a 3-dimensional colloidal fat crystal network, determine the physical 

properties of the product. Upon crystallization, hardstock triacylglycerols aggregate to form 

fat crystals, which appear to aggregate, in a similar fashion as colloidal gels, to form clusters. 

These clusters aggregate into flocks, and finally weak links develop between the flocks in the 

final macroscopic network. 

XRD measurements were performed to investigate the effects of the preparation temperature 

on the structures of the ingredients. The diffractogram of the melted bulk of the 10:5:5 

physical mixture of Witepsol E85:Miglyol 812:IBU revealed the characteristic peaks of both 

the IBU and the lipid mixture. On the addition of Lutrol F68 to the mixture, a further 

reduction of the IBU peaks resulted (Fig. 9). It is clear from the diffractograms that both the 

IBU and the excipients retained their crystallinity, but the intensity of the IBU peaks 

decreased for both the lipid mixture and the physical mixture of the NLC components, which 

predicts the presence of the IBU in both dissolved and crystalline form. 
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Fig. 9: Wide-angle X-ray diffractograms of IBU (1), the 10:5 bulk mixture of 

Witepsol E85:Miglyol 812 (2), the 10:5:5 bulk mixture of Witepsol E85:Miglyol 812:IBU 

(3), and the 10:5:5:5 bulk mixture of Witepsol E85:Miglyol 812:IBU:Lutrol F68 (4). 

5.5 FT-IR analysis 

The intense band at 2955 cm−1 in the FT-IR spectrum of IBU is assigned to CH3 asymmetric 

stretching. The very high-intensity peaks at 1721 cm−1 and 1231 cm−1 are due to C=O 

stretching and C-C stretching, respectively. The strong-intensity band observed at 779 cm−1 is 

due to CH2 rocking vibration. The bands at 2955, 1721, 1231 and 668 cm−1 were assigned as 

the fingerprints of IBU in the literature [89-91]. C-O stretching, CH2 scissoring vibration and 

CH-CO deformation contribute to their presence. Strong-intensity CH3 rocking (936 cm−1), 

CH3 asymmetric deformation (1462 cm−1), CH2 asymmetric stretching vibration (3090 cm−1 

and 2869 cm−1) and CH2 in-plane rocking vibration (522 cm−1) are also observed. The 

absorption bands due to C=C stretching vibrations occur at 1507 cm−1 and 746 cm−1. The 

medium-intensity O-H…O valence stretching vibration occurs at 2728 cm−1 and 2632 cm−1. 

Absorption bands due to OH in-plane deformation (1321 cm−1), =C-H in-plane deformation 

(1268 cm−1, 1123 cm−1 and 1071 cm−1), C-H in-plane deformation (1168 cm−1, 1008 cm−1, 

636 cm−1 and 1092 cm−1), C-H out-of-plane deformation (866 cm−1 and 668 cm−1), in-plane 

ring deformation (407 cm−1), C=C-C ring asymmetric bending (423 cm−1), C-C deformation 

(588 cm−1), CH3 symmetric stretching (1380 cm−1) and C-O-C stretching (970 cm−1) have 

also been noted [92, 93]. FT-IR analysis was used to verify whether any interaction occurred 

between the excipients and the drug because newly formed bonds can modify the diffusion of 

IBU from the nanoparticles. Figure 10 presents the FT-IR spectra of the 10:5:5:5 physical 
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mixture of Witepsol E85, Miglyol 812, IBU and Lutrol F68 and the individual spectra of 

these bulk components.  

 
Fig. 10: FT-IR spectra of the physical mixture of the bulk components (Witepsol E85, 

Miglyol 812, IBU and Lutrol F68 in a ratio of 10:5:5:5) (1), IBU (2), Witepsol E85 (3), 

Miglyol 812 (4), Lutrol F68 (5). 

A comparison of the spectra allows the conclusion that no chemical modification occurred at 

the temperature of NLC production. Figure 11 depicts the lower wavelength range of the 

same spectra. No shifts in the major valency vibrations were detected and new peaks did not 

appear. 

 
Fig. 11: FT-IR spectra in the lower wavenumber range of the physical mixture of the bulk 

components (Witepsol E85, Miglyol 812, IBU and Lutrol F68 in a ratio of 10:5:5:5) (1), IBU 

(2), Witepsol E85 (3), Miglyol 812 (4) and Lutrol F68 (5). 



25 
 

5.6 Results of size measurements and zeta potential analysis 

The PSs and the PS distribution of the prepared IBU-NLC were measured by PCS and LD. 

The PS of the NLC systems varied in the interval 108.6−216.3 nm (Table 7). The Zave and 

d(0.5) values correlated appropriately with each other, showing the mean PSs of the NLC 

samples. The PDI and the Span values varied in similar ways, as both relate to the PS 

distribution of the LNPs. 

Table 7: Results of PCS and LD measurements for all the NLC formulations. 

Name ZP 
(mV) 

Zave 
(nm) PDI d(0.1) 

(nm) 
d(0.5) 
(nm) 

d(0.9) 
(nm) 

d(0.95) 
(nm) 

d(0.99) 
(nm) 

Span 
value 

blank NLC -7.54 132.2 0.096 91 149 228 250 300 0.919 

NLC 1 -14.2 216.3 0.230 97 135 249 280 330 1.126 

NLC 2 -9.5 114.5 0.077 87 160 195 210 250 0.675 

NLC 3 -11.2 113.1 0.067 86 143 192 210 250 0.741 

NLC 4 -11.7 114.5 0.087 89 140 198 220 260 0.779 

NLC 5 -14.2 108.6 0.065 86 129 192 210 250 0.822 

NLC 6 -10.9 115.8 0.093 91 152 206 230 270 0.757 

NLC 7 -11.4 112.7 0.089 85 147 191 210 250 0.721 

NLC 8 -12.1 115.0 0.078 87 150 195 210 250 0.720 

NLC 9 -12.4 112.4 0.089 87 131 195 210 250 0.824 

NLC 10 -12.3 138.2 0.249 74 137 238 270 320 1.197 

NLC 11 -15.4 114.7 0.108 90 143 219 240 280 0.902 

NLC 12 -9.64 109.7 0.057 86 130 191 210 250 0.808 

NLC 13 -12.0 116.1 0.085 90 136 200 220 260 0.809 

NLC 14 -12.3 114.8 0.101 92 141 208 230 270 0.823 

NLC 15 -9.97 214.4 0.237 91 158 262 300 360 1.082 

5.7 Results of the experimental design 

5.7.1. Effects of the dependent factors on the ZP values 
The results were evaluated according to the 23 full factorial design. The three examined 

independent factors (solid lipid concentration (A), liquid lipid concentration (B) and 

surfactant concentration (C)) together exerted a significant effect (p < 0.05) on the ZP, but 

individually they did not do so. The coupled factors were also tested, but did not give a 

significant effect. 
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The mathematical model is shown in the following equations (Eqs (4), (5) and (6)) of the 

response surfaces, with the ZP as the dependent factor as a function of factors A and B, 

factors A and C, and factors B and C, with a good correlation (R2 = 0.9901): 

ZP (A, B) = 3.61 * A + 6.99 * B – 0.77 * A * B – 43.98  Eq. (4) 

ZP (A, C) = 1.75 * A + 1.77 * C – 0.27 * A * C – 24.66  Eq. (5) 

ZP (B, C) = – 1.81 * B – 1.33 * C + 0.20 * B * C – 7.25  Eq. (6) 

A positive sign indicates a synergistic effect on the examined dependent factor, whilst a 

negative sign represents an antagonistic effect. 

Factor A (solid lipid concentration) was directly proportional to the ZP, although this effect 

was not significant. The ZP became lower if factor A was kept on level -1 

(7% Witepsol E85). The same effect was observed for factor B (liquid lipid concentration). 

Lower ZP values were obtained when factor B was kept on a lower level, e.g. when 

3% Miglyol 812 was applied. This correspondence is clearly visible in Fig. 12, which depicts 

3 response surfaces where the ZP is a function of factors A and B; factor C is given on levels 

-1 (4% w/w), 0 (4.5% w/w) and +1 (5% w/w) (surfaces 1, 2 and 3). 

 
Fig. 12: Measured ZP as a function of solid lipid (factor A) and liquid lipid (factor B). The 

surfactant concentration was set to 4% w/w (1), 4.5% w/w (2) and 5% w/w (3). 
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The ratio of factors A and B was indirectly proportional to the ZP. The response surfaces 

exhibited a minimum value at a solid lipid:liquid lipid ratio of 7:3: the ZP was -14.2 mV. 

This clearly-visible minimum did not change when the surfactant concentration was altered 

from 4% to 4.5% or 5% w/w; the behavior of the response surface remained unchanged in the 

examined range. Factor C was indirectly proportional to the ZP. Lower ZP values are 

expected when higher concentrations of the surfactant are applied; the use of 5% Lutrol F68 

is therefore favorable. 

5.7.2. Effects of the dependent factors on the PS 
Similarly to the results of the statistical analysis of the ZP, the three independent factors 

(solid lipid concentration (A), liquid lipid concentration (B) and surfactant concentration (C)) 

together affected the PS significantly (p < 0.05), whereas their individual effects did not reach 

the level of significance (confidence value 95%). No significant effect was observed when 

the effects of the coupled factors were tested (A and B, A and C and B and C). The 

mathematical model of the effects of the dependent factors on the PS is shown in Eqs. (7), (8) 

and (9), with a correlation of R2 = 0.9883: 

PS (A, B) = 20.02*A + 34.50*B – 4.00*A*B – 27.50   Eq. (7) 

PS (A, C) = 1.00*A – 5.67*C + 0.67*A*C + 136.00   Eq. (8) 

PS (B, C) = – 31.00*B – 27.97*C + 7.00*B*C + 268.50   Eq. (9) 

Factor A (solid lipid concentration) was directly proportional to the PS, but this effect did not 

reach the level of significance. The PS was lower when factor A was kept on level -1 

(7% Witepsol E85). The same effect was observed with factor B (liquid lipid concentration), 

i.e. the PS of the nanoparticles was lower when 3% Miglyol 812 was used in the 

formulations. The ratio of factors A and B was indirectly proportional to the PS. In Fig. 13, 

the response surfaces exhibit a minimum value at a solid lipid:liquid lipid ratio of 7:3; the PS 

is < 125 nm. 
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Fig. 13: Measured PS as a function of solid lipid (factor A) and liquid lipid (factor B). The 

surfactant concentration was set to 4% w/w (1), 4.5% w/w (2) and 5% w/w (3). 

The surface plot retained its minimum value regardless of the surfactant concentration. The 

difference between the maximum and minimum points of the surfaces became more explicit 

at higher surfactant concentrations (Fig. 13 (1), (2) and (3)) in the range of the factorial 

design. 

Factor C (surfactant concentration) did not have an impact on the PS in this range. 

The results of the applied factorial design indicate that NLC 5 was the most suitable for IBU 

delivery, together with 7% Witepsol E85, 3% Miglyol 812 and 5% Lutrol F68. 

Table 7 (section 5.6) gives data on NLC formulations randomly picked out from the factorial 

design space. By measuring the ZP, Zave, PDI and Span values of these NLC systems, a 

simpler function (Eq. 10) could be defined to choose the optimal formulation. Factorial 

design requires a large number of samples, which may be decreased through use of the 

following equation if the response surface has a minimum value. The aim was to find a 

simpler correspondence to evaluate the optimal ratio of the compounds. The following 

equation gives the optimum as a non-dimensional number with a minimum value at the 

optimal compound. 
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Optimum = min �ZP + Zave +PDI + Span + SL
LL

+ 
SL

LL�
S
� Eq. (10) 

where ZP is the zeta potential, Zave is the mean particle size measured by PCS, PDI is the 

polydispersity index, Span is the Span value (𝑑𝑑(0.9)−𝑑𝑑(0.1)
𝑑𝑑(0.5)

), SL
LL

 is the solid lipid:liquid lipid 

ratio and SL LL⁄
S

 is the solid lipid:liquid lipid ratio proportional to the surfactant concentration.  

As regards the optimum equation, NLC 5 (7% Witepsol E85, 3% Miglyol 812, 5% 

Lutrol F68 and 5% IBU) proved optimal for the formulation of a stable IBU-NLC system. 

This method appears suitable for the design of NLC formulations. 

II. CHARACTERIZATION OF THE IBU-NLC FORMULATION 

The IBU concentration of the optimized NLC 5 formulation was decreased from 5% to 1% in 

order to decrease the side-effects in diseases demanding prolonged treatment, such as the 

therapy of musculoskeletal disorders such as osteoarthritis. Furthermore, it was noticed that 

decreasing the concentration of IBU led to an increase in the stability of the formulation (the 

ZP values decreased from −14.2 to −18.4 mV). 

5.8 Results of particle size and zeta potential measurements 

PS determination by PCS demonstrated that both samples were in the nanometer range, with 

an effective PS (Zave) of 114 nm for the blank NLC, and 106 nm for IBU-NLC. LD 

measurements confirmed that larger particles (> 1 µm) were not present in the formulations, 

and 90% of the particles measured < 205 nm. The surface charge was negative for both the 

blank (-15.9 mV) and IBU-NLC (-18.4 mV). The PDI was small for both formulations, 

meaning that the PS of the nanoparticles were in a narrow range. This parameter is important 

for steady drug diffusion. Parameters measured with PCS, LD and electrophoretic mobility 

measurements are presented in Table 8. 
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Table 8: PSs, PS distributions (PDI and Span) and ZPs of the blank NLC and IBU-NLC 

formulations. 

Sample Zave (nm) ZP (mV) PDI 
d(0.1) 

(nm) 

d(0.5) 

(nm) 

d(0.9) 

(nm) 

Span 

value 

blank NLC 114 ± 2.2 -15.9 ± 0.7 0.15 ± 0.1 67 ± 0 118 ± 0 204 ± 0.6 1.16 ± 0 

IBU-NLC 106 ± 1.7 -18.4 ± 1.3 0.18 ± 0.3 74 ± 0 122 ± 0 205 ± 0.6 1.07 ± 0 

5.9 Results of AFM measurements 

AFM has been widely used to acquire information on the size, shape and surface morphology 

of nanoparticles [94]. Both the blank and the IBU-NLC samples were measured by AFM to 

confirm the PCS and LD results. The data were evaluated by grain analysis, and size 

distribution histograms were made (Fig. 14 A, B). The Z values of the blank NLC particles 

were between 109 and 124 nm, with an average of 113.67 ± 15.5 nm, while those of the IBU-

NLC were between 95 and 118 nm, with an average of 107.47 ± 14.4 nm (Fig. 14 C, D), 

verifying the PCS and LD results. 

 

Fig. 14: Z value (height) distribution of blank NLC (A) and IBU-NLC (B); and Z values 

(height) of blank NLC (C) and IBU-NLC (D). 
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In the present samples, the separated lipid particles were spherical or nearly spherical with a 

smooth surface (Fig.s 15 and 16).  

 

Fig. 15: 2D (A) and 3D (B) images of blank NLC. 

No major differences were detected between the blank and IBU-NLC samples, although 

some larger lipid agglomerates were found in the IBU-NLC. This is probably due to the 

sample preparation process: the sonication was unable to disperse the previously dried lipid 

particles completely. 

 
Fig. 16: 2D (A) and 3D (B) images of IBU-NLC. 

5.10 Results of XRD 

XRD measurements were carried out to determine the possible changes in the crystallinity of 

the components during the hot high-pressure homogenization procedure. Diffractograms of 

the pure, untreated components (IBU, Witepsol E85, and Lutrol F68) are depicted in Fig. 17. 
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Fig. 17: XRD diffractograms of IBU (1), Witepsol E85 (2), Lutrol F68 (3), the bulk mixture 

of Witepsol E85 and Miglyol 812 in a ratio of 7:3 (4), the mixture of Witepsol E85, 

Miglyol 812 and IBU in a ratio of 7:3:1 (5), the mixture of Witepsol E85, Miglyol 812, IBU 

and Lutrol F68 in a ratio of 7:3:1:5 (6), blank NLC (7), and IBU-NLC (8). 

Diffractograms were also recorded of the melted lipid mixture (Witepsol E85 and 

Miglyol 812 in a ratio of 7:3) with or without IBU, the melted total physical mixture, the 

blank and IBU-NLC. The crystallinity of the solid lipid (plot 2) decreased to such an extent 

after the addition of the excipients (plots 4 and 6) and IBU (plot 5) that the material became 

amorphous in the cases of the prepared blank (plot 7) and IBU-NLC (plot 8) formulations. 

The XRD pattern of pure racemic IBU (plot 1) exhibited characteristic diffraction peaks at 

various diffraction angles (6°, 12.3°, 16°, 20.4° and 22.3° 2θ), indicating the presence of 

crystallinity [95]. These peaks also appeared in the plot of the melted mixture of the lipid 

matrix and the API (plot 5), but were absent from those of the total mixture (plot 6) and IBU-

NLC (plot 8). 

5.11 Results of DXR Raman spectroscopy measurements 

Raman spectroscopy was employed to confirm the physical state of the IBU and to study the 

possible physicochemical interactions between the components. The Raman spectra of dried 

free racemic IBU, Lutrol F68, Witepsol E85 and Miglyol 812 in the wavenumber range 

2000−200 cm-1 are presented in Fig. 18. 



33 
 

 
Fig. 18: Raman spectra of the individual components, IBU (1), Lutrol F68 (2), Witepsol E85 

(3) and Miglyol 812 (4). 

As model solutions, IBU was dissolved in Miglyol 812 in two concentrations (10 and 

25% w/w), to observe the principal differences in the physical state of the IBU (Fig. 19). 

 
Fig. 19: Raman spectra in the range of 2000−200 cm-1of IBU (1) and the model mixtures of 

10% IBU (2), or 25% IBU (3), both dissolved in Miglyol 812 (4). 

The spectra of IBU, the blank NLC and IBU-NLC are presented in Fig. 20. 
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Fig 20: Raman spectra in the range 2000−200 cm-1of IBU (1), blank (2) and IBU-NLC (3). 

The selected Raman bands of IBU, the IBU-containing Miglyol model solutions and the IBU-

NLC composition with the vibrational assignments (cm-1) are presented in Table 9. The 

chemical structure of the oil is very similar to those of the other lipid components, and the 

bands from the IBU-NLC sample, i.e. the Raman spectrum characteristic of Miglyol 812, 

could therefore be overlapped by the bands characteristic of other lipids. 

Table 9: Observed Raman peaks (in cm-1) and peak assignments of free racemic IBU and 

IBU-containing model solutions and NLC compositions. 

IBU Assignment 10% 25% IBU-NLC 

1608 s(C-C)Ar 1613 1609 1616 

1576 s(C-C)Ar and v(C=C)Ar 1574 1574 - 

1208 t(CH2) (C11-C12-C13) 1207 1206 1208 

1182 s(C6-C11) 1185 1182 1185 

1008 in(CH)Ar 1004 1007 1004 

959 r(C26H3) and antisymmetric s(C26-C24-C30)  957 957 955 

834 out(CH)Ar 832 833 - 

746 r(CH3) and out(CH)Ar 739 745 - 

638 out(CO-H) and in(Ar) 637 636 - 

415 d(C15-C14-C19) 405 412 - 

(s = stretching, β = bending, v = vibration, Ar = aromatic, t = twisting, out = out-of-plane bending, in = in-plane-

bending, r = rocking, and  d = deformation). 
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The IBU spectrum exhibited characteristic peaks at 1608, 1576, 1208, 1182, 1008, 959, 834, 

746, 638 and 415 cm-1. These peaks are attributed mainly to aryl ring stretching and C24-Ar-

C11 conformational stretching and wagging. Medium sharp peaks are attributed to the Ar and 

Ar-CH in-plane and out-of-plane bending. In spite of the many free racemic IBU peaks, the 

Raman spectra of the model solutions and the NLC composition were characteristic of the 

auxiliary materials. The medium-intensity IBU peaks at 1452, 1341, 1116, 943, 820, 662, 784 

and 269 cm-1 (Cx-Hy bending, twisting or rocking) were absent from the spectra of the IBU-

containing model solutions and NLC composition. Comparison of the Raman peaks of the 

IBU and the model solutions (10% and 25%) revealed small shifts in the wavenumbers of the 

characteristic IBU peaks. Moreover, the Raman spectrum of the IBU-NLC composition (with 

less characteristic IBU peaks) revealed the same small shifts, indicating the occurrence of 

weak interactions between IBU and the lipids. A significant change in the spectrum of 

interacted IBU was the shift in the peak corresponding to the aryl C-C stretching from 

1608 cm-1 to 1609-1616 cm-1. This latter shift indicates that the aryl ring is affected by the 

interaction with the lipid molecules and not the C=O group of IBU. In Table 10, the Raman 

spectra of the lipid components are compared with those of IBU-NLC and the blank NLC. 

The lipid components used in this study have similar chemical structures and therefore 

similar Raman bands. The Raman spectra of the lipid components in the range 3000-200 cm-1 

displayed characteristic peaks, which are assigned to vibrations of the fatty acid hydrocarbon 

chains. The sharp and intense peaks at 2881 and 2850 cm-1 and the medium peaks at 1128 

and 1062 cm-1 in all the NLC compositions confirmed the ordered acyl chains in the lipid 

structure. The incorporation of IBU did not lead to the disappearance of the sharp bands at 

2881 and 2850 cm-1 in the Raman spectrum of IBU-NLC. 

  



36 
 

Table 10: Observed Raman peaks (in cm-1) and peak assignments of individual lipid 

components and NLC compositions. 

Assignment Lutrol 
F68 

Witepsol 
E85 

Miglyol 
812 

blank 
NLC 

IBU-
NLC 

s(CH) 2934 2935 2931 2936 2935 

s(CH2) antisymmetric 2884 2880 - 2881 2881 

s(CH2) symmetric - 2846 2853 2850 2850 

s(CH) - 2724 2728 2724 2725 

s(C=O) - 1739 1745 1741 1742 

CH2 scissoring and s(C-O) - 1438 1439 1441 1441 

t(CH2) and s(C-O) - 1295 1302 1297 1297 

s(C-C) symmetric and s(C-O-C) asymmetric 1125 1126 - 1128 1128 

s(C-C) asymmetric and s(C-O) symmetric 1062 1062 1063 1063 1063 

r(CH3) - 889 889 889 892 

r(CH3) 843 - 841 844 845 

(s = stretching, β = bending, v = vibration, Ar = aromatic, t = twisting, out = out-of-plane bending, in = in-plane 

bending, r = rocking, and d = deformation). 

In order to confirm the homogenity of the IBU, Raman mapping of the NLC was performed. 

Figure 21 shows the distribution map of IBU in the NLC composition at 10x magnification. 

The characteristic bands obtained for IBU at around 1608 cm-1 were used to visualize the 

spatial distribution of IBU from Raman chemical mapping. The IBU was found 

homogenously in the dried, round areas. The purpose of this analysis was to estimate the 

distribution of the individual ingredients in the scanned area. 

 
Fig. 21: Raman distribution map of IBU (yellow to red colors) in the IBU-NLC composition 

(10x magnification). 
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The spectra of the estimated ‘Components’ were compared with the reference ingredient 

spectra (Fig. 22). The spectra of Components 1 and 4 were identified as the Raman spectrum 

of Lutrol F68, with characteristic Raman band regions of 1750-1150, 900-750 and 400-

200 cm-1. The resolved spectrum of Component 2 does not correspond to the reference 

spectra, but contains similar Raman bands to those of Miglyol 812. The spectrum of 

Component 2 displays several other peaks; the reason may be the low signal-to-noise ratio. 

Component 3 corresponds to Witepsol E85, with very characteristic Raman band regions of 

1500-1400 and 1150-1000 cm-1. The Raman spectra of each Component contain the 

characteristic Raman peaks of IBU at 1614-1608 cm-1. 

 

Fig. 22 Multivariate curve resolution of IBU-NLC Raman chemical mapping. The spectra of 

the estimated ingredients, the ‘Components’, are compared with the reference spectra of the 

individual ingredients. 

5.12 Results of FT-IR 

The FT-IR spectra of the excipients, blank NLC and IBU-NLC were recorded to obtain 

information about the possible interactions between IBU and the matrix of the nanoparticles. 

Analysis of the spectrum of IBU-NLC clearly indicates that there are no strong interactions 

between the drug and the excipients (Fig. 23). Comparison of the FT-IR spectra of the blank 

NLC and the drug-loaded IBU-NLC at 1700 cm-1 and 1550 cm-1 revealed two peaks (which 

are characteristic of the drug) as shoulders in the spectrum of IBU-NLC (Fig. 23, marked 

peaks). 
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Fig. 23: FT-IR spectra of IBU-NLC, blank NLC and IBU. 

After the deconvolution of the wavelength range 1800-1660 cm-1, the characteristic peak of 

IBU at 1721 cm-1, described as the vibration of the C=O bond [89], could be characterized 

(Fig. 24). The intensity of this peak is low, which means that non-dissolved IBU is present in 

low concentrations. The presence of drug crystals could be due to the pretreatment of the 

samples prior to the measurement (the NLC dispersions were dried in air). 

 

Fig. 24: Deconvolution of the IBU-NLC spectrum in the range 1800−1665 cm-1. 
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5.13 Results of drug loading and entrapment efficiency 

From the results of the applied HPLC method, DL% was found to be 9.85 ± 4.10% and EE% 

98.51±4.10% for the prepared IBU-NLC composition, since 1.49 ± 4.10% of the IBU was 

measured in the outer aqueous phase. 

5.14 Results of drug penetration studies 

5.14.1. In vitro drug diffusion 

The in vitro diffusion of IBU through the artificial membrane from IBU-NLC and the IBU 

suspension was calculated in terms of the mean cumulative amount diffused at each sampling 

time point during a period of 6 h (Fig. 25). The amount of IBU diffused from the IBU-NLC 

after 6 h was significantly, 2.59-fold higher (p < 0.0001) than that from the IBU suspension. 

 
Fig. 25: In vitro diffusion of IBU from the IBU-NLC (●) and the IBU suspension (▲). 

5.14.2. Ex vivo drug permeation 

The ex vivo permeation of the drug from the prepared IBU-NLC gel and IBU gel through 

excised human skin was calculated in the same way as for the in vitro measurements 

(Fig. 26). The permeation of IBU through the excised human skin was 12.78-fold higher 

(p < 0.001) from the IBU-NLC gel than from the traditional IBU gel. These findings correlate 

with those of the in vitro diffusion study, since after 6 h much higher drug permeation was 

observed from the IBU-NLC gel than from the IBU gel. 
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Fig. 26: Ex vivo permeation of IBU from the IBU-NLC gel (●) and the IBU gel (▲) through 

excised human epidermis. 

5.14.3. In vivo animal studies 

Finally, the in vivo permeation of IBU from the IBU-NLC gel and the IBU gel was 

determined with a murine model, using a modified dorsal skin chamber; the results are 

presented in Fig. 27. After 6 h, the drug penetration was significantly higher (1.87-fold, 

p < 0.0001) from the IBU-NLC gel formulation than from the IBU gel, as found in the 

previous in vitro and ex vivo studies.  

 

Fig. 27: In vivo permeation of IBU from IBU-NLC gel (●) and from the IBU gel (▲) through 

living animal skin.  
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6. SUMMARY 

The aim of my Ph.D. work was to investigate IBU-NLC systems in order to optimize their 

compositions and to characterize their properties for musculoskeletal disorders requiring 

prolonged therapy. To summarize my experimental work it can be concluded that: 

• the lipid screening led to Witepsol E85 being selected as the solid lipid and 

Miglyol 812 as the liquid lipid, which proved to be compatible with and could 

incorporate IBU in the highest concentration, 50% (w/w); 

• on the basis of the results of contact angle measurements, Lutrol F68 was selected as a 

surfactant that could provide a stable NLC system; 

• the drug–excipient compatibility was demonstrated by: 

o DSC measurements; 

o XRD analysis; 

o FT-IR spectroscopy measurements; 

• the composition was optimized via a 23 full factorial design, and NLC 5 (7% 

Witepsol E85, 3% Miglyol 812 and 5% Lutrol F68) was selected for further 

investigations; 

• an optimum equation was defined with consideration of the effects of the excipient 

concentration which could serve as a useful tool, with selection of the optimal 

formulation at which the surface plot has a minimum value. 

In the second part, the optimized IBU-NLC formulation was characterized. It emerged that:  

• the PS of the blank and IBU-NLC formulations measured by PCS, LD and AFM 

methods were in the nanometer range (below 205 nm) with low PDI and Span values; 

• the ZP revealed that the particles were negatively charged and their stability could be 

predicted as sufficient; 

• the lipid matrix was in the amorphous form and the formulations did not contain IBU 

in a crystalline form; 

• FT-IR spectroscopy and Raman spectroscopy did not reveal any significant 

interactions between the components of the prepared samples, predicting the fast 

release of IBU from the NLC formulation; 

• Raman mapping verified that the drug was homogenously distributed in the lipid 

matrix; 
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• drug permeability studies showed the fast initial release of IBU from the 

nanoparticles, and the amount released after 6 h was significantly higher relative to 

the prepared reference formulations in vitro, ex vivo and in vivo. 

Novelty of this work can be summarized in the following: 

• the optimum equation was first defined serving as a useful tool, to select the optimal 

formulation at which the surface plot has a minimum value; 

• Raman mapping was used to localize an API, namely the IBU in an NLC formulation, 

in the lipid matrix of the IBU-NLC; 

• ex vivo and in vivo drug permeation studies of the ibuprofen-loaded nanostructured 

lipid carrier were first compared (and found to be significantly higher after 6 h) to a 

reference (IBU gel) which composition mimicked the composition of those available 

on the market; 

• the modified dorsal skin chamber was first used to prove that the IBU could permeate 

through the skin of SKH-1 hairless mice in vivo; 

All of the results of the measurements performed excellently illustrated the potential of the 

application of the developed IBU-NLC formulation as a stable IBU delivery system, its fast 

release and enhanced skin permeability predicting better bioavailability with the possibility of 

topical therapy. 
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Abstract 

The purpose of the study was to use a new type of in vivo animal model 
developed by our research group for the investigation of skin penetration, compared to the 
results of Franz cell measurements. The new in vivo experimental model provides 
possibility for the exact measurement of the quantity of the penetrated drug through the 
living mouse skin. Two gel formulations containing ibuprofen were investigated with or 
without penetration enhancer. The applied penetration enhancer was Transcutol®. The 
effect of the penetration enhancer was clearly detected in both models. The in vitro diffused 
amount of ibuprofen was significantly higher than the one permeated through the living skin. 
The presence of the active agent in the plasma was also determined after the observation period. 
It was possible to monitor the penetration and absorption of topical formulations simultaneously. 

 
Rezumat 

Obiectivul studiului a fost utilizarea unui nou tip de model animal in vivo realizat 
de grupul nostru de cercetare în scopul  investigării  penetrării prin piele, în comparaţie cu 
rezultatele măsurătorilor prin celula Franz. Noul model experimental in vivo oferă 
posibilitatea unei măsurări exacte a cantităţii de substanţă medicamentoasă care penetrează 
prin pielea de şoarece. Au fost investigate două formulări de tip gel cu ibuprofen, cu sau fără 
promotor de absorbţie. Promotorul de absorbţie utilizat a fost Transcutol®. Efectul promotorului 
de absorbţie a fost clar detectat în ambele modele. Cantitatea de ibuprofen difuzată in vitro 
a fost semnificativ mai mare decât cea difuzată prin pielea de şoarece. Prezenţa agentului 
terapeutic în plasmă a fost de asemenea determinată după perioada de observaţie. A fost 
posibilă monitorizarea simultană a penetrării şi absorbţiei ambelor formulări topice. 

 
Keywords: skinfold model, Franz-cell, skin permeation, ibuprofen, Transcutol® 
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Introduction 

There are several methods for modelling drug permeation through 
the skin. The Franz-type diffusion cell is an accepted and widely applied 
model for dermal and transdermal delivery. Basically, a donor and an 
acceptor compartment are separated by a synthetic membrane [1-2]. 
Generally, these membranes are more permeable than biological membranes 
and are non-discriminatory to the characteristics of the diffusant molecule 
and not suitable for the investigation of the effect of the penetration 
enhancer modifying the structure of stratum corneum. Nowadays, various 
biological membranes are used more extensively such as animal skin [3] or 
human epidermis [4] to study the drug interaction with the skin and the 
incidental reservoir function of the stratum corneum. The in vivo animal 
studies are based on monitoring of the effect and blood level of penetrating 
agents. Other models show the presence of the drug in the skin or 
demonstrate its impact on the structure or certain functions of the skin [5].  

In our previous work a novel animal model was developed 
successfully [6]. Dorsal skin fold chamber was used, which has been an 
accepted experimental model to study the microcirculation, angiogenesis 
and wound healing for more than twenty years [7-8]. The modified version 
of this experimental setup seemed to provide effective means for the in vivo 
examination of transdermal permeation. In this modified skinfold model we 
can determine drug permeation kinetics through living mouse skin on the 
same animal in time to get information on the permeation of the studied 
agent. Moreover, the detection of local side effects, skin irritation or any 
other type of alteration in the skin becomes possible. 

The aim of our work was to compare diffusion (Franz cell method, 
with synthetic membrane) and permeation (modified skinfold method) 
parameters using ibuprofen gels with or without penetration enhancer. 

 
Materials and Methods 

Materials 
Ibuprofen (IBU) was obtained from Sigma, St Louis, USA. Transcutol® 

(Diethylene glycol monoethylether, (TR)) was from S & D Chemicals Ltd. 
Hungary, and Carbopol 971 was from BF Goodrich Co., USA. Polyethylene 
glycol 400 and trolamine were purchased from Molar Chemicals Kft, Hungary. 

 
Preparation of the gels 

First 3% w/w Carbopol 971 hydrogel was prepared. The pH was 
adjusted with the use of trolamine. The 5 % w/w IBU was dissolved in 
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polyethylene glycol 400 and was added to this gel (IBU gel). Similar 
composition was prepared by using 10 % w/w Transcutol® added to 
polyethylene glycol 400 before dissolution of active agent (IBU-TR gel). 
In vitro study 

The rate and extent of IBU release was measured by an 
autosampling system containing vertical Franz diffusion cells (Hanson 
Microette TM Topical & Transdermal Diffusion Cell System, Hanson 
Research Corporation, USA). The drug release profile was determined at 37 ± 
0.5 °C using phosphate buffer of pH=7.4, porafil membrane filter (cellulose 
acetate, the pore diameter was 0.45 µm, Macherey-Nagel GmbH & Co. KG, 
Germany) was used. The effective diffusion surface area was 1.767 cm2. 
Experiments were performed for 6 hours. Samples were taken from the 
acceptor phase every hour and replaced with fresh receiving medium. The 
drug content of the samples was tested using an HPLC method. 
In vivo study  

The in vivo studies were carried out using a modified skinfold model 
developed by our research group. In our previous article the modified 
skinfold chamber has been described for investigation of drug penetration 
through living animal skin [6]. In the schematic picture (Figure 1) it can be 
seen that the drug penetrates through the complete living skin to reach the 
acceptor phase (phosphate buffer of pH=7.4), where the presence of the 
drug can be detected.  	
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Figure 1. 

Schematic picture of the model 
 

The effective diffusion surface area was 1.539 cm2. Experiments 
were performed for 6 hours. The total acceptor phase was changed every 
hour and the concentration of the drug was determined by an HPLC method. 
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At the end of the observation period a blood sample was taken from the 
inferior cava vein with a needle and syringe containing 250 IU of heparin. The 
blood was then centrifuged at 3500 g for 5 min in order to separate the cellular 
components. The plasma was collected and analysed by HPLC. 
Data analysis 

The diffusion and permeation parameters were calculated by the 
method described by Wagner et al. [9]. These parameters enable the 
comparison between different formulations of the same drug, though the 
influence of the vehicle can change the diffusion of the drug. The 
cumulative amount of IBU per area versus square time was plotted (Q). The 
steady state flux (J) was obtained as the slope of the plots. The lag-time 
(Tlag) was determined from the intercept of the plots with x-axis – 
symbolising the time of delay which describes the first contact of the drug 
with the skin surface until a steady state flux. The permeability coefficient 
(Kp) can be calculated dividing the flux by the initial concentration (Cd) of 
the donor phase. 

Kp = J/Cd.    Eq. (1) 
Statistical analysis 

Student’s t-test was performed to see any significant difference in 
the diffused and permeated amount of IBU (Q) between the IBU and IBU-
TR gel. Differences were regarded as significant, with p < 0.05. 
HPLC method 

Ibuprofen concentrations from buffer and plasma samples were 
determined by the method previously described by Eros et al. [6]. Based on 
the analysis of drug free serum, no interfering peaks of endogenous 
substances at the retention time of ibuprofen and I.S. indicated specificity of 
the method. The assay was linear in the range of 0.1 to 20 µg/mL and 0.5 to 
15 µg/mL for buffer and plasma samples, respectively, with correlation 
coefficients of r=0.9993 ± 0.0031 (n=3) for buffer samples and r=0.9984 ± 
0.0025 (n=3) for plasma samples. The limit of quantification was 0.2 and 
0.5 µg/mL for buffer and plasma samples, respectively. The limit of 
detection was 0.06 µg/mL for buffer samples and 0.15 µg/mL for plasma 
samples. The intra- and inter-day accuracies for ibuprofen fell in the ranges 
94.30–106.9% and 95.1–101.24%, and the intra- and inter-day precisions 
(CV%) were in the ranges 4.6–9.3% and 7.1–8.9%, respectively. Using this 
method the average recovery of ibuprofen from mice plasma was 98.2 ± 2.0%. 

 
Results and Discussion 

A modified skinfold animal model was studied for the investigation 
of skin penetration, compared to the result of Franz cell measurements. Two 
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gel formulations containing ibuprofen were investigated with or without 
penetration enhancer. The applied penetration enhancer was Transcutol®, 
which acts by increasing the solubility of the penetrant in the barrier. It 
works as a humectant, absorbing water, thus increasing the water content of 
the skin and the donor compartment. The change in the donor composition 
can influence the solubility and the thermodynamic activity of active 
pharmaceutical ingredient (API) [10]. However, Transcutol® has also been 
reported to increase the skin accumulation of topically applied compounds 
without a concomitant increase in transdermal permeation [11]. The results 
of diffusion and permeation studies are shown in Table I. 

Table I. 
The diffusion and permeation parameters of IBU. The table contains the means of 

six parallel measurements ± SD 

 
 
The diffused amount of ibuprofen through the synthetic membrane 

was significantly higher than the one permeating through the living skin. 
The smaller quantity of the permeated drug, lower absorption rate and 
permeability coefficient and the longer lag time can be explained in terms of 
different factors in the present experiments. The drug has to cross the 
epidermis in order to enter the dermis, where ibuprofen is exposed to the 
barrier effect of the skin. Furthermore, ibuprofen can be taken up by the 
circulation. Only the proportion of the drug not eliminated by degradation or 
removal in the circulation can be delivered towards the deeper layer and the 
acceptor phase. 

However, the effect of the penetration enhancer was clearly detected 
in both models. The cumulative amount of ibuprofen, the absorption rate 
and the permeability coefficient were significantly higher when applying the 
penetration enhancer containing IBU-TR gel. The effect of the penetration 
enhancer was more expressive in the animal model case. The changes of 
permeation parameters (Q, J, Kp) were more than twice higher. The lag time 
was shorter given the better permeation parameters. 
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In this study the presence of the active agent in the plasma was also 
determined after the observation period (Figure 2). 
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Figure 2. 

Comparison of plasma and buffer concentration after 6 hours. The figure contains 
the means of six parallel measurements ± SD 

 
The plasma and buffer concentrations were compared in case of IBU 

gel and IBU-TR gel. The buffer concentrations were significantly higher 
than plasma levels. The plasma levels were very low, 5.71 µg/mL in case of 
IBU gel and 1.03 µg/mL in case of IBU-TR gel. There was no significant 
difference in plasma levels when applying IBU gel or IBU-TR gel. 

 
Conclusions 

In this study it was possible to monitor the permeation of hydrogel 
containing ibuprofen through living skin compared to drug diffusion 
through synthetic membrane. The effect of penetration enhancer for 
diffusion and permeation could be detected in case of in vitro and new in 
vivo model too. Comparing the buffer and plasma levels, the buffer 
concentrations were significantly higher than plasma levels, which proves 
that the model is suitable and up-to-date for determining the quantity of 
drug permeation through living full-thickness skin. 
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With the aim of the development an ibuprofen (IBU)-loaded NLC with a 23 full factorial

design, lipid screening and contact angle measurements were applied to choose the most

suitable excipients for the formulation of the system. The results of DSC, XRD and FT-IR

studies demonstrated the compatibility between the drug and the components. The fac-

torial design was utilized to investigate the effects of the excipients on the zeta potential

(ZP) and the mean particle size. The addition of a liquid lipid to the solid lipid decreased

both the melting point and the crystallinity index, which also occurred after the dissolu-

tion of IBU in the lipid mixture. The XRD diffractograms confirmed the reduction in the

crystallinity of the components, but despite this decrease they still retained a crystalline

structure. FT-IR did not reveal any interaction between the drug and the excipients. The

particle sizes were 129–160 nm, the PDIs ranged between 0.065 and 0.237, and their ZPs

varied from −15.40 to −7.54 mV. Random samples (picked out from the design space) were

also  prepared. Analysis of their particle sizes and ZPs led to an optimum equation which

demonstrated the appropriateness of the analysis and allowed the shortening of further
experimental planning.

© 2015 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

development of dermal delivery. Moreover, the oral adminis-
1.  Introduction

The topical application of drugs is a favourable administration
route in the treatment of skin diseases and musculoskele-
tal disorders. The advantage of dermal preparations is their
administration at the site where the effect is needed (Puglia
et al., 2008).

Ibuprofen (IBU) is a potent nonsteroidal anti-inflammatory

drug (NSAID) often used for the treatment of acute and chronic

∗ Corresponding author. Tel.: +36 62545573.
E-mail address: csanyi@pharm.u-szeged.hu (E. Csányi).

http://dx.doi.org/10.1016/j.cherd.2015.09.010
0263-8762/© 2015 The Institution of Chemical Engineers. Published by 
arthritic conditions and for the relief of acute pain. It is con-
sidered one of the safest NSAIDs available on the market.
Although IBU is not the most potent active pharmaceuti-
cal ingredient (API) in this group, it offers the best balance
between safety and therapeutic effect (Potthast et al., 2005).
Its low water-solubility (Nanau and Neuman, 2010) and low
bioavailability (Chen et al., 2013) pose a great challenge in the
tration of IBU can cause gastric mucosal damage, which can

Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/02638762
www.elsevier.com/locate/cherd
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ead to bleeding and ulceration. Because of its valuable prop-
rties, there is great interest in the development of suitable
opical dosage forms of IBU, thereby avoiding the oral side-
ffects and with the facile application of the API to reach
he inflamed joint or muscle in high concentration. Effective
ermeation of the drug is difficult to achieve by transdermal
elivery, however, because of its intrinsically poor skin per-
eability, even though this is good relative compared to other
SAIDs in common use (Rhee et al., 2008).

Lipid nanoparticles are intensively studied drug delivery
ystems derived from o/w emulsions. The liquid lipid (oil)
hase is replaced by a lipid (or a mixture of lipids) which is
olid at both room and body temperature. There are two gen-
rations of lipid nanoparticles: solid lipid nanoparticles (SLNs)
nd nanostructured lipid carriers (NLCs). The lipid matrix of
LNs is produced only from solid lipid(s), while the matrix of
LCs consists of a blend of solid lipid(s) and liquid lipid(s).
hese particles are stabilized by surfactants in an aqueous
olution. NLC systems possess certain advantages as com-
ared with SLNs, such as a higher drug loading capacity and
teady drug entrapment during storage. The use of only one
ipid as matrix for an SLN tends to lead to the formation of

 relatively perfect crystal lattice, which will result in drug
xpulsion. In contrast, the matrix of an NLC consists of a mix-
ure of lipids with differently structured molecules, so that the
ormation of a perfect crystal is limited (Müller et al., 2007).

The dermal use of NLC systems offers a number of
dvantage, such as physical stability of the applied topical
ormulations, enhancement of the chemical stability of the
ncorporated APIs, improved dermal bioavailability, the skin
argeting of the APIs, and film formation on the skin, accompa-
ied by controlled occlusion and skin hydration in vivo (Müller
t al., 2007; Schäfer-Korting et al., 2007). UV-reflecting proper-
ies (e.g. the possibility of using these carriers in sunscreens to
elp increase their protective effect against UV light) and the
ossibility of modulating API release into the skin have also
een reported (Mehnert and Mäder, 2001).

Formulation of an NLC-based drug delivery system is a
omplex and long-lasting procedure, since the physicochem-
cal properties of NLCs are altered by many  factors, such as
he quality and quantity of the selected lipids and surfactants
r the ratio of lipids to API in the formulation. On view of
heir significant effects on the physicochemical properties of
he nanoparticles, the selection of the proper ingredients is a
rucial step in the formulation of NLCs. Optimization of the
ormulation via a factorial design could facilitate this process
de Carvalho et al., 2013; Mehnert and Mäder, 2001). The effects
f three factors, the concentrations of the solid lipid, the liquid

ipid and the surfactant, on the particle size (d(0.5)) and the
eta potential (ZP) of the prepared nanoparticles have been
xamined on two levels. The results of the factorial design
ave been depicted as plot surfaces.

Response surface methodology (RSM) is an appropriate
ool with which to evaluate the correspondence between the
esponse and independent variables and to optimize the pro-
esses or products (Baş and Boyacı, 2007). RSM requires less
xperimentation and provides estimates of the relative signif-
cance of the different variables (Hao et al., 2011).

The aim of this study was to develop IBU-loaded NLC for
ermal drug delivery from the results of a 23 full factorial
esign. In order to evaluate the drug–excipient compatibil-

ty, differential scanning calorimetry (DSC) measurements,

-ray diffraction (XRD) analysis and Fourier transformation-

nfrared (FT-IR) spectroscopy measurements were carried out.
The effects of the solid lipid:liquid lipid ratio and the lipid mix-
ture:drug ratio were quantified via the factorial design and an
optimum equation, which could serve as a useful tool in the
choice of the optimum formulation of IBU-NLC systems.

2.  Materials  and  methods

2.1.  Materials

NLC formulations were loaded with IBU, which was pro-
vided by PannonPharma Ltd (Hungary). Precirol ATO 5 (glycerol
palmitostearate; melting point (m.p.): 52–55 ◦C), Compritol
888 ATO (glyceryl behenate/dibehenate; m.p.:  70 ◦C) and Tego
Care 450 (polyglyceryl-3 methylglucose distearate; HLB value:
12) were kindly supplied by Azelis Hungary Ltd (Hungary).
Witepsol E85 (hard fat – hydrogenated vegetable glycerides;
m.p.:  42–44 ◦C) and Miglyol 812 (caprylic/capric triglyceride)
were provided by Sasol GmbH (Germany). Cutina CP (cetyl
palmitate; m.p.:  55–56 ◦C), Cremophor EL (macrogolglycerol
ricinoleate; HLB value: 12–14), Cremophor RH 60 (PEG-60
hydrogenated castor oil; HLB value: 15–17) and Lutrol F68
(Poloxamer 188; HLB value: 29) were kindly supplied by BASF
SE Chemtrade GmbH (Germany). Oleic acid, Tween 20 (Polysor-
bate 20; HLB value: 16.7) and Tween 80 (Polysorbate 80; HLB
value: 15) were purchased from Sigma–Aldrich (USA). Walcer
(special sunflower-seed oil) was provided by Cereal Research
Non-profit Ltd (Hungary).

2.2.  Lipid  screening

To determine the most suitable solid lipid and liquid lipid
(oil) which dissolve IBU in the highest concentration, increas-
ing concentrations of IBU were added to the solid and liquid
lipids and the mixture was stirred with a Thermomixer Com-
fort (Eppendorf, Germany) for 90 min  at 500 rpm at least 5 ◦C
above the melting point of the examined lipids. The solubility
of IBU in the examined lipids was analysed visually. The fol-
lowing step was to evaluate the miscibility of the chosen solid
lipid and liquid lipid, and the solubility of IBU in the lipid mix-
ture under the previously mentioned conditions. Briefly, solid
and liquid lipids with the best solubilizing potential for IBU
were mixed together in different proportions according to the
23 factorial design (ratios 10:3, 10:5, 7:3 and 7:5). After agita-
tion, the lipid mixtures were left to cool to room temperature.
After 24 h the lipid mixtures were smeared onto filter paper,
and observed visually to verify the existence of oil droplets on
the filter paper, which would indicate immiscibility between
the lipids (Kasongo et al., 2011).

2.3.  Contact  angle  measurements

Contact angles were measured with an Easy Drop G1 (A.Krüss
Optronic, Germany). Cover slides were coated with a thin film
of one or other of the four different bulk lipid mixtures (ratios
10:3, 10:5, 7:3 and 7:5). 10 �l of purified water (as reference) or
0.5% (w/v) surfactant solution (in purified water) was applied
to the lipid film and the contact angle of the droplet was
assessed.

2.4.  DSC  measurements

To obtain information on the melting behaviour of the cho-

sen solid lipid, the lipid mixture and the bulk mixture of
IBU dissolved in the lipid mixture, DSC measurements were
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performed with a DSC 204 F1 Phoenix instrument (Netzsch,
Germany). 2–5 mg  samples were measured into aluminium
pans which were than sealed; an empty aluminium pan was
used as reference. The samples were heated from 20 ◦C to 65 ◦C
at a heating rate of 5 K/min under constant nitrogen flushing
(80 ml/min). The melting point of IBU has been reported to be
between 75 and 77 ◦C, and it immediately starts to decom-
pose after further heating (Xu et al., 2004). The lipids and
drug compatibilities were therefore monitored up to 65 ◦C. The
crystallinity index (CI (%)) was calculated from the obtained
DSC thermograms via Eq. (1) (Araújo et al., 2011; Kumbhar
and Pokharkar, 2013). Before the measurements, lipid mix-
tures and lipid–drug mixtures were melted and left to cool to
room temperature. The solid lipid was examined as received,
without any treatment.

CI (%) =
(

�Hbulk material × solid lipid ratio
�Hsolid lipid

)
× 100 (1)

where �H is the enthalpy of the examined material.

2.5.  XRD  analysis

XRD analysis was performed with a Bruker D8 Advance diffrac-
tometer (Bruker AXS GmbH, Karlsruhe, Germany) system with
Cu K �I radiation (� = 1.5406 Å). The samples were scanned at
40 kV and 40 mA  from 3◦ to 40◦ 2�, at a scanning speed of 0.1◦/s
and a step size of 0.010◦. Samples were prepared in the same
way as prior to the DSC measurements.

2.6.  FT-IR  spectroscopy

FT-IR spectra were recorded with a Bio-Rad Digilab Division
FTS-65A/896 FTIR spectrometer (Bio-Rad Digilab Division FTS-
65A/869, Philadelphia, PA, USA) between 4000 and 400 cm−1,
with 128 scan size, at an optical resolution of 4 cm−1; oper-
ating conditions: Harrick’s Meridian SplitPea single reflection,
diamond, ATR accessory. Thermo Scientific GRAMS/AI Suite
software (Thermo Fisher Scientific Inc., Waltham, MA, USA)
was used for the spectral analysis. The same samples were
used as in the XRD analysis.

2.7.  Preparation  of  IBU-NLC

IBU-NLCs were prepared by a hot high-pressure homogeniza-
tion method, using a Panda K2 NS1001L Spezial modified for
NLC production (GEA Niro Soavi, Germany). Briefly, 5% drug
was dissolved in the mixture of the chosen solid and liquid
lipid at 65 ◦C. The surfactant was dissolved in purified water
at the same temperature. The aqueous phase was added to
the lipid phase and was stirred with an Ultra Turrax T25 (IKA-
Werke, Germany) for 30 s at 12,500 rpm. The pre-emulsion
obtained was subjected to high-pressure homogenization,
applying five cycles at 600 bar and 65 ◦C. Blank NLC samples
were prepared by the same procedure.

2.8.  Size  measurements  and  zeta  potential  (ZP)
analysis

2.8.1.  Photon  correlation  spectroscopy  (PCS)
Particle size (Zave) and polydispersity index (PDI) of the pre-

pared NLC samples were analysed by PCS with a Zetasizer
Nano ZS instrument (Malvern Instruments, UK) equipped with
a green laser beam. The PDI refers to the width of the particle
size distribution.

2.8.2.  Laser  diffraction  (LD)
Particles in the micrometre range were excluded by LD with a
Mastersizer 2000 instrument (Malvern Instruments, UK). The
d(0.1), d(0.5), d(0.9), d(0.95) and d(0.99) values were evaluated.
These show the sizes below which 10%, 50%, 90%, 95% and 99%
of the analysed particles are to be found (volume distribution).
The Span value, which relates to the width of the particle size
distribution curve ((d(0.99)–d(0.1))/d(0.5)), was also calculated.
The measurement medium was purified water, with a refrac-
tive index of 1.33. The real refractive index was set to 1.456,
and the imaginary refractive index to 0.01.

2.8.3.  Zeta  potential  (ZP)
To acquire information about the stability of the prepared
samples, ZP was determined with a Zetasizer Nano ZS instru-
ment (Malvern Instruments, UK) via electrophoretic mobility
measurements. The applied medium was bidistilled water
adjusted with 0.9% NaCl solution to achieve a conductiv-
ity of 50 �S/cm and a pH value between 5.5 and 6.0. The
Helmholtz–Smoluchowski method was used to calculate the
ZP (n = 3).

2.9.  Experimental  design

During the experimental design, eight different NLC samples
(NLC 1–8) were prepared by the hot high-pressure homoge-
nization method according to the 23 full factorial design to
evaluate the effects of the three IBU-NLC formulation factors.
These factors were A (the solid lipid concentration), B (the liq-
uid lipid concentration) and C (the surfactant concentration).
The optimization parameters (dependent factors) were the
measured ZP and mean d(0.5) value of the prepared nanopar-
ticles. The effects of the chosen factors were examined at two
levels (+1 and −1). Table 1 shows the applied factorial table
with the values of the independent and dependent factors.
Statistical data analysis was performed using Statistica for
Windows software version 10. Besides these eight samples,
eight other formulations, belonging in the same parameter
space were prepared (Table 1) to check whether there was a
possibility of a simpler model with which to optimize these
formulations.

3.  Results  and  discussion

3.1.  Lipid  screening

A large variety of solid and liquid lipids (natural, semi-
synthetic and synthetic lipids with various structures,
e.g. triglycerides, partial glycerides, fatty acids, waxes and
steroids) which could be suitable as matrices for NLC produc-
tion are accessible on the market (Mehnert and Mäder, 2001;
Müller et al., 2002). However, the lipids used as matrix lipids
must be carefully selected as they will directly influence the
performance of the carrier system (Pardeike et al., 2011). The
properties to be considered: the toxicity and biocompatibility
through the selection of well tolerated physiological and
biodegradable lipids; the drug payload and entrapment effi-
ciency through the choice of lipids which can solubilize high
amounts of the drug; drug expulsion during storage, which

can be minimized or avoided through the use of lipid matrices
with a low tendency to crystallize or a less-ordered structure;
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Table 1 – Values of the examined independent factors (A, B and C) and dependent factors (ZP and d(0.5)) and
compositions of the NLC systems.

Sample name Solid lipid
concentration %

(w/w)

Liquid lipid
concentration %

(w/w)

Surfactant
concentration %

(w/w)

Zeta potential
(mV)

Particle size
(nm)

Formulations used
in the factorial
design

NLC  1 7 (−1) 3 (−1) 4 (−1) −14.2 135
NLC 2 10 (+1) 3 (−1) 4 (−1) −9.5 160
NLC 3 7 (−1) 5 (+1) 4 (−1) −11.2 143
NLC 4 10 (+1) 5 (+1) 4 (−1) −11.7 140
NLC 5 7 (−1) 3 (−1) 5 (+1) −14.2 129
NLC 6 10 (+1) 3 (−1) 5 (+1) −10.9 152
NLC 7 7  (−1) 5 (+1) 5 (+1) −11.4 147
NLC 8 10  (+1) 5 (+1) 5 (+1) −12.1  150

NLC systems
randomly picked out
from the parameter
space

Blank NLC 10 5 5 −7.54 149
NLC 9 7 3.5 4 −12.4 131
NLC 10 10 4 4 −12.3 137
NLC 11 10 4 5 −15.4 143
NLC 12 7 4.5 5 −9.64 130
NLC 13 10 4.5 4 −12.0 136
NLC 14 10 4.5 5 −12.3 141

4 4 −9.97 158
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Fig. 1 – Contact angles of 0.5% (w/v) surfactant solutions
NLC 15 7 

ontrolled drug release properties through incorporation of
he drug into the lipid matrix (i.e. a drug-enriched core, a
rug-enriched shell or homogeneous drug distribution in the
atrix); and increased chemical drug stability if photosen-

itive drugs or drugs sensitive to hydrolysis or oxidation are
ncorporated in the matrix (Mehnert and Mäder, 2001; Müller
t al., 2002; Pardeike et al., 2009).

Apart from oleic acid, all of the investigated lipid melts dis-
olved IBU in a very high amount (50% w/w). The samples were
ooled to room temperature and analysed visually after 24 h.
ith most of the examined lipids, the IBU underwent recrys-

allization (Table 2). No IBU crystals were found in Witepsol
85 and Miglyol 812, and these materials were therefore cho-
en as lipid matrix for NLC formulation. The solid lipid and
iquid lipid mixtures were tested in ratios of 10:3, 7:3, 10:5
nd 7:5. No oil droplets were observed on the filter paper. No
ecrystallization was observed visually after the addition of
he drug.

.2.  Contact  angle  measurements  and  determination
f surfactant  concentration

he nature and the concentration of the surfactant have a
reat influence on the fineness and physical stability of the
LCs, as the surfactant can reduce the interfacial tension (IFT)
etween the lipid particles and the aqueous phase (Pardeike
t al., 2011; Üner et al., 2004). The IFT can be determined via
ontact angle measurements. The IFT is directly proportional

o the contact angle: the lower the IFT between the lipid matrix
nd the water phase, the smaller the contact angle. Contact

Table 2 – Results of lipid screening.

Lipid type Examined lipids S
i

Solid lipid Compritol 888 ATO 

Solid lipid Cutina CP 

Solid lipid Precirol ATO 5 

Solid lipid Witepsol E85 

Liquid lipid Miglyol 812 

Liquid lipid Oleic acid 

Liquid lipid Walcer 
applied to the 10:5 Witepsol E85:Miglyol 812 mixture.

angle measurements were performed to evaluate the surfac-
tant displaying the best wetting with the Witepsol E85 and
Miglyol 812 mixture. Contact angle measurements were per-
formed for each of the solid lipid:liquid lipid ratios used in
the factorial design (10:3, 7:3, 10:5 and 7:5). Since there was no
significant difference between the results, the contact angles
measured for films with a solid lipid:liquid lipid ratio of 10:5 are
shown in Fig. 1. For all of the examined surfactant solutions,

smaller contact angles could be reached than with distilled
water (which was used as reference). These results correspond

olubility of 50% (w/w) IBU
n the melted lipid

Recrystallization at room
temperature after 24 h

Soluble Yes
Soluble Yes
Soluble Yes
Soluble No
Soluble No

Insoluble Yes
Soluble Yes
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itep
Fig. 2 – DSC curves of bulk materials: Witepsol E85, W

with the fact that surfactant solutions exhibit a smaller sur-
face tension than that of purified water. Cremophor RH 60
exhibited the best wetting properties with the lipid mixture
(75.02 ± 2.49◦), although similar results could be achieved with
Lutrol F68 (77.4 ± 4.29◦). NLC formulations were therefore pre-
pared with both emulsifiers, and Lutrol F68 was chosen for
further investigations on the basis of the d(0.5) and ZP values
(Cremophor RH 60: d(0.5) = 214.4 nm,  ZP = −9.17 mV; Lutrol F68:
d(0.5) = 112.4 nm,  ZP = −12.4 mV).

The emulsifier concentration has a great influence on the
particle size distribution, stability and toxicological properties
of lipid nanoparticles (Han et al., 2008; Schöler et al., 2001;
Üner et al., 2004). A high surfactant concentration results in a
lower particle size, a narrower particle size distribution (which
means a smaller PDI and a smaller Span value) and the better
long-term stability of lipid nanoparticles, although it simulta-
neously increases the toxicological potential. Consequently, a
balance is needed: the use of a sufficient amount of surfac-
tant that ensures the desired small particle size and a proper
physical stability during storage, but does not demonstrate
toxicity.

3.3.  DSC  measurements

Lipid crystallization plays a very important role in the
performance of NLC carriers. Other research groups have
emphasized the importance of the characterization of the
degree of lipid crystallinity and the modification of the lipid,
because these parameters are closely correlated with the
incorporation and release rates of the drug (Mehnert and
Mäder, 2001; Tian et al., 2013).

Fig. 2 shows the DSC data of the different samples. Witep-
sol E85 is a mixture of mono-, di- and triglycerides. It has
been reported that the presence of mono- and diglycerides
in the matrix of the lipid can facilitate the solubilization of

the drug (Müller et al., 2000; Vivek et al., 2007). Lipids which
consist of a mixture of different di- and triglycerides or lipids

Table 3 – Normalized integral area under curve, onset, peak, en
ratio of 10:5, and the lipid mixture with IBU in a ratio of 10:5:5.

Sample Integral (normalized) (J/g) 

Witepsol E85 −135.29 

Witepsol E85:Miglyol 812 10:5 −59.60 

Witepsol E85:Miglyol 812:IBU 10:5:5 −42.12 
sol E85:Miglyol 812 10:5, and lipid mixture:IBU 10:5:5.

which contain fatty acids of different chain lengths form less
perfect crystals with many  imperfections, offering spaces to
accommodate drugs (Vivek et al., 2007). Witepsol E85 exhib-
ited a broad endothermic event (melting range: around 42 ◦C),
as described in the literature (Vivek et al., 2007). The bulk
mixtures of the lipids, Witepsol E85 and Miglyol 812 in all
investigated ratios gave a broader endothermic peak, with
lower onset and peak values, as expected. The four lipid mix-
tures yielded similar DSC curves; the lipid mixture with a ratio
of 10:5 is shown in Fig. 2. The normalized integral area under
the curve, the onset, the peak, the endset and the CI (%) of the
pure Witepsol E85, the 10:5 lipid mixture and the lipid mixture
with IBU in a ratio of 10:5:5 have been evaluated and are listed
in Table 3.

After the addition of the oil, the melting point of the solid
lipid decreased from 42.78 ◦C to 39.16 ◦C, and CI (%) fell from
100% to 29.37%. A further decrease in the melting point from
42.78 ◦C to 36.77 ◦C was observed IBU was added to the lipid
mixture. CI (%) also fell further from 29.37% to 15.57%. Both
the addition of Miglyol 812 and the incorporation of IBU in
the lipid matrix can result in an increase in the number of
defects in the lipid crystal lattice, causing decreases in the CI
(%) and the melting point of Witepsol E85 (Vivek et al., 2007).
A less ordered crystalline structure predicts a higher loading
capacity of the lipid matrix. A lipid mixture consisting of very
differently structured molecules will prevent the formation of
a perfect crystal, providing spaces in which to accommodate
the drug in molecular form or as amorphous clusters (Müller
et al., 2007).

3.4.  XRD  analysis

(RS)-(±)-IBU, an (RS)-2-(4-(2-methylpropyl)phenyl)propanoic
acid, crystallizes with two molecules in the asymmetric unit to
form a cyclic hydrogen-bonded dimer. Within the dimer, each

molecule demonstrates subtle conformational differences via
rotations about the acetic C(1) C(2) and the C(10) C(11) bonds.

dset and CI (%) of pure Witepsol E85, the lipid mixture in a

Onset (◦C) Peak (◦C) Endset (◦C) CI (%)

37.46 42.78 44.24 100
36.36 39.16 41.95 29.37
33.03 36.77 41.00 15.57
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Fig. 3 – Wide-angle X-ray diffractograms of IBU (1), the 10:5 bulk mixture of Witepsol E85:Miglyol 812 (2), the 10:5:5 bulk
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ixture of Witepsol E85:Miglyol 812:IBU (3), and the 10:5:5:5

he bond distances and angles in (RS)-(±)-IBU are in close
greement with those found for the structure of the racemic
ompound (McConnell, 1974). For semisolid fat products (e.g.
ce cream, margarine and chocolate), the solid lipids, which
ormally exist as a three-dimensional colloidal fat crystal net-
ork, determine the physical properties of the product. Upon

rystallization, hardstock triacylglycerols aggregate to form fat
rystals, which appear to aggregate, in a similar fashion as
olloidal gels, to form clusters. These clusters aggregate into
ocks, and finally weak links develop between the flocks in the
nal macroscopic network.

XRD measurements were performed to investigate the
ffects of the preparation temperature on the structures of the
ngredients. The diffractogram of the melted bulk of the 10:5:5
hysical mixture of Witepsol E85:Miglyol 812:IBU revealed the
haracteristic peaks of both the IBU and the lipid mixture. On
he addition of Lutrol F68 to the mixture, a further reduction
f the IBU peaks resulted (Fig. 3). It is clear from the diffrac-
ograms that both the IBU and the excipients retained their
rystallinity, but the intensity of the IBU peaks decreased for
oth the lipid mixture and the physical mixture of the NLC
omponents, which predicts the presence of the IBU in both
issolved and crystalline form.

.5.  FT-IR  analysis

he intense band at 2955 cm−1 in the FT-IR spectrum of
BU is assigned to CH3 asymmetric stretching. The very
igh-intensity peaks at 1721 cm−1 and 1231 cm−1 are due
o C O stretching and C C stretching, respectively. The
trong-intensity band observed at 779 cm−1 is due to CH2 rock-
ng vibration. The bands at 2955, 1721, 1231 and 668 cm−1

ere assigned as the fingerprints of IBU in the literature
Matkovic et al., 2005; Nokhodchi et al., 2010; Ray et al.,
010). C O stretching, CH2 scissoring vibration and CH CO
eformation contribute to their presence. Strong-intensity
H3 rocking of (936 cm−1), CH3 asymmetric deformation

1462 cm−1), CH2 asymmetric stretching vibration (3090 cm−1

nd 2869 cm−1) and CH2 in-plane rocking vibration (522 cm−1)
re also observed. The absorption bands due to C C
tretching vibrations occur at 1507 cm−1 and 746 cm−1.
he medium-intensity O H. . .O valence stretching vibra-

ion occurs at 2728 cm−1 and 2632 cm−1. Absorption bands

ue to OH in-plane deformation (1321 cm−1), C H in-plane
eformation (1268 cm−1, 1123 cm−1 and 1071 cm−1), C H
 mixture of Witepsol E85:Miglyol 812:IBU:Lutrol F68.

in-plane deformation (1168 cm−1, 1008 cm−1, 636 cm−1 and
1092 cm−1), C H out-of-plane deformation (866 cm−1 and
668 cm−1), in-plane ring deformation (407 cm−1), C C C ring
asymmetric bending (423 cm−1), C C deformation (588 cm−1),
CH3 symmetric stretching (1380 cm−1) and C O C stretch-
ing (970 cm−1) have also been noted (Natarajan et al., 2005;
Ramukutty and Ramachandran, 2012).

FT-IR analysis was used to verify whether any interac-
tion occurred between the excipients and the drug because
newly formed bonds can modify the diffusion of IBU from
the nanoparticles. Fig. 4A presents the FT-IR spectra of the
10:5:5:5 physical mixture of Witepsol E85, Miglyol 812, IBU and
Lutrol F68 and the individual spectra of these bulk compo-
nents. A comparison of the spectra allows the conclusion that
no chemical modification occurred at the temperature of NLC
production. Fig. 4B depicts the lower wavelength range of the
same spectra. No shifts in the major valency vibrations were
detected and new peaks did not appear.

3.6.  Results  of  size  measurements  and  zeta  potential
analysis

The particle size and size distribution of the prepared IBU-
loaded NLC were measured by PCS and LD. The particle size
of the NLC systems varied in the interval 108.6–216.3 nm
(Table 4). The Zave and d(0.5) values appropriately correlate
with each other, showing the mean particle sizes of the NLC
samples. The PDI and the Span values vary in similar ways, as
both relate to the size distribution of the lipid nanoparticles.

3.7.  Results  of  the  experimental  design

3.7.1.  Effects  of  the  dependent  factors  on  the  ZP
The results were evaluated according to the 23 full factorial
design. The three examined independent factors (solid lipid
concentration (A), liquid lipid concentration (B) and surfac-
tant concentration (C)) together exerted a significant effect
(p < 0.05) on the ZP, but individually they did not do so. The
coupled factors were also tested without giving a significant
effect. The mathematical model is shown in the following
equations (Eqs. (2)–(4)) of the response surfaces, with the ZP as
the dependent factor as a function of factors A and B, factors A
and C, and factors B and C, with a good correlation (R2 = 0.9901):
ZP (A, B) = 3.61 ∗ A + 6.99 ∗ B − 0.77 ∗ A ∗ B − 43.98 (2)
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Fig. 4 – (A) FT-IR spectra of the physical mixture of the bulk components (Witepsol E85, Miglyol 812, IBU and Lutrol F68 in a
ratio of 10:5:5:5) (1), IBU (2), Witepsol E85 (3), Miglyol 812 (4), Lutrol F68 (5); (B) FT-IR spectra in the lower wavenumber range

of the same components.

ZP (A, C) = 1.75 ∗ A + 1.77 ∗ C − 0.27 ∗ A ∗ C − 24.66 (3)

ZP (B, C) = −1.81 ∗ B − 1.33 ∗ C + 0.20 ∗ B ∗ C − 7.25 (4)

A positive sign indicates a synergistic effect on the exam-
ined dependent factor, whilst a negative sign represents an
antagonistic effect.

Factor A (solid lipid concentration) is directly proportional
to the ZP, although this effect is not significant. The ZP
becomes lower if factor A is kept on level −1 (7% Witepsol E85).
The same effect was observed for factor B (liquid lipid con-
centration). Lower ZP values are obtained if factor B is kept
at a lower level, e.g. if 3% Miglyol 812 is applied. This corre-
spondence is clearly visible in Fig. 5A, which depicts three
response surfaces where the ZP is a function of factors A and
B; factor C is given on levels −1 (4% w/w), 0 (4.5% w/w) and
+1 (5% w/w)  (surfaces 1, 2 and 3). The ratio of factors A and
B is indirectly proportional to the ZP. The response surfaces
exhibit a minimum value at a solid lipid:liquid lipid ratio of
7:3; the ZP is −14.2 mV. This minimum is clearly visible and
does not change if the surfactant concentration is altered from
4% to 4.5% or 5% w/w; the behaviour of the response surface
remains unchanged in the examined range. Factor C is indi-
rectly proportional to the ZP. Lower ZP values are expected if

higher concentrations of the surfactant are applied; the use of
5% Lutrol F68 is therefore favourable.

Table 4 – Results of PCS and LD measurements for all the NLC f

Name ZP (mV) Zave (nm) PDI d(0.1) (nm) d(0.5) 

Blank NLC −7.54 132.2 0.096 91 14
NLC 1 −14.2 216.3 0.230 97 13
NLC 2 −9.5 114.5 0.077 87 16
NLC 3 −11.2 113.1 0.067 86 14
NLC 4 −11.7 114.5 0.087 89 14
NLC 5 −14.2 108.6 0.065 86 12
NLC 6 −10.9 115.8 0.093 91 15
NLC 7 −11.4 112.7 0.089 85 14
NLC 8 −12.1 115.0 0.078 87 15
NLC 9 −12.4 112.4 0.089 87 13
NLC 10 −12.3 138.2 0.249 74 13
NLC 11 −15.4 114.7 0.108 90 14
NLC 12 −9.64 109.7 0.057 86 13
NLC 13 −12.0 116.1 0.085 90 13
NLC 14 −12.3 114.8 0.101 92 14
NLC 15 −9.97 214.4 0.237 91 15
3.7.2.  Effects  of  the  dependent  factors  on  the  PS
Similarly to the results of the statistical analysis of the ZP, the
three independent factors (solid lipid concentration (A), liq-
uid lipid concentration (B) and surfactant concentration (C))
together affected the PS significantly (p < 0.05), whereas their
individual effects did not reach the level of significance (con-
fidence value 95%). No significant effect was observed when
the effects of the coupled factors were tested (A and B, A and
C and B and C). The mathematical model of the effects of the
dependent factors on the PS is shown in Eqs. (5)–(7), with a
correlation of R2 = 0.9883:

PS (A, B) = 20.02 ∗ A + 34.50 ∗ B − 4.00 ∗ A ∗ B − 27.50 (5)

PS (A, C) = 1.00 ∗ A − 5.67 ∗ C + 0.67 ∗ A ∗ C + 136.00 (6)

PS (B, C) = −31.00 ∗ B − 27.97 ∗ C + 7.00 ∗ B ∗ C + 268.50 (7)

Factor A (solid lipid concentration) is directly proportional
to the PS, but this effect does not reach the level of significance.
PS is lower if factor A is kept on level −1 (7% Witepsol E85). The
same effect is observed with factor B (liquid lipid concentra-
tion), i.e. PS of the nanoparticles is lower when 3% Miglyol
812 is used in the formulations. The ratio of factors A and B
is indirectly proportional to the PS. In Fig. 5B, the response

surfaces exhibit a minimum value at a solid lipid:liquid lipid
ratio of 7:3; the PS is below 125 nm.  The surface plot retains its

ormulations.

(nm) d(0.9) (nm) d(0.95) (nm) d(0.99) (nm) Span value

9 228 250 300 0.919
5 249 280 330 1.126
0 195 210 250 0.675
3 192 210 250 0.741
0 198 220 260 0.779
9 192 210 250 0.822
2 206 230 270 0.757
7 191 210 250 0.721
0 195 210 250 0.720
1 195 210 250 0.824
7 238 270 320 1.197
3 219 240 280 0.902
0 191 210 250 0.808
6 200 220 260 0.809
1 208 230 270 0.823
8 262 300 360 1.082
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Fig. 5 – (A) Measured ZP as a function of solid lipid (factor A) and liquid lipid (factor B). The surfactant concentration was set
to 4% w/w  (1), 4.5% w/w  (2) and 5% w/w  (3); (B) measured PS as a function of solid lipid (factor A) and liquid lipid (factor B).
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he surfactant concentration was set to 4% w/w (4), 4.5%w/w

inimum value regardless of the surfactant concentration.
he difference between the maximum and minimum points of

he surfaces becomes more  explicit at higher surfactant con-
entrations (Fig. 5B (4), (5) and (6)) in the range of the factorial
esign.

Factor C (surfactant concentration) did not have an impact
n the PS in this range.

The results of the applied factorial design indicate that NLC
 was the most suitable for IBU delivery, together with 7%
itepsol E85, 3% Miglyol 812 and 5% Lutrol F68.
Table 3 gives data on NLC formulations randomly picked

ut from the factorial design space. By measuring the ZP, Zave,
DI and Span values of these NLC systems, a simpler function
Eq. (8)) could be defined to choose the optimum formulation.
actorial design requires a large number of samples, which
ay be decreased through use of the following equation if the

esponse surface has a minimum value. The aim was to find
 simpler correspondence to evaluate the optimum ratio of
he compounds. The following equation gives the optimum
s a non-dimensional number with a minimum value at the
ptimum compound.

ptimum = min
[

ZP + Zave + PDI + Span + SL
LL

+ SL/LL
S

]
, (8)

here ZP is the zeta potential, Zave is the mean particle size

easured by PCS, PDI is the polydispersity index, Span is the

pan value(d(0.9)–d(0.1)/d(0.5)), SL/LL is the solid lipid:liquid
and 5%w/w (6).

lipid ratio and SL/LL/S is the solid lipid:liquid lipid ratio pro-
portional to the surfactant concentration.

As regards the optimum equation, NLC 5 proved optimum
for the formulation of a stable IBU-loaded NLC system. This
method appears suitable to design NLC formulations.

4.  Conclusions

The present study highlights the importance of preformu-
lation studies in the development of a potential NLC drug
delivery system. Through the results of lipid screening and
contact angle measurements, a high level of IBU loading (5%
w/w) could be achieved. DSC measurements showed that the
liquid lipid reduced the CI (%) of the solid lipid and slightly low-
ered its melting point. The incorporation of the drug caused
a slight shift in the melting point and a further reduction of
the CI (%). The reduced CI (%) predicts more  imperfections
in the crystal lattice of the solid lipid, which provides more
spaces for the accommodation of the drug, thereby permitting
higher drug loading capacities of the matrix. IBU was partially
dissolved in the lipid matrix and was present in crystalline
form, too, as revealed by the XRD diffractograms. The FT-IR
data verified the drug–excipient compatibility, and there was
no chemical interaction between the components, which sug-
gests a faster release from the lipid matrix. Both PCS and LD
measurements proved that the particle size of every sample
was in the nanometre range, and the PDI  and Span values

indicated appropriate particle size distribution. It could be
concluded that the 23 full factorial design is a useful and quick



496  chemical engineering research and design 1 0 4 ( 2 0 1 5 ) 488–496
method for the development of an IBU-NLC system prepared
by hot high-pressure homogenization. The three independent
factors (solid lipid concentration, liquid lipid concentration
and surfactant concentration) together had a significant effect
on the ZP and d(0.5). The surface plot reveals a minimum
value corresponding to the most suitable NLC formulation.
The effects of PDI, the Span value, the solid lipid:liquid lipid
ratio, and the lipid:surfactant ratio were also determined via
the optimum equation, which supports the results of the fac-
torial design and facilitates the development process. Further
investigations of these nanoparticles should be performed as
concerns long-term stability, entrapment efficiency and dis-
solution to prove their suitability for dermal application.
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SOTO B , BERK6 Sz, CsANYI E: Application of lipid carrier 
systems to increase the drug penetration through the skin 

The aim of this work is to introduce lipid nanoparticles 
(LNPs) as potential drug delivery systems, regarding to their 
formulation and characterization. The second generation, 

nanostructured lipid carriers (NLCs) has been highlighted, 
as a novel drug delivery system suitable for dermal therapy, 
since these nanoparticles possess numerous advantages 
applied to the skin. The dermal use of NLC systems offers a 
number of advantages, such as physical stability of the applied 
topical formulations, enhancement of the chemical stability 
of the incorporated active pharmaceutical agents, improved 
dermal bioavailability, the skin targeting of the drugs, and.film 
formation on the skin, accompanied by the in vivo controlled 
occlusion and skin hydration. The UV-reflecting properties 
(e.g. possible application of these carriers in sunscreens with 
the aim to increase their protective effect against UV light) 
and the possibility of the modulation of AP! release into the 
skin have also been reported. 

Lipid nanoparticles avoid the disadvantages of other 
colloidal carriers and possess their advantages, such as the 
possibility of controlled drug release and drug targeting, 
increased drug stability, high drug payload, incorporation of 
both lipophilic and hydrophilic drugs, no biotoxicity of the 
carrier, avoidance of organic solvents and no problems with 
respect to large scale production and sterilization. Due to 
their numerous advantages, it can be concluded that NLCs 
are suitable drug delivery systems in the dermal therapy. 
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igenylese vegett. 
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Abstract: An ibuprofen-loaded nanostructured lipid carrier (IBU-NLC) was developed for 

enhanced skin penetration to improve the treatment of osteoarthritis and other musculoskeletal 

diseases. The mean particle size was 106 nm, with a spherical morphology, a smooth surface, 

and a zeta potential of -18.4 mV. X-ray diffraction studies revealed the amorphous state of the 

lipid matrix. Both Raman spectroscopy and Fourier transformation infrared analysis indicated 

no major shifts in the spectra of the formulations, which suggest rapid drug dissolution from the 

nanoparticles. The drug loading was 9.85%, and the entrapment efficiency was 98.51%. In vitro 

release of the NLC dispersion, in vitro permeation, and in vivo animal studies of IBU-NLC gel 

all confirmed that the permeation of IBU was significantly better than that of a reference after 

6 hours. In conclusion, IBU-NLC gel is of great potential to enhance drug permeation through 

the skin and hence the efficacy of the treatment of chronic joint inflammation.

Keywords: ibuprofen, nanostructured lipid carriers, skin penetration, SKH-1 hairless mice, 

osteoarthritis

Introduction
Osteoarthritis (OA), one the most prevalent chronic joint diseases, is accompanied 

by considerable pain.1,2 With the current aging of the population and the epidemic of 

obesity, the incidence of OA is rising. The main clinical features, the pain and the loss 

of function, lead to treatment by nonpharmacological, pharmacological, and surgical 

approaches.1 In a study involving 3,906 patients above the age of 55 years, 67% of 

the women and 54.8% of the men suffered from radiographic OA in at least one hand 

joint.1,3 Another study confirmed that some 40% of the total population aged .70 years 

suffer from OA, the most common form of arthritis.2,4 Since pain and inflammation 

are among the most important causes of a decline in the life quality, the primary aim 

of the currently available treatments is to relieve these. The American College of 

Rheumatology has published recommendations for the use of nonpharmacologic and 

pharmacologic therapy in OA. The use of nonsteroidal anti-inflammatory drugs is 

highly recommended.5

Ibuprofen (IBU) is a nonsteroidal anti-inflammatory drug that was introduced 

in the 1960s to replace acetylsalicylic acid in the treatment of rheumatoid arthritis, 

providing a more efficacious therapy and proving more tolerable for the patients. It 

is administered orally or topically in the form of gels, creams, and ointments. The 

advantages of its local application over their systemic use include the avoidance of 
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adverse events (bleeding and possible ulceration of the gastric 

mucosa) and the high concentration of the drug at the site 

where it is needed. The drug, usually administered in its 

racemic form,6 is relatively lipophilic (log P=4.0) with low 

water solubility (21 mg/L at 25°C).6,7 The characteristics of 

the permeation of IBU through the human skin have been 

reported by a number of research groups.8–13 Earlier studies 

revealed that the topical therapeutic effectiveness of a drug 

is a function both of its penetration through the skin and of 

its potency.7 IBU is less potent than diclofenac, for example, 

but the higher flux of IBU through the skin means that it is 

a better candidate for topical delivery, although it is still 

difficult to achieve its effective permeation by transdermal 

delivery.14 The aforementioned physicochemical properties 

of IBU have hampered the preparation of a formulation 

satisfying the requirements of a long-lasting treatment for a 

chronic disease such as OA.

Nanostructured lipid carriers (NLCs) may serve as a 

solution to overcome the limitations of the dermal permeation 

of IBU. This drug delivery system offers numerous advantages 

for topical application.15–19 NLCs can comprise physiological 

and biodegradable lipids, which were earlier reported to pos-

sess low systemic toxicity and low cytotoxicity.20 The small 

size of the lipid nanoparticles ensures close contact between 

the lipid particles and the lipid bilayer of the stratum corneum, 

resulting in the penetration of an increased amount of drug into 

the skin. In consequence of their solid lipid matrix, controlled 

release is possible from these carriers. This becomes impor-

tant when prolonged release of the drug is required. Burst 

release of the drug incorporated in the NLC system may also 

be achieved.21 As a result of the film formation that occurs 

after topical application, occlusive properties have also been 

reported for NLC formulations,22,23 and these favor further 

enhanced penetration through the dermal layers.

The aim of the present study was to develop a hydrogel 

based on an IBU-loaded NLC (IBU-NLC) system, with 

improved drug release properties (for the potential treatment of 

OA or musculoskeletal disorders) as compared with those of a 

traditional IBU gel formulation and to characterize this hydro-

gel by means of techniques such as X-ray diffraction (XRD), 

atomic force microscopy (AFM), Raman spectroscopy, and 

Fourier transformation infrared (FT-IR) spectroscopy in order 

to attain a better understanding of its properties.

Materials and methods
Materials
IBU was provided by PannonPharma Ltd. (Pécsvárad, 

Hungary), Witepsol E85 and Miglyol 812 were gifts by Sasol 

GmbH (Hamburg, Germany), and Lutrol F68 was kindly 

supplied by BASF SE Chemtrade GmbH (Ludwigshafen, 

Germany). Acetonitrile (high-performance liquid chroma-

tography [HPLC] grade), K
2
HPO

4
, KH

2
PO

4
, and H

3
PO

4
 

(85%) (analytical grade) were purchased from VWR Int Ltd 

(Radnor, PA, USA). Carbopol 971P NF was supplied by 

Azelis Ltd (Budapest, Hungary). Macrogol 400 was obtained 

from Hungaropharma Ltd (Budapest, Hungary). Purified 

water (HPLC grade) produced with a TKA Smart2Pure 

system (TKA GmbH, Niederelbert, Germany) was used to 

prepare all the formulations.

Preparation of the samples
The NLC formulations were prepared by a hot high-pressure 

homogenization method,17,18,24,25 using an Emulsiflex C-3 

High Pressure Homogenizer (Avestin Europe GmbH, 

Mannheim, Germany). Briefly, 1% IBU was dissolved in 

the mixture of the solid and liquid lipids (Witepsol E85 and 

Miglyol 812, ratio 7:3) at ~10°C above the melting point of 

the solid lipid. The surfactant, Lutrol F68, was dissolved in 

purified water at the same temperature. The aqueous phase 

was added to the lipid phase, and the mixture was stirred with 

a Heidolph DIAX 900 homogenizer (Heidolph Instruments 

GmbH & Co. KG, Schwabach, Germany) for 1 minute at 

12,500 rpm. The pre-emulsion was subjected to high-pressure 

homogenization, applying five cycles at 600 bar and 65°C. 

The hot oil-in-water pre-emulsion was cooled in an ice bath 

to recrystallize the lipid and form the NLC.

An IBU suspension containing 1% of IBU dispersed 

in purified water was prepared as a reference for in vitro 

diffusion studies of IBU-NLC. For the in vitro penetration 

and in vivo permeation studies, IBU-NLC was gelled with a 

previously prepared 3% Carbopol 971P NF gel in a ratio of 

1:1. For comparison, 0.5% IBU was dissolved in Macrogol 

400 and gelled with the same polymer.

Particle size characterization and zeta 
potential measurements
The particle sizes of the prepared blank NLC and IBU-NLC 

formulations were analyzed by photon correlation spec-

troscopy (PCS) (Zetasizer Nano ZS; Malvern Instruments, 

Malvern, UK). The presence of particles in the micrometer 

range was excluded by laser diffraction (LD) (Mastersizer 

2000; Malvern Instruments). The diameters of 10%, 50%, 

and 90% (d(0.1), d(0.5), and d(0.9)) of the particles were 

evaluated. The medium was purified water.

To obtain information concerning the stabilities of the 

prepared samples, their zeta potentials were determined with 
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a Zetasizer Nano ZS (Malvern Instruments). The medium 

was double-distilled water.

Atomic force microscopy
The particle size of the blank and IBU-NLC samples was 

also determined by AFM for comparison with the results 

obtained by PCS and LD measurements. The tapping 

mode was used on a SOLVER Scanning Probe Microscope 

(NT-MDT Co, Moscow, Russia) under ambient conditions. 

PPP-NVHAuD-10 (NANOSENSORS™; NanoWorld AG, 

Neuchatel, Switzerland) AFM tips with a nominal radius of 

curvature of 2 nm and a length of 15 µm were used.

XRD analysis
Diffractograms of the raw materials (IBU, Witepsol E85, and 

Lutrol F68), the melted physical mixtures of the raw materi-

als with or without IBU, and the blank NLC and IBU-NLC 

were obtained with a Bruker D8 Advance diffractometer 

(Bruker AXS GmbH, Billerica, MA, USA) system with Cu 

K λI radiation (λ =1.5406 Å). Each sample was scanned at 

40 kV and 40 mA in the interval 3°–40° 2θ, at a scanning 

speed of 0.1/second and a step size of 0.010°.

DXR Raman spectroscopy measurements
IBU, Witepsol E85, Miglyol 812, and Lutrol F68 (as standard 

components of the NLC), blank, and IBU-NLC samples were 

characterized. Raman spectra were recorded with a Thermo 

Fisher DXR Dispersive Raman spectrometer (Thermo Fisher 

Scientific Inc., Waltham, MA, USA) attached to an Olympus 

MPlan ×10/0.25 BD microscope (Olympus Corporation, 

Tokyo, Japan). At least five measurements were made 

at 532  nm with the in-built fluorescence and cosmic ray 

correction to ensure low background noise. Measurement 

conditions were as follows: power on the surface of the 

sample, 3 mW; diameter spot (×10 magnification objective), 

3 µm; and aperture of the pinhole with 50 µm. Samples were 

packed onto an aluminum sample holder, and spectra were 

collected for a total of 48 scans at a spectral resolution of 

4 cm–1. For the characterization of IBU and NLC samples, 

the full spectral range (3,000–200 cm-1) was used. IBU-NLC 

and blank NLC compositions were investigated by Raman 

mapping to localize the IBU inside the formulation. To 

identify the individual components in the Raman spectra, the 

vibrational chemical images were processed by a multivari-

ate curve resolution – alternating least squares chemometric 

method. The NLC compositions were dried overnight on 

the aluminum surface to stabilize the NLC droplets for the 

Raman analysis. The 200–220 μm ×60 μm flat surfaces were 

analyzed at a step size of 10 μm. The acquisition time was 

3  seconds per spectrum. Twenty-four spectra were accu-

mulated and averaged at each measured point, ensuring an 

acceptable signal-to-noise ratio. The Raman spectra were 

then normalized to eliminate the intensity deviation between 

the measured areas.

FT-IR spectroscopy
FT-IR measurements of the pure drug and the NLC disper-

sions (blank and IBU-NLC) were performed with a Bio-Rad 

Digilab Division FTS-65A/896 FTIR spectrometer (Bio-Rad 

Laboratories Inc., Hercules, CA, USA) in the wavelength 

range 4,000–400 cm-1, 128 scan size, and at an optical reso-

lution of 4 cm-1. The operating conditions were Harrick’s 

Meridian SplitPea single reflection, diamond, and attenuated 

total reflectance accessory. The spectrum of the drug-loaded 

composition was processed to deconvolution in the range 

1,800–1,660 cm-1 by a curve-fitting algorithm with a Gauss-

ian–Lorentzian function. The best curve-fitting procedure was 

performed by iterative fits toward a minimum standard error. 

Thermo Scientific GRAMS/AI Suite software (Thermo Fisher 

Scientific Inc.) was used for the spectral analysis.

Drug loading and entrapment efficiency 
measurements
Drug loading (DL%) and entrapment efficiency (EE%) were 

evaluated by an indirect method, with measurement of the 

free drug concentration in the external aqueous phase:26,27

	

DL% initial drug free drug

lipid

=
−

%
W W

W
×100 � (1)

	

EE% initial drug free drug

initial drug

=
−

%
W W

W
×100 � (2)

where W is the weight in milligrams.

One hundred microliters of the IBU-NLC sample and 

400 µL of phosphate-buffered saline (PBS) were transferred 

into a Nanosep 3K ultrafilter Eppendorf tube having an 

molecular weight cut-off of 3 kDa (Pall Co, Port Washington, 

NY, USA) and centrifuged at 5,055 rpm for 10 minutes. The 

solution obtained was filtered through a 0.20 µm polyether-

sulfone syringe membrane filter and injected directly into 

the HPLC system.

The IBU content was quantified with an Agilent 1260 HPLC 

system (chimically pure [QP], diode array detector, alternat-

ing least squares). IBU was measured on a 100 mm ×4.6 mm 
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column packed with 3 µm Luna C18, 100 Å (Phenomenex 

Inc., Torrance, CA, USA). Isocratic elution was performed 

with 40:60 (v/v) MeCN-PBS (0.025  M) (pH adjusted to 

2.7 with orthophosphoric acid) at a flow rate of 1 mL/min. 

The buffer was prepared from KH
2
PO

4
 and K

2
HPO

4
. Before 

use, the eluent was degassed. The run time was 10 minutes. 

Detection was performed via the absorption at 215±4 nm. 

Ten microliters of sample was injected, and the elution was 

carried out at a sample temperature of 27°C and a column 

temperature of 35°C. Qualitative determination was achieved 

by comparison with the spectra of standards. The stock solu-

tion of IBU (0.5 mg/mL) was prepared in methanol and stored 

at 4°C. Working standards (1, 5, 10, 25, 50, and 100 µg/mL) 

were prepared freshly by diluting the stock solution with the 

mobile phase prior to the HPLC analysis. Calibration plots 

were freshly prepared and were highly linear (R2.0.9998) in 

the concentration range 1.0–100.0 µg/mL (n=3–4).

In vitro release, in vitro permeation, and 
in vivo animal studies
The in vitro drug release study was carried out by using the 

dialysis bag method.24,28,29 Briefly, 200 µL of the IBU-NLC 

formulation was sealed in a Spectra/Por® 4 dialysis mem-

brane (Spectrum Laboratories, Inc., Rancho Dominguez, CA, 

USA), with Spectra/Por® Closures (Spectrum Laboratories, 

Inc.), and placed into 25 mL of PBS (pH 7.4). The system 

was held at 37°C to mimic in vivo conditions and continu-

ously stirred at 450 rpm. At selected time intervals during 

6 hours, 1 mL of bulk solution was taken. The withdrawn 

samples were each replaced by 1 mL of PBS to maintain sink 

conditions. Blank NLC served as blank and was analyzed in 

the same way as IBU-NLC. A previously prepared 1% IBU 

suspension was subjected to the same procedure, to serve 

as a reference.

The ex vivo permeation studies were performed with a ver-

tical Franz diffusion cell system (Hanson Microette TM Topi-

cal & Transdermal Diffusion Cell System; Hanson Research 

Corporation, Chatsworth, CA, USA). A 0.300–0.400  g 

of 0.5% IBU-NLC gel or 0.5% IBU gel (which served as 

a reference) was measured as donor phase on pretreated 

excised human skin10,30 supported by a Porafil® CM mem-

brane (pore diameter 0.45 µm; Macherey-Nagel GmbH &  

Co. KG, Düren, Germany). The effective diffusion surface 

area was 1.3 cm2. PBS (pH 7.4) was used as acceptor phase. 

The rotation of the magnetic stirbar was set to 450 rpm. The 

receptor medium was thermostated at 37°C±0.5°C to ensure 

the physiological skin temperature, 32°C at the site of the 

sampling. Experiments were performed for 6 hours. Samples 

of 0.8  mL were taken from the acceptor phase at given 

times by the autosampler (Hanson Microette Autosampling 

System; Hanson Research Corporation) and replaced with 

fresh receiving medium.

The samples from both experiments were analyzed at 

263 nm with a Unicam Evolution 201 UV/Vis spectropho-

tometer (Thermo Fisher Scientific Inc.).

The in vivo animal studies were performed on 11- to 

13-week-old male SKH-1 hairless mice (body weight: 

28–34  g). The procedures and protocols applied were 

approved by the Ethical Committee for the Protection of 

Animals in Scientific Research at the University of Szeged 

(license number: V./145/2013). The modified dorsal skin 

fold chamber was used to determine IBU penetration through 

living animal skin by a previously described method.31 This 

experimental setup provides an effective means of perform-

ing in vivo examinations of permeation.

The mice were randomly allocated into the following 

groups. The animals in group 1 (n=5) received IBU gel. 

In group 2 (n=7), IBU-NLC gel was used. 0.1 g of the study 

formulation was applied to the skin. One milliliter of PBS 

(pH 7.37) was added as the chamber acceptor phase. The 

observation period lasted for 6 hours. At given time points, 

the PBS was replaced by fresh PBS. The concentration of the 

penetrated drug was measured by means of HPLC. Previous 

tests of the blank NLC gel indicated that the components of 

this gel do not interfere with HPLC detection of the active 

agent. At the end of the experiment, the animals were eutha-

nized with an overdose of ketamine.

The HPLC instrumentation included a Shimadzu CBM-

20A/20Alite system controller, a Shimadzu LC-20AD solvent 

delivery system, a Shimadzu DGU-20A3 on-line degasser, a 

Shimadzu SPD-M20A UV/VIS photodiode array detector, 

and a Shimadzu CTO-20A column oven (Shimadzu Corp, 

Kyoto, Japan). The chromatographic system was equipped 

with a Rheodyne Model 7725i injector (IDEX Corp, Lake 

Forest, IL, USA) with a 20 μL loop. The chromatographic 

data were collected and processed by means of Shimadzu 

LCsolution software (Shimadzu Corp).

Statistical analysis
The results were evaluated and analyzed statistically with 

the two-way analysis of variance test (Bonferroni’s multiple 

comparison), using Prism for Windows 5 software (GraphPad 

Software Inc., La Jolla, CA, USA). The data are the averages 

of the results of at least five experiments ± standard deviation 

(*P,0.05, **P,0.01, ***P,0.001, and ****P,0.0001 

versus the control).



International Journal of Nanomedicine 2016:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

5

Development of IBU-NLC gels: characterization of skin penetration

Results
Results of particle size and zeta potential 
measurements
Particle size determination by PCS demonstrated that both 

samples were in the nanometer range, with an effective 

particle size (Z
ave

) of 114 nm for the blank NLC and 106 nm 

for IBU-NLC. LD measurements confirmed that larger 

particles (.1 µm) were not present in the formulations, and 

90% of the particles measured ,205 nm. The surface charge 

was negative for both the blank (-15.9 mV) and IBU-NLC 

(-18.4 mV) (Table 1).

Results of AFM measurements
Both samples were measured by AFM to confirm the PCS and 

LD results. The data were evaluated by grain analysis, and 

size distribution histograms were made (Figure 1A and B). 

The Z values of most of the blank NLC particles were 

between 109 and 124 nm, while those of the IBU-NLC were 

between 95 and 118 nm (Figure 1C and D), verifying the 

PCS and LD results.

AFM has been widely used to acquire information on 

the size, shape, and surface morphology of nanoparticles.32 

In all the present samples, the separated lipid particles were 

spherical or nearly spherical with a smooth surface (Figure 2). 

No major differences were detected between the blank and 

IBU-NLC samples, although some larger lipid agglomerates 

were found in the IBU-NLC. This is probably due to the 

sample preparation process: the pretreatment (sonication) 

was unable to disperse the previously dried lipid particles 

completely.

Results of XRD
XRD measurements were carried out to determine the possible 

changes in the crystallinity of the components during the hot 

high-pressure homogenization procedure. Diffractograms 

of the pure, untreated components (IBU, Witepsol E85, and 

Lutrol F68) are depicted in Figure 3. Diffractograms were 

also recorded of the melted lipid mixture (Witepsol E85 and 

Miglyol 812 in a ratio of 7:3) with or without IBU, the melted 

total physical mixture, the blank, and IBU-NLC. The crystal-

linity of the solid lipid (plot 2) decreased to such an extent 

after the addition of the excipients (plots 4 and 6) and the drug 

(plot 5) that the material became amorphous in the cases of the 

prepared blank (plot 7) and IBU-NLC (plot 8) formulations. 

This suggests that both of the NLC formulations have a struc-

tureless solid amorphous matrix and belong to the amorphous 

NLC type.33 The XRD pattern of pure racemic IBU (plot 1) 

exhibited characteristic diffraction peaks at various diffraction 

angles (6°, 12.3°, 16°, 20.4°, and 22.3° 2θ), indicating the 

presence of crystallinity.34 These peaks also appeared in the 

plot of the melted mixture of the lipid matrix and the active 

pharmaceutical ingredient (plot 5) but were absent from those 

of the total mixture (plot 6) IBU-NLC (plot 8).

Results of DXR Raman spectroscopy 
measurements
Raman spectroscopy was employed to confirm the physical 

state of the IBU and to study the possible physicochemical 

interactions between the components. The Raman spec-

tra of dried free racemic IBU, Lutrol F68, Witepsol E85, 

and Miglyol 812 are presented in the wavenumber range 

2,000–200 cm-1 in Figure 4A. As model solutions, IBU was 

dissolved in Miglyol 812 in two concentrations (10% and 

25%, w/w), to observe the principal differences in the physi-

cal state of the IBU (Figure 4B). The spectra of IBU, the blank 

NLC, and IBU-NLC are presented in Figure 4C.

The selected Raman bands of IBU, the IBU-containing 

Miglyol model solutions, and the IBU-NLC composition with 

the vibrational assignments (cm-1) are presented in Table 2. 

The chemical structure of Miglyol is very similar to those 

of the other lipid components, and therefore, the bands from 

the IBU-NLC sample, Raman spectrum characteristic of 

Miglyol 812, could be overlapped by the bands characteristic 

of other lipids.

The IBU spectrum exhibited characteristic peaks at 1,608, 

1,576, 1,208, 1,182, 1,008, 959, 834, 746, 638, and 415 cm-1. 

These peaks are attributed mainly to aryl ring stretching and 

C
24

-Ar-C
11

 conformational stretching and wagging. Medium 

sharp peaks are attributed to Ar and Ar-CH in-plane and 

out-of-plane bending. In spite of the many free racemic 

IBU peaks, the Raman spectra of the model solutions and 

the NLC composition were characteristic of the auxiliary 

Table 1 Particle size, zeta potential, polydispersity index, span value, and average Z (height) value of the blank NLC and IBU-NLC 
formulations (the measurements were performed in triplicate, n=3)

Sample Zave (nm) ZP (mV) PDI d(0.1) (nm) d(0.5) (nm) d(0.9) (nm) Span value Average Z (nm)

Blank NLC 114±2.2 -15.9±0.7 0.15±0.1 67±0 118±0 204±0.6 1.16±0 113.67±15.5
IBU-NLC 106±1.7 -18.4±1.3 0.18±0.3 74±0 122±0 205±0.6 1.07±0 107.47±14.4

Abbreviations: NLC, nanostructured lipid carrier; IBU-NLC, ibuprofen-loaded nanostructured lipid carrier; ZP, zeta potential; PDI, polydispersity index.
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Figure 1  Z value distribution (height) of blank NLC (A) and IBU-NLC (B) and Z value (height) of blank NLC (C) and IBU-NLC (D) (n=3).
Abbreviations: NLC, nanostructured lipid carrier; IBU-NLC, ibuprofen-loaded nanostructured lipid carrier.

Figure 2
Notes: 2D images of blank NLC (A) and IBU-NLC (C). 3D images of blank NLC (B) and IBU-NLC (D) revealing the morphology and size of the formulations (n=3).
Abbreviations: 2D, two dimensional; NLC, nanostructured lipid carrier; IBU-NLC, ibuprofen-loaded nanostructured lipid carrier; 3D, three dimensional.
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θ °
Figure 3 XRD diffractograms of IBU (1), Witepsol E85 (2), Lutrol F68 (3), bulk mixture of Witepsol E85:Miglyol 812 mixture in ratio 7:3 (4), Witepsol E85:Miglyol 812:IBU 
mixture in ratio 7:3:1 (5), Witepsol E85:Miglyol 812:IBU:Lutrol F68 mixture in ratio 7:3:1:5 (6), blank NLC (7) and IBU-NLC (8).
Abbreviations: XRD, X-ray diffraction; IBU, ibuprofen.

Figure 4
Notes: (A) Raman spectra of individual components, as IBU (1), Lutrol F68 (2), Witepsol E85 (3), and Miglyol 812 (4). (B) Raman spectra of IBU (1) and the model mixtures of 
10% IBU (2) and 25% IBU (3) both dissolved in Miglyol 812 (4). (C) Raman spectra of IBU (1), drug-free NLC composition, as blank NLC (2), and IBU-containing composition, 
as IBU-NLC (3) in the range of 2,000–200 cm-1 (n=3).
Abbreviations: IBU, ibuprofen; NLC, nanostructured lipid carrier; IBU-NLC, ibuprofen-loaded nanostructured lipid carrier.

materials. The medium-intensity IBU peaks at 1,452, 1,341, 

1,116, 943, 820, 662, 784, and 269 cm-1 (C
x
–H

y
 bending, 

twisting, or rocking) were absent from the spectra of the 

IBU-containing model solutions and NLC composition. 

Comparison of the Raman peaks of the IBU and the model 

solutions (10% and 25%) revealed small shifts in the 

wavenumbers of the characteristic IBU peaks. Moreover, 

the Raman spectrum of the IBU-NLC composition (with 

less characteristic IBU peaks) revealed the same small shifts, 

indicating the occurrence of weak interactions between 
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Table 2 Observed Raman peaks (in cm-1) and peak assignments of free racemic IBU and IBU-containing model solutions and NLC 
compositions

IBU (literature) Assignment 10% 25% IBU-NLC

1,608 s(C–C)Ar 1,613 1,609 1,616
1,576 s(C–C)Ar and v(C=C)Ar 1,574 1,574 –
1,208 t(CH2) (C11–C12–C13) 1,207 1,206 1,208
1,182 s(C6–C11) 1,185 1,182 1,185
1,008 in(CH)Ar 1,004 1,007 1,004
959 r(C26H3) and antisymmetric s(C26–C24–C30) 957 957 955
834 out(CH)Ar 832 833 –
746 r(CH3) and out(CH)Ar 739 745 –
638 out(CO–H) and in(Ar) 637 636 –
415 d(C15–C14–C19) 405 412 –

Notes: Assignments have been compared with those found in the literature in order to seek for peak shifts (n=3). Significant shifts appear in bold.
Abbreviations: IBU, ibuprofen; NLC, nanostructured lipid carrier; IBU-NLC, ibuprofen-loaded nanostructured lipid carrier; s, stretching; Ar, aromatic; v, vibration; 
t, twisting; in, in-plane bending; r, rocking; out, out-of-plane bending; d, deformation.

Table 3 Observed Raman peaks (in cm-1) and peak assignments of individual lipid components and NLC compositions (n=3)

Assignment Lutrol F68 Witepsol E85 Miglyol 812 Blank NLC IBU-NLC

s(CH) 2,934 2,935 2,931 2,936 2,935
s(CH2) antisymmetric 2,884 2,880 – 2,881 2,881
s(CH2) symmetric – 2,846 2,853 2,850 2,850
s(CH) – 2,724 2,728 2,724 2,725
s(C=O) – 1,739 1,745 1,741 1,742
CH2 scissoring and s(C–O) – 1,438 1,439 1,441 1,441
t(CH2) and s(C–O) – 1,295 1,302 1,297 1,297
s(C–C) symmetric and s(C–O–C) asymmetric 1,125 1,126 – 1,128 1,128
s(C–C) asymmetric and s(C–O) symmetric 1,062 1,062 1,063 1,063 1,063
r(CH3) – 889 889 889 892
r(CH3) 843 – 841 844 845

Abbreviations: NLC, nanostructured lipid carrier; IBU-NLC, ibuprofen-loaded nanostructured lipid carrier; s, stretching; t, twisting; r, rocking.

IBU and the lipids. A significant change in the spectrum 

of interacted IBU was the shift in the peak corresponding 

to the aryl C–C stretching from 1,608 to 1,609–1,616 cm-1. 

This latter shift indicates that the aryl ring is affected by the 

interaction with the lipid molecules and not the C=O group 

of IBU. In Table 3, the Raman spectra of the lipid compo-

nents are compared with those of IBU-NLC and the blank 

NLC. The lipid components used in this study have similar 

chemical structures and therefore similar Raman bands. 

The Raman spectra of the lipid components in the range 

3,000–200 cm-1 displayed characteristic peaks, which are 

assigned to vibrations of the fatty acid hydrocarbon chains. 

The sharp and intense peaks at 2,881 and 2,850 cm-1 and 

the medium peaks at 1,128 and 1,062 cm-1 in all the NLC 

compositions confirmed the ordered acyl chains in the lipid 

structure. The incorporation of IBU did not lead to the disap-

pearance of the sharp bands at 2,881 and 2,850 cm-1 in the 

Raman spectrum of IBU-NLC.

In order to confirm the homogeneity of the IBU, Raman 

mapping of the NLC was performed. Figure 5A shows 

the distribution map of IBU in the NLC composition 

at ×10 magnification. The characteristic bands obtained for 

IBU at ~1,608 cm-1 were used to visualize the spatial distri-

bution of IBU from Raman chemical mapping. The IBU was 

found homogeneously in the dried, round areas. The purpose 

of this analysis was to estimate the distribution of the indi-

vidual ingredients in the scanned area. The spectra of the 

estimated “Components” were compared with the reference 

ingredient spectra (Figure 5B). The spectra of components 

1 and 4 were identified as the Raman spectrum of Lutrol 

F68, with characteristic Raman band regions of 1,750–1150, 

900–750, and 400–200  cm-1. The resolved spectrum of 

component 2 does not correspond to the reference spectra  

but contains similar Raman bands to those of Miglyol 812. 

The spectrum of component 2 displays several other peaks; 

the reason may be the low signal-to-noise ratio. Component 3 

corresponds to Witepsol E85, with very characteristic Raman 

band regions of 1,500–1,400 and 1,150–1,000  cm-1. The 

Raman spectra of each component contain the characteristic 

Raman peaks of IBU at 1,614–1,608 cm-1.
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Figure 7
Notes: (A) In vitro diffusion of IBU from IBU-NLC 
(filled circle) and IBU suspension (filled triangle) 
(n=5). (B) In vitro permeation through excised human 
epidermis of IBU from IBU-NLC gel (filled circle) and 
IBU gel (filled triangle) (n=5). (C) In vivo permeation 
through living animal skin of IBU from IBU-NLC gel 
(filled circle) and IBU gel (filled triangle) (n=5–7).
Abbreviations: IBU, Ibuprofen; IBU-NLC, 
Ibuprofen-loaded nanostructured lipid carrier.

Figure 5
Notes: (A) Raman distribution map of IBU in the IBU-NLC composition (×10 magnification). (B) Multivariate curve resolution of IBU-NLC Raman chemical mapping. Spectra 
of the estimated ingredients, “Components”, are compared to reference spectra of individual ingredients (n=3).
Abbreviations: IBU, ibuprofen; IBU-NLC, ibuprofen-loaded nanostructured lipid carrier.

Figure 6
Notes: (A) FT-IR spectra of IBU-NLC, blank NLC, and IBU. (B) Deconvolution of IBU-NLC from 1,800 to 1,665 cm-1 (n=3). The boxes highlight the small peaks/shoulders, 
which are characteristic to the drug, and a significant shift has occurred in their position compared to the native spectrum of ibuprofen.
Abbreviations: FT-IR, Fourier transformation infrared; IBU-NLC, ibuprofen-loaded nanostructured lipid carrier; NLC, nanostructured lipid carrier; IBU, ibuprofen.

Results of FT-IR
The FT-IR spectra of the excipients, blank NLC, and 

IBU-NLC were recorded to obtain information about the 

possible interactions between IBU and the matrix of the 

nanoparticles. Analysis of the spectrum of IBU-NLC clearly 

indicates that there are no strong interactions between 

the drug and the excipients (Figure 6A). Comparison of 

the FT-IR spectra of the blank NLC and the drug-loaded 

IBU-NLC at 1,700 and 1,550  cm-1 revealed two peaks 

(which are characteristic of the drug) as shoulders in the 

spectrum of IBU-NLC (Figure 6A, marked peaks). After the 

deconvolution of the wavelength range 1,800–1,660 cm-1, 

pc
Note
Marked set by pc

pc
Note
Marked set by pc
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the characteristic peak of IBU at 1,721 cm-1, described as 

the vibration of the C=O bond,35 could be characterized 

(Figure 6B). The intensity of this peak is low, which means 

that nondissolved IBU is present in low concentrations. The 

presence of drug crystals could be due to the pretreatment 

of the samples before the measurement (the NLC disper-

sions were dried in air).

Results of drug loading and entrapment 
efficiency
From the results of the applied HPLC method, DL was found 

to be 9.85%±4.10% and EE 98.51%±4.10% for the prepared 

IBU-NLC composition, since 1.49%±4.10% of the IBU was 

measured in the outer aqueous phase.

Results of in vitro release, ex vivo 
permeation, and in vivo animal studies
The in vitro diffusion of IBU through the artificial membrane 

from IBU-NLC and the IBU suspension was calculated 

in terms of the mean cumulative amount diffused at each 

sampling time point during a period of 6 hours (Figure 7A). 

The amount of IBU diffused from the IBU-NLC after 6 hours 

was significantly higher (2.59-fold) than that from the IBU 

suspension.

The ex vivo penetration of the drug from the prepared 

IBU-NLC gel and IBU gel through excised human skin was 

calculated in the same way as for the in vitro measurements 

(Figure 7B). The permeation of IBU through the excised 

human skin was 12.78-fold higher from the IBU-NLC gel 

than from the traditional IBU gel. These findings correlate 

with those of the in vitro diffusion study, since after 6 hours, 

much higher drug permeation could be observed from the 

IBU-NLC gel than from the IBU gel.

Finally, the in vivo permeation of IBU from the IBU-NLC 

gel and the IBU gel was determined with a murine model, 

using a modified dorsal skin chamber; the results are 

presented in Figure 7C. The drug penetration was signifi-

cantly higher (1.87-fold, P.0.001) from the IBU-NLC gel 

Figure 7 
Notes: (A) In vitro diffusion of IBU from IBU-NLC (filled circle) and IBU suspension (filled triangle) (n=5). (B) Ex vitro permeation through excised human epidermis of 
IBU from IBU-NLC gel (filled circle) and IBU gel (filled triangle) (n=5). (C) In vivo permeation through living animal skin of IBU from IBU-NLC gel (filled circle) and IBU gel 
(filled triangle) (n=5–7).
Abbreviations: IBU, ibuprofen; IBU-NLC, ibuprofen-loaded nanostructured lipid carrier; h, hours.
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formulation than from the IBU gel, as found in the previous 

in vitro and ex vivo studies.

Discussion
An NLC-based gel of IBU was produced. Characterization 

of the IBU-NLC dispersion by PCS, LD, and AFM proved 

the appropriate size range and morphological properties of 

the lipid nanoparticles, which are essential for the stability 

and the desired performance of the formulation. XRD mea-

surements and the high EE (98.51%) both confirmed the 

presence of IBU as a molecular dispersion in the lipid matrix 

of the final formulation. The results of Raman spectroscopy 

and FT-IR analysis indicated that the ordered lipid structure 

was not affected by the presence of the IBU molecules. The 

homogeneous distribution of the IBU in the lipid matrix and 

the weak interactions between the drug and the excipients pre-

dicted rapid drug liberation, since there is no need for energy 

to break the bonds between the drug and the excipients. These 

findings were confirmed by drug diffusion and permeation 

studies. The in vitro diffusion study demonstrated higher drug 

permeation from the IBU-NLC than from the IBU suspen-

sion. The permeation of IBU through the excised human skin 

was also significantly higher from the IBU-NLC gel than 

from the IBU gel. The higher penetration rate is probably due 

to the direct contact between the lipid nanoparticles and the 

lipids of the stratum corneum, which results in the increase of 

the penetration channels through the skin. The NLC carrier-

based gel facilitated the drug permeation through the living 

animal skin even under physiological conditions.

It can be concluded that the IBU-NLC gel is of great 

potential to increase drug permeation through the skin and 

enhance the efficacy of the treatment for OA and other mus-

culoskeletal inflammations.
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