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Chapter 1

Introduction

The topic of the dissertation falls in the area of semigroup theory. The de�nition of a

semigroup is quite simple: it is a nonempty set equipped with a multiplication that is

associative. Due to the generality of the de�nition, the class of semigroups is very broad

and diverse � e.g., both groups and semilattices fall in here. On one hand, this makes

semigroups have connections to more or less any area of mathematics, yielding quite a

number of possible applications; on the other hand, di�erent classes of semigroups may

require considerably di�erent approaches and apparatus.

The class of semigroups considered in the thesis is called inverse monoids (see the

monographies of Lawson [12] and Petrich [17] on the topic for uncited results). They are

monoids de�ned by the property that every element x has a unique inverse x−1 such that

xx−1x = x, and x−1xx−1 = x−1 hold. They are one of the many generalizations of groups.

One way they naturally arise is through partial symmetries � to put it informally, inverse

monoids are to partial symmetries as what groups are to symmetries. The symmetric

inverse monoid SIM(X) on the set X consists of all partial one-to-one maps on X, that

is bijections between subsets of X, equipped with the usual multiplication of partial maps

and the usual inverse of bijections between subsets. Analogously to Cayley's theorem, the

Wagner�Preston theorem states that all inverse monoids can be embedded into a suitable

symmetric inverse monoid.

Unlike in groups, in an inverse monoid, xx−1 is not necessarily the identity element,

but it is, nevertheless, an idempotent. Idempotents therefore play an important role in the

structure, and the set of idempotents of M is denoted by E(M). An important property

of inverse monoids is that its idempotens commute, therefore form a semilattice. Inverse

monoids also come equipped with a natural partial order, which extends the partial order on

idempotens induced by the semilattice structure. It is de�ned by s ≤ t if and only if there
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exists and idempotent e such that s = te. For instance, the idempotents of a symmetric

inverse monoid are exactly the identical maps on subsets of X, and hence the natural

partial order is nothing but the restriction of maps. Observe that the natural partial order

is compatible with the multiplication, that is, if a ≤ b and c ≤ d, then ac ≤ bd.

The idempotents forming a semilattice is such a characteristic feature of inverse monoids

that it can be used to describe inverse monoids using only identities � equations imposed

on all elements. Indeed an inverse monoid is a monoid with an involution −1 that satis�es

the identities xx−1x = x and xx−1yy−1 = yy−1xx−1. Inverse monoids therefore form a

variety in the sense of universal algebra, see [3], in particular, free inverse monoids exist

on all sets, and every inverse monoid is a homomorphic image of a free one.

It is not hard to see that groups are just inverse monoids with a unique idempotent.

Thus factoring an inverse monoid by a congruence which collapses all idempotents yields

a group, with the class containing the idempotents as the identity element. Each inverse

monoid M has a smallest group congruence, denoted by σ, which is generated (as a con-

gruence) by E(M)×E(M), and a corresponding greatest group homomorphic image M/σ.

The preimage of the identity element under this homomorphism is, of course, the σ-class

containing the semilattice E(M). This hints at the fact that inverse monoids can some-

how be `built' from a group and a semilattice, and this is indeed one of the main tools

of investigating inverse monoids, and many of the constructions introduced in the thesis

will follow that pattern. We mention two important classes of inverse monoids where the

construction is well known and relatively straightforward.

One is the class of E-unitary inverse monoids, which is de�ned by the property that

the σ-class containing the idempotents contains nothing but the idempotents. In general,

that σ-class coincides with the set E(M)ω = {s ∈M : (∃e ∈ E(M))(e ≤ s)}, therefore the

inverse monoid M is E-unitary if and only if its set of idempotents is closed upwards in

the natural partial order.

By a famous theorem of McAlister known as the P -theorem, E-unitary inverse monoids

can be built using three building blocks: a group G, a partially ordered set X, and a

principal order ideal Y of X which is a meet-semilattice with respect to the partial order on

X. The group G acts onX by order automorphisms, and, in order to avoid that super�uous

elements occur in X or G, it is further assumed that {gY : g ∈ G} = X, and, for any g ∈ G,

the intersection of the sets gY and Y is not empty. The E-unitary inverse monoid obtained

from such a McAlister triple (G,X, Y ) is P (G,X, Y ) = {(A, g) ∈ Y ×G : g
−1
A ∈ Y }, with



3

a semidirect product-like multiplication

(A, g)(B, h) = (A ∧ gB, gh).

The inverse of an element (A, g) is (g
−1
A, g−1). The semilattice of idempotents of P (G,X, Y )

is isomorphic to Y , and the greatest group homomorphic image P (G,X, Y )/σ is isomorphic

to G.

The P -theorem states that every E-unitary inverse monoid M is isomorphic to one of

the form P (M/σ,X,E(M)), and so E-unitary inverse monoids are, in a way, `known'. This

is what gives particular signi�cance to the McAlister covering theorem stating that every

inverse monoid has an E-unitary cover, that is, every inverse monoid is a homomorphic

image of an E-unitary inverse monoid under a homomorphism which is injective on the

idempotens (this property is called idempotent-separating). Therefore, ifM is an E-unitary

cover of the inverse monoid N , then their semilattices of idempotents are isomorphic,

making the group M/σ a signi�cant unknown component of McAlister triple. Hence we

emphasize its importance by saying that that M is an E-unitary cover over the group G

if G is isomorphic to M/σ. The simplest proof of the McAlister covering theorem applies

the Wagner�Preston theorem and extensions of partial one-to-one maps to permutations.

In particular, it shows that �nite inverse monoids have �nite E-unitary covers.

Another important class of inverse monoids we mention is that of F -inverse monoids.

An inverse monoid is called F -inverse if its σ-classes have a greatest element with respect to

the natural partial order. F -inverse monoids are always E-unitary, they are characterized

by a McAlister triple (G,X, Y ) where X is also a semilattice. The notion of an F -inverse

monoid is among the most important ones in the theory of inverse semigroups, for example,

free inverse monoids are F -inverse. Moreover, they play an important role in the theory

of partial actions of groups, see Kellendonk and Lawson [9], and in this context they

implicitly occur in Dehornoy [4, 5]. In Kaarli and Márki [8], a subclass of �nite inverse

monoids occurring in the context of universal algebra is proven to have the property that

each member has an F -inverse cover within that class. Even in analysis, F -inverse monoids

are useful: see Nica [16], Khoshkam and Skandalis [10] and Steinberg [19] for their role in

the context of C∗-algebras.

An easy consequence of the fact that each inverse monoid is a homomorphic image

of a free one is that every inverse monoid has an F -inverse cover, that is, every inverse

monoid M is a homomorphic image of an F -inverse monoid by an idempotent-separating

homomorphism. Here, we also call F an F -inverse cover of the inverse monoid M over the

group G if G is isomorphic to M/σ. However, in this case, the proof always produces an
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F -inverse cover over a free group, and so it is always in�nite. The main motivation of the

research described in the dissertation is the following:

Open problem 1.0.1. Does every �nite inverse monoid admit a �nite F -inverse cover?

The problem has been formulated by Henckell and Rhodes in [7], and a positive answer

would have solved an important conjecture connected to the complexity theory of �nite

semigroups. The latter conjecture has been since proven [1], but the F -inverse cover

problem has remained open.

Note that by the McAlister covering theorem, it su�ces to restrict our attention to

F -inverse covers of E-unitary inverse monoids, as we do throughout the thesis. The most

important antecedent to the research presented in the dissertation is the paper of Auinger

and Szendrei [2] on the question. They go a step further by applying that it is su�cient to

restrict to a special class of E-unitary inverse monoids called Margolis�Meakin expansions,

which, as we will see, have a very convenient structure. Thus Auinger and Szendrei are

able to reformulate the F -inverse cover problem by means of graphs and locally �nite group

varieties only. We retell their results in Section 2.3, after the introduction to some basic

notions regarding inverse monoids, graphs and categories in Sections 2.1 and 2.2.

The new results of the author and partly of her adviser presented in the dissertation

were published in the papers [20] and [21], and are contained in Chapters 3 and 4 respect-

ively. In [20], the condition on graphs and group varieties introduced in [2] is investigated.

In Section 3.1, we establish that, when �xing the group variety, the graphs for which the

condition is satis�ed can be described using forbidden minors. In Section 3.2, we apply

this approach to the special case when the variety is Abelian, in which case we are able to

give a full description of the graphs and group varieties satisfying the property, as stated in

Theorem 3.2.1. Unraveling the details of how the graph condition is related to F -inverse

covers of Margolis�Meakin expansions, what we obtain is a description of all Margolis�

Meakin expansions M which have an F -inverse cover F such that F/σ is an extension of

an Abelian group by M/σ � this we refer to as F being an F -inverse cover via a variety

of Abelian groups �, presented in Theorem 3.2.4.

In [21], we are motivated by �nding all �nite E-unitary inverse monoids which have an

F -inverse cover via a variety of Abelian groups. The �rst step is introducing a Margolis�

Meakin-like structure that describes the much larger class of �nite-above E-unitary inverse

monoids � which, in particular, contains all �nite ones �, and generalizing the condi-

tions introduced in [2] accordingly. These results are contained in Section 4.1. Using our

framework, in Example 4.1.21, we present a family of �nite E-unitary inverse monoids
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having �nite F -inverse covers, for which this fact does not follow by previous techniques.

In Section 4.2, we move on to Abelian varieties, and in Theorem 4.2.3, give a su�cient

condition for an E-unitary �nite-above inverse monoid not to have an F -inverse cover via

the variety of Abelian groups, formulated merely by means of the natural partial order and

the least group congruence.
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Chapter 2

Preliminaries

2.1 Inverse monoids

Let M be an inverse monoid (in particular, a group) and A an arbitrary set. We say that

M is an A-generated inverse monoid (A-generated group) if a map1 εM : A → M is given

such that AεM generates M as an inverse monoid (as a group). If εM is injective, then we

might assume that A is a subset in M , as usual, i.e., εM is the inclusion map A→ M . If

M, N are A-generated inverse monoids, then ϕ : M → N is a canonical homomorphism if

it is a homomorphism such that εMϕ = εN . Notice that if εN is an inclusion, then εM is

injective, and so it also can be chosen to be an inclusion. However, if εM is injective (in

particular, an inclusion), then εN need not be injective. This is the reason that one cannot

suppose in general that A ⊆M for every A-generated monoid M .

Given an arbitrary set A, the free monoid on A, denoted by A∗, is the monoid which

consists of all �nite sequences of elements of A, called words, together with the empty

word denoted by 1, and these are multiplied by concatenation. It is well known that for

any monoid M and map ϕ : A → M , ϕ extends to a homomorphism A∗ → M uniquely,

hence the name `free'. The �rst step of the analogous constructions of free groups and free

inverse monoids is creating a free monoid with involution, the involution being responsible

for the inverse. Consider a set A′ disjoint from A together with a bijection ′ : A→ A′. Put

A = A∪A′, and consider the free monoid A
∗
on A, and extend the map ′ to an involution

of A
∗
, denoted also by ′. Notice that this extension is unique, (a′)′ = a holds for every

a ∈ A, and (b1b2 · · · bn)′ = b′nb
′
n−1 · · · b′1 holds for every word b1b2 · · · bn ∈ A

∗
. The monoid

A
∗
together with this involution is the free monoid with involution on A. For simplicity,

we do not introduce a new notation for this structure, but throughout the thesis, A
∗
is

1As it is customary in semigroup theory, we write maps on the right in this thesis.
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meant to denote the free monoid with involution on A.

For any inverse monoid M , there is a unique homomorphism ϕ : A
∗ → M such that

aϕ = aεM and a′ϕ = (aεM )−1 for every a ∈ A, since taking inverse is an involution on

M . If M is A-generated, then ϕ is clearly surjective. For any word w ∈ A∗, we denote

wϕ by [w]M . The free inverse monoid and free group on the set A, denoted by FIM(A)

and FG(A) respectively, are of course, also homomorphic images of A
∗
. The kernel of the

homomorphism is just the fully invariant congruence generated by the identities de�ning

inverse monoids and groups, respectively (see [3]). Furthermore, since groups are special

inverse monoids, FG(A) is also a factor of FIM(A) � in fact, FIM(A)/σ = FG(A).

A variety of inverse monoids is a class of inverse monoids de�ned by identities, they

are denoted by capital bold letters in the sequel. For instance, the variety of groups, the

variety Sl of semilattices, and the variety Ab of Abelian groups are all varieties of inverse

monoids. Again, the factor of a free inverse monoid FIM(A) induced by the fully invariant

congruence corresponding to the respective de�ning identities gives rise to the relatively

free inverse monoid, or, in the case of a group variety, the relatively free group on the set

A in the variety. If M is the relatively free inverse monoid (or group) on A in a given

an inverse monoid (group) variety U, then we write [w]U for [w]M . Recall that, for every

w,w1 ∈ A
∗
, we have [w]U = [w1]U if and only if the identity w = w1 is satis�ed in U. We

say that [w]U depends on a letter a if [w1]U 6= [w]U for the word w1 obtained from w by

substituting all occurrences of a by 1. We de�ne the U-content cU(w) of w as the set of

elements a ∈ A that [w]U depends on.

2.2 Graphs and categories

2.2.1 Edge-labelled graphs

Throughout this thesis, unless otherwise stated, by a graph we mean a directed graph, that

is, a quadruple ∆ = (V∆, E∆, ι, τ), where V∆ and E∆ denote the sets of vertices and edges

of ∆ respectively, and ι, τ are E∆ → V∆ maps that assign the initial and the terminal

vertices to an edge e. If ιe = i and τe = j, then e is called an (i, j)-edge. The set of all

(i, j)-edges is denoted by ∆(i, j), and for our later convenience, we put

∆(i,−) =
⋃
j∈V∆

∆(i, j).

Connectedness of graphs will, however, be regarded in an undirected sense throughout

the thesis, that is, we call a digraph connected (two-edge-connected) if the underlying

undirected graph is connected (two-edge-connected). Recall that an undirected graph is
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called two-edge-connected if it is connected and remains connected whenever an edge is

removed. By an edge-labelled (or just labelled) graph, we mean a graph ∆ together with a

set A and a map E∆ → A appointing the labels to the edges.

A sequence p = e1e2 · · · en (n ≥ 1) of consecutive edges e1, e2, . . . , en (i.e., where

τei = ιei+1 (i = 1, 2, . . . , n − 1)) is called a path on ∆ or, more precisely, an (i, j)-path

if i = ιe1 and j = τen. In particular, if i = j then p is also said to be a cycle or, more

precisely, an i-cycle. Moreover, for any vertex i ∈ V∆, we consider an empty (i, i)-path

(i-cycle) denoted by 1i. A non-empty path (cycle) p = e1e2 · · · en is called simple if the

vertices ιe1, ιe2, . . . , ιen are pairwise distinct and τen /∈ {ιe2, . . . , ιen}.

In consistence with the undirected connectedness properties, we do not generally want

to restrict to directed paths. For that, we consider paths in a graph extended by the formal

reverses of its edges as follows. Given a graph ∆, take a set E′ disjoint from E∆ together

with a bijection ′ : E∆ → E′, and consider a graph ∆′ where V∆′ = V∆ and E∆′ = E′ such

that ιe′ = τe and τe′ = ιe for every e ∈ E∆. De�ne ∆ to be the graph with V∆ = V∆ and

E∆ = E∆ ∪ E∆′ . Choosing the set E′∆ to be E∆′ , the paths on ∆ become words in E∆
∗

where E∆ = E∆ ∪ E′∆.

We can extend the bijection ′ to paths in a natural way. First, for every edge f ∈ E∆′ ,

de�ne f ′ = e where e is the unique edge in ∆ such that e′ = f . Second, put 1′i = 1i (i ∈ V∆)

and, for every non-empty path p = e1e2 · · · en on ∆, put p′ = e′ne
′
n−1 · · · e′1. If p = e1e2 · · · en

is a non-empty path on ∆, then the subgraph 〈p〉 of ∆ spanned by p is the subgraph

consisting of all vertices and edges p traverses in either direction. Obviously, we have

〈p′〉 = 〈p〉 for any path p on ∆. The subgraph spanned by the empty path 1i (consisting

of the single vertex i) is denoted by ∅i, that is, 〈1i〉 = ∅i.

Most of our graphs in this paper have edges of the form (i, a, j), where i is the initial

vertex, j the terminal vertex, and a is the label of the edge. For such a graph ∆, choose

∆ as follows: consider a set A′ disjoint from A together with a bijection ′ : A → A′, and

we choose ∆′ so that (i, a, j)′ = (j, a′, i) for any edge (i, a, j) in ∆. Then ∆ is labelled

by A, and, given a (possibly empty) path p = e1e2 · · · en on ∆, the labels of the edges

e1, e2, . . . , en determine a word in A
∗
.

One particular class of graphs of the type described above is the Cayley graphs of

groups. If G is an A-generated group by the map εG : A → G, its Cayley graph is a

graph with G as the vertex set and with edges of the form (g, a, g · aεG), where g ∈ G

and a ∈ A are arbitrary. The Cayley graph is, of course, labelled by A, and also has the

property that the initial vertex g and the label a determine the edge uniquely, moreover,
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any word w in A
∗
determines a unique path starting at 1, the terminal vertex being [w]G.

Hence, essentially, knowing the Cayley graph of the group means knowing the solution to

its word problem and vice versa. In geometric group theory, the word problem and other

algorithmic problems in group theory are investigated through geometric properties of the

Cayley graph.

a

b

1
... ...

...
...

Figure 2.2.1. The Cayley graph of the free group FG(a, b)

In this thesis, Cayley graphs of groups appear as building blocks of certain classes of

inverse monoids. For instance, Munn [15] has given a beautiful description of the free

inverse monoid FIM(A) using subtrees of the Cayley graph of the A-generated free group

(see Figure 2.2.1). Munn's construction is as follows. The elements of FIM(A) are pairs of

the form (X, g), where g ∈ FG(A), and X is a subtree of the Cayley graph containing the

vertices 1 and g. The multiplication is given by the rule

(X, g)(Y, h) = (X ∪ gY, gh),

where gY denotes the subtree obtained by `translating' Y in the Cayley graph by g, that

is, a vertex i is translated to gi, and an edge (i, a, j) to (gi, a, gj). Given a word w in A
∗
,

[w]FIM(A) is given by the pair (〈pw〉, [w]FG(A)), where pw is the unique path determined by

the sequence of labels w.

2.2.2 Small categories

Let ∆ be a graph, and suppose that a partial multiplication is given on E∆ in a way that,

for any e, f ∈ E∆, the product ef is de�ned if and only if e and f are consecutive edges.
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If this multiplication is associative in the sense that (ef)g = e(fg) whenever e, f, g are

consecutive, and for every i ∈ V∆, there exists a (unique) edge 1i with the property that

1ie = e, f1i = f for every e, f ∈ E∆ with ιe = i = τf , then ∆ is called a (small) category.

Later on, we denote categories in calligraphics. For categories, the usual terminology and

notation is di�erent from those for graphs: instead of `vertex' and `edge', we use the terms

`object' and `arrow', respectively, and if X is a category, then, instead of VX and EX , we

write ObX and ArrX , respectively. Clearly, each monoid can be considered a one-object

category, with the elements playing the roles of the arrows. Therefore, later on, certain

de�nitions and results formulated only for categories will be applied also for monoids.

A category X is called a groupoid if, for each arrow e ∈ X (i, j), there exists an arrow

f ∈ X (j, i) such that ef = 1i and fe = 1j . Obviously, the one-object groupoids are just the

groups, and, as it is well known for groups, the arrow f is uniquely determined, it is called

the inverse of e and is denoted e−1. By an inverse category, we mean a category X where,

for every arrow e ∈ X (i, j), there exists a unique arrow f ∈ X (j, i) such that efe = e

and fef = f . This unique f is also called the inverse of e and is denoted e−1. Clearly,

each groupoid is an inverse category with the same inverse. Furthermore, the one-object

inverse categories are just the inverse monoids. More generally, if X is an inverse category

(in particular, a groupoid), then X (i, i) is an inverse monoid (a group) for every object i.

An inverse category X is said to be locally a semilattice if X (i, i) is a semilattice for every

object i. Similarly, given a group variety U, we say that X is locally in U if X (i, i) ∈ U

for every object i.

Given a graph ∆, we can easily de�ne a category ∆∗ as follows: let Ob ∆∗ = V∆,

let ∆∗(i, j) (i, j ∈ Ob ∆∗) be the set of all (i, j)-paths on ∆, and de�ne the product of

consecutive paths by concatenation. The identity arrows will be the empty paths. In the

one-object case, this is just the usual construction of a free monoid on a set. In general,

∆∗ has a similar universal property among categories, that is, it is the free category on ∆.

However, as we will mainly be working with inverse categories, the analogue of the free

monoid A
∗
with involution ′ will be more use for us. The category ∆

∗
together with the

bijection ′ de�ned for paths on ∆ is the free category with involution on ∆. For an inverse

category X and a graph ∆, if εX : ∆ → X is a graph morphism, then there is a unique

category morphism ϕ : ∆
∗ → X such that eϕ = eεX and e′ϕ = (eεX )−1 for every e ∈ ArrX .

We say that X is ∆-generated if ϕ is surjective. If X ,Y are ∆-generated inverse categories,

then ψ : X → Y is called a canonical category morphism if it is a category morphism such

that εXψ = εY .
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The basic notions and properties known for inverse monoids have their analogues for

inverse categories. Given a category X , consider the subgraph E(X ) of idempotents, where

VE(X ) = ObX and EE(X ) = {h ∈ ArrX : hh = h}. Obviously, EE(X ) ⊆
⋃
i∈ObX X (i, i). A

category X is an inverse category if and only if E(X )(i, i) is a semilattice for every object i,

and, for each arrow e ∈ X (i, j), there exists an arrow f ∈ X (j, i) such that efe = e. Thus,

given an inverse category X , E(X ) is a subcategory of X , and we de�ne a relation ≤ on X

as follows: for any e, f ∈ ArrX , let e ≤ f if e = fh for some h ∈ Arr E(X ). The relation ≤

is a partial order on ArrX called the natural partial order on X , and it is compatible with

multiplication. Note that the natural partial order is trivial if and only if X is a groupoid.

2.2.3 Categories acted upon by groups

Groups acting on graphs come up in several areas. For instance, Bass�Serre theory analyzes

groups through their actions on trees. One of the earliest results in the framework is that a

group is free if and only if it acts freely on a tree, which also yields a proof of the Nielsen�

Schreier theorem. In this section, we use groups acting on graphs and categories in order

to construct inverse monoids. These results can be found in [14].

Let G be a group and ∆ a graph. We say that G acts on ∆ (on the left) if, for every

g ∈ G, and for every vertex i and edge e in ∆, a vertex gi and an edge ge is given such that

the following are satis�ed for any g, h ∈ G and any i ∈ V∆, e ∈ E∆:

1i = i, h(gi) = hgi, 1e = e, h(ge) = hge,

ιge = gιe, τ ge = gτe.

An action of G on ∆ induces an action on the paths and an action on the subgraphs of ∆

in a natural way: if g ∈ G, i ∈ V∆ and p = e1e2 · · · en is a non-empty path, then we put

gp = ge1
ge2 · · · gen,

and for an empty path, let g1i = 1gi. For any subgraph X of ∆, de�ne gX to be the

subgraph whose sets of vertices and edges are {gi : i ∈ VX} and {ge : e ∈ EX} respectively,

in particular, g∅i = ∅gi. The action of G on ∆ can be extended to ∆ also in a natural way

by setting ge′ = (ge)′ for every e ∈ E∆. It is easy to check that the equality 〈gp〉 = g〈p〉

holds for every path p on ∆.

One example we have already seen is a group acting on its own Cayley graph by

translations. In the case of the free group, the induced action on subgraphs is the action

used in the construction of free inverse monoids.
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By an action of a group on a category X we mean an action of G on the graph X which

has the following additional properties: for any object i and any pair of consecutive arrows

e, f , we have

g1i = 1gi,
g(ef) = ge · gf.

In particular, if X is a one-object category, that is, a monoid, then this de�nes an action

of a group on a monoid. We also mention that if ∆ is a graph acted upon by a group

G, then the induced action on the paths de�nes an action of G on the free category ∆
∗

with involution on ∆. Note that if X is an inverse category, then g(e−1) = (ge)−1 for every

g ∈ G and every arrow e. We say that G acts transitively on X if, for any objects i, j,

there exists g ∈ G with j = gi, and that G acts on X without �xed points (or freely) if, for

any g ∈ G and any object i, we have gi = i only if g = 1. Note that if G acts transitively

on X , then the local monoids X (i, i) (i ∈ ObX ) are all isomorphic.

Let G be a group acting on a category X . This action determines a category X/G in a

natural way: the objects of X/G are the orbits of the objects of X , the orbit of i denoted

by, as usual, Gi = {gi : g ∈ G}, and, for every pair Gi,Gj of objects, the (Gi,Gj)-arrows are

the orbits of the (i′, j′)-arrows of X where i′ ∈ Gi and j′ ∈ Gj. The product of consecutive

arrows ẽ, f̃ is also de�ned in a natural way, namely, by considering the orbit of a product

ef where e, f are consecutive arrows in X such that e ∈ ẽ and f ∈ f̃ . Note that if G acts

transitively on X , then X/G is a one-object category, that is, a monoid. The properties

below are proven in [14, Propositions 3.11, 3.14].

Result 2.2.1. Let G be a group acting transitively and without �xed points on an inverse

category X .

(1) The monoid X/G is inverse, and it is isomorphic, for every object i, to the monoid

(X/G)i de�ned on the set {(e, g) : g ∈ G and e ∈ X (i, gi)} by the multiplication

(e, g)(f, h) = (e · gf, gh).

(2) If X is connected and it is locally a semilattice, then X/G is an E-unitary inverse mon-

oid. Moreover, the greatest group homomorphic image of X/G is G, and its semilattice

of idempotents is isomorphic to X (i, i) for any object i.

(3) If X is connected, and it is locally in a group variety U, then X/G is a group which

is an extension of X (i, i) ∈ U by G for any object i.

Example 2.2.2. The multiplication in point (1) resembles that seen in Munn's construc-

tion, and that is not a coincidence: if X is the inverse category with the object set FG(A)
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and with (i, j)-arrows of the form (i,X, j), where X is a connected subgraph of the Cayley

graph of FG(A) containing vertices i and j, and multiplication is given by

(i,X, j)(j,Y, k) = (i,X ∪Y, k),

then FIM(A) is nothing but X/FG(A).

For our later convenience, note that the inverse of an element can be obtained in (X/G)i

in the following manner:

(e, g)−1 = (g
−1
e−1, g−1).

Notice that if a group G acts on an inverse category transitively and without �xed

points, then ObX is in one-to-one correspondence with G. In the sequel we consider

several categories of this kind which have just G as its set of objects. For these categories,

we identify X/G with (X/G)1.

Any E-unitary inverse monoid can be obtained in the way described in Result 2.2.1(2).

To see that, let M be an arbitrary E-unitary inverse monoid, and denote the group M/σ

by G. De�ne the category IM in the following way: its set of objects is G, its set of

(i, j)-arrows is

IM (i, j) = {(i,m, j) ∈ G×M ×G : i ·mσ = j} (i, j ∈ G),

and the product of consecutive arrows (i,m, j) ∈ IM (i, j) and (j, n, k) ∈ IM (j, k) is de�ned

by the rule

(i,m, j)(j, n, k) = (i,mn, k).

It is easy to see that an arrow (i,m, j) is idempotent if and only if m is idempotent, and

sinceM is E-unitary, this is if and only if i = j. Moreover, we have (i,m, j)−1 = (j,m−1, i)

for every arrow (i,m, j). The natural partial order on IM is the following: for any arrows

(i,m, j), (k, n, l), we have (i,m, j) ≤ (k, n, l) if and only if i = k, j = l and m ≤ n. We

remark that IM is nothing but the the derived category of the natural homomorphism

σ\ : M → G, see [22].

The group G acts naturally on IM as follows: gi = gi and g(i,m, j) = (gi,m, gj) for

every g ∈ G and (i,m, j) ∈ Arr IM .

The category IM and the action of G on it has the following properties [14, Proposition

3.12].
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Result 2.2.3. The category IM is a connected inverse category which is locally a semilat-

tice. The group G acts transitively and without �xed points on IM , and M is isomorphic

to IM/G.

The isomorphism in the proof is given by m 7→ (1,m,mσ).

2.3 A reformulation of the F -inverse cover problem

2.3.1 Margolis�Meakin expansions

Let G be an A-generated group where AεG ⊆ G \ {1}. The Margolis�Meakin expansion

M(G) of G (see [13]) generalizes Munn's construction to arbitrary Cayley graphs. It is

de�ned in the following way: consider the set of all pairs (X, g) where g ∈ G and X is a

�nite connected subgraph of the Cayley graph Γ of G containing the vertices 1 and g, and

de�ne a multiplication on this set by the rule

(X, g)(Y, h) = (X ∪ gY, gh).

Then M(G) is an A-generated E-unitary inverse monoid with εM(G) : A → M(G), a 7→

(〈ea〉, a) = (ea, a) (i.e., for brevity, we identify 〈e〉 with e for every edge e in Γ), where the

identity element is (∅1, 1) and (X, g)−1 = (g
−1

X, g−1) for every (X, g) ∈ M(G). Margolis�

Meakin expansions are useful in part because they also have a universal property similar

to that of free inverse monoids: A-generated, E-unitary inverse monoids over the group

G are homomorphic images of M(G), moreover, an A-generated inverse monoid has an

E-unitary cover over the group G if and only if it is a homomorphic image of M(G).

By de�nition, the arrows in IM(G)(i, j) are (i, (X, g), j) where (X, g) ∈M(G) and ig = j

in G. Therefore IM(G)/G = (IM(G)/G)1 consists of the pairs ((1, (X, g), g), g) which can be

identi�ed with (X, g), and this identi�cation is the isomorphism involved in Result 2.2.3.

Moreover, notice that the assignment (i, (X, g), j) 7→ (i, iX, j) is a bijection from IM(G)(i, j)

onto the set of all triples (i,X, j) where X is a �nite connected subgraph of Γ and i, j ∈ VX.

Thus IM(G) can be identi�ed with the category where the hom-sets are the latter sets, and

the multiplication is the following:

(i,X, j)(j,Y, k) = (i,X ∪Y, k).

We apply Result 2.2.1 to introduce further structures with some sort of universal prop-

erty. Recall the notion of a free category ∆
∗
with involution over the graph ∆. The

(i, j)-arrows of ∆
∗
are the (i, j)-paths in the graph ∆, which can be regarded as words in
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the free monoid E
∗
∆ with involution. Taking that analogy a step further � if we `evaluate'

the (i, j)-paths not in the free monoid with involution, but in a variety of inverse monoids

(in particular, of groups), then we are led to the notion of the free inverse category (in

particular, free groupoid) in that variety. In the following paragraphs, we introduce this

construction precisely in the case when ∆ is a Cayley graph.

Consider an inverse monoid (in particular, a group) variety U and a graph Γ. Denote

the relatively free inverse monoid in U on EΓ by FU(EΓ). Any path in Γ, regarded as a

word in EΓ
∗
, determines an element of FU(EΓ), which is denoted by [p]U, as introduced

before.

The free gU-category on Γ denoted by FgU(Γ), as introduced in [22], is given as follows:

its set of objects is VΓ, and, for any pair of objects i, j, the set of (i, j)-arrows is

FgU(Γ)(i, j) = {(i, [p]U, j) : p is an (i, j)-path in Γ},

and the product of consecutive arrows is de�ned by

(i, [p]U, j)(j, [q]U, k) = (i, [pq]U, k).

Obviously, the category FgU(Γ) is an inverse category (in particular, a groupoid), and the

inverse of an arrow is obtained as follows:

(i, [p]U, j)
−1 = (j, [p]−1

U , i) = (j, [p′]U, i).

Moreover, FgU(Γ) is Γ-generated by the map εFgU(Γ) : Γ → FgU(Γ), e 7→ (ιe, [e]U, τe) =

(ιe, e, τe) for every edge e in Γ (i.e., as usual, we identify [e]U with e in FU(EΓ)). If, for

example, U = Sl, the variety of semilattices, and Γ is the Cayley graph of FG(A), then

[p]Sl = 〈p〉, and FgSl(Γ) is the category described in Example 2.2.2.

Suppose U is a group variety, and Γ is the Cayley graph of an A-generated group G.

Notice that the action of G on Γ extends to an action of G on FgU(Γ) by g(i, [p]U, j) =

(gi, [gp]U, gj), and this action, like the action on Γ, is transitive and has no �xed points.

Furthermore, FgU(Γ) is connected since Γ is connected. Thus Result 2.2.1(3) implies that

FgU(Γ)/G is a group which is an extension of a member of U by G. De�ne the semidirect

product FU(EΓ)oG, where the action of G is the one extended from its action on Γ. It is

straightforward to see by Result 2.2.1(1) that the elements of FgU(Γ)/G = (FgU(Γ)/G)1 are

exactly the pairs ([p]U, g) ∈ FU(EΓ)oG, where p is a (1, g)-path in Γ, hence FgU(Γ)/G is a

subgroup in the semidirect product FU(EΓ)oG. Moreover, FgU(Γ)/G is generated by the

subset {(ea, aεG) : a ∈ A}, and so it is A-generated with εFgU(Γ)/G : A → FgU(Γ)/G, a 7→

(ea, aεG). It is well known (cf. the Kaloujnine�Krasner theorem [11]) that FgU(Γ)/G is the



16

`most general' A-generated group which is an extension of a member of U by G, that is, it

has the universal property that, for each such extension K with εK : A→ K, there exists

a surjective homomorphism ϕ : FgU(Γ)/G → K such that εFgU(Γ)/Gϕ = εK . For brevity,

we denote the group FgU(Γ)/G later on by GU.

2.3.2 Dual premorphisms

A dual premorphism ψ : M → N between inverse monoids is a map satisfying (mψ)−1 =

m−1ψ and (mn)ψ ≥ mψ ·nψ for all m,n in M (such maps are called dual prehomomorph-

isms in [12] and prehomomorphisms in [17]). In particular, if M and N are A-generated

and εMψ = εN , then ψ is called a canonical dual premorphism. An important class of dual

premorphisms from groups to an inverse monoid M is closely related to F -inverse covers

of M , as stated in the following well-known result ([17, Theorem VII.6.11]):

Result 2.3.1. Let H be a group and M be an inverse monoid. If ψ : H → M is a dual

premorphism such that

for every m ∈M, there exists h ∈ H with m ≤ hψ, (2.3.1)

then

F = {(m,h) ∈M ×H : m ≤ hψ}

is an inverse submonoid in the direct product M ×H, and it is an F -inverse cover of M

over H. Conversely, up to isomorphism, every F -inverse cover of M over H can be so

constructed.

In the proof of the converse part of Result 2.3.1, the following dual premorphism

ψ : F/σ → M is constructed for an inverse monoid M , an F -inverse monoid F , and a

surjective idempotent-separating homomorphism ϕ : F → M : for every h ∈ F/σ, let

hψ = mhϕ, where mh denotes the maximum element of the σ-class h. It is important

to notice that, more generally, this construction gives a dual premorphism with property

(2.3.1) for any surjective homomorphism ϕ : F → M . In the sequel, we call this map ψ

the dual premorphism induced by ϕ.

Notice that, for every group H and inverse monoids M,N , the product of a dual

premorphism ψ : H →M with property (2.3.1) and a surjective homomorphism ϕ : M → N

is a dual premorphism from H to N with property (2.3.1). As a consequence, notice that if

an inverse monoid M has an F -inverse cover over a group H, then so do its homomorphic

images.
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Dual premorphisms can be de�ned for inverse categories analogously: it is a graph

morphism ψ : X → Y such that 1iψ = 1iψ, (e−1)ψ = (eψ)−1 and (ef)ψ ≥ eψ · fψ for any

object i and any consecutive arrows e, f in X .

2.3.3 A graph condition

We are ready to describe the graph condition Auinger and Szendrei have introduced in

their paper [2] as a reformulation of the F -inverse cover problem. Their key step is the

assertion that every �nite inverse monoid admits a �nite F -inverse cover if and only if,

for every �nite connected graph Γ, there exist a locally �nite group variety U and a dual

premorphism ψ : FgU(Γ)→ FgSl(Γ) with ψ|Γ = idΓ.

We provide a quick run-through of the proof. The �rst observation is that it is su�cient

to try to �nd �nite F -inverse covers for �nite Margolis�Meakin expansions, as every inverse

monoid is a homomorphic image of one. According to Result 2.3.1, a Margolis�Meakin

expansion M(G) has a �nite F -inverse cover if and only if there is a dual premorphism

H →M(G) for a �nite group H, with property (2.3.1). The second observation is that if G

is A-generated, then H can be chosen to be A-generated, and the dual premorphism to be

canonical. A canonical dual premorphism H → M(G) yields a canonical homomorphism

H → G, hence H is an A-generated extension of some group K by G. The `most general'

candidates for such a group H are the ones of the form GU (see Subsection 2.3.1), where

the only restriction imposed on K is that it belongs to the variety U. The group GU is

�nite if and only if G is �nite (which it is, by assumption) and U is locally �nite group

variety. Hence the question boils down to �nding a locally �nite group variety U for every

A-generated group G such that there is a canonical dual premorphism GU → M(G), and

since GU = FgU(Γ)/G and M(G) = FgSl(Γ)/G, this translates to �nding a canonical dual

premorphism ψ : FgU(Γ)→ FgSl(Γ).

Now �x a connected graph Γ and a group variety U. We assign to each arrow x of

FgU(Γ) two sequences of �nite subgraphs of Γ as follows: let

C0(x) =
⋂
{〈p〉 : (ιp, [p]U, τp) = x}, (2.3.2)

and let P0(x) be the connected component of C0(x) containing ιx. If Cn(x), Pn(x) are

already de�ned for all x, then put

Cn+1(x) =
⋂
{Pn(x1) ∪ · · · ∪ Pn(xk) : k ∈ N, x1 · · ·xk = x},

and again, let Pn+1(x) be the connected component of Cn+1(x) containing ιx.
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It is easy to see that

C0(x) ⊇ P0(x) ⊇ · · · ⊇ Cn(x) ⊇ Pn(x) ⊇ Cn+1(x) ⊇ Pn+1(x) ⊇ · · ·

for all x and n. We de�ne P (x) to be
⋂∞
n=0 Pn(x), which is a connected subgraph of Γ

containing ιx. According to [2, Lemma 3.1], there exists a dual premorphism ψ : FgU(Γ)→

FgSl(Γ) with ψ|Γ = idΓ if and only if τx ∈ P (x) for all x, and in this case, the assignment

x 7→ (ιx, P (x), τx) gives such a dual premorphism. If τx /∈ P (x) for some x = (ιp, [p]U, τp),

then we call p a breaking path over U.

The main result [2, Theorem 5.1] is the following:

Result 2.3.2. The following assertions are equivalent.

(1) Each �nite inverse monoid has an F -inverse cover.

(2) For each �nite connected graph Γ, there exists a locally �nite group variety U for which

there is a canonical dual premorphism FgU(Γ)→ FgSl(Γ).

(3) For each �nite connected graph Γ, there exists a locally �nite group variety U such

that, for each arrow x of FgU(Γ), each of the graphs Pk(x) (k ≥ 1) contains the vertex

τx.

(4) There exists a prime p such that, for each n ≥ 1, the inverse monoid M(Cnp ) has a

�nite F -inverse cover (where Cp denotes the cyclic group of order n).

In [2], C0(x) is incorrectly de�ned to be the graph spanned by the U-content of x

together with ιx. From the proof of [2, Lemma 3.1] (see the inclusion µ(xψ) ⊆ C0(x)), it

is clear that the de�nition of C0(x) needed is the one in (2.3.2). The following proposition

states that in the cases crucial for the main result [2, Theorem 5.1], i.e., where Γ is the

Cayley graph of a �nite group, these two de�nitions are equivalent in the sense that P0(x),

and so the sequence Pn(x) does not depend on which de�nition we use. For our later

convenience, let Ĉ0(x) denote the graph which is the union of the U-content of x and ιx.

Lemma 2.3.3. If Γ is two-edge-connected, then for any arrow x of FgU(Γ), the subgraphs

C0(x) and Ĉ0(x) can only di�er in isolated vertices (distinct from ιx and τx).

Proof. Let x be an arrow of FgU(Γ). It is clear that Ĉ0(x) ⊆ C0(x). For the converse,

put x = (ιp, [p]U, τp), and suppose e is an edge of 〈p〉 such that e /∈ Ĉ0(x). Let se be a

(ιe, τe)-path in Γ not containing e � such a path exists since Γ is two-edge-connected.

Let pe→se be the path obtained from p by replacing all occurrences of e by se. Then

p ≡U pe→se , and e /∈ 〈pe→se〉, hence e /∈ C0(x), which completes the proof.



19

Remark 2.3.4. We remark that the condition of Γ being two-edge-connected is necessary

in Lemma 2.3.3, that is, when Γ is not two-edge-connected, the subgraphs C0(x) and Ĉ0(x)

can in fact be di�erent. Put, for example, U = Ab, the variety of Abelian groups, and

let e be an edge of Γ for which Γ\{e} is disconnected. Let p = ese′ be a path in Γ, where

s 6≡Ab 1 and e, e′ do not occur in s. Then the subgraph spanned by the Ab-content of p

does not contain e, whereas any path q which is co-terminal with and Ab-equivalent to p

must contain the edge e, as there is no other (ιe, τe)-path in Γ.

For a group variety U, we say that a graph Γ satis�es property (SU), or Γ is (SU) for

short, if τx ∈ P (x) holds for any arrow x of FgU(Γ). By Result 2.3.2, each �nite inverse

monoid has a �nite F -inverse cover if and only if each �nite connected graph is (SU) for

some locally �nite group variety U. This property (SU) for �nite connected graphs is our

topic for the next section.

We recall that by [2, Lemmas 4.1 and 4.2], the following holds.

Lemma 2.3.5. If a graph Γ is (SU) for some group variety U, then so is any redirection

of Γ, and any subgraph of Γ.

However, we remark that the lemma following these observations in [2], namely Lemma

4.3 is false. It states that if a simple graph Γ is (SU), then so is any graph obtained from

Γ by adding parallel edges (where both �simple� and �parallel� are meant in the undirected

sense). The main result of Chapter 3, Theorem 3.2.1 yields counterexamples.

Lemma 2.3.6. If U and V are group varieties for which U ⊆ V, then (SU) implies (SV).

Proof. Suppose Γ is (SU), let p be any path in Γ. Put xU = (ιp, [p]U, τp) ∈ FgU(Γ),

and similarly let xV = (ιp, [p]V, τp) ∈ FgV(Γ). Since U ⊆ V, we have C0(xU) ⊆ C0(xV).

Also, since q ≡V q1 · · · qn implies q ≡U q1 · · · qn, we obtain Pn(xU) ⊆ Pn(xV) by induction.

Since τp ∈ Pn(xU) by assumption, this yields τp ∈ Pn(xV), that is, Γ is (SV).
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Chapter 3

F -inverse covers of Margolis�Meakin

expansions

This chapter contains the examination of the graph condition (SU) introduced in the

previous chapter, as well as the implications of some of our results to F -inverse covers of

Margolis�Meakin expansions.

3.1 Forbidden minors

In this section, we prove that, given a group variety U, the class of graphs satisfying

(SU) can be described by so-called forbidden minors. Forbidden minors are widely used in

mathematics to characterize graphs with a certain property. The most well-known example

is Kuratowski's theorem, which characterizes planar graphs as graphs which do not contain

K5, the complete graph on �ve vertices and K3,3, the utility graph as minors.

Let Γ be a graph and let e be a (u, v)-edge of Γ such that u 6= v. The operation which

removes e and simultaneously merges u and v to one vertex is called edge-contraction. We

call ∆ a minor of Γ if it can be obtained from Γ by edge-contraction, omitting vertices

and edges, and redirecting edges.

Proposition 3.1.1. Suppose Γ and ∆ are graphs such that ∆ is a minor of Γ. Then, if

∆ is non-(SU), so is Γ.

Proof. By Lemma 2.3.5, adding edges and vertices to, or redirecting some edges of a

graph does not change the fact that it is non-(SU). Therefore let us suppose that ∆ is

obtained from Γ by contracting an edge e for which ιe 6= τe. Let x1, . . . , xn be the edges of Γ

having ιe as their terminal vertex. For a path p in ∆, let p+e denote the path in Γ obtained
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by replacing all occurrences of xj (j = 1, . . . , n) by xje (and all occurrences of x′j by e
′x′j).

Similarly, for a subgraph Ξ of ∆, let Ξ+e denote the subgraph of Γ obtained from Ξ by

taking its preimage under the edge-contraction containing the edge e if Ξ contains some

xj (j = 1, . . . , n), and its preimage without e otherwise. Obviously, we have 〈p+e〉 = 〈p〉+e

for any path p in ∆.

Note that if p is a path in ∆ traversing the edges f1, . . . , fk, then p+e, considered

as a word in {e, f1, . . . , fk}
∗
, is obtained from the word p by substituting (xje) for xj

(j = 1, . . . , n), and leaving the other edges unchanged. Putting x = (ιp, [p]U, τp) and x+e =

(ιp+e, [p+e]U, τp+e), this implies (C0(x))+e ⊇ C0(x+e) for any path p is ∆. Moreover,

we also see that, for any paths q, q1, . . . , qk in ∆, we have q ≡U q1 · · · qn if and only if

q+e ≡U (q1)+e · · · (qn)+e. Using that for any subgraph Ξ ⊆ ∆, the connected components of

Ξ and Ξ+e are in one-one correspondence, an induction shows that (Pn(x))+e ⊇ Pn(x+e) for

every n. In particular, Pn(x) contains τp if and only if (Pn(x))+e contains τp+e. Therefore

if p is a breaking path in ∆ over U, then τp+e /∈ (Pn(x))+e and hence τp+e /∈ Pn(x+e),

that is, p+e is a breaking path in Γ over U, which proves our statement.

By the previous proposition, the class of all graphs containing a breaking path over

U (that is, of all non-(SU) graphs) is closed upwards in the minor ordering, hence, it is

determined by its minimal elements. This enables us to characterize (SU)-graphs by these

minimal elements � these are precisely the graphs which are forbidden minors for graphs

with property (SU). According to the theorem of Robertson and Seymour [18], there is no

in�nite anti-chain in the minor ordering, that is, the set of minimal non-(SU) graphs must

be �nite.

These observations are summarized in the following theorem:

Theorem 3.1.2. For any group variety U, there exists a �nite set of graphs Γ1, . . . ,Γn

such that the graphs containing a breaking path over U are exactly those having one of

Γ1, . . . ,Γn as a minor.

By Lemma 2.3.6, if U and V are group varieties with U ⊆ V, the forbidden minors

for U are smaller (in the minor ordering) then the ones for V.

The next statement contains simple observations regarding the nature of forbidden

minors.

Proposition 3.1.3. For any group variety U, the set of minimal non-(SU) graphs are

two-edge-connected graphs without loops.



22

(S  )

non-(S  )

U

U

Γ1
Γ2

Γ3

Figure 3.1.1. The partially ordered set of graphs and the forbidden minors

Proof. We show that if Γ is a non-(SU) graph which has loops or is not two-edge-

connected, then there exists a graph below Γ in the minor ordering which is also non-(SU).

Indeed, suppose that Γ has a loop e, and take Γ\{e}. For a path p in Γ, let p−e denote

the corresponding path in Γ obtained by omitting all occurrences of e, and for an arrow

x = (ιp, [p]U, τp) ∈ FgU(Γ), put x−e = (ιp, [p−e]U, τp) ∈ FgU(Γ\{e}). Then it is easy to

see by induction that Cn(x−e) ⊆ Cn(x)\{e} and Pn(x−e) ⊆ Pn(x)\{e} for every x and n,

and hence τp ∈ Pn(x−e) implies τp ∈ Pn(x)\{e}.

Now suppose Γ is not two-edge-connected, that is, there is a (u, v)-edge e of Γ for

which Γ\{e} is disconnected. Then let Γu=v denote the graph which we obtain from Γ by

contracting e. For a path p in Γ, let pu=v denote the path in Γu=v which we obtain by

omitting all occurrences of e from p, and for an arrow x = (ιp, [p]U, τp) ∈ FgU(Γ), put

xu=v = (ιpu=v, [pu=v]U, τpu=v) ∈ FgU(Γu=v). Observe that for co-terminal paths s, t in

Γ, s ≡U t implies su=v ≡U tu=v. This, by induction yields Cn(xu=v) ⊆ Cn(x)u=v and

Pn(xu=v) ⊆ Pn(x)u=v for all n, and hence τp ∈ Pn(xu=v) implies τp ∈ Pn(x)u=v.

3.2 F -inverse covers via Abelian groups

In this section, we describe the forbidden minors (in the sense of the previous section) for

all non-trivial varieties of Abelian groups. Recall that the variety of all Abelian groups is

denoted by Ab.

Theorem 3.2.1. A graph contains a breaking path over Ab if and only if its minors

contain at least one of the graphs in Figure 3.2.1.

Proof. First, suppose Γ is a graph which does not have either graph in Figure 3.2.1 as a

minor. Then Γ's connected components are either a cycles of length n for some n ∈ N0 with
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Figure 3.2.1. The forbidden minors for Ab

possibly some trees and loops attached, or graphs with at most 2 vertices. According to

Proposition 3.1.3, Γ contains a breaking path if and only if its two-edge-connected minors

do, which are then either cycles Γn of length n, or two-edge-connected graphs on at most

2 vertices. It is easy to see that in both cases, for any path p, the Ab-content Ĉ0(x) with

x = (ιp, [p]Ab, τp) is connected, therefore by Lemma 2.3.3, these graphs do not contain a

breaking path over Ab.

For the converse part, we prove that both graphs in Figure 3.2.1 contain a breaking path

over Ab � namely, the path a. For brevity, denote ιa, τa and ιc by u, v and w respectively,

and put x = (u, [a]Ab, v). Since both graphs are two-edge-connected, Lemma 2.3.3 implies

that C0(x) and the Ab-content Ĉ0(x) = 〈a〉 are (almost) the same, that is, P0(x) = 〈a〉 in

both cases. Now put x1 = (u, [c′]Ab, w), x2 = (w, [cab′c′]Ab, w), x3 = (w, [cb]Ab, v), and

note that x = x1x2x3, that is, C1(x) ⊆ P0(x) ∩ (P0(x1) ∪ P0(x2) ∪ P0(x3)). Again, using

Ĉ0 and Lemma 2.3.3, we obtain that Ĉ0(x1) = 〈c〉, Ĉ0(x2) = {w} ∪ 〈ab′〉, Ĉ0(x3) = 〈cb〉,

and so P0(x1) ∪ P0(x2) ∪ P0(x3) = 〈c〉 ∪ {w} ∪ 〈cb〉 = 〈cb〉 for both graphs in Figure 3.2.1.

Therefore C1(x) ⊆ 〈a〉 ∩ 〈cb〉 = {u, v} and so v /∈ P1(x) ⊆ {u}. Hence a is, indeed, a

breaking path over Ab in both graphs.

Corollary 3.2.2. For any non-trivial variety U of Abelian groups, a graph contains a

breaking path over U if and only if its minors contain at least one of the graphs in Figure

3.2.1.

Proof. The statement is proven in Theorem 3.2.1 if U = Ab. Now let U be a proper

subvariety of Ab. Then U is the variety of Abelian groups of exponent n for some positive

integer n ≥ 2. By Lemma 2.3.6, the forbidden minors for U must be minors of one of

the forbidden minors of Ab, that is, by Proposition 3.1.3, they are either the same, or the

only forbidden minor is the cycle Γ2 of length two. However, it is clear that Γ2 contains no
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breaking path overU for the same reason as in the case ofAb, which proves our statement.

Remark 3.2.3. For the variety 1 of trivial groups, a connected graph is (S1) if and only if

it is a tree with some loops attached. That is, even the smallest two-edge-connected graph

in the minor ordering, the cycle of length two contains a breaking path over 1.

Let us examine what these imply for F -inverse covers of Margolis�Meakin expansions.

As described in Section 2.3, the Margolis�Meakin expansion M(G) has an F -inverse cover

via U if and only if there is no breaking path in the Cayley graph of G over the variety

U. According to 3.2.1, a Cayley graph will contain no breaking path over a non-trivial

Abelian variety if and only if it is a cycle or a tree, that is, G is either cyclic or free. Of

course, if G is a free group generated by A, then M(G) is nothing but the free inverse

monoid generated by A, which is itself F -inverse, which is why it also has an F -inverse

cover via the trivial variety. This is consistent with the fact that trees contain no breaking

path even over 1.

We sum up our observations in the following theorem:

Theorem 3.2.4. A Margolis�Meakin expansion of a group admits an F -inverse cover via

an Abelian group if and only if the group is cyclic or free.

3.3 Outlook

Let us go back to the original question of the F -inverse cover problem, and discuss where

are results stand. Recall that by Result 2.3.2, an a�rmative answer to the F -inverse cover

problem is equivalent to the existence of a locally �nite group variety U for every graph Γ

such that Γ is (SU). So far, we have seen that locally �nite Abelian varieties only su�ce

for a very narrow class of graphs, in which there is nothing surprising. A step up from

Abelian varieties would be locally �nite varieties of meta-Abelian groups AbsAbr: groups

G in which there is a normal series {1}/N /G for which the factors N and G/N are in Abs

and Abr, respectively. The relatively free meta-Abelian groups have an easy-to-solve word

problem, which makes them ideal candidates, however, almost nothing is known about

(SAbsAbr). We do not currently know of a breaking path over these varieties. Some of

what is known is implied by the following fact, which can be found in [2, page 502]:

Result 3.3.1. If a graph Γ contains a breaking path over the variety U, then there is an

arrow x in FgU(Γ) such that C0(x) is not connected.
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The smallest graph (in the minor ordering) in which such an arrow x can occur over a

non-Abelian variety is the one in Figure 3.3.1. For meta-Abelian group varieties AbsAbr,

where r, s are co-primes or both 2, such a path is known: bcb′arbc′b′

a c
b

Figure 3.3.1. Smallest graph where C0(x) is not connected for some x

One possible direction for further research in the matter is to describe forbidden minors

for some locally �nite meta-Abelian varieties. By Lemma 2.3.6, these must be greater than

the Abelian forbidden minors and the graph above. Another approach would be to try

and �nd a locally �nite group variety U such that for every arrow x of FgU(Γ), C0(x) is

connected.

This thesis continues with di�erent generalization of Chapter 3. One way the results

of Section 3.2 can be interpreted is as characterizing Margolis�Meakin expansions M(G)

which have an F -inverse cover over a group which is an extension of some Abelian group

by G. One could formulate the very same question for general inverse monoids. In the

following chapter, we develop a framework analogous to the one in [2], which allows us to

investigate the proposed problem for a large class of E-unitary inverse monoids.
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Chapter 4

F -inverse covers of �nite-above

inverse monoids

4.1 Conditions on the existence of F -inverse covers

4.1.1 Finite-above inverse monoids

In this section, the framework introduced in [2] and Section 2.3 for Margolis�Meakin ex-

pansions resulting in the graph condition is generalized for a class of E-unitary inverse

monoids which also contains all �nite ones. Analogously, we formulate necessary and su�-

cient conditions for any member of this class to have an F -inverse cover via a given variety

of groups.

First, we de�ne the class of E-unitary inverse monoids we intend to consider. In

[2], when F -inverse covers are built from dual premorphisms, condition (2.3.1) is ensured

by considering canonical dual premorphisms which respect the distinguished generating

elements of the inverse monoids in question. The key lemma [2, Lemma 2.3] states that

if M is A-generated with A consisting of maximal elements with respect to the natural

partial order, then dual premorphisms satisfying (2.3.1) can be assumed to be canonical.

A key idea to the class of inverse monoids to be de�ned comes from the observation that [2,

Lemma 2.3] remains valid under an assumption weaker than M being A-generated where

the elements of A are maximal. We introduce the appropriate notion more generally for

inverse categories.

Let X be an inverse category and ∆ an arbitrary graph. We say that X is quasi-∆-

generated if a graph morphism εX : ∆ → X is given such that the subgraph ∆εX ∪ E(X )

generates X , where E(X ) is the subgraph of the idempotents of X . Clearly, a ∆-generated

inverse category is quasi-∆-generated. Furthermore, notice that a groupoid is quasi-∆-
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generated if and only if it is ∆-generated. If εX is injective, then we might assume that ∆

is a subgraph in X , i.e., εX is the inclusion graph morphism ∆→ X .

A dual premorphism ψ : Y → X between quasi-∆-generated inverse categories is called

canonical if εYψ = εX . Again, if εX is an inclusion, then εY is necessarily injective, and

so it also can be chosen to be an inclusion. However, if εY is injective (in particular, an

inclusion), then εX need not be injective, and so one cannot suppose in general that εX is

an inclusion.

In particular, if X ,Y are one-object inverse categories, that is, inverse monoids, and ∆

is a one-vertex graph, that is, a set, then this de�nes a quasi-A-generated inverse monoid

and a canonical dual premorphism between inverse monoids. We also point out that a

group is quasi-A-generated if and only if A-generated.

An inverse monoidM is called �nite-above if the setmω = {n ∈M : n ≥ m} is �nite for

every m ∈ M . For example, �nite inverse monoids and the Margolis�Meakin expansions

of A-generated groups are �nite-above. The class we investigate in this section is that of

all �nite-above E-unitary inverse monoids.

Notice that ifM is a �nite-above inverse monoid, then, for every element m ∈M , there

exists m′ ∈ M such that m′ ≥ m and m′ is maximal in M with respect to the natural

partial order. Denoting by maxM− the set of all elements of M distinct from 1 which are

maximal with respect to the natural partial order, we obtain that M is quasi-maxM−-

generated. Hence the following is straightforward.

Lemma 4.1.1. Every �nite-above inverse monoid is quasi-A-generated for some A ⊆

maxM−.

What is more, the following lemma shows that each quasi-generating set of a �nite-

above inverse monoid can be replaced in a natural way by one contained in maxM−. As

usual, the set of idempotents E(M) of M is simply denoted by E. Note that if A ⊆

maxM−, then A ∩ E = ∅. Here and later on, we need the following notation. If M is

quasi-A-generated and w is a word in A ∪ E∗, then the word in A \ E∗ ⊆ A∗ obtained from

w by deleting all letters from E is denoted by w−. Obviously, we have [w]M ≤ [w−]M .

Lemma 4.1.2. Let M be a �nite-above inverse monoid, and assume that A ⊆ M is a

quasi-generating set in M . For every a ∈ A, let us choose and �x a maximal element ã

such that a ≤ ã. Then Ã = {ã : a ∈ A} \ {1} is a quasi-generating set in M such that

Ã ⊆ maxM−.

Proof. Since A is a quasi-generating set, for every m ∈ M , there exists a word w ∈

A ∪ E∗ such that m = [w]M , whence m ≤ [w−]M follows. Moreover, the word ũ obtained
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from u = w− by substituting ã for every a ∈ A\E has the property that [u]M ≤ [ũ]M , and

so m ≤ [ũ]M holds. Thus m belongs to the inverse submonoid of M generated by Ã ∪ E.

This observation establishes that, within the class of �nite-above inverse monoids, it is

natural to restrict our consideration to quasi-generating sets contained in maxM−. Now

we present a statement on the E-unitary covers of �nite-above inverse monoids.

Lemma 4.1.3. Let M be an inverse monoid.

(1) If M is �nite-above, then so are its E-unitary covers.

(2) If M is quasi-A-generated for some A ⊆ maxM−, then every E-unitary cover of M

contains a quasi-A-generated inverse submonoid T with AεT ⊆ maxT− such that T is

an E-unitary cover of M .

Proof. Let U be any E-unitary cover of M , and let ϕ : U → M be an idempotent

separating and surjective homomorphism.

(1) Since ϕ is order preserving, we have tωϕ ⊆ (tϕ)ω for every t ∈ U , and the latter

set is �nite by assumption. To complete the proof, we verify that ϕ|tω (t ∈ U) is injective.

Let t ∈ U and y, y1 ∈ tω such that yϕ = y1ϕ. This equality implies yy−1 = y1y
−1
1 , since

ϕ is idempotent separating. Moreover, the relation y, y1 ≥ t implies y σ t σ y1, and so we

deduce y = y1, since U is E-unitary.

(2) For every a ∈ A, let us choose and �x an element ua ∈ U such that uaϕ = a,

consider the inverse submonoid T of U generated by the set {ua : a ∈ A} ∪ E(U), and

put εT : A→ T, a 7→ ua which is clearly injective. Obviously, T is a quasi-A-generated E-

unitary inverse monoid, and the restriction ϕ|T : T →M of ϕ is an idempotent separating

and surjective homomorphism. It remains to verify that AεT ⊆ maxT−. Observe that an

element m ∈ M is maximal if and only if the set mω is a singleton, and similarly for T .

Thus the last part of the proof of (1) shows that AεT ⊆ maxT . Since, for every a ∈ A,

the relation a 6= 1 implies ua 6= 1, the proof is complete.

This implies the following statement.

Corollary 4.1.4. Each quasi-A-generated �nite-above inverse monoidM with A ⊆ maxM−

has an E-unitary cover with the same properties.

This shows that the study of the F -inverse covers of �nite-above inverse monoids can be

reduced to the study of the F -inverse covers of �nite-above E-unitary inverse monoids in
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the same way as in the case of �nite inverse monoids generated by their maximal elements,

see [2]. Furthermore, the fundamental observations [2, Lemmas 2.3 and 2.4] can be easily

adapted to quasi-A-generated �nite-above inverse monoids.

Lemma 4.1.5. Let H be an A-generated group andM a quasi-A-generated inverse monoid.

Then any canonical dual premorphism from H to M has property (2.3.1).

Proof. Consider a canonical dual premorphism ψ : H → M , and let m ∈ M . Since M

is quasi-A-generated, we have m = [w]M for some w ∈ A ∪ E∗, and so m ≤ [w−]M where

w− ∈ A∗. Since ψ is a canonical dual premorphism, we obtain that [w−]Hψ ≥ [w−]M ≥ m.

Lemma 4.1.6. Let M be a quasi-A-generated inverse monoid such that A ⊆ maxM−. If

M has an F -inverse cover over a group H, then there exists an A-generated subgroup H ′

of H and a canonical dual premorphism from H ′ to M .

Proof. Let F be an F -inverse monoid and ϕ : F → M a surjective homomorphism.

Put H = F/σ, and consider the dual premorphism ψ : H → M, h 7→ mhϕ induced by

ϕ. Since ψ has property (2.3.1), for any a ∈ A, there exists ha ∈ H such that a ≤ haψ.

However, since a is maximal in M , this implies a = haψ. Now let H ′ be the subgroup of

H generated by {ha : a ∈ A}. Then the restriction ψ|H′ : H ′ →M of ψ is obviously a dual

premorphism. Moreover, the subgroup H ′ is A-generated with εH′ : A → H ′, a 7→ ha, so

ψ|H′ is also canonical.

So far, the question of whether a �nite-above inverse monoidM has an F -inverse cover

over the class of groups C closed under taking subgroups has been reduced to the question

of whether there is a canonical dual premorphism from an A-generated group in C to M ,

where A ⊆ maxM− is a quasi-generating set in M . The answer to this question does not

depend on the choice of A.

Let M be a quasi-A-generated inverse monoid with A ⊆ maxM−, H an A-generated

group in C, and let ψ : H →M be a canonical dual premorphism. Denote the A-generated

group M/σ by G, and note that σ\ : M → G is canonical. The product κ = ψσ\ is a

canonical dual premorphism from H to G. However, a dual premorphism between groups

is necessarily a homomorphism. Consequently, κ : H → G is a canonical, and therefore

surjective, homomorphism. Hence H is an A-generated extension of a group N by the

A-generated group G. If F is an F -inverse cover of M over H then, to simplify our

terminology, we also say that F is an F -inverse cover of M via N or via a class D of
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groups if N ∈ D. If we are only interested in whether M has an F -inverse cover via a

member of a given group variety U, then we may replace H by the `most general' A-

generated extension GU of a member of U by G. Thus Lemma 4.1.6 implies the following

assertion.

Proposition 4.1.7. Let M be a quasi-A-generated inverse monoid with A ⊆ maxM−, put

G = M/σ, and let U be a group variety. Then M has an F -inverse cover via the group

variety U if and only if there exists a canonical dual premorphism GU →M .

Therefore our question to be studied is reduced to the question of whether there exists

a canonical dual premorphism GU → M with G = M/σ for a given group variety U and

for a given quasi-A-generated inverse monoidM with A ⊆ maxM−. In the sequel, we deal

with this question in the case where M is �nite-above and E-unitary.

4.1.2 Closed subgraphs

Let M be an E-unitary inverse monoid, denote M/σ by G, and consider the inverse

category IM acted upon by G. Recall from Subsection 2.2.3 that the set of objects of IM

is G, and the set of (i, j) arrows are of the form (i,m, j), where m ∈ M and i ·mσ = j.

Given a path p = e1e2 · · · en in IM where ej = (ιej ,mj , τej) with mj ∈ M for every

j (j = 1, 2, . . . , n), consider the word w = m1m2 · · ·mn ∈M
∗
determined by the labels of

the arrows in p, and let us assign an element ofM to the path p by de�ning λ(p) = [w]M �

this is a key de�nition of the section. Notice that, for every path p, we have λ(p) = λ(pp′p),

and λ(p) is just the label of the arrow pϕ, where ϕ : IM
∗ → IM is the unique category

morphism such that eϕ = e and e′ϕ = e−1 for every e ∈ Arr IM . Since the local monoids

of the category IM are semilattices by Result 2.2.3, the following property follows from

[13, Lemma 2.6] (see also [6, Chapter VII] and [22, Section 12]), or can be proven from the

de�nition itself quite straightforwardly.

Lemma 4.1.8. For any co-terminal paths p, q in IM , if 〈p〉 = 〈q〉, then λ(p) = λ(q).

This allows us to assign an element of M to any birooted �nite connected subgraph: if

X is a �nite connected subgraph in IM and i, j ∈ VX, then let λ(i,j)(X) be λ(p), where p is

an (i, j)-path in IM with 〈p〉 = X.

Now assume that M is a quasi-A-generated E-unitary inverse monoid with A ⊆

maxM−, and recall that in this case, G = M/σ is an A-generated group. Based on

the ideas in [13], we now give a model for IM as a quasi-Γ-generated inverse category
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where Γ is the Cayley graph of G. Choose and �x a subset I of E such that A ∪ I gener-

ates M . In particular, if M is A-generated, then I can be chosen to be empty. Consider

the subgraphs Γ and ΓI of IM consisting of all edges with labels from A and from A ∪ I,

respectively. Notice that Γ is, in fact, the Cayley graph of the A-generated group G, and

ΓI is obtained from Γ by adding loops to it (with labels from I).

We are going to introduce a closure operator on the set Sub(ΓI) of all subgraphs of ΓI .

We need to make a few observations before.

Lemma 4.1.9. Let X,Y be �nite connected subgraphs in ΓI , and let i, j ∈ VX ∩ VY. If

λ(i,j)(X) ≤ λ(i,j)(Y), then λ(i,j)(X) = λ(i,j)(X ∪Y).

Proof. Let r and s be arbitrary (i, j)-paths spanning X and Y, respectively. Then

rr′s is an (i, j)-path spanning X ∪ Y. According to the assumption, λ(r) ≤ λ(s), so

λ(rr′s) = λ(r).

Lemma 4.1.10. Let X,Y be �nite connected subgraphs in ΓI , and let i, j ∈ VX ∩ VY. If

λ(i,j)(X) ≤ λ(i,j)(Y), then λ(k,l)(X) ≤ λ(k,l)(Y) for every k, l ∈ VX ∩ VY.

Proof. Let r and s be (i, j)-paths spanning X and Y, respectively, and let p1 and q1 be

(k, i)-paths in X and Y, and let p2 and q2 be (j, l)-paths in X and Y, respectively. Then

p1rp2 and q1sq2 are (k, l)-paths spanning X and Y, respectively. Therefore, by applying

Lemmas 4.1.8 and 4.1.9, we obtain that

λ(k,l)(X) = λ(p1rp2) = λ(p1)λ(i,j)(X)λ(p2) = λ(p1)λ(i,j)(X ∪Y)λ(p2)

= λ(p1)λ(rr′s)λ(p2) = λ(p1rr
′sp2) = λ(q1rr

′sq2)

≤ λ(q1sq2) = λ(k,l)(Y).

Given a �nite connected subgraph X in ΓI with vertices i, j ∈ VX, consider the subgraph

Xcl =
⋃
{Y ∈ Sub(ΓI) : Y is �nite and connected, i, j ∈ VY,

and λ(i,j)(Y) ≥ λ(i,j)(X)}

of ΓI which is clearly connected. Note that, by Lemma 4.1.10, the graph Xcl is independent

of the choice of i, j. Moreover, by Lemma 4.1.9, the same subgraph is obtained if the

relation `≥' is replaced by `=' in the de�nition of Xcl. More generally, for any X ∈ Sub(ΓI),

let us de�ne the subgraph Xcl in the following manner:

Xcl =
⋃
{Ycl : Y is a �nite and connected subgraph of X}.
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It is routine to check that X→ Xcl is a closure operator on Sub(ΓI), that is, X ⊆ Xcl,

(Xcl)
cl

= Xcl, and X ⊆ X1 implies Xcl ⊆ X1
cl for any X,X1 ∈ Sub(ΓI). As usual, a

subgraph X of ΓI is said to be closed if X = Xcl. Note that, in particular, we have

∅cl
i =

⋃{
〈h〉 : h is an i-cycle in ΓI such that λ(h) = 1

}
,

and so ∅i is closed if and only if there is no a ∈ A such that aR 1 or aL 1. Furthermore, we

have Xcl ⊇ ∅cl
i for every X ∈ Sub(ΓI) and i ∈ VXcl . In particular, we see that the closure

of a �nite subgraph need not be �nite. For example, if M is the bicyclic inverse monoid

generated by A = {a} where aa−1 = 1, then a is a maximal element in M , M/σ is the

in�nite cyclic group generated by aσ, and we have ∅cl
1 = {((aσ)n, a, (aσ)n+1) : n ∈ N0}.

Denote the set of all closed subgraphs of ΓI by ClSub(ΓI), and its subset consisting

of the closures of all �nite connected subgraphs by ClSubfc(Γ
I). Moreover, for any family

Xj (j ∈ J) of subgraphs of ΓI , de�ne
∨
j∈J Xj =

(⋃
j∈J Xj

)cl
. The following lemmas

formulate important properties of closed subgraphs which can be easily checked.

Lemma 4.1.11. For every quasi-A-generated E-unitary inverse monoid M with A ⊆

maxM−, the following statements hold.

(1) Each component of a closed subgraph is closed.

(2) The partially ordered set (ClSub(ΓI);⊆) forms a complete lattice with respect to the

usual intersection and the operation
∨

de�ned above.

(3) For any X,Y ∈ ClSubfc(Γ
I) with VX ∩ VY 6= ∅, we have X ∨Y ∈ ClSubfc(Γ

I).

(4) For any �nite connected subgraph in ΓI and for any g ∈ G, we have g(Xcl) = (gX)cl.

Consequently, the action of G on Sub(ΓI) restricts to an action on ClSub(ΓI) and to

an action on ClSubfc(Γ
I), respectively.

We prove that the descending chain condition holds for ClSubfc(Γ
I) ifM is �nite-above.

Lemma 4.1.12. If M is a quasi-A-generated �nite-above E-unitary inverse monoid with

A ⊆ maxM−, then, for every X ∈ ClSubfc(Γ
I) and i ∈ VX, there are only �nitely many

closed connected subgraphs in X containing the vertex i, and all belong to ClSubfc(Γ
I).

Proof. Let X ∈ ClSubfc(Γ
I), whence X = Ycl for some �nite connected subgraph Y,

and let i ∈ VY. If Z is any �nite connected subgraph such that X ⊇ Zcl and i ∈ VZ,

then λ(i,i)(Y) ≤ λ(i,i)(Z). Since M is �nite-above, the set Λ = {X0 ∈ ClSubfc(Γ
I) : X0 ⊆

X and i ∈ VX0} is �nite. If X1 ∈ ClSub(ΓI) is connected with X1 ⊆ X and i ∈ VX1 , then,
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by de�nition, X1 is a join of a subset of the �nite set Λ which is closed under ∨. Hence it

follows that X1 belongs to Λ, i.e., X1 ∈ ClSubfc(Γ
I).

We de�ne an inverse category Xcl(Γ
I) in the following way: its set of objects is G, its

set of (i, j)-arrows (i, j ∈ G) is

Xcl(Γ
I)(i, j) = {(i,X, j) : X ∈ ClSubfc(Γ) and i, j ∈ VX},

and the product of two consecutive arrows is de�ned by

(i,X, j)(j,Y, k) = (i,X ∨Y, k).

It can be checked directly (see also [13]) that Xcl(Γ
I)→ IM , (i,X, j) 7→ (i, λ(i,j)(X), j) is a

category isomorphism. Hence Xcl(Γ
I) is an inverse category with (i,X, j)−1 = (j,X, i), it is

locally a semilattice, and the natural partial order on it is the following: (i,X, j) ≤ (k,Y, l)

if and only if i = k, j = l and X ⊇ Y. Moreover, the group G acts on it by the rule

g(i,X, j) = (gi, gX, gj) transitively and without �xed points. The inverse category Xcl(Γ
I)

is ΓI -generated with εIXcl(ΓI)
: ΓI → Xcl(Γ

I), e 7→ (ιe, ecl, τe). Therefore Xcl(Γ
I) is also

quasi-Γ-generated with εXcl(ΓI) = εIXcl(ΓI)
|Γ : Γ → Xcl(Γ

I). By Results 2.2.1 and 2.2.3,

hence we deduce the following proposition.

Proposition 4.1.13. (1) The E-unitary inverse monoid Xcl(Γ
I)/G can be described, up

to isomorphism, in the following way: its underlying set is

Xcl(Γ
I)/G = {(X, g) : X ∈ ClSubfc(Γ

I), 1, g ∈ VX},

and the multiplication is de�ned by

(X, g)(Y, h) = (X ∨ gY, gh).

(2) The monoid Xcl(Γ
I)/G is quasi-A-generated with

εXcl(ΓI)/G : A→ Xcl(Γ
I)/G, a 7→ (ecl

a , aσ).

(3) The map ϕ : Xcl(Γ
I)/G→M, (X, g) 7→ λ(1,g)(X) is a canonical isomorphism.

Remark 4.1.14. Proposition 4.1.13 provides a representation of M as a P -semigroup.

The McAlister triple involved consists of G, the partially ordered set (ClSubfc(Γ
I);⊆) and

its order ideal and subsemilattice ({X ∈ ClSubfc(Γ
I), 1 ∈ VX};∨).
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The inverse category Xcl(Γ
I) can very clearly be seen as an analogue of FgSl(Γ), and

Xcl(Γ
I)/G of M(G). In the sequel, further generalizing [2], the fact that Xcl(Γ

I)/G is

isomorphic to M will enable us to �nd F -inverse covers directly to M . Also, notice that

if we apply the construction before Proposition 4.1.13 for M being the Margolis�Meakin

expansion M(G) of an A-generated group G with A ⊆ G \ {1}, then ΓI = Γ, the Cayley

graph of G, the closure operator X → Xcl is identical on Sub(Γ), and the operation ∨

coincides with the usual ∪. Thus the category Xcl(Γ
I) is just the category isomorphic to

IM(G) which is presented after Result 2.2.3, and the map ϕ given in the last statement of

the proposition is, in fact, identical.

The goal of this section is to give equivalent conditions for the existence of a canonical

dual premorphism GU → M . The previous proposition reformulates it by replacing M

with Xcl(Γ
I)/G. Since GU = FgU(Γ)/G, it is natural to study the connection between the

canonical dual premorphisms FgU(Γ)/G → Xcl(Γ
I)/G and the canonical dual premorph-

isms FgU(Γ)→ Xcl(Γ
I). As one expects, there is a natural correspondence between these

formulated in the next lemma in a more general setting. The proof is straightforward, it

is left to the reader.

Lemma 4.1.15. Let ∆ be any graph, and let Y be a ∆-generated, and X a quasi-∆-

generated inverse category containing ∆. Suppose that G is a group acting on both X and

Y transitively and without �xed points in a way that ∆ is invariant with respect to both

actions, and the two actions coincide on ∆. Let i be a vertex in ∆.

(1) We have ObX = V∆ = ObY, and so the actions of G on ObX and ObY coincide.

(2) The inverse monoid Yi is ∆(i,−)-generated, and the inverse monoid Xi is quasi-

∆(i,−)-generated with the maps

εYi : ∆(i,−)→ Yi, e 7→ (e, g), provided e ∈ Y(i, gi),

and

εXi : ∆(i,−)→ Xi, e 7→ (e, g), provided e ∈ X (i, gi),

respectively.

(3) If Ψ: Y → X is a canonical dual premorphism such that

(gy)Ψ = g(yΨ) for every g ∈ G and y ∈ ArrY, (4.1.1)

then ι(yΨ) = ιy, τ(yΨ) = τy, and the map ψ : Yi → Xi, (e, g) 7→ (eΨ, g) is a canonical

dual premorphism.
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(4) If ψ : Yi → Xi is a canonical dual premorphism and (e, g)ψ = (ẽ, g̃) for some (e, g) ∈ Yi

and (ẽ, g̃) ∈ Xi, then g = g̃, ιe = ιẽ and τe = τ ẽ. Thus a graph morphism Ψ: Y → X

can be de�ned such that, for any arrow y ∈ Y(gi, hi), we set yΨ to be the unique

arrow x ∈ X (gi, hi) such that (g
−1
y, g−1h)ψ = (g

−1
x, g−1h). This Ψ is a canonical dual

premorphism satisfying (4.1.1).

From now on, letM be a quasi-A-generated �nite-above E-unitary inverse monoid with

A ⊆ maxM−, and let U be an arbitrary group variety. Motivated by Lemma 4.1.15, we in-

tend to �nd a necessary and su�cient condition in order that a canonical dual premorphism

FgU(Γ)→ Xcl(Γ
I) exists ful�lling condition (4.1.1).

4.1.3 A graph condition

Analogously to [2], we are going to assign two sequences of subgraphs of ΓI to any arrow

x of FgU(Γ). Let

Ccl
0 (x) =

⋂
{〈p〉cl : p is a (ιx, τx)-path in Γ such that x = (ιx, [p]U, τx)},

and let P cl
0 (x) be the component of Ccl

0 (x) containing ιx. Suppose that, for some n (n ≥ 0),

the subgraphs Ccl
n (x) and P cl

n (x) are de�ned for every arrow x of FgU(Γ). Then let

Ccl
n+1(x) =

⋂
{P cl

n (x1) ∨ · · · ∨ P cl
n (xk) : k ∈ N0, x1, . . . , xk ∈ FgU(Γ)

are consecutive arrows, and x = x1 · · ·xk},

and again, let P cl
n+1(x) be the component of Ccl

n+1(x) containing ιx. Applying Lemma

4.1.11 we see that, for every n, the subgraph P cl
n (x) of ΓI is a component of an intersection

of closed subgraphs, so P cl
n (x) ∈ ClSub(ΓI) and is connected. Also, P cl

n (x) contains ιx for

all n. Moreover, observe that

Ccl
0 (x) ⊇ P cl

0 (x) ⊇ · · · ⊇ Ccl
n (x) ⊇ P cl

n (x) ⊇ Ccl
n+1(x) ⊇ P cl

n+1(x) ⊇ · · ·

for all x and n. By Lemma 4.1.12 we deduce that, for every x, all these subgraphs belong

to ClSubfc(Γ
I), and there exists nx ∈ N0 such that P cl

nx
(x) = P cl

nx+k(x) for every k ∈ N0.

For brevity, denote P cl
nx

(x) by P cl(x). Furthermore, for any consecutive arrows x and y,

we have

P cl
n+1(xy) ⊆ Ccl

n+1(xy) ⊆ P cl
n (x) ∨ P cl

n (y),

and so

P cl(xy) ⊆ P cl(x) ∨ P cl(y)

is implied.
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Proposition 4.1.16. There exists a canonical dual premorphism ψ : FgU(Γ)→ Xcl(Γ
I) if

and only if P cl
n (x) contains τx for every n ∈ N0 and for every x ∈ FgU(Γ), or, equivalently,

if and only if P cl(x) contains τx for every x ∈ FgU(Γ).

Proof. Let ψ : FgU(Γ) → Xcl(Γ
I) be a canonical dual premorphism. We denote the

middle entry of xψ by µ(xψ), which belongs to ClSubfc(Γ
I) and contains ιx and τx. The

fact that ψ is a dual premorphism means that µ((xy)ψ) ⊆ µ(xψ) ∨ µ(yψ). Moreover,

ψ is canonical, therefore we have (ιe, [e]U, τe)ψ = (ιe, ecl, τe) for every e ∈ EΓ. Hence

for an arbitrary representation of an arrow x = (ιx, [p]U, τx), where p = e1 · · · en is a

(ιx, τx)-path in Γ and e1, . . . , en ∈ EΓ, we have

µ(xψ) ⊆ µ((ιe1, [e1]U, τe1)ψ) ∨ · · · ∨ µ((ιen, [en]U, τen)ψ)

= ecl
1 ∨ · · · ∨ ecl

n = 〈p〉cl,

which implies µ(xψ) ⊆ Ccl
0 (x). Since µ(xψ) is connected and contains ιx, µ(xψ) ⊆ P cl

0 (x),

and this implies τx ∈ P cl
0 (x).

Now suppose n ≥ 0 and µ(yψ) ⊆ P cl
n (y) for any arrow y. Let x = x1 · · ·xk be an

arbitrary decomposition in FgU(Γ). Then

µ(xψ) ⊆ µ(x1ψ) ∨ · · · ∨ µ(xkψ) ⊆ P cl
n (x1) ∨ · · · ∨ P cl

n (xk)

holds, whence µ(xψ) ⊆ Ccl
n+1(x). As before, µ(xψ) is connected and contains both ιx and

τx, so we see that µ(xψ) ⊆ P cl
n+1(x) and τx ∈ P cl

n+1(x). This proves the `only if' part of

the statement.

For the converse, suppose that for any arrow x in FgU(Γ), we have τx ∈ P cl
n (x) for all

n ∈ N0. We have seen above that P cl(x) ∈ ClSubfc(Γ
I), and P cl(xy) ⊆ P cl(x)∨ P cl(y) for

any arrows x, y. Furthermore, the equality P cl(x) = P cl(x−1) can be easily checked for all

arrows x by de�nition. Now consider the map P cl which assigns the arrow (ιx, P cl(x), τx) of

Xcl(Γ
I) to the arrow x of FgU(Γ). By the previous observations, this is a dual premorphism

from FgU(Γ) to Xcl(Γ
I), and the image of (ιe, [e]U, τe) is (ιe, ecl, τe), hence it is also

canonical.

The next lemma states that the canonical dual premorphism P cl constructed in the

previous proof has property (4.1.1).

Lemma 4.1.17. For every g ∈ G and for any arrow x of FgU(Γ), we have P cl(gx) =

gP cl(x).



37

Proof. One can see by de�nition that Ccl
0 (gx) = gCcl

0 (x) for all x ∈ FgU(Γ), and so

P cl
0 (gx) = gP cl

0 (x) also holds. By making use of Lemma 4.1.11(4), an easy induction shows

that Ccl
n (gx) = gCcl

n (x) and P cl
n (gx) = gP cl

n (x) for all n.

Recall that the categories FgU(Γ) and Xcl(Γ
I) satisfy the assumptions of Lemma 4.1.15.

Combining this lemma with Proposition 4.1.16 and Lemma 4.1.17, we obtain the following.

Proposition 4.1.18. There exists a canonical dual premorphism FgU(Γ)→ Xcl(Γ
I) if and

only if there exists a canonical dual premorphism GU = FgU(Γ)/G→ Xcl(Γ
I)/G.

The main results of the section, see Propositions 4.1.7, 4.1.13, 4.1.16 and 4.1.18, are

summed up in the following theorem.

Theorem 4.1.19. Let M be a quasi-A-generated �nite-above E-unitary inverse monoid

with A ⊆ maxM−, put G = M/σ, and let U be a group variety. Let Γ be the Cayley graph

of G. The following statements are equivalent.

(1) M has an F -inverse cover via the group variety U.

(2) There exists a canonical dual premorphism GU →M .

(3) There exists a canonical dual premorphism GU → Xcl(Γ
I)/G.

(4) There exists a canonical dual premorphism FgU(Γ)→ Xcl(Γ
I).

(5) For any arrow x in FgU(Γ) and for any n ∈ N0, the graph P cl
n (x) contains τx.

As an example, we describe a class of non-F -inverse �nite-above inverse monoids

for which Theorem 4.1.19 yields F -inverse covers via any non-trivial group variety in

a straightforward way. The following observation on the series Ccl
0 (x), Ccl

1 (x), . . . and

P cl
0 (x), P cl

1 (x), . . . of subgraphs plays a crucial role in our argument. Recall that, given

a group variety U and a word w ∈ A∗, the U-content cU(w) of w consists of the elements

a ∈ A such that [w]U depends on a.

Proposition 4.1.20. (1) If x = (ιx, [p]U, τx) for some (ιx, τx)-path p in Γ then Ccl
0 (x) =

〈cU(p)〉cl.

(2) If Ccl
0 (x) is connected for every arrow x ∈ FgU(Γ) then Ccl

0 (x) = P cl(x) for every

x ∈ FgU(Γ).

Proof. The proof of 2.3.3 can be easily adapted to show Lemma (1). By assumption in

(2), we have P cl
0 (x) = Ccl

0 (x) for any x ∈ FgU(Γ). Applying (1), an easy induction implies
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that Ccl
n+1(x) = P cl

n (x) and P cl
n+1(x) = Ccl

n+1(x) for every n ∈ N0 and x ∈ FgU(Γ). This

veri�es statement (2).

Example 4.1.21. Let G be a group acting on a semilattice S where S has no greatest

element, and for every s ∈ S, the set of elements greater than s is �nite. Consider a

semidirect product S oG of S by G, and let M = (S oG)1, the inverse monoid obtained

from SoG by adjoining an identity element 1. ThenM is a �nite-above E-unitary inverse

monoid which is not F -inverse, but it has an F -inverse cover via any non-trivial group

variety.

Notice that SoG has no identity element, therefore M \ {1} = SoG. Recall that the

rules of multiplication and taking inverse in M \ {1} are as follows:

(s, g)(t, h) = (s · gt, gh) and (s, g)−1 = (g
−1
s, g−1).

The semilattice of idempotents of M is (S ×{1G})∪ {1}, and the natural partial order on

M \ {1} is given by

(s, g) ≤ (t, h) if and only if s ≤ t and g = h.

The kernel of the projection of M \ {1} onto G, which is clearly a homomorphism, is the

least group congruence on M \ {1}. Hence M \ {1}, and therefore M also is E-unitary.

Moreover, M is �nite-above and non-F -inverse due to the conditions imposed on S. By

Lemma 4.1.1, M is quasi-A-generated with A = maxM−, and it is easy to check that

maxM− = maxS × (G \ {1G}) where maxS denotes the maximal elements of S.

Now that all conditions of Theorem 4.1.19 are satis�ed, construct the graph Γ: its set

of vertices is VΓ = G and set of edges is

EΓ = {(g1, (s
′, g), g2) : s′ ∈ maxS and g1, g2, g ∈ G

such that g 6= 1G and g1g = g2},

where ι(g1, (s
′, g), g2) = g1 and τ(g1, (s

′, g), g2) = g2. (This is essentially the Cayley graph

of the A-generated group G with εG : A → G, (s′, g) 7→ g, and it is obtained from the

Cayley graph of G, considered as a (G \ {1G})-generated group, by replacing each edge

with |maxS| copies.) Let U be a non-trivial group variety. By Proposition 4.1.20, it

su�ces to prove that, for each edge e of Γ, the set of vertices of the graph ecl is G. For,

in this case, statement (1) obviously shows that Ccl
0 (x) is connected for every arrow x in

FgU(Γ), and so statement (2) implies that Theorem 4.1.19(5) holds for M . Our statement

for M follows by the equivalence of Theorem 4.1.19(1) and (5).



39

Consider an arbitrary edge e = (g1, (s
′, g), g2) ∈ EΓ and an arbitrary element h ∈ G,

and prove that h is a vertex of ecl. Since g1 is obviously a vertex of ecl, we can assume

that h 6= g1. Then we have h = g1u for some u ∈ G \ {1G}, and λ(e) = (s′, g) =

(s′, u)(s′, u)−1(s′, g). This implies that (g1, (s
′, u), h) is an edge in Γ belonging to ecl, and

so h is, indeed, a vertex of ecl.

This example sheds light on the generality of our construction in contrast with that in

[2]. By the main result of Chapter 3, the Margolis�Meakin expansion of a group admits an

F -inverse cover via an Abelian group if and only if the group is cyclic or free. The previous

example shows that, for any group G, there exist �nite-above E-unitary inverse monoids

with greatest group homomorphic image G that fail to be F -inverse but admit F -inverse

covers via Abelian groups.

4.2 F -inverse covers via Abelian groups

In this section, we make further inquiries on how Theorem 3.2.4 generalizes for �nite-above

E-unitary inverse monoids. The main result of the section gives a su�cient condition for

such an F -inverse cover not to exist, formulated merely by means of the natural partial

order and the least group congruence.

An easy consequence of Theorem 4.1.19 is the following:

Proposition 4.2.1. If M is a �nite-above E-unitary inverse monoid with |M/σ| ≤ 2,

then M has an F -inverse cover via any non-trivial group variety. In particular, M has an

F -inverse cover via an elementary Abelian p-group for any prime p.

Proof. If |M/σ| = 1, that is, M is a semilattice monoid, then M is itself F -inverse,

and the statement holds for any group variety, including the trivial one.

Now we consider the case |M/σ| = 2. Let A ⊆ maxM− such that M is quasi-A-

generated. Then the graph Γ and the inverse category Xcl(Γ
I) has two vertices and objects,

say, 1 and u. If U is a non-trivial group variety, and q is a (1, u)-path in Γ, then u 6= 1

implies that cU(q) is non-empty. Thus Ccl
0 (x) is connected for every arrow x in FgU(Γ),

and Proposition 4.1.20 shows that condition (5) in Theorem 4.1.19 is satis�ed, completing

the proof.

This proposition shows that if a �nite-above E-unitary inverse monoid M has no F -

inverse cover via an Abelian group (and consequently,M itself is not F -inverse), thenM/σ
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Figure 4.2.1. The most general constellation of a, b, and v in IM

has at least two elements distinct from 1, and there exists a σ-class in M containing at

least two maximal elements.

From now on, letM be a �nite-above E-unitary inverse monoid. Let us choose elements

a, b ∈M with a σ b, and a σ-class v ∈M/σ. Denote by max v the set of maximal elements

of the σ-class v. Notice that max 1 = 1M , and if v 6= 1, then max v = v ∩maxM−.

Consider the following set of idempotents:

H(a, b; v) = {d−1ab−1d : d ∈ max v}.

The set of all upper bounds of H(a, b; v) is clearly
⋂
{hω : h ∈ H(a, b; v)}. Since M is

�nite-above, hω is a �nite subsemilattice of E for every h ∈ H(a, b; v) which contains 1M .

Therefore
⋂
{hω : h ∈ H(a, b; v)} is also a �nite subsemilattice of E containing 1M . This

implies that H(a, b; v) has a least upper bound which we denote by h(a, b; v). The following

condition will play a crucial role in this section:

(C) c · h(a, b; v) · c−1b 6≤ a for some c ∈ max v.

Note that if (C) is satis�ed, then it is not di�cult to check that 1, u = aσ = bσ, v are

pairwise distinct elements of M/σ. Moreover, a and b are distinct, and max v contains an

element d di�erent from c. Figure 1 shows the arrows of IM related to condition (C).

Denote the variety of Abelian groups by Ab. The main result of the section is based

on the following statement.

Proposition 4.2.2. Let M be a �nite-above E-unitary inverse monoid such that condition

(C) is satis�ed for some a, b ∈ maxM− with a σ b and for some v ∈ M/σ, and consider

an appropriate c ∈ max v. Let A be a quasi-generating set in M such that A ⊆ maxM−

and a, b, c ∈ A, and consider M as a quasi-A-generated inverse monoid. Then there exists

an arrow x in FgAb(Γ) such that P cl
1 (x) does not contain τx.

Proof. For the proof, we adapt the proof of the converse part of Theorem 3.2.1 to the

framework of the chapter. For every d ∈ A, denote the edge (1, d, dσ) of Γ by d, and put
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u = aσ = bσ. Furthermore, consider the following arrows in FgAb(Γ):

x = (1, [a]Ab, u), y = (1, [b]Ab, u), z = (1, [c]Ab, v).

Then we have z−1xy−1z = (v, [c′ab′c]Ab, v) ∈ FgAb(Γ), where [c′ab′c]Ab = [ab′]Ab in

FAb(EΓ). For brevity, put h = h(a, b; v), and let o be a v-cycle in ΓI such that λ(o) = h.

It su�ces to verify the following two statements:

P cl
0 (z−1xy−1z) ⊆ 〈o〉cl, (4.2.1)

〈a〉cl ∩ 〈coc′b〉cl contains no (1, u)-path. (4.2.2)

For, we have [c(c′ab′c)c′b]Ab = [a]Ab, whence z(z−1xy−1z)z−1y = x, and so

Ccl
1 (x) ⊆ 〈a〉cl ∩ (〈c〉cl ∨ P cl

0 (z−1xy−1z) ∨ 〈c′b〉cl).

Here (4.2.1) implies

〈c〉cl ∨ P cl
0 (z−1xy−1z) ∨ 〈c′b〉cl ⊆ 〈c〉cl ∨ 〈o〉cl ∨ 〈c′b〉cl = 〈coc′b〉cl,

and so it follows by (4.2.2) that Ccl
1 (x) contains no (1, u)-path.

Contrary to (4.2.2), assume that the graph 〈a〉cl ∩ 〈coc′b〉cl contains a (1, u)-path, say

s. Then λ(s) ≥ λ(a) = a and λ(s) ≥ λ(coc′b) = chc−1b. Since a is a maximal element

in M , the �rst inequality implies λ(s) = a, and so the second contradicts (C). This shows

that (4.2.2) holds.

To prove (4.2.1), �rst we verify that

Ccl
0 (z−1xy−1z) =

⋂{
〈t′ab′t〉cl : t is a (1, v)-path

}
. (4.2.3)

It su�ces to show that, for every v-cycle s with [s]Ab = [c′ab′c]Ab = [ab′]Ab, there exists

a (1, v)-path t such that 〈s〉 = 〈t′ab′t〉.

Let s be a v-cycle such that [s]Ab = [ab′]Ab. Since ab′ is a non-trivial simple cycle,

the former equality implies that s necessarily contains both a and b′. Independently of the

occurrences of a and b in s, the edges a and b′ appear somewhere in the v-cycle s̃ = ss′s

in this order, that is, s̃ = t0at1b
′t2 for appropriate paths t0, t1, t2. Moreover, we obviously

have 〈s̃〉 = 〈s〉 and [s̃]Ab = [s]Ab. Putting s̄ = t0ab
′t, where t = bt1b

′t2s
′s, we easily see

that 〈s̄〉 = 〈s〉 = 〈t〉 and [s̄]Ab = [s]Ab. Finally, the equalities [t0ab
′t]Ab = [s]Ab = [ab′]Ab

imply that [t0]Ab = [t′]Ab, and so [s]Ab = [t′ab′t]Ab and 〈s〉 = 〈t′ab′t〉 follow. This

completes the proof of (4.2.3).

Turning to the proof of (4.2.1), assume that k is a v-cycle in Ccl
0 (z−1xy−1z). By (4.2.3)

we see that

λ(k) ≥ λ(t′ab′t) = λ(t)−1ab−1λ(t)
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for every (1, v)-path t. Since there exists a (1, v)-path t with λ(t) = d for every d ∈

max v, we obtain that λ(k) is an upper bound of H(a, b; v), and so λ(k) ≥ h = λ(o)

and P cl
0 (z−1xy−1z) ⊆ Ccl

0 (z−1xy−1z) ⊆ 〈o〉cl. This veri�es (4.2.1), and the proof of the

proposition is complete.

Combining Proposition 4.2.2 and Theorem 4.1.19(1) and (5), we obtain the following

su�cient condition for a �nite-above E-unitary inverse monoid to have no F -inverse cover

via Abelian groups.

Theorem 4.2.3. If M is a �nite-above E-unitary inverse monoid such that for some

a, b ∈ maxM with a σ b and for some v ∈M/σ, condition (C) is satis�ed, then M has no

F -inverse cover via Abelian groups.
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Summary

The topic of the thesis falls in the area of semigroup theory, the class of semigroups

considered is called inverse monoids. They are monoids de�ned by the property that every

element x has a unique inverse x−1 such that xx−1x = x, and x−1xx−1 = x−1 hold. They

are one of the many generalizations of groups. One way they naturally arise is through

partial symmetries � to put it informally, inverse monoids are to partial symmetries as

what groups are to symmetries.

An important property of inverse monoids is that its idempotens commute, therefore

form a semilattice. Inverse monoids also come equipped with a natural partial order, which

extends the partial order on idempotens induced by the semilattice structure. It is de�ned

by s ≤ t if and only if there exists and idempotent e such that s = te. It is not hard to see

that factoring an inverse monoid by a congruence which collapses all idempotents yields a

group, with the class containing all the idempotents as the identity element. Each inverse

monoid M has a smallest group congruence, denoted by σ, and a corresponding greatest

group homomorphic image M/σ.

A class of inverse monoids which play an important role in the thesis is called E-

unitary inverse monoids, which is de�ned by the property that the σ-class containing the

idempotents contains nothing but the idempotents. By a famous theorem of McAlister

known as the P -theorem, each E-unitary inverse monoid can be assembled from a group,

a semilattice and a partially ordered set. Hence, E-unitary inverse monoids are, in a

way, `known'. This is what gives particular signi�cance to the McAlister covering theorem

stating that every inverse monoid has an E-unitary cover, that is, every inverse monoid

is a homomorphic image of an E-unitary inverse monoid under a homomorphism which

is injective on the idempotens (this property is called idempotent-separating). It has also

been shown that �nite inverse monoids have �nite E-unitary covers.

The other class of inverse monoids speci�ed in the title is the one of F -inverse monoids.

An inverse monoid is called F -inverse if its σ-classes have a greatest element with respect

to the natural partial order. F -inverse monoids are always E-unitary. It is a well-known



44

folklore result that every inverse monoid has an F -inverse cover, that is, every inverse

monoid M is a homomorphic image of an F -inverse monoid by an idempotent-separating

homomorphism. We also call F an F -inverse cover of the inverse monoidM over the group

G if G is isomorphic toM/σ. However, in this case, the proof always produces an F -inverse

cover over a free group, and so it is always in�nite. The main motivation of the research

presented in this dissertation is the following:

Open problem (Henckell and Rhodes, [7]). Does every �nite inverse monoid admit a

�nite F -inverse cover?

By the McAlister covering theorem, it su�ces to restrict our attention to F -inverse

covers of E-unitary inverse monoids, as we do throughout the thesis. The most important

antecedent to the research presented in the dissertation is the paper of Auinger and Szendrei

[2] on the question. They go a step further by applying that it is su�cient to restrict to

a special class of E-unitary inverse monoids called Margolis�Meakin expansions, which

have a very convenient structure. Thus Auinger and Szendrei are able to reformulate the

F -inverse cover problem in the following way.

Let Γ be (directed) graph. There is an evident notion of paths in directed graphs,

however, paths in this thesis are regarded in the larger graph Γ where Γ is extended by

formal reverses of edges of Γ. Hence the path p, as a sequence of edges and reverse edges,

represents a word in the free monoid EΓ
∗
with involution ′. If U is a variety of inverse

monoids, then the value of p in the relatively free inverse monoid FU(EΓ) is denoted by

[p]U.

The free gU-category on Γ denoted by FgU(Γ), as introduced in [22], is given as follows:

its set of objects is VΓ, and, for any pair of objects i, j, the set of (i, j)-arrows is

FgU(Γ)(i, j) = {(i, [p]U, j) : p is an (i, j)-path in Γ},

and the product of consecutive arrows is de�ned by

(i, [p]U, j)(j, [q]U, k) = (i, [pq]U, k).

We assign to each arrow x of FgU(Γ) two sequences of �nite subgraphs of Γ as follows:

let

C0(x) =
⋂
{〈p〉 : (ιp, [p]U, τp) = x}, (4.2.4)

and let P0(x) be the connected component of C0(x) containing ιx. If Cn(x), Pn(x) are

already de�ned for all x, then put

Cn+1(x) =
⋂
{Pn(x1) ∪ · · · ∪ Pn(xk) : k ∈ N, x1 · · ·xk = x},
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and again, let Pn+1(x) be the connected component of Cn+1(x) containing ιx.

It is easy to see that

C0(x) ⊇ P0(x) ⊇ · · · ⊇ Cn(x) ⊇ Pn(x) ⊇ Cn+1(x) ⊇ Pn+1(x) ⊇ · · ·

for all x and n. We de�ne P (x) to be
⋂∞
n=0 Pn(x), which is a connected subgraph of Γ

containing ιx. According to [2, Lemma 3.1], �nite inverse monoids admit a �nite F -inverse

cover if and only if for any �nite graph Γ, there exists a locally �nite group variety U such

that if τx ∈ P (x) for all x. In this case, we say that Γ satis�es property (SU). In particular,

the Cayley graph of a group G satis�es property (SU) if and only if the Margolis�Meakin

expansion M(G) has an F -inverse cover over a group which is an extension of some group

in U by G� an F -inverse cover via U, for short. If τx /∈ P (x) for some x = (ιp, [p]U, τp),

then we call p a breaking path over U.

In [20] and Chapter 3 of the thesis, we examine the property (SU). A main observation

is that for a �xed group variety U, non-(SU) graphs are closed upwards in the minor or-

dering, and can therefore be described by their minimal elements, called forbidden minors.

The following theorem is main result of the chapter, and consists of the characterization

of forbidden minors for non-trivial Abelian varieties.

Theorem ([20]). A graph contains a breaking path over a non-trivial Abelian group variety

of and only if its minors contain contain one of the graphs below:

Figure 4.2.2. The forbidden minors for Ab

We also have the following consequence:

Theorem ([20]). A Margolis�Meakin expansion of a group admits an F -inverse cover via

an Abelian group if and only if the group is cyclic or free.

In [21] and Chapter 4, we are looking to describe all �nite E-unitary inverse monoids

which admit an F -inverse cover via an Abelian group. The �rst step is introducing a
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Margolis�Meakin-like structure that describes the much larger class of �nite-above E-

unitary inverse monoids � which, in particular, contains all �nite ones �, and generalizing

the conditions introduced in [2] accordingly.

Let M be an arbitrary E-unitary inverse monoid, and denote the group M/σ by G.

The category IM de�ned in the following way plays a crucial role in our construction: its

set of objects is G, its set of (i, j)-arrows is

IM (i, j) = {(i,m, j) ∈ G×M ×G : i ·mσ = j} (i, j ∈ G),

and the product of consecutive arrows (i,m, j) ∈ IM (i, j) and (j, n, k) ∈ IM (j, k) is de�ned

by the rule

(i,m, j)(j, n, k) = (i,mn, k).

Finite-above E-unitary inverse monoids M have the property that they are generated

by a set A consisting of maximal elements of M together with a set I of idempotents of

M . We refer to this fact by saying that M is quasi-A-generated. The subgraph of IM

spanned by edges with middle components from A ∪ I is denoted by ΓI . We introduce a

closure operator on the set Sub(ΓI) of all subgraphs of ΓI . Given a path p = e1e2 · · · en in

IM where ej = (ιej ,mj , τej) with mj ∈M for every j (j = 1, 2, . . . , n), consider the word

w = m1m2 · · ·mn ∈ M
∗
determined by the labels of the arrows in p, and let us assign an

element of M to the path p by de�ning λ(p) = [w]M . For a �nite connected subgraph X

in IM and for i, j ∈ VX, let λ(i,j)(X) be λ(p), where p is an (i, j)-path in IM with 〈p〉 = X,

which can be seen to be well de�ned.

Given a �nite connected subgraph X in ΓI with vertices i, j ∈ VX, consider the subgraph

Xcl =
⋃
{Y ∈ Sub(ΓI) : Y is �nite and connected, i, j ∈ VY,

and λ(i,j)(Y) ≥ λ(i,j)(X)},

which, again, is well de�ned. More generally, for any X ∈ Sub(ΓI), let us de�ne the

subgraph Xcl in the following manner:

Xcl =
⋃
{Ycl : Y is a �nite and connected subgraph of X}.

It is routine to check that X → Xcl is a closure operator on Sub(ΓI), and, as usual, a

subgraph X of ΓI is said to be closed if X = Xcl. For any family Xj (j ∈ J) of subgraphs

of ΓI , de�ne
∨
j∈J Xj =

(⋃
j∈J Xj

)cl
. The partially ordered set (ClSub(ΓI);⊆) forms a

complete lattice with respect to the usual intersection and the operation
∨

de�ned above.
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Analogously to [2], we assign two sequences of subgraphs of ΓI to any arrow x of

FgU(Γ). Let

Ccl
0 (x) =

⋂
{〈p〉cl : p is a (ιx, τx)-path in Γ such that x = (ιx, [p]U, τx)},

and let P cl
0 (x) be the component of Ccl

0 (x) containing ιx. Suppose that, for some n (n ≥ 0),

the subgraphs Ccl
n (x) and P cl

n (x) are de�ned for every arrow x of FgU(Γ). Then let

Ccl
n+1(x) =

⋂
{P cl

n (x1) ∨ · · · ∨ P cl
n (xk) : k ∈ N0, x1, . . . , xk ∈ FgU(Γ)

are consecutive arrows, and x = x1 · · ·xk},

and again, let P cl
n+1(x) be the component of Ccl

n+1(x) containing ιx.

A main result of [21] and Chapter 4 states that the quasi-A-generated �nite-above

E-unitary inverse monoid M has an F -inverse cover via a group variety U if and only if

for any arrow x in FgU(Γ) and for any n ∈ N0, the graph P cl
n (x) contains τx. Using this

theorem, an example of a family of �nite E-unitary inverse monoids is presented which

have �nite F -inverse cover, and this fact does not follow by previous techniques.

In Section 4.2, we concentrate on the variety Ab of Abelian groups. Let M be a �nite-

above E-unitary inverse monoid. Let us choose elements a, b ∈M with a σ b, and a σ-class

v ∈M/σ. Denote by max v the set of maximal elements of the σ-class v, and consider the

following set of idempotents:

H(a, b; v) = {d−1ab−1d : d ∈ max v}.

This set has a least upper bound in E(M) which we denote by h(a, b; v). The following

condition plays a crucial role:

(C) c · h(a, b; v) · c−1b 6≤ a for some c ∈ max v.

We close the thesis with the following theorem on F -inverse covers of �nite-above E-

unitary monoids via Ab:

Theorem ([21]). If M is a �nite-above E-unitary inverse monoid such that for some

a, b ∈ maxM with a σ b and for some v ∈M/σ, condition (C) is satis�ed, then M has no

F -inverse cover via Abelian groups.
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Összefoglaló

A disszertáció témája a félcsoportelmélet témaköréhez tartozik, a tárgyalt félcsoportok az

úgynevezett inverz monoidok, vagyis olyan monoidok, amelyek bármely x elemének létezik

olyan egyértelm¶ x−1 inverze, melyre xx−1x = x és x−1xx−1 = x−1 teljesül. Az inverz

félcsoportok a csoportok általánosításai. Többek között parciális szimmetriák absztraktci-

ójaként jönnek el® � az inverz monoidok olyan szerepet játszanak a parciális szimmetriák

elméletében, mint a csoportok a szimmetriákéban.

Az inverz monoidok fontos tulajdonsága, hogy idempotensei felcserélhet®ek, azaz fél-

hálót alkotnak. Minden inverz monoidon adott egy természetes részbenrendezés, amely a

félháló struktúrából adódó részbenrendezést terjeszti ki. Formálisan s ≤ t pontosan akkor,

ha létezik olyan e idempotens, melyre s = te. Nem nehéz látni, hogy egy inverz monoidot

olyan kongurenciával faktorizálva, amely minden idempotenst egybeejt, csoportot kapunk,

melynek egységeleme az idempotenseket tartalmazó osztály. Ezen kongruenciák közül σ

jelöli a legkisebb csoportkongurenciát, és így M/σ az M inverz monoid legnagyobb csoport

homomorf képe.

A disszertáció címében is említett, úgynevezett E-unitér inverz monoidok de�níciója

az, hogy az idempotenseket tartalmazó σ-osztály csak az idemptenseket tartalmazza. A

McAlister-féle P -tételként ismert híres eredmény szerint minden E-unitér inverz mono-

id felépíthet® egy csoportból, egy félhálóból és egy részbenrendezett halmazból. Emiatt

az E-unitér inverz monoidok bizonyos értelemben ismertek. Ez ad különleges jelent®sé-

get a McAlister-féle fedési tételnek, mely azt mondja ki, hogy minden inverz monoidnak

van E-unitér fed®je, azaz minden inverz monoid homomorf képe valamely E-unitér in-

verz monoidnak, mégpedig olyan homomor�zmus mellett, mely az idempotenseken injek-

tív (idempotens-szétválasztó homomor�zmus). Szintén ismert, hogy minden véges inverz

monoidnak van véges E-unitér fed®je.

A másik, a disszertációban fontos szerepet játszó félcsoportosztály az F -inverz monoi-

dok osztálya. Egy inverz monoidot F -inverznek nevezünk, ha minden σ-osztálya tartalmaz

legnagyobb elemet a természetes részbenrendezésre nézve. Az F -inverz monoidok mindig
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E-unitérek. Jól ismert eredmény, hogy minden inverz monoidnak van F -inverz fed®je, azaz

minden inverz monoid idempotens-szétválasztó homomorf képe egy F -inverz monoidnak.

Azt mondjuk, hogy az F inverz monoid F -inverz fed®je M -nek a G csoport felett, ha G

izomorf M/σ-val. A bizonyítás azonban ez esetben mindig szabad csoport feletti F -inverz

fed®t eredményez, és ez mindig végtelen. A disszertáció f® motivációja a következ® prob-

léma:

Nyitott kérdés (Henckell és Rhodes, [7]). Létezik-e bármely véges inverz monoidnak

véges F -inverz fed®je?

A McAlister-féle fedési tétel alapján elég E-unitér inverz monoidok esetén vizsgálnunk

a kérdést, ahogyan a disszertáció során is tesszük. A kutatásunk f® el®zménye Auinger és

Szendrei [2] cikke err®l a kérdéskörr®l. Ebben még egy lépéssel tovább mennek azt alkal-

mazva, hogy elegend® speciális E-unitér inverz monoidok, úgynevezett Margolis�Meakin-

kiterjesztések esetében megválaszolni a kérdést. Ennek segítségével Auinger és Szendrei a

következ®képp fogalmazzák át az F -inverz fedési problémát.

Legyen Γ (irányított) gráf. A továbbiakban nem szorítkozunk az irányított gráfokon

megszokott irányított sétákra, ezért a Γ gráfot kiegészítjük az élek (vessz®vel jelölt) for-

dítottjaival, és a sétákat az így kapott Γ gráfban tekintjük. Így egy p séta, mint élek

és fordított élek formális sorozata, az E
∗
Γ szabad involúciós monoid egy elemét határozza

meg. Ha U inverz monoidok varietása, akkor p értékét az FU(EΓ) relatívan szabad inverz

monoidban [p]U jelöli.

Jelölje FgU(Γ) a Γ-n értelmezett szabad gU-kategórát [22], amelyet a következ®képp

adunk meg: az objektumok halmaza VΓ, és bármely két i, j objektum esetén az (i, j)-

mor�zmusok halmaza

FgU(Γ)(i, j) = {(i, [p]U, j) : p (i, j)-séta Γ-n},

csatlakozó mor�zmusok szorzata pedig a következ®képp de�niált:

(i, [p]U, j)(j, [q]U, k) = (i, [pq]U, k).

Az FgU(Γ) kategória minden x mor�zmusához hozzárendeljük Γ részgráfjainak a kö-

vetkez® két sorozatát: legyen

C0(x) =
⋂
{〈p〉 : (ιp, [p]U, τp) = x}, (4.2.5)

és legyen P0(x) a C0(x) gráf ιx-et tartalmazó összefügg® komponense. Ha Cn(x), Pn(x)

minden x esetén de�niált, akkor legyen

Cn+1(x) =
⋂
{Pn(x1) ∪ · · · ∪ Pn(xk) : k ∈ N, x1 · · ·xk = x},
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és legyen Pn+1(x) ismét Cn+1(x)-nek a ιx-et tartalmazó összefügg® komponense.

Könnyen látható, hogy bármely x és n esetén

C0(x) ⊇ P0(x) ⊇ · · · ⊇ Cn(x) ⊇ Pn(x) ⊇ Cn+1(x) ⊇ Pn+1(x) ⊇ · · · .

Jelölje P (x) a
⋂∞
n=0 Pn(x) metszetet, ez Γ-nak egy ιx-et tartalmazó részgráfja. Pontosan

akkor van minden véges inverz monoidnak véges F -inverz fed®je, ha bármely véges gráfhoz

létezik olyan lokálisan véges U csoportvarietás, melyre τx ∈ P (x) bármely x esetén [2,

Lemma 3.1]. Ez esetben azt mondjuk, hogy Γ rendelkezik az (SU) tulajdonsággal. A G

csoport Cayley-gráfja pontosan akkor rendelkezik az (SU) tulajdonsággal, ha az M(G)

Margolis�Meakin-kiterjesztésnek van F -inverz fed®je olyan csoport felett, mely valamely

U-beli csoport G-vel vett b®vítése � rövidenU-n keresztüli F -inverz fed®je. Ha τx /∈ P (x)

teljesül valamely x = (ιp, [p]U, τp) mor�zmusra, akkor p-t szakadó sétának nevezzük U

felett.

A disszertáció 3. fejezetében és [20]-ban az (SU) tulajdonságot vizsgáljuk. Fontos

észrevétel, hogy rögzített U csoportvarietás esetén a nem-(SU) gráfok felfelé zártak a

természetes részbenrendezésben, így leírhatók a minimális elemeikkel, úgynevezett kizárt

minorokkal. A következ® tétel a fejezet f® eredménye, és az Abel-féle varietásokhoz tartozó

kizárt minorokat írja le.

Tétel ([20]). Egy gráf pontosan akkor tartalmaz szakadó sétát nemtriviális Abel-féle cso-

portvarietás felett, ha minorként tartalmazza az alábbi gráfok valamelyikét:

4.2.3. ábra. A kizárt minorok Ab esetén

Ebb®l megkapható, hogy mely Margolis�Meakin-kiterjesztéseknek van F -inverz fed®je

Abel-csoportokon keresztül:

Tétel ([20]). Egy G csoport M(G) Margolis�Meakin-kiterjesztésének pontosan akkor van

F -inverz fed®je Abel-csoporton keresztül, ha G szabad vagy ciklikus.
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A 4. fejezetben és [21]-ben az a célunk, hogy leírjunk minden olyan véges, E-unitér

inverz monoidot, amelynek van F -inverz fed®je Abel-csoporton keresztül. Az els® lépés

olyan Margolis�Meakin-kiterjesztéshez hasonló struktúra bevezetése, mely az ezeknél jóval

szélesebb, úgynevezett felfele véges E-unitér inverz monoidok osztályát írja le, a második

pedig a [2]-beli feltételek általánosítása ezen keretek között.

Legyen M tetsz®leges E-unitér inverz monoid, jelölje az M/σ csoportot G. A konst-

rukciónkban kulcsszerepet játszik a következ®képp de�niált IM kategória: az objektumok

halmaza G, az (i, j)-mor�zmusok halmaza

IM (i, j) = {(i,m, j) ∈ G×M ×G : i ·mσ = j} (i, j ∈ G),

két csatlakozó mor�zmus, (i,m, j) ∈ IM (i, j) és (j, n, k) ∈ IM (j, k) szorzata pedig

(i,m, j)(j, n, k) = (i,mn, k).

A felfele véges E-unitér inverz monoidokban választható olyan A ∪ I alakú generátor-

rendszer, ahol A elemei maximálisakM -ben, I pedig idempotensekb®l áll. Röviden úgy fo-

galmazzuk ezt meg, hogyM kvázi-A-generált. Jelölje ΓI az IM gráf azon élei által feszített

részgráfját, melyek középs® komponense A∪ I-b®l való. Bevezetünk egy lezárási operátort

ΓI összes részgráfjának Sub(ΓI) részbenrendezett halmazán. Legyen p = e1e2 · · · en séta

IM -on, ahol ej = (ιej ,mj , τej) és mj ∈ M minden j (j = 1, 2, . . . , n) esetén, és tekintsük

a w = m1m2 · · ·mn ∈M
∗
szót. A p sétához hozzárendeljük M -nek a λ(p) = [w]M elemét.

Tetsz®leges X véges, összefügg®, IM -beli részgráf és i, j ∈ VX esetén legyen λ(i,j)(X) = λ(p),

ahol p egy X-et feszít® (i, j)-séta. Belátható, hogy ez jólde�niált.

Tekintsük ΓI egy X részgráfját, melyre i, j ∈ VX, és legyen

Xcl =
⋃
{Y ∈ Sub(ΓI) : Y véges, összefügg®, i, j ∈ VY,

és λ(i,j)(Y) ≥ λ(i,j)(X)},

amelyr®l ismét belátható, hogy jólde�niált. Általánosabban, tetsz®leges X ∈ Sub(ΓI)

részgráf esetén a következ®képp de�niáljuk az Xcl gráfot:

Xcl =
⋃
{Ycl : Y véges összefügg® részgráfja X-nek}.

Könnyen ellen®rizhet®, hogy X→ Xcl lezárási operátor Sub(ΓI)-n, és a szokott módon

az X részgráfot zártnak nevezzük, ha X = Xcl. Részgráfok bármely Xj(j ∈ J) halmaza

esetén legyen
∨
j∈J Xj =

(⋃
j∈J Xj

)cl
. A (ClSub(ΓI);⊆) részbenrendezett halmaz teljes

hálót alkot a megszokott metszetre és a fent de�niált
∨

egyesítésre.
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Hasonlóan ahhoz, ahogyan [2]-ben láthattuk, az FgU(Γ) kategória minden x mor�zmu-

sához hozzárendeljük ΓI részgráfjainak két sorozatát. Legyen

Ccl
0 (x) =

⋂
{〈p〉cl : p (ιx, τx)-séta Γ-ban, melyre x = (ιx, [p]U, τx)},

és legyen P cl
0 (x) a Ccl

0 (x) gráf ιx-et tartalmazó összefügg® komponense. Ha Ccl
n (x), P cl

n (x)

minden x esetén de�niált, legyen

Ccl
n+1(x) =

⋂
{P cl

n (x1) ∨ · · · ∨ P cl
n (xk) : k ∈ N0, x1, . . . , xk ∈ FgU(Γ)

csatlakozó mor�zmusok, és x = x1 · · ·xk},

és legyen P cl
n+1(x) ismét Ccl

n+1(x)-nek a ιx-et tartalmazó összefügg® komponense.

A 4. fejezet és [21] egyik f® eredménye azt mondja ki, hogy egy kvázi-A-generált felfele

véges E-unitér inverz monoidnak pontosan akkor van F -inverz fed®je az U csoportvarie-

táson keresztül, ha bármely x ∈ FgU(Γ) mor�zmus és n ∈ N0 esetén P cl
n (x) tartalmazza

τx-et. Ezen tétel segítségével megadunk véges E-unitér inverz monoidoknak olyan család-

ját, amelyeknek van véges F -inverz fed®je, és ez a korábbi eredményekb®l nem következik.

A 4.2 alfejezetben az Abel-csoportok varietására koncentrálunk. Tekintsük azM felfele

véges E-unitér inverz monoidot, legyenek a, b ∈M olyan elemek, melyekre a σ b, és legyen

v ∈ M/σ egy σ-osztály. Jelölje max v a v σ-osztály maximális elemeinek halmazát, és

tekintsük idempotenseknek a következ® halmazát:

H(a, b; v) = {d−1ab−1d : d ∈ max v}.

Ennek a halmaznak létezik legkisebb fels® korlátja E(M)-ben, melyet h(a, b; v) jelöl. A

következ® tulajdonság fontos szerepet játszik a disszertáció utolsó tételében:

(C) c · h(a, b; v) · c−1b 6≤ a valamely c ∈ max v esetén.

Tétel ([21]). Ha M olyan felfele véges E-unitér inverz monoid, melynek léteznek olyan

a, b ∈M , a σ b elemei és olyan v σ-osztálya, amelyekre a (C) feltétel teljesül, akkor M -nek

nincs F -inverz fed®je Abel-csoporton keresztül.
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