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Chapter 1

Introduction

The topic of the dissertation falls in the area of semigroup theory. The definition of a
semigroup is quite simple: it is a nonempty set equipped with a multiplication that is
associative. Due to the generality of the definition, the class of semigroups is very broad
and diverse — e.g., both groups and semilattices fall in here. On one hand, this makes
semigroups have connections to more or less any area of mathematics, yielding quite a
number of possible applications; on the other hand, different classes of semigroups may

require considerably different approaches and apparatus.

The class of semigroups considered in the thesis is called inverse monoids (see the
monographies of Lawson [12] and Petrich [17] on the topic for uncited results). They are

monoids defined by the property that every element  has a unique inverse ' such that

1 1

rz~ 'z =z, and x7'2zoz~! = 27! hold. They are one of the many generalizations of groups.
One way they naturally arise is through partial symmetries — to put it informally, inverse
monoids are to partial symmetries as what groups are to symmetries. The symmetric
inverse monoid SIM(X) on the set X consists of all partial one-to-one maps on X, that
is bijections between subsets of X, equipped with the usual multiplication of partial maps
and the usual inverse of bijections between subsets. Analogously to Cayley’s theorem, the
Wagner—Preston theorem states that all inverse monoids can be embedded into a suitable

symmetric inverse monoid.

1'is not necessarily the identity element,

Unlike in groups, in an inverse monoid, zx~
but it is, nevertheless, an idempotent. Idempotents therefore play an important role in the
structure, and the set of idempotents of M is denoted by E(M). An important property
of inverse monoids is that its idempotens commute, therefore form a semilattice. Inverse

monoids also come equipped with a natural partial order, which extends the partial order on

idempotens induced by the semilattice structure. It is defined by s < t if and only if there



exists and idempotent e such that s = te. For instance, the idempotents of a symmetric
inverse monoid are exactly the identical maps on subsets of X, and hence the natural
partial order is nothing but the restriction of maps. Observe that the natural partial order

is compatible with the multiplication, that is, if @ < b and ¢ < d, then ac < bd.

The idempotents forming a semilattice is such a characteristic feature of inverse monoids
that it can be used to describe inverse monoids using only identities — equations imposed

on all elements. Indeed an inverse monoid is a monoid with an involution ~! that satisfies

1 1 1 1

the identities zz 'z = = and zz " lyy~' = yy lzaz~!. Inverse monoids therefore form a
variety in the sense of universal algebra, see [3], in particular, free inverse monoids exist

on all sets, and every inverse monoid is a homomorphic image of a free one.

It is not hard to see that groups are just inverse monoids with a unique idempotent.
Thus factoring an inverse monoid by a congruence which collapses all idempotents yields
a group, with the class containing the idempotents as the identity element. Each inverse
monoid M has a smallest group congruence, denoted by o, which is generated (as a con-
gruence) by E(M) x E(M), and a corresponding greatest group homomorphic image M/o.
The preimage of the identity element under this homomorphism is, of course, the o-class
containing the semilattice E(M). This hints at the fact that inverse monoids can some-
how be ‘built’ from a group and a semilattice, and this is indeed one of the main tools
of investigating inverse monoids, and many of the constructions introduced in the thesis
will follow that pattern. We mention two important classes of inverse monoids where the

construction is well known and relatively straightforward.

One is the class of E-unitary inverse monoids, which is defined by the property that
the o-class containing the idempotents contains nothing but the idempotents. In general,
that o-class coincides with the set E(M )Y ={se M : (3e € E(M))(e < s)}, therefore the
inverse monoid M is F-unitary if and only if its set of idempotents is closed upwards in

the natural partial order.

By a famous theorem of McAlister known as the P-theorem, F-unitary inverse monoids
can be built using three building blocks: a group G, a partially ordered set X, and a
principal order ideal Y of X which is a meet-semilattice with respect to the partial order on
X. The group G acts on X by order automorphisms, and, in order to avoid that superfluous
elements occur in X or G, it is further assumed that {9Y : g € G} = X, and, for any g € G,
the intersection of the sets 9Y and Y is not empty. The E-unitary inverse monoid obtained

from such a McAlister triple (G, X,Y) is P(G,X,Y)={(A4,9) €Y xG: TA € Y}, with



a semidirect product-like multiplication
(A, 9)(B, h) = (ANIB, gh).

The inverse of an element (A, g) is (971A, g~ 1). The semilattice of idempotents of P(G, X,Y)
is isomorphic to Y, and the greatest group homomorphic image P(G, X,Y') /o is isomorphic
to G.

The P-theorem states that every E-unitary inverse monoid M is isomorphic to one of
the form P(M /o, X, E(M)), and so E-unitary inverse monoids are, in a way, ‘known’. This
is what gives particular significance to the McAlister covering theorem stating that every
inverse monoid has an E-unitary cover, that is, every inverse monoid is a homomorphic
image of an E-unitary inverse monoid under a homomorphism which is injective on the
idempotens (this property is called idempotent-separating). Therefore, if M is an E-unitary
cover of the inverse monoid N, then their semilattices of idempotents are isomorphic,
making the group M /o a significant unknown component of McAlister triple. Hence we
emphasize its importance by saying that that M is an E-unitary cover over the group G
if G is isomorphic to M/o. The simplest proof of the McAlister covering theorem applies
the Wagner—Preston theorem and extensions of partial one-to-one maps to permutations.
In particular, it shows that finite inverse monoids have finite E-unitary covers.

Another important class of inverse monoids we mention is that of F-inverse monoids.
An inverse monoid is called F-inverse if its o-classes have a greatest element with respect to
the natural partial order. F-inverse monoids are always E-unitary, they are characterized
by a McAlister triple (G, X,Y) where X is also a semilattice. The notion of an F-inverse
monoid is among the most important ones in the theory of inverse semigroups, for example,
free inverse monoids are F-inverse. Moreover, they play an important role in the theory
of partial actions of groups, see Kellendonk and Lawson [9], and in this context they
implicitly occur in Dehornoy [4, 5|. In Kaarli and Marki [8], a subclass of finite inverse
monoids occurring in the context of universal algebra is proven to have the property that
each member has an F-inverse cover within that class. Even in analysis, F-inverse monoids
are useful: see Nica [16], Khoshkam and Skandalis [10] and Steinberg [19] for their role in
the context of C*-algebras.

An easy consequence of the fact that each inverse monoid is a homomorphic image
of a free one is that every inverse monoid has an F-inverse cover, that is, every inverse
monoid M is a homomorphic image of an F-inverse monoid by an idempotent-separating
homomorphism. Here, we also call F' an F-inverse cover of the inverse monoid M over the

group G if G is isomorphic to M/o. However, in this case, the proof always produces an



4

F-inverse cover over a free group, and so it is always infinite. The main motivation of the

research described in the dissertation is the following:
Open problem 1.0.1. Does every finite inverse monoid admit a finite F-inverse cover?

The problem has been formulated by Henckell and Rhodes in [7], and a positive answer
would have solved an important conjecture connected to the complexity theory of finite
semigroups. The latter conjecture has been since proven [1], but the F-inverse cover
problem has remained open.

Note that by the McAlister covering theorem, it suffices to restrict our attention to
F-inverse covers of E-unitary inverse monoids, as we do throughout the thesis. The most
important antecedent to the research presented in the dissertation is the paper of Auinger
and Szendrei 2] on the question. They go a step further by applying that it is sufficient to
restrict to a special class of E-unitary inverse monoids called Margolis—-Meakin expansions,
which, as we will see, have a very convenient structure. Thus Auinger and Szendrei are
able to reformulate the F-inverse cover problem by means of graphs and locally finite group
varieties only. We retell their results in Section 2.3, after the introduction to some basic
notions regarding inverse monoids, graphs and categories in Sections 2.1 and 2.2.

The new results of the author and partly of her adviser presented in the dissertation
were published in the papers [20] and [21], and are contained in Chapters 3 and 4 respect-
ively. In [20], the condition on graphs and group varieties introduced in [2] is investigated.
In Section 3.1, we establish that, when fixing the group variety, the graphs for which the
condition is satisfied can be described using forbidden minors. In Section 3.2, we apply
this approach to the special case when the variety is Abelian, in which case we are able to
give a full description of the graphs and group varieties satisfying the property, as stated in
Theorem 3.2.1. Unraveling the details of how the graph condition is related to F-inverse
covers of Margolis—Meakin expansions, what we obtain is a description of all Margolis—
Meakin expansions M which have an F-inverse cover F' such that F'/o is an extension of
an Abelian group by M /o — this we refer to as F' being an F-inverse cover via a variety
of Abelian groups —, presented in Theorem 3.2.4.

In [21], we are motivated by finding all finite F-unitary inverse monoids which have an
F-inverse cover via a variety of Abelian groups. The first step is introducing a Margolis—
Meakin-like structure that describes the much larger class of finite-above E-unitary inverse
monoids — which, in particular, contains all finite ones —, and generalizing the condi-
tions introduced in [2| accordingly. These results are contained in Section 4.1. Using our

framework, in Example 4.1.21, we present a family of finite F-unitary inverse monoids
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having finite F-inverse covers, for which this fact does not follow by previous techniques.
In Section 4.2, we move on to Abelian varieties, and in Theorem 4.2.3, give a sufficient
condition for an F-unitary finite-above inverse monoid not to have an F-inverse cover via
the variety of Abelian groups, formulated merely by means of the natural partial order and

the least group congruence.



Chapter 2

Preliminaries

2.1 Inverse monoids

Let M be an inverse monoid (in particular, a group) and A an arbitrary set. We say that
M is an A-generated inverse monoid (A-generated group) if a map' ejr: A — M is given
such that Aeys generates M as an inverse monoid (as a group). If €ps is injective, then we
might assume that A is a subset in M, as usual, i.e., €j7 is the inclusion map A — M. If
M, N are A-generated inverse monoids, then : M — N is a canonical homomorphism if
it is a homomorphism such that ej;¢p = en. Notice that if ey is an inclusion, then €,y is
injective, and so it also can be chosen to be an inclusion. However, if €7 is injective (in
particular, an inclusion), then ey need not be injective. This is the reason that one cannot
suppose in general that A C M for every A-generated monoid M.

Given an arbitrary set A, the free monoid on A, denoted by A*, is the monoid which
consists of all finite sequences of elements of A, called words, together with the empty
word denoted by 1, and these are multiplied by concatenation. It is well known that for
any monoid M and map ¢: A — M, ¢ extends to a homomorphism A* — M uniquely,
hence the name ‘free’. The first step of the analogous constructions of free groups and free
inverse monoids is creating a free monoid with involution, the involution being responsible
for the inverse. Consider a set A’ disjoint from A together with a bijection : A — A’. Put
A =AUA, and consider the free monoid A" on 4, and extend the map ’ to an involution
of A”, denoted also by /. Notice that this extension is unique, (a’)’ = a holds for every
a€ A, and (biby---by) = b)bl,_,--- b holds for every word bibs--- by, € A", The monoid
A together with this involution is the free monoid with involution on A. For simplicity,

we do not introduce a new notation for this structure, but throughout the thesis, A" s

! As it is customary in semigroup theory, we write maps on the right in this thesis.
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meant to denote the free monoid with involution on A.

For any inverse monoid M, there is a unique homomorphism ¢: A" — M such that
ap = aeyr and a’¢ = (aeypr)~! for every a € A, since taking inverse is an involution on
M. If M is A-generated, then ¢ is clearly surjective. For any word w € Z*, we denote
we by [w]ar. The free inverse monoid and free group on the set A, denoted by FIM(A)
and FG(A) respectively, are of course, also homomorphic images of A". The kernel of the
homomorphism is just the fully invariant congruence generated by the identities defining
inverse monoids and groups, respectively (see [3]). Furthermore, since groups are special
inverse monoids, FG(A) is also a factor of FIM(A) — in fact, FIM(A)/o = FG(A).

A variety of inverse monoids is a class of inverse monoids defined by identities, they
are denoted by capital bold letters in the sequel. For instance, the variety of groups, the
variety Sl of semilattices, and the variety Ab of Abelian groups are all varieties of inverse
monoids. Again, the factor of a free inverse monoid FIM(A) induced by the fully invariant
congruence corresponding to the respective defining identities gives rise to the relatively
free inverse monoid, or, in the case of a group variety, the relatively free group on the set
A in the variety. If M is the relatively free inverse monoid (or group) on A in a given
an inverse monoid (group) variety U, then we write [w]y for [w]ys. Recall that, for every
w,w; € A", we have [w]y = [wi]y if and only if the identity w = wy is satisfied in U. We
say that [w]uy depends on a letter a if [wi]y # [w]u for the word w; obtained from w by
substituting all occurrences of a by 1. We define the U-content cy(w) of w as the set of

elements a € A that [w]y depends on.

2.2 Graphs and categories

2.2.1 Edge-labelled graphs

Throughout this thesis, unless otherwise stated, by a graph we mean a directed graph, that
is, a quadruple A = (Va, Ea,t,7), where VA and Ea denote the sets of vertices and edges
of A respectively, and ¢, 7 are FA — VA maps that assign the initial and the terminal
vertices to an edge e. If te = ¢ and 7e = j, then e is called an (¢, j)-edge. The set of all
(i, j)-edges is denoted by A(i,7), and for our later convenience, we put
Ali,-) = | AG, ).
JeVA
Connectedness of graphs will, however, be regarded in an undirected sense throughout
the thesis, that is, we call a digraph connected (two-edge-connected) if the underlying

undirected graph is connected (two-edge-connected). Recall that an undirected graph is
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called two-edge-connected if it is connected and remains connected whenever an edge is
removed. By an edge-labelled (or just labelled) graph, we mean a graph A together with a
set A and a map Ea — A appointing the labels to the edges.

A sequence p = ejex---e, (n > 1) of consecutive edges e, es,..., e, (i.e., where
Te; = teir1 (1= 1,2,...,n — 1)) is called a path on A or, more precisely, an (i, j)-path
if i = 1eq and j = Te,. In particular, if ¢ = j then p is also said to be a cycle or, more
precisely, an i-cycle. Moreover, for any vertex i € VA, we consider an empty (i,7)-path
(i-cycle) denoted by 1;. A non-empty path (cycle) p = ejey--- e, is called simple if the

vertices tey, tea, ..., Le, are pairwise distinct and Te, ¢ {iea, ..., ey}

In consistence with the undirected connectedness properties, we do not generally want
to restrict to directed paths. For that, we consider paths in a graph extended by the formal
reverses of its edges as follows. Given a graph A, take a set E’ disjoint from Ea together
with a bijection ’: Ea — E’, and consider a graph A’ where Var = VA and Ear = E’ such
that te’ = Te and e/ = e for every e € Ea. Define A to be the graph with Vx = Va and
Ex = ExUEpns. Choosing the set Ey to be Eas, the paths on A become words in En

where EA = Ea U E.

We can extend the bijection ' to paths in a natural way. First, for every edge f € Ea/,
define f’ = e where e is the unique edge in A such that ¢’ = f. Second, put 1; = 1; (i € Va)
and, for every non-empty path p = ejez - e, on A, put p’ = elel,_,---e). fp=-ejea---e,
is a non-empty path on A, then the subgraph (p) of A spanned by p is the subgraph
consisting of all vertices and edges p traverses in either direction. Obviously, we have
(p') = (p) for any path p on A. The subgraph spanned by the empty path 1; (consisting
of the single vertex i) is denoted by 0);, that is, (1;) = ;.

Most of our graphs in this paper have edges of the form (i, a, j), where i is the initial
vertex, j the terminal vertex, and a is the label of the edge. For such a graph A, choose
A as follows: consider a set A’ disjoint from A together with a bijection ': A — A’, and
we choose A’ so that (i,a,j) = (j,d,i) for any edge (i,a,j) in A. Then A is labelled
by A, and, given a (possibly empty) path p = ejes---e, on A, the labels of the edges

. . 0k
e1,es,...,¢e, determine a word in A .

One particular class of graphs of the type described above is the Cayley graphs of
groups. If G is an A-generated group by the map eg: A — G, its Cayley graph is a
graph with G as the vertex set and with edges of the form (g,a,g - aeg), where g € G
and a € A are arbitrary. The Cayley graph is, of course, labelled by A, and also has the

property that the initial vertex g and the label a determine the edge uniquely, moreover,
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any word w in A" determines a unique path starting at 1, the terminal vertex being [w]g.
Hence, essentially, knowing the Cayley graph of the group means knowing the solution to
its word problem and vice versa. In geometric group theory, the word problem and other
algorithmic problems in group theory are investigated through geometric properties of the

Cayley graph.

t . y
[ A t
.t t t I
I b Tkt A
- a -
J i1 > >
- SR
- . I N
T A Y

Figure 2.2.1. The Cayley graph of the free group FG(a, b)

In this thesis, Cayley graphs of groups appear as building blocks of certain classes of
inverse monoids. For instance, Munn [15] has given a beautiful description of the free
inverse monoid FIM(A) using subtrees of the Cayley graph of the A-generated free group
(see Figure 2.2.1). Munn’s construction is as follows. The elements of FIM(A) are pairs of
the form (X, g), where g € FG(A), and X is a subtree of the Cayley graph containing the

vertices 1 and g. The multiplication is given by the rule
(X, 9)(Y, h) = (XUTY, gh),

where 9Y denotes the subtree obtained by ‘translating’ Y in the Cayley graph by g, that
is, a vertex i is translated to gi, and an edge (i,a,j) to (gi,a,gj). Given a word w in A,
[w]pmva) is given by the pair ((pw), [w]ra(a)), Where p,, is the unique path determined by

the sequence of labels w.

2.2.2 Small categories

Let A be a graph, and suppose that a partial multiplication is given on Fa in a way that,

for any e, f € Ea, the product ef is defined if and only if e and f are consecutive edges.
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If this multiplication is associative in the sense that (ef)g = e(fg) whenever e, f, g are
consecutive, and for every i € Va, there exists a (unique) edge 1; with the property that
lie=e, fl; = f for every e, f € Ea with te =i = 7f, then A is called a (small) category.
Later on, we denote categories in calligraphics. For categories, the usual terminology and
notation is different from those for graphs: instead of ‘vertex’ and ‘edge’, we use the terms
‘object’ and ‘arrow’, respectively, and if X is a category, then, instead of Vy and Ex, we
write Ob X" and Arr X, respectively. Clearly, each monoid can be considered a one-object
category, with the elements playing the roles of the arrows. Therefore, later on, certain

definitions and results formulated only for categories will be applied also for monoids.

A category X is called a groupoid if, for each arrow e € X(i, ), there exists an arrow
f € X(j,i) such that ef = 1; and fe = 1;. Obviously, the one-object groupoids are just the
groups, and, as it is well known for groups, the arrow f is uniquely determined, it is called
the inverse of e and is denoted e~!. By an inverse category, we mean a category X where,
for every arrow e € X (i,j), there exists a unique arrow f € X(j,i) such that efe = e

and fef = f. This unique f is also called the inverse of e and is denoted e™!.

Clearly,
each groupoid is an inverse category with the same inverse. Furthermore, the one-object
inverse categories are just the inverse monoids. More generally, if X' is an inverse category
(in particular, a groupoid), then X(i,4) is an inverse monoid (a group) for every object i.
An inverse category X is said to be locally a semilattice if X (i,1) is a semilattice for every

object ¢. Similarly, given a group variety U, we say that X is locally in U if X(i,i) € U

for every object 1.

Given a graph A, we can easily define a category A* as follows: let ObA* = VA,
let A*(7,7) (i,j € ObA*) be the set of all (7, j)-paths on A, and define the product of
consecutive paths by concatenation. The identity arrows will be the empty paths. In the
one-object case, this is just the usual construction of a free monoid on a set. In general,
A* has a similar universal property among categories, that is, it is the free category on A.
However, as we will mainly be working with inverse categories, the analogue of the free
monoid A" with involution ’ will be more use for us. The category A" together with the
bijection ’ defined for paths on A is the free category with involution on A. For an inverse
category X and a graph A, if ex: A — X is a graph morphism, then there is a unique
category morphism ¢: A" — X such that ep = ecx and €' = (eex) ! for every e € Arr X.
We say that X' is A-generated if ¢ is surjective. If X', ) are A-generated inverse categories,
then ¥: X — Y is called a canonical category morphism if it is a category morphism such

that 6)('¢ = €y.
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The basic notions and properties known for inverse monoids have their analogues for
inverse categories. Given a category X, consider the subgraph E(X) of idempotents, where
Vixy = Ob X and Egxy = {h € Arr X' : hh = h}. Obviously, Fgx) € Ujcopx X(7,7). A
category X is an inverse category if and only if E(X)(4, ) is a semilattice for every object 4,
and, for each arrow e € X(i,j), there exists an arrow f € X(j,4) such that efe = e. Thus,
given an inverse category X', E(X) is a subcategory of X, and we define a relation < on X
as follows: for any e, f € Arr X, let e < fif e = fh for some h € Arr E(X). The relation <
is a partial order on Arr X called the natural partial order on X', and it is compatible with

multiplication. Note that the natural partial order is trivial if and only if X is a groupoid.

2.2.3 Categories acted upon by groups

Groups acting on graphs come up in several areas. For instance, Bass—Serre theory analyzes
groups through their actions on trees. One of the earliest results in the framework is that a
group is free if and only if it acts freely on a tree, which also yields a proof of the Nielsen—
Schreier theorem. In this section, we use groups acting on graphs and categories in order
to construct inverse monoids. These results can be found in [14].

Let G be a group and A a graph. We say that G acts on A (on the left) if, for every
g € G, and for every vertex ¢ and edge e in A, a vertex 9% and an edge 9 is given such that

the following are satisfied for any g, h € G and any i € Va, e € En:
V=i, Mu)=Mi, le=e, %) ="%,
e =Y%e, 1% =97c.

An action of G on A induces an action on the paths and an action on the subgraphs of A

in a natural way: if g € G, i € VA and p = ejes - - - e, is a non-empty path, then we put
Ip = 9e1%5 - - - e,

and for an empty path, let 91; = 1g;. For any subgraph X of A, define 9X to be the
subgraph whose sets of vertices and edges are {% : i € Vx} and {% : e € Ex} respectively,
in particular, 90; = ()s;. The action of G on A can be extended to A also in a natural way
by setting %" = (%)’ for every e € Ea. It is easy to check that the equality (%) = %p)
holds for every path p on A.

One example we have already seen is a group acting on its own Cayley graph by
translations. In the case of the free group, the induced action on subgraphs is the action

used in the construction of free inverse monoids.
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By an action of a group on a category X we mean an action of G on the graph X which
has the following additional properties: for any object ¢ and any pair of consecutive arrows
e, f, we have

Ny= 1o, ef) =" 9.

In particular, if X' is a one-object category, that is, a monoid, then this defines an action
of a group on a monoid. We also mention that if A is a graph acted upon by a group
G, then the induced action on the paths defines an action of G on the free category A"
with involution on A. Note that if X is an inverse category, then 9e~1) = (%)~! for every
g € G and every arrow e. We say that G acts transitively on X if, for any objects 1, j,
there exists g € G with j = %, and that G acts on X without fized points (or freely) if, for
any g € GG and any object ¢, we have 9% = i only if ¢ = 1. Note that if G acts transitively
on X, then the local monoids X(i,4) (i € Ob X) are all isomorphic.

Let G be a group acting on a category X'. This action determines a category X'/G in a
natural way: the objects of X'/G are the orbits of the objects of X, the orbit of ¢ denoted
by, as usual, &% = {% : g € G}, and, for every pair %, %} of objects, the (%, %)-arrows are
the orbits of the (i’, j')-arrows of X where i’ € % and j' € &j. The product of consecutive
arrows ¢, f is also defined in a natural way, namely, by considering the orbit of a product
ef where e, f are consecutive arrows in X such that e € € and f € f. Note that if G acts

transitively on X', then X' /G is a one-object category, that is, a monoid. The properties

below are proven in [14, Propositions 3.11, 3.14].

Result 2.2.1. Let G be a group acting transitively and without fized points on an inverse

category X.

(1) The monoid X /G is inverse, and it is isomorphic, for every object i, to the monoid

(X/G); defined on the set {(e,g): g € G and e € X(i,%)} by the multiplication
(€,g>(f, h) = (6 ’ gf7gh)

(2) If X is connected and it is locally a semilattice, then X /G is an E-unitary inverse mon-
oid. Moreover, the greatest group homomorphic image of X /G is G, and its semilattice

of idempotents is isomorphic to X (i,1) for any object i.

(8) If X is connected, and it is locally in a group variety U, then X /G is a group which
is an extension of X(i,1) € U by G for any object i.

Example 2.2.2. The multiplication in point (1) resembles that seen in Munn’s construc-

tion, and that is not a coincidence: if X is the inverse category with the object set FG(A)
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and with (4, j)-arrows of the form (i, X, j), where X is a connected subgraph of the Cayley

graph of FG(A) containing vertices ¢ and j, and multiplication is given by

(6, X,5)(4, Y, k) = (i,XUY, k),

then FIM(A) is nothing but X'/ FG(A).

For our later convenience, note that the inverse of an element can be obtained in (X /G);

in the following manner:

(e,9)"' =(" e lg7h).

Notice that if a group G acts on an inverse category transitively and without fixed
points, then Ob X is in one-to-one correspondence with G. In the sequel we consider
several categories of this kind which have just G as its set of objects. For these categories,
we identify X /G with (X/G);.

Any E-unitary inverse monoid can be obtained in the way described in Result 2.2.1(2).
To see that, let M be an arbitrary E-unitary inverse monoid, and denote the group M/o
by G. Define the category Zys in the following way: its set of objects is G, its set of

(i,j)-arrows is
Zu(iyj) = {(i,m,j) € G x M x G :i-mo = j} (i,j € G),

and the product of consecutive arrows (i, m, j) € Zps(i,7) and (4, n, k) € Zas(J, k) is defined
by the rule

(i7m7j)(j7n7k) = (i7mn, k)

It is easy to see that an arrow (i,m,j) is idempotent if and only if m is idempotent, and
since M is E-unitary, this is if and only if i = j. Moreover, we have (i,m,j)~ = (j,m™1,1)
for every arrow (i,m,j). The natural partial order on Zys is the following: for any arrows
(t,m,j), (k,n,l), we have (i,m,j) < (k,n,l) if and only if i = k, j =1 and m < n. We
remark that Zps is nothing but the the derived category of the natural homomorphism
of: M — G, see [22].

The group G acts naturally on Zy as follows: 9% = gi and 9i,m,j) = (gi,m,gj) for
every g € G and (i,m,j) € ArrZy;.

The category Zys and the action of G on it has the following properties [14, Proposition
3.12).
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Result 2.2.3. The category Ly is a connected inverse category which is locally a semilat-
tice. The group G acts transitively and without fized points on Iys, and M is isomorphic

to Iy /G.

The isomorphism in the proof is given by m — (1, m, mo).

2.3 A reformulation of the F-inverse cover problem

2.3.1 Margolis—Meakin expansions

Let G be an A-generated group where Aeg C G \ {1}. The Margolis—Meakin expansion
M(G) of G (see [13]) generalizes Munn’s construction to arbitrary Cayley graphs. It is
defined in the following way: consider the set of all pairs (X, g) where g € G and X is a
finite connected subgraph of the Cayley graph I' of G containing the vertices 1 and g, and

define a multiplication on this set by the rule
(X, 9)(Y, h) = (XUIY, gh).

Then M(G) is an A-generated E-unitary inverse monoid with ey A — M(G), a —
((€a),a) = (eq,a) (i.e., for brevity, we identify (e) with e for every edge e in I'), where the
identity element is (01,1) and (X,g)"* = (¢ X, g7 for every (X,g) € M(G). Margolis—
Meakin expansions are useful in part because they also have a universal property similar
to that of free inverse monoids: A-generated, E-unitary inverse monoids over the group
G are homomorphic images of M(G), moreover, an A-generated inverse monoid has an
E-unitary cover over the group G if and only if it is a homomorphic image of M(G).

By definition, the arrows in Zy;(q) (i, j) are (i, (X, g), j) where (X, g) € M(G) and ig = j
in G. Therefore Zyy()/G = (Zpr()/G)1 consists of the pairs ((1, (X, g),9),g) which can be
identified with (X, ¢g), and this identification is the isomorphism involved in Result 2.2.3.
Moreover, notice that the assignment (i, (X, g), j) = (i, X, 5) is a bijection from Ty (i, 5)
onto the set of all triples (i, X, j) where X is a finite connected subgraph of T and 7, j € Vx.
Thus Zyy (@) can be identified with the category where the hom-sets are the latter sets, and

the multiplication is the following:
(6, X,5)(4, Y, k) = (i, XU Y, k).

We apply Result 2.2.1 to introduce further structures with some sort of universal prop-
erty. Recall the notion of a free category A" with involution over the graph A. The

(1, 7)-arrows of A" are the (i, j)-paths in the graph A, which can be regarded as words in
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the free monoid E*A with involution. Taking that analogy a step further — if we ‘evaluate’
the (7, j)-paths not in the free monoid with involution, but in a variety of inverse monoids
(in particular, of groups), then we are led to the notion of the free inverse category (in
particular, free groupoid) in that variety. In the following paragraphs, we introduce this
construction precisely in the case when A is a Cayley graph.

Consider an inverse monoid (in particular, a group) variety U and a graph I'. Denote
the relatively free inverse monoid in U on Er by Fy(Er). Any path in T, regarded as a
word in Er_, determines an element of Fiy(Er), which is denoted by [p|y, as introduced
before.

The free gU-category on I denoted by Fyyy(I'), as introduced in [22], is given as follows:

its set of objects is Vr, and, for any pair of objects i, j, the set of (i, j)-arrows is

Fau(D)(i,j) = {(, [plu, j) : p is an (i, j)-path in T'},

and the product of consecutive arrows is defined by

(1, [plu, ) ldlu, k) = (i, [pqlu, k).

Obviously, the category Fyy(T') is an inverse category (in particular, a groupoid), and the

inverse of an arrow is obtained as follows:

(i, [plu, 4) " = (i [plghs 9) = (s [']u,0).

Moreover, Fgu(I') is I'-generated by the map ep,ry: I' = Fyu(l), e — (e, [e]u, Te) =
(te,e,Te) for every edge e in ' (i.e., as usual, we identify [e]y with e in Fy(Er)). If, for
example, U = Sl, the variety of semilattices, and T" is the Cayley graph of FG(A), then
[pls1 = (p), and Fyg1(I') is the category described in Example 2.2.2.

Suppose U is a group variety, and I' is the Cayley graph of an A-generated group G.
Notice that the action of G on I" extends to an action of G on Fyy(T') by 9(4, [plu, j) =
(g1, [%p]u, 9j), and this action, like the action on I, is transitive and has no fixed points.
Furthermore, Fyiy(I') is connected since I' is connected. Thus Result 2.2.1(3) implies that
F,u(I')/G is a group which is an extension of a member of U by G. Define the semidirect
product Fy(Er) x G, where the action of G is the one extended from its action on I'. It is
straightforward to see by Result 2.2.1(1) that the elements of Fyuy(I') /G = (Fyu(I')/G)1 are
exactly the pairs ([plu, g) € Fu(Er)xG, where pis a (1, g)-path in T, hence F,iy(I')/G is a
subgroup in the semidirect product Fiyy(Er) x G. Moreover, Fguy(I') /G is generated by the
subset {(eq,acc) : a € A}, and so it is A-generated with €r, ,r)/c: A = Fyu(I)/G,a —
(€q,aeq). Tt is well known (cf. the Kaloujnine-Krasner theorem [11]) that F,y(I')/G is the
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‘most general’ A-generated group which is an extension of a member of U by G, that is, it
has the universal property that, for each such extension K with ex: A — K, there exists
a surjective homomorphism ¢: Fyuy(I')/G — K such that €F,u()/G¥ = €k. For brevity,

we denote the group F,u(I')/G later on by GY.

2.3.2 Dual premorphisms

A dual premorphism 1p: M — N between inverse monoids is a map satisfying (ma)) =1 =

m = and (mn)y > map-ny for all m,n in M (such maps are called dual prehomomorph-
isms in [12] and prehomomorphisms in [17]). In particular, if M and N are A-generated
and epsY = ey, then @ is called a canonical dual premorphism. An important class of dual
premorphisms from groups to an inverse monoid M is closely related to F-inverse covers

of M, as stated in the following well-known result ([17, Theorem VIL.6.11]):

Result 2.3.1. Let H be a group and M be an inverse monoid. If vv: H — M 1is a dual

premorphism such that
for every m € M, there exists h € H with m < h, (2.3.1)

then
F={(m,h)e M x H:m < hy}

15 an inverse submonoid in the direct product M x H, and it is an F-inverse cover of M
over H. Conversely, up to isomorphism, every F-inverse cover of M over H can be so

constructed.

In the proof of the converse part of Result 2.3.1, the following dual premorphism
Y: F/o — M is constructed for an inverse monoid M, an F-inverse monoid F, and a
surjective idempotent-separating homomorphism ¢: F' — M: for every h € F/o, let
hy = mpp, where my denotes the maximum element of the o-class h. It is important
to notice that, more generally, this construction gives a dual premorphism with property
(2.3.1) for any surjective homomorphism ¢: F' — M. In the sequel, we call this map
the dual premorphism induced by .

Notice that, for every group H and inverse monoids M, N, the product of a dual
premorphism ¢: H — M with property (2.3.1) and a surjective homomorphism ¢: M — N
is a dual premorphism from H to N with property (2.3.1). As a consequence, notice that if
an inverse monoid M has an F-inverse cover over a group H, then so do its homomorphic

images.
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Dual premorphisms can be defined for inverse categories analogously: it is a graph
morphism : X — Y such that 1,00 = 1, (e 1)) = (ey)) ™ and (ef)y > ey - fo for any

object ¢ and any consecutive arrows e, f in X.

2.3.3 A graph condition

We are ready to describe the graph condition Auinger and Szendrei have introduced in
their paper [2] as a reformulation of the F-inverse cover problem. Their key step is the
assertion that every finite inverse monoid admits a finite F-inverse cover if and only if,
for every finite connected graph I', there exist a locally finite group variety U and a dual
premorphism ¢: Fyuy(I') = Fygi(I') with ¢|I' = idr.

We provide a quick run-through of the proof. The first observation is that it is sufficient
to try to find finite F-inverse covers for finite Margolis—Meakin expansions, as every inverse
monoid is a homomorphic image of one. According to Result 2.3.1, a Margolis—Meakin
expansion M (G) has a finite F-inverse cover if and only if there is a dual premorphism
H — M (G) for a finite group H, with property (2.3.1). The second observation is that if G
is A-generated, then H can be chosen to be A-generated, and the dual premorphism to be
canonical. A canonical dual premorphism H — M(G) yields a canonical homomorphism
H — G, hence H is an A-generated extension of some group K by G. The ‘most general’
candidates for such a group H are the ones of the form GY (see Subsection 2.3.1), where
the only restriction imposed on K is that it belongs to the variety U. The group GY is
finite if and only if G is finite (which it is, by assumption) and U is locally finite group
variety. Hence the question boils down to finding a locally finite group variety U for every
A-generated group G such that there is a canonical dual premorphism GY — M (G), and
since GU = F,u(I')/G and M(G) = Fy5(I")/G, this translates to finding a canonical dual
premorphism ¢: Fou(I') = Fysi(I).

Now fix a connected graph I' and a group variety U. We assign to each arrow x of

F,u(I') two sequences of finite subgraphs of I' as follows: let

Co(z) = ({(p) : (wp, [plu, 7p) = =}, (2.3.2)

and let Py(z) be the connected component of Cy(x) containing tx. If Cp(x), P,(x) are

already defined for all z, then put
Cnt1(z) = ﬂ{Pn(arl) U---UPy(xg): k€ Nyxy -+ = x},

and again, let P,,11(x) be the connected component of Cy,41(x) containing cz.
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It is easy to see that

Co(z) 2 Po(z) 2+ 2 Cp(x) 2 Py(x) 2 Cpy1(z) 2 Ppgr(z) D - -+

for all  and n. We define P(x) to be (1,2, Pn(x), which is a connected subgraph of T’
containing tx. According to |2, Lemma 3.1], there exists a dual premorphism ¢ : F,uy(I') —
Fys1(I") with ¢|I' = idr if and only if 7z € P(x) for all , and in this case, the assignment
x + (wx, P(x), 7x) gives such a dual premorphism. If 7z ¢ P(z) for some x = (up, [p]u, 7p),
then we call p a breaking path over U.

The main result [2, Theorem 5.1] is the following:
Result 2.3.2. The following assertions are equivalent.

(1) Each finite inverse monoid has an F-inverse cover.

(2) For each finite connected graph ', there exists a locally finite group variety U for which

there is a canonical dual premorphism Fyu(I') — Fys1(T).

(8) For each finite connected graph T', there exists a locally finite group variety U such
that, for each arrow x of Fyu(I'), each of the graphs Py(x) (k > 1) contains the vertex

TX.

(4) There exists a prime p such that, for each n > 1, the inverse monoid M(C}) has a

finite F-inverse cover (where C, denotes the cyclic group of order n).

In [2], Cp(x) is incorrectly defined to be the graph spanned by the U-content of x
together with (z. From the proof of |2, Lemma 3.1] (see the inclusion u(x) C Cy(x)), it
is clear that the definition of C(z) needed is the one in (2.3.2). The following proposition
states that in the cases crucial for the main result [2, Theorem 5.1], i.e., where I' is the
Cayley graph of a finite group, these two definitions are equivalent in the sense that Py(x),
and so the sequence P,(x) does not depend on which definition we use. For our later

convenience, let Cy (z) denote the graph which is the union of the U-content of = and tz.

Lemma 2.3.3. IfT' is two-edge-connected, then for any arrow x of Fyu(I'), the subgraphs

Co(x) and Co(x) can only differ in isolated vertices (distinct from 1z and Tx).

Proof.  Let x be an arrow of Fyy(I'). It is clear that Co(x) C Co(x). For the converse,
put = = (1p, [plu, 7p), and suppose e is an edge of (p) such that e ¢ Co(z). Let s, be a
(te,Te)-path in T not containing e — such a path exists since I' is two-edge-connected.
Let pe—ss, be the path obtained from p by replacing all occurrences of e by s.. Then

D =U Pe—ss., and e ¢ (pe—ss. ), hence e ¢ Cy(z), which completes the proof. O
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Remark 2.3.4. We remark that the condition of I' being two-edge-connected is necessary
in Lemma 2.3.3, that is, when T is not two-edge-connected, the subgraphs Co(z) and Co(z)
can in fact be different. Put, for example, U = Ab, the variety of Abelian groups, and
let e be an edge of T' for which I'\{e} is disconnected. Let p = ese’ be a path in T', where
s Zap 1 and e, ¢’ do not occur in s. Then the subgraph spanned by the Ab-content of p
does not contain e, whereas any path ¢ which is co-terminal with and Ab-equivalent to p

must contain the edge e, as there is no other (ce,7e)-path in T.

For a group variety U, we say that a graph I' satisfies property (Su), or I is (Su) for
short, if 72 € P(x) holds for any arrow z of Fyy(I'). By Result 2.3.2, each finite inverse
monoid has a finite F-inverse cover if and only if each finite connected graph is (St) for
some locally finite group variety U. This property (Sy) for finite connected graphs is our
topic for the next section.

We recall that by |2, Lemmas 4.1 and 4.2|, the following holds.

Lemma 2.3.5. If a graph T is (Su) for some group variety U, then so is any redirection

of I, and any subgraph of T.

However, we remark that the lemma following these observations in [2], namely Lemma
4.3 is false. It states that if a simple graph I' is (Sy), then so is any graph obtained from
I' by adding parallel edges (where both “simple” and “parallel” are meant in the undirected

sense). The main result of Chapter 3, Theorem 3.2.1 yields counterexamples.

Lemma 2.3.6. If U and V are group varieties for which U C V| then (Sy) implies (Sv).

Proof.  Suppose I' is (Sy), let p be any path in T. Put Y = (up, [plu, 7p) € F,u(l),
and similarly let 2V = (ip, [plv, 7p) € F,v(T). Since U C V, we have Cy(zY) C Cy(zV).
Also, since ¢ =v q1 - - - ¢, implies ¢ =y q1 - - - ¢n, we obtain P, (zY) C P,(zV) by induction.

Since 7p € Py, (xY) by assumption, this yields 7p € P,(zV), that is, " is (Sv). O
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Chapter 3

F-inverse covers of Margolis—Meakin

expansions

This chapter contains the examination of the graph condition (Sy) introduced in the
previous chapter, as well as the implications of some of our results to F-inverse covers of

Margolis—Meakin expansions.

3.1 Forbidden minors

In this section, we prove that, given a group variety U, the class of graphs satisfying
(Su) can be described by so-called forbidden minors. Forbidden minors are widely used in
mathematics to characterize graphs with a certain property. The most well-known example
is Kuratowski’s theorem, which characterizes planar graphs as graphs which do not contain
K5, the complete graph on five vertices and K3 3, the utility graph as minors.

Let " be a graph and let e be a (u,v)-edge of " such that u # v. The operation which
removes e and simultaneously merges v and v to one vertex is called edge-contraction. We
call A a minor of I if it can be obtained from ' by edge-contraction, omitting vertices

and edges, and redirecting edges.

Proposition 3.1.1. Suppose I' and A are graphs such that A is a minor of I'. Then, if

A is non-(Sy), so is .

Proof. By Lemma 2.3.5, adding edges and vertices to, or redirecting some edges of a
graph does not change the fact that it is non-(Sy). Therefore let us suppose that A is
obtained from I' by contracting an edge e for which te # Te. Let x1, ..., x, be the edges of T’

having e as their terminal vertex. For a path p in A, let p,. denote the path in T obtained
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by replacing all occurrences of x; (j = 1,...,n) by x;e (and all occurrences of z’; by €'z’).
Similarly, for a subgraph Z of A, let =, denote the subgraph of I obtained from = by
taking its preimage under the edge-contraction containing the edge e if = contains some
xzj (j =1,...,n), and its preimage without e otherwise. Obviously, we have (py¢) = (p)+e
for any path p in A.

Note that if p is a path in A traversing the edges fi,..., fr, then p,., considered
as a word in m*, is obtained from the word p by substituting (z;e) for x;
(j =1,...,n), and leaving the other edges unchanged. Putting z = (tp, [p]u, 7p) and x4 =
(tpte, [Pre]u, TP1e), this implies (Co(z))1e 2 Co(xye) for any path p is A. Moreover,
we also see that, for any paths ¢,qi,...,qx in A, we have ¢ =y ¢1--- ¢, if and only if
G+e =U (q1)+e - (Gn)+e. Using that for any subgraph = C A, the connected components of
= and Z, . are in one-one correspondence, an induction shows that (P, (z))4e 2 Pn(24e) for
every n. In particular, P, (z) contains 7p if and only if (P,(x))1. contains 7py.. Therefore
if p is a breaking path in A over U, then 7pie ¢ (Py(2))+e and hence 7pye ¢ Pp(24e),

that is, py. is a breaking path in I' over U, which proves our statement. O

By the previous proposition, the class of all graphs containing a breaking path over
U (that is, of all non-(Sy) graphs) is closed upwards in the minor ordering, hence, it is
determined by its minimal elements. This enables us to characterize (Sy)-graphs by these
minimal elements — these are precisely the graphs which are forbidden minors for graphs
with property (Su). According to the theorem of Robertson and Seymour [18], there is no
infinite anti-chain in the minor ordering, that is, the set of minimal non-(Sy) graphs must
be finite.

These observations are summarized in the following theorem:

Theorem 3.1.2. For any group variety U, there exists a finite set of graphs I'y,..., 'y
such that the graphs containing a breaking path over U are exactly those having one of

I',....T'y, as a minor.

By Lemma 2.3.6, if U and V are group varieties with U C V| the forbidden minors
for U are smaller (in the minor ordering) then the ones for V.
The next statement contains simple observations regarding the nature of forbidden

minors.

Proposition 3.1.3. For any group variety U, the set of minimal non-(Sy) graphs are

two-edge-connected graphs without loops.
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Figure 3.1.1. The partially ordered set of graphs and the forbidden minors

Proof.  We show that if I" is a non-(Sty) graph which has loops or is not two-edge-
connected, then there exists a graph below I' in the minor ordering which is also non-(Sv).
Indeed, suppose that T' has a loop e, and take I'\{e}. For a path p in T, let p_. denote
the corresponding path in I’ obtained by omitting all occurrences of e, and for an arrow
x = (wp, [plu,Tp) € Fyu(l), put x—c = (tp, [p-clu, ™) € Fyu(I'\{e}). Then it is easy to
see by induction that Cy(x_.) C Cp(x)\{e} and P,(z_) C P,(z)\{e} for every x and n,
and hence 7p € P, (z_.) implies 7p € P,(z)\{e}.

Now suppose I' is not two-edge-connected, that is, there is a (u,v)-edge e of T for
which T'\{e} is disconnected. Then let I';,—, denote the graph which we obtain from I" by
contracting e. For a path p in T, let p,—, denote the path in I',—, which we obtain by
omitting all occurrences of e from p, and for an arrow = = (up, [plu,7p) € Fyu(T'), put
Ty=y = (Pu=v; [Pu=0]U, TPu=v) € Fyu(Ty=y). Observe that for co-terminal paths s, in
T, s =y t implies sy—, =uU tu—y. This, by induction yields Cy(zy=y) € Cp(Z)u=y and

Py (zy=y) € Py(x)y=y for all n, and hence 7p € P, (zy=y) implies 7p € P (2)y=y- O

3.2 F-inverse covers via Abelian groups

In this section, we describe the forbidden minors (in the sense of the previous section) for
all non-trivial varieties of Abelian groups. Recall that the variety of all Abelian groups is

denoted by Ab.

Theorem 3.2.1. A graph contains a breaking path over Ab if and only if its minors
contain at least one of the graphs in Figure 3.2.1.

Proof.  First, suppose I' is a graph which does not have either graph in Figure 3.2.1 as a

minor. Then I'’s connected components are either a cycles of length n for some n € Ny with



23
c d
c a
b d b

Figure 3.2.1. The forbidden minors for Ab

possibly some trees and loops attached, or graphs with at most 2 vertices. According to
Proposition 3.1.3, I" contains a breaking path if and only if its two-edge-connected minors
do, which are then either cycles I';, of length n, or two-edge-connected graphs on at most
2 vertices. It is easy to see that in both cases, for any path p, the Ab-content C’O(x) with
x = (tp, [p]ab, Tp) is connected, therefore by Lemma 2.3.3, these graphs do not contain a
breaking path over Ab.

For the converse part, we prove that both graphs in Figure 3.2.1 contain a breaking path
over Ab — namely, the path a. For brevity, denote ta, 7a and cc by u, v and w respectively,
and put = (u, [a]ap, v). Since both graphs are two-edge-connected, Lemma 2.3.3 implies
that Co(z) and the Ab-content Co(z) = (a) are (almost) the same, that is, Py(z) = (a) in
both cases. Now put z1 = (u, [¢]ab, w), z2 = (w, [cal/ | ap, W), 3 = (w, [cb]ap, V), and
note that © = xyxexs, that is, C1(z) C Py(z) N (Po(z1) U Py(xe) U Po(x3)). Again, using
Co and Lemma 2.3.3, we obtain that Co(z1) = (¢), Co(z2) = {w} U (ab'), Co(xs) = (cb),
and so Py(z1) U Py(z2) U Po(x3) = (¢) U{w} U (cb) = (cb) for both graphs in Figure 3.2.1.
Therefore Ci(z) C (a) N (cb) = {u,v} and so v ¢ Pi(x) C {u}. Hence a is, indeed, a

breaking path over Ab in both graphs. O

Corollary 3.2.2. For any non-trivial variety U of Abelian groups, a graph contains a
breaking path over U if and only if its minors contain at least one of the graphs in Figure

3.2.1.

Proof.  The statement is proven in Theorem 3.2.1 if U = Ab. Now let U be a proper
subvariety of Ab. Then U is the variety of Abelian groups of exponent n for some positive
integer n > 2. By Lemma 2.3.6, the forbidden minors for U must be minors of one of
the forbidden minors of Ab, that is, by Proposition 3.1.3, they are either the same, or the

only forbidden minor is the cycle I'y of length two. However, it is clear that ['s contains no
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breaking path over U for the same reason as in the case of Ab, which proves our statement.

O

Remark 3.2.3. For the variety 1 of trivial groups, a connected graph is (S1) if and only if
it is a tree with some loops attached. That is, even the smallest two-edge-connected graph

in the minor ordering, the cycle of length two contains a breaking path over 1.

Let us examine what these imply for F-inverse covers of Margolis—Meakin expansions.
As described in Section 2.3, the Margolis—Meakin expansion M (G) has an F-inverse cover
via U if and only if there is no breaking path in the Cayley graph of G over the variety
U. According to 3.2.1, a Cayley graph will contain no breaking path over a non-trivial
Abelian variety if and only if it is a cycle or a tree, that is, G is either cyclic or free. Of
course, if G is a free group generated by A, then M(G) is nothing but the free inverse
monoid generated by A, which is itself F-inverse, which is why it also has an F-inverse
cover via the trivial variety. This is consistent with the fact that trees contain no breaking
path even over 1.

We sum up our observations in the following theorem:

Theorem 3.2.4. A Margolis—Meakin expansion of a group admils an F-inverse cover via

an Abelian group if and only if the group is cyclic or free.

3.3 Outlook

Let us go back to the original question of the F-inverse cover problem, and discuss where
are results stand. Recall that by Result 2.3.2, an affirmative answer to the F-inverse cover
problem is equivalent to the existence of a locally finite group variety U for every graph I'
such that T' is (Sy). So far, we have seen that locally finite Abelian varieties only suffice
for a very narrow class of graphs, in which there is nothing surprising. A step up from
Abelian varieties would be locally finite varieties of meta-Abelian groups AbgAb,: groups
G in which there is a normal series {1} <N <G for which the factors N and G/N are in Ab,
and Ab,, respectively. The relatively free meta-Abelian groups have an easy-to-solve word
problem, which makes them ideal candidates, however, almost nothing is known about
(SAb.Ab, ). We do not currently know of a breaking path over these varieties. Some of

what is known is implied by the following fact, which can be found in |2, page 502

Result 3.3.1. If a graph T’ contains a breaking path over the variety U, then there is an

arrow z in Fgu(I') such that Co(z) is not connected.
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The smallest graph (in the minor ordering) in which such an arrow = can occur over a
non-Abelian variety is the one in Figure 3.3.1. For meta-Abelian group varieties Abs;Ab,.,

where r, s are co-primes or both 2, such a path is known: beb'a”bc't/

a C

b

Cr—=)

Figure 3.3.1. Smallest graph where Cy(z) is not connected for some x

One possible direction for further research in the matter is to describe forbidden minors
for some locally finite meta-Abelian varieties. By Lemma 2.3.6, these must be greater than
the Abelian forbidden minors and the graph above. Another approach would be to try
and find a locally finite group variety U such that for every arrow z of F,uy(I'), Co(x) is
connected.

This thesis continues with different generalization of Chapter 3. One way the results
of Section 3.2 can be interpreted is as characterizing Margolis-Meakin expansions M (G)
which have an F-inverse cover over a group which is an extension of some Abelian group
by G. One could formulate the very same question for general inverse monoids. In the
following chapter, we develop a framework analogous to the one in [2]|, which allows us to

investigate the proposed problem for a large class of F-unitary inverse monoids.
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Chapter 4

F-inverse covers of finite-above

inverse monoids

4.1 Conditions on the existence of F-inverse covers

4.1.1 Finite-above inverse monoids

In this section, the framework introduced in 2] and Section 2.3 for Margolis—Meakin ex-
pansions resulting in the graph condition is generalized for a class of E-unitary inverse
monoids which also contains all finite ones. Analogously, we formulate necessary and suffi-
cient conditions for any member of this class to have an F-inverse cover via a given variety
of groups.

First, we define the class of F-unitary inverse monoids we intend to consider. In
[2], when F-inverse covers are built from dual premorphisms, condition (2.3.1) is ensured
by considering canonical dual premorphisms which respect the distinguished generating
elements of the inverse monoids in question. The key lemma |2, Lemma 2.3| states that
if M is A-generated with A consisting of maximal elements with respect to the natural
partial order, then dual premorphisms satisfying (2.3.1) can be assumed to be canonical.
A key idea to the class of inverse monoids to be defined comes from the observation that |2,
Lemma 2.3] remains valid under an assumption weaker than M being A-generated where
the elements of A are maximal. We introduce the appropriate notion more generally for
inverse categories.

Let X be an inverse category and A an arbitrary graph. We say that X is quasi-A-
generated if a graph morphism ey: A — X is given such that the subgraph Aey UE(X)
generates X', where E(X) is the subgraph of the idempotents of X'. Clearly, a A-generated

inverse category is quasi-A-generated. Furthermore, notice that a groupoid is quasi-A-
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generated if and only if it is A-generated. If ey is injective, then we might assume that A
is a subgraph in X, i.e., ey is the inclusion graph morphism A — X.

A dual premorphism 1: Y — X between quasi-A-generated inverse categories is called
canonical if ey = eyx. Again, if ey is an inclusion, then ey is necessarily injective, and
so it also can be chosen to be an inclusion. However, if €y is injective (in particular, an
inclusion), then ey need not be injective, and so one cannot suppose in general that ey is
an inclusion.

In particular, if X', ) are one-object inverse categories, that is, inverse monoids, and A
is a one-vertex graph, that is, a set, then this defines a quasi-A-generated inverse monoid
and a canonical dual premorphism between inverse monoids. We also point out that a
group is quasi- A-generated if and only if A-generated.

An inverse monoid M is called finite-above if the set m* = {n € M : n > m} is finite for
every m € M. For example, finite inverse monoids and the Margolis—Meakin expansions
of A-generated groups are finite-above. The class we investigate in this section is that of
all finite-above E-unitary inverse monoids.

Notice that if M is a finite-above inverse monoid, then, for every element m € M, there
exists m’ € M such that m’ > m and m’ is maximal in M with respect to the natural
partial order. Denoting by max M~ the set of all elements of M distinct from 1 which are
maximal with respect to the natural partial order, we obtain that M is quasi-max M -

generated. Hence the following is straightforward.

Lemma 4.1.1. FEvery finite-above inverse monoid is quasi-A-generated for some A C

max M .

What is more, the following lemma shows that each quasi-generating set of a finite-
above inverse monoid can be replaced in a natural way by one contained in max M ~. As
usual, the set of idempotents E(M) of M is simply denoted by E. Note that if A C
max M, then AN E = (). Here and later on, we need the following notation. If M is
quasi- A-generated and w is a word in m*, then the word in m* C A" obtained from

w by deleting all letters from E is denoted by w™. Obviously, we have [w]y < [w™]as-

Lemma 4.1.2. Let M be a finite-above inverse monoid, and assume that A C M is a
quasi-generating set in M. For every a € A, let us choose and fix a maximal element a
such that a < a. Then A = {a : a € A} \ {1} is a quasi-generating set in M such that

A C max M.

Proof. Since A is a quasi-generating set, for every m € M, there exists a word w €

AUE" such that m = [w]y, whence m < [w™]ps follows. Moreover, the word @ obtained
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from u = w™ by substituting a for every a € A\ E has the property that [u]as < [@]pr, and
so m < [@]as holds. Thus m belongs to the inverse submonoid of M generated by AUE.
O

This observation establishes that, within the class of finite-above inverse monoids, it is
natural to restrict our consideration to quasi-generating sets contained in max M ~. Now

we present a statement on the EF-unitary covers of finite-above inverse monoids.
Lemma 4.1.3. Let M be an inverse monoid.
(1) If M is finite-above, then so are its E-unitary covers.

(2) If M is quasi-A-generated for some A C max M~ then every E-unitary cover of M
contains a quasi-A-generated inverse submonoid T with Aep C max T~ such that T is

an E-unitary cover of M.

Proof. Let U be any F-unitary cover of M, and let ¢: U — M be an idempotent
separating and surjective homomorphism.

(1) Since ¢ is order preserving, we have t“¢p C (tp)“ for every t € U, and the latter
set is finite by assumption. To complete the proof, we verify that ¢|w (¢ € U) is injective.

1 — ylyfl, since

Let t € U and y,y; € t¥ such that yp = y1¢. This equality implies yy~
@ is idempotent separating. Moreover, the relation y,y; > ¢ implies yotoy;, and so we
deduce y = y1, since U is F-unitary.

(2) For every a € A, let us choose and fix an element u, € U such that u,p = a,
consider the inverse submonoid 7" of U generated by the set {u, : a € A} U E(U), and
put er: A — T, a +— u, which is clearly injective. Obviously, T is a quasi-A-generated E-
unitary inverse monoid, and the restriction ¢|p: T — M of ¢ is an idempotent separating
and surjective homomorphism. It remains to verify that Aep C maxT~. Observe that an
element m € M is maximal if and only if the set m* is a singleton, and similarly for 7.

Thus the last part of the proof of (1) shows that Aep C maxT. Since, for every a € A,

the relation a # 1 implies u, # 1, the proof is complete. O

This implies the following statement.

Corollary 4.1.4. Fach quasi-A-generated finite-above inverse monoid M with A C max M~

has an E-unitary cover with the same properties.

This shows that the study of the F-inverse covers of finite-above inverse monoids can be

reduced to the study of the F-inverse covers of finite-above E-unitary inverse monoids in
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the same way as in the case of finite inverse monoids generated by their maximal elements,
see [2]. Furthermore, the fundamental observations [2, Lemmas 2.3 and 2.4] can be easily

adapted to quasi-A-generated finite-above inverse monoids.

Lemma 4.1.5. Let H be an A-generated group and M a quasi-A-generated inverse monoid.

Then any canonical dual premorphism from H to M has property (2.3.1).

Proof.  Consider a canonical dual premorphism v: H — M, and let m € M. Since M
is quasi- A-generated, we have m = [w]y; for some w € AUE", and so m < [w™]y; where
w~ € A", Since 9 is a canonical dual premorphism, we obtain that [w™gY > [w”p > m.

O

Lemma 4.1.6. Let M be a quasi-A-generated inverse monoid such that A C max M~ If
M has an F-inverse cover over a group H, then there exists an A-generated subgroup H'

of H and a canonical dual premorphism from H' to M.

Proof. Let F be an F-inverse monoid and ¢: F' — M a surjective homomorphism.
Put H = F/o, and consider the dual premorphism ¢: H — M, h — mpp induced by
©. Since 9 has property (2.3.1), for any a € A, there exists h, € H such that a < hg.
However, since a is maximal in M, this implies a = hqt). Now let H' be the subgroup of
H generated by {h, : a € A}. Then the restriction ¢|g: H — M of v is obviously a dual
premorphism. Moreover, the subgroup H' is A-generated with eg: A — H',a + hg, so

Y| g is also canonical. 0

So far, the question of whether a finite-above inverse monoid M has an F-inverse cover
over the class of groups C closed under taking subgroups has been reduced to the question
of whether there is a canonical dual premorphism from an A-generated group in C to M,
where A C max M~ is a quasi-generating set in M. The answer to this question does not
depend on the choice of A.

Let M be a quasi- A-generated inverse monoid with A C max M —, H an A-generated
group in C, and let ¢v: H — M be a canonical dual premorphism. Denote the A-generated
group M/o by G, and note that ¢%: M — G is canonical. The product x = Yol is a
canonical dual premorphism from H to G. However, a dual premorphism between groups
is necessarily a homomorphism. Consequently, k: H — G is a canonical, and therefore
surjective, homomorphism. Hence H is an A-generated extension of a group N by the
A-generated group G. If F is an F-inverse cover of M over H then, to simplify our

terminology, we also say that F' is an F-inverse cover of M wia N or wvig a class D of



30

groups if N € D. If we are only interested in whether M has an F-inverse cover via a
member of a given group variety U, then we may replace H by the ‘most general’ A-
generated extension GU of a member of U by G. Thus Lemma 4.1.6 implies the following

assertion.

Proposition 4.1.7. Let M be a quasi-A-generated inverse monoid with A C max M~ , put
G = M/o, and let U be a group variety. Then M has an F-inverse cover via the group

variety U if and only if there exists a canonical dual premorphism GY — M.

Therefore our question to be studied is reduced to the question of whether there exists
a canonical dual premorphism GY — M with G = M /o for a given group variety U and
for a given quasi- A-generated inverse monoid M with A C max M ~. In the sequel, we deal

with this question in the case where M is finite-above and F-unitary.

4.1.2 Closed subgraphs

Let M be an FE-unitary inverse monoid, denote M/o by G, and consider the inverse
category Zys acted upon by G. Recall from Subsection 2.2.3 that the set of objects of Zys
is G, and the set of (i,j) arrows are of the form (i,m,j), where m € M and i - mo = j.
Given a path p = ejes---e, in Ij; where e; = (tej,mj,7e;) with m; € M for every
j (j=1,2,...,n), consider the word w = mymg---m, € M" determined by the labels of
the arrows in p, and let us assign an element of M to the path p by defining A(p) = [w]yr —
this is a key definition of the section. Notice that, for every path p, we have A\(p) = A\(pp'p),
and A(p) is just the label of the arrow pp, where @: Ta — Iy is the unique category
morphism such that ep = e and €’ = e~ ! for every e € ArrZ);. Since the local monoids
of the category Zp; are semilattices by Result 2.2.3, the following property follows from
|13, Lemma 2.6] (see also |6, Chapter VII| and |22, Section 12]|), or can be proven from the

definition itself quite straightforwardly.
Lemma 4.1.8. For any co-terminal paths p,q in Ty, if (p) = (q), then A(p) = \(q).

This allows us to assign an element of M to any birooted finite connected subgraph: if
X is a finite connected subgraph in Zy; and 4,5 € Vx, then let A(; ;(X) be A(p), where p is
an (i, j)-path in Zp; with (p) = X.

Now assume that M is a quasi-A-generated FE-unitary inverse monoid with A C
max M ™, and recall that in this case, G = M/o is an A-generated group. Based on

the ideas in [13], we now give a model for Z); as a quasi-I'-generated inverse category
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where I is the Cayley graph of G. Choose and fix a subset I of E such that AU I gener-
ates M. In particular, if M is A-generated, then I can be chosen to be empty. Consider
the subgraphs I' and I'! of Z); consisting of all edges with labels from A and from AU I,
respectively. Notice that I' is, in fact, the Cayley graph of the A-generated group G, and
I'! is obtained from I' by adding loops to it (with labels from I).

We are going to introduce a closure operator on the set Sub(I'Y) of all subgraphs of T'/.

We need to make a few observations before.

Lemma 4.1.9. Let X,Y be finite connected subgraphs in T'', and let i,7 € Vx N Vy. If

Proof. Let r and s be arbitrary (i, j)-paths spanning X and Y, respectively. Then
rr's is an (i,j)-path spanning X UY. According to the assumption, A(r) < A(s), so
A(rr's) = A(r). O

Lemma 4.1.10. Let X,Y be finite connected subgraphs in T'', and let i,j € Vx N Vy. If
A ) (X) < )\(ivj)(Y), then A1y (X) < Ay (Y) for every k,1 € Vx N Vy.

Proof.  Let r and s be (4, j)-paths spanning X and Y, respectively, and let p; and ¢; be
(k,7)-paths in X and Y, and let ps and g2 be (j,1)-paths in X and Y, respectively. Then
p1rpe and q18q2 are (k,l)-paths spanning X and Y, respectively. Therefore, by applying

Lemmas 4.1.8 and 4.1.9, we obtain that

Ay (X) = Ap17rp2) = A(P1)A65) (X)A(p2) = A(p1) A, (XU Y)A(p2)
Ap1)A(rr's)A(p2) = A(prrr'sp2) = Maqrrr'sqz)
)\(Q18Q2) = )‘(k,l) (Y)~

IA

O

Given a finite connected subgraph X in I'! with vertices i, j € Vx, consider the subgraph

X = U{Y € Sub(I'Y) : Y is finite and connected, i,j € Vy,
of I'! which is clearly connected. Note that, by Lemma 4.1.10, the graph X is independent
of the choice of 4,j. Moreover, by Lemma 4.1.9, the same subgraph is obtained if the

relation ‘>’ is replaced by ‘=’ in the definition of X!. More generally, for any X € Sub(T'/),

let us define the subgraph X< in the following manner:

X = LJ{YCl :'Y is a finite and connected subgraph of X}.
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It is routine to check that X — X is a closure operator on Sub(I'/), that is, X C X¢!,
(Xd)Cl = X4 and X C X; implies X C X; for any X,X; € Sub(I'!). As usual, a
subgraph X of TV is said to be closed if X = X°!. Note that, in particular, we have

0! = U{ : his an i-cycle in T such that A(h) = 1},

and so (; is closed if and only if there is no a € A such that a R 1 or a £ 1. Furthermore, we
have X D (¢! for every X € Sub(I'Y) and i € Vxa. In particular, we see that the closure
of a finite subgraph need not be finite. For example, if M is the bicyclic inverse monoid
generated by A = {a} where aa~! = 1, then a is a maximal element in M, M /o is the
infinite cyclic group generated by ac, and we have 0! = {((a0)", a, (ac)"*') : n € Np}.

Denote the set of all closed subgraphs of I'/ by CISub(I'/), and its subset consisting

cl

);
of the closures of all finite connected subgraphs by ClSubg (I'). Moreover, for any family

X, (j € J) of subgraphs of T, define ViesXj = U Ujes X The following lemmas

formulate important properties of closed subgraphs which can be easily checked.

Lemma 4.1.11. For every quasi-A-generated E-unitary inverse monoid M with A C

max M ~, the following statements hold.
(1) Each component of a closed subgraph is closed.

(2) The partially ordered set (ClSub(I'Y); C) forms a complete lattice with respect to the

usual intersection and the operation \/ defined above.
(8) For any X,Y € ClSubg(I'T) with Vx NV # 0, we have X V'Y € ClSubg(T'Y).

(4) For any finite connected subgraph in T'' and for any g € G, we have 9(X) = (QX)CI.
Consequently, the action of G on Sub(I'l) restricts to an action on ClSub(I'") and to

an action on ClSubg(I'7), respectively.
We prove that the descending chain condition holds for ClSubg, (I'Y) if M is finite-above.

Lemma 4.1.12. If M is a quasi-A-generated finite-above E-unitary inverse monoid with
A C max M, then, for every X € ClSubg(I'') and i € Vx, there are only finitely many

closed connected subgraphs in X containing the vertex i, and all belong to ClSubg (I'T).

Proof. Let X € ClSubg(I'Y), whence X = Y° for some finite connected subgraph Y,
and let i € Vy. If Z is any finite connected subgraph such that X D Z< and i € Vg,
then A(;;)(Y) < A5 (Z). Since M is finite-above, the set A = {Xo € ClSuby(I') : X C
X and i € Vi, } is finite. If X3 € CISub(I'Y) is connected with X; C X and i € Vx,, then,
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by definition, X; is a join of a subset of the finite set A which is closed under V. Hence it
follows that X belongs to A, i.e., X; € ClSubg(I'Y). O]

We define an inverse category Xq(I') in the following way: its set of objects is G, its

set of (i, 7)-arrows (i,j € G) is
Xa(T7)(4,5) = {(4,X, ) : X € ClSubg(I) and i,j € Vx},
and the product of two consecutive arrows is defined by
(4,X,5)(4, Y, k) = (4, X VY, k).

It can be checked directly (see also [13]) that Xa(T!) — Zas, (4,X, ) = (i, A (X), ) is a
category isomorphism. Hence X(I'!) is an inverse category with (4, X, j) ™! = (4, X, ), it is
locally a semilattice, and the natural partial order on it is the following: (i,X,j) < (k,Y,1)
if and only if ¢ = k,7 = [ and X O Y. Moreover, the group G acts on it by the rule
9i,X, §) = (gi,9X, gj) transitively and without fixed points. The inverse category Xq(I'!)
is I'/-generated with egfd(lﬂ): ' — Xy(T7),e — (te,e,7e). Therefore Xy(I') is also

quasi-T-generated with ey, 1y = egcd(r,)\pz I' — X4(T'7). By Results 2.2.1 and 2.2.3,

hence we deduce the following proposition.

Proposition 4.1.13. (1) The E-unitary inverse monoid Xa(I'')/G can be described, up

to isomorphism, in the following way: its underlying set is
Xa(I')/G = {(X,g) : X € ClSubg(I'), 1,9 € Vx},
and the multiplication is defined by

(X,9)(Y,h) = (X VIY, gh).

(2) The monoid Xq(I'')/G is quasi-A-generated with

exyrnya A= Xa(lh)/G,  ar (€], a0).

(3) The map ¢: Xa(I'1)/G — M, (X, g) = A4 (X) is a canonical isomorphism.

Remark 4.1.14. Proposition 4.1.13 provides a representation of M as a P-semigroup.
The McAlister triple involved consists of G, the partially ordered set (ClSuby.(I'f); C) and
its order ideal and subsemilattice ({X € ClSubg(I'Y), 1 € Vx}; V).
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The inverse category Xu(I'') can very clearly be seen as an analogue of Fyg(I'), and
Xa(T1)/G of M(G). In the sequel, further generalizing [2], the fact that Xy (T'Y)/G is
isomorphic to M will enable us to find F-inverse covers directly to M. Also, notice that
if we apply the construction before Proposition 4.1.13 for M being the Margolis—Meakin
expansion M (G) of an A-generated group G with A C G \ {1}, then I'/ =T, the Cayley
graph of G, the closure operator X — X is identical on Sub(T), and the operation V
coincides with the usual U. Thus the category Xq(I'!) is just the category isomorphic to
Znr(g)y which is presented after Result 2.2.3, and the map ¢ given in the last statement of
the proposition is, in fact, identical.

The goal of this section is to give equivalent conditions for the existence of a canonical
dual premorphism GY — M. The previous proposition reformulates it by replacing M
with X (T'7)/G. Since GY = F,y(I')/G, it is natural to study the connection between the
canonical dual premorphisms Fyy(T')/G — X4(I'')/G and the canonical dual premorph-
isms Fyu(I') — X, (1! ). As one expects, there is a natural correspondence between these
formulated in the next lemma in a more general setting. The proof is straightforward, it

is left to the reader.

Lemma 4.1.15. Let A be any graph, and let ) be a A-generated, and X a quasi-A-
generated inverse category containing A. Suppose that G is a group acting on both X and
Y transitively and without fized points in a way that A is invariant with respect to both

actions, and the two actions coincide on A. Let i be a verter in A.
(1) We have Ob X = VA = Ob Y, and so the actions of G on ObX and Ob) coincide.

(2) The inverse monoid Y; is A(i, —)-generated, and the inverse monoid X; is quasi-

A(i, —)-generated with the maps
ey,: A(i,—) = Vi, e— (e,g), provided e € Y(i,%),

and

ex,: A(i,—) = X, e~ (e,g), provided e € X(i,%),
respectively.

(8) If W: Y — X is a canonical dual premorphism such that
(Y)Y =Ay¥) for every g € G and y € Arr Y, (4.1.1)

then t(yV) = vy, T(y¥) = Ty, and the map Y: V; — X;, (e,g) — (e¥, g) is a canonical

dual premorphism.
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(4) If: Vi — X is a canonical dual premorphism and (e, g)y = (€, g) for some (e, g) € V;
and (€,g) € X, then g = g, te = 1é and Te = 7é. Thus a graph morphism ¥: ) — X
can be defined such that, for any arrow y € Y(%,"), we set yU to be the unique
arrow © € X (%,") such that (9 'y, g *h)p = (9 'z, g~ h). This ¥ is a canonical dual

premorphism satisfying (4.1.1).

From now on, let M be a quasi- A-generated finite-above E-unitary inverse monoid with
A C max M, and let U be an arbitrary group variety. Motivated by Lemma 4.1.15, we in-
tend to find a necessary and sufficient condition in order that a canonical dual premorphism

F,u(T) — Xa(T) exists fulfilling condition (4.1.1).

4.1.3 A graph condition

Analogously to [2], we are going to assign two sequences of subgraphs of I'! to any arrow

x of Fyuy(I'). Let
= ﬂ{(p)d :pis a (tz,7z)-path in T such that x = (uz, [ply, 72)},

and let P§!(x) be the component of C§!(x) containing tz. Suppose that, for some n (n > 0),

the subgraphs C(x) and P (x) are defined for every arrow x of F,uy(I'). Then let

Cli(@) = (P (@) V- - v PSiay) « k € No, @1,..., 25 € Fyu(T)

are consecutive arrows, and x = x1 - - - T },

and again, let PY(z) be the component of C¢ (z) containing tz. Applying Lemma
4.1.11 we see that, for every n, the subgraph Pgl(:v) of I'! is a component of an intersection
of closed subgraphs, so P (z) € CISub(I'Y) and is connected. Also, PS!(z) contains tx for

all n. Moreover, observe that
C5'(x) 2 Fs'(x) 2--- 2 Cl(x) 2 Pl(w) 2 iy () 2 Plya(x) 2 -+

for all x and n. By Lemma 4.1.12 we deduce that, for every z, all these subgraphs belong
to ClSubg(I'7), and there exists n, € Ng such that P¢ (z) = Pgl L) for every k € No.
For brevity, denote P¢ (z) by P%(xz). Furthermore, for any consecutive arrows  and y,
we have

Pl (zy) € C2 (2y) C P x) Vv PiY(y),

and so

P(zy) C P (z) v P (y)

is implied.
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Proposition 4.1.16. There exists a canonical dual premorphism ¢: Fou(I') — X (TT) 4f
and only if PSN(z) contains Tz for every n € Ny and for every x € F,u(L), or, equivalently,

if and only if P°(x) contains Tx for every x € Fou(T).

Proof.  Let ¢: F,u(I') — Xa(I'!) be a canonical dual premorphism. We denote the
middle entry of xt by u(zv), which belongs to ClSuby.(I'!) and contains tx and 72. The

fact that v is a dual premorphism means that pu((xy)y) C wu(xy) V u(yy). Moreover,

I 7€) for every e € Ep. Hence

1 is canonical, therefore we have (e, [e]y, €)Y = (te, €°
for an arbitrary representation of an arrow = = (wx, [p]u,T7z), where p = e1---e, is a

(ww,7z)-path in T and ey, ..., e, € Fr, we have

play) € p(eer, [ea]u, Te)) ) V- -V p((ten, [enlu, Ten) )

= Vvl = (),

which implies p(x1)) C C§{(z). Since p(x1) is connected and contains tx, u(wp) C P§(x),
and this implies 72 € P§(x).
Now suppose n > 0 and p(yy) € PS(y) for any arrow y. Let & = x1---x3 be an

arbitrary decomposition in Fyy(I"). Then

) C p(ep) V-V () © Byl (a1) V-V By ()

holds, whence p(z1p) C CS, (). As before, pu(z¢) is connected and contains both 1z and
Tz, so we see that p(zy) C P9 (z) and 72 € PSL,(x). This proves the ‘only if’ part of
the statement.

For the converse, suppose that for any arrow z in F,y(I'), we have 7z € PS\(z) for all
n € Np. We have seen above that P°(x) € ClSubg (), and P (zy) C P(z) v P (y) for
any arrows x,y. Furthermore, the equality P (z) = P(27!) can be easily checked for all
arrows x by definition. Now consider the map P! which assigns the arrow (vz, P (z), 72) of
X (T'T) to the arrow z of F,y(T). By the previous observations, this is a dual premorphism

1

from F,y(T) to Xq(I'), and the image of (ie,[e]u,Te) is (te, e, Te), hence it is also

canonical. O
The next lemma states that the canonical dual premorphism P constructed in the
previous proof has property (4.1.1).

Lemma 4.1.17. For every g € G and for any arrow x of Fyu(T), we have P (%) =
9PN ().
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Proof.  One can see by definition that C§l(%z) = 9C§(x) for all x € F,y(T), and so
P§'(9x) = 9P§!(x) also holds. By making use of Lemma 4.1.11(4), an easy induction shows

that C<!(92) = 9C(x) and P (9z) = 9P (x) for all n. O
Recall that the categories F,y(I') and X (I'Y) satisfy the assumptions of Lemma 4.1.15.
Combining this lemma with Proposition 4.1.16 and Lemma 4.1.17, we obtain the following.

Proposition 4.1.18. There ezists a canonical dual premorphism Fyu(I') — Xa(T'!) if and

only if there exists a canonical dual premorphism GY = Fyy(T)/G — Xa(T'!)/G.

The main results of the section, see Propositions 4.1.7, 4.1.13, 4.1.16 and 4.1.18, are

summed up in the following theorem.

Theorem 4.1.19. Let M be a quasi-A-generated finite-above E-unitary inverse monoid
with A Cmax M ~, put G = M /o, and let U be a group variety. Let T' be the Cayley graph

of G. The following statements are equivalent.

(1) M has an F-inverse cover via the group variety U.

(2) There exists a canonical dual premorphism GY — M.

(8) There exists a canonical dual premorphism GU — X,(T'1)/G.

(4) There exists a canonical dual premorphism Fyy(T) — Xa(I'T).

(5) For any arrow z in Fyy(T) and for any n € Ny, the graph P (x) contains T.

As an example, we describe a class of non-F-inverse finite-above inverse monoids
for which Theorem 4.1.19 yields F-inverse covers via any non-trivial group variety in
a straightforward way. The following observation on the series C§'(x), C§(z),... and
P§i(z), P{(z), ... of subgraphs plays a crucial role in our argument. Recall that, given
a group variety U and a word w € A", the U-content cu(w) of w consists of the elements

a € A such that [w]y depends on a.

Proposition 4.1.20. (1) If x = (uz, [plu, 7x) for some (1z,7z)-path p in T then CS(z) =

(cu(p)).

(2) If C&(x) is connected for every arrow x € Fyy(T) then CSl(z) = P (x) for every
x € FgU (F)

Proof.  The proof of 2.3.3 can be easily adapted to show Lemma (1). By assumption in

(2), we have P§l(x) = C§l(z) for any = € F,y(T). Applying (1), an easy induction implies
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that CS,(z) = P(x) and P, (z) = CZ (z) for every n € Ny and = € Fyy(T'). This

n

verifies statement (2). O

Example 4.1.21. Let G be a group acting on a semilattice S where S has no greatest
element, and for every s € S, the set of elements greater than s is finite. Consider a
semidirect product S x G of S by G, and let M = (S x G)*, the inverse monoid obtained
from S x G by adjoining an identity element 1. Then M is a finite-above F-unitary inverse
monoid which is not F-inverse, but it has an F-inverse cover via any non-trivial group
variety.

Notice that S x G has no identity element, therefore M \ {1} = S x G. Recall that the

rules of multiplication and taking inverse in M \ {1} are as follows:

(5:9)(8: 1) = (%, gh) and (5,9)7" = (" 's,97").
The semilattice of idempotents of M is (S x {1g}) U{1}, and the natural partial order on
M \ {1} is given by

(s,9) < (t,h) ifand only if s <t and g=h.

The kernel of the projection of M \ {1} onto G, which is clearly a homomorphism, is the
least group congruence on M \ {1}. Hence M \ {1}, and therefore M also is E-unitary.
Moreover, M is finite-above and non-F-inverse due to the conditions imposed on S. By
Lemma 4.1.1, M is quasi-A-generated with A = max M, and it is easy to check that
max M~ = max S x (G \ {1¢}) where max S denotes the maximal elements of S.

Now that all conditions of Theorem 4.1.19 are satisfied, construct the graph I': its set

of vertices is Vr = G and set of edges is

EF = {(gl> (S,ag))QZ) : S, € max S and 91,92,9 € G
such that g # 1¢ and g19 = g2},

where ¢(g1, (s, 9),92) = g1 and (g1, (8',9),92) = g2. (This is essentially the Cayley graph
of the A-generated group G with eg: A — G, (s',g9) — g, and it is obtained from the
Cayley graph of G, considered as a (G \ {lg})-generated group, by replacing each edge
with | max S| copies.) Let U be a non-trivial group variety. By Proposition 4.1.20, it
suffices to prove that, for each edge e of I, the set of vertices of the graph e is G. For,
in this case, statement (1) obviously shows that C§!(x) is connected for every arrow z in
F,u(I'), and so statement (2) implies that Theorem 4.1.19(5) holds for M. Our statement
for M follows by the equivalence of Theorem 4.1.19(1) and (5).
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Consider an arbitrary edge e = (g1, (s, 9),92) € Er and an arbitrary element h € G,

I, Since g1 is obviously a vertex of e, we can assume

and prove that h is a vertex of e°
that h # ¢g1. Then we have h = gju for some u € G\ {lg}, and A(e) = (¢',9) =
(s',u)(s',u)"1(s',g). This implies that (g1, (s',u), h) is an edge in I belonging to e, and

so h is, indeed, a vertex of el

This example sheds light on the generality of our construction in contrast with that in
[2]. By the main result of Chapter 3, the Margolis-Meakin expansion of a group admits an
F-inverse cover via an Abelian group if and only if the group is cyclic or free. The previous
example shows that, for any group G, there exist finite-above E-unitary inverse monoids
with greatest group homomorphic image G that fail to be F-inverse but admit F-inverse

covers via Abelian groups.

4.2 F-inverse covers via Abelian groups

In this section, we make further inquiries on how Theorem 3.2.4 generalizes for finite-above
FE-unitary inverse monoids. The main result of the section gives a sufficient condition for
such an F-inverse cover not to exist, formulated merely by means of the natural partial
order and the least group congruence.

An easy consequence of Theorem 4.1.19 is the following:

Proposition 4.2.1. If M is a finite-above E-unitary inverse monoid with |M/o| < 2,
then M has an F-inverse cover via any non-trivial group variety. In particular, M has an

F-inverse cover via an elementary Abelian p-group for any prime p.

Proof. If [M/o| = 1, that is, M is a semilattice monoid, then M is itself F-inverse,
and the statement holds for any group variety, including the trivial one.

Now we consider the case |M/o| = 2. Let A C max M~ such that M is quasi-A-
generated. Then the graph I' and the inverse category X (I'Y) has two vertices and objects,
say, 1 and u. If U is a non-trivial group variety, and ¢ is a (1,u)-path in T, then u # 1
implies that cy(q) is non-empty. Thus C§'(z) is connected for every arrow z in F,u(L),
and Proposition 4.1.20 shows that condition (5) in Theorem 4.1.19 is satisfied, completing
the proof. O

This proposition shows that if a finite-above E-unitary inverse monoid M has no F-

inverse cover via an Abelian group (and consequently, M itself is not F-inverse), then M /o
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Figure 4.2.1. The most general constellation of a,b, and v in Zys

has at least two elements distinct from 1, and there exists a o-class in M containing at
least two maximal elements.

From now on, let M be a finite-above F-unitary inverse monoid. Let us choose elements
a,b € M with ac b, and a o-class v € M/o. Denote by max v the set of maximal elements
of the o-class v. Notice that max1 = 1,4, and if v # 1, then maxv = v Nmax M.

Consider the following set of idempotents:
H(a,b;v) = {d tab~'d : d € maxv}.

The set of all upper bounds of H(a,b;v) is clearly (\{h* : h € H(a,b;v)}. Since M is
finite-above, h* is a finite subsemilattice of E for every h € H(a,b;v) which contains 1.
Therefore (\{h* : h € H(a,b;v)} is also a finite subsemilattice of E containing 15s. This
implies that H (a, b;v) has a least upper bound which we denote by h(a, b;v). The following

condition will play a crucial role in this section:
(C) c-h(a,b;v) - ¢ b £ a for some ¢ € maxwv.

Note that if (C) is satisfied, then it is not difficult to check that 1, u = ao = bo, v are
pairwise distinct elements of M /o. Moreover, a and b are distinct, and max v contains an
element d different from c. Figure 1 shows the arrows of Z), related to condition (C).

Denote the variety of Abelian groups by Ab. The main result of the section is based

on the following statement.

Proposition 4.2.2. Let M be a finite-above E-unitary inverse monoid such that condition
(C) 1is satisfied for some a,b € max M~ with acb and for some v € M/o, and consider
an appropriate ¢ € maxv. Let A be a quasi-generating set in M such that A C max M~
and a,b,c € A, and consider M as a quasi-A-generated inverse monoid. Then there exists

an arrow x in Fyap(T) such that PY(x) does not contain Tx.

Proof.  For the proof, we adapt the proof of the converse part of Theorem 3.2.1 to the
framework of the chapter. For every d € A, denote the edge (1,d,do) of T by d, and put
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u = ao = bo. Furthermore, consider the following arrows in Fyan(I'):

T = (1, [Q]Abvu>v Yy= (1, [b]Ab,U), z = (17 [Q]Ab,v)-

12 = (v,[dabc|ab,v) € Fyan(T), where [dab/clap = [ab]ap in

Then we have 2z tay~
Fap(Er). For brevity, put h = h(a,b;v), and let o be a v-cycle in '/ such that A(o) = h.

It suffices to verify the following two statements:
P& (2 tay™t2) C (o), (4.2.1)

(@) N (coc D) contains no (1, u)-path. (4.2.2)

1

For, we have [c(c'ab’c)c’blab = [a]ap, whence z(z tzy~'2)27 'y = 2, and so

Cfl(x) € (@) N (9 v BS'(z"Tay ™ 2) V(D).

Here (4.2.1) implies

QCI\/PCI Z_ll'y_lZ V. Clbdg Cclv OCI\/ Clbcl: COC/bd,
0

and so it follows by (4.2.2) that C§!(x) contains no (1, u)-path.

Contrary to (4.2.2), assume that the graph (a)°' N (coc’b)®! contains a (1,u)-path, say
s. Then A(s) > Aa) = a and A(s) > A(coc'b) = chc™1b. Since a is a maximal element
in M, the first inequality implies A\(s) = a, and so the second contradicts (C). This shows
that (4.2.2) holds.

To prove (4.2.1), first we verify that

C(ztay™t2) = ﬂ{(t’@'t>CI :tis a (1,v)-path}. (4.2.3)

It suffices to show that, for every v-cycle s with [s]ap = [cab/c]ap = [ab/]ab, there exists
a (1,v)-path ¢ such that (s) = (tabt).

Let s be a v-cycle such that [s]ap = [ab/]ap. Since ab’ is a non-trivial simple cycle,
the former equality implies that s necessarily contains both a and b’. Independently of the
occurrences of a and b in s, the edges a and b appear somewhere in the v-cycle 5 = ss's
in this order, that is, § = tgat;b'ts for appropriate paths tg,t1, to. Moreover, we obviously
have (3) = (s) and [3]ap = [s]ap. Putting 5 = tgab’t, where t = bt;b'tos’s, we easily see
that (5) = (s) = (t) and [5]ap = [s]ab. Finally, the equalities [toab't|ap = [s]ab = [al]ab
imply that [to]ap = [t']ab, and so [s]ap = [t'ab/t]ap and (s) = (t'ab’t) follow. This
completes the proof of (4.2.3).

Turning to the proof of (4.2.1), assume that k is a v-cycle in C§!(z 1oy ~12). By (4.2.3)
we see that

Ak) > Mtab't) = At) " tab t\(t)
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for every (1,v)-path t. Since there exists a (1,v)-path t with A(¢f) = d for every d €
max v, we obtain that A(k) is an upper bound of H(a,b;v), and so A(k) > h = A(o)
and P! (z lzy~1z) C C§l(z"tay~'z) C (o). This verifies (4.2.1), and the proof of the

proposition is complete. O

Combining Proposition 4.2.2 and Theorem 4.1.19(1) and (5), we obtain the following
sufficient condition for a finite-above E-unitary inverse monoid to have no F-inverse cover

via Abelian groups.

Theorem 4.2.3. If M is a finite-above E-unitary inverse monoid such that for some
a,b € max M with acb and for some v € M/o, condition (C) is satisfied, then M has no

F-inverse cover via Abelian groups.
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Summary

The topic of the thesis falls in the area of semigroup theory, the class of semigroups
considered is called inverse monoids. They are monoids defined by the property that every

lg =2, and 27 'zz~! = 27! hold. They

element z has a unique inverse z~! such that zz~
are one of the many generalizations of groups. One way they naturally arise is through
partial symmetries — to put it informally, inverse monoids are to partial symmetries as
what groups are to symmetries.

An important property of inverse monoids is that its idempotens commute, therefore
form a semilattice. Inverse monoids also come equipped with a natural partial order, which
extends the partial order on idempotens induced by the semilattice structure. It is defined
by s <t if and only if there exists and idempotent e such that s = te. It is not hard to see
that factoring an inverse monoid by a congruence which collapses all idempotents yields a
group, with the class containing all the idempotents as the identity element. Each inverse
monoid M has a smallest group congruence, denoted by o, and a corresponding greatest
group homomorphic image M/o.

A class of inverse monoids which play an important role in the thesis is called E-
unitary inverse monoids, which is defined by the property that the o-class containing the
idempotents contains nothing but the idempotents. By a famous theorem of McAlister
known as the P-theorem, each F-unitary inverse monoid can be assembled from a group,
a semilattice and a partially ordered set. Hence, E-unitary inverse monoids are, in a
way, ‘known’. This is what gives particular significance to the McAlister covering theorem
stating that every inverse monoid has an E-unitary cover, that is, every inverse monoid
is a homomorphic image of an E-unitary inverse monoid under a homomorphism which
is injective on the idempotens (this property is called idempotent-separating). It has also
been shown that finite inverse monoids have finite E-unitary covers.

The other class of inverse monoids specified in the title is the one of F-inverse monoids.
An inverse monoid is called F-inverse if its o-classes have a greatest element with respect

to the natural partial order. F-inverse monoids are always E-unitary. It is a well-known
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folklore result that every inverse monoid has an F'-inverse cover, that is, every inverse
monoid M is a homomorphic image of an F-inverse monoid by an idempotent-separating
homomorphism. We also call F' an F-inverse cover of the inverse monoid M over the group
G if G is isomorphic to M /o. However, in this case, the proof always produces an F-inverse
cover over a free group, and so it is always infinite. The main motivation of the research

presented in this dissertation is the following:

Open problem (Henckell and Rhodes, [7]). Does every finite inverse monoid admit a

finite F-inverse cover?

By the McAlister covering theorem, it suffices to restrict our attention to F-inverse
covers of E-unitary inverse monoids, as we do throughout the thesis. The most important
antecedent to the research presented in the dissertation is the paper of Auinger and Szendrei
[2] on the question. They go a step further by applying that it is sufficient to restrict to
a special class of E-unitary inverse monoids called Margolis-Meakin expansions, which
have a very convenient structure. Thus Auinger and Szendrei are able to reformulate the
F-inverse cover problem in the following way.

Let T be (directed) graph. There is an evident notion of paths in directed graphs,
however, paths in this thesis are regarded in the larger graph I where I' is extended by
formal reverses of edges of I'. Hence the path p, as a sequence of edges and reverse edges,

!/

represents a word in the free monoid Er" with involution /. If U is a variety of inverse

monoids, then the value of p in the relatively free inverse monoid Fy(Er) is denoted by

[Plu-
The free gU-category on I denoted by Fyyy(I'), as introduced in [22], is given as follows:

its set of objects is Vr, and, for any pair of objects i, j, the set of (i, j)-arrows is
Fyu(T)(i,5) = {(i, [plu, j) : p is an (i, j)-path in T},
and the product of consecutive arrows is defined by

(1, [plu, 4) (U, lalus k) = (i, [palu, k).

We assign to each arrow x of Fyyy(I') two sequences of finite subgraphs of I" as follows:

let
Co(z) = [ {(p) : (wp, [plu, 7p) = =}, (4.2.4)
and let Py(z) be the connected component of Cy(z) containing wx. If Cp(z), Py(x) are

already defined for all z, then put

Cpi1(z) = ﬂ{Pn(zvl) U---UP(xg) : k€N, xy -z = x},
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and again, let P,,11(x) be the connected component of Cy,41(x) containing tz.

It is easy to see that

Co(z) 2 Po(z) D+ D Cp(x) 2 Py(x) 2 Cpg1(z) 2 Poga(z) D - -+

for all z and n. We define P(x) to be (,—, P.(z), which is a connected subgraph of T
containing tz. According to |2, Lemma 3.1|, finite inverse monoids admit a finite F-inverse
cover if and only if for any finite graph I, there exists a locally finite group variety U such
that if T2 € P(x) for all z. In this case, we say that I" satisfies property (Sy). In particular,
the Cayley graph of a group G satisfies property (Sy) if and only if the Margolis-Meakin
expansion M (G) has an F-inverse cover over a group which is an extension of some group
in U by G — an F-inverse cover via U, for short. If & ¢ P(x) for some z = (up, [p]u, 7p),
then we call p a breaking path over U.

In [20] and Chapter 3 of the thesis, we examine the property (Su). A main observation
is that for a fixed group variety U, non-(Sy) graphs are closed upwards in the minor or-
dering, and can therefore be described by their minimal elements, called forbidden minors.
The following theorem is main result of the chapter, and consists of the characterization

of forbidden minors for non-trivial Abelian varieties.

Theorem (|20]). A graph contains a breaking path over a non-trivial Abelian group variety

of and only if its minors contain contain one of the graphs below:
c d
C a
b d b

Figure 4.2.2. The forbidden minors for Ab

We also have the following consequence:

Theorem ([20]). A Margolis—Meakin expansion of a group admits an F-inverse cover via

an Abelian group if and only if the group is cyclic or free.

In [21] and Chapter 4, we are looking to describe all finite E-unitary inverse monoids

which admit an F-inverse cover via an Abelian group. The first step is introducing a
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Margolis—Meakin-like structure that describes the much larger class of finite-above E-
unitary inverse monoids — which, in particular, contains all finite ones —, and generalizing
the conditions introduced in [2] accordingly.

Let M be an arbitrary E-unitary inverse monoid, and denote the group M /o by G.
The category Zps defined in the following way plays a crucial role in our construction: its

set of objects is G, its set of (i, j)-arrows is
I]\/[(ivj) = {(/Lvmv.]) EGXMxG:i-mo :j} (Z,j € G)7

and the product of consecutive arrows (i, m, j) € Zps(i,7) and (4, n, k) € Za(J, k) is defined
by the rule

(i,m,5)(4,n, k) = (i,mn, k).

Finite-above E-unitary inverse monoids M have the property that they are generated
by a set A consisting of maximal elements of M together with a set I of idempotents of
M. We refer to this fact by saying that M is quasi-A-generated. The subgraph of Ty,
spanned by edges with middle components from A U I is denoted by I''. We introduce a
closure operator on the set Sub(I'!) of all subgraphs of I'/. Given a path p = ejes--- ¢, in
Zum where e = (tej,mj, Tej) with m; € M for every j (j = 1,2,...,n), consider the word
w=mims---my € M determined by the labels of the arrows in p, and let us assign an
element of M to the path p by defining A(p) = [w]ps. For a finite connected subgraph X
in Zpy and for 4,5 € Vx, let A\ ;y(X) be A(p), where p is an (i, j)-path in Ty with (p) = X,
which can be seen to be well defined.

Given a finite connected subgraph X in I'/ with vertices i, j € Vx, consider the subgraph

X = U{Y € Sub(FI) .Y is finite and connected, 7, € Vv,

and A; ;) (Y) > A\ (X))},

which, again, is well defined. More generally, for any X € Sub(I'), let us define the

subgraph X¢ in the following manner:
X = LJ{YCl .Y is a finite and connected subgraph of X}.

It is routine to check that X — X is a closure operator on Sub(I''), and, as usual, a
subgraph X of T/ is said to be closed if X = X!, For any family X; (j € J) of subgraphs
of ') define Vies Xj = (UjeJ Xj)d. The partially ordered set (ClSub(I'f); C) forms a

complete lattice with respect to the usual intersection and the operation \/ defined above.
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Analogously to [2], we assign two sequences of subgraphs of I'! to any arrow z of

FgU (F) Let

C(z) = ﬂ{(p)d :pis a (tz,7z)-path in T such that z = (iz, [p|u, 77)},

and let PS!(z) be the component of C§!(z) containing (. Suppose that, for some n (n > 0),

the subgraphs C(x) and P (x) are defined for every arrow x of F,uy(I'). Then let

Cli(@) = (P (@) V- - v PSiay) - k € No, @1,..., 25 € Fyu(T)

n

are consecutive arrows, and x = x1 - - - T },

X e € component o ) containing Lx.
be th t of CZ, taini

and again, let P! -

n+1

A main result of [21] and Chapter 4 states that the quasi-A-generated finite-above
FE-unitary inverse monoid M has an F-inverse cover via a group variety U if and only if
for any arrow x in F,y (') and for any n € Ny, the graph PS(x) contains 7. Using this
theorem, an example of a family of finite E-unitary inverse monoids is presented which
have finite F-inverse cover, and this fact does not follow by previous techniques.

In Section 4.2, we concentrate on the variety Ab of Abelian groups. Let M be a finite-
above F-unitary inverse monoid. Let us choose elements a,b € M with a o b, and a o-class

v € M/o. Denote by max v the set of maximal elements of the o-class v, and consider the

following set of idempotents:
H(a,b;v) = {d tab~'d : d € maxv}.

This set has a least upper bound in E(M) which we denote by h(a,b;v). The following
condition plays a crucial role:
(C) c-h(a,b;v) - ¢ 1b £ a for some ¢ € maxv.

We close the thesis with the following theorem on F-inverse covers of finite-above E-

unitary monoids via Ab:

Theorem ([21]). If M is a finite-above E-unitary inverse monoid such that for some
a,b € max M with acb and for some v € M /o, condition (C) is satisfied, then M has no

F-inverse cover via Abelian groups.
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Osszefoglald

A disszertacio témaéaja a félcsoportelmélet témakoréhez tartozik, a targyalt félcsoportok az

agynevezett inverz monoidok, vagyis olyan monoidok, amelyek barmely = elemének létezik

1 1 1 1

olyan egyértelmt x~! inverze, melyre zz 'z = z és a laz™! = 27! teljesiil. Az inverz
félcsoportok a csoportok altalanositasai. Tobbek kézott parcidlis szimmetridk absztraktci-
6jaként jonnek el§ — az inverz monoidok olyan szerepet jatszanak a parcialis szimmetriak
elméletében, mint a csoportok a szimmetridkéban.

Az inverz monoidok fontos tulajdonsiga, hogy idempotensei felcserélhetéek, azaz fél-
halét alkotnak. Minden inverz monoidon adott egy természetes részbenrendezés, amely a
félhalo struktirabol adodo részbenrendezést terjeszti ki. Formélisan s < ¢t pontosan akkor,
ha létezik olyan e idempotens, melyre s = te. Nem nehéz latni, hogy egy inverz monoidot
olyan kongurenciaval faktorizalva, amely minden idempotenst egybeejt, csoportot kapunk,
melynek egységeleme az idempotenseket tartalmaz6 osztaly. Ezen kongruencidk koziil o
jeloli a legkisebb csoportkongurencidt, és igy M /o az M inverz monoid legnagyobb csoport
homomorf képe.

A disszertacio cimében is emlitett, Ggynevezett E-unitér inverz monoidok definicioja
az, hogy az idempotenseket tartalmazo o-osztaly csak az idemptenseket tartalmazza. A
McAlister-féle P-tételként ismert hires eredmény szerint minden E-unitér inverz mono-
id felépithets egy csoportbol, egy félhalobol és egy részbenrendezett halmazbdl. Emiatt
az FE-unitér inverz monoidok bizonyos értelemben ismertek. Ez ad kilonleges jelentdsé-
get a McAlister-féle fedési tételnek, mely azt mondja ki, hogy minden inverz monoidnak
van FE-unitér fedGje, azaz minden inverz monoid homomorf képe valamely FE-unitér in-
verz monoidnak, mégpedig olyan homomorfizmus mellett, mely az idempotenseken injek-
tiv (idempotens-szétvdlaszté homomorfizmus). Szintén ismert, hogy minden véges inverz
monoidnak van véges E-unitér feddje.

A masik, a disszertacidoban fontos szerepet jatszo félcsoportosztaly az F-inverz monoi-

dok osztélya. Egy inverz monoidot F-inverznek neveziink, ha minden o-osztilya tartalmaz

legnagyobb elemet a természetes részbenrendezésre nézve. Az F-inverz monoidok mindig



49

FE-unitérek. Jo6l ismert eredmény, hogy minden inverz monoidnak van F-inverz feddje, azaz
minden inverz monoid idempotens-szétvalaszté homomorf képe egy F-inverz monoidnak.
Azt mondjuk, hogy az F inverz monoid F-inverz fed6je M-nek a G csoport felett, ha G
izomorf M /o-val. A bizonyitas azonban ez esetben mindig szabad csoport feletti F-inverz
fed6t eredményez, és ez mindig végtelen. A disszerticio f6 motivacidja a kovetkezd prob-

léma:

Nyitott kérdés (Henckell és Rhodes, |7|). Létezik-e barmely véges inverz monoidnak

véges F-inverz fedgje?

A McAlister-féle fedési tétel alapjan elég E-unitér inverz monoidok esetén vizsgalnunk
a kérdést, ahogyan a disszertacié soréan is tessziik. A kutatésunk 6 el6zménye Auinger és
Szendrei [2] cikke errsl a kérdéskorrsl. Ebben még egy lépéssel tovabb mennek azt alkal-
mazva, hogy elegend§ specidlis F-unitér inverz monoidok, tugynevezett Margolis—Meakin-
kiterjesztések esetében megvalaszolni a kérdést. Ennek segitségével Auinger és Szendrei a
kovetkezképp fogalmazzak 4t az F-inverz fedési problémat.

Legyen T' (irdnyitott) graf. A tovabbiakban nem szoritkozunk az iranyitott grafokon
megszokott irdnyitott sétdkra, ezért a I' grafot kiegészitjitk az élek (vesszdvel jelolt) for-
ditottjaival, és a sétakat az igy kapott I' grafban tekintjiik. Igy egy p séta, mint élek
és forditott élek formélis sorozata, az Elt szabad involuciés monoid egy elemét hatarozza
meg. Ha U inverz monoidok varietésa, akkor p értékét az Fy(Er) relativan szabad inverz
monoidban [p]y jeldli.

Jelolje Fyu(I') a I'-n értelmezett szabad gU-kategdrdt [22|, amelyet a kovetkezSképp
adunk meg: az objektumok halmaza Vp, és barmely két 4,j objektum esetén az (i,7)-

morfizmusok halmaza
FgU(F)(Z7j) = {(Z7 [p]Uvj) 'p (iaj)_Séta f_n}a
csatlakozé morfizmusok szorzata pedig a kovetkezSképp definialt:

(1, [plu, 4) (U, lalus k) = (i, [palu, k).

Az Fyuy(T') kategéria minden x morfizmusahoz hozzarendeljiik I' részgrafjainak a ko-

vetkezd két sorozatat: legyen

Co(x) = ({(p) = (, [plu. ) = 2}, (4.2.5)

és legyen Py(x) a Cy(x) graf z-et tartalmazo Osszefiiggs komponense. Ha Cp(x), Py (x)

minden x esetén definidlt, akkor legyen

Cpt1(z) = ﬂ{Pn(zvl) U---UPy(xg) : k€N zy -z = x},
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és legyen P, y1(x) ismét Cp41(x)-nek a tz-et tartalmazo Gsszefiiggd komponense.

Konnyen lathato, hogy barmely x és n esetén

CO<$) ) P()(.l’) 22 Cn(x> 2 Pn<1') ) CTL+1<$) ) PrL—Q—l(x) D

Jelolje P(z) a (o_, Pn(x) metszetet, ez I-nak egy ta-et tartalmazo részgrafja. Pontosan
akkor van minden véges inverz monoidnak véges F-inverz fed§je, ha barmely véges grafhoz
létezik olyan lokalisan véges U csoportvarietds, melyre 7& € P(x) barmely z esetén |2,
Lemma 3.1|. Ez esetben azt mondjuk, hogy I' rendelkezik az (Su) tulajdonsdggal. A G
csoport Cayley-grafja pontosan akkor rendelkezik az (Sy) tulajdonsaggal, ha az M(G)
Margolis—Meakin-kiterjesztésnek van F-inverz fed&je olyan csoport felett, mely valamely
U-beli csoport G-vel vett bévitése — roviden U-n keresztili F-inverz fedgje. Ha ta ¢ P(x)
teljesiil valamely x = (up, [plu, 7p) morfizmusra, akkor p-t szakadd sétdinak nevezziik U
felett.

A disszertacio 3. fejezetében és [20]-ban az (Sy) tulajdonsiagot vizsgaljuk. Fontos
észrevétel, hogy rogzitett U csoportvarietds esetén a nem-(Sy) grafok felfelé zartak a
természetes részbenrendezésben, igy leirhatok a minimalis elemeikkel, dgynevezett kizdrt
minorokkal. A kovetkezs tétel a fejezet {6 eredménye, és az Abel-féle varietdsokhoz tartozo

kizart minorokat irja le.

Tétel ([20]). Egy grdf pontosan akkor tartalmaz szakadd sétat nemtrividlis Abel-féle cso-

portvarietds felett, ha minorként tartalmazza az alabbi grafok valamelyikét:
c d
C Q
b d b

4.2.3. dbra. A kizart minorok Ab esetén

Ebbdl megkaphatd, hogy mely Margolis—Meakin-kiterjesztéseknek van F-inverz fedGje

Abel-csoportokon keresztiil:

Tétel ([20]). Egy G csoport M(G) Margolis-Meakin-kiterjesztésének pontosan akkor van

F-inverz feddje Abel-csoporton keresztil, ha G szabad vagy ciklikus.
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A 4. fejezetben és |21]-ben az a célunk, hogy leirjunk minden olyan véges, E-unitér
inverz monoidot, amelynek van F-inverz fed§je Abel-csoporton keresztiil. Az elsG lépés
olyan Margolis—Meakin-kiterjesztéshez hasonlé struktiira bevezetése, mely az ezeknél joval
szélesebb, tigynevezett felfele véges E-unitér inverz monoidok osztalyat irja le, a masodik
pedig a [2]-beli feltételek altalanositédsa ezen keretek kozott.

Legyen M tetsz6leges E-unitér inverz monoid, jelélje az M /o csoportot G. A konst-
rukciénkban kulcsszerepet jatszik a kdvetkezSképp definidlt Zps kategoria: az objektumok

halmaza G, az (4, j)-morfizmusok halmaza
Tn(iyg) ={(i,m,j) €EGx M xG:i-mo=j}(i,j€q),
két csatlakozo morfizmus, (i,m,75) € Ip(4,7) és (j,n, k) € I (J, k) szorzata pedig
(i,m, j) (4, n, k) = (i, mn, k).

A felfele véges F-unitér inverz monoidokban vélaszthato olyan A U I alaku generator-
rendszer, ahol A elemei maximélisak M-ben, I pedig idempotensekbdl 4ll. Réviden tgy fo-
galmazzuk ezt meg, hogy M kvézi- A-generalt. Jelolje I' az Ty, graf azon élei altal feszitett
részgrafjat, melyek kézépsé komponense AU I-bél valo. Bevezetiink egy lezarasi operatort
I'! 6sszes részgrafjanak Sub(I'Y) részbenrendezett halmazén. Legyen p = ejeg - - - e, séta
Zu-on, ahol e; = (tej,mj,Tej) és mj € M minden j (j = 1,2,...,n) esetén, és tekintsiik
aw=mimy---m, € M sz6t. A p sétahoz hozzarendeljiikk M-nek a A(p) = [w]ys elemét.
Tetszéleges X véges, Osszefiiggd, Tns-beli részgraf és i, j € Vx esetén legyen A(; ;)(X) = A(p),
ahol p egy X-et feszits (i,j)-séta. Belathato, hogy ez joldefinialt.

Tekintsiik T'! egy X részgrafjat, melyre 4, j € Vi, és legyen

X = U{Y € Sub(FI) .Y véges, Osszefiiges, i,j € Vy,
&s M) (Y) = Ao (X)},

amelyrél ismét belathato, hogy joldefinidlt. Altalanosabban, tetszéleges X € Sub(I'Y)

részgraf esetén a kovetkezékeépp definialjuk az X grafot:
Xel = LJ{YCl .Y véges Osszefiiggs részgrafja X-nek}.

Koénnyen ellendrizhets, hogy X — X lezérasi operator Sub(I'f)-n, és a szokott médon
az X részgrafot zdrtnak nevezziik, ha X = X, Reészgrafok barmely X,;(j € J) halmaza
esetén legyen \/;c; X; = (UjGJXj)Cl. A (ClISub(T'); ©) részbenrendezett halmaz teljes

halot alkot a megszokott metszetre és a fent definialt \/ egyesitésre.
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Hasonl6an ahhoz, ahogyan |2|-ben lathattuk, az Fyy(I') kategoria minden x morfizmu-

séhoz hozzarendeljiik T részgrafjainak két sorozatat. Legyen

C(z) = ﬂ{(p>d :p (1z, 7x)-séta T-ban, melyre z = (vz, [plu, 72)},

és legyen P§l(x) a C§l(x) graf wr-et tartalmazé dsszefiiggs komponense. Ha C(x), PS(z)

minden x esetén definidlt, legyen

Cili(@) =P z1) V-V PMaw) : k € No, 1., 2% € Fyu(T)

csatlakoz6 morfizmusok, és © = x1 -+ -z},

és legyen PCl,(z) ismét CZ, | (z)-nek a wa-et tartalmaz6 Ssszefiiggd komponense.

A 4. fejezet és |21] egyik f6 eredménye azt mondja ki, hogy egy kvazi- A-generalt felfele
véges F-unitér inverz monoidnak pontosan akkor van F-inverz fed6je az U csoportvarie-
tason keresztiil, ha barmely x € F,uy(I") morfizmus és n € Ny esetén P(z) tartalmazza
Tz-et. Ezen tétel segitségével megadunk véges E-unitér inverz monoidoknak olyan csalad-
jat, amelyeknek van véges F-inverz fedGje, és ez a korabbi eredményekbdl nem kévetkezik.

A 4.2 alfejezetben az Abel-csoportok varietasara koncentralunk. Tekintsiik az M felfele
véges F-unitér inverz monoidot, legyenek a,b € M olyan elemek, melyekre a o b, és legyen
v € M/o egy o-osztaly. Jelolje maxv a v o-osztaly maximélis elemeinek halmazat, és

tekintsiik idempotenseknek a kévetkez6 halmazat:
H(a,b;v) = {d tab~'d : d € maxv}.

Ennek a halmaznak létezik legkisebb fels§ korlatja E(M)-ben, melyet h(a,b;v) jelol. A

kovetkezs tulajdonsag fontos szerepet jatszik a disszertacié utolsé tételében:

(C) c-h(a,b;v) - ¢ 'b £ a valamely ¢ € max v esetén.

Tétel ([21]). Ha M olyan felfele véges E-unitér inverz monoid, melynek léteznek olyan
a,b € M, a o b elemei és olyan v o-osztdlya, amelyekre a (C) feltétel teljesil, akkor M -nek

nincs F-inverz feddje Abel-csoporton keresztiil.
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