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1 Introduction

The topic of the thesis falls in the area of semigroup theory, the class of semigroups

considered is called inverse monoids (see the monographies of Lawson [4] and Petrich

[7] on the topic). They are monoids de�ned by the property that every element x

has a unique inverse x−1 such that xx−1x = x, and x−1xx−1 = x−1 hold. They are

one of the many generalizations of groups. One way they naturally arise is through

partial symmetries � to put it informally, inverse monoids are to partial symmetries

as what groups are to symmetries.

Unlike in groups, in an inverse monoid, xx−1 is not necessarily the identity

element, but it is, nevertheless, an idempotent. Idempotents therefore play an im-

portant role in the structure, and the set of idempotents of M is denoted by E(M).

An important property of inverse monoids is that its idempotens commute, therefore

form a semilattice. Inverse monoids also come equipped with a natural partial order,

which extends the partial order on idempotens induced by the semilattice structure.

It is de�ned by s ≤ t if and only if there exists and idempotent e such that s = te. It

is not hard to see that factoring an inverse monoid by a congruence which collapses

all idempotents yields a group, with the class containing all the idempotents as the

identity element. Each inverse monoid M has a smallest group congruence, denoted

by σ, and a corresponding greatest group homomorphic image M/σ.

A class of inverse monoids which play an important role in the thesis is called E-

unitary inverse monoids, which is de�ned by the property that the σ-class containing

the idempotents contains nothing but the idempotents. By a famous theorem, known

as the P -theorem of McAlister, each E-unitary inverse monoid is isomorphic to one

of a special structure, built using three building blocks: a group G, a partially

ordered set X, and a meet-semilattice Y which is a principal order ideal of X. By

the P -theorem, E-unitary inverse monoids are, in a way, `known'. This is what gives

particular signi�cance to the McAlister covering theorem stating that every inverse

monoid has an E-unitary cover, that is, every inverse monoid is a homomorphic

image of an E-unitary inverse monoid under a homomorphism which is injective
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on the idempotens (this property is called idempotent-separating). It has also been

shown that �nite inverse monoids have �nite E-unitary covers.

The other class of inverse monoids speci�ed in the title is the one of F -inverse

monoids. An inverse monoid is called F -inverse if its σ-classes have a greatest

element with respect to the natural partial order. F -inverse monoids are always E-

unitary. It is a well-known folklore result that every inverse monoid has an F -inverse

cover, that is, every inverse monoid M is a homomorphic image of an F -inverse

monoid by an idempotent-separating homomorphism. We also call F an F -inverse

cover of the inverse monoidM over the group G if G is isomorphic toM/σ. However,

in this case, the proof always produces an F -inverse cover over a free group, and so it

is always in�nite. The main motivation of the research described in the dissertation

is the following:

Open problem 1.1. Does every �nite inverse monoid admit a �nite F -inverse

cover?

The problem has been formulated by Henckell and Rhodes in [3], and a positive

answer would have solved an important conjecture connected to the complexity

theory of �nite semigroups. The latter conjecture has been since proven [1], but the

F -inverse cover problem has remained open.

Note that by the McAlister covering theorem, it su�ces to restrict our attention

to F -inverse covers of E-unitary inverse monoids, as we do throughout the thesis.

The most important antecedent to the research presented in the dissertation is

the paper of Auinger and Szendrei [2] on the question. They go a step further by

applying that it is su�cient to restrict to a special class of E-unitary inverse monoids

called Margolis�Meakin expansions, which, as we will see, have a very convenient

structure. Thus Auinger and Szendrei are able to reformulate the F -inverse cover

problem by means of graphs and locally �nite group varieties only.

The new results of the author and her adviser presented in the dissertation were

published in the papers [9] and [10]. In [9], the condition on graphs and group

varieties introduced in [2] is investigated. In [10], we generalize the results of both
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[2] and [9] to a much larger class of inverse monoids.

2 Preliminaries

Throughout the thesis, by a graph we mean a directed graph. Given a graph ∆, its

set of vertices and set of edges are denoted by V∆ and E∆ respectively. If e ∈ E∆,

then ιe and τe are used to denote the initial and terminal vertices of e. By an

edge-labelled (or just labelled) graph, we mean a graph ∆ together with a set A and

a map E∆ → A appointing the labels to the edges.

There is an evident notion of paths on directed graphs, however, we do not

generally want to restrict to directed paths. For that, we consider paths in a graph

extended by the formal reverses of its edges as usual in such settings: let e′ be

the reverse of the edge e, and given a graph ∆, de�ne ∆ to be the graph with

V∆ = V∆ and E∆ = E∆ ∪ E∆′ , where E∆′ = {e′ : e ∈ E∆}. It is important

to notice that paths in ∆ can be regarded as words in the free monoid E∆
∗
with

involution ′ where E∆ = E∆ ∪ E′∆. Connectedness of graphs, in consistency with

these generalized paths, are regarded in an undirected sense throughout the thesis.

The operation ′ responsible for `reversing' can be extended to all edges and paths of

∆ in a natural way. For a path p, the subgraph 〈p〉 of ∆ spanned by p is the subgraph

consisting of all vertices and edges p traverses in either direction.

A (small) category is a graph ∆ with an associative, partial multiplication given

on E∆ in a way that, for any e, f ∈ E∆, the product ef is de�ned if and only if

e and f are consecutive edges, and a unique loop 1i is given around every i ∈ V∆

which acts as a local identity. For categories, the usual terminology and notation

is di�erent from those for graphs: instead of `vertex' and `edge', we use the terms

`object' and `arrow', respectively, and if X is a category, then, instead of VX and

EX , we write ObX and ArrX , respectively.

By an inverse category, we mean a category X where, for every arrow e ∈ X (i, j),

there exists a unique arrow f ∈ X (j, i) such that efe = e and fef = f . This unique

f is also called the inverse of e and is denoted e−1. Inverse monoids are just
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inverse categories with one vertex, hence any statement about inverse categories

also applies to inverse monoids. Furthermore, the basic notions for inverse monoids,

such as idempotents and the natural partial order, have their evident analogues for

inverse categories.

Let U be a variety of inverse monoids (in particular, a group variety), let Γ be

a graph, and let [p]U be the element of the relatively free inverse monoid FU(EΓ)

determined by p. The free gU-category on Γ denoted by FgU(Γ), as introduced in

[11], is given as follows: its set of objects is VΓ, and, for any pair of objects i, j, the

set of (i, j)-arrows is

FgU(Γ)(i, j) = {(i, [p]U, j) : p is an (i, j)-path in Γ},

and the product of consecutive arrows is de�ned by

(i, [p]U, j)(j, [q]U, k) = (i, [pq]U, k).

In the thesis, we construct several families of inverse monoids using groups acting

on graphs and categories by graph and category morphisms. In particular, suppose

G is a group acting on a category X . This action determines a category X/G in

a natural way: the objects of X/G are the orbits of the objects of X , the orbit of

i denoted by, as usual, Gi = {gi : g ∈ G}, and, for every pair Gi,Gj of objects, the

(Gi,Gj)-arrows are the orbits of the (i′, j′)-arrows of X where i′ ∈ Gi and j′ ∈ Gj.

Note that if G acts transitively on X , then X/G is a one-object category, that is, a

monoid. According to [6, Propositions 3.11, 3.14], if G is a group acting transitively

and without �xed points on an inverse category X , then the monoid X/G is inverse,

and it is isomorphic, for every object i, to the monoid (X/G)i de�ned on the set

{(e, g) : g ∈ G and e ∈ X (i, gi)} by the multiplication

(e, g)(f, h) = (e · gf, gh).

For example, the Margolis�Meakin expansion M(G) of an A-generated group G

can be obtained this way as follows. Let Γ be the Cayley-graph of G, and consider

the category FgSl(Γ), where Sl is the variety of semilattices. The group G acts on
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its Cayley graph Γ by left multiplication transitively and without �xed points, and

this action can be extended to FgSl(Γ) naturally. Then M(G) is exactly FgSl(Γ)/G,

with elements of the form (X, g) where g ∈ G and X is a �nite connected subgraph

of Γ containing the vertices 1 and g. The multiplication is, of course, given by the

rule

(X, g)(Y, h) = (X ∪ gY, gh).

If U is a group variety, then FgU(Γ)/G is a group, and is denoted by GU. It is

the `most general' A-generated group which is an extension of some group in U by

G.

3 F -inverse covers of Margolis�Meakin expansions

In [2], Auinger and Szendrei reformulate the F -inverse cover problem using graphs

and group varieties. They observe that it is su�cient to restrict their attention to

the aforementioned Margolis�Meakin expansions of �nite groups, and study their

F -inverse covers by means of dual premorphisms.

A dual premorphism ψ : M → N between inverse monoids is a map satisfying

(mψ)−1 = m−1ψ and (mn)ψ ≥ mψ · nψ for all m,n in M (such maps are called

dual prehomomorphisms in [4] and prehomomorphisms in [7]). An important class

of dual premorphisms from groups to an inverse monoid M is closely related to

F -inverse covers of M , as stated in the following well-known result ([7, Theorem

VII.6.11]):

Result 3.1. Let H be a group and M be an inverse monoid. If ψ : H → M is a

dual premorphism such that

for every m ∈M, there exists h ∈ H with m ≤ hψ, (3.1)

then

F = {(m,h) ∈M ×H : m ≤ hψ}
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is an inverse submonoid in the direct product M ×H, and it is an F -inverse cover

of M over H. Conversely, up to isomorphism, every F -inverse cover of M over H

can be so constructed.

Such dual premorphisms into M(G) can be studied through dual premorphisms

FgU(Γ)/G→ FgSl(Γ) with ψ|Γ = idΓ. Fix a connected graph Γ and a group variety

U. Assign to each arrow x of FgU(Γ) two sequences of �nite subgraphs of Γ as

follows: let

C0(x) =
⋂
{〈p〉 : (ιp, [p]U, τp) = x}, (3.2)

and let P0(x) be the connected component of C0(x) containing ιx. If Cn(x), Pn(x)

are already de�ned for all x, then put

Cn+1(x) =
⋂
{Pn(x1) ∪ · · · ∪ Pn(xk) : k ∈ N, x1 · · ·xk = x},

and again, let Pn+1(x) be the connected component of Cn+1(x) containing ιx.

According to [2, Lemma 3.1], there exists a dual premorphism ψ : FgU(Γ) →

FgSl(Γ) with ψ|Γ = idΓ if and only if τx ∈ Pn(x) for all x and n. If τx /∈ Pn(x) for

some x = (ιp, [p]U, τp) and n ∈ N, then we call p a breaking path over U.

For a group variety U, we say that a graph Γ satis�es property (SU), or Γ is (SU)

for short, if there is no breaking path in Γ over U. In particular, the Cayley graph

of a group G satis�es property (SU) if and only if the Margolis�Meakin expansion

M(G) has an F -inverse cover over a group which is an extension of some group in

U by G� an F -inverse cover via U, for short. The following consequence is a main

result of [2].

Theorem 3.2 ([2]). Each �nite inverse monoid has a �nite F -inverse cover if and

only if each �nite connected graph is (SU) for some locally �nite group variety U.

This property (SU) for �nite connected graphs is our topic in [9], and our �ndings

are presented in Chapter 3 of the thesis. In [9], we prove that, given a group variety

U, the class of graphs satisfying (SU) can be described by so-called forbidden minors.

Let Γ be a graph and let e be a (u, v)-edge of Γ such that u 6= v. The operation
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which removes e and simultaneously merges u and v to one vertex is called edge-

contraction. We call ∆ aminor of Γ if it can be obtained from Γ by edge-contraction,

omitting vertices and edges, and redirecting edges.

A key lemma is the following:

Proposition 3.3. Suppose Γ and ∆ are graphs such that ∆ is a minor of Γ. Then,

if ∆ is non-(SU), so is Γ.

According to the previous proposition, the set of non-(SU) graphs is closed up-

wards in the minor ordering, hence, it is determined by its minimal elements, as

illustrated in Figure 3.1. It is a consequence of a theorem of Robertson and Sey-

mour [8] that the set of minimal elements must be �nite.

(S  )

non-(S  )

U

U

Γ1
Γ2

Γ3

Figure 3.1: The partially ordered set of graphs and the forbidden minors

Theorem 3.4. For any group variety U, there exists a �nite set of double-edge

connected graphs Γ1, . . . ,Γn such that the graphs containing a breaking path over U

are exactly those having one of Γ1, . . . ,Γn as a minor.

The following is the main theorem of [9], which describes the forbidden minors

for all non-trivial varieties of Abelian groups.

Theorem 3.5. A graph contains a breaking path over Ab if and only if its minors

contain at least one of the graphs in Figure 3.2.
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Figure 3.2: The forbidden minors for Ab

Unraveling the details of how the graph condition is related to F -inverse covers

of Margolis�Meakin expansions, we get the following consequence:

Theorem 3.6. A Margolis�Meakin expansion of a group admits an F -inverse cover

via an Abelian group if and only if the group is cyclic or free.

The previous theorem characterizes all Margolis�Meakin expansionsM(G) which

have an F -inverse cover over a group which is an extension of some Abelian group

by G. One could formulate the very same question for general inverse monoids. In

[10] and Chapter 4 of the dissertation, we introduce a framework analogous to the

one in [2], which allows us to investigate the proposed problem for a large class of

E-unitary inverse monoids.

4 F -inverse covers of �nite-above inverse monoids

In [10], the framework introduced in [2] for Margolis�Meakin expansions resulting

in the graph condition is generalized for a class of E-unitary inverse monoids called

�nite-above. An inverse monoid M is called �nite-above if the set mω = {n ∈ M :

n ≥ m} is �nite for every m ∈ M . For example, �nite inverse monoids and the

Margolis�Meakin expansions of A-generated groups are �nite-above.

Let X be an inverse category and ∆ an arbitrary graph. We say that X is

quasi-∆-generated if a graph morphism εX : ∆→ X is given such that the subgraph
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∆εX ∪ E(X ) generates X , where E(X ) is the subgraph of the idempotents of X .

Lemma 4.1. Every �nite-above inverse monoid is quasi-A-generated for some A ⊆

maxM−.

A dual premorphism ψ : Y → X between quasi-∆-generated inverse categories is

called canonical if εYψ = εX . An analogous argument to that found in [2] regarding

F -inverse covers of Margolis�Meakin expansions yields the following:

Proposition 4.2. LetM be a quasi-A-generated inverse monoid with A ⊆ maxM−,

put G = M/σ, and let U be a group variety. Then GU is an A-generated group,

and M has an F -inverse cover via the group variety U if and only if there exists a

canonical dual premorphism GU →M .

We study canonical dual premorphisms GU → M by introducing a Margolis�

Meakin-like structure for M . Let M be an arbitrary E-unitary inverse monoid, and

again, put G = M/σ. The category IM de�ned in the following way plays a crucial

role in our construction: its set of objects is G, its set of (i, j)-arrows is

IM (i, j) = {(i,m, j) ∈ G×M ×G : i ·mσ = j} (i, j ∈ G),

and the product of consecutive arrows (i,m, j) ∈ IM (i, j) and (j, n, k) ∈ IM (j, k) is

de�ned by the rule

(i,m, j)(j, n, k) = (i,mn, k).

Given a path p = e1e2 · · · en in IM where ej = (ιej ,mj , τej) with mj ∈ M for

every j (j = 1, 2, . . . , n), consider the word w = m1m2 · · ·mn ∈ M
∗
determined by

the labels of the arrows in p, and let us assign an element of M to the path p by

de�ning λ(p) = [w]M . For a �nite connected subgraph X in IM and for i, j ∈ VX,

let λ(i,j)(X) be λ(p), where p is an (i, j)-path in IM with 〈p〉 = X, which can be

seen to be well de�ned.

Let M be a quasi-A-generated E-unitary inverse monoid with A ⊆ maxM−.

We give a model for IM as a quasi-Γ-generated inverse category where Γ is the

Cayley graph of G. Choose and �x a subset I of E(M) such that A ∪ I generates
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M . Consider the subgraphs Γ and ΓI of IM consisting of all edges with labels from

A and from A∪ I, respectively. We introduce a closure operator on the set Sub(ΓI)

of all subgraphs of ΓI .

Given a �nite connected subgraph X in ΓI with vertices i, j ∈ VX, consider the

subgraph

Xcl =
⋃
{Y ∈ Sub(ΓI) : Y is �nite and connected, i, j ∈ VY,

and λ(i,j)(Y) ≥ λ(i,j)(X)},

which, again, is well de�ned. More generally, for any X ∈ Sub(ΓI), let us de�ne the

subgraph Xcl in the following manner:

Xcl =
⋃
{Ycl : Y is a �nite and connected subgraph of X}.

It is routine to check that X → Xcl is a closure operator on Sub(ΓI), and, as

usual, a subgraph X of ΓI is said to be closed if X = Xcl. We remark that the closure

of a �nite subgraph need not be �nite. Denote the set of all closed subgraphs of

ΓI by ClSub(ΓI), and its subset consisting of the closures of all �nite connected

subgraphs by ClSubfc(ΓI). For any family Xj (j ∈ J) of subgraphs of ΓI , de�ne∨
j∈J Xj =

(⋃
j∈J Xj

)cl
. The partially ordered set (ClSub(ΓI);⊆) forms a complete

lattice with respect to the usual intersection and the operation
∨

de�ned above.

We de�ne an inverse category Xcl(Γ
I) in the following way: its set of objects is

G, its set of (i, j)-arrows (i, j ∈ G) is

Xcl(Γ
I)(i, j) = {(i,X, j) : X ∈ ClSubfc(Γ) and i, j ∈ VX},

and the product of two consecutive arrows is de�ned by

(i,X, j)(j,Y, k) = (i,X ∨Y, k).

It can be checked directly (see also [5]) that Xcl(Γ
I)→ IM , (i,X, j) 7→ (i, λ(i,j)(X), j)

is a category isomorphism, and therefore Xcl(Γ
I)/G is canonically isomorphic to the

inverse monoid M by (X, g) 7→ λ(1,g)(X). This provides a representation of M as a

P -semigroup.
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The goal of this section is to give equivalent conditions for the existence of a

canonical dual premorphismGU →M . SinceGU = FgU(Γ)/G andM ∼= Xcl(Γ
I)/G,

this naturally corresponds to canonical dual premorphisms FgU(Γ)→ Xcl(Γ
I).

Analogously to [2], we assign two sequences of subgraphs of ΓI to any arrow x

of FgU(Γ). Let

Ccl
0 (x) =

⋂
{〈p〉cl : p is a (ιx, τx)-path in Γ such that x = (ιx, [p]U, τx)},

and let P cl
0 (x) be the component of Ccl

0 (x) containing ιx. Suppose that, for some

n (n ≥ 0), the subgraphs Ccl
n (x) and P cl

n (x) are de�ned for every arrow x of FgU(Γ).

Then let

Ccl
n+1(x) =

⋂
{P cl

n (x1) ∨ · · · ∨ P cl
n (xk) : k ∈ N0, x1, . . . , xk ∈ FgU(Γ)

are consecutive arrows, and x = x1 · · ·xk},

and again, let P cl
n+1(x) be the component of Ccl

n+1(x) containing ιx.

For any arrow x and index n, Ccl
n (x) and P cl

n (x) are closed subgraphs, further-

more, P cl
n (x) is connected and contains ιx. The following is a main theorem of

[10]:

Theorem 4.3. LetM be a quasi-A-generated �nite-above E-unitary inverse monoid

with A ⊆ maxM−, put G = M/σ, and let U be a group variety. Let Γ be the Cayley

graph of M/σ. The following statements are equivalent.

(1) M has an F -inverse cover via the group variety U.

(2) There exists a canonical dual premorphism GU →M .

(3) There exists a canonical dual premorphism GU → Xcl(Γ
I)/G.

(4) There exists a canonical dual premorphism FgU(Γ)→ Xcl(Γ
I).

(5) For any arrow x in FgU(Γ) and for any n ∈ N0, the graph P cl
n (x) contains τx.
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As an example, we describe a class of non-F -inverse �nite-above inverse monoids

for which Theorem 4.3 yields F -inverse covers via any non-trivial group variety.

Example 4.4. Let G be a group acting on a semilattice S where S has no greatest

element, and for every s ∈ S, the set of elements greater than s is �nite. Consider

a semidirect product S o G of S by G, and let M = (S o G)1, the inverse monoid

obtained from S oG by adjoining an identity element 1. Then M is a �nite-above

E-unitary inverse monoid which is not F -inverse, but it has an F -inverse cover via

any non-trivial group variety.

This example sheds light on the generality of our construction in contrast with

that in [2]. By Theorem 3.6, the Margolis�Meakin expansion of a group admits an

F -inverse cover via an Abelian group if and only if the group is cyclic or free. The

previous example shows that, for any group G, there exist �nite-above E-unitary

inverse monoids with greatest group homomorphic image G that fail to be F -inverse

but admit F -inverse covers via Abelian groups.

In the following, our aim is to generalize Theorem 3.6 to �nite-above, E-unitary

inverse monoids. An easy consequence of Theorem 4.3 is the following:

Proposition 4.5. If M is a �nite-above E-unitary inverse monoid with |M/σ| ≤ 2,

then M has an F -inverse cover via any non-trivial group variety. In particular, M

has an F -inverse cover via an elementary Abelian p-group for any prime p.

Now suppose M is a �nite-above E-unitary inverse monoid such that M/σ has

at least two elements distinct from 1, and there exists a σ-class in M containing at

least two maximal elements. Let us choose such elements a, b ∈ M with a σ b, and

σ-class v ∈ M/σ. Denote by max v the set of maximal elements of the σ-class v,

and consider the following set of idempotents:

H(a, b; v) = {d−1ab−1d : d ∈ max v}.

This set has a least upper bound in E(M) which we denote by h(a, b; v). The

following condition plays a crucial role:
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(C) c · h(a, b; v) · c−1b 6≤ a for some c ∈ max v.

Using Theorem 4.3, we obtain the following su�cient condition for M not to

have a F -inverse cover via the variety of Abelian groups.

Theorem 4.6. If M is a �nite-above E-unitary inverse monoid such that for some

a, b ∈ maxM with a σ b and for some v ∈ M/σ, condition (C) is satis�ed, then M

has no F -inverse cover via Abelian groups.



14

Bibliography

[1] C. J. Ash. Inevitable graphs: A proof of the Type II conjecture and some

related decision procedures. Internat. J. Algebra Comput., 1:127�146, 1991.

[2] K. Auinger and M. B. Szendrei. On F -inverse covers of inverse monoids. J.

Pure Appl. Algebra, 204:493�506, 2006.

[3] K. Henckell and J. Rhodes. The theorem of Knast, the PG = BG and type

II conjectures. In Monoids and Semigroups with Applications, pages 453�463,

(Berkeley, CA, 1989), 1991. World Scienti�c, River Edge.

[4] M. V. Lawson. Inverse Semigroups: The Theory of Partial Symmetries. World

Scienti�c, Singapore, 1998.

[5] S. W. Margolis and J. C. Meakin. E-unitary inverse monoids and the Cayley

graph of a group presentation. J. Pure Appl. Algebra, 58:45�76, 1989.

[6] S. W. Margolis and J.-E. Pin. Inverse semigroups and varieties of �nite semig-

roups. J. Algebra, 110:306�323, 1987.

[7] M. Petrich. Inverse Semigroups. Wiley & Sons, New York, 1984.

[8] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner's conjecture. J.

Combin. Theory Ser. B, 98:325�357, 2004.

[9] N. Szakács. On the graph condition regarding the F -inverse cover problem.

Semigroup Forum. DOI: 10.1007/s00233-015-9713-5.



15

[10] N. Szakács and M. B. Szendrei. On F -inverse covers of �nite-above inverse

monoids. J. Algebra, 452:42�65, 2016.

[11] B. Tilson. Categories as algebra: an essential ingredient in the theory of mon-

oids. J. Pure Appl. Algebra, 48:83�198, 1987.


