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1. Rövidítések jegyzéke 

 

APS  Ammónium-perszulfát (Ammonium persulfate) 

ATP  Adenozin-5'-trifoszfát (Adenosine triphosphate) 

BER  Báziskivágó hibajavítás (Base excision repair) 

BSA  Marha szérumalbumin (Bovine Serum Albumin) 

DAPI  Fluoreszcens DNS festék (4',6-diamidino-2-phenylindole) 

dCMP Deoxi-citozin-monofoszfát (Deoxycytidine monophosphate) 

DDT  DNS-hibatolerancia (DNA damage tolerance) 

DMEM Dulbecco által módosított Eagle-médium (Dulbecco's Modified Eagle's 

Medium) 

DMSO Dimetil-szulfoxid (Dimethyl sulfoxide) 

DNS Dezoxiribonukleinsav (Deoxyribonucleic acid) 

E1  Ubikvitin aktiváló enzim (Ubiquitin-activating enzyme) 

E2  Ubikvitin konjugáló enzim (Ubiquitin-conjugating enzyme) 

E3  Ubikvitin ligáz enzim (Ubiquitin-ligase enzyme) 

FACS Fluoreszcencia által aktivált sejtelválasztás (Fluorescence-Activated Cell 

Sorting) 

FCS Magzati borjú szérum albumin (Fetal Calf Serum) 

FLAG 8 aminosavas jelölő peptid (FLAG octapeptide, DYKDDDDK) 

GFP  Zöld fluoreszcens fehérje (Green Fluorescent Protein) 

GST  Glutation S-transzferáz (Glutathione S-transferase) 

HECT Ubikvitin ligáz domén (Homologous to the E6-AP Carboxyl Terminus) 

HR  Homológ rekombináció (Homologous Recombination) 

HRP  Torma-peroxidáz enzim (HorseRadish Peroxidase) 

HU  Hidroxiurea (Hydroxyurea) 

MMR Mismatch hibajavítás (Mismatch repair) 

NER  Nukleotidkivágó hibajavítás (Nucleotide excision repair) 

NHEJ Nem-homológ végek összekapcsolása (Non-Homologous End-Joining) 

PCNA Polimerázok processzivitási faktora (Proliferating Cell Nuclear Antigen) 

PEG  Polietilén-glikol (Polyethylene glycol) 

PFA  Paraformaldehid (Paraformaldehyde) 
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PIP  PCNA kölcsönható régió (PCNA-Interacting Protein motif) 

RFC  Replikációs faktor fehérje (Replication factor C) 

RING Ubikvitin ligáz domén (Really Interesting New Gene) 

RNS  Ribonukleinsav (Ribonucleic acid) 

RPA        DNS-kötő fehérje (Replication Protein A)  

SDS  Nátrium-dodecil-szulfát (Sodium dodecyl sulfate) 

shRNS Rövid hajtű RNS (Small hairpin RNA) 

SUMO Kis módosító fehérje (Small Ubiquitin-like Modifier) 

TCR  Transzkripció-kapcsolt hibajavítás (Transcription-Coupled Repair) 

TEMED Tetrametil-etilén-diamin (N,N,N’,N’-Tetramethylethylenediamine) 

TLS  Transzléziós szintézis (Translesion synthesis) 

UBM  Ubikvitinkötő motívum (Ubiquitin-Binding Motif) 

UBZ  Ubikvitinkötő cink-finger domén (Ubiquitin-Binding Zinc finger) 

UV  Ultraibolya sugárzás (Ultraviolet light) 

XP-V  Xeroderma pigmentosum variáns (Xeroderma Pigmentosum Variant) 
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2. Bevezetés 
 

A DNS molekula a sejtek életéhez szükséges nélkülözhetetlen információkat 

tartalmaz. Annak érdekében, hogy egy utódsejt az eredeti pontos másolata legyen, 

genetikai információja nem változhat meg. Az élőlények sejtjei azonban állandóan 

külső és belső DNS- károsító tényezőknek vannak kitéve: UV és egyéb sugárzásoknak, 

különböző vegyszereknek, a táplálékban előforduló káros adalékanyagoknak, reaktív 

oxigéngyököknek, dohányzás által a szervezetbe jutott kemikáliáknak stb., amelyek 

kovalensen módosíthatják a bázisokat, megváltoztathatják az örökítő anyagot, és 

replikációt blokkoló DNS hibákat okozhatnak. 

A DNS hibák sok típusa ismert, ezek közül az egyik leggyakoribbak az oxidációs 

hibák, melyek bázisvesztést okozhatnak. Egy átlagos emlős sejt DNS-éből néhány ezer 

purin és néhány száz pirimidin bázis vész el spontán egy nap alatt. Egy purin vagy 

pirimidin bázis elvesztése abázikus régiók kialakulásához vezet. Egy lehetséges 

oxidációs hiba a bázisok kissé instabil amino-csoportjának keto-csoporttá alakulása, 

más néven a deamináció. Ide tartozik az adenin hypoxantinná, a guanin xantinná és az 

5-metil-citozin timinné alakulása. 

 
 
1. ábra: a. Ciklobutil gyűrű szerkezete, b. T-T pirimidin dimer kialakulása UV sugárzás 
hatására. 
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A nukleinsav bázisok által elnyelt UV sugárzás leggyakrabban ciklobután-

pirimidin és pirimidin-pirimidin  dimerek kialakulását okozza, ami a legtöbb esetben T-

T, kisebb számban T-C, illetve C-C kovalens kapcsolatokat jelent, melyek az egyik 

bázis 6-os és a szomszédos bázis 4-es pozíciójában található szén atomjai között 

alakulnak ki1 (1. ábra). A szálon belüli keresztkötések mellet kialakulhatnak 

szomszédos szálak közötti keresztkötések, illetve DNS és fehérjék közötti 

keresztkötések is. 

A DNS-szekvencia megváltozásának másik fő forrását a „mismatch”-ek jelentik, 

amelyek a replikáció során kialakuló kisméretű inszerciók vagy deléciók. Végül meg 

kell említenünk az egyes-, illetve kettősszálú töréseket, amelyek a topoizomerázok, 

nukleázok és röntgensugárzás hatására alakulhatnak ki, és rendkívül nagy kockázatot 

jelentenek a sejt számára. Szükség van tehát olyan mechanizmusokra, amelyekkel a 

sejtek képesek megőrizni integritásukat. 

A DNS hibákat felismerő és javító mechanizmusok számos fajtája alakult ki az 

evolúció során, amelyek mind prokarióta, mind eukarióta sejtekben képesek 

megszüntetni a károsodásokat. E javító utakat négy nagy csoportra lehet osztani: 1. a 

hiba direkt kijavítása; 2. a hibás régió kivágása, majd helyes szakaszra kicserélése; 3. a 

kettősszálú töréseket javító mechanizmus; 4. az úgynevezett hibatolerancia útvonal. 

 

 

2.1. A DNS-hiba azonnali kijavítása 
                            

A hiba visszafordítása, azonnali javítása a legegyszerűbb út, legtöbbször mégsem 

működik termodinamikai vagy kinetikai okokból. A legtöbbet tanulmányozott 

mechanizmus a pirimidin dimerek fotoliáz általi megszüntetése2. A fénybegyűjtő 

rendszerek által befogott energiát a FADH veszi át, a fotoliáz a FADH-tól vett energiát 

használja a dimerek hasítására. A fotoliázok megtalálhatók baktériumokban, 

gombákban, növényekben és a gerincesekben is, kivéve a méhlepényeseket, így az 

embert is. Egy másik példa a hiba visszafordítására a 6-oxo-guanin alkiltranszferáz 

általi javítás3. Ez a fehérje minden organizmusban megtalálható. A harmadik példa az 

AlkB fehérje által végzett reakció, amely vas-oxo intermedieren keresztül, az alfa- 

ketoglutársav oxidatív dekarboxilációja során a metil csoport hidroxilációját jelenti4. 
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Végül meg kell említenünk a nickek DNS ligáz általi megszüntetését. Ez a reakció 5’ 

foszfát és 3’ hidroxil csoportok között játszódhat le. 

 

 

2.2. Báziskivágó és nukleotidkivágó hibajavítás 
 

A báziskivágó és a nukleotidkivágó javító mechanizmus a DNS molekula 

kettősszálú tulajdonságát használja fel. Ha a hiba csak az egyik szálon van jelen, képes 

javítódni kivágódással, majd a helyes szakasz beépülésével, a komplementer szálat 

használva templátként. Minden organizmus négy kivágó mechanizmussal rendelkezik: 

az úgynevezett „mismatch” repairrel (MMR), a báziskivágó repairrel (BER), a 

nukleotidkivágó repairrel (NER) és a transzkripció-kapcsolt repairrel (TCR). 

A mismatch repair a nem megfelelően párosodó nukleotidok korrekcióját végző 

konzervált folyamat. Legtöbbet Escherichia coliban tanulmányozták, legfontosabb 

résztvevői a MutS, a MutL és a MutH fehérjék. A replikációs hiba okozta helytelen 

bázispárosodást a MutS ismeri fel, és kötődik az adott régióban. A komplexet a MutL 

stabilizálja. A MutS-MutL komplex aktiválja MutH-t, amely a szülői szál egy közeli 

metil csoportjához kötődik és bevágást végez a DNS molekulán. Innen az UvrD fehérje 

egyesszál-specifikus exonukleáz aktivitásával leemészti a hibás szálat, amit később a 

Polimeráz III újraszintetizál. A két szálat a DNS ligáz kapcsolja össze5. 

 
2. ábra: A BER folyamata: a.) Citozin deamináció, b.) Uracil kivágás, c.) Abázikus régió 
kivágása, d.) Réskitöltés, e.) Ligálás, f.) Hibás résfeltöltés, g.) Visszaemésztés, h.) Helyes 
réskitöltés 
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A báziskivágó hibajavítás a kovalensen módosult vagy sérült bázisok – mint az 

uracil, vagy 3-metiladenin – eltávolítását végzi (2. ábra). Az útvonalnak számos 

variánsa létezik, de mindegyikre jellemző az a négylépéses mechanizmus, amelynek 

elején a DNS hibát egy specifikus DNS glikoziláz azonosítja. Ezt követően a nem 

megfelelő nukleotid bázisának kivágódása következik, így abázikus régió alakul ki, 

majd az így kialakult hely előtt a DNS egyesszálat endonukleáz hasítja (így 3’-OH 

vég jön létre). Végül a DNS feltöltődik DNS polimeráz segítségével. A javított szálat 

a DNS ligáz kapcsolja össze6. 

Annak ellenére, hogy a báziskivágó hibajavítás nagyon fontos, mégsem képes 

megküzdeni az összes hibával. Minden egyes adott hibához, amelyet a báziskivágó 

mechanizmus távolít el, szükséges egy DNS glikoziláz, amely felismeri a specifikus 

hibákat. Mivel a DNS-t károsító tényezők rendkívül széles spektrumúak, szinte 

lehetetlen, hogy minden specifikus hibára külön glikoziláz alakuljon ki, ezért egy 

másik, sokkal rugalmasabb rendszer is létrejött a problémák megoldására. Ez a 

nukleotidkivágó repair (NER), amely a hibás régiókat ismeri fel, azok abnormális 

struktúráján keresztül. A NER minden organizmusban hasonló folyamat révén játszódik 

le. Az első lépés a hiba felismerése, amit a hibás régióhoz kötődő multi-protein 

komplex kapcsolódása követ. Ezután kettős bevágás történik a hibás szálon, néhány 

nukleotidnyira a sérült bázistól mindkét irányban. A kivágott oligonukleotid 

eltávolítása után a rés feltöltődik egy DNS polimeráz által, végül a két szál 

összeligálódik. E. coliban az UvrA, UvrB és UvrC fehérjék vesznek részt a 

felismerésben és a vágásban. Két UvrA és egy UvrB komplexe kötődik a DNS 

kettősszálhoz, majd elcsúszik a hibás régióig. Ezután az UvrA komplex leválik az 

UvrB-ről, amelyhez így az UvrC képes kötődni. Az így kialakult komplex vágja be 

két oldalt a sérült szálat. Ekkor az UvrD helikáz eltávolítja a kivágott régiót, 

amelyet a polimeráz I, illetve II tölt fel. A nukleotidkivágó repair eukariótákban is 

hasonló elv szerint működik, azzal a különbséggel, hogy sokkal több fehérje vesz részt 

a javításban. A hiba hatására bekövetkező DNS torzulást az XPC/HR23B komplex 

ismeri fel, amely még nagyobb torzulást idéz elő. Ennek következtében a kilenc 

alegységes TFIIH kapcsolódni képes a hibát tartalmazó szálhoz és ATP 

felhasználásával letekeri azt 20-30 nukleotid hosszan. Ekkor az XPG nukleáz is 

kötődik a DNS-hez és elvágja a hibás szálat, majd a polimeráz delta feltölti a 

keletkezett egyesszálú régiót, a helyes szálat használva templátként7. 
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A nukleotidkivágó repairben részt vevő számos fehérje génjében létrejövő 

mutációk különböző betegségek kialakulásához vezethetnek. Az egyik leggyakoribb a 

Xeroderma pigmentosum, amelyet az XP fehérjék funkcióvesztése idézhet elő. Ez a 

betegség a megnövekedett UV érzékenység révén bőrrákot okoz8. A Cockayne-

szindróma és a Trichothiodystrophia kialakulása is a nukleotidkivágó repair 

meghibásodásának köszönhető. Tüneteik a korai öregedés, a különböző daganatos 

betegségek kialakulása, valamint testi és/vagy szellemi fogyatékosság9. 

 

 

2.3. A homológ rekombináció és a nem homológ végek összekötése 
 

A DNS kettősszálú törések javításának 2 fő mechanizmusa ismert. Az első 

előnyben részesíti a homológ rekombinációt (HR) végző fehérjéket, amelyek az 

információt a testvér kromatidáról veszik és a hibát helyesen javítják. A másik 

megengedi a nem homológ végek random összekapcsolását, ezt nem homológ végek 

csatlakoztatásának (NHEJ) nevezzük, amely nem megfelelő „javítást” eredményez. 

A homológ rekombinációval történő kettősszálú törések javításának pontos 

mechanizmusa intenzíven kutatott terület. Ismert, hogy a részt vevő fehérjék 

pékélesztőben (Saccharomyces cerevisiae) a Rad52 episztázis csoportba tartoznak. A 

folyamat szempontjából kulcsfontosságú fehérje a Rad51. A Rad51 fehérje központi 

részének szekvenciája és funkciója is az E. coli RecA fehérjéjéhez hasonló. A RecA 

komplexet képez az egyesszálú DNS-el. A komplex a homológ kettősszálú DNS-sel 

kapcsolatba lép, és a RecA által kötött szál bázispárosodik a komplementer szállal10. 

Az eukarióta Rad51 in vitro hasonló folyamatot katalizál. Miután a Rad51-DNS 

komplex kialakul, megkeresik a komplementer szálat, amely kihurkolással szabaddá 

válik. Az extenziót követően az elkészült szál a Rad54 által szabaddá válik. A 

testvérszálak a Rad52 segítségével összeolvadnak11 (3. ábra). 
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3. ábra: A homológ rekombináció folyamata: A DNS visszaemésztése után az egyesszál 
Rad51 segítségével bekötődik a homológ régióba, majd a szál meghosszabbodik, végül 
Rad54 segítségével leválik a homológ szálról. Végül a két komplementer szál Rad52 
jelenlétében hibridizálódik és ligálódik. 
 

 

A kettősszálú DNS-törés a komplementer szálak hibridizációjával is javítódhat. 

Miután a megfelelő fehérjék felismerik a törött régiót, az 5’ végek felől 

visszaemésztődik, a 3’ szálon így létrejövő esetleges, néhány nukleotid hosszú 

komplementer régiók párosodhatnak. Emlős sejtek esetén a genomban található 

nagyszámú, viszonylag hosszú ismétlődések miatt ez a folyamat nagy valószínűséggel 

lejátszódik. A párosodás következtében kihurkolódó DNS szakaszokat endonukleázok 

hasítják, végül a szálak ligálódnak. A törés íg y megszűnik, viszont deléció 

keletkezik. Minden homológ rekombinációval történő javítás viszonylag bonyolult, 

labilis DNS struktúrák kialakulásán keresztül megy végbe, és a genomban hibákat 

halmozhat fel. 

A harmadik folyamat, amely a legnagyobb károkat okozhatja, a nem homológ 

végek random összekapcsolása. Szabad DNS végek random kapcsolódását teszi 

lehetővé, de a legtöbb esetben a megfelelő végeket köti össze. Az, hogy a rendszer 

hogyan találja meg az összeillő darabokat, még nem ismert. Az NHEJ központi 

szerepet játszó fehérjéi minden eukarióta sejtben konzerváltak, két másik fehérje 

(XRCC7, ARTEMIS) csak a gerincesekre jellemző. Ez a két fehérje az 

immunglobulinok érésénél, V(D)J rekombinációban is fontos szerepet játszik, amely 

folyamat csak gerincesekben zajlik le. Ezenfelül a kettősszálú törések kijavításában is 
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nélkülözhetetlenek, hiszen hiányukban a sejt érzékenyebbé válik ionizáló sugárzással 

szemben12. 

 

 

2.4. A posztreplikációs hibajavítás és a hibát toleráló DNS szintézis  
 

A korábban említett DNS reparációs mechanizmusok folyamatosan javítják a 

hibákat, mégis előfordul, hogy a nagyfokú károsodás következtében telítődő, esetleg 

meghibásodott, így nem is működő rendszerek egy hibát már nem képesek kijavítani a 

sejtciklus replikációs fázisáig. A replikatív polimeráz - feladatából adódóan - nagyon 

szűk aktív centrummal rendelkezik és csak hibátlan szálat képes magába fogadni, azzal 

szemben megfelelő nukleotidot beépíteni. Ha károsodott szakaszhoz érkezik, a 

replikáció leáll, aminek következtében kettősszálú DNS-törések, kromoszomális 

átrendeződések alakulhatnak ki, így a sejt egy idő után elpusztul. Ez főként egysejtű 

organizmusok esetén jelent nagyobb gondot, ezért az evolúció során már egysejtű 

eukariótákban kialakult egy mechanizmus, amely képes az elakadt replikációs villa 

mentésére, így a sejt életben marad és osztódni is képes. Ez a folyamat az 

úgynevezett DNS-hibatolerancia (DDT) útvonal, amelynek során a hiba ugyan 

megmarad, de a replikáció továbbhaladhat. A megmaradó hibás régiót később a BER és 

a NER javítja ki. 

Az eukarióta hibatolerancia útvonalat leginkább pékélesztőben tanulmányozták. 

Az útvonalban a Rad6-Rad18 episztázis csoportba tartozó fehérjék vesznek részt. A 

DDT fontosságát jelzi, hogy az élesztő Rad6 homológjait megtalálták az összes 

eukarióta élőlényben13.  

 

 

2.5. Az ubikvitin szerepe a DNS-hibajavításban  
 

A Rad6 csoportba tartozó gének klónozása és szekvencia-analízise, valamint az 

in vivo és biokémiai interakció-vizsgálatok során világossá vált, hogy az ubikvitiláció 

meghatározó szerepet játszik a Rad6 útvonal szabályozásában. A Rad6 a Rad18 

fehérjével együttműködve képes más fehérjéket ubikvitilálni. Az ubikvitin egy 76 

aminosavból álló, rendkívül konzervált fehérje, amely az összes eukarióta 
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organizmusban megtalálható14. Az ubikvitin más fehérjékhez kötődve számos biológia 

folyamatot szabályoz, így a proteolízist vagy a DNS-hibatolerancia útvonalat. Az E1 

aktiváló enzim ATP jelenlétében aktiválja az ubikvitint, így az ubikvitin C-

terminális karboxil csoportja kovalensen kapcsolódik az E1 aktív ciszteinjéhez, 

tiolészter kötést létrehozva. Innen transzészterifikációval az E2 konjugáló enzim aktív 

centrumában található ciszteinre kerül, végül a szubsztrátra, izopeptid kötéssel, E3 ligáz 

jelenlétében, ahol az E3 enzim a szubsztrát felismerésben játszik szerepet15.  

Az ubikvitilálási reakciókhoz a sejtekben egy-két E1 enzim van jelen, míg 

konjugáló enzimből több tucat, ligázból több száz áll rendelkezésre. Az E3 ligázok 

katalitikus doménjük alapján három csoportba sorolhatók, ezek a HECT domént 

tartalmazó16, a RING-finger17 és az U-box E3 ligázok18. A HECT doménben található 

katalitikus cisztein rendszerint átveszi az ubikvitint az adott E2-ről, mielőtt a 

szubsztrátra kötné azt. Ezzel szemben a RING és U-box E3-ak nem létesítenek 

kovalens kapcsolatot az ubikvitinnel (4. ábra). 

 

 

 
 

4. ábra: RING és HECT típusú ubikvitiláció sémája. A RING típusú ligáz nem veszi át 

az ubikvitint az E2 enzimtől, míg a HECT típusú ligáz először átveszi az ubikvitint az E2 

enzimtől, majd ezután kapcsolja a célfehérjére. 

 

 

Bizonyos körülmények között az E3 enzim ubikvitin elongációs faktorként is 

részt vehet a reakcióban19. Ilyenkor az ubikvitin nem monomer, hanem polimer 

formájában kötődik a szubsztrátra. A soron következő ubikvitin az előző ubikvitin 7 

különböző lizinjéhez kötődhet, ami meghatározza a további biológiai funkciót20. A 

leggyakoribb az ubikvitin 48-as pozícióban található lizinjén keresztül kialakuló lánc, 
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amely proteoszómális lebontásra ítéli az adott szubsztrátot. Ezzel szemben a 63-as 

lizinen keresztüli kapcsolat nem lebontáshoz vezet, hanem négy különböző 

folyamatban játszhat szerepet, ezek a DNS-hibajavítás, a szignalizációs útvonalak, az 

intracelluláris szállítás és a riboszómális biogenezis. 

A DNS-hibatolerancia útvonalban számos fehérje ubikvitilálódik, de genetikai 

bizonyítékok alapján a kulcslépés a PCNA molekula 164-es pozíciójában lévő 

lizinjének ubikvitilálása, amely elindítja és – még nem teljesen tisztázott 

mechanizmusok révén – szabályozza a további lépéseket21. A PCNA fehérje egy 

rendkívül konzervált molekula, 3 alegységből felépülő homotrimer, mely szerepet 

játszik a replikációban. A replikáció kezdetén, a primer-templát kapcsolathoz kötődő 

Replikációs faktor C (RFC) ATP jelenlétében a PCNA trimert C-terminálisával a DNS 

3’ vége felé fordítva helyezi fel a DNS-re. A folyamat a replikatív polimerázok (Polδ, 

Polε) bekötődésével folytatódik, amelyek a PCNA C-terminálisához kapcsolódnak. Az 

interakció megnöveli a polimeráz-DNS közti kapcsolat stabilitását. 

 

 
                  monoubikvitin            poliubikvitin            SUMO a K164-en       SUMO a K127-en 

 
5. ábra: A PCNA fehérje poszttranszlációs módosításai: mono-, illetve poliubikvitiláció, 
valamint kétféle sumoiláció. 
 

 

2.6. A DNS-hibatolerancia útvonal szabályozása 
 

Hosszú ideig ismeretlen volt a DNS-hibán áthaladó replikáció szabályozása. 

Élesztőn végzett tanulmányok arra utalnak, hogy a PCNA ubikvitilációjának fontos 

szabályozó szerepe van a mechanizmusban22. A PCNA ubikvitilációját a Rad6 csoport 

egyes fehérjéi végzik, amelyek az úgynevezett posztreplikációs DNS-hibajavításban 

játszanak fontos szerepet. A hibajavítás itt helytelen kifejezés, hiszen a Rad6 episztázis 
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csoport fehérjéi csak stabil replikációt tesznek lehetővé a hiba eltávolítása nélkül. A 

PCNA 164-es lizinjén keresztüli ubikvitilálásához szükséges az aktiváló enzim (Uba1), 

a Rad6 konjugáló enzim, valamint a Rad18 ubikvitin ligáz fehérje. A PCNA ezenkívül 

SUMO (Small Ubiquitin-Related Modifier) módosítást is kaphat, ami a homológ 

rekombinációs folyamatokat gátolja23 (5. ábra). 

A Rad18 nemcsak a Rad6-hoz és a PCNA-hez, de a DNS-hez is képes kötődni. 

Ezenkívül interakcióba lép az egyesszálú DNS-kötő fehérjével (RPA), amely szintén 

elősegíti a PCNA DNS-hiba által indukált ubikvitilálását24. Ha a módosítás megtörtént, 

több különböző alútvonal indulhat el, amelyek segíthetnek a replikáció 

továbbhaladásában. Ezek közül kettőben transzléziós DNS polimerázok vesznek részt, 

amelyek lazább aktív centrumuknak köszönhetően képesek befogadni a hibás, torzult 

DNS szálat és a hibától, valamint az aktiválódó polimeráztól függően vagy 

komplementer (error- free) vagy nem komplementer (error-prone) nukleotidot 

építhetnek be25. Magasabbrendű eukariótákban öt speciális polimerázt azonosítottak, 

amelyek képesek a hibán áthaladva a DNS szintézisére26. Ezek közül négy, a Polη, 

Polι, Polκ és a REV1 a DNS polimerázok Y-családjába tartozik, amelyre jellemző az 

alacsony hűség és az exonukleáz aktivitás hiánya25,26. Az ötödik polimeráz a Polζ, 

katalitikus alegysége a REV3 fehérje, amely a DNS polimerázok B-családjába 

tartozik, és járulékos faktora a REV7 protein27. 

 

2.6.1. Alternativ DNS polimerázok 

 

A Polη, amely minden eukariótában megtalálható, az UV sugárzás következtében 

kialakuló ciklobután-pirimidin dimerekkel szemben képes nukleotidot beilleszteni, 

legnagyobb részt hibamentesen28. A T-T dimerekkel szemben 25-ből 1 alkalommal épít 

csak be guanint, a többi esetben adenin épül be29. A Polη mutációja emberben a 

Xeroderma pigmentosum variant (XP-V) nevű betegséget okozza, amely 

megnövekedett kockázattal jár a napfény indukálta bőrrákkal szemben. Az XP-V sejtek 

érzékenyebbek UV sugárzás okozta mutációkra30. A Polη volt az első polimeráz, 

amelyet tumorszupresszorként azonosítottak. 

A REV1, amely szintén megtalálható az összes eukariótában, egy dCMP 

transzferáz, amely citozint épít be minden károsodott nukleotiddal és abázikus régióval 

szemben, úgy in vivo, mint in vitro31,32. A REV1 a REV7 mellet kölcsönhat a másik 
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három Y-családbeli polimerázzal is, ezért mintegy vázként szolgálhat más TLS 

(Trans Lesion Synthesis) polimerázok számára a transzléziós szintézis során33,34,35,36. 

A Polι csak gerincesekben megtalálható polimeráz, hatékonysága rendkívül 

alacsony, nem képes továbbhaladni, miután beépített egy nukleotidot a DNS sérüléssel 

szemben37. Hibaaránya nagyon magas, főként a timinekre nézve, amelyekkel szemben 

a legtöbb esetben guanint épít be adenin helyett38. Habár kölcsönhat Polη-val, UV által 

okozott hibák javításában betöltött szerepe nem tisztázott39,40. 

A Polκ jelen van a Schizosaccharomyces pombe-ban és minden gerincesben. A 

polimeráz doménjén kívül két UBZ doménnel (Ubiquitin-Binding Zinc Finger) is 

rendelkezik41. A Polκ in vitro rendszerekben nem tud áthaladni az UV által okozott 

hibákon, de a Polκ mutáns egerek mégis érzékenyek az UV sugárzásra42. A Polκ az S 

fázisban lévő sejteknek csak kis százalékában lokalizálódik a replikációs fókuszokba, 

ellentétben a TLS-ben részt vevő többi Y-családba tartozó polimerázzal43. 

A Polζ, amely minden eukariótában jelen van, nem rendelkezik a B-család más 

polimerázaira – mint a Polδ, Polε – jellemző exonukleáz aktivitással. Ezzel szemben, 

az Y-család tagjaira jellemzőnél magasabb átírási pontosságot mutat44,45. Jellemző rá, 

hogy a B család többi tagjánál könnyebben képes primer-templát mismatch-ek 

folytatására. Élesztőben a Polζ nem létfontosságú a sejtek számára, míg egérben 

deléciója embrionális letalitást eredményez, arra utalva, hogy a Polζ funkciója sokkal 

komplexebb a magasabbrendű organizmusokban46,47,48. 

A Polη, ι és κ a PCNA kötő peptid (PIP) motívumán keresztül képes interakcióba 

lépni a PCNA-vel. Számos tanulmány kimutatta, hogy ez a domén szükséges a 

polimeráz TLS-ben betöltött szerepének ellátásához is. Ezenkívül minden Y-családbeli 

TLS polimeráz a monoubikvitilált PCNA-hez is tud kapcsolódni ubikvitin kötő 

motívumán keresztül. Ez a Polη és a Polκ esetében UBZ, míg a Polι és a REV1 esetén 

az UBM motívum. Az UBZ és az UBM fontosak a TLS polimerázok funkciójának 

szempontjából is49,50,51,52,53. Míg egyes teóriák szerint a polimeráz – monoubikvitin-

PCNA kapcsolat fontos a TLS polimerázok aktivációjához, számos tanulmány cáfolt rá 

erre a feltevésre. A PCNA ubikvitilációja nem zavarja Polδ és a PCNA kapcsolatát 

és nem hat a TLS polimeráz – PCNA kapcsolat erősségére44. A PCNA ubikvitiláció 

nem stimulálja a Polη in vitro aktivitását54,55. Így a PCNA monoubikvitilálásának igazi 

szerepe abban állhat, hogy befolyásolja a replikatív polimeráz és/vagy egyéb 

járulékos fehérjék kötődését, amivel elősegítheti a Polη és más TLS polimerázok 

kötődését a PIP motívumon keresztül.  
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2.6.2. A Rad5 útvonal szerepe a hibajavításban 

 

Élesztőben az elakadt replikációs villa a PCNA poliubikvitilációját is indukálja. 

A folyamat során a PCNA 164-es lizinjére kötött ubikvitinen keresztül poliubikvitin 

lánc alakul ki. Az egyes ubikvitin molekulák a 63-as lizinjükön keresztül kapcsolódnak 

a következő ubikvitinhez. A reakciót a heterodimer E2 enzim, az Ubc13-Mms2 

komplex, és egy E3 ligáz, a Rad5 katalizálja56. A Rad5 rendelkezik egy HIRAN 

doménnel, valamint az SWI/SNF2 családra jellemző helikáz (ATPáz) doménekkel, 

melyek közé ékelődve helyezkedik el egy RING-finger domén. Kimutatták, hogy a 

Rad5 RING doménje révén képes poliubikvitilálni a PCNA fehérjét, míg helikáz 

doménjei segítségével képes a kettősszálú DNS-en haladva kettősszálú DNS-függő 

helikázként működni, valamint visszafordítani a replikációs villát. HIRAN doménjének 

funkciója eddig ismeretlen. Élesztő sejtekben UV sugárzás hatására az ATPáz és a  

RING-finger mutáns Rad5 sejtek genomja hasonlóan töredezetté válik, ami azt 

sugallja, hogy mind a két aktivitás elengedhetetlen a Rad5 posztreplikációs 

hibajavításban (PRR) betöltött funkciójához. Ezenkívül a  Rad5 ubikvitin ligáz domén 

mutáns élesztő sejtek érzékenyebbek az UV sugárzásra, mint a Rad5 ATPáz domén 

mutáns sejtek vagy az mms2, illetve ubc13 defektív élesztő sejtek57. Ez a megfigyelés 

arra utal, hogy a Rad5-nek, mint ubikvitin ligáznak nemcsak a PCNA 

poliubikvitilálásában van szerepe, hanem a TLS polimerázok és egyéb fehérjék 

ubikvitilációjában is részt vehet.  

Emlős sejtekben is megfigyelték a PCNA poliubikvitilációját UV sugárzás 

hatására58. Az ubikvitiláció gátlása megnöveli a TLS által okozott mutációk kialakulását, 

vagyis a PCNA poliubikvitilálása képes szuppresszálni a TLS útvonalát. Az SHPRH 

fehérjét az élesztő Rad5 humán homológjaként azonosították59,60. Hasonlóan az élesztő 

Rad5-höz, a humán SHPRH is az ATPázok SWI/SNF2 családjába tartozik, C3HC4 

típusú RING-finger motívumot tartalmaz a SWI/SNF2 helikáz domének között61, 

valamint kölcsönhatásba lép a RAD6-RAD18, UBC13-MMS2 komplexekkel és 

indukálja a hPCNA 164-es lizinjén keresztüli poliubikvitilációt mind in vivo59, mind in 

vitro60. 
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2.6.3. A humán HLTF fehérje 

 

A Rad5 egy másik humán homológját is azonosították, ez a HLTF (Helicase-like 

transcription factor) fehérje, amely az SHPRH-nál nagyobb homológiát mutat a Rad5-

tel62,63. A HLTF fehérjét transzkripciós faktorként és tumorszupresszorként 

azonosították. Kimutatták, hogy a vastagbél-tumorok 30-70 %-ában a HLTF promóter 

hipermetilációja következtében a fehérje nem fejeződik ki, m íg  más tumorokban a 

HLTF pontmutáns, illetve csonkolt formában van jelen64. A HLTF fehérje csökkent 

expressziójának következtében humán és egér sejtekben a DNS-károsodások 

mennyisége megnő, és a genom instabillá válik. A HLTF kölcsönhat a RAD6-RAD18, 

valamint az UBC13-MMS2 komplexekkel63. Az SHPRH-hoz hasonlóan a HLTF is 

tartalmaz egy RING domént és SWI/SNF helikáz doméneket. Az MMS2-UBC13 

komplex-szel együttműködve poliubikvitilálja a már monoubikvitilált PCNA fehérjét, 

63-as lizineken kapcsolt láncolt létrehozva. Az SHPRH-val szemben a Rad5-höz 

hasonlóan egy HIRAN doménnel is rendelkezik (6. ábra), mely domén funkciója 

eddig ismeretlen volt. Predikciók alapján olyan DNS- kötő domén lehet, amely képes 

felismerni, majd később kapcsolódni a károsodott DNS-hez vagy az elakadt replikációs 

villához65.  

 

 

 
 

6. ábra: A Rad5 és humán homológjai, a HLTF és az SHPRH doménszerkezete. 

 

 

Laborunkban kimutattuk, hogy mind a Rad5, mind humán homológja, a HLTF 

fehérje, olyan kettősszálú DNS transzlokázok, amelyek képesek visszafordítani az 



18 
 

elakadt replikációs villa-szerű struktúrákat66,67. Azt is kimutattuk, hogy a HLTF a 

replikációs villa-visszafordítással egy időben képes a DNS-hez kötődött egyéb fehérjék 

– PCNA, RFC, RPA – eltávolítására is68.A visszatekert replikációs villára – ún. 

csirkeláb struktúra – elektronmikroszkópos felvételek is utalnak69,70. Hipotézisünk 

szerint a vezető szálon lévő hiba esetén a replikáció leállása után a vezető és a 

lemaradó szál szintézise szétkapcsolódik, majd a Rad5/HLTF az újonnan keletkezett 

szálakat letekeri, egymással hibridizáltatja. A hibával szemben lévő szál replikációja a 

már újonnan megszintetizált testvér kromatidáról történik. Az átírás után a Holliday 

junction jellegű struktúra feloldódik, az új szál a károsodott régiót áthidalja, így a hiba 

után folytatódhat a replikáció (7. ábra). A HLTF ezenkívül képes dimerizálódni, és 

elősegíti a RAD51-től független templátváltást is71.  

 

 
 

 

7. ábra: A TLS és a Rad5 útvonal mechanizmusának vázlata. 

 

 

A HLTF általi replikációs villa-visszafordítás csak akkor valósul meg, ha a 

hiba a vezető szálon található, mivel a károsodott követő szál áthidalható a mellette 

fekvő Okazaki fragment segítségével. Fontos megemlíteni, hogy míg a TLS 

polimerázok által végzett hibaátírás a legtöbb esetben újabb hibát generál a DNS-ben, 

addig a HLTF fehérje révén végbemenő folyamat eredménye hibamentes átírás.  
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Viszonylag sok helikáz képes a replikációs villa-visszafordításra. Ezek közé 

tartozik a FANCM helikáz, vagy a RecQ helikázok családjába tartozó BLM és WRN 

fehérjék72,73, és a SWI/SNF családba tartozó helikázok néhány tagja, a HLTF, 

SMARCAL1 és ZRANB374,75. Az előbbi, kanonikus helikázok egyesszálú DNS 

köztiterméket hoznak létre a villa visszafordítása során, amiket később nem képesek 

összekapcsolni. Ezzel szemben a SWI/SNF helikázok koordinált módon végzik a 

folyamatot, köztitermék nélkül, egyidőben zajlik az eredeti szálak szétválasztása, és az 

újonnan keletkezett szálak összefűzése. Ennek köszönhetően a replikációs villa 

viszonylag stabil marad, mivel nem keletkeznek sebezhetőbb egyesszálú régiók. A 

SMARCAL1 fehérjéről kimutatták, hogy rendelkezik egy HARP doménnel, mely 

specifikus DNS szerkezethez képes kötődni, és ezzel elősegíti a replikációs villa 

koordinált visszafordítását. A HLTF fehérjében a HARP domén funkcionális homológja 

a HIRAN domén lehet, így sikerülhet azonosítani egy domén családot, ami választ 

adhat a kanonikus és SWI/SNF család helikázai közti funkcionális különbségre. 
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3. Célkitűzések 

 
Az elakadt replikációs villa mentését végző mechanizmusok és azok szabályozása 

még ma sem teljes mértékben tisztázott. Az egyes fehérjék pontos működési 

mechanizmusai összetettségükből adódóan csak részlegesen ismertek. A DNS-

hibatolerancia útvonal egyik legfontosabb komponense a HLTF fehérje, melyről tudjuk, 

hogy ubikvitin ligáz aktivitása révén képes poliubikvitilálni a már monoubikvitilált 

PCNA molekulát, valamint képes visszafordítani a replikációs villát. Az viszont még 

mindig kérdés, hogy hogyan találja meg a fehérje az elakadt replikációs villát és mi a 

visszafordítás pontos mechanizmusa.  

A HLTF rendelkezik egy HIRAN doménnel, melyet DNS-kötő doménnek 

prediktálnak, de funkciója ezidáig ismeretlen volt. Célunk az volt, hogy megvizsgáljuk, 

mi a pontos szerepe a HLTF HIRAN doménjének. Kérdésünk megválaszolására a 

következő kísérletek elvégzését tűztük ki célul: 

1. Létrehozunk egy HIRAN domén deléciós és pontmutáns HLTF fehérjét, 

majd megvizsgáljuk a mutációk hatását. 

2. Teszteljük a tisztított fehérjék ligáz, illetve helikáz aktivitásait, melyek 

valószínűleg nem köthetők a HIRAN doménhez, hogy kizárhassuk az esetleges 

strukturális mutációkat. 

3. Megvizsgáljuk, hogy a HIRAN domén szerepet játszhat-e a DNS 

remodeling aktivitásban. 

4. Érzékenységi kísérlettel, valamint comet esszével megvizsgáljuk a mutáns 

fehérjéink in vivo funkcióját különböző DNS-károsító ágensekkel szemben. 

5. HIRAN domén fragmentet tisztítunk, hogy megvizsgáljuk a DNS-kötést, 

illetve a preferált DNS struktúrákat.  
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4. Anyagok és módszerek 
 

4.1. Antibiotikumok 
Ampicillin: 100 μg / ml végkoncentráció 

Kanamicin: 50 μg / ml végkoncenráció 

 

4.2. Tápfolyadékok 
LB: 1 % tripton, 0,5 % élesztőkivonat, 1 % NaCl. Táptalajhoz: + 1,5 % bacto-agar  

YPD: 1 % élesztőkivonat, 2 % pepton, 2 % D-glükóz. Táptalajhoz: + 16,7 g bacto-agar / 

1000 ml 

OMISSION MEDIA (OMM): 0,72 % omission media mix (100 g élesztő nitrogén alap, 

300 g (NH4)2SO4, 1,8 g adenin, 1,2 g arginin, 1,2 g hisztidin, 1,8 g izoleucin, 1,8 g 

leucin, 1,8 g lizin, 1,2 g metionin, 3 g fenilalanin, 1,2 g triptofán, 1,8 g tirozin, 1,2 g 

uracil, 9 g valin), 2 % D-glükóz. Táptalajhoz: 1,67 % bacto-agar 

 

+12: mindegyik aminosavat tartalmazza 

- LEU: OMM – leucin 

- URA: OMM – uracil 

Exp.- LEU: - LEU, 2 % tejsav, 3 % glicerin. 

 

4.3. Enzimek 
Fermentas cég által forgalmazott enzimek, a gyártó által ajánlott pufferekkel. 

 

4.4. Restrikciós emésztés, ligálás 
Plazmidok restrikciós emésztése (10 μl): 10 μg DNS, 1 μl 10X puffer, 2 u 

restrikciós endonukleáz, víz. Az emésztés 37 °C-on 2 órán keresztül tartott. Az 

emésztett DNS-t agaróz gélen futtattuk, majd Qiagen Gel Extraction kittel tisztítottuk a 

gyártó által adott protokoll szerint. A ligálás (10 μl) az alábbiakat tartalmazta: 0,5 μg 

vektor, 1 μg fragment, 1 μl 10X ligáz puffer, 5 u T4 DNS ligáz, víz. 

 

4.5. PCR reakció 
Standard PCR reakció 20 μl-re: 5 pmol primer1, 5 pmol primer2, 4 mM MgCl2, 2 

μl puffer Taq 10X, 0,185 mM dNTP mix, 10 pmol templát DNS, 0,5 u Taq polimeráz. 
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PCR reakció lépései: 1: 92°C – 2 perc, (2: 92°C – 30 mp, 3: 55°C – 30 mp, 4: 72°C – 50 

mp) 30X, 5: 72°C – 3 perc, 6: 4°C a kivételig. 

Mutagén PCR reakció 25 μl-re: 10 pmol primer1, 10 pmol primer2, 2,5 μl puffer 

Pfu + MgSO4 10X, 0,1 mM dNTP mix, 50 ng templát DNS, 1,25 u Pfu polimeráz, 18,5 

μl MQ víz. Kondíciók: 1: 94°C – 3 perc, (2: 94°C – 30 mp, 3: 55°C – 30 mp, 4: 68°C – 

15 perc) 20X, 5: 68°C – 5 perc, 6: 4°C a kivételig. 

 

4.6. LR reakció 
Standard LR reakció: 0 , 6  μl (20-100 ng) „ entry” vektor, 0 , 6  μl (20-100 ng) 

„ destination” vektor, 0,4 μl LR klonáz puffer, 0,4 μl puffer TE pH: 8,0 (10 mM Tris 

HCl pH: 8,0; 1 mM EDTA), 0,2 μl LR klonáz, inkubálás 25°C-on  8 óráig. 

 

4.7. Plazmidok létrehozása 
A HIRAN domén deléciós HLTF fehérjéhez (HLTF HIRAN del) a HLTF fehérje 

156 – 589 aminosavas darabját kódoló cDNS régiót PCR segítségével amplifikáltuk a 

pIL1867 (HLTF pENTR2B) plazmidról, a következő oligonukleotidokkal: o2515, mely 

EcoRI restrikciós hasítóhelyet tartalmazott és o2522 mely SalI hasítóhelyet tartalmazott. 

A fragmentet a pIL1867 plazmid EcoRI – SalI helyére klónoztuk, így megkaptuk a 

pIL2106 plazmidot. Ezután a HLTF C-terminális részét EcoRI – EcoRI hasítással 

klónoztuk a pIL1867 vektorból a pIL2106 EcoRI – EcoRI helyére, így megkaptuk a 

pIL2108 (HLTF HIRAN del pENTR2B) plazmidot. Az NN90,91AA dupla pontmutánst 

PCR alapú mutagenezissel hoztuk létre a pIL1867 plazmidról, a következő 

oligonukleotidok segítségével: o2732 és o2733, így kaptuk meg a pIL2349 (HLTF 

90/91 pENTR2B) plazmidot. A HIRAN domén klónozását PCR segítségével végeztük. 

A vad típusú HIRAN domént pIL1867 plazmidról amplifikáltuk o2603, NcoI helyet 

tartalmazó és o2604, XhoI hasítóhelyet tartalmazó oligonukleotidok segítségével. A 

fragmentet a pIL1163 (pENTR4) plazmid NcoI – XhoI helyére klónoztuk, így 

megkaptuk a pIL2174 (HIRAN domain pENTR4) plazmidot. A dupla pontmutáns 

HIRAN domént ugyanezekkel az oligonukleotidokkal amplifikáltuk pIL2349 

plazmidról és klónoztuk a pIL1163 plazmid NcoI – XhoI helyére, így megkaptuk a 

pIL2734 (HIRAN domén 90/91 pENTR4) plazmidot. Az élesztő expressziós 

plazmidokat a következő ENTRY vektorokból hoztuk létre: pIL1867, pIL2108, 

pIL2349, pIL2174, pIL2734 LR rekombináció segítségével, a pIL1844 (pBJ842 GST-
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FLAG-Destination) vektort használva akceptorként, így kaptuk meg a pIL1520, 

pIL2111, pIL2736, pIL2177, pIL2735 élesztő expressziós plazmidokat.  

4.8. Baktérium transzformálás 

A kompetens baktériumsejteket jégen felolvasztjuk, hozzámérjük a plazmid DNS-

t (20-100 ng), majd jégen inkubáljuk 20 percig. Ezután a sejteket hősokkoljuk 1 percig 

42 oC-on, majd további 2 percig jégen tartjuk. Kanamicin rezisztencia esetén a sejtekhez 

hozzámérünk 1 ml LB tápoldatot, és 1 órán át 37 oC-on inkubáljuk. Inkubálás után a 

sejteket centrifugáljuk 3 percig 4000 rpm-en. A felülúszót eltávolítjuk, majd a 

baktérumokat szélesztjük antibiotikummal kiegészített LB táplemezre és éjszakán át 37 
oC-on növesztjük. 

 

4.9. Plazmidtisztítás baktériumból 
A baktériumból (DH5α) történő plazmidtisztításhoz a Qiagen miniprep kitjét 

használtuk, a gyártó által javasolt protokoll szerint. 

4.10. Élesztő transzformálás 

50 µl kompetens élesztősejtet felolvasztunk, majd hozzámérjük a plazmid DNS-t (0,5-1 

µg) és 300 µl 40% PEG lítium-acetátot. Ezután a sejteket 30 oC-on 30 percen keresztül 

inkubáljuk, majd hozzámérünk a sejtekhez 38,8 µl DMSO-t, és hősokkoljuk 15 percig 

42 oC-on. Az elegyet centrifugáljuk 3 percig 4000 rpm-en, a felülúszót óvatosan 

eltávolítjuk, majd a pelletet felvesszük 1 ml +12 médiumban és újra centrifugáljuk 3 

percig 4000 rpm-en. Ezután a felülúszót ismét eltávolítjuk, és a sejteket felvesszük 1,5 

ml +12 médiumban, kémcsőbe mérjük és éjszakán át 30 oC-on inkubáljuk. Másnap a 

sejteket 3 percig 4000 rpm-en centrifugáljuk, szélesztjük –LEU táptalajra és 3 napig 

növesztjük 30 oC-on.  

 

4.11. Fehérjék tisztítása 
HLTF, HIRAN domén: GST-FLAG-HLTF-et, valamint a GST-HIRAN domént 

BJ5464 Del proteázhiányos élesztősejtből, galaktózzal indukálható plazmidról 

termeltük. –LEU táplemezről egy egyedi élesztőkolóniát 5 ml –LEU tápoldatba 

oltottunk, majd éjszakán át 30 oC-on növesztettük. Ezt oltottuk másnap 100 ml –LEU 

tápoldatba, majd 30 oC-on, 12 órán át növesztettük. Továbboltottuk 500 ml –LEU 
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tápoldatba, és ismét 12 órán keresztül növesztettük a sejteket 30 oC-on. Ezután 200-

200 ml-t oltottunk 2-2 liter Exp.-LEU tápoldatba. 16 órán át, 30 °C-on történő rázatás 

után, 8 órán át 0,2% galaktózzal indukáltunk. A sejteket centrifugáltuk 15 percig 4500 

rpm-en, majd felvettük a sejtek térfogatához viszonyított 1/2 mennyiségű 3X YBB 

pufferben: 150 mM Tris HCl pH: 7,5, 150 mM KCl, 1,8 M NaCl, 30 % szukróz, 4,5 

mM EDTA, 21,5 mM béta-merkaptoetanol. A szuszpenziót folyékony nitrogénbe 

csepegtettük, majd a fagyott cseppeket leszűrtük és kávédarálóval 15 mp-ig daráltuk. A 

részleges felolvadás után a folyamatot megismételtük. Az újra felolvadt szuszpenziót 

1 óráig 35000 rpm-en centrifugáltuk. A felülúszót Sephadex G25 gyöngyön folyattuk 

át, majd glutation-sepharose gyöngyre csepegtettük. A gyöngyöt mostuk 1X T puffer 

+ 500 mM NaCl, 1X T puffer + 300 mM NaCl pufferrel. A T puffer tartalma: 40 

mM Tris HCl pH.7,5, 10% glicerin, 0,01% NP40, + használat előtt: 1,5 mM EDTA, 

7,15 mM béta-merkaptoetanol. 20 percig 4°C-on a következő pufferben eluáltuk a 

fehérjéket (E puffer): 40 mM Tris HCl, pH:7,3, 100 mM NaCl, 2 mM DTT, 10% 

glicerin, 20 mM glutation. Dializáltuk éjszakán át 4 °C-on T puffer + 100 mM NaCl, 

majd újabb 2 órát T puffer + 100 mM NaCl-dal. 

RAD6 - RAD18: A GST-RAD18-at és a RAD6-ot túltermeltük  BJ5464 Del 

élesztő sejtekben, a HLTF termelésével azonos körülmények között. Centrifugálás után a 

sejteket felvettük 1/3 mennyiségű, 500 mM NaCl-dal kiegészített 3X YBB pufferben, 

majd folyékony nitrogénben lefagyasztottuk. A fagyott sejteket kávédarálóval 

megtörtük és jégen felolvasztottuk. Ultracentrifugáltuk 1 órán át 35500 rpm-en, majd a 

felülúszót ammónium-szulfáttal (34,5 %) kicsaptuk, 1,5 óra alatt jégen kevertetve. Az 

elegyet 1 órán át 15000 rpm-en centrifugáltuk, majd a csapadékot feloldottuk a 

következő pufferben (A puffer): 100 mM Tris HCl pH:7,5, 100 mM NaCl, 1 mM béta-

merkaptoetanol. Ezután 2 liter A pufferrel szemben éjszakán át 4°C-on dializáltuk. 

Másnap 30 perc 15000 rpm-nyi centrifugálás után a mintát Sephadex G25 gyöngyön 

engedtük át, végül glutation-sepharose gélre vittük fel. Kötődés után 2X mostuk 1 X  

YBB pufferrel, és E pufferrel eluáltuk a fehérjéket. 

UBA1: A hUBA1-et állandó kifejeződést biztosító alkohol dehidrogenáz 

promóteres vektorról, BJ5464Del élesztősejtekből tisztítottuk. A 100 ml startert –URA 

tápban növesztettük, ezt tovább oltottuk 500 ml YPD-be, 16 óra rázatás után, 

továbboltottuk 3X 2 l YPD-be és éjszakán át rázattuk 30 °C-on. A sejteket 

centrifugálás után azonos mennyiségű 40 mM Tris HCl pH: 7,5-ben vettük fel és a 

HLTF tisztításnál leírt módon tártuk fel. Majd ultracentrifugáltuk 1 órán át 35500 rpm-
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en, és a felülúszót 2 órán keresztül 4 °C-on T puffer + 50 mM KCl-al szemben 

dializáltuk. Az oldatot DEAE oszlopra vittük, az elúció T puffer + 500 mM KCl-dal 

történt, 10 ml-es frakciókat szedve. A fehérjét tartalmazó frakciókat ammónium-

szulfáttal kicsaptuk (65 g ammónium szulfátot használtunk 100 ml oldathoz), 

folyamatos keverés mellet, jégen 1,5 óra alatt. 15 perc 15000 rpm-en történő 

centrifugálás után a csapadékot visszaoldottuk a következő pufferben (B puffer): 50 

mM Tris HCl pH: 7,5, 5% glicerin, 0,2 mM DTT, 1 mM EDTA, éjszakán át ugyan 

ebben a pufferben dializáltuk 4 °C-on. A dializált fehérjeoldatban az ATP 

koncentrációját 2 mM-ra, a MgCl2-ét 5 mM-ra növeltük. B puffer + 2 mM ATP, 5 

mM MgCl2-vel mosott ubikvitin oszlopra vittük fel az oldatot, 25 °C-on. Az oszlopot 

mostuk T puffer + 1 M KCl-al, T puffer + 50 mM KCl + 20 mM DTT-vel eluáltunk, 1 

ml-es frakciókat szedve. A hUBA1 fehérjét tartalmazó frakciókat Q-Sepharose oszlopra 

vittük, az elúció NaCl grádienssel történt: T puffer + 50 mM-tól 600 mM NaCl-ig. Az 

UBA1-et tartalmazó frakciókat összekevertük és 50 μg/ml BSA-val folyékony 

nitrogénben fagyasztottuk le. 

hPCNA: A hPCNA termelése és tisztítása a HLTF-nél leírtakhoz hasonlóan 

történt, de a glutation gyöngyöt T puffer + 500 mM NaCl mosás után T puffer + 150 

mM NaCl-dal mostuk. Az elúció T puffer + 150 mM NaCl-ban, Prescission proteázzal, 

éjszakán át 4 °C-on történt. 

 

4.12. Poliakrilamid gél 
 A denaturáló poliakrilamid gélhez először egy elválasztó gélt öntünk: 12%-os 

gélhez: 6 ml 30% akrilamid / 0,8% biszakrilamid keverék, 3,75 ml 1,5 M Tris pH: 8,8, 

150 µl 10% nátrum-dodecil szulfát (SDS), 5,25 ml steril desztillált víz, 50 µl 10% 

ammonium-perszulfát (APS), 20 µl tetrametil-etilén-diamin (TEMED). A gél tetejére 

vízzel telített butanolt mérünk. Ha megszilárdult, gyűjtő gélt öntünk rá, amibe a 

mintákat fogjuk mérni: 0,65 ml 30% akrilamid / 0,8% biszakrilamid keverék, 1,25 ml 

1,5 M Tris pH: 8,8, 50 µl 10% SDS, 3,05 ml steril desztillált víz, 25 µl 10% APS, 10 µl 

TEMED. A natív poliakrilamid gélhez: 10%-os gélhez: 5 ml 30% akrilamid / 0,8% 

biszakrilamid keverék, 375 µl 10X TBE puffer, 187,5 µl glicerin, steril desztillált víz 

7,5 ml-ig, 50 µl 10% APS, 20 µl TEMED. 
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4.13. Western blot analízis 
A denaturáló poliakrilamid gélt nedves blottolóban éjszakán át 300 mA-en 

nitrocellulóz filterre blottoltuk. Transzfer puffer: 0,242 % Tris, 1,117 % glicin, 20 % 

metanol. A filtert szobahőmérsékleten (18-28 oC) telítettük 5% tejpor, 1% BSA-t 

tartalmazó TBS Tween pufferben 1 órán át. (TBS Tween puffer: 150 mM NaCl, 20 mM 

Tris HCl pH: 7,5, 0,05 % Tween20) Elsődleges ellenanyaggal 1 órát inkubáltuk, 

mostuk 5X5 percig TBS Tween pufferrel, a másodlagos ellenanyaggal 30 percig 

inkubáltuk.  Ezt követően mostuk: 5X5 percig TBS Tween-el, végül 1X5 percig TBS 

pufferrel. A HRP-vel konjugált ellenanyagot Millipore kemilumineszcens HRP 

szubsztráttal tettük láthatóvá, 5 perc inkubálással. A jelet Kodak Imager 4000MM 

készülékkel detektáltuk. Az ellenanyagokat 5 % tejport, 1 % BSA-t tartalmazó TBS 

Tweenben oldottuk fel. 

Használt ellenanyag: V068: anti-hPCNA Ig (egér) HRP konjugált, /Santa cruz, 

cat. numb.: sc-56, PC-10/ 5000x hígításban. 

 

4.14. DNS szubsztrátok 
A DNS szubsztrátokat oligonukleotidokból hibridizáltuk össze, 1X TE pufferben, 

95 oC-ról lassan 4 oC-ra hűtve. Az összehibridizált szubsztrátot futtattuk 10% natív 

poliakrilamid gélen, majd a megfelelő méretű fragmentet kivágtuk és MQ:TE,  1:1 

arányú keverékben oldottuk vissza. A radioaktív szubsztrátok esetében a hibridizálást 

jelölés előzte meg T4 polinukleotid kináz puffer segítségével, gamma-ATP-vel. A 

szubsztrátokhoz használt oligonukleotidok a következők voltak: o1358 (ssDNS 42 nt.), 

o1058/o1118 (dsDNS 75 nt.), o1054/o1118 (részleges duplex), o1054/o1056/ 

o1058/o1118 (villa), az 5’ 32P-jelölt oligonukleotidok aláhúzva, és o3063 (ssDNS 75 

nt.), o3063/o1054 (dsDNS 75 nt.), o1054/o1056/o1058/o3063 (villa), ahol o3063 5’ 

fluoreszcein-jelölt oligonukleotid, az o1118-cal megegyező szekvenciával. 

A plazmid alapú szubsztrátot a következőképpen hoztuk létre: restrikciósan 

emésztettük a pG46 plazmidot Nt.BbvCI, valamint a pG68 plazmidot Nb.BbvCI-gyel, 

így kaptuk meg a pG46B és pG48A emésztett plazmidokat. Ezután a pG46B plazmidot 

kezeltük Shrimp Alkaline Phosphatase enzimmel, majd radioaktívan jelöltük gamma-

ATP-vel, T4 polinukleotid kináz segítségével, így kaptuk meg a pG46B’ plazmidot. A 

pG48A plazmidot XhoI emésztéssel linearizáltuk, így kaptuk meg a pG48A Xh 

plazmidot. Végül a komplementer egyesszálú régiókat tartalmazó két plazmidot 
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összehibridizáltuk 53 oC-ról lehűtve a következő pufferben: 50 mM Tris HCl pH.: 7,5, 

10 mM MgCl2, 5 mM DTT.  

 

4.15. Replikációs villa-visszafordító esszé 
A replikációs villa-visszafordító esszét oligonukleotid alapú szubsztráton a 

következő pufferben végeztük: 20 mM Tris-HCl (pH 7,0), 0,1 mg/ml BSA, 1 mM DTT 

és 10% glicerin, kiegészítve 5 mM MgCl2-dal és 5 mM ATP-vel. 15 perc 37 °C-on 

történő inkubálás után azonos mennyiségű helikáz STOP puffert adtunk hozzá: 20 mM 

EDTA, 2 mg/ml Proteináz K, 1% SDS, 10% glicerin, és 0,02% brómfenolkék, majd 5 

perc inkubálás után a mintákat 10% natív poliakrilamid gélen futtattuk elektroforézis 

segítségével EDTA mentes, 1X Tris-borát pufferben. A plazmid alapú szubsztrát 

esetében a kísérleti elrendezés azonos volt az oligonukleotid alapú szubsztráton végzett 

kísérlettel, azonban itt az inkubáció után a mintákat AflIII, EcoRI, illetve BamHI 

restrikciós enzimekkel hasítottuk 1 órán keresztül 37 °C-on. A termékeket 6% natív 

poliakrilamid gélen történő elektroforézissel, 1X Tris-borát pufferben futtattuk.  

 

4.16. Gél shift, és DNS kompetíciós kísérletek 
A gél shift kísérleteket a következő pufferben végeztük: 20 mM Tris HCl pH.: 

7,0, 0,2 mM MgCl2, 0,1 mg/ml BSA, 1 mM DTT, 10% glicerin. A reakciókat jégen 

mértük össze, majd 15 percig szobahőmérsékleten inkubáltuk. Ezután futtattuk 6%-os 

natív poliakrilamid gélen, mely akrilamid és N,N biszakrilamid 30:0,8 arányú 

keverékét, 0,5X Tris-borát puffert és 2,5% glicerint tartalmazott. Az elektroforézist 4 
oC-on, EDTA-mentes, 0,5X Tris-borát pufferben végeztük. DNS kompetíciós 

kísérletben elsőként GST-FLAG-HIRAN domént kötöttünk Cy5 fluoreszcens festékkel 

jelölt oligonukleotid alapú replikációs villa-szerű szubsztráthoz szobahőmérsékleten, 

15 percig úgy, hogy a szubsztrát 95%-a meg legyen kötve HIRAN doménnel. A 

következő pufferben dolgoztunk: 20 mM HEPES 7.5, 150 mM NaCl, 1 mM DTT, 

0.1 µg/ml BSA, 0,2% NP40 és 10% glicerin. Ezután a fehérjével kötött DNS 

szubsztrátot azonnal használtuk a kompetíciós kísérlethez, amibe növekvő 

koncentrációban adtuk a kompetítor, fluoreszceinnel jelölt DNS-t (0-1 µM), majd az 

elegyet inkubáltuk 15 percig szobahőmérsékleten. A mintákat 0,5X Tris-borát pufferrel, 

és 2.5% glicerinnel kevertük össze, és így mértük a 6% natív poliakrilamid gélre, ami a 

következőket tartalmazta: akrilamid és N,N biszakrilamid, 30:0.8 arányban, majd 
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futtattuk 4 °C-on,  0,5X Tris-borát pufferben, EDTA nélkül. A mintákat Typhoon Trio 

Image segítségével tettük láthatóvá. 

 

4.17. PCNA ubikvitilációs kísérlet 

Az in vitro ubikvitilációs reakció (10 μl) PCNA ubikvitilációs pufferben (40 mM 

Tris HCl, pH 7,5, 8 mM MgCl2, 100 mg/ml BSA, 10% glicerin, 500 μM ATP), a 

következő fehérjék jelenlétében történt: 100 nM Uba1, 50 μM ubikvitin, 10 nM RFC és 

0,5 nM kettősszálú pUC19 plazmid DNS, BstNBI enzimmel (New England BioLabs) 

30 °C-on, 60 percig hasítva. A reakcióba mértünk továbbá: PCNA-t (50 nM), Rad6–

Rad18-at (100 nM), Mms2–Ubc13-at (100 nM) és HLTF-et (20 nM) és inkubáltuk 37 

°C-on, 60 percig. Az ubikvitilált PCNA-t tartalmazó mintákat 12%-os denaturáló 

poliakrilamid gélen futtattuk és Western blot után anti-PCNA ellenanyagot (Santa Cruz 

Biotechnology) használva tettük láthatóvá. 

 

4.18. ATPáz esszé 
Az ATPáz esszé (10 μl) ATPáz reakciópufferben (20 mM Tris-HCl pH 7,0, 1 mM 

MgCl2, 10 mM KCl, 60 μg/ml BSA, 1 mM DTT és 10% glicerin), a következő 

komponensek jelenlétében történt: 5-20 nM HLTF fehérje, 1 mM [γ-32P]ATP és 1 µM 

dsDNS, a következő oligonukleotidokból hibridizálva: o1249 és o1250. 37°C, 30 perc 

inkubálás után minden mintából 2 μl-t cseppentettünk PEI cellulóz F vékonyréteg 

kromatográfiás lemezre (Merck), amelyet a következő oldószerbe helyeztünk 

futtatáshoz: 1 M hangyasav és 0,25 M LiCl. A termékeket Typhoon Trio imager 

segítségével detektáltuk.   

 

4.19. Humán sejtkultúrák, stabil humán sejtvonalak 
A humán HCT116 sejteket DMEM-ben (Sigma) növesztettük 10 % FCS-el 

(Sigma) kiegészítve, 3 oC-on. A sejtek transzfekcióját Lipofektamin 2000 transzfekciós 

reagens (Invitrogen) segítségével végeztük, a gyártó által ajánlott protokoll szerint. A 

HLTF-specifikus shRNS-t expresszáló stabil sejtvonalat a következőképpen hoztuk 

létre. HLTF-specifikus oligonukleotidokat: o2611 és o2612 összehibridizáltuk és az 

shRNS-Neo plazmid HindIII helyére klónoztuk, létrehozva így a pIL2394 plazmidot. A 

következő lépésben ezt a plazmidot transzfektáltuk HCT116 sejtekbe, majd a stabilan 
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expresszáló vonalakat G-418 SULPHATE (Gibco, Cat. No.: 11811064) segítségével 

szelektáltuk.  

 

4.20. Sejten belüli fehérjelokalizáció vizsgálata 
A vad típusú és HIRAN domén deléciós mutáns HLTF fehérjék lokalizációjának 

vizsgálatát immunfestéssel végeztük, anti-FLAG ellenanyaggal (Sigma), 1:300 

hígításban, valamint Cy3 fluoreszcens molekulával konjugált anti-egér ellenanyaggal 

(Sigma, cat. numb.: C2181), 1:1000 hígításban. A sejtek ezután lettek felvéve 25% 

glicerint tartalmazó PBS pufferben: (10 mM K2HPO4/KH2PO4, pH 7,4; 140 mM 

NaCl), majd 1 mg/ml DAPI festés után történt meg a mikroszkópos elemzés, Olympus 

FV1000 konfokális lézer szkennelő mikroszkóp és Leica LSM konfokális mikroszkóp 

segítségével.  

 

4.21. A használt oligonukleotidok 

o1054 AGCTACCATGCCTGCCTCAAGAATTCGTAA 

o1056 TTACGAATTCTTGAGGCAGGCATGGTAGCT 

o1058 AGCTACCATGCCTGCCTCAAGAATTCGTAATATGCCTACACTGGAGTACC 
GGAGCATCGTCGTGACTGGGAAAAC 

o1118 GTTTTCCCAGTCACGACGATGCTCCGGTACTCCAGTGTAGGCATATTACG 
AATTCTTGAGGCAGGCATGGTAGCT 

o1249 ACACACACACACACACACACACACACACACACACACACACACACACACAC 

o1250 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT 

o1358 GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA 

o2515 AAGAATTCTGGATTGGAGTAC 

o2522 ACGCGTCGACGCAATAGAAAAGCGGTTTCAGATCAG 

o2603 TTTCCATGGATTCCGTTTTATTTGGAAGTTTGAG 

o2604 TTTCTCGAGTCCATGTTTCTTCAACTGATCTG 

o2611 GATCCCCGGTGCTTTGGCCTATATCATTCAAGAGATGATATAGGCCAAAG 
CACCTTTTTGGAAA 

o2612 AGCTTTTCCAAAAAGGTGCTTTGGCCTATATCATCTCTTGAATGATATAG 
GCCAAAGCACCGGG 

o2732 CAACGAGATCCTGCTGCCCCTTATGATAAG 

o2733 CTTATCATAAGGGGCAGCAGGATCTCGTTG 

o3730 GTACCGGAGCATCGTCGTGACTGGGAAAAC 

o3752 AGCTACCATGCCTGCCTCAAGAATTCGTAATATGCCTACACTGGACCGTA 
CTTCGCCTAGTAGACTGCCTTCCCG 

o3753 CGGGAAGGCAGTCTACTAGGCGAAGTACGG 



30 
 

 

4.22. BrdU comet esszé 
A HLTF shRNS-t stabilan expresszáló HCT116 sejteket transzformáltuk shRNS-

rezisztens HLTF fehérjéket expresszáló plazmidokkal, LipofectamineTM2000 reagens 

segítségével a gyártó által előírt protokoll szerint. A szinkronizálatlan sejteket 24 óra 

múlva kezeltük 25 µM BrdU-val 20 percen keresztül. A sejtek egy részét ezután UV-val 

kezeltük, majd 6 órán keresztül dNTP-vel kiegészített tápfolyadékben növesztettük. 

Ezután a sejteket összegyűjtöttük, PBS-sel mostuk, majd mikroszkóp tárgylemez 

felületére agaróz gélbe ágyaztuk. A fehérjéket lizáltuk a következő pufferben: 2,5 M 

NaCl, 100 mM EDTA, 10 mM Tris pH.:10, 1%Triton X-100 és 0,5% nátrium-lauril-

szulfát. A mintát a következő jéghideg pufferben futtattuk: 0,3 M NaOH, 1 mM EDTA, 

pH 13, 25 mA-en 25 percig. A lemezeket neutralizáltuk 0,4 M Tris-HCl, pH 7,4-el, 

majd 30 percig blokkoltuk 0,1% BSA-t és 0,1% Tween 20-at tartalmazó PBS pufferben. 

Majd immunfestést végeztünk 30 μl anti-BrdU ellenanyaggal (1:750, Ab-Direct 

Serotech) 90 percig, és Alexa Fluor 488-el jelölt anti-patkány ellenanyaggal (1:750, 

Molecular Probes, Inc.) 2 órán keresztül. A mintát Zeiss Axioscope fluoreszcens 

mikroszkóppal vizsgáltuk, és Komet 5.0 (Kinetic Imaging Ltd, Liverpool, UK) 

programmal elemeztük. 

 

4.23. UV érzékenységi kísérlet 
HLTF-csendesített HCT116 sejteket transzfektáltunk shRNS-rezisztens HLTF 

fehérjéket termelő plazmidokkal, 6 lyukú lemezben. 24 óra múlva a sejteket 

összekevertük GFP-t stabilan expresszáló HeLa sejtekkel 1:1 arányban. Ezt a 

sejtkeveréket 16 óra elteltével kezeltük UV fénnyel. Ezután 7 napig növesztettük a 

sejteket. Végül FACS analízis segítségével (Guava Easy site System) határoztuk meg a 

GFP-t expresszáló és nem expresszáló sejtek arányát.  
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5. Eredmények 
 

 

5.1. A HLTF fehérje HIRAN doménjének szerkezete 

 
A HLTF fehérje három jól körülhatárolható doménnel rendelkezik. A HIRAN 

doménnel, a SWI/SNF2 helikáz doménnel és a RING-finger doménnel. Munkánk 

kezdetén ezek közül a helikáz és a RING domén szerepe már ismert volt, a HIRAN 

doménről azonban irodalmi adat nem állt rendelkezésünkre. A HLTF fehérje 

funkciójához tartozó strukturális alapok pontosabb megismeréséhez elsőként 

szekvencián alapuló számítógépes struktúra-analízist végeztünk. Ebből kiderült, hogy a 

HIRAN domén előtti, nagyjából 50 aminosavnyi szakasz egy struktúrálatlan régió, 

hasonlóan a HIRAN és a SWI/SNF2 domének közötti régióhoz. Ezenkívül, a 

SWI/SNF2 doménbe ékelődve található egy lizin/szerin gazdag inszerció, amely 

fehérje-fehérje kölcsönhatások kialakításáért lehet felelős. A HIRAN domén számos 

fehérjében megtalálható, és az aminosav-szekvencia analízise alapján nagyfokú 

konzerváltságot mutat (8. ábra). A struktúra-analízis alapján a HIRAN domén egy 

hatszálú béta-hordó struktúrával rendelkezik, melyet az egyik végen egy alfa hélix, a 

másik végen egy rövid hélix határol. Ez a struktúra hasonlóságot mutat a Small protein 

B fehérjével, amely egy tmRNS-kötő molekula. Ezenkívül hasonlóságot mutat számos 

II-es típusú restrikciós endonukleáz DNS-felismerő helyével. Ezek alapján, a HIRAN 

domén feltételezhetően DNS-kötő funkcióval rendelkezik.  

 

 
 

8. ábra: A HIRAN domén konzervált régiója. A csillaggal jelölt két aszparagin 
aminosavat cseréltük ki alaninra a kettős pontmutáns fehérjéhez. 

 

 

A HIRAN domén még pontosabb megismerése érdekében, kolaborátorunk 

segítségével meghatároztuk a HIRAN domén kristályszerkezetét (hHLTF.56-175, 
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PDBID deposition 5BNH). A szerkezet alapján a HIRAN domén egy hatszálú béta-

hordóból és az azt körülvevő két alfa-hélixből épül fel (9. ábra). 

 

 
 

9. ábra: A HIRAN domén háromdimenziós szerkezete, a DNS-kötésben, illetve a funkció 
betöltésében fontos aminosavak megjelölésével. 
 

A HIRAN domén DNS-kötő régiója két hurok és egy béta lemez által alkotott 

árokban helyezkedik el. Ez az árok, melyet az Y72-es és az Y93-as aminosavak 

határolnak, egy dinukleotid befogadására képes. A két aminosav erős kölcsönhatást 

létesít a fehérjével együtt tisztuló dinukleotiddal, amely a mérések alapján egy timin és 

egy guanin. Az említett két aminosavon kívül a 90-es és 91-es pozícióban lévő 

aszparagin aminosavak is fontos szerepet játszhatnak a DNS megkötésében (9. ábra). 

 

 

5.2. A HIRAN domén mutáns HLTF fehérjék létrehozása és tisztítása 
 

Célunk az volt, hogy meghatározzuk, vajon a HLTF fehérje eddig ismert 

aktivitásai sérülnek-e a HIRAN domén hiányában. Hogy ezt vizsgálni tudjuk, 

különböző mutáns fehérjéket hoztunk létre. Előzetes kísérleteink, valamint a 

kristálystruktúra és a számítógépes modell alapján PCR alapú mutagenezis segítségével 

egy dupla pontmutációt hoztunk létre a HLTF HIRAN doménjében, ahol is a 90-es és a 



33 
 

91-es pozíciójú aszparagint alaninra cseréltük (8. ábra), létrehozva a HLTF NN90,91AA 

fehérjét. Ezenkívül egy HIRAN deléciós HLTF fehérjét is létrehoztunk, amelyben a 

HIRAN doménnel együtt a HLTF fehérje N-terminálisának 155 aminosavát deletáltuk, 

létrehozva a HLTF 156-1009 fehérjét (10. ábra).  

 

 

 
 

  

10. ábra: A vad típusú (HLTF) és a HIRAN domén deléciós (HLTF 156-1009) fehérjék 

doménszerkezete. 

 

 

A fehérjéink génjét tartalmazó túltermelő plazmidokat élesztőbe transzformáltuk, 

ott a fehérjéket túltermeltettük, majd affinitás kromatográfiás módszerrel tisztítottuk. A 

vad típusú és mutáns fehérjéink egyaránt GST (Glutation S-transzferáz), illetve FLAG 

taget tartalmaztak a fehérje N-terminálisához fúzionálva.  

 

 
 

11. ábra: A tisztított vad típusú (HLTF wt), a HIRAN domén deléciós (HLTF 156-1009) 
és a HIRAN domén pontmutáns (HLTF NN90,91AA) HLTF fehérjék poliakrilamid 
gélképe Coomassie brillantkékkel festve. 



34 
 

A fehérjéket tartalmazó élesztő extraktumot glutationnal kapcsolt gyöngyökön 

engedtük keresztül, majd a gyöngyre nem kötődő komponenseket több lépésben 

lemostuk az oszlopról, végül egy proteáz segítségével a GST és a FLAG tag között 

elhasítottuk a fúziós fehérjéinket, így eredményként közel 100%-os tisztaságú, FLAG 

taggel jelölt HLTF fehérjéket kaptunk. Ezeket a preparátumokat használtuk további 

kísérleteinkben. Első lépésben azonos koncentrációjúra hígítottuk a fehérjeoldatainkat, 

amit Coomassie brillantkék festéssel ellenőriztünk (11. ábra).  

 

 

5.3. A HIRAN mutáns aktív ubikvitin ligáz 
 

A tisztított fehérjékkel megvizsgáltuk, hogy a HIRAN doménben létrehozott 

deléció milyen hatással van a HLTF fehérje különböző funkcióira in vitro. Ehhez 

megvizsgáltuk a poliubikvitin ligáz és a helikáz aktivitást különböző kísérleti 

elrendezésben.  

 

 
 

12. ábra: A HIRAN domén mutáns HLTF fehérjék rendelkeznek ubikvitin ligáz 
funkcióval. Western blot ábra a vad típusú (HLTF wt), a HIRAN domén deléciós (HLTF 
156-1009) és a HIRAN domén pontmutáns (HLTF NN90,91AA) HLTF fehérjék általi 
PCNA poliubikvitilálásról. A számok a poliubikvitilált PCNA mennyiségét jelölik a 
kiindulási PCNA és az ubikvitilált PCNA százalékában. 
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A ligáz aktivitás méréséhez először monoubikvitiláltuk a PCNA-t a 

RAD6/RAD18 komplex segítségével, majd a reakcióhoz mértük az MMS2/UBC13 

komplexet, illetve a vad típusú és a HIRAN domén mutáns HLTF fehérjéket. A reakció 

után a poliubikvitilált PCNA jelenlétét Western blot segítségével tettük láthatóvá. 

Kimutattuk, hogy a deléciós mutáns HLTF a vad típushoz hasonló mértékű ubikvitin 

ligáz aktivitással rendelkezik (12. ábra). Az eredményből arra következtettünk, hogy a 

HIRAN doménben létrehozott mutáció az ubikvitin ligáz funkcióra nem volt hatással. 

 

  

5.4. A HIRAN mutáns HLTF rendelkezik ATPáz aktivitással 
 

Hogy megbizonyosodjunk arról, hogy a tisztított fehérjéink az ATPáz, illetve 

helikáz aktivitásukat sem veszítették el, megvizsgáltuk a fehérjék ATP hidrolizáló 

képességét és kettősszálú DNS-függő helikáz aktivitását. Az ATPáz aktivitás méréséhez 

radioaktívan jelölt gamma foszfáttal rendelkező ATP molekulát használtunk. A HLTF-

et kettősszálú DNS-sel stimuláltuk, majd a mintákat vékonyrétegen futtattuk meg. 

Száradás után a hidrolizált gamma foszfátot detektáltuk. Kimutattuk, hogy a HIRAN 

deléciós HLTF fehérje a vad típussal megegyező mértékű ATPáz aktivitással 

rendelkezik (13. ábra). 

 

 
 

13. ábra: A HIRAN domén mutáns HLTF fehérjék rendelkeznek ATPáz aktivitással. 
Vékonyréteg kromatográfiás kép a vad típusú (HLTF wt), a HIRAN domén deléciós 
(HLTF 156-1009) és a HIRAN domén pontmutáns (HLTF NN90,91AA) fehérjék által 
hidrolizált radioaktív ATP-ről. A számok a hidrolizált ATP mennyiségét jelölik a 
kiindulási ATP mennyiség százalékában.   
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5.5. A HIRAN mutáns HLTF aktív kettősszálú DNS-függő helikáz 

 

Miután láttuk, hogy a mutáns fehérjénk rendelkezik ATPáz aktivitással, 

valószínűsítettük, hogy a kettősszálú DNS-függő helikáz aktivitása is sértetlen maradt. 

Az ellenőrző kísérletet egy hármasszálú DNS szubsztráton végeztük el. A szubsztrátban 

a Watson – Crick párosodás mellett a harmadik szál Hoogsteen bázispárosodással 

kapcsolódik. Ezt a harmadik szálat jelöltük radioaktívan, így nyomon tudtuk követni a 

reakció során. Ha a HLTF megköti a kettősszálú DNS-t, és ép a kettősszálú DNS-függő 

helikáz funkciója, képes eltávolítani a harmadik szálat a szubsztrátról. A reakciót natív 

poliakrilamid gélen futtatva pozitív reakció esetén megjelenik a gyorsabban futó 

egyszálú DNS. Kísérletünkben a vad típusú, illetve a HIRAN mutáns HLTF 

molekulákat használtuk azonos szubsztrát mennyiséggel, növekvő fehérjemennyiséget 

használva, azonos ideig. Azt tapasztaltuk, hogy a mutáns fehérjék is képesek voltak a 

harmadik szál eltávolítására a vad típusú fehérjéhez hasonló mértékben (14. ábra). Így a 

kísérleteinkkel is bizonyítottuk, hogy nemcsak a kettős pontmutáció, de a teljes HIRAN 

deléció sem befolyásolja a HLTF fehérje megfelelő térszerkezetének kialakulását, így 

ubikvitin ligáz és ATP hidrolízis-függő dsDNS helikáz aktivitását. 

 

 
 

14. ábra: A HIRAN domén mutáns HLTF fehérjék rendelkeznek kettősszálú DNS-függő 
helikáz aktivitással. Vad típusú (HLTF wt), HIRAN domén deléciós (HLTF 156-1009) és 
HIRAN domén pontmutáns (HLTF NN90,91AA) fehérjékkel végzett, natív poliakrilamid 
gélen futtatott reakciók, a radioaktív jel segítségével történő detekció a harmadik szál 
eltávolításáról. A számok a rövid egyes szál leválasztásának mértékét jelölik a kiindulási, 
hármasszálú szubsztrát mennyiségének százalékában. 
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5.6. A HIRAN mutáns HLTF nem képes visszafordítani a replikációs villát 

 

A továbbiakban megvizsgáltuk, hogy a mutáns fehérjék HIRAN domén nélkül, 

illetve mutáns HIRAN doménnel is rendelkeznek-e replikációs villa-visszafordító 

aktivitással. Kétféle kísérleti rendszert alkalmaztunk. Az első esetben 

oligonukleotidokból összehibridizált modell homológ replikációs villa szubsztrátot 

használtunk. Ebben az esetben a szülői szálat jelentő kettősszálú DNS szakasz 40 

nukleotid hosszúságú, míg a villa két szárát alkotó, szintén kettősszálú szakaszok 35 

nukleotid hosszúságúak voltak. A HLTF fehérje helikáz aktivitása révén képes a 

homológ replikációs villát visszafordítani. A modell szubsztrát esetén egy 35, illetve 

egy 75 nukleotid hosszúságú kettősszálú DNS fragmentet kapunk termékként. A reakció 

végén a reakcióelegyet natív poliakrilamid gélen megfuttatva, ezek a DNS darabok 

nyomonkövethetők. Esetünkben a szubsztrát egyik rövid és egyik hosszú karja volt 

radioaktívan jelölve, így a terméket radioaktivitás útján tudtuk detektálni. A reakció 

során azt tapasztaltuk, hogy míg a vad típusú HLTF fehérje rendelkezett helikáz 

aktivitással és képes volt a modell replikációs villa visszafordítására, addig sem a 

HIRAN deléciós mutáns, sem a HIRAN pontmutáns fehérje nem mutatott aktivitást (15. 

ábra). Ebből arra következtettünk, hogy a HLTF fehérje általi replikációs villa-

visszafordításhoz nem elég a kettősszálú DNS-függő helikáz aktivitás, a HIRAN domén 

jelenléte is elengedhetetlen. 

 

 
 

15. ábra: Vad típusú (HLTF wt), HIRAN domén deléciós (HLTF 156-1009) és HIRAN 
domén pontmutáns (HLTF NN90,91AA) fehérjékkel, natív poliakrilamid gélen futtatott 
minták, radioaktív oligonukleotidok segítségével történő kimutatása a replikációs villa-
visszafordító aktivitásnak. A vad típusú HTLF esetén megjelennek a 30/30 és 75/75 
nukleotid hosszú kettősszálú termékek, míg a mutáns fehérjék esetén nem. 
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Hogy megerősítsük az előző kísérletben kapott eredményt, a második esetben a 

replikációs villa-visszafordítást az in vivo körülményeket jobban imitáló, plazmid alapú 

szubsztráton is megvizsgáltuk. Az ebben a kísérleti elrendezésben használt plazmid 

DNS tartalmazott egy behasítást, amelytől 5’ irányban egy túlnyúló, a nick-től 3’ 

irányban található DNS szakasszal komplementer kettősszálú DNS található. A 3’ 

irányban lévő plazmid szakasz 5’ vége radioaktívan volt jelölve. A hasítástól 5’ 

irányban található túlnyúló szakasz restrikciós enzim hasítóhelyeket tartalmaz, mely 

szakaszokon a HLTF a replikációs villa-visszafordító aktivitása révén elmozgatott 

radioaktív szállal történő hibridizálódás után, restrikciós endonukleázokkal hasítva 

különböző hosszúságú radioaktív kettősszálú termékeket kapunk (16. ábra). 

 

 
16. ábra: A kiindulási és a replikációs villa-visszafordító aktivitás révén létrejövő 
struktúra szerkezeti képe a plazmid alapú replikációs villa szubsztrát esetében. A 
nagybetűkkel jelölt restrikciós endonukleáz hasítóhelyek a következők: Xh–XhoI, A–
AflIII, E–EcoRI, B–BamHI.  

 

 
 

17. ábra: A HIRAN domén mutáns HLTF fehérjék nem képesek a replikációs villa-szerű 
plazmid alapú DNS szubsztrátot visszafordítani. Vad típusú (HLTF wt), HIRAN domén 
deléciós (HLTF 156-1009) és HIRAN domén pontmutáns (HLTF NN90,91AA) HLTF 
fehérjékkel végzett, natív poliakrilamid gélen futtatott replikációs villa-visszafordító 
reakciók, radioaktív oligonukleotidok segítségével detektálva. A vad típusú HLTF esetén 
megjelennek a gélben gyorsabban haladó, kisméretű hasítási termékek. 

Kontroll 
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A reakció során létrejött DNS struktúrát hasítva létrejövő termékeket natív 

poliakrilamid gélen a radioaktivitásuk révén tettük láthatóvá. A hasított termékek az 

eredeti szubsztrátnál gyorsabban haladnak a gélben. Azt tapasztaltuk, hogy a modell 

replikációs villához hasonlóan, ebben az esetben is a vad típusú HLTF mutatott 

aktivitást, míg a HIRAN domén deléciós, illetve pontmutáns HLTF fehérjék nem voltak 

képesek a struktúra feloldására (17. ábra). 

 

 

5.7. A vad típusú HIRAN domén hozzáadása komplementálja a HIRAN 

deléciós HLTF villa-visszafordító aktivitását in vitro 
 

Hogy megerősítsük a feltételezéseinket, miszerint a replikációs villa-visszafordító 

aktivitás elvesztése valóban a funkcióképtelen HIRAN doménnek köszönhető, egy új 

kísérleti elrendezést alkalmaztunk. Az elképzelés szerint, ha a tisztított HIRAN deléciós 

HLTF fehérjét összekeverjük tisztított HIRAN doménnel, a két fehérje összeállhat, a 

vad típusú fehérjéhez hasonló struktúrát vehet fel és helyreállhat a villa-visszafordító 

aktivitása. Ehhez HIRAN domént kellett tisztítanunk. PCR segítségével amplifikáltunk 

a HLTF fehérjékről vad típusú és kettős pontmutáns HIRAN doméneket, melyek a 

fehérje 56-168 aminosavig terjedő szakaszát tartalmazták. Ezeket a doméneket élesztő 

expressziós plazmidokba klónoztuk, amelyek GST és FLAG taget tartalmaztak. Az így 

létrehozott plazmidokat élesztőbe transzformáltuk, a fehérjéket túltermeltettük, majd a 

HLTF-hez hasonló módon tisztítottuk (18. ábra). 

 

 
 
18. ábra: A HIRAN domén konstrukciók szerkezeti ábrája. Vad típusú (HIRAN) és 
pontmutáns (HIRAN NN90,91AA) domének. A GST-FLAG tag fúziós, tisztított HIRAN 
domének képe, poliakrilamid gélen futtatva, Coomassie kékkel festve. 
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A tisztítás végén azonos koncentrációban kaptuk a GST-FLAG fúziós vad típusú 

(HIRAN) és dupla pontmutáns (HIRAN NN90,91AA) HIRAN doméneket. A tisztított 

doménekkel és a HIRAN deléciós mutáns HLTF-fel elvégeztük a replikációs villa- 

visszafordító esszét oligonukleotid alapú, egyik szálán fluoreszceinnel jelölt, modell 

replikációs villa szubsztráton. Míg a HIRAN deléciós HLTF fehérje önmagában, illetve 

mutáns HIRAN doménnel összekeverve továbbra sem volt aktív a modell szubsztráton, 

addig a deléciós HLTF-et vad típusú HIRAN doménnel összekeverve kismértékű 

aktivitást tapasztaltunk (19. ábra). Ebből arra következtettünk, hogy a két fehérjedarab a 

reakcióelegyben összeállt, létrehozva egy, a vad típusú HLTF-hez hasonló struktúrát, 

amely már rendelkezett replikációs villa-visszafordító aktivitással. Ezzel 

bebizonyítottuk, hogy a HIRAN domén megléte a HLTF fehérjében nélkülözhetetlen a 

replikációs villa visszafordításához.  

 

 
 
19. ábra: Egy szálon fluoreszcensen jelölt, oligonukleotid alapú, modell replikációs villa 
szubsztrát esetében, villa-visszafordító aktivitás révén 75/75 nukleotid hosszú, 
kettősszálú, fluoreszcens terméket kapunk, melyet natív poliakrilamid gélen való futtatás 
után, fluoreszcencia révén tettünk láthatóvá. Vad típusú HLTF (HLTF wt), HIRAN 
domén deléciós HLTF (HLTF 156-1009), vad típusú HIRAN domén (HIRAN) és 
pontmutáns HIRAN domén (HIRAN NN90,91AA). 
 
 

5.8. A HIRAN domén megléte esszenciális a HLTF működéséhez in vivo 
 

Az in vitro kísérletek után megvizsgáltuk, vajon a HIRAN domén hiánya milyen 

hatással van a HLTF in vivo aktivitására. Ehhez létrehoztunk egy olyan humán 

sejtvonalat (HCT116), melyben shRNS segítségével stabilan csendesítettük a HLTF 

fehérjét (20. ábra). Ezután plazmidon létrehoztunk olyan vad típusú, valamint HIRAN 
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domén mutáns HLTF konstruktokat, melyek shRNS-rezisztensek, így képesek 

termelődni a csendesített sejtekben. Azt vizsgáltuk, képesek-e a mutáns fehérjéink 

visszaállítani a vad típusú állapotot, vagy sem. Az első kísérletben a vad típusú, illetve a 

HIRAN deléciós fehérjékkel komplementált sejtvonalakat UV sugárzással kezeltük, és 

kompetíciós kísérletben vizsgáltuk az érzékenységüket.  

 

 
 

20. ábra: A HLTF csendesítésének vizsgálata. Az shRNS segítségével nagymértékű 
endogén HLTF mennyiségcsökkenést sikerült elérnünk. A kísérletben kontrollként 
tubulint használtunk. 
 
 
 
A kompetíciós kísérlet során, a HLTF-csendesített sejtvonalban egyesével 

túltermeltük az shRNS-rezistens fehérje konstruktokat, majd ezeknek a sejteknek az UV 

sugárzásra adott érzékenységét hasonlítottuk össze vad típusú és HLTF-csendesített 

sejtek érzékenységével. A HIRAN mutánsok mellett a már ismert doménekben (ATPáz, 

RING) mutáns HLTF konstruktokat is bevontunk a kísérletbe, melyekről tudjuk, hogy 

érzékenyebbek a vad típusnál. A kísérlet során a HLTF-csendesített sejtek nagymértékű 

érzékenységet mutattak UV sugárzás általi DNS-károsító hatásra. Azt tapasztaltuk, hogy 

míg a vad típusú fehérje képes volt közel teljes mértékben visszaállítani a sejtek 

érzékenységét a vad típusú sejtek érzékenységének szintjére, addig a HIRAN mutáns 

fehérjéket expresszáló sejtek érzékenysége a HLTF-et stabilan csendesített sejtekéhez 

hasonló mértékű volt. Az ATPáz és RING mutáns fehérjéket termelő sejtek köztes 

érzékenységet mutattak. Az eredményekből arra következtettünk, hogy a HIRAN 

domén jelenléte, annak megfelelő működése, esszenciális a HLTF fehérje funkciójának 

betöltéséhez in vivo (21. ábra). 
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21. ábra: A HLTF csendesítésének, illetve a sejtekben túltermelt shRNS-rezisztens (rez) 
HLTF fehérjék hatásának vizsgálata UV hatására létrejött DNS-károsodások esetén. A 
HIRAN domén deléciós (FLAG-HLTF 156-1009 rez) és pontmutáns (Myc-HLTF 
NN90,91AA rez) HLTF fehérjéket expresszáló sejtvonal a HLTF-csendesített (HLTF 
shRNA) sejtvonalhoz hasonló mértékű érzékenységet mutatott. 

 

 

Western blot segítségével követtük nyomon az egyes shRNS-rezisztens fehérjék 

sejten belüli expressziós szintjét. Mivel FLAG-, illetve Myc-jelölt fehérjéket is 

használtunk, ezekhez FLAG-, illetve Myc-jelölt vad típusú fehérjéket használtunk 

kontrollként; ezek expressziós szintje, illetve komplementációjuk mértéke megegyezett, 

illetve összemérhető volt a mutáns fehérjék expressziós szintjével (22. ábra).  
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22. ábra: A túltermelt shRNS-rezisztens vad típusú, illetve mutáns HLTF fehérjék 
expressziós szintje Western blot kísérlet segítségével. ShRNS rezisztens fehérjék: vad 
típus (FLAG/Myc-HLTF WT rez), HIRAN deléciós mutáns (FLAG-HLTF 156-1009 
rez), ÁTPáz mutáns (Myc-HLTF ATPáz rez), RING mutáns (Myc-HLTF Ring rez), és 
HIRAN domén pontmutáns (Myc-HLTF NN90,91AA rez). Kontrollként tubulint 
használtunk. 
 

 

5.9. A HIRAN domén mutáns HLTF fehérjék a sejtmagba lokalizálódnak 
 

Mivel úgy tűnt, hogy a HIRAN domén funkciójának elvesztésével a fehérje 

elveszti teljes sejten belüli funkcióját in vivo, fennállt az a lehetőség, hogy a HIRAN 

deléciós, illetve pontmutáns HLTF azért funkcióképtelen, mert nem képes arra a 

konkrét helyre eljutni, ahol szükség lenne rá, vagyis nem képes bejutni a sejtmagba. 

Elképzelhető, hogy a delécióval és a pontmutációval elronthattuk vagy levághattuk a 

nukleáris lokalizációs szignált a fehérjéről, amelyre szükség van a sejtmagba való 

bejutáshoz. Hogy ezt a lehetőséget kizárjuk, immunfestéssel megvizsgáltuk, hogy a 

HIRAN mutáns HLTF hol található a sejteken belül. A FLAG taggel, illetve Myc taggel 

fuzionált fehérjéinket kifejeztettük a sejtben, majd a lokalizációjukat anti-FLAG, illetve 

anti-Myc ellenanyaggal történő immunfestéssel detektáltuk. A kísérletben kontrollként a 

sejtmagot DAPI-val jelöltük. Azt tapasztaltuk, hogy a HIRAN mutáns HLTF fehérjék, 
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hasonlóan a vad típusú fehérjéhez, a sejtmagban találhatóak (23. ábra). Így kizártuk 

annak a lehetőségét, hogy a mutáns fehérjék azért nem képesek a funkciójukat ellátni, 

mert nem jutnak be a sejtmagba.  

 

 
 
23. ábra: A HIRAN mutáns HLTF fehérjék bejutnak a sejtmagba. Vad típusú (HLTF wt), 
HIRAN domén deléciós (HLTF 156-1009) és HIRAN domén pontmutáns (HLTF 
NN90,91AA) HLTF fehérjék sejtmagi lokalizációja. A lokalizációt FLAG és Myc elleni 
ellenanyaggal mutattuk ki immunofluoreszcencia segítségével, a sejtmagot DAPI 
festéssel jelöltük meg. 
 
 
 

5.10. A HLTF fehérjék posztreplikációs hibajavításban betöltött szerepe 

függ a HIRAN doméntől  
 

A HLTF-csendesített sejtek UV érzékenységét egy másik kísérleti rendszer 

segítségével, egy módosított comet esszével is megvizsgáltuk, ahol bromodeoxiuridin 

(BrdU) jelölést alkalmazunk. A kísérlet során az osztódó sejteket a BrdU bázisanalóggal 

jelöljük, majd a felesleges BrdU-t kimossuk a tápoldatból. Ezután a sejteket UV 

sugárzással kezeljük. A besugárzás után 6 órával a sejteket agaróz gélben fixáljuk, majd 

elektroforézis segítségével futtatjuk meg a bennük lévő DNS-t, melyet ezután 

immunfestéssel teszünk láthatóvá. A kísérlet végén csak azokat a sejteket látjuk, 
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amelyek éppen a replikáció fázisában voltak és képesek voltak beépíteni a BrdU-t (24. 

ábra). 

 

 
 

24. ábra: A comet esszé (egysejt elektroforézis) folyamatának sematikus ábrája. 

 

 

 Ha a sejt DNS-e teljesen megkettőződött, az elektroforézis során a nagy 

kromoszómák nem tudnak kifutni a sejtmagból, így egy csoportban maradnak. Ha a sejt 

replikációja az UV sugárzás hatására lelassul és 6 óra alatt nem fejeződik be, úgy az 

elektroforézis során a befejezetlen replikációból származó DNS darabok kifutnak a 

sejtmagból, így egy üstökösszerű képet kapunk. Az üstökös magja/feje a replikálódott 

DNS-ből áll, míg a csóvája a befejezetlen replikációból származik. Minél nagyobb a 

csóva mérete a fejhez viszonyítva, a sejt annál érzékenyebb az adott károsító ágenssel 

szemben. A kísérlet során kontrollként vad típusú HCT116 sejteket használtunk. 

Ezenkívül HLTF-csendesített vonalakat is vizsgáltunk, amelyekben túltermeltük az 

shRNS-rezisztens vad típusú, illetve HIRAN domén mutáns HLTF fehérjéket. Azt 

tapasztaltuk, hogy UV kezelés után 6 órával a vad típusú sejtek replikációja szinte teljes 

volt, csóva DNS alig volt megfigyelhető. Ezzel szemben a HLTF-csendesített vonalban 

a replikáció lelassult UV sugárzás hatására, és megnövekedett csóva DNS-t mutattunk 

ki, ami arra utal, hogy az UV által okozott DNS hibák javításában szerepet játszik a 

HLTF fehérje. A vad típusú shRNS-rezisztens HLTF-et túltermelve a csendesített 

vonalban, a csóva DNS mennyisége lecsökkent, a vad típusú HCT116 sejtekben mért 

érték közelébe. Ezzel szemben, a HIRAN domén mutáns HLTF fehérjék egyike sem 

volt képes visszaállítani vad típusra jellemző fenotípust (25. ábra). Ez az eredmény arra 

utal, hogy a HLTF HIRAN doménje elengedhetetlenül szükséges az UV sugárzás 

hatására leállt replikációs villák újraindításához.  
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25. ábra: Comet kísérlet HLTF-csendesített sejtvonalon. shRNS-rezisztens (rez) vad 
típusú (HLTF wt), HIRAN domén deléciós (HLTF 156-1009) és HIRAN domén 
pontmutáns (HLTF NN90,91AA) HLTF fehérjékkel végzett kísérlet. A vad típusú 
shRNS-rezisztens HLTF képes volt visszaállítani a vad típusú HCT116 sejtekre jellemző 
fenotípust, míg a HIRAN domén mutáns fehérjék nem. 

 

 

 A kísérlet eredményét grafikonon is ábrázoltuk, összehasonlítva a kezeletlen és az 

UV-val kezelt sejtek érzékenységét is (26. ábra). 

 

 
 

26. ábra: A comet kísérlet HLTF-csendesített sejtvonalon, grafikonon ábrázolva.  
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5.11. A HIRAN domén specifikusan köti a replikációs villát 

 

A kristálystruktúra alapján a HIRAN domén nagy valószínűséggel egy DNS-

kötő domén. Ezt erősítik a kísérleti eredményeink is, melyek szerint a HIRAN domén 

hiánya a HLTF fehérjének csak a replikációs villa-visszafordító aktivitására volt hatása 

in vitro. Ehhez az aktivitáshoz a HLTF-nek DNS-t kell kötnie. Ezért megvizsgáltuk, 

vajon a HIRAN domén valóban képes-e DNS-t kötni, és ha igen, milyen DNS 

struktúrához kapcsolódik. Ehhez gél shift kísérletet alkalmaztunk. A felhasznált 

szubsztrát DNS-ek a következők voltak:  

 52 nukleotid hosszú, GA ismétlődéseket tartalmazó egyesszálú DNS (ssDNS) 

 75 nukleotid hosszú kettősszálú DNS (dsDNS) 

 részleges duplex, melynek kettősszálú szakasza 30 nukleotid, egyesszálú túlnyúló 

vége 45 nukleotid hosszúságú 

 homológ replikációs villát imitáló DNS szubsztrát, melynek a szülői szálat 

formáló szakasza 45, az elágazás utáni szakasz 30 nukleotid hosszúságú volt.  

 

 
27. ábra: A HIRAN domén köti az egyesszálú DNS-t, de nem kapcsolódik duplaszálú 
DNS-hez. Vad típusú (HIRAN) és pontmutáns (HIRAN NN90,91AA) doménekkel 
végzett gél shift kísérlet. A vad típusú domén koncentrációját növelve, a megkötött DNS 
mennyisége is nő.  

 

 

A reakció során a HIRAN fragmentekhez adtuk a szubsztrát molekulát, majd 

szobahőmérsékleten (18 - 24 oC) inkubáltuk az elegyet, hogy kialakulhasson a 
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kölcsönhatás. A reakciókat ezután natív poliakrilamid gélen futtattuk, hogy a 

komplexek ne essenek szét. Ha volt kölcsönhatás a fehérje és a DNS között, a jel 

magasabb molsúlytartományba tolódott el. A termékeket a radioaktívan jelölt 

szubsztrátok segítségével detektáltuk. Kimutattuk, hogy a HIRAN domén képes DNS-t 

kötni (27. ábra).  

A vad típusú HLTF az egyesszálú DNS-hez kapcsolódott, ezzel szemben a 

kettősszálú DNS-t nem kötötte. A pontmutáns fehérje egyik esetben sem kapcsolódott a 

DNS-hez. A továbbiakban megvizsgáltuk, vajon bonyolultabb DNS szerkezetekhez 

kapcsolódik-e a HIRAN domén. Mivel tudjuk, hogy a HLTF fehérje az elakadt 

replikációs villánál működik, illetve annak visszafordításában vesz részt, valamint a 

HIRAN domén mutáns HLTF nem képes a replikációs villát visszafordítani, ezért 

replikációs villa-szerű szubsztrátot, valamint részleges duplex DNS-t is használtunk. A 

részleges duplex DNS-sel ki tudtunk mutatni kölcsönhatást. Ez nem meglepő, hiszen 

tudjuk, hogy a HIRAN köti az egyesszálú DNS, amit tartalmaz a részleges duplex. 

Ezzel szemben, érdekes módon azt tapasztaltuk, hogy bár a HIRAN domén nem köt 

kettősszálú DNS-t, mégis képes volt kölcsönhatni a replikációs villát imitáló DNS 

szubsztráttal is, amely viszont tisztán kettősszálú DNS szakaszokból épül fel (28. ábra). 

 

 
 

28. ábra: A HIRAN domén köti a részleges duplexet és a replikációs villát. Gél shift 
kísérlet a vad típusú (HIRAN) és pontmutáns (HIRAN NN90,91AA) doménekkel. A vad 
típusú HIRAN domén koncentrációját növelve, a megkötött DNS mennyisége is nő.  



49 
 

Mivel már tudtuk, hogy a HLTF HIRAN doménje egyesszálú DNS-t és 

replikációs villát köt, kíváncsiak voltunk, vajon ezek közül melyik szubsztráthoz képes 

erősebben kapcsolódni. Ezt a kérdést egy kompetíciós kísérlettel próbáltuk 

megválaszolni. A kísérlet során Cy5 fluoreszcens festékkel jelölt replikációs villa 

szubsztráthoz kötöttük első körben a HIRAN domént, majd ezután a reakcióelegyekbe 

mértük a fluoreszceinnel jelölt kompetítor replikációs villa DNS-t, valamint a 75 

nukleotid hosszú egyesszálú DNS-t, növekvő koncentrációban. A kétféle jelöléssel az 

eredeti szubsztrát replikációs villát, valamint a kompetítorokat is egy időben tudtuk 

nyomon követni. Arra számítottunk, hogy az erősebb kompetítor már kisebb 

koncentrációban is képes a HIRAN domént leszorítani az eredeti szubsztrátról, míg az a 

DNS, amelyikhez kisebb az affinitása, így gyengébb kompetítor, csak magasabb 

koncentrációban képes a HIRAN domént leszorítani. Azt tapasztaltuk, hogy a 

replikációs villa bizonyult erősebb kompetítornak, mivel alacsonyabb koncentrációban 

is képes volt a HIRAN domént leszorítani, mint az egyesszálú DNS (29. ábra). 

 

 
 

29. ábra: A HIRAN domén specifikusan köti a replikációs villát. Kompetíciós kísérlet 
fluoreszcensen jelölt szubsztrátokkal. A felső sorban a Cy5-jelölt, HIRAN doménnel 
kötött replikációs villa látható. Ahogy növekvő koncentrációban adjuk a kompetítor 
szubsztrátot (alsó sor), a HIRAN domén elengedi az eredeti szubsztrátot és átköt a 
kompetítorra. Így megjelenik a kötetlen Cy5-jelölt replikációs villa, amely kisebb méretű, 
így a natív gélen gyorsabban fut. A villa kompetítor esetén a HIRAN domén hamarabb 
engedi el az eredeti szubsztrátot. 
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Kísérletünkből azt a következtetést vontuk le, hogy bár a HIRAN domén az 

egyesszálú DNS-t is jól köti, mégis a fő szubsztrátja valószínűleg a replikációs villa. A 

kísérleti eredményünket számszerűsítettük is, és grafikonon ábrázoltuk a HIRAN 

domén kötési erősségét az egyes szubsztrátokhoz viszonyítva (30. ábra). 

 

 
 

30. ábra: A kompetíciós kísérlet grafikus ábrázolása, a kompetítorok koncentrációjának 
és a kompetíció hatékonyságának ábrázolásával. 
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6. Eredmények megvitatása 
 

Munkánk eredményeként meghatároztuk a humán HLTF fehérje HIRAN 

doménjének funkcióját. Kísérleteinkkel karakterizáltuk a HIRAN domén DNS-

hibatolerancia útvonalban, illetve a HLTF általi replikációs villa-visszafordításban 

betöltött szerepét. 

Csoportunk fő kutatási területe a humán DNS-hibatolerancia útvonal 

szabályozásának vizsgálata. Munkánk során célunk a folyamat szabályozási 

mechanizmusának, illetve az útvonalban részt vevő egyes kulcsfehérjék aktivitásának 

pontos meghatározása. Ennek érdekében, az egyes fehérjékben található domének 

funkciójának részletes analízisét végezzük. A humán HLTF fehérje kulcsszerepet 

játszik az elakadt replikációs villa mentésében. Fő funkciója a PCNA molekula 

poliubikvitilálása, valamint a templát váltáshoz szükséges replikációs villa-

visszafordítás, illetve RAD51-től független templátváltás. Ezekhez a funkciókhoz 

tartozó domének jól jellemzettek, így a RING domén, amely a ligáz funkcióért felelős 

és hét helikáz/ATPáz domén, melyek kettősszálú DNS helikáz funkciót adnak a 

fehérjének. A HLTF fehérjében található emellett egy HIRAN domén is, amelynek a 

funkciója eddig ismeretlen volt. 

A HIRAN domén egy nagyon specifikus feladatot láthat el, amire abból lehet 

következtetni, hogy emberi fehérjék közül egyedül a HLTF-ben fordul elő. Éppen ez 

okból választotta ki Sirano Dhe-Paganon csoportja, hogy kölcsönható kismolekulákat 

teszteljenek a HIRAN doménnel a HLTF specifikus gátlásához. A csoporttal 

együttműködve meghatároztuk a HIRAN domén NMR struktúráját, valamint Dante 

Neculai csoportjával együttműködve a kristályszerkezetét is. Sikerült kimutatnunk, 

hogy a HIRAN domén képes DNS-t kötni, és meghatároztuk az ehhez szükséges 

aminosavakat. Kutatásainkkal párhuzamosan, rajtunk kívül több kutatócsoport is 

foglalkozott a HIRAN domén funkciójának vizsgálatával. Mindhárom csoport 

meghatározta a HIRAN domén kristályszerkezetét. Az eredmények szinte teljes 

mértékben egybevágóak, saját eredményeinket is igazolják76,77,78. Annak érdekében, 

hogy a HIRAN domén funkcióját tudjuk vizsgálni a HLTF fehérjén belül, létrehoztunk 

egy HIRAN deléciós mutánst, melyről levágtuk a HLTF fehérje N-terminális végét a 

teljes HIRAN doménnel együtt, valamint a kristályszerkezet alapján egy dupla 

pontmutáns HLTF fehérjét. Az aktív, vad típusú fehérje az MMS2-UBC13 ubikvitin 
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konjugáló komplex-szel együttműködve képes a már monoubikvitilált PCNA fehérjét 

poliubikvitilálni. Ezenkívül képes ATP-t kötni és hidrolizálni, valamint kettősszálú 

DNS-függő helikázként is működik és képes a replikációs villa visszafordítására. A 

HIRAN domén deléciós és pontmutáns HLTF a várakozásainknak megfelelően képes 

volt a PCNA-t poliubikvitilálni, valamint ATP-t hidrolizálni. Emellett megmaradt a 

kettősszálú DNS-függő helikáz aktivitása és le tudta választani a Hoogsteen 

bázispárosodott harmadik DNS szálat a hármasszálú DNS szubsztrátról. Ezek az 

eredmények mind arra utalnak, hogy a deléciós mutáns fehérjénk térszerkezete rendben 

van, és a már korábban jellemzett, egyéb doménjei megfelelően működnek. A 

replikációs villa-visszafordító aktivitást kétféle szubsztráton is megvizsgáltuk, és a 

HIRAN domén mutáns HLTF fehérjéket használva egyik esetben sem kaptunk 

terméket, a mutánsok nem voltak képesek a replikációs villa-visszafordításra. Ez a 

megfigyelés azért meglepő, mivel a deléciós fehérje képes helikázként működni, és 

aktív a hármasszálú DNS-en, viszont egybevág Andrew C. és munkatársai 

eredményével. E kísérleti eredmények alapján azt feltételeztük, hogy a HIRAN domén 

fontos szerepet játszik a HLTF replikációs villa-visszafordító aktivitásában. Ezt 

erősítette az a megfigyelés is, miszerint a vad típusú HIRAN doménnel összekevert 

mutáns HLTF fehérje visszanyerte az eredeti aktivitását. Ez valószínűleg azzal 

magyarázható, hogy a két fehérje rész képes volt összeállni egy funkcionális egésszé. 

Ez indirekt bizonyíték lehet arra, hogy a HIRAN domén lehet felelős a replikációs villa-

visszafordító aktivitásért. 

A DNS-hibatolerancia útvonalban részt vevő fehérjék deléciója, illetve egyes 

doménjeik mutációja érzékennyé teszi a humán sejteket UV sugárzásra. A helikáz 

domén mutáns és RING domén mutáns HLTF fehérjéket tartalmazó humán sejtek is 

érzékenyek UV sugárzásra. Megvizsgáltuk, hogy a HIRAN deléciós mutáns HLTF 

fehérjét expresszáló humán sejtek érzékenyek-e UV sugárzásra. Létrehoztunk egy olyan 

HCT116 humán sejtvonalat, amely stabilan expresszál egy, a HLTF-re specifikus 

shRNS-t, így ebben a sejtvonalban a HLTF fehérje stabilan csendesítve van. Ebben a 

sejtvonalban expresszáltuk az shRNS-rezisztens vad típusú és HIRAN mutáns HLTF 

konstruktokat, és vizsgáltuk érzékenységüket UV sugárzás hatására. A vad típusú 

fehérje képes volt visszaállítani az érzékenységet a vad típusú HCT116 sejtekhez 

hasonló mértékre, míg a HIRAN domén mutáns fehérjét expresszáló sejtvonalak 

hasonlóan érzékenyek voltak, mint a HLTF-csendesített HCT116 sejtek. Mivel in vitro 

eredményekből tudjuk, hogy a deléciós HLTF ligáz és helikáz aktivitással is 
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rendelkezik, meglepő volt a teljes érzékenység. Hogy megbizonyosodjunk arról, hogy a 

fehérje valóban bejut a sejtmagba és nem azért defektív, mert a citoplazmában marad, 

immunfestést végeztünk vad típusú és HIRAN deléciós HLTF fehérjét tartalmazó 

sejtekben. Azt tapasztaltuk, hogy a HIRAN domén mutáns fehérjék a sejtmagba 

lokalizálódnak a vad típushoz hasonlóan. Az in vivo eredményünket egy másik kísérleti 

rendszer segítségével is meg akartuk erősíteni. Ennek érdekében BrdU comet esszét 

végeztünk. A kísérlet során az előzőekben említett sejtvonalakat UV sugárzással 

kezeltük, majd az S fázisos sejteket nyomon követve megmértük, milyen gyorsan 

fejeződik be a replikáció. Azt tapasztaltuk, hogy a vad típusú HLTF expressziója teljes 

mértékben képes volt komplementálni a HLTF hiányát, míg a HIRAN domén mutáns 

fehérjékben végbemenő replikáció a HLTF-csendesített sejtekéhez hasonlóan lassabban 

fejeződött be.  

A továbbiakban a HIRAN domén konkrét funkcióját, aktivitását vizsgáltuk meg. 

Ehhez klónoztuk, élesztőben túltermeltük, majd kitisztítottuk a HLTF HIRAN 

doménjét. Negatív kontrollként a kettős pontmutáns HIRAN domént használtuk. Ezután 

megvizsgáltuk, hogy a tisztított fragmentek milyen típusú DNS szubsztráthoz tudnak 

kötődni, in vitro gél shift esszében. Kísérleteinkben a negatív kontrollként használt 

pontmutáns HIRAN domén nem volt képes DNS-t kötni. Ez az eredmény szintén 

megegyezik más csoportok eredményeivel. A vad típusú domén képes volt egyesszálú 

DNS-hez, illetve ss-dsDNS heteroduplexhez kapcsolódni, de kettősszálú DNS-hez nem. 

Mivel a HLTF az elakadt replikációs villánál dolgozik, képes visszafordítani azt, 

megvizsgáltuk a HIRAN domén kötését replikációs villa-szerű szubsztráthoz. A vad 

típusú domén meg tudta kötni az oligonukleotid alapú replikációs villa-szerű struktúrát 

annak ellenére, hogy dsDNS-t nem köt. Ebből arra következtettünk, hogy a domén a 

replikációs villa centrumában található részt képes megkötni, valószínűleg így 

lokalizálva a HLTF fehérjét az elakadt replikációs villához. Ez a kötődés specifikus, 

méréseink alapján erősebb, mint az ssDNS-sel létrehozott kapcsolat.  

Kísérleteink arra utalnak, hogy a HLTF fehérje HIRAN doménje képes megkötni 

az egyesszálú DNS-t, valamint a replikációs villát, nagy valószínűséggel tehát ez a 

domén felelős a HLTF fehérje replikációs villához történő kapcsolódásáért. A HIRAN 

deléciós fehérjével végzett kísérletek alapján a HIRAN domén nemcsak a fehérje 

lokalizációjában, hanem replikációs villa-visszafordító aktivitásában is elengedhetetlen. 

Az in vivo kísérleti eredmények arra utalnak, hogy a HIRAN domén megléte 

elengedhetetlen a HLTF fehérje bármely aktivitása szempontjából, mivel tudjuk, hogy 
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bár a deléciós fehérje aktív ubikvitin ligáz és aktív helikáz, mégis in vivo teljes 

funkcióvesztést mutat. Ebből arra következtetünk, hogy a HIRAN domén azért lehet 

felelős, hogy a HLTF fehérjét odaviszi és odahorgonyozza az elakadt replikációs 

villához, ahol így már képes lesz a PCNA-vel kölcsönhatni és poliubikvitilálni azt, 

valamint el tudja végezni a villa visszafordítását, illetve a szálcserét. Modellünk alapján 

a HLTF fehérje HIRAN domén nélkül egyrészt nem képes bekötni a replikációs villa 

közepébe, csak kettősszálú DNS-t köt helikáz doménjeivel. Másrészt, bár dsDNS-függő 

helikázként működik, ez az aktivitás mégsem elég ahhoz, hogy a replikációs villát 

visszafordítsa. A HIRAN domén tehát nemcsak a lokalizációt adja meg, hanem az 

irányultságot is a fehérjének, amit a már visszaforduló villában az ssDNS kötése 

stabilizál (31. ábra). Az eredményeink alapján létrehozott modellt erősítik a 

SMARCAL1, SNF2 helikáz családba tartozó fehérjén végzett kutatások eredményei, 

melyek a HIRAN doménhez hasonló funkciót feltételeznek a SMARCAL1 fehérje 

HARP2 doménjének. Ez a fehérje szintén a SWI/SNF helikázok családjába tartozik, 

HARP doménje két alegységből áll, melyek DNS-t kötnek, és nélkülük a SMARCAL1 

nem képes visszafordítani a replikációs villát74. Bár a HARP domén az egyes- és 

kettősszálú DNS találkozásánál kötődik, a HIRAN domén pedig a túlnyúló 3’ véghez 

kapcsolódik, úgy tűnik sikerült azonosítani egy domén családot, mely a replikációs villa 

koordinált visszafordításáért lehet felelős. 

 

 
31. ábra: A HIRAN domén funkciójának modellje. HIRAN domén nélkül a HLTF fehérje 
képes DNS-hez kötődni és azon mozogni, de a replikációs villa visszafordítására nem képes. A 
HIRAN domén az elakadt replikációs villához lokalizálja a HLTF fehérjét, megerősíti a 
kapcsolatot a DNS-sel, valamint irányultságot és specificitást ad a villa-visszafordításhoz. 
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8. Magyar nyelvű összefoglaló 
 

A sejtjeinkben található örökítőanyagot folyamatosan különböző károsító hatások 

érik. Ide tartozik az UV sugárzás, a dohányfüst, az alkohol, a kemikáliák és az 

anyagcsere-folyamatok során keletkezett reaktív oxigén gyökök, amelyek 

megváltoztatják a DNS szerkezetét. Ennek kivédése érdekében számos DNS-hibajavító 

útvonal alakult ki. Ezek a mechanizmusok folyamatosan helyreállítják a DNS lánc 

eredeti struktúráját, mégis akadnak olyan hibák, amelyek nem kerülnek kijavításra a 

sejtciklus S fázisáig. Ekkor a replikációs villa leállását, ennek következtében kettősszálú 

DNS-töréseket, kromoszomális átrendeződéseket, végső esetben a sejt halálát 

okozhatják. Ennek elkerülésére alakult ki a DNS-hibatolerancia útvonal, amely 

különböző mechanizmusok révén képes a replikációs villa mentésére.  

Az útvonal első lépése a polimerázok processzivitási faktoraként azonosított 

PCNA molekula 164-es lizinjének monoubikvitilálása a Rad6/Rad18 komplex által. 

Ennek következtében a replikatív polimeráz lecserélődhet egy, a hiba átírására képes 

alternatív polimerázra. Egy másik, hibamentes átírást biztosító mechanizmus során a 

monoubikvitilált PCNA molekulát az Mms2/Ubc13/HLTF komplex az ubikvitin 63-as 

lizinjén keresztül poliubikvitilálja, aminek következtében a HLTF fehérje a replikációs 

villát képes visszafordítani. Az így létrejött DNS szerkezeten a hibával szemben lévő 

szál a már újonnan szintetizált utód szálról íródhat át. Harmadik lehetőségként a hiba 

alternatív templátváltás révén is áthidalásra kerülhet.  

Kutatásaink során a DNS-hibatolerancia útvonal funkciójának és szabályozásának 

pontos megértésére törekszünk. Ezen belül is a HLTF fehérje aktivitásainak, szabályozó 

mechanizmusának minél pontosabb feltárása a célunk. A HLTF fehérjét transzkripciós 

faktorként és tumorszupresszorként azonosították. Vastagbél-tumorok jelentős 

százalékában promótere hipermetilált, vagy a fehérje csonkolt formája expresszálódik. 

A HLTF fehérje jelenleg ismert aktivitásainak döntő többségét kutatócsoportunk tárta 

fel. A fehérje rendkívül fontos szerepet játszik a genom stabilitásának megőrzésében. 

Csökkent expressziója DNS mutációk felhalmozódásához és genomi instabilitáshoz 

vezet. Doménszerkezete jól ismert, rendelkezik egy RING típusú ubikvitin ligáz 

doménnel, valamint a kettősszálú DNS-transzlokáz funkcióért felelős helikáz 

doménekkel. HIRAN doménjének szerepe azonban máig nem tisztázott.  
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Célul tűztük ki, hogy meghatározzuk a HIRAN domén funkcióját. Ehhez: 

 HIRAN domén deléciós és pontmutáns HLTF fehérjét tisztítunk, majd megvizsgáljuk a 

mutációk hatását. 

 Teszteljük a tisztított fehérjék ligáz, illetve helikáz aktivitásait, melyek valószínűleg 

nem köthetők a HIRAN doménhez, hogy kizárhassuk az esetleges strukturális 

mutációkat. 

 Megvizsgáljuk, hogy a HIRAN domén szerepet játszhat-e a HLTF replikációs villa-

visszafordító aktivitásában. 

 Érzékenységi kísérlettel, valamint comet esszével megvizsgáljuk a mutáns fehérjénk in 

vivo funkcióját különböző DNS-károsító ágensekkel szemben. 

 HIRAN domént tisztítunk, hogy megvizsgáljuk a DNS kötést, illetve a preferált DNS 

struktúrákat.  

 

Munkánk során a következő eredményeket értük el: 

 Létrehoztunk egy HIRAN deléciós és egy pontmutáns HLTF fehérjét, élesztőben 

expresszáltuk és a vad típusú fehérjével párhuzamosan homogenitásig tisztítottuk 

affinitás-kromatográfia révén. 

 A HIRAN mutáns fehérjékről bebizonyítottuk, hogy aktív ubikvitin ligázok, képesek a 

PCNA-t poliubikvitilálni, emellett aktív ATPázok és dsDNS-függő helikázok. 

 Kimutattuk, hogy a HIRAN mutáns HLTF nem képes visszafordítani a replikációs 

villát, oligonukleotid és plazmid alapú replikációs villa-szerű szubsztrátok esetén sem. 

 In vivo kísérletekből megállapítottuk, hogy UV sugárzás hatására a HIRAN mutáns 

HLTF fehérje expressziója nem képes komplementálni a HLTF stabilan csendesített 

sejtek érzékenységét, a HIRAN mutáns HLTF fehérjét kifejező, HLTF-csendesített 

sejtek érzékenysége megegyezik a HLTF-csendesített sejtekével.  

 Comet esszé segítségével kimutattuk, hogy UV sugárzás hatására a HLTF-csendesített 

sejtekben a replikáció hosszabb idő alatt megy végbe, amit a mutáns HLTF fehérje 

expressziója nem képes komplementálni. In vivo kísérleteinkben a HIRAN mutáns 

fehérjék null mutánsnak bizonyultak. 

 Létrehoztunk egy vad típusú és egy kettős pontmutáns HIRAN domén fragmentet 

expresszáló plazmidot, a fehérjéket élesztőben túltermeltük, majd affinitás-

kromatográfiás módszerrel tisztítottuk. 
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 Gél shift kísérletekkel kimutattuk, hogy a pontmutáns HIRAN domén nem képes DNS-t 

kötni. 

 A vad típusú HIRAN doménről megállapítottuk, hogy köti az ssDNS-t, valamint a 

replikációs villa-szerű szubsztrátot. 

 Kompetíciós kísérletben a replikációs villa erősebb szubsztrátnak bizonyult. 
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9. Summary of the PhD thesis 
 

DNA in our cells is continuously under assault from different damaging agents 

such as UV irradiation, reactive oxygen species, metabolites, and chemicals. These 

agents change the structure of the DNA molecule. To avoid these mutations, many 

DNA repair mechanisms have evolved. These mechanisms are able to restore the 

original structure of the DNA double helix. Some damages reach the S-phase of the cell 

cycle where they can cause stalling of the replication fork leading to double-strand 

breaks, chromosomal rearrangements, and cell death. To avoid these consequences, a 

DNA damage bypass pathway has evolved which protects the stalled replication fork in 

different ways. 

The main step of the pathway is the monoubiquitylation of the PCNA protein, the 

processivity factor of polymerases, by the Rad6/Rad18 complex at the lysine 164 

position. Following this modification, the replicative polymerase can be switched to an 

alternative polymerase, which is able to synthesize through the lesion. In another error 

free mechanism, the monoubiquitylated PCNA becomes polyubiquitylated by the 

Mms2/Ubc13/HLTF complex through the lysine 63 residue, therefore, HLTF can 

reverse the replication fork. On this newly emerged so-called chicken foot structure, the 

stalled strand can be completed using the newly synthesized sister strand as a template. 

The third possibility is an alternative template switching mechanism. 

Our study focuses on the better understanding of the function and regulation of 

the DNA damage bypass pathway. Our goal is to shed light on the activities and 

regulatory role of the HLTF protein. HLTF was identified as a transcription factor and 

tumour suppressor. In a high percentage of colon cancers, the promoter of HLTF is 

hypermethylated, or a truncated form of the protein is expressed. The known main 

activities of the HLTF protein were discovered in our research group. The protein plays 

a highly significant role in the maintenance of genome stability. Reduced expression of 

the protein leads to the accumulation of DNA mutations and genome instability. The 

domain structure of HLTF is well known. It has a RING-type ubiquitin ligase domain 

and helicase domains responsible for dsDNA-dependent translocase activity. However, 

the function of the HIRAN domain is unknown.   
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Our goal was to identify the function of the HIRAN domain. To achieve this, we proposed: 

 To generate HIRAN domain deletion and point mutant HLTF proteins, and to examine 

the effect of the mutations. 

 To test the ligase and helicase activities of the purified proteins, which are probably not 

affected by the HIRAN mutation, to exclude the possibility of structural mutations. 

 To investigate whether the HIRAN domain has any effect on replication fork reversal 

activity. 

 To investigate the in vivo function of the mutant HLTF proteins via sensitivity assay 

and comet assay using DNA-damaging agents.  

 To purify the HIRAN domain to examine its DNA-binding ability and to specify the 

preferred DNA structures.  

 

In the course of our work, we gained the following results: 

 We generated a HIRAN domain deletion and a double point mutant HLTF protein, 

overexpressed in yeast, and purified parallelly with the wild-type protein to 

homogeneity by affinity chromatography. 

 We showed that the HIRAN mutant proteins retain their ubiquitin ligase, ATPase and 

dsDNA-dependent helicase activities. 

 We demonstrated that the HIRAN mutant HLTF proteins are not able to reverse the 

replication fork, either on an oligonucleotide or on a plasmid-based replication fork-like 

substrate. 

 Using in vivo experiments, we revealed that under UV treatment the expression of 

HIRAN domain mutant HLTF protein cannot complement the sensitivity of the stable 

silenced cell line.  

 Using comet assay, we showed that under UV treatment HLTF-silent cells need longer 

time to fully replicate. The expression of HIRAN mutant HLTF proteins did not 

complement this effect. In in vivo experiments, HLTF mutants seemed to be null 

mutants. 

 We generated wild-type and double point mutant HIRAN domain-expressing plasmids. 

We overexpressed the proteins in yeast, and purified them using affinity 

chromatography. 

 We showed in gel-shift experiments that the point mutant HIRAN domain is not able to 

bind DNA. 
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 We demonstrated that the wild-type HIRAN domain is able to bind ssDNA and the 

replication fork-like structure. 

 In a competition assay, the replication fork-like structure proved to be a better substrate 

than ssDNA. 
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