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Introduction
In the quantum-mechanical description of a physical system the super-

position principle plays a fundamental role, and this is the reason why the
quantum and the classical descriptions show significant differences. In the
mathematical framework the possibility of the superpositions is ensured by
the complex Hilbert-space structure we use to define the states of a system
[1]. The actual vectors of the Hilbert space are the so called pure states. They
contain all the information known about a state what quantum mechanics
allows at all. If the physical system is built up of several subsystems, then
its Hilbert-space is a tensor product of the spaces belonging to the individ-
ual subsystems. This tensor product structure allowing the superpositions by
definition provides the possibility of entanglement, which is one of the most
pronounced difference between classical and quantum systems.

As an example let us consider a two qubit (or two-state) system, with
qubits A and B, where each of which can be described by a two-dimensional
Hilbert-space H2. We assume that each of these Hilbert-spaces are spanned
by the orthogonal and normalized basis states |0〉 and |1〉. The Hilbert space
of the composite system is then the tensor product H(A)

2 ⊗ H(B)
2 , which is

naturally spanned by the following states:

|00〉 := |0〉A ⊗ |0〉B , |01〉 := |0〉A ⊗ |1〉B ,
|10〉 := |1〉A ⊗ |0〉B , |11〉 := |1〉A ⊗ |1〉B . (1)

The superposition principle, however, allows the linear combinations of these
basis states, as well. For example combinations like

|Ψ±〉 := 1√
2

(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B) . (2)

do also belong to the state space of the composite system. These latter linear
combinations (2) cannot be factorised into a single tensor product of a vector
in H(A)

2 and a vector in H(B)
2 . Vectors with this property are called entangled

states, which grasps this non-separability property in a single word.
These type of states, introduced by D. Bohm [2] for spins, raise funda-

mental questions, which appeared in the literature soon after the emergence
of quantum theory. The recognition of the problems having their roots in en-
tanglement appeared in a paper by Schrödinger in 1935 [3]. In that work he
considered a gendanken experiment about the entanglement of a macroscopic
body (a cat) with different states of a radioactive atom, and emphasised the
paradoxical nature of the situation. He also formulated his doubts on quan-
tum theory itself, if it was a complete theory or not. Einstein, Podolsky and
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Rosen (EPR) in their famous paradox [4] formulated the same question, and
discussed it on a much deeper physical and philosophical level. The authors
of the EPR paper considered the so called realistic viewpoint, and argued
that if the value of a physical quantity can be predicted without making any
measurement on it, then a complete theory must provide a well defined value
for that quantity. A detailed analysis of a gedanken experiment showed that
quantum mechanics violated either this seemingly natural preconception of
realism or the locality principle. In 1964 J. S. Bell formulated his famous in-
equalities [5], which together with its later variants [6] opened the possibility
to perform experiments and provide an evidence based decision of the ques-
tion. The first experiments were carried out by J. Clauser and A. Aspect
and by their co-workers [7, 8] with polarization sates of entangled photon
pairs. Later on the group of A. Zeilinger [9] and several other experimental
teams worked on the problem of Bell-type tests. The actual experimental
results showed that quantum mechanics violates the local realistic viewpoint
and this was due to the presence of entanglement in the state of the two
particles.

While the significance of entanglement is invaluable from the point of
view of understanding the fundamental principles in nature, it promises use-
ful practical applications, as well. The stronger than classical quantum corre-
lations appearing in the entangled states can serve as a resource for quantum
computation and for quantum communication protocols [10, 11].

There is another important concept in quantum mechanics, the notion
of coherent states, showing quasi-classical behaviour. These are most well
known as special quantum states of the harmonic oscillator, or in the context
of quantum optics, as special states of a single or many field modes [12]. The
construction of coherent states can also be interpreted as a problem in group
theory, and thus similar coherent states can be associated to groups different
from the Heisenberg-Weyl group pertinent to the oscillator problem [13].

In the case of a qubit system, modelling spin one-half particles, or two-
level atoms, the mathematical conditions for a useful coherent state definition
are readily given [14]. The Hilbert-space of one qubit carries the defining rep-
resentation of the SU(2,C) Lie-group, where the usual spin operators are the
elements of the corresponding Lie-algebra. In case of a multi qubit system the
tensor product representation enters, and the {Jz, J+, J−} global spin oper-
ators, well known from the algebraic theory of angular momentum, play the
crucial role. Coherent states are then defined by continuously parametrized
exponential transformations of a reference state. Since these states emerged
in the literature first in the context of two-level atomic systems [15], we of-
ten refer to them as atomic coherent states. The composite tensor product
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structure suggests, that it is reasonable to investigate these states from the
point of view of entanglement or separability.

In the example of a two qubit entangled state as given by (2) we can
think about system A and system B as different particles. But entanglement
is possible not just in this sense, namely as a property of a state of a set
of different particles. Entanglement can also be created in the case of one
single particle with different degrees of freedom. Here we can think of the
Stern-Gerlach experiment, where the interaction of a silver atom with the
inhomogeneous magnetic field induces entanglement between the spin and
momentum degrees of freedom. Entanglement is thus a general property of
quantum systems described by a tensor product space, and it can appear
either in the context of independently measurable particles, or in the context
of a single particle with different degrees of freedom.

This latter kind of entanglement is the subject of the second part of our
dissertation. We consider the quantum mechanical scattering of a particle,
with rigid but orientable internal structure, from a single slit in a thin screen.
Progress in the experimental techniques has made it possible to study the
transmission of particles through apertures, or aperture arrays, where the
characteristic size of the projectile is comparable to the aperture. The ob-
served phenomena include the scattering and interference from mechanical
gratings of atoms, molecules, and clusters [16, 17, 18].

In connection with these experiments one may address the simple ques-
tion: what is the effect of the aperture on the transmission of the particle
with an internal structure, is the passage enhanced or hindered? In our sim-
ple model we assume a rigid rotation as internal structure and constrain the
centre-of-mass motion to be along the symmetry axis of the aperture, so the
motion has only two degrees of freedom. Far away from the aperture the
translational and rotational degrees of freedom are uncoupled, so the energy
eigenfunctions of the Hamiltonian separate into a product of a plane wave,
corresponding to the centre-of-mass motion, and a transversal mode function
of the free rotation. We take into account the interaction with the aperture
through boundary conditions, prescribed for the energy eigenfunctions, which
results in the entanglement of translational and rotational degrees of freedom.
In this way we are left with a stationary scattering problem on a complicated
two-dimensional boundary. In the region of free motion the rotational part
of the energy eigenfunctions experience a periodic boundary condition, giv-
ing rise to a discrete spectrum with respect to the rotation. In this sense
our scattering problem is quasi one-dimensional, where the interaction-free
regions are represented by leads, leading to and leading away the incoming
and outgoing probability currents. Throughout the interaction the different
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plane wave modes of these leads are scattered into each other.
In this construction the translational and rotational motions can be en-

tangled even when we consider only the incident particle, thus a specific
incident energy supports multiple separable eigenfunctions. But even if the
incident rotor had a separable wavefunction (as in the cases we investigated),
the state at the output would necessarily become an entangled combination
of the mode functions determined by the S-matrix of the problem. Different
incident energies refer to different linear combinations i.e. different entangled
states. The amplitudes of these combinations contain the useful physical in-
formation, the transmission or the reflection coefficients with depending on
the energy of the incident wave.

Research aims, methods and outline of the the-
sis
Part I.: Coherent states and entanglement

Both the concept of entanglement and the concept of coherent states
play an important role in several quantum mechanical problems, but their
strong connection is hardly ever mentioned in the literature. We are aware of
only one earlier paper, where Brif et al. [19] pointed out a relation between
coherent states and entanglement. They have shown what happens if a system
is split into two parts, while we investigate the question of total separability
in a multi-partite system.

The aim of the first part of our work is to investigate the atomic coherent
states of an N qubit system from the point of view of entanglement or sep-
arability. Throughout of our proofs and calculations we rely on the Hilbert
space structure of the problem, and use arguments familiar from the theory
of angular momentum algebra.

In the first chapter of the dissertation we shortly recall the concept of
qubits, the operators acting on them, and the algebraic structure coded in
their commutation relations, which determines the possible dynamics in the
two-state system. Then in a short survey we review the construction of atomic
coherent sates [15] as special states of the symmetric subspace in the multi-
partite qubit system. The N -partite symmetric subspace S is spanned by
those Dicke-states [20] which can be indexed with quantum numbers j = N/2
and m ∈ {−N/2, . . . N/2} known from the theory of angular momentum.

We present our results and the proofs in the second and third chapter.
Here we first formulate a formal criterion of N qubit pure state separability
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inspired by an idea behind the entanglement measure introduced by Meyer
and Wallach [21].

We present first the results for the qubit system, which can be grasped
more easily, in chapter 2. Then in the third chapter we generalize our results
derived earlier for the qubit system, for the case of qudits, where the sub-
systems are d-dimensional Hilbert spaces. Compared to the qubit case the
number of rising and lowering operators increase together with the number
of zero trace diagonal operators. We define the coherent states generalized
for the case of SU(d,C) symmetry with help of these step operators. Then
we prove the generalised statements following the logical steps of the qubit
case.

Part II. The transmission of a rotating diatomic molecules through
an aperture

In the second part of the dissertation starting with the fourth chapter,
we consider the energy eigenvalue problem modelling a rigidly rotating di-
atomic molecule that passes through a thin aperture. The problem is sim-
plified and reformulated to a quasi one-dimensional scattering problem with
unconventional boundary conditions prescribed for the wavefunction through
the classical constraints. Our goal is to solve the scattering problem and in-
vestigate the effect of the inner structure on the transmission probability of
the particles.

In the fifth chapter we obtained results for incident particles of low en-
ergy by means of analytic approximations. Starting from a suitable ansatz,
we decoupled the translational and rotational motions by preserving only the
diagonal coupling terms, allowing analytical solution of the effective eigen-
value equation. The transmission as function of incident energy is calculated
by fitting the solutions for the full two-dimensional problem at the bound-
aries of the interaction region and the free regions (so called leads) far from
the aperture. The approximations we use can only be valid for low energy
(non rotating) particles, but even in that case they may seem to be oversim-
plified. The verification of our analytical approximative results necessitates
to use a numerical method that enables us to check the validity of the approx-
imations, as well as to obtain the solution for the whole scattering problem,
valid for an arbitrary incoming state.

We introduce a discrete lattice representation in the sixth chapter, where
the complicated boundary conditions can be taken into account naturally, us-
ing only the lattice points where the wavefunction is declared to be nonzero.
Complications in this case still appear, as the matrices of the relevant opera-
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tors become infinite due to the free regions. A similar problem occurs in the
modelling of quantum transport properties of nano-scale solid state systems,
where the scattering problem is solved by calculating the Green’s function for
a relevant finite size region [22, 23, 24]. The Green’s function is connected to
the S-matrix through the Fisher-Lee relation [25]. Using the above analogy
we derive in detail this connection for our case, where the periodic boundary
condition prescribed for the rotation introduces complex transversal mode
functions.

By a proper partitioning of the problem, it is possible to show that only a
restricted part of the Green’s function is necessary to describe the interaction.
This restricted part can be calculated by "dressing up" the original Hamilton
operator with the so called self-energy corrections. These corrections – though
only on a discrete lattice – take into account the effect of the connection with
the infinite parts exactly [22].

The characteristic features of the continuous energy spectra, containing
for example long-living resonant states, are embodied in the spectral function,
that provides us the density-of-states (DOS), as well as the local density-of-
states (LDOS). All of these characteristic quantities can be calculated with
help of the Green’s function.

New scientific results
Part I.: Coherent states and entanglement

1. We have formulated a new general formal criterion for the separability
of a pure state of a multi-partite N qudit system. Accordingly, taking
an arbitrary pure N qudit state |ψ〉, and selecting one of the qudits,
say the n-th one, we can decompose |ψ〉 as

|ψ〉 = |1〉n ⊗
∣∣u1

n

〉
+ |2〉n ⊗

∣∣u2
n

〉
+ . . .+ |d〉n ⊗

∣∣ud
n

〉
, (3)

where |k〉n are the standard basis vectors in the n-th d-dimensional
Hilbert space, while the

∣∣uk
n

〉
-s are states of a tensor product space

of N − 1 factors, which are not normalized in general. Based on the
decomposition given by (3), we have shown that |ψ〉 is a product state,
if and only if the

∣∣uk
n

〉
vectors are parallel for all k for a given n, and

this is valid for all possible n-s [A2, A3].

2. For a multi-partite system consisting of N qubits we have shown that
a state in the symmetric subspace S of the composite system is not
entangled, if and only if it is a coherent state [A1]. We have extended
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and proved this statement for generalized coherent states of a system
consisting of several d-dimensional subsystems (qudits) [A3].

3. We have shown both for qubits and qudits that an arbitrary state
which is an element of S⊥ (which is the orthogonal complement of the
symmetric subspace S) is always an entangled state [A1, A3].

Part II. The transmission of a rotating diatomic molecule through
an aperture

4. We have investigated the energy eigenvalue equation of a rotating di-
atomic molecule. Starting from a suitable ansatz, we decouple the
translational and rotational motions thereby obtaining a set of one-
dimensional Schrödinger equations for the hindered translation with
effective potentials. These effective potentials can be further approxi-
mated by a fictitious harmonic oscillator, and this allowed us to give
an approximate analytic solution for the stationary states in the in-
teraction region. Fitting these solutions to the incoming and outgoing
free wavefunctions, we have calculated the transmission coefficient as
the function of the energy [A4].

5. For an initially non-rotating rotor we have found resonances in the
transmission, which emerge as the consequence of the wave-like na-
ture of quantum-mechanical propagation. The resonances describe a
delayed transmission of the rotor, i.e. they correspond to a trapping
phenomenon. We have given an approximate expression for the ener-
gies of these resonances by expressing them with the ground state en-
ergy of the fictitious oscillator potential determined by the geometric
parameters [A4].

6. In order to support the analytic results, and to extend the energy
range, we have also solved the scattering problem by a numerically
exact method. To this end we have reformulated the problem on a
discrete grid within an appropriately chosen finite domain inside the
interaction region. We have calculated the Green’s function restricted
to the interaction region by taking into account the self-energy correc-
tions. The S-matrix and the wave function was then determined from
the Green’s function. The results of the numerical calculations allowed
us to characterize the whole continuous spectrum, and we have deter-
mined the density of states (DOS), as well as the local density of states
(LDOS) as functions of the energy. In the energy dependence of the
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density of states we have found peaks again, related to resonances with
long lifetimes, i.e. to trapping of the transmitted particles [A5].

7. Among the resonances with long lifetimes, the one with the lowest en-
ergy could be identified with the peak in the energy dependence of
transmission found previously by our analytic method. Analyzing the
energy dependence of the density of states, the resonances could be
classified according to the rotational symmetries of the incoming waves.
Our numerical calculations approved the analytic results obtained ear-
lier at low energies, and pointed out the limits of the applicability of
the analytic method, as well [A5].
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