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II. ABBREVIATIONS 

 AA: amino acids 

 ABC: ATP-binding cassette transporter 

 ABCB1: ATP-binding cassette transporter B1 subfamily 

 Apaf-1: apoptotic protease activating factor-1 

 APC: adenomatous polyposis coli tumor suppressor protein 

 AR: androgen receptor 

 ATP: adenosine triphosphate 

 BBB: blood-brain barrier 

 Bcl-2: B-cell lymphoma 2 

 BCRP-1: breast cancer resistance protein 1 

 BOC: tert-butyloxycarbonyl 

 CHO: Chinese hamster ovary cells 

 CI: combination index 

 CNS: central nervous system 

 CPBA: chloroperoxybenzoic acid 

 CPZ: chlorpromazine 

 CRC: colorectal cancer 

 CRPC: castration-resistant prostate cancer 

 CYP17A1: cytochrome P450c17 

 DHT: dihydrotestosterone 

 DISC: death-inducing signaling complex 

 DMSO: dimethyl sulfoxide 

 DNA: deoxyribonucleic acid 

 EB: ethidium bromide 

 ED50: effective dose for 50% inhibition of cell growth 

 EDTA: ethylenediaminetetraacetic acid 

 FADD: Fas-associated death domain 

 FAR: fluorescence activity ratio 

 FasL: Fas ligand 

 FITC: fluorescein isothiocyanate 

 FL: follicular lymphoma 

 5-FU: fluorouracil 
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 HRT: hormone replacement therapy 

 IARC: International Agency for Research on Cancer 

 IC50: calculated concentration of the compound for 50% inhibition of cell growth 

 KLK3: kallikrein-3 

 LHRH: luteinizing hormone releasing hormone 

 M627: 12H-benzo(α)phenothiazine 

 MDR: multidrug resistance 

 MDR1: multidrug resistance gene 1 

 MRP: multidrug resistance-related protein 

 MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

 NHL: non-Hodgkin lymphoma 

 OD: optical density 

 p53: tumor protein 53 

 PAR: parental mouse T-lymphoma cell line 

 PBS: phosphate-buffered saline 

 PC: prostate cancer 

 P-gp: P-glycoprotein 

 PI: propidium iodide 

 Pki: predicted inhibition constant 

 PLGA: polylactic-co-glycolic acid 

 PSA: prostate-specific antigen 

 QSAR: quantitative structure-activity relationship 

 R123: rhodamine 123 

 Rb: retinoblastoma tumor suppressor protein 

 R-CHOP: rituximab, cyclophosphamide, adriablastin, vincristine, prednisolone 

 RNA: ribonucleic acid 

 RP: radical prostatectomy 

 SD: standard deviation 

 SDS: sodium dodecylsulfate 

 SEM: standard error of the mean 

 TNF-α: tumor necrosis factor-α 

 TRAIL: TNF-related apoptosis inducing ligand 

 TZ: thioridazine 

 WHO: World Health Organization 
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III. INTRODUCTION 

A. Origin of cancer and treatment options 

The data of the International Agency for Research on Cancer (IARC) in 2012 indicated 14.1 

million new cancer cases and 8.2 million cancer deaths worldwide annually [1] and, as there is 

currently a continuous rise, an estimated 22.2 million new cancer cases and 13.2 million cancer 

deaths will have occurred worldwide by 2030 [2]. The most commonly diagnosed cancers in 

that report were lung (1.82 million), breast (1.67 million), and colorectal (1.36 million) cancers; 

the most common causes of cancer death were lung cancer (1.6 million deaths), liver cancer 

(745,000 deaths), and stomach cancer (723,000 deaths) [1]. 

In the European Union, a male incidence of 1.4 million and a female incidence of 1.2 million 

are estimated annually, whereas the numbers of deaths due to cancer are approximately 707,000 

for the male, and 555,000 for the female population, the most common types of cancer being: 

female breast cancer, colorectal cancer, prostate cancer (PC), and lung cancer. These four types 

represent half of the overall cancer burden in Europe. The most common causes of cancer deaths 

are lung cancer, colorectal cancer, breast cancer and stomach cancer [3]. 

The rapid aging of the population makes cancer and its treatment an even more serious issue in 

Hungary. Like most other European countries, Hungary is experiencing sub-replacement 

fertility. This is leading to a gradual decline in the number of the population, with a life 

expectancy of 72.01 years for males and 78.73 years for females in 2013. The mortality rate in 

Hungary has been dramatically high for a long time, though the data of the Hungarian Central 

Statistical Office reveal a significantly decrease in the overall yearly number of deaths from 

147,000 in the early 1990s to 127,000 in 2013 [4]. 

The number of new cancer patients in Hungary increased dramatically in the past century due 

to aging and the negative impacts of civilization, but it has more or less stabilized annually at 

around 70,000 in the last 20 years. At present, there are about 300,000 cancer patients, and 

32,748 people died from malignant neoplastic diseases in Hungary in 2013, when cancer was 

the second most frequent cause of death after cardiovascular diseases, with 44,932 deaths [4]. 

The further aging of the Hungarian population predicted for the next decade is expected to result in 

a dramatic rise in cancer mortality, and scientific research into novel approaches to cancer treatment 

is therefore even more urgent. New treatment strategies can target cell-specific markers and 

signaling pathways or induce the reversal of efflux pump activities. An improved understanding of 

the molecular mechanisms of cancer progression will promote the development of new therapeutic 

targets and novel strategies in eradicating cancers. The emergence of new anticancer drugs could 

not only improve the efficacy of treatment, but also alleviate the side-effects through a more detailed 

understanding of the mechanism of action [5]. Furthermore, the use of chemopreventive agents 

could be a promising means of inhibiting carcinogenesis [6, 7, 8]. 

 

http://en.wikipedia.org/wiki/Sub-replacement_fertility
http://en.wikipedia.org/wiki/Sub-replacement_fertility
http://en.wikipedia.org/wiki/Life_expectancy
http://en.wikipedia.org/wiki/Life_expectancy
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B. The role of chemotherapy 

Apart from the potential surgical removal of a tumor, chemotherapy is the most common treatment 

of choice in approximately 50% of all types of cancer [9]. Since the introduction of chemotherapy for 

cancer treatment, considerable efforts have been made to maximize drug efficacy and minimize the 

adverse effects [10, 11, 12]. The effectiveness of chemotherapy is a huge concern in medicine. While 

chemotherapeutic drugs are usually successful in reducing the initial tumor load, their effectiveness 

is often considerably reduced or even completely lost after a few cycles of treatment. Drug resistance 

develops, leading to the failure of chemotherapy. Combination chemotherapy for the treatment of 

resistant cancers was first introduced in 1963 [13, 14, 15]. Not all of the great number of cells that 

form a neoplasm are in the same development stage or respond in the same way to a given stimulus. 

In order to prevent the selection of resistant cancer cells, current chemotherapy applies combinations 

of various drugs to different targets. There are five main families of anticancer drugs [9]: 

 Alkylating agents: alkyl groups chemically modify the cellular deoxyribonucleic acid 

(DNA) and impair its function if attachment occurs to the guanine base of the DNA 

double-helix strands. Examples of such drugs are cisplatin and ifosfamide. Trough the 

cross-linking guanine bases in DNA, the DNA strands are unable to uncoil and separate. 

DNA replication is impaired, and the cell can therefore no longer divide [16]. 

 Anticancer antibiotics: These agents act through topoisomerase inhibition. Examples are 

daunorubicin and doxorubicin [17]. 

 Plant alkaloids: These block cell division by inhibiting the assembly of microtubules due 

to the central role played by microtubules in a cell, depolymerization of the microtubules 

and damage to the mitotic spindles, e.g. vinca alkaloids and taxanes [18]. 

 Antimetabolites: These substances, which are similar in structure to metabolites, stop 

normal cell development and division by damaging the DNA strand. In fact, 

antimetabolites are disguised as purines or pyrimidines. The major mechanism of action 

of these agents is the inhibition of enzymes participating in DNA or ribonucleic acid 

(RNA) synthesis. Examples are methotrexate and gemcitabine [19]. 

 Hormones: Hormones can be natural products of an organ or may result from abnormal 

synthesis, reflecting an unregulated cancer cell metabolism. Drugs such as tamoxifen are 

antagonists of the estrogen receptor that inhibit the effects of the hormones [20]. 

 

C. Drug resistance 

Drug resistance most probably arises through a selection process, with the emergence of 

dominant clones from pools of heterogeneous tumor cells [21]. Two types of drug resistance 

can be distinguished: induced and inherent. Induced drug resistance most obviously presents in 

a recurrent disease, as a weakened response to a chemotherapy regimen to which the patient 
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previously gave a good response. For most chemotherapeutic agents, drug resistance can be 

stimulated by repeated treatment in tumor cell cultures [22]. 

Multidrug resistance (MDR) can be divided into two main groups, intrinsic and acquired resistance: 

 Intrinsic drug resistance: MDR is not necessarily a result only of treatment of the cells 

with a drug; moreover, it is related to the type of cell differentiation or the localization of 

the cells in an organism. The expression intrinsic MDR is applied to cells which are drug-

resistant even before the drug treatment. As an example, brain tumors are resistant to 

chemotherapy due to the blood–brain barrier (BBB). Intrinsic MDR may be connected 

with a genetic change that initiated the tumor. 

 Acquired drug resistance can be caused by chemotherapy. Rare genetic variants of drug-

resistant cells can occur in a tumor cell population under the impact of cytostatic drugs, 

and these cells can multiply if they have a selective advantage [23, 24]. 

The main mechanisms of the drug resistance of tumor cells are as follows (Figure 1): 

 

a) Decrease of drug accumulation 

Members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family 

reduce the drug accumulation of the target molecules. Several studies have reported that the 

MDR gene 1 (MDR1) encoding human P-glycoprotein (P-gp) and the MDR-related protein 

gene (MRP) may play a major role in the MDR of breast cancer [25, 26, 27]. 

 

b) Drug resistance mediated by detoxification of the drug in the cell 

Glutathione transferases are often up-regulated in tumors, and they have been considered to 

play a substantial role in MDR in cancer chemotherapy [28, 29]. 

 

c) Alterations of drug targets or enhancement of target repair 

Topoisomerase II has been described as the primary cellular target for a number of antitumor 

drugs which are used in cancer chemotherapy at present. Topoisomerase I has also been 

identified as the target of camptothecin, an antitumor drug currently under development. 

Topoisomerases usually solve the topological problems of the DNA which are generated during 

replication, transcription and recombination, by breaking and rejoining the DNA strands. 

Alterations of the topoisomerases have been shown to be associated with the development of 

drug resistance to topoisomerase inhibitors. Reduced gene expression and mutations in the 

genes are the best-known alterations [30, 31, 32]. 
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d) Alterations of genes controlling apoptosis 

Programmed cell death, and particularly the adhesion-dependent regulation of cell survival and 

apoptosis, is known to be one of the main homeostatic mechanisms whose functions are to 

control cell positioning, eradicate misplaced cells and hinder metastatic dissemination. Highly 

metastatic cancer cells demonstrate a higher resistance to programmed cell death as compared 

with their poorly metastatic counterparts [33]. Whilst studies on B-cell lymphoma 2 (Bcl-2) and 

tumor protein 53 (p53) established the importance of apoptosis in carcinogenesis, it has 

subsequently been proved that mutations in many cancer-related genes can interfere with 

apoptosis. As an example, the Fas/CD95 receptor commonly controls cell numbers in the 

immune system by eradicating cells through apoptosis, and the disruption of this pathway can 

result in lymphoproliferative disorders or even cancers [34, 35]. 

 

 

Figure 1. The main mechanisms of the drug resistance of tumor cells [36] 

 

1. Membrane transporters 

Biological membranes separate specialized functional domains of distinct composition that may 

persist for the entire life of the cell. Membrane transporters play significant roles in the cell, 

such as providing nutrients, protecting the cell against harmful agents and establishing 

electrochemical gradients via the membranes [37]. 

Efflux pumps are determinants for the absorption, distribution and excretion of drugs, toxic 

compounds and their metabolites [38]. During evolution, transport pathways emerged that allow 

molecules such as nutrients and metabolites to pass through the cell membranes. Consequently, 

the transport of small molecules is mediated by the transmembrane proteins [39, 40]. 

The MDR of tumor cells is frequently associated with the overexpression of membrane-

localized ABC transporters such as ABCB1 or P-gp encoded by the ABCB1 gene. ABCB1, a 
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well-known MDR family member protein, was first characterized in MDR Chinese hamster 

ovary cells (CHO) by Ling and co-workers [41]. This protein decreases the intracellular 

concentration of an anticancer drug by eliminating the drug from the cell. In normal tissues, 

ABCB1 is localized on the luminal surfaces of the renal tubules, the colon, the small intestine, 

the bile canaliculi and the vascular epithelia of the brain and spinal cord, and it is associated 

with physiological functions. ABCB1 is responsible for the transport of toxic compounds into 

the cerebrospinal fluid, bile, urine, etc. [42, 43]. Further MDR-related proteins have been 

discovered in different types of malignancies [44], such as MRPs [45] and breast cancer 

resistance protein 1 (BCRP-1) [46]. 

ABC transporters are transmembrane glycoproteins that promote the unidirectional translocation 

of structurally unrelated compounds via membrane barriers, utilizing the energy of ATP 

hydrolysis. The ABC transporter superfamily is one of the largest and oldest protein families with 

conserved structural features and mechanisms of action, preserved from prokaryotes to humans 

[47]. The MDR-ABC proteins expel a wide variety of substrates from the cells, including both 

endo- and xenobiotics. The MDR-ABC transporters also play an essential role in modulating the 

penetration of small, hydrophobic toxic compounds through physiological barriers, e.g. the gut, 

BBB, blood–cerebrospinal fluid barrier, blood–testis barrier and feto-maternal barrier [48, 49]. 

These efflux pumps are also vital in actively expelling toxic metabolites from the liver and the 

kidneys. When overexpressed in cancer cells, MDR-ABC transporters diminish the intracellular 

drug concentrations below the effective cytotoxic threshold, which reveals their well-documented 

role in cross-resistance against structurally unrelated chemotherapeutic agents. To date, at least 

12 of the 48 human ABC proteins have been documented to be partly responsible for the 

emergence of in vitro MDR [50, 51]. Selection with cytotoxic drugs has been proven to cause the 

overexpression of endogenous ABCA2, ABCB1, ABCC1, ABCC2, ABCC4 and ABCG2. Other 

ABC transporters, such as ABCB11, ABCC3, ABCC5, ABCC6, ABCC10 and ABCC11, have 

only been reported to bring about drug resistance when they were engineered to be overexpressed 

in the model cell lines [48]. The major MDR-ABC proteins that are commonly considered to be 

responsible for the MDR phenotype of cancer cells are ABCB1/MDR1/P-gp, ABCC1/MRP1 and 

ABCG2/BCRP/MXR/ABCP, each of which has promiscuous and overlapping substrate 

recognition spectra [52, 53]. The MDR-ABC proteins require at least two transmembrane 

domains and two nucleotide binding domains for their appropriate functioning (Figure 2). Full 

transporters possess all the required domains in a single polypeptide chain, while half-transporters 

have to homodimerize or heterodimerize to form a functional molecular entity. Transported 

substrates are bound to the intracellular (most probably intramembrane) high-affinity ‘on’ sites, 

and are released at the extracellular ‘off’ sites. The molecular background of the promiscuous 

substrate recognition and the molecular events required for generation of the driving force for 
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substrate translocation (such as intramolecular movements coupled to ATP hydrolysis and 

substrate transfer across the lipid bilayer) are still largely unidentified [54, 55]. The distribution 

of the tissues and the ability of the MDR-ABC transporters to eliminate various structurally and 

functionally unrelated compounds suggest that the MDR-ABC proteins are involved in a general 

xenobiotic defense system that has evolved to protect the organism from toxic insults at both 

cellular and tissue barriers. With regard to the characteristic features shared with the classical 

immune system, i.e. the recognition and elimination of exogenous molecules invading the body 

[56], the complex xenobiotic defense machinery has been referred to as the ‘chemo-immunity 

system’ [52, 57]. 

 

 

Figure 2. Structures of MDR‐ABC transporters [58] 

 

ABCB1 demonstrates a high transport capacity and a wide range of substrate specificity. These 

transported molecules are generally hydrophobic and amphipathic, uncharged or basic, though 

negatively charged molecules can also be transported 58. 

The most common approach via which to interfere with the overexpressed ABCB1 activity is 

the use of inhibitors 60. Three generations of ABCB1 inhibitors have so far been identified 

and generated. Some ABCB1 substrates and inhibitors are shown in Table I. 
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Table I. ABCB1 substrates and inhibitors [61] 

SELECTED DRUGS OF THE ‘CLASSICAL’ MDR SPECTRUM AND ‘CLASSICAL’ MDR MODULATORS 

Drugs transported by MDR1/P-gp ‘Classical’ MDR modulators 

Anthracyclines: daunorubicin, doxorubicin Calcium channel blockers: verapamil, nifedipine, 

azidopine, dihydropyridines 

Vinca alkaloids: vinblastine, vincristine, 

vindesine 

Immunosuppressants and derivatives: cyclosporine A, 

valspodar (PSC833), tacrolimus 

Epipodophyllotoxins: etoposide, teniposide Antiarrhythmics: quinine, quinidine, amiodarone 

Antibiotics: actinomycin D, dactinomycin, 

mitomycin C 

Antihypertensives: reserpine, yohimbine 

Taxanes: paclitaxel Antibiotics: hydrophobic cephalosporines 

Others: colchicine, topotecan, calinomycin, 

puromycin, emetine, digoxin, imatinib 

Steroid hormones and derivatives: progesterone, 

tamoxifen 

Many other hydrophobic amphipathic drugs and 

derivatives 

HIV protease inhibitors: sequinavir, indinavir, retanavir 

Herbal constituents: curcumin 

Others: elacridar (GF120918), zosuquidar (LY35979), 

tariquidar (XR9576), laniquidar (R101933) 

 

It has been established that ABCB1 is capable of interacting with more than 200 compounds, 

which can be classified on the basis of the transported substrates and the modulators 62, 63, 64. 

In cancer cells, ABCB1 is associated with the MDR phenotype, mediating resistance to 

anthracyclines, vinca alkaloids, colchicine, epipodophyllotoxins and paclitaxel 65. Thus, the 

broad spectrum of resistance and the poor prognosis have led to the need to avoid the actions of 

ABCB1. Broad-spectrum inhibitors appeared in the 1980s and gave rise to some optimism; these 

molecules could restore some sensitivity to chemotherapy 66. The use of established drugs in 

the modulation of the ABCB1 function introduced the first generation of inhibitors 67. 

Three generations of compounds have so far been identified and developed as ABCB1 inhibitors, 

which can also be classified as competitive and noncompetitive inhibitors. As the name implies, the 

competitive inhibitors compete with the cytotoxic agents for transport. If they are successful, the 

cytotoxic agent may be transported by the pump, remaining inside the cell. Their noncompetitive 

counterparts do not compete for the same target. They bind to another target to change the pump 

conformation, so that the active site is no longer recognized by the substrates 68. 
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 First generation of inhibitors 

These were nonselective and not highly potent, with poor and low binding affinity necessitating high 

doses to achieve plasma levels sufficient to reverse MDR, and they resulted in unacceptable patient 

toxicity. They were substrates of ABCB1, and acted as competitive inhibitors, thereby requiring high 

serum concentrations of chemosensitizers to produce appropriate intracellular concentrations of the 

cytotoxic drug, and were therefore unsuccessful in clinical trials [69]. First-generation inhibitors 

included verapamil, trifluoperazine, cyclosporine-A, quinidine, reserpine, vincristine, yohimbine, 

tamoxifen and toremifen. Due to the unpredictable pharmacokinetic interactions of these substrates 

in the presence of chemotherapy agents, novel chemosensitizer analogs were developed with less 

toxicity and higher potency. Verapamil and tamoxifen were among the best-known ABCB1 

modulators, which belong among the first generation of compounds, meaning that they are not 

specific for ABCB1. Generally, they were less effective and less toxic 70, 71. 

 

 Second generation of inhibitors 

Structural modifications in the first-generation inhibitors led to the development of more potent, 

second-generation ABCB1 modulators with a better pharmacological profile, reduced toxicity 

and better tolerability. They inhibited the metabolism and excretion of cytotoxic agents 

significantly, leading to unacceptable toxicity, and hence necessitating a reduction of the dose 

of chemotherapy. Co-administration of these modulators with chemotherapeutic agents resulted 

in the successful treatment of refractory cancers and the reversal of MDR in clinical trials. The 

modulators included dexverapamil, dexniguldipine, valspodar (PSC 833) and biricodar citrate 

(VX-710) 72, 73. In order to improve the potency, specificity and ABCB1 binding affinity, 

the use of chemical derivatives of the drugs was introduced as a new approach for the second 

generation of ABCB1 inhibitors. They were classified into two categories: analogs of the first 

generation, e.g. dexverapamil 73, and those with novel chemical structures, e.g. biricodar 

74. As compared with the first generation of inhibitors, the inhibitors of the second generation 

exhibited a higher ABCB1 inhibitory capacity and fewer toxic side-effects; however, they 

sometimes proved to participate in unpredictable interactions with anticancer drugs 75. 

 

 Third generation of inhibitors 

These have higher potency and specificity for ABCB1 transporters than the second-generation 

agents. They do not interfere with cytochrome P450 3A4, and do not affect the drug 

pharmacokinetics, with no dose alterations in chemotherapy. They include tariquidar 

(XR9576), zosuquidar (LY335979), laniquidar (R101933), ONT-093 (a substituted 

diarylimidazole), elacridar (GF120918), OC 144-093, mitotane (NSC-38721), annamycin and 

R101933. The most promising one is tariquidar (a nontransported ABCB1 inhibitor), which 



13 

inhibits ATPase by interaction with the protein. It has been investigated in phase III trials for 

non-small cell lung cancer, but, because of its unfavorable toxicity, it has been suspended. 

Clinical studies have revealed that tariquidar, LY335979, R101933 and ONT-093 can be 

administered in therapeutic doses, and minimal interference is observed with the 

pharmacokinetics of cytotoxic agents. They have revealed promising results in clinical trials, 

and the further development of these agents may establish the true therapeutic potential of 

ABCB1-mediated MDR reversal 76. Tariquidar, a third-generation inhibitor with none of the 

limitations of the first- and second-generation inhibitors, has the highest specificity, inhibiting 

ABCB1 both specifically and potently. Inhibition of the ATPase activity of ABCB1 suggests 

that the modulating effect stems from the inhibition of substrate binding, the inhibition of ATP 

hydrolysis and/or both [77]. Clinical trials of third-generation inhibitors [78] have demonstrated 

the better tolerability of tariquidar, with no significant pharmacokinetic interaction with 

chemotherapy, which have made it an ideal agent for the identification of ABCB1 inhibition 

activity in cancer. The targeted delivery of paclitaxel and tariquidar co-encapsulated in biotin-

functionalized polylactic-co-glycolic acid (PLGA) nanoparticles confirmed its significantly 

stronger cytotoxicity in vitro and higher tumor growth inhibition in vivo in drug-resistant tumor 

mouse models as compared with paclitaxel nanoparticles alone [79]. As concerns the strategies 

used in the third generation of compounds, the aim is to overcome the toxicity observed with the 

previous generations and to improve the pharmacokinetic interactions of the compounds. The 

new tools that are now available, such as computational chemistry or molecular pharmacology, 

have been fundamental in shifting the approach of blind screening to rational drug design. These 

new tools, together with quantitative structure-activity relationships (QSARs), have proved very 

helpful in the discovery of new compounds, such as GF120918 (Elacridar) 80, 81. 

 

2. Hormone sensitivity of tumors 

The androgen receptor (AR) is expressed in many cell types and androgen/AR signaling has 

been identified as playing an essential role in modulating carcinogenesis and metastasis in many 

cancer types, including prostate, bladder, kidney, lung, breast and liver cancers. Thus, better 

therapeutic approaches may be developed by targeting the AR or its downstream signaling in 

individual cell types, providing a chance to combat these hormone-related tumors in various 

stages more successfully [82, 83]. 

Since the pioneering work of Huggins et al., a number of researchers have studied the role of 

androgens in the maintenance of the prostate structure, its development and growth, and the 

stimulation of PC cells [84]. AR is a central mediator of androgen action in all tissues that are 

androgen-responsive, but the role of AR can be paradoxical as it has both stimulatory and 

antiproliferative actions, which depend on the microenvironment and hormone levels [82]. 



14 

The experiments of Cavalieri and Rogan on the estrogen metabolism, the formation of DNA 

adducts, mutagenicity, cell transformation and carcinogenicity resulted in the hypothesis that the 

reactions of specific estrogen metabolites, and especially the electrophilic catechol estrogen-3,4-

quinones, with DNA can generate the critical mutations to lead to the development of breast 

cancer and also other human cancers. Men with prostate cancer or non-Hodgkin lymphoma 

(NHL) also have high levels of estrogen-DNA adducts in their urine. The formation of estrogen–

DNA adducts may therefore play an important role in the etiology of NHL [85, 86]. 

On the basis of both animal and human data, hormone replacement therapy (HRT) is classified 

as a Group 1 carcinogen by the IARC [87]. Estrogen is also known to have immunomodulatory 

effects [88], and NHL is a tumor the development of which is sensitive to immunological 

function [89]. Animal studies have clearly shown that estrogen administration induces 

endometrial, breast and ovarian tumors, and there are significant data revealing that estrogen 

can also result in the development of a lymphoma [90]. HRT is associated with a substantially 

increased risk of endometrial cancer and a moderately elevated risk of breast cancer in humans 

when estrogen is unopposed by progestins [91]. HRT also appears to be associated with a mild 

risk of colorectal cancer (CRC), whereas data on ovarian, liver and thyroid cancers and 

cutaneous melanoma are equivocal or indicate no association [91]. 

CRC is generally not considered to be a hormone-related malignancy; nevertheless, evidence is 

accumulating to suggest that sex hormones may play a role in its development [92, 93, 94]. The 

hormone precursor progastrin is now recognized as a growth factor that has an important role in 

colon carcinogenesis [95, 96]. The role of progastrin in the proliferation, survival and migration of 

human colon cancer cells has also been clearly established [97, 98, 99]. The growth-promoting 

effects of progastrin are mediated through the activation of several key signal transduction pathways 

[100, 101]. Moreover, several publications have shown that the depletion of endogenous progastrin 

produced by colon cancer cells leads to an inhibition of tumor growth [102, 103]. 

  

3. The role of apoptosis in chemotherapy 

Programmed cell death is defined as regulated cell death mediated by an intracellular program. 

It has a basic function in the evolution of organs, homeostasis and cancer. Apoptosis is one of 

the major types of cell death, characterized by special cell morphology and pathways. The 

discovery of important interconnections between the apoptotic cell death mediators and 

signaling pathways has shed light on novel options in the targeted treatment of cancer [104]. 

Apoptosis is characterized by cell membrane blebbing, cell shrinkage, nuclear fragmentation, 

chromatin condensation, and chromosomal DNA fragmentation [105, 106]. There are two basic 

apoptotic signaling pathways: the extrinsic pathway and the intrinsic pathway [107]. 
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Various intracellular stimuli can activate the intrinsic pathway, including DNA damage, growth 

factor deprivation and oxidative stress. It relies on the formation of a complex called the 

apoptosome, which is composed of procaspase-9, apoptotic protease activating factor-1 (Apaf-1), 

and cytochrome c. Genomic stability depends on an efficient DNA damage repair system to 

keep the chromosomes intact. Unrepaired DNA damage not only causes cell cycle arrest, but can 

also lead to apoptotic cell death [108]. The removal of some specific proteins from the nucleus is 

important in the regulation of the cell cycle and in the proliferation of both normal and malignant 

tissues [109, 110]. Examples of nuclear effectors which are exported into the cytoplasm in cancer 

include the drug targets topoisomerase IIα [111], BCR-ABL [112] and tumor suppressor proteins 

such as Rb [113], APC [114], p53 [115], p21 [116] and p27 [117]. This makes nuclear export 

inhibition a potential target for therapeutic intervention in cancer [118, 119]. 

The extrinsic pathway of apoptosis is initiated by the binding of death ligands, e.g. the Fas 

ligand (FasL), the TNF-related apoptosis inducing ligand (TRAIL), and tumor necrosis factor-α 

(TNF-α), to death receptors of the TNF receptor superfamily. This is followed by the assembly 

of the death-inducing signaling complex (DISC), which consists of the Fas-associated death 

domain (FADD) protein and procaspase-8/10 [120]. Cell survival also depends on the 

preservation of mitochondrial integrity, controlled by a well-balanced transaction between anti- 

and pro-apoptotic Bcl-2 family members. Their frequent deregulation plays a significant role 

in human pathologies inclusive of autoimmunity or cancer [121]. 

 

D. Prostate cancer, lymphomas and colon cancer 

PC is a serious multidimensional disorder that arises because of the misrepresentation of 

signaling cascades and acquired resistance against apoptosis. It is progressively becoming 

increasingly insurmountable because of the rheostat-like switching of oncogenic signaling in 

an androgen-dependent and androgen-depleted microenvironment [122]. PC is related to age, 

and is currently being diagnosed with increasing incidence and prevalence rates as a 

consequence of the increase in life expectancy and the better diagnostic techniques [123]. PC 

has become the most common noncutaneous malignant disease in men, and the second leading 

cause of male cancer deaths in the USA. In the EU, PC is the most common cancer in men, and 

more than 417,000 new cases are diagnosed each year. Because of the growth of the global 

population and their aging, the PC burden is expected to grow to 1.7 million new cases and 

around 500,000 new deaths annually worldwide by 2030 [3]. The mortality rate of PC is 

increasing disproportionately with the aging of the male population within an overall population 

growth, and the explanation for this alarming trend is still unavailable [124]. In Hungary, for 

example, 3406 new cases were reported in 2010, and approximately 1250 men die from PC 

each year [125, 126]. 
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The morbidity and mortality rates of lymphoproliferative diseases are significant even currently 

as 450,000 new cases and 225,000 deaths are reported worldwide annually [1]. These diseases 

are quite heterogeneous; accordingly, besides the classical morphological histology, 

immunophenotyping, the identification of cytogenetic, molecular characteristics and an overall 

assessment of the clinical features are essential for establishing the exact diagnosis. The 

currently used 2008 classification of the World Health Organization (WHO) incorporates all 

the available information [127]. 

Nevertheless, novel and highly precise molecular biological techniques have been developed 

and have recently become available for laboratories in hematopathology and molecular genetics 

departments. They include the microarray techniques and the next-generation sequencing 

procedure, which may prove the complexity and/or heterogeneity of lymphomas and may help 

promote an understanding of the development of certain lymphoma subtypes [128]. 

CRC is the third most common type of cancer and the fourth most common cancer cause of death 

globally, resulting in approximately 1.2 million new cases of cancer morbidity and 600,000 cases 

of mortality annually [1]. The incidence is low in those under the age of 50 years, but it increases 

markedly with age. The average age at diagnosis in the developed countries is about 70 years 

[128]. The highest incidence is reported in countries of Europe, North America and Oceania, and 

the lowest incidence in some countries in South and Central Asia and Africa [130]. However, a 

rapid increase has recently been recorded in previously low-risk countries, such as Spain and 

several countries in Eastern Europe and East Asia, which may possibly be due to changes in diet 

and the risk factors of the western lifestyle [131]. However, in the USA and several other high-

income countries, the incidence has leveled off or has started to decrease, probably because of 

the widespread use of sigmoidoscopy and colonoscopy with polypectomy [130, 132]. 

 

E. Diagnostics and treatment options 

The current diagnosis of PC is based on the level of the prostate-specific antigen (PSA). PSA, 

also known as gamma-seminoprotein or kallikrein-3 (KLK3), is a glycoprotein enzyme encoded 

in humans by the KLK3 gene. PSA, a member of the KLK-related peptidase family, is secreted 

by the epithelial cells of the prostate gland. PSA is present in small quantities in the serum of men 

with healthy prostates, but it is often elevated in the presence of PC or other prostate disorders 

[133]. Since the PSA test is used for diagnosis, PC is detected in more localized and/or early 

stages. Nevertheless, PC recurs in 10-40% of the cases, requiring further treatment that depends 

on the differentiation stage. When hormonal therapy fails, and the disease progresses to a 

castration-resistant stage, chemotherapy should be considered [134, 135]. 

Testosterone and 5α-dihydrotestosterone (5α-DHT) are androgens which are known to be 

required for the development of both the normal prostate and PC. The high-affinity binding of 
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DHT to the AR initiates the androgen-dependent gene activation that is required for normal 

prostate development, and it influences the growth of prostate tumors [136]. Drugs that target 

the backdoor pathway of DHT synthesis provide an opportunity to enhance the clinical response 

to luteinizing hormone releasing hormone (LHRH) agonists or antagonists, AR antagonists, and 

inhibitors of 5α-reductase (finasteride or dutasteride), and other steroid metabolism enzyme 

inhibitors (ketoconazole or the recently available abiraterone acetate) [137, 138] 

Neoadjuvant systemic therapy before radical prostatectomy (RP) is a plausible option to 

augment treatment outcomes for men with clinically localized high-risk PC. Other new agents 

are currently being studied, such as those targeting the vascular endothelial growth factor 

receptor, epidermal growth factor receptor, platelet-derived growth factor receptor, clusterin 

and immunomodulatory therapeutics [139]. 

The state of the art treatment of lymphomas has been promoted by the developing knowledge 

in molecular genetics. The currently available knowledge provides the potential for targeted 

therapeutic options besides establishing the correct diagnosis. These options comprise 

monotherapy or combinations with each other and/or with the traditional chemotherapeutic 

protocol, thereby enhancing the efficacy of the therapy and the survival rate, as already proven 

by administration of the first biomarker therapy in cancer patients, the R-CHOP drug 

combination (rituximab, cyclophosphamide, adriablastin, vincristine and prednisolone), in 

follicular lymphoma (FL) and diffuse large B-cell lymphoma [140]. 

CRC is a heterogeneous disease. It can vary as concerns its clinical presentation, molecular 

characteristics and the prognosis of the patient. The response to therapy also displays a diverse 

pattern in cancer patients [141, 142]. One key element through which to decrease the risk of 

CRC might be the early diagnosis established by colonoscopy and treatment of the precancerous 

lesions [143]. Cancer-derived DNA may arise in the periphery, either by the direct shedding of 

tumor-derived DNA into the surrounding tissues or by the apoptosis of circulating tumor cells. 

DNA methylation biomarkers can be tested in various bodily fluids to detect this free-floating 

DNA. The stools are a suitable bodily medium for analysis for colon cancer [144]. The present 

treatment for CRC is based on combination therapy, which may involve surgery, local 

radiotherapy and/or chemotherapy. 5-Fluorouracil (5-FU) combined with leucovorin and 

irinotecan is currently the recommended first-line chemotherapy for CRC. Further commonly 

administered compounds include capecitabine, a more convenient alternative to intravenous 

infusions of 5-FU for patients who tolerate oral chemotherapy, and platinum-based drugs, such 

as oxaliplatin and cisplatin [145, 146, 147]. 
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G. New chemotherapeutic approaches to combat MDR tumors 

Cancer cells rapidly develop several defense mechanisms to prevent the effects of 

chemotherapy. Cancer cells can metabolize drugs differently from their normal counterparts, 

and this should be considered not only during the initial treatment, but also in the development 

of resistance [148]. There is therefore a constant need to discover new, effective 

chemotherapeutic compounds. 

 

 Steroids 

Steroids are derivatives of the triterpenoid squalene, which contain three fused cyclohexane 

rings and a cyclopentane ring. The methyl groups are usually present on C-10 and C-13. An 

alkyl side-chain may also be present on C-17. Sterols are steroids carrying a hydroxy group on 

C-3 and most of the skeleton of cholestane. Additional carbon atoms may also be present in the 

side-chain [149]. Steroids and their metabolites often function as signaling molecules. The most 

notable examples are steroid hormones. Steroids along with phospholipids function as 

components of cell membranes. Steroids such as cholesterol decrease the fluidity of the 

membrane. Similarly to lipids, steroids represent highly concentrated energy stores. However, 

steroids are not typically used as sources of energy, they are normally metabolized and excreted. 

Steroids constitute an extensive and important class of biologically active compounds that are 

widely used to treat a variety of conditions such as cancers, infections and autoimmune diseases. 

The majority of PC cases are diagnosed as a localized disease. Definitive treatment, active 

surveillance or watchful waiting are employed as therapeutic paradigms. The current standard 

of care for the treatment of metastatic PC is either medical or surgical castration. Once PC 

progresses in spite of castrate androgen levels, it is defined as ‘castration-resistant prostate 

cancer’ (CRPC). Patients may even have elevated PSA levels with possible bone, lymph node 

or solid organ metastases. Docetaxel was the only agent approved for the treatment of CRPC 

in 2010. It is now known that cells from patients with CRPC express ARs and remain 

continuously influenced by androgens. New hormonal therapies that specifically target the 

biochemical conversion of cholesterol to testosterone have come to the forefront. The use of 

the cytochrome P450c17 (CYP17A1) inhibitor underlies one of the most recent advances in the 

treatment of CRPC. Abiraterone acetate was the first CYP17A1 inhibitor approved in the USA. 

The CYP17A1 inhibitors orteronel, galeterone, VT-464 and CFG920 have recently been 

identified [150]. The biologically active form of vitamin D3, 1α,25-dihydroxyvitamin D3, has 

several antitumor properties, such as antiproliferative and prodifferentiating effects, and also 

effects on the invasion, metastasis and angiogenesis of tumors [151]. 

 

  

http://en.wikipedia.org/wiki/Signal_transduction
http://en.wikipedia.org/wiki/Steroid_hormone
http://en.wikipedia.org/wiki/Phospholipid
http://en.wikipedia.org/wiki/Cell_membrane
http://en.wikipedia.org/wiki/Cholesterol
http://en.wikipedia.org/wiki/Membrane_fluidity
http://en.wikipedia.org/wiki/Lipid
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 Phenothiazines 

Phenothiazines, which are nitrogen- and sulfur-containing tricyclic compounds, were identified 

more than a hundred years ago. The parent compound, 10H-dibenzo-1,4-thiazine, was first 

obtained by Bernthsen in 1883. Over 5000 phenothiazine derivatives have been prepared to 

date and this class of organic compounds has become increasingly more important due to their 

varied significant biological and chemical properties. Phenothiazines, and mostly substituted 

with dialkylaminoalkyl groups at position 10 and additionally with small groups at position 2, 

have valuable activities such as neuroleptic, antiemetic, antihistaminic, antipuritic, analgesic 

and antihelmintic activities too [152]. At least 100 phenothiazines have been used in therapy, 

mainly as neuroleptics. Recent reports have described promising anticancer, antibacterial, 

antiplasmid and MDR reversal activities of classical phenothiazines [153, 154, 155, 156]. 

Phenothiazines are relatively inexpensive, widely available, well-tolerated and nontoxic 

compounds [157]. Phenothiazines have been demonstrated to have neuroleptic, 

antimycobacterial and anticancer properties [158, 159]. Chlorpromazine (CPZ) has been shown 

to inhibit the growth of cancer cells [159, 160]. Other phenothiazines, such as promethazine 

[161] and thioridazine (TZ) [162, 163], also inhibit a variety of cancer types. In fact, the 

properties of phenothiazines that are associated with inhibitory effects on cancer cell growth 

can be reproduced with inhibitors of calmodulin [164, 165]. Calcium signaling pathways and 

calcium-dependent enzymes have been suggested as targets of phenothiazines [166]. Since 

some of these pathways are involved in the generation of ATP, and ATP is needed for the 

activity of ABC transporters, which, when overexpressed, result in the MDR phenotype of 

cancer cells, it is obvious that studies focusing on the activity of phenothiazines toward the 

ABC transporters of cancer cells should be performed. TZ is much milder and produces fewer 

unfavorable side-effects than CPZ [166], and the activity of this phenothiazine has therefore 

been studied on the viability of MDR mouse lymphoma cells transfected with the human 

ABCB1 gene, which codes for ABCB1, the transporter that, when overexpressed, renders the 

cell immune to anticancer agents [167, 168], and additionally on the activity of the ABCB1 

transporter itself [169]. Phenothiazines belong among the oldest, synthetic antipsychotic drugs, 

which do not have precursors in the world of natural compounds. Apart from their basic 

neuroleptic action related to the blockade of dopaminergic receptors, phenothiazine derivatives 

can also perform diverse biological activities, which are responsible for their cancer 

chemopreventive effect, such as calmodulin and protein kinase C inhibitory actions, an 

antiproliferative effect and inhibition of the P-gp transport function [170]. 

  

http://www.sciencedirect.com/science/article/pii/S0223523411003758#bib1
http://www.sciencedirect.com/science/article/pii/S0223523411003758#bib1
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IV. AIMS OF THE STUDY 

The aim of our study was to examine new perspectives of chemotherapy in connection with 

modification of the MDR of cancer with the intention of finding nontoxic and effective MDR 

reversal agents among substituted steroids and phenothiazines. The activities of selected MDR 

reversal compounds were examined in combination with anticancer chemotherapeutics in 

different cancer models in vitro. Apoptosis induction and the inhibition of tumor promotion 

were investigated in mouse T-lymphoma and prostate cancer models. 

The main goals of the study: 

 To establish the antiproliferative effects of potential resistance modifiers by MTT assay 

on the L5178 mouse T-lymphoma parental cell line (PAR) and its L5178Y human ABCB1-

gene transfected subline (MDR), the LNCaP and PC3 prostate cancer cell lines and the 

MDR Colo 320 colon adenocarcinoma cancer cell line 

 To determine the cytotoxic effects of potential resistance modifiers by the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on the PAR and 

MDR mouse T-lymphoma cell lines 

 To investigate the reversal of MDR by steroid derivatives and TZ on ABCB1-related 

resistance by means of flow cytometry, using rhodamine 123 (R123) accumulation assay 

on the MDR mouse T-lymphoma cell line 

 To study the interactions of anticancer drugs with steroid and N-hydroxyalkyl-2-

aminophenothiazine resistance modifiers by using an in vitro model for combination 

chemotherapy by a checkerboard microplate method in PC3 and MDR colon 

adenocarcinoma Colo 320 cells, respectively 

 To determine the apoptosis induction of selected steroid and TZ resistance modifiers 

through Annexin V-FITC assays, using flow cytometry in the MDR mouse T-lymphoma 

and PC3 prostate cancer cell lines 

 To evaluate the structure-activity relationships of steroid derivatives, with docking 

calculations based upon biological studies 

 To identify the role of TZ stereoisomers in the anticancer activity through use of the MDR 

mouse T-lymphoma cancer model 
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V. MATERIALS AND METHODS 

A. Compounds, resistance modifiers 

Verapamil, phosphate-buffered saline (PBS), dimethyl sulfoxide (DMSO), MTT, sodium 

dodecylsulfate (SDS), R123, propidium iodide (PI) and ethidium bromide (EB) were purchased 

from Sigma-Aldrich (St Louis, MO, USA). Doxorubicin hydrochloride was from Teva Pharma 

Kft. (Budapest, Hungary). 

Aminosteroids 14 and 15 were prepared from oximes of the corresponding ketosteroids by 

sodium tetrahydroborate reduction in the presence of NiCl2, as described previously [171]. The 

aminosteroids obtained were acylated with N-tert-butyloxycarbonyl (BOC)-protected amino 

acids by a mixed anhydride method (1-5), and the protecting group was eliminated with dry 

hydrogen chloride in dioxane solution, affording amine hydrochlorides 6-12. 

Alkylaminomethylene steroids were prepared from 16-hydroxymethylene-17-ketosteroids and 

primary amines and acetylated with acetic anhydride (16-20) [172, 173]. The D-condensed 

heterocyclic steroid 21 was prepared from 16-hydroxymethylene-3-methoxyestra-1,3,5(10)-

trien-17-one with guanidine [174, 175]. The 16-aminomethyl-androstene derivative 13 was 

synthesized from the corresponding 16-methylene-17-ketone by addition of n-propylamine and 

selective O,O-desacetylation of the fully acetylated product [175]. The chemical structures of 

the steroid derivatives evaluated in this study are shown in Annex 1. Samples of the above-

mentioned compounds were dissolved in DMSO as 2.0 mg/mL stock solutions. 

N-BOC-isoleucine-O-pentachlorophenyl ester (23) was obtained from Sigma-Aldrich  

(St. Louis, MO, USA). 

TZ hydrochloride is a racemic mixture of enantiomers with an asymmetric carbon at position 2 

in the piperidyl ring. The racemic TZ was purchased from Sigma-Aldrich (Vallensbak Strand, 

Denmark). TZ in its ordinarily clinically prescribed form is a racemic mixture of equal amounts 

of the (+) and (–) enantiomers (Annex 2). The enantiomers were separated by resolution of the 

commercially available TZ racemate according to a reported procedure [176]. 

The chemical structures of the 26 tested N-hydroxyalkyl-2-aminophenothiazine derivatives are 

shown in Annex 3 [177]. The compounds were prepared by recently elaborated chemical 

transformations [178]. Thus, 1a-o were obtained by protection and Buchwald-Hartwig 

amination of 1, R = Cl, whereas 2 was obtained as a by-product of the hydroboration-oxidation 

transformation of the appropriately substituted dienylphenothiazine. Sulfoxides 3a-e  

and sulfones 3f-j were prepared by oxidation of the related phenothiazine 1 with  

m-chloroperoxybenzoic acid (m-CPBA). The N-hydroxyalkyl-2-aminophenothiazine 

derivatives were dissolved in DMSO. 
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B. Cell cultures 

The L5178 mouse T-cell lymphoma cells (PAR) (ECACC Cat. No. 87111908, obtained from 

FDA, Silver Spring, MD, USA) were transfected with pHa MDR1/A retrovirus, as previously 

described by Cornwell et al. [179]. The ABCB1-expressing cell line L5178Y (MDR) was 

selected by culturing the infected cells with colchicine. L5178 (parent) mouse T-cell lymphoma 

cells and the L5178Y human ABCB1-transfected subline were cultured in McCoy’s 5A medium 

supplemented with 10% heat-inactivated horse serum, 200 mM L-glutamine and a penicillin-

streptomycin mixture in concentrations of 100 U/L and 10 mg/L, respectively. 

The prostate cancer cell lines: hormone-resistant PC3 (ATCC® Cat. No. CRL-1435) and the 

hormone-sensitive LNCaP (ATCC® Cat. No. CRL-1740) were grown in RPMI-1640 medium with 

2 mM L-glutamine and 10% fetal bovine serum supplemented with antibiotics. Adherent human 

cancer cells were detached with 0.25% trypsin and 0.02% ethylenediaminetetraacetic acid (EDTA) 

for 5 min. The cell lines were incubated in a humidified atmosphere (5% CO2, 95% air) at 37 ºC. 

The human colon adenocarcinoma cell lines, the Colo 205 doxorubicin-sensitive parent and 

Colo 320/MDR-LRP resistant to anticancer agents expressing ABCB1 (MDR1)-LRP, ATCC® 

Cat. No. CCL-220.1 (Colo 320) and ATCC® Cat. No.CCL-222 (Colo 205), were purchased 

from LGC Promochem (Teddington, England). The cells were cultured in RPMI 1640 medium 

supplemented with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 1 mM Na-

pyruvate and 100 mM Hepes. The cell lines were incubated in a humidified atmosphere (5% 

CO2, 95% air) at 37 ºC. The semi-adherent human colon cancer cells were detached with 0.25% 

trypsin and 0.02% EDTA for 5 min at 37 ºC. 

 

C. Assay for antiproliferative effect 

The effects of increasing concentrations of compounds on cell growth were determined in 96-

well flat-bottomed microtiter plates. The compounds were serially diluted in 100 µL of 

McCoy’s 5A or RPMI-1640 medium. 6×103 mouse T-cell lymphoma cells (PAR or MDR), 

5×103 human colonic adenocarcinoma cells (Colo 205 or Colo 320) in 50 µL of medium or 

1×104 PC3 prostate cancer cells in 100 µL of medium were then added to each well, with the 

exception of the medium control wells. The culture plates were further incubated at 37 ºC under 

5% CO2 for 72 h. At the end of the incubation period, 15 or 20 µL of MTT solution (from a  

5 mg/mL stock) was added to each well and, after another 4 h, 100 µL of 10% SDS in 0.01  

N HCl was measured into each well. The culture plates were further incubated at 37 ºC 

overnight. The cell growth was determined by measuring the optical density (OD) at 540 nm 

(ref. 630 nm) with a Multiscan EX ELISA reader (Thermo Labsystem, Cheshire, WA, USA). 

In the assay, the solvent did not have any effect on the cell growth at the concentrations used 

for half-maximal inhibitory concentration (IC50) calculations. IC50 values and the standard error 
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of the mean (SEM) of triplicate experiments were calculated by using GraphPad Prism software 

version 5.00 for Windows with nonlinear regression curve fit (GraphPad Software, San Diego, 

CA, USA; www.graphpad.com). 

 

D. Assay for cytotoxic effect 

The effects of increasing concentrations of the drugs alone on cell growth were tested in 96-well 

flat-bottomed microtiter plates. The compounds were diluted in 100 μL of medium. 2×104 mouse 

T-cell lymphoma cells (PAR or MDR) in 50 μL of medium were then added to each well, with the 

exception of the medium control wells. The culture plates were further incubated at 37 ºC for 24 h; 

at the end of the incubation period, 15 μL of MTT solution (from a 5 mg/mL stock) was added to 

each well. After incubation at 37 ºC for 4 h, 100 μL of SDS solution (10% in 0.01 M HCI) was 

added to each well and the plates were further incubated at 37 ºC overnight. The cell growth was 

determined by measuring the OD at 540 nm (ref. 630 nm) with a Multiscan EX ELISA reader 

(Thermo Labsystems, Cheshire, WA, USA). In the assay, the solvent did not have any effect on the 

cell growth at the concentrations used for IC50 calculations. IC50 values and the SEM of triplicate 

experiments were calculated by using GraphPad Prism software version 5.00 for Windows with 

nonlinear regression curve fit (GraphPad Software, San Diego, CA, USA;www.graphpad.com). 

 

E. Fluorescence uptake assay 

The cell numbers of the L5178 MDR and L5178Y PAR cell lines were adjusted to 2×106 

cells/mL, re-suspended in serum-free McCoy’s 5A medium and distributed in 0.5 mL aliquots 

into Eppendorf centrifuge tubes. Steroid compounds were added at a final concentration of 2 

µg/mL and thioridazine and its enantiomers were added at a final concentration of 0.25 and 2.5 

µg/mL, and the samples were incubated for 10 min at room temperature. Verapamil was applied 

as positive control at 10 µg/mL. DMSO was added to the negative control tubes in the same 

volume as had been used for the tested compounds. No activity of DMSO was observed. Next, 

10 µL (5.2 µM final concentration) of the fluorochrome and ABCB1 substrate R123 was added 

to the samples and the cells were incubated for a further 20 min at 37 ºC, washed twice and re-

suspended in 0.5 mL PBS for analysis. The fluorescence of the cell population was measured 

with a PartecCyFlow®flow cytometer (Partec, Münster, Germany). The percentage mean 

fluorescence intensity was calculated for the treated MDR cells as compared with the untreated 

cells. A fluorescence activity ratio (FAR) was calculated on the basis of the measured 

fluorescence values via the following equation [179]: 

 

controltreated

controltreated

parentalparental

MDRMDR
FAR 

 

http://www.graphpad.com/
http://www.graphpad.com/
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F. Apoptosis assay 

The capacity of the compounds to induce apoptosis was investigated by using the MDR mouse 

T-lymphoma cell line and the human PC3 prostate cancer cell line. The cell number was 

adjusted to 5×105 cells/mL and the cells were distributed in 0.5 mL aliquots into 24-well plates. 

The apoptosis inducer 12H-benzo[α]phenothiazine (M627) was used as positive control at 25 

µg/mL. Compounds were tested at 4 µg/mL. Wells containing no M627 or steroidal compounds 

served as negative controls. The cells were incubated at 37 ºC for 1 h. At the end of the 

incubation period, the culture medium was removed, the cells were washed with PBS, and 0.5 

mL of fresh culture medium was added to the cells. Samples were transferred to 24-well culture 

plates and further incubated overnight at 37 ºC, under 5% CO2. The apoptotic activities of the 

compounds were evaluated by using the Annexin-V fluorescein isothiocyanate (FITC) 

Apoptosis Detection Kit (Cat. No. PF 032 from Calbiochem, Merck KGaA, Darmstadt, 

Germany) according to the manufacturer's instructions. The fluorescence of the cell population 

was analyzed immediately, using a Partec CyFlow® flow cytometer (Partec, Münster, 

Germany). In case of PC3 prostate cancer cell line, the cells were seeded and incubated 

overnight at 37 ºC, 5% CO2. After the treatment the same protocol was used as described above. 
 

G. Checkerboard combination assay 

A checkerboard microplate method was applied to study the effects of the drug interactions between 

N-hydroxyalkyl-2-aminophenothiazine derivatives and the chemotherapeutic drug doxorubicin on 

MDR colon adenocarcinoma cells overexpressing the ABCB1 transporter. The drug interactions 

between substituted steroid compounds and doxorubicin were also investigated on the PC3 prostate 

cancer cell line. The dilutions of doxorubicin were made in a horizontal direction in 100 µL, and the 

dilutions of the N-hydroxyalkyl-2-aminophenothiazines or steroid compounds were made vertically 

in the microtiter plate in 50 µL. The cells were resuspended in culture medium and distributed into 

each well in 50 µL containing 1×104 Colo 320 cells or 6×103 PC3 prostate cancer cells. The plates 

were incubated for 72 h at 37 ºC in a CO2 incubator. The cell growth rate was determined after MTT 

staining, as described above. The combination index (CI) values at 50% growth inhibition (ED50) 

were determined by using CompuSyn software to plot 4 or 5 data points for each ratio. CI values were 

calculated by means of the median-effect equation [180], where CI < 1, CI = 1 and CI > 1 represent 

synergism, an additive effect (or no interaction) and antagonism, respectively. 
 

H. Molecular docking 

The 2D structures of the chemical entities were drawn, and later energy-minimized into 3D 

structures by using Corina Online Demo [181]. All 3D structures were saved in PDB format 

ready to be docked. Molecular docking was conducted following a protocol previously reported 

by Zhao et al. [182]. 
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VI. RESULTS 

I. Antiproliferative effects of steroid and phenothiazine derivatives in different cancer models 

1. Antiproliferative effects of substituted steroidal compounds containing amino and 

amido groups on the PAR, MDR, LNCaP and PC3 cell lines 

Twenty-three substituted steroid derivatives were synthesized, and their antiproliferative effects 

on the PAR, MDR, LNCaP and PC3 cell lines were studied. Evaluation of the antiproliferative 

activities of the compounds revealed that 8 and 10–14 were the most active against the parental 

mouse T-lymphoma cell line, with IC50 values of < 5 µg/mL. With the exceptions of 9 and 13, 

all of the above-mentioned compounds and 22 were also active against the MDR cell line. As 

concerns the two different prostate cancer cell lines, the most effective compounds were 3, 12, 

18, 19 and 23 against the LNCaP cells, and 12 against the PC3 cells. Thus, 12 was the only 

compound which exhibited strong activity against all four studied cell lines (Table II). 

 

Table II. Antiproliferative effects of steroid derivatives on L5178 mouse T-lymphoma parental cell 

line (PAR) and its L5178Y human ABCB1-gene transfected subline (MDR),  

LNCaP and PC3 prostate cancer cells 

COMPOUND 

PAR MDR LNCaP PC3 

IC50 

(µg/mL) 
SD 

IC50 

(µg/mL) 
SD 

IC50 

(µg/mL) 
SD 

IC50 

(µg/mL) 
SD 

  1 10.87 0.63 15.82 0.78 13.41 0.99 12.04 1.24 

  2 9.80 0.24 19.13 0.1 13.09 1.41 12.49 1.09 

  3 >12.5 – 20.56 1.02 3.18 0.08 14.40 0.33 

  4 11.38 0.70 15.12 2.74 9.53 1.65 13.26 1.55 

  5 >12.5 – 26.20 0.91 15.82 0.51 >25 – 

  6 9.97 0.04 12.33 0.57 >25 – >25 – 

  7 9.36 0.40 11.75 0.30 >25 – >25 – 

  8 2.89 0.04 4.81 0.83 13.74 0.31 13.31 1.78 

  9 5.78 0.14 10.22 0.75 15.59 0.56 16.13 1.16 

10 1.34 0.05 1.34 0.13 7.77 1.21 13.93 0.50 

11 3.91 0.04 5.08 0.83 11.72 2.16 >12.5 – 

12 0.99 0.01 1.12 0.16 4.68 0.41 5.21 0.66 

13 1.47 0.23 8.83 2.84 >25 – >25 – 

14 4.19 0.04 5.57 0.47 16.61 1.93 13.22 0.55 

15 >12.5 – 16.32 1.52 >25 – >25 – 

16 11.63 0.27 14.67 1.38 9.57 2.22 16.86 2.68 

17 10.66 0.48 11.05 11.05 8.93 4.85 18.52 0.47 

18 >12.5 – >25 – 3.62 0.01 15.29 2.01 

19 >12.5 – >25 – 7.48 0.03 13.22 7.06 

20 >12.5 – >25 – 16.27 6.69 >25 – 

21 >12.5 – >25 – >25 – >25 – 

22 11.71 0.16 6.80 1.86 10.15 2.57 14.54 0.61 

23 >12.5 – >25 – 9.23 1.60 15,00 0.70 
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2. Antiproliferative effects of phenothiazine derivatives on PAR, MDR, LNCaP, and PC3 

cell lines 

a) N-hydroxyalkyl-2-aminophenothiazine derivatives 

The N-hydroxyalkyl-2-aminophenothiazine derivatives displayed more potent cytotoxic effects on 

the resistant colon adenocarcinoma cell than on the sensitive cell line Colo 205. The IC50 values of 

the derivatives on the sensitive cell line Colo 205 can be divided into four groups: those with an IC50 

of > 100 µM: 1i, 3f, 3g, 3h and 3i; those with an IC50 in the interval 20-55 µM: 1a, 1b, 1d, 1f, 1g, 1l, 

1n, 3a, 3b, 3c and 3e; those with an IC50 in the interval 10-19 µM: 1c, 1j, 1m, 2, 3d and 3j; and those 

with an IC50 in the interval 5-9 µM: 1e, 1h and 1k. The compounds were more selective for the MDR 

Colo 320 cells, as shown by their lower IC50 values. In this case, the compounds can be divided into 

three categories: those with an IC50 in the interval 10-40 µM: 1a, 1b, 1d, 1e, 1f, 1g, 1i, 1l and 3a; 

those with an IC50 in the interval 3-10 µM: 1c, 1h, 1j, 1m, 1n, 2, 3c, 3d, 3e, 3f, 3i and 3j; and those 

with an IC50 of < 3 µM: 1k, 1o, 3b, 3g and 3h (Table III). 

 

Table III. Antiproliferative activities of N-hydroxyalkyl-2-aminophenothiazines  

on MDR Colo 320 colon adenocarcinoma cells 

ANTIPROLIFERATIVE EFFECT 

DERIVATIVES 
IC50 

(μM) 
SD DERIVATIVES 

IC50 

(μM) 
SD 

1 a  14.83 1.15 1o   2.90 0.62 

1 b  12.85 1.45 2   3.88 0.14 

1 c    7.29 0.57 3a 16.91 1.79 

1 d  38.85 1.42 3b   2.71 0.09 

1 e  18.64 0.40 3c   3.02 0.11 

1 f  21.58 1.82 3d   3.09 0.23 

1 g  25.16 0.53 3e   3.07 0.09 

1 h  3.325 0.19 3f   4.02 0.23 

1 i  41.49 1.46 3g   2.83 0.04 

1 j    7.50 0.95 3h   2.89 0.17 

1 k  2.83 0.24 3i   4.67 0.13 

1 l  11.24 2.60 3j   3.59 0.33 

1 m   3.60 0.16 DMSO (v/v%)   2.19 0.06 

1 n    3.43 0.25 – – – 

 

b) Racemic thioridazine and its (+) and (-) enantiomers 

The antiproliferative effects of the racemate and (+) and (–) enantiomers of TZ on MDR mouse T-

lymphoma cells are summarized in Figure 3. No significant differences were found between the three 

compounds as concerns the antiproliferative activity against the MDR mouse T-lymphoma cell line. 
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COMPOUNDS 
Mean IC50 (µg/mL) 

MDR SEM PC3 SEM 

TZ racemate 5.14 0.83 5.09 0.56 

(+) enantiomer 5.06 0.24 4.74 0.54 

(-) enantiomer 6.23 0.07 6.05 0.34 

Figure 3. Antiproliferative effects of racemic TZ and its (+) and (-) enantiomers on mouse  

T-lymphoma and prostate cancer cells. The mean IC50 was calculated on the basis of the results  

of three independent experiments. SEM: Standard error of the mean. 

 

II. Cytotoxic effects of steroid derivatives on PAR and MDR mouse T-lymphoma cells 

It can be concluded that the steroid derivatives possess slight cytotoxic effects, although there 

was no significant difference between the parental and the MDR mouse T-lymphoma cells. The 

most active derivatives were 4, 9 and 12 (Table IV). 
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Table IV. Cytotoxic effects of steroid derivatives on PAR and MDR mouse T-lymphoma cells 

COMPOUNDS 

PAR MDR 

IC50 

(µg/mL) 
SEM 

IC50 

(µg/mL) 
SEM 

  1 8.13 0.63 17.44 0.01 

  2 13.2 0.41 16.46 1.00 

  3 9.51 1.16 17.33 0.36 

  4 6.58 0.30 9.72 1.68 

  5 20.7 0.34 >25 – 

  6 20.87 4.10 >25 – 

  7 22.78 1.40 >25 – 

  8 13.82 0.07 13.27 0.92 

  9 5.7 0.29 7.06 0.23 

10 8.41 0.44 7.40 0.42 

11 11.77 0.05 10.1 0.39 

12 3.44 0.01 2.71 0.13 

13 >50 – >25 – 

14 7.85 0.26 12 0.69 

15 20.12 0.88 >25 – 

16 11.83 0.01 14.58 0.33 

17 13.7 0.56 >25 – 

18 14.59 0.18 20.23 0.91 

19 15.88 0.36 21.81 1.06 

20 26.85 0.82 >25 – 

21 >50 – >25 – 

22 15.91 0.08 >25 – 

23 >50 – >25 – 

 

III. Multidrug resistance reversal effect of different compounds on MDR cells 

1. Substituted steroids 

Twenty-three modified steroid derivatives were examined on MDR cells in R123 excluding short-

term experiments at subinhibitory concentrations for 30 min. In this experiment, 2×106 cells were 

exposed to 2 µg/mL final concentrations for 10 min before indicator R123 was added to the cells. The 

aminosteroid compounds acylated with BOC-amino acids (1–5 and 9) and even the simple N-acetyl 

derivatives (13, 16, 18 and 19) displayed pronounced activity in the reversal of the MDR of the MDR 

mouse T-lymphoma cell line, with FAR values between 29 and 77. Steroids containing free amino 

groups or aminehydrochloride substituents demonstrated weaker or no activity on MDR reversal as 

measured by the accumulation of R123. Interestingly, 12 exhibited only mild inhibition at the 

concentration used. As concerns the activities expressed in μM, the most active compound was 18, 

with an FAR of 77.41 at 4.4 μM. 16, 13, 1, 19 and 3 were also highly active (Table V). 
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Table V. A comparison of the effects of aminosteroid derivatives on the activity of the ABCB1 

transporter in mouse T-lymphoma cells by flow cytometry. Compounds were tested at 2 µg/mL. 

Verapamil was used as positive control at 10 µg/mL. 

COMPOUND FAR COMPOUND FAR 

VERAPAMIL 17.21 13 58.79 

  1 54.28 14   2.20 

  2 37.64 15   1.76 

  3 59.28 16 75.48 

  4 37.92 17 16.69 

  5 29.07 18 77.41 

  6   9.21 19 52.90 

  7 10.21 20 45.82 

  8   1.47 21   1.07 

  9 39.14 22 10.43 

10   1.19 23 12.26 

11   2.77 DMSO   0.78 

12   7.41 – – 

 

FAR: Fluorescence activity ratio, calculated via the equation given in the Materials and 

Methods; DMSO: dimethyl sulfoxide. 

 

2. Racemic thioridazine and its (+) and (-) enantiomers 

The effects of the racemic and the (+) and (–) enantiomers of thioridazine on the retention of 

R123 in the MDR mouse lymphoma cell line were studied at 0.25 and 2.5 μg/mL (Table VI). 

At 0.25 μg/mL, TZ and its enantiomers moderately inhibited the ABCB1 expressed by the MDR 

mouse T-cell lymphoma cell line, while at 2.5 μg/mL the inhibition was stronger, without 

apparent stereospecificity, which appears to be a promising finding. 

 

Table VI. Reversal of the multidrug resistance of MDR mouse T-lymphoma cells  

in the presence of low doses of TZ. 

 µg/mL FSC SSC FL1 FAR 

L5178Y ( PAR) – 1573 674 52.4 – 

L5178Y (ABCB1 expressing, 

MDR) 
– 1601 629     0.545 – 

Verapamil 10 1587 628 14.9 27.34 

TZ racemate 
       0.25 1601 625   2.65   4.86 

       2.50 1609 618 34.7 63.66 

(+) enantiomer 
       0.25 1590 626   1.73   3.17 

       2.50 1614 626 33.5 61.46 

(-) enantiomer 
       0.25 1602 636   1.35   2.47 

       2.50 1614 631 29.8 54.67 
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IV. Combination of steroid and N-hydroxyalkyl-2-aminophenothiazine derivatives with 

doxorubicin in different cancer models 

1. The effects of substituted steroid compounds combined with doxorubicin on PC3 cells 

The effects of the substituted steroid compounds on the activity of doxorubicin were observed 

to vary from ineffective to strong synergy. Five compounds gave rise to strong synergy with 

doxorubicin: 4, 9, 10, 14 and 22. Moderate synergy was observed with 1, 2, 8, 12, 16, 17, 19 

and 23, while 3 and 18 were ineffective. The IC50 values of 5–7, 11, 13, 15, 20 and 21 could 

not be calculated, and the interactions of these compounds with doxorubicin could therefore not 

be determined (Table VII). 

 

Table VII. Types of interaction between doxorubicin and 16 amidosteroid derivatives against  

the PC3 prostate cancer cell line 

COMPOUND Ratioa CIb INTERACTION 

  1   5:1 0.44 Synergism 

  2   5:1 0.47 Synergism 

  3 10:1 0.91 No interaction 

  4   5:1 0.28 Strong synergism 

  8 10:1 0.40 Synergism 

  9 10:1 0.17 Strong synergism 

10 10:1 0.26 Strong synergism 

12   5:1 0.55 Synergism 

14 10:1 0.29 Strong synergism 

16 10:1 0.53 Synergism 

17 10:1 0.38 Synergism 

18 10:1 0.96 No interaction 

19 20:1 0.61 Synergism 

22 20:1 0.27 Strong synergism 

23 20:1 0.30 Synergism 

aData are shown as the best combination ratio between doxorubicin and the tested compounds. bCombination 

index (CI) values at 50% growth inhibition (ED50) were determined by using CompuSyn software to plot 4 or 5 

data points for each ratio. CI values were calculated by means of the median-effect equation, where CI <1, CI =1 

and CI >1 represent synergism, an additive effect (i.e. no interaction) and antagonism, respectively [180]. 

 

2. The effects of N-hydroxyalkyl-2-aminophenothiazine derivatives with doxorubicin 

With regard to the ABCB1-modulating activities of the lead N-hydroxyalkyl-2-aminophenothiazine 

compounds, six derivatives were selected for combination studies with doxorubicin. As shown in 

Table VIII, all of them exhibited synergistic activity with doxorubicin at an N-hydroxyalkyl-2-

aminophenothiazine derivative:doxorubicin ratio of 12:1. It can be concluded that the lead 

compound of the N-hydroxyalkyl-2-aminophenothiazine series was 3j, which showed synergism 

with the anticancer drug doxorubicin on MDR colon adenocarcinoma cells. 
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Table VIII. Types of interaction between N-hydroxyalkyl-2-aminophenothiazine derivatives and 

doxorubicin in MDR Colo 320 colon adenocarcinoma cells. CI: combination index 

DERIVATIVE Ratio CI INTERACTION 

1c 12:1 0.31 Synergism 

3d 12:1 0.14 Strong synergism 

3g 12:1 0.17 Strong synergism 

3h 12:1 0.11 Strong synergism 

3i 12:1 0.10 Strong synergism 

3j 12:1 0.29 Strong synergism 

 

V. Evaluation of selected compounds as possible apoptosis inducers on the PC3 prostate 

cancer cell line 

1. Apoptosis-inducing effects of substituted steroid derivatives containing amino and amido 

groups on the PC3 cell line 

The apoptosis-inducing effects of the substituted steroid compounds on the PC3 cell line were 

measured at the nontoxic concentration of 4 µg/mL (no data are shown). These compounds 

proved to exert no relevant apoptosis-inducing activity: the proportion of early apoptosis was 

1–6%, those of late apoptosis and necrosis were 1–5%, and that of cell death was around 1%. 

No significant difference was seen when these data were compared with those on the untreated 

control. 

 

2. Apoptosis-inducing effects of racemic thioridazine and its enantiomers on human 

ABCB1-carrying mouse T-lymphoma and PC3 prostate cancer cell lines 

The apoptosis induction assays were carried out at 2.5 and 5 μg/mL racemic thioridazine and 

its enantiomers in MDR mouse T-lymphoma cells. Racemic TZ and the enantiomers displayed 

similar apoptosis-inducing activities, suggesting that stereoselectivity does not play a role in 

the induction of apoptosis (Table IX). Both racemic TZ and the enantiomers induced early 

apoptosis in PC3 cells, but there was no significant difference between them (Table X). Our 

results clearly demonstrated that racemic thioridazine and its enantiomers have essentially the 

same activity against cancer cell lines with respect to the inhibition of replication and the 

induction of apoptosis. 
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Table IX. Apoptosis induction of ABCB1-expressing MDR cells by TZ and its enantiomers  

after a 1 h incubation 

TREATMENT 

GATED EVENTS % 

CONCENTRATION 

(µg/mL) 

EARLY 

APOPTOSIS 

LATE APOPTOSIS 

AND NECROSIS 
CELL DEATH 

Untreated control  5.74 2.8 0.164 

M627 50 61.6 34.3 0.107 

TZ racemate 
2.5 19.9 1.15 0.18 

5 48.1 2.52 0.2 

(+) enantiomer 
2.5 19.4 1.8 0.193 

5 40 3.58 0.378 

(-) enantiomer 
2.5 9.6 1.84 0.164 

5 54.3 3.81 0.458 

DMSO 5 µL 6.2 2.17 0.128 

Untreated control: FITC-labeled annexin V and PI. 

 

Table X. Apoptosis induction of PC3 cells by TZ and its enantiomers after a 1 h incubation 

TREATMENT 

GATED EVENTS % 

CONCENTRATION 

(µg/mL) 

EARLY 

APOPTOSIS 

LATE APOPTOSIS 

AND NECROSIS 
CELL DEATH 

Untreated control  0.776 2.03 5.49 

DMSO 5% 1.1 1.92 3.8 

M627 25 42 4.75 2.92 

Tz racemate 
20 1.72 3.01 1.41 

40 7.98 3.31 3.6 

(+) Enantiomer 
20 1.75 4.44 2.35 

40 3.11 3.48 5.35 

(-) Enantiomer 
20 1.76 2.29 1.44 

40 12.3 1.83 3.15 

Untreated control: FITC-labeled annexin V and PI. 

 

VI. Molecular docking of substituted steroid derivatives containing amino and amido groups 

to the ABCB1 transport protein 

Molecular docking is an effective computational technique which provides an estimate of the 

binding energy of a compound to the target protein. A scoring system is used to detect the ideal 

docking configuration. The amino acids involved in hydrophobic and hydrogen-bonding 

interactions are also predicted by the algorithm. Our molecular docking results suggested that 

the tested compounds inhibit ABCB1 protein (P-gp) activity through binding to the drug-

binding pocket, which is the same binding site as that for verapamil. We carried out in silico 

investigations of the interaction of the panel of steroid compounds with P-gp, using verapamil 

as a positive control. All 23 compounds exhibited binding energies lower than that of verapamil. 

The binding energies ranged from −6.43 to −9.88 kcal/mol. The predicted inhibition constants 

ranged from 0.1 to 10.1 µM. (Table XI). Most of the compounds with high activity and 
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verapamil share one or more amino acids in their binding sites. It appears that there is a 

significant correlation between the binding energies of the compounds and their FARs. 

 

Table XI. Results of molecular docking of steroidal compounds to the ABCB1 transmembrane protein 

COMPOUND 

BINDING ENERGY 

(KCAL/MOL) 
PKI (µM) HYDROGEN BOND-

FORMING AAS 
MEAN SEM MEAN SEM 

VERAPAMIL −5.64 0.41 0.9 0.2 Val 862 

  1 −7.94 0.08 1.5 0.2 Gln 946 

  2 −7.71 0.19 2.4 0.7 - 

  3 −8.34 0.26 0.8 0.3 - 

  4 −7.66 0.02 2.4 0.1 Gln 347 

  5 −8.39 0.06 0.7 0.1 Tyr 953 

  6 −6.97 0.08 7.8 1.0 - 

  7 −6.44 0.01 18.9 0.2 Asp 188; Gln 195 

  8 −6.55 0.20 9.7 0.1 - 

  9 −8.49 0.06 0.6 0.1 Gln 347 

10 −6.81 0.02 10.1 0.2 Asp 188 

11 −7.30 0.06 4.5 0.4 Thr 945 

12 −7.67 0.06 2.4 0.2 Asp 188; Gln 195 

13 −7.31 0.09 4.4 0.7 - 

14 −7.80 0.01 1.9 0.0 - 

15 −7.20 0.00 5.5 0.3 Asp 188 

16 −8.54 0.10 0.6 0.1 - 

17 −8.30 0.18 0.9 0.2 - 

18 −9.04 0.01 0.2 0.0 Asp 886; Lys 934 

19 −9.27 0.03 0.2 0.0 - 

20 −9.88 0.07 0.1 0.0 - 

21 −8.23 0.12 1.1 0.0 - 

22 −9.84 0.02 0.1 0.0 - 

23 −6.43 0.10 19.5 3.5 - 

 

Lowest binding energy, predicted inhibition constant (Pki) and amino acids (AA) involved in 

hydrogen-bonding for each compound are shown. Each docking experiment was repeated three 

times (data are presented as the mean and SEM). 
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VII. DISCUSSION 

Cancer, the second worldwide cause of death after cardiovascular diseases [183], is characterized by 

uncontrolled cell proliferation and the absence of cell death, which leads to the generation of an 

abnormal cell mass or tumor. Due to new vascularization, this primary tumor grows and acquires 

metastatic potential and spreads to other body parts, which causes metastasis and finally results in 

death. Cancer is caused by damage or mutations in the genetic material of the cells, due to 

environmental or inherited factors. While surgery and radiotherapy are the primary modes of 

treatment for local and nonmetastatic cancers, anticancer drugs are the current choice in the therapy 

of metastatic cancers. Chemotherapy also affects normal cells, generating the characteristic side-

effects of chemotherapy. The indiscriminate destruction of normal cells, the toxicity of conventional 

chemotherapeutic drugs, and the development of MDR support the need for new, effective targeted 

therapies based on the changes in the molecular biology of the tumor cells [183, 184, 185]. 

The main aim of our study was to evaluate the effects of phenothiazine derivatives and 

substituted steroid compounds in different cancer models, such as mouse T-lymphoma cell 

lines, colon adenocarcinoma cancer cell lines, and prostate cancer cell lines. The MDR 

transporters are one of the main causes of cancer treatment failures [169]. Modulation of efflux 

pump-related mechanisms, in order to increase the activity of existing chemotherapeutics to 

which cancer becomes resistant, is one of the possible ways to overcome resistance. 

In our investigation, modified steroid derivatives without hormonal activity were chosen to achieve 

this effect. The results revealed that 8, 10-12, 14 and 22 exerted effective antiproliferative activity 

against MDR mouse T-lymphoma cells expressing ABCB1. These compounds are aminoacylamide 

salts based on three different steroid skeletons (androstane, androstene and pregnadienes). 22 is an 

estrone ether derivative and has a bidentate α-hydroxymethylene-ketone arrangement on the D-ring, 

allowing the possibility of a 1,4-hydrogen donor–acceptor connection. On the other hand, 3, 12, 18, 

19 and 23 proved to be effective in the antiproliferative assays against the LNCaP prostate cell line. 

In the MDR reversal studies, a majority of the investigated compounds were effective: 1-5, 9, 13 and 

16-20 (Table V). In contrast, 6, 8, 10-12, 14, 15 and 21 had only weak effects. These latter molecules 

are either amine hydrochlorides, or possess special structures; 14, 15 and 21 are estrone-ether 

derivatives. Aminosteroids with basic primary amino groups had practically no effect. The 

compounds with marked activity contain four different steroid skeletons, four different aminoacyl 

moieties (glycyl, alanyl, phenylalanyl and prolyl) and, in the case of the simpler molecules, three 

different alkyl (propyl, benzyl and acethoxyethyl) moieties. Their only common structural element is 

the amide, derived from an α-amino acid or acetic acid. In 18 and 19, a double bond is present in rings 

A and B in addition to there being no H atom on C-5. This H atom either induces or is responsible for 

conformational changes in the four condensed rings with a chair-like structure. In the case of 13, the 



35 

hydrophobic steroid containing the acyl-amide can help binding to the β-turn of the ABCB1 protein. 

We presume that the biologically active N-protected BOC compounds bind to particular β-turns of 

the ABCB1 transporter. There are possibly preferred amino acids in the β-turns that may have a key 

role in maintaining the functionally active conformations of the ABCB1 transporter localized in the 

cell membrane. Molecular docking is an effective computational technique which estimates the 

binding energy of a compound to the target protein. A scoring system is used to detect the ideal 

docking configuration. The amino acids involved in hydrophobic and hydrogen-bond interactions are 

also predicted by the algorithm. Our molecular docking results suggested that the tested compounds 

inhibit ABCB1 activity through binding to the drug-binding pocket of the transporter, which is the 

same binding site as for verapamil. Most of the compounds with high activity and verapamil share 

one or more amino acids in their binding sites. It appears that there is a significant correlation between 

the binding energies of the compounds and their FARs. It can be suggested that molecular docking 

might be used as a tool for prediction of the activity of steroidal compounds as inhibitors of ABCB1. 

A large number of the compounds were able to enhance the activity of doxorubicin against the PC3 

cell line in combination experiments. On the basis of our results, 9 could be a lead compound for 

further investigations relating to combined chemotherapy, while 12 might be a promising candidate 

as an effective antiproliferative chemotherapeutic agent. 

Phenothiazines have been proven to be a special group of compounds with extraordinary anticancer 

[186, 187, 188] and antibacterial activities [189]. Besides their various biochemical effects [190], N-

hydroxyalkyl-2-aminophenothiazines may be promising candidates for combined anticancer 

chemotherapy [64]. The investigated N-hydroxyalkyl-2-aminophenothiazines exert promising 

antiproliferative effects on MDR colonic adenocarcinoma cells. The nature of the substituents can 

strongly influence the anticancer activity of the derivatives. From our understanding of the 

relationship between structural diversity and activity, we concluded that the compounds substituted 

with secondary amines (morpholine, diethylamine or N-methylpiperazine) at position 2 in the 

phenothiazine ring (3c, 3d and 3f) were the most selective candidates. Further, the IC50 data revealed 

that the oxidized form of the sulfur atom (sulfoxide or sulfone) led to marked selectivity (3h, 3i and 

3j). The compounds containing a primary amine or acid amide at position 2 in the ring, such as 1c, 

1h, 1j, 1m and 1n, displayed lower activities as compared with those of the aforementioned 

molecules. It can be assumed that the modulation of similar structural details (secondary amines at 

position 2, a 2-hydroxy group in the alkyl chain, sulfoxide or sulfone) of the chosen lead compounds 

(1c, 3d, 3g, 3h, 3i and 3j) is responsible for the synergism with doxorubicin. The antiproliferative 

activity clearly demonstrated that the oxidation of the sulfur atom in 1h resulted in the lead molecule 

3j. It can be concluded that this structural modification increased the biological activity. To understand 

this effect, further binding assays could furnish more biophysical and biochemical information about 

the anticancer activity of these compounds. 
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The importance of stereochemistry in drug action is gaining ever-greater attention in medical 

practice. Many of the drugs currently used in psychiatric practice are mixtures of enantiomers. 

For some therapeutics, single-enantiomer formulations can provide greater selectivity for their 

biological targets, improved therapeutic indices, and/or better pharmacokinetics than a mixture 

of enantiomers. When both a single enantiomer and a racemic formulation of a drug are 

available, the information from experimental trials should be used to decide which formulation 

is most appropriate [191]. In our study, the potential advantages of using single enantiomers of 

a chiral drug were investigated. The isolation and stability of enantiomers is dependent on the 

local milieu [192]. The presented equilibrium between the (+) and (–) isomers influences the 

binding affinities of the enantiomers to different ligands or receptors. “Do the racemate TZ and 

its enantiomers express different activities against cancer cell lines?” This question was based 

upon observations published by others which suggested that “the (–)-TZ enantiomer had 

slightly more catalepsy (neuroleptic)” [193]. Nevertheless, as a variety of pharmacological 

studies reported by Svendsen et al. [193] indicated significantly greater binding of the (–)-TZ 

enantiomer to the D1 receptor in the rodent brain, we, like others [194, 195], studied the 

activities of the racemate TZ (which consists of equal concentrations of the (+) and (–) 

enantiomers) and each enantiomer against cancer cell lines. Our results clearly demonstrated 

that the racemate TZ and its enantiomers have essentially the same activity against cancer cell 

lines with respect to the inhibition of replication, induction of apoptosis and inhibition of 

ABCB1. The central nervous system (CNS) receptor stereospecificity of (+) and (–)-TZ was 

first described by Svendsen et al. in 1988 [193]. Optical isomers such as those of TZ exhibit 

significant differences in their affinities for receptor sites, biotransformation and binding to 

serum and tissue proteins. Separation of the racemate TZ into its enantiomers in the human 

body has been measured [194]. In these investigations, the (–) enantiomer was found to be at 

higher concentrations than the (+) enantiomer in the different tissues. The general possibility 

for using the resolution of commercially available racemates in therapeutics for an anxiolytic 

effect has been described by Baumann et al. [195] and underlined by the very important 

investigations and statements made by Ariens et al. [196]. The role of the chirality of other 

compounds known to affect ABCB1, such as the enantiomers of verapamil, has been examined. 

These latter studies indicated that the L and the D forms of verapamil had equal abilities to 

reverse the in vitro resistance of MDR leukemic cells to drugs such as vincristine [197]. The 

mechanism of action of TZ has been analyzed in detail by Spengler et al., who showed that the 

racemate is able to induce the apoptosis of MDR mouse lymphoma cells [169]. In this latter 

study, the differential effects of the two TZ enantiomers were not examined. Nevertheless, the 

observations reported are consistent with those obtained by others on cervical and endometrial 

cancer cell lines [198]. In MDR cancer cells, the efflux pump mechanism is responsible for 



37 

treatment failures; the inhibition of such mechanisms simultaneously with anticancer drugs may 

therefore result in effective anticancer chemotherapy. However, it must be considered that 

normal cells also contain ABC transporters, e.g. for detoxification. Hence, in order to avoid the 

toxic side-effect of resistance-reversing compounds, drugs with selective inhibition of the MDR 

in cancer cells are needed. To achieve this effect, three classes of known neuroleptic drugs with 

active and inactive stereoisomers were tested for MDR efflux pump inhibition on mouse T-

lymphoma cell lines [199]. Their antiproliferative effects on sensitive and MDR cancer cell 

cultures were compared with those of the classical resistance modifier verapamil. Consistently 

with our present results, the enantiomers of phenylalkylamines proved to be equally potent 

inhibitors of drug transport by P-gp [199]. However, CNS-active and -inactive butaclamol 

enantiomers exerted slightly different effects on the reversal of the MDR phenotype, which 

means that drug binding might have weak enantioselectivity for P-gp [199], suggesting that 

some enantiomers of compounds that inhibit ABCB1 can be exploited as adjuvants to cytostatic 

chemotherapy of cancer in order to increase the efficacy of the cancer agent. However, in the 

current study, the separate use of one enantiomer of TZ versus the other did not appear to 

provide any advantage over racemic TZ for the adjuvant therapy of MDR cancer. 
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VIII. NEW FINDINGS 

 Aminoacylamide salts on the steroid skeleton exerted pronounced antiproliferative 

activity against MDR mouse T-lymphoma and LNCaP prostate cancer cell lines. 

 Aminosteroids with basic primary amino groups had no anticancer effect. 

 The N-hydroxyalkyl-2-aminophenothiazines substituted with secondary amines at 

position 2 in the ring and the oxidation state of the sulfur atom (sulfoxide or sulfone) 

influenced the antiproliferative activity on MDR colonic adenocarcinoma cells. 

 A large number of substituted steroid compounds were able to enhance the activity of 

doxorubicin against the PC3 cell line in combination experiments. 

 N-hydroxyalkyl-2-aminophenothiazines containing secondary amines at position 2 in the 

ring, a 2-hydroxy group in the alkyl chain, and sulfoxide or sulfone had a synergistic effect 

with doxorubicin. 

 No significant differences were found between the racemate and the (+) and (–) 

enantiomers of TZ as concerns antiproliferative activity against the MDR mouse 

T-lymphoma cell line. 

 The separate use of one or other individual enantiomer did not appear to provide any 

advantage over use of the racemic mixture of TZ for the adjuvant therapy of MDR cancer. 

 None of the substituted steroid derivatives or TZ compounds induced marked apoptosis 

either in PC3 prostate cancer cells or in MDR mouse T-lymphoma cells. 

 Molecular docking is an effective computational technique which estimates the binding 

energy of a compound to the target protein. The tested steroid compounds proved to inhibit 

ABCB1 activity through binding to the drug-binding pocket, which is the same binding 

site as for verapamil. 
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IX. SUMMARY 

The reason for unsuccessful tumor chemotherapy may be related to the MDR of tumor cells. 

One of the best known of these resistance mechanisms is the overexpression of membrane-

bound efflux pumps, such as P-gp (ABCB1). In tumor cells, transport proteins eliminate various 

anticancer drugs from the intracellular space due to their flexible substrate binding site. One of 

the greatest challenges of anticancer chemotherapy at present is to find new, effective drugs to 

combat MDR. Amino- and amide-substituted steroid compounds and TZ derivatives are able 

to inhibit the activity of the ABCB1 (P-gp) efflux pump, and resistant cancer cells therefore 

become sensitive to anticancer drugs through modulation of the pump function. We examined 

the anticancer effects of steroid derivatives, stereoisomers of TZ and N-hydroxyalkyl-2-

aminophenothiazines in different in vitro models, such as sensitive and resistant mouse  

T-lymphoma cell lines, human prostate cancer and colon cancer cell lines. The antiproliferative 

and cytotoxic effects of steroid and phenothiazine compounds were studied by the MTT method 

on the L5178 mouse T-lymphoma parental cell line (PAR) and its L5178Y human ABCB1 gene-

transfected subline (MDR), hormone-sensitive LNCaP and hormone-resistant PC3 prostate 

cancer cell lines and MDR Colo 320 colon adenocarcinoma cells. The inhibitory effects of 

aminosteroid derivatives on the activity of the ABCB1 transporter protein were analyzed by the 

R123 accumulation assay in MDR mouse T-lymphoma cells through the use of flow cytometry. 

The interactions between doxorubicin and the examined compounds were also studied in the 

PC3 prostate cancer cell line and MDR Colo 320 colon adenocarcinoma cells, and the results 

were interpreted by means of Compusyn software. Aminoacylamide-substituted steroids 

exhibited marked antiproliferative activity against the MDR mouse T-lymphoma and LNCaP 

prostate cancer cell lines. Aminosteroids with basic primary amino groups did not exert 

anticancer effects on mouse T-lymphoma and prostate cancer cells. Despite the fact that the 

examined steroids did not display significant antiproliferative or cytotoxic effects on various 

cell lines, most of them potentiated the effect of doxorubicin on the PC3 prostate cancer cell 

line. In the case of TZ, stereoisomerism did not play a role in blocking the ABCB1 transporter. 

Among the N-hydroxyalkyl-2-aminophenothiazine derivatives, secondary amines exhibited 

antiproliferative effects on MDR colon adenocarcinoma cells, the extent depending on the 

oxidation state of the sulfur atom. Neither steroids nor TZ compounds influenced apoptosis in 

the PC3 prostate cancer cell line. To elucidate the structure-activity relationship between 

steroids and P-gp, molecular docking was used to estimate the binding energies of the 

compounds to the target protein. The tested steroids inhibited the ABCB1 activity through 

binding to the drug binding pocket, which is the same binding site as that for verapamil. 
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X. ÖSSZEFOGLALÓ 

A kemoterápia sikertelenségének oka a tumorsejtek multidrog rezisztencia (MDR) 

mechanizmusaihoz köthető. Ezek közül az egyik legismertebb a membránban lokalizálódó 

különböző efflux pumpák fokozott expressziója, például a P-glikoprotein (ABCB1) jelenléte. 

Tumorsejtekben ezek a transzporter fehérjék többféle, nem rokon szerkezetű rákellenes szert 

távolítanak el az intracelluláris térből, a flexibilis szubsztrátkötő-helyüknek köszönhetően. Korunk 

egyik égető problémája olyan új, hatékony vegyületek kifejlesztése, melyekkel képesek leszünk 

leküzdeni a tumorsejtek rezisztencia mechanizmusait. Az amino- és amido-csoportokkal szubsztituált 

szteroid vegyületek, valamint a különböző fenotiazin származékok képesek az ABCB1  

(P-glikoprotein) efflux pumpát gátolni, így a multidrog rezisztens sejtek érzékennyé válnak a 

rákellenes szerekre. Vizsgálataink során ezen vegyületek antitumor hatását elemeztük érzékeny és 

rezisztens egér T-limfóma, hormon érzékeny és rezisztens humán prosztatarák és rezisztens humán 

vastagbélrák sejtvonalakon in vitro. Kísérleteink során a szteroid és fenotiazin vegyületek 

antiproliferatív és citotoxikus hatását vizsgáltuk MTT módszerrel érzékeny és rezisztens egér  

T-limfóma (PAR és MDR), hormon rezisztens PC3 és hormonra érzékeny LNCaP humán prosztatarák 

és Colo 320 humán vastagbélrák sejtvonalakon. Az ABCB1 transzporterre ható gátlást a rhodamin 

123 intracelluláris akkumulációjával határoztuk meg rezisztens egér T-limfóma sejtvonalon, áramlási 

citometria segítségével. A doxorubicin és a vizsgált vegyületek közötti kölcsönhatást is vizsgáltuk 

PC3 és Colo 320 sejteken, ezen eredményeket CompuSyn software-rel intrepretáltuk. 

Eredményeink alapján az aminoacil-amid szubsztituensek jelenléte a szteroid vázon jelentős 

rákellenes hatást mutatott MDR egér limfóma és LNCaP prosztatarák sejteken. Bázikus primer 

aminocsoportokat tartalmazó aminoszteroidok nem rendelkeztek rákellenes hatással egér limfóma és 

prosztatarák sejeken. Annak ellenére, hogy a vizsgált szteroid származékoknak nincs markáns 

antiproliferatív és citotoxikus hatása a vizsgált sejtvonalakon, doxorubicinnel kombinálva legtöbbjük 

potenciálja annak hatását PC3 humán prosztatarák sejtvonalon. Vizsgálataink alapján a szubsztituált 

szteroidok közül az aminoacil-amidoknak volt jelentősebb antiproliferatív hatása az MDR egér  

T-limfóma és LNCaP prosztatarák sejtvonalakon, az aminoszteroidok hatástalanok voltak. Az 

általunk vizsgált thioridazin vegyületek esetében a sztereoizomériának nem volt szerepe a tumorsejtek 

gátlásban. Az N-hidroxi-alkil-2-aminofenotiazin származékok közül a másodlagos aminoknak volt 

tumorellenes hatása MDR colon adenocarcinoma sejteken, az adott vegyületben lévő kén atom 

oxidációs állapotától függően. Sem a szteroid, sem a thioridazin vegyületek nem mutattak apoptózist 

indukáló hatást PC3 humán prosztatarák sejtvonal esetében. A szteroid vegyületek és a P-glikoprotein 

közötti szerkezet-hatás vizsgálatokat molekuláris docking technikával végeztük, amely a vegyület és 

a fehérje közötti kötési energiát határozza meg. A szteroidok gátló hatása az ABCB1 fehérje 

szubsztrátkötő zsebéhez való kapcsolódás által valósul meg, ehhez a helyhez kötődik a verapamil is. 
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XIV. APPENDIX 

Annex 1. Chemical structures of the steroid derivatives: 1: 20-N-(N'-BOC-L-alanyl)aminopregna-5,16-dien-3β-ol 

(MW=486.7); 2: 20-N-(N'-BOC-glycyl)aminopregna-5,16-dien-3β-ol (MW=472.67); 3: 20-N-(N'-BOC-L-

phenylalanyl)aminopregna-5,16-dien-3β-ol (MW=562.8); 4: 17β-N-(N'-BOC-L-prolyl)aminoandrost-5-en-3β-ol 

(MW=486.7); 5: 3β-N-(N'-BOC-L-phenylalanyl)aminoandrost-4-en-17β-ol (MW=536.76); 6: 3β-N-(L-phenyl-

alanyl)aminoandrost-4-en-17β-ol hydrochloride (MW=473.11); 7: 17β-N-(glycyl)-aminoandrost-5-en-3β-ol 

hydrochloride (MW=382.98); 8: 17β-N-(L-alanyl)aminoandrost-5-en-3β-ol hydrochloride (MW=397.01); 9: 17β-N-

(L-phenylalanyl)aminoandrost-5-en-3β-ol hydrochloride (MW=473.11); 10: 17β-N-(L-prolyl)aminoandrost-5-en-3β-

ol hydrochloride (MW=423.04); 11: 17β-N-(L-prolyl)amino-5α-androstan-3β-ol hydrochloride (425.06); 12: 20-N-(L-

prolyl)aminopregna-5,16-dien-3β-ol hydrochloride (MW=449.09); 13: 16-N-(n-propyl)-N-acetylaminomethylandrost-

5-en-3β,17β-diol (MW=403.5); 14: 20-amino-pregna-5,16-dien-3β-ol (MW=315.5); 15: 17-amino-5α-androstan-3β-ol 

(MW=291.48); 16: 3β-acetoxy-16N-acetyl-N-benzyl)aminomethylenandrost-5-en-17-one (MW=489.66);  

17: 3β-acethoxy-16-(N-acetoxyethyl-N-ethyl)aminomethylen-5α-androstan-17-one (MW=487.64); 18: 16-(N-acetyl-

N-benzyl)aminomethylen-5α-androstane-3β,17β-diol (MW=451.65); 19: 3β-acetoxy-16E-(N-acetyl-N-

benzyl)aminomethylen-5α-androstan-17β-ol (MW=493.69); 20: 16-(N-ethyl,N-p-

sulphonylamidophenyl)aminomethylene-3-methoxyestra-1,3,5(10)-trien-17-one (MW=504.7); 21: 16,17[d]-2’-

aminopyrimidino-3-methoxyestra-1,3,5(10)-triene (MW=335.45); 22: 3-cyclopentyloxy-16-hydroxymethylen-estra-

1,3,5(10)-trien-17-one (MW=366.5); 23: N-BOC-L-isoleucine-Opcp (MW=477.68); where BOC is tert-

butyloxycarbonyl and Pcp is pentachlorophenyl ester. 
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Annex 2. Enantiomers of thioridazine 

 

 

Annex 3. Structures of N-hydroxyalkyl-2-aminophenothiazines (1a-o, 2, 3). Commonly, R’ is OCH3, 

except in 1e, where R’ is morpholine. 
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