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SUMMARY 
 

Arrhythmias are a major public health concern. The most common forms of 

arrhythmias leading to a high risk of cardiac morbidity and mortality are atrial fibrillation 

(AF) and ventricular tachycardia/ventricular fibrillation (VT/VF). We focus on ion-

channel activation and blockade and the role of intracellular Ca2+ as key elements in 

generating arrhythmias.  

 

The aims of the present study were: 

 To analyze the effect of the two optical enantiomers of the benzodiazepine R-L3 

(ZS_1270B and ZS_1271B) on IKs current in rabbit isolated ventricular myocytes. 

 To investigate and to compare the properties (including amplitudes, current-voltage 

relationships, activation and deactivation kinetics) of the rapid and slow components of 

the delayed rectifier potassium current (IKr and IKs) in ventricular preparations isolated 

from dog, rabbit and guinea pig hearts and from undiseased human cardiac muscle. 

 To investigate the electrophysiological effects of ORM-10103, a newly synthetised 

specific sodium/calcium exchanger (NCX) inhibitor, on the NCX and L-type Ca2+ 

currents and on the triggered arrhythmias (formation of early and delayed 

afterdepolarizations). 

Our results demonstrate: 

 The two optical enantiomers of R-L3 (ZS_1270B and ZS_1271B) have adverse 

modulating effects on IKs in the same concentration range. ZS_1270B is a potent 

activator of IKs, therefore, this substance is adequate to test whether IKs activators are 

indeed ideal tools to suppress ventricular arrhythmias originating from prolongation of 

action potentials. 

 The human cardiac delayed rectifier potassium currents best resemble those measured 

in the dog ventricle and rabbit heart, but are dissimilar to the kinetic properties of IKr 

and IKs found in guinea pig. Based also on our studies the IKr current plays the most 

important role in cardiac repolarization, and our findings suggest that the dog and the 

rabbit are suitable species for preclinical evaluation of new drugs believed to affect 

cardiac repolarisation. 

 ORM-10103 possesses strong NCX-inhibitory activity and it is able to suppress 

elementary arrhythmogenic phenomena, such as EAD and DAD. 
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1. INTRODUCTION 

Arrhythmias are a major public health concern. The most common forms of 

arrhythmias leading to a high risk of cardiac morbidity and mortality are atrial fibrillation 

(AF) and ventricular tachycardia/ventricular fibrillation (VT/VF). “Arrhythmia” refers to 

any change in the normal sequence and/or shape of electrical impulses during the cardiac 

cycle. We focus on ion-channel activation and blockade and the role of intracellular Ca2+ 

as key elements in generating arrhythmias (1). 

1.1. Challenges in the treatment of arrhythmias 

The available antiarrhythmic drugs (AA) can be classified by the Vaughan Williams   

4 – level schema or by the mechanistic and clinically relevant Sicilian Gambit. The 

Vaughan Williams schema is somewhat outdated because antiarrhythmic drugs have 

complex actions that do not easily fit into 1 of the 4 specified classes of drug effects (2). 

The Sicilian Gambit, introduced in 1991, was an attempt to provide a classification of 

antiarrhythmic drugs based on their mechanism of action and on arrhythmogenic 

mechanism (3,4). 

Class I 
Drugs that delay fast sodium 
channel mediated conduction 

Class II 
Sympathetic  
antagonists 
 

 

Class III 
Drugs that 
prolong 
repolarisation 

Class IV 
Calcium 
antagonists 
 

IA 
Depress phase 0 
Delay conduction 
Prolong repolarisation 
 Disopyramide, Procainamide, Quinidine 
 

IB 
Little effect on phase 0 in normal tissue 
Depress phase 0 in abnormal tissue 
Shorten repolarisation or little effect 
 Diphenylhydantoin,  Lidocaine,  
 Mexiletine,  
 Tocainide 
 

IC 
Markedly depress phase 0 
Markedly slow conduction 
Slight effect on repolarisation 
 Flecainide, Moricizine, Propafenone 

 
Acebutolol 
Betaxolol 
Bisoprolol  
Bucindolol 
Carvedilol  
Esmolol  
Metoprolol  
Nadolol   
Propranolol 
Timolol 
Others 
 

 
Amiodarone 
Azimilide  
Bretylium   
Dofetilide   
Ibutilide   
Sotalol 
Tedisamil 

 
Diltiazem 
Nifedipine 
Nisoldipine  
Verapamil 

 
Figure 1. The Vaughan Williams classification of antiarrhythmic drugs (adapted from 5). 
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In the past, drug treatment of cardiac arrhythmias has proven difficult, both because of 

inadequate effectiveness and a risk of serious complications. In spite of the important 

advances in cardiology, the pharmacological treatment of cardiac arrhythmias remained 

empiric to a large extent because of our incomplete understanding of either physiological 

and pathophysiological processes underlying the cardiac rhythm disturbances and the 

mechanisms by which antiarrhythmic drugs prevent, suppress, and in some cases also 

induce, arrhythmias. Therefore, in order to develop new more effective agents with less 

proarrhythmic potency, it is important to understand the mechanism of action of 

antiarrhythmic drugs at the organ, tissue, cellular and also subcellular levels (1,6,7). 

Pharmacological treatment of arrhythmias still raises a number of problems, there 

have been dramatic examples in the past, and studies of the effectiveness of antiarrhythmic 

drugs at ventricular levels have shown an increase in mortality directly related to drug 

side-effects. The Cardiac Arrhythmia Suppression Trial (CAST) evaluated the effect of 

antiarrhythmic therapy (encainide, flecainide, or moricizine) in patients with 

asymptomatic or mildly symptomatic ventricular arrhythmia (six or more ventricular 

premature beats per hour) after myocardial infarction in order to see whether 

antiarrhythmic therapy reduces the risk factor for sudden death in survivors of myocardial 

infarction with occurence of ventricular premature depolarizations. During an average of 

10 months of follow-up, the patients treated with active drug had a higher rate of death 

from arrhythmia than the patients assigned to placebo. Because of these results, the part of 

the trial involving encainide and flecainide has been discontinued. It was concluded that 

neither encainide nor flecainide should be used in the treatment of patients with 

asymptomatic or minimally symptomatic ventricular arrhythmia after myocardial 

infarction, even though these drugs may be effective initially in suppressing ventricular 

arrhythmia (8,9). 

 

 
 
 
Figure 2. Higher rate of  survival  with  
placebo  compared  with  patients  
taking encainide  or  flecainide  in  the  
Cardiac  Arrhythmia  Suppression 
Trial (CAST, adapted from 8) 
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The SWORD (Survival With Oral D-sotalol) study investigated, whether d-sotalol, a 

pure potassium-channel blocker with no clinically significant beta-blocking activity, could 

reduce all-cause mortality in high-risk patients, because other studies have suggested that 

potassium-channel blockers might reduce the this risk. Among the recruited patients, 

administration of d-sotalol was associated with increased mortality, which was presumed 

primarily to be due to arrhythmias. The prophylactic use of the potassium-channel blocker 

d-sotalol did not reduce mortality, and was associated with increased mortality in high-risk 

patients after myocardial infarction (10). 

 

 

Figure 3. Survival curves with 

placebo and d-sotalol in the 

Survival With Oral D-sotalol study 

(SWORD, adapted from 10). 

 

 

 

 

At the cellular level, arrhythmias are generated by multifaceted interplay between 

different types of ion channels and/or disordered Ca2+ signalling. 

1.2. Cardiac action potential 

The shape and the duration of cardiac action potential are determined by a balance, 

(i.e. activation and inactivation) of inward and outward currents. The cardiac electrical 

cycle has been schematically divided in five “phases”, four of them describing the AP 

contour and one the diastolic interval (Figure 4). Phase 0 occurs when the excitation 

threshold is exceeded, being supported by activation of two inward (depolarizing) 

currents, fast Na+ (INa) current and Ca2+ current. INa is large and provides most of the 

charge influx required for propagation. ICaL mediates most of Ca2+ influx required to 

trigger myocyte contraction and may support propagation when INa is not expressed or 

functional (e.g. in the nodes). Phase 0 depolarization also activates K+ currents, which 

contribute to termination of this phase and to subsequent repolarization. Among these, the 

transient outward current (Ito) is sufficiently fast to limit depolarization rate during phase 

0. Phase 1 is the initial phase of repolarization, mainly supported by Ito, which is activated 

and quickly inactivated by depolarization. Thus, Ito supports fast repolarization (11).  
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Figure 4. Phases of a prototypical atrial and ventricular action potentials (AP) and underlying ion 
currents. The numbers refer to the five phases of the action potential. In each current profile the 
horizontal line represents the zero current level; inward currents are below the line and outward 
ones are above it (modified from 12). 
 

Phase 2, also named AP “plateau”, is the slow repolarization phase, the late 

components of inward currents (late INa, late ICa) oppose the outward repolarizing currents 

i.e. the rapid and slow components (IKr and IKs) of the delayed rectifier K+ current and the 

inward rectifier K+ current (IK1) (13). The current generated by operation of the Na+/Ca2+ 

exchanger (INCX) can variably contribute to phase 2, according to the magnitude and 

course of the cytosolic Ca2+ transient and to the subsarcolemmal Na+ levels (14). Phase 3 

is the terminal phase of repolarization, which differs from phase 2 for its faster 

repolarization rate. Phase 3 is dominated by IKr and IK1, both characterized by a kinetic 

property, named “inward rectification” (15,16,17). The loss of one repolarizing current 

may not lead to excessive AP lengthening, since other unimpaired K+ channels may 

provide sufficient repolarizing capacity, i.e. there is a redundancy of the repolarization 

process (‘repolarization reserve’). The key players of the reserve are IKr, IKs, IK1, and 

presumably Ito (18,19). Phase 4 describes membrane potential during diastole. Besides the 

time-dependent currents, specific for each AP phase, time-independent (or “background”) 

currents may also contribute to the whole AP course. These mainly include the Na+/K+ 
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pump current (INa/K), the Na+/Ca2+ exchanger current (INCX) and the ATP-sensitive 

potassium current (IK(ATP)). 

1.2.1. Sodium current 

The Na+ current (INa) activates and inactivates within a few milliseconds. In the 

limited range of membrane potentials where activation and inactivation curves of the INa 

overlap, a small persistent Na+ current could be observed (late sodium current, INaL). The 

slow inactivation or ‘window current’ may still provide a significant amout of Na+ ions, 

which can modulate Ca2+ handling via the reverse activity of NCX. The gating of INa may 

also be modulated by intracellular calcium [Ca2+]i, however, the exact mechanism (i.e. via 

direct Ca2+ binding to the channel or via the CaM/CaMKII pathway) is not yet fully 

clarified. Maltsev (20) reported that all proposed modulatory pathways might be 

responsible for the modulation of the Na+ - channel: CaMKII slows the decay of INaL, 

while [Ca2+]i shifts the steady-state inactivation level towards more positive potentials 

(1,21,22). 

The blockade of the Na+ current slows conduction, which could help prevent 

arrhythmias by transforming an unidirectional block into a bidirectional one. But this 

slowing conduction can also promote reentry by decreasing wavelength. This could be the 

reason for the failure of Class IC drugs in the CAST (1989) (8). 

1.2.2. Potassium currents – Delayed rectifier current 

The delayed rectifier potassium current (IK) is considered to be one of the most 

important transmembrane ionic current controlling repolarisation in mammalian 

ventricular muscle (23,24,25). The majority of antiarrhythmic drugs, which exert their 

effect by lengthening cardiac repolarisation (Class I/A and III) are usually blockers of this 

current. This current was first described by Noble and Tsien in sheep cardiac Purkinje 

fibre (26) and has since been identified in various species and cardiac tissue types 

(27,28,29). In most species IK consists of two components, IKr (rapid) and IKs (slow). 

These two components differ from each other with respect to their drug sensitivity, 

rectification and kinetical properties (30,31,32). The characteristics of these currents have 

been extensively studied using the patch-clamp technique in ventricular myocytes 

obtained from several mammalian species. These studies have revealed important species 

differences in the existence and properties of IK (33,34,35). 

IKs and IKr have been both generally accepted as having important roles during normal 

cardiac action potential repolarisation (36,37). Specific blockers of IKr (d-sotalol, 
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dofetilide, E-4031) have been widely shown to lengthen cardiac APD and this is consistent 

with their strong antiarrhythmic potency (38,39,40). Despite their favourable 

antiarrhythmic effect, however, a large international study (SWORD study) revealed an 

increased mortality in patients treated with the pure Class III, selective IKr blocker 

antiarrhythmic drug, d-sotalol (10). Pure Class III drugs (i.e. those that block IKr 

selectively) increase the inhomogeneity of repolarisation and consequently that of the 

refractoriness (41,42). The reverse use-dependent effect of these drugs is also 

disadvantageous because at slow heart rate it may cause early afterdepolarisations (EAD), 

which may lead to torsade de pointes type ventricular arrhythmias (43). Great expectations 

were raised about the antiarrhythmic potential of the pure IKs blockers, which were 

expected to lengthen the action potential duration (APD) in a frequency–independent 

manner, therefore, without the unfavourable reverse use-dependent properties, which 

seems characteristics of the IKr blockers.  

The role of IKs current in human ventricular muscle action potential repolarization, on 

the other hand, has been debated. As with IKr, IKs has been identified in several 

mammalian species, including humans (44, 45, 46) which are associated with specific 

form of the inherited long-QT syndrome, LQT1 (47). Jost et al. (48) previously 

demonstrated that complete pharmacological block of IKs by either chromanol 293B or L-

735,821 has little effect on APD in isolated dog and rabbit ventricular muscle over a wide 

range of physiological pacing frequencies. They also explained that IKs is the key player of 

the repolarization reserve, because when APD is abnormally long, IKs likely provides an 

important safety mechanism that, when removed, increases arrhythmic risk. The high 

proarrhythmic risk associated with these conditions could be markedly diminished by 

activation of IKs current, providing thus a promising strategy to increase the repolarization 

reserve without significantly lengthening of action potential duration. This was long time 

hampered by lacking of selective IKs agonists. The recently synthesized benzodiazepine 

derivative L-364,373 (R-L3) has been reported to activate IKs at micromolar 

concentrations in ventricular myocytes of guinea pig (49) and rabbit (50), as well as in 

genes encoding the Iks current, KCNQ1 expressed in Xenopus oocytes (51). In a later 

study RL-3 failed to activate IKs current in dog ventricular myocytes (52); it was shown 

that 1 μM R-L3 did not affect at all IKs current amplitude, while at higher concentration as 

3 μM, the compound even blocked the current. One later study suggested a possible 

explanation for this discrepancy: the two enantiomers of the racemic R-L3 have different 

activities, namely that the d enantiomer activates, while the l enantiomer potently blocks 
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IKs (53).  

For preclinical evaluation of new drugs believed to affect cardiac action potential 

repolarisation it would be useful to find the most “human-like” species. In our study we 

demonstrate the existence of the IKr and IKs in undiseased human heart, and determine their 

properties by comparing them to those measured in other mammalians. The study gave 

also the opportunity to perform an extensive study to reveal the exact mechanism and role 

of IKr and IKs in controlling cardiac action potential configuration, and therefore, to 

determine the main source for initiating final cardiac repolarisation. 

1.2.3. Ca2+ homeostasis 

Ca2+ has a central role in excitation-contraction coupling (ECC) , since Ca2+ ions 

entering the cell from the extracellular space (Ca2+ - influx) trigger a substantially larger 

Ca2+ release from the sarcoplasmic reticulum (SR). The transient [Ca2+]i increase (Ca2+ 

transient, CaT) is terminated by both Ca2+ reuptake to the SR (via the activity of the SR 

Ca2+ pump, SERCA2a), and Ca2+ extrusion (efflux from the cell). Two classes of Ca2+ 

channels (T and L types) exist in cardiac myocytes, but especially the L-type is well 

expressed. During depolarization L- type voltage dependent Ca2+ channels exhibit large 

conductance (54,55).  

The sodium/calcium exchanger (NCX) (56) is considered to be a major regulator 

maintaining the Ca2+ homeostasis in the myocardium (57,58). In the forward mode, NCX 

is known to extrude Ca2+ from the cell to the extracellular space during the diastole, at 

relatively low free cytoplasmic Ca2+ concentration and negative transmembrane potential. 

Since the extrusion of one Ca2+ is coupled with the entry of 3 Na+ into the cell, the forward 

mode of the NCX is accompanied by a net inward current; when the intracellular Ca2+ 

level is elevated, this can cause substantial depolarization, leading to early (EAD) and 

delayed (DAD) afterdepolarizations (59). EAD and DAD are generally thought to play 

important roles in arrhythmogenesis (60,61), especially under conditions when the K+ 

conductance is decreased, as in heart failure (62). It might be be speculated, therefore, that 

specific blockers of NCX are potentially antiarrhythmic in dysrhythmias related to a Ca2+ 

overload (63,64). The available NCX inhibitors also decreased the L-type Ca2+ current 

(ICaL) which in turn is known to decrease the intracellular Ca2+ load, thereby indirectly 

changing the magnitude of NCX.  It has previously been demonstrated that KB-R7943 and 

SEA-0400, effective inhibitors of NCX, reduced the incidence of ischaemia/reperfusion-
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related arrhythmias induced by a Ca2+ overload (65) and decreased the pharmacologically 

induced EAD and DAD in canine ventricular preparations (66).  

1.3. Importance of cardiac repolarisation reserve  

The concept of the repolarization reserve was introduced by Roden in 1998, based 

mainly on clinical observations (67). The principle of the repolarization reserve is a 

redundancy of the repolarization process, i.e. loss of one repolarizing current may not lead 

to excessive AP lengthening, since other unimpaired K+ channels may provide sufficient 

repolarizing capacity. Therefore, it has critical importance in stabilizing the APD, 

refractoriness and conduction of the electric impulses. Furthermore, it restricts excessive 

AP lengthening caused by impaired channel function, e.g. in LQT’s, extreme bradycardia, 

hypokalaemia, hypothyroidism, diabetes mellitus, drug exposure, etc. The repolarization 

reserve has also important role in decreasing the transmural dispersion of the 

repolarization, thus preventing cardiac arrhythmias. The key players of the reserve are IKr, 

IKs, IK1, and presumably Ito. The majority of life-threatening arrhythmias are known to 

derive from repolarization abnormalities. Therefore, better understanding of the 

development of novel strategies to treat arrhythmias requires much more detailed 

knowledge of the repolarization mechanisms, including all its determinants (45,68,48,69). 

1.4. Role of the calcium handling in action potential 

By generating net current associated with Ca2+ movement, channels and transporters 

involved in Ca2+ handling may significantly contribute to the shaping of the action 

potential. At the beginning of the AP and during the plateau phase, activation of ICaL plays 

a significant role in maintaining the AP plateau, which is essential for the appropriate AP 

duration. Similarly, because of the 1Ca2+/3Na+ stoichiometry of the Na+/Ca2+-exchange, 

removal of Ca2+ from the cell via NCX also generates an inward current, which could 

theoretically slow the  repolarization phase of the AP . On the other hand, being an 

important regulator of many intracellular processes, Ca2+ ions can also regulate/modulate 

the gating of other channels. Prominent examples are modulation of IKs, IKr and IK1 

currents (70,71). 

1.5. Aims of the study 

(1) To analyse the effect of the two optical enantiomers of R-L3 (ZS_1270B and 

ZS_1271B) on IKs current in rabbit isolated ventricular myocytes, by applying the whole-

cell patch clamp and standard microelectrode techniques. 
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(2) To investigate and to compare the electrophysiological properties (including 

amplitudes, current-voltage relationships, activation and deactivation kinetics) of IKr and 

IKs currents in ventricular preparations isolated from dog, rabbit and guinea pig hearts and 

from undiseased human cardiac muscle. 

(3) To investigate the electrophysiological effects of ORM-10103, a newly 

synthetised specific NCX inhibitor, on the NCX and L-type Ca2+ currents and on the 

triggered arrhythmias (formation of early and delayed afterdepolarizations). 

2. MATERIALS AND METHODS 

2.1. Species 

Experiments were carried out in ventricular preparations isolated from dog, rabbit and 

guinea pig hearts and from undiseased human cardiac muscle. 

2.1.1. Animals 

Untreated New-Zealand white rabbits, guinea pig and adult mongrel dogs of either sex 

(body weights 8 to 16 kg) were used for the study. All experiments were conducted in 

compliance with the Guide for the Care and Use of Laboratory Animals (USA NIH 

publication No 85-23, revised 1996). The protocols were approved by the Review Board 

of the Department of Animal Health and Food Control of the Ministry of Agriculture and 

Rural Development, Hungary (XII./01031/000/2008 and XIII./1211/2012) and Ethical 

Committee for the Protection of Animals in Research at the University of Szeged, Szeged, 

Hungary (approval number: I-74-9-2009) and conformed to Directive 2010/63/EU of the 

European Parliament. 

2.1.1.a. Preparation of rabbit ventricular myocytes 

Untreated New-Zealand white rabbits (body weights 1.5-2 kg) of either sex were used 

for the study. Single ventricular myocytes were obtained by enzymatic dissociation. The 

animals were sacrificed by cervical dislocation after receiving 400 IU/kg heparin 

intravenously. The chest was opened and the heart was quickly removed and placed into 

cold (4°C) solution with the following composition (mM): NaCl 135, KCl 4.7, KH2PO4 

1.2, MgSO4 1.2, HEPES 10, NaHCO3 4.4, Glucose 10, CaCl2 1.8, (pH 7.2). The heart was 

mounted on a modified, 60 cm high Langendorff column and perfused with oxygenated 

and prewarmed (37°C) solution mentioned above. After washing out of blood (3-5 min) it 

was perfused with nominally Ca-free solution until the heart stopped beating (approx. 3-4 

minutes). The digestion was performed by perfusion with the same solution supplemented 
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with 0.33 mg/ml (90 U/ml) collagenase (Type I, SIGMA Chemical, St. Louis, MO, USA,) 

and 0.02 mg/ml Pronase E (SIGMA) with 0.1% albumin using a perfusion pump (flow 

rate approx. 15 ml/min). In the 15th minute of the enzyme perfusion the calcium 

concentration was elevated by 200 µM. After 30-35 minute the heart was removed from 

the canula and was placed into enzyme free solution containing 1.8 mM CaCl2 and 1% 

albumin and equilibrated at 37°C for 10 minutes. Then the tissue was cut into small 

fragments. After gentle agitation, the cells were separated from the chunks by filtering 

through nylon mesh. Sedimentation was used for harvesting cells; as soon as most 

myocytes reached the bottom of the vessel the supernatant was removed and replaced by 

HEPES buffered Tyrode’s solution. This solution contained (mM): NaCl 144, NaH2PO4 

0.33, KCl 4.0, CaCl2 1.8, MgCl2 0.53, Glucose 5.5, and HEPES 5.0 at pH of 7.4 

containing 1.8 mM CaCl2. This procedure was repeated two times. The cells were stored at 

room temperature in the Tyrode’s solution (72). 

2.1.1.b. Preparation of dog ventricular myocytes 

For voltage clamp and conventional microelectrode experiments, adult mongrel dogs 

of either sex weighing 8 to 16 kg were used. Following sedation (xylazine, 1 mg/kg, i.v.) 

and thiopental (30 mg/kg i.v.)-induced anaesthesia, each heart was rapidly removed 

through a right lateral thoracotomy and immediately rinsed in oxygenated modified 

Locke's solution containing (in mM): Na+ 140, K+ 4, Ca2+ 1.0, Mg2+ 1, Cl- 126, HCO3
- 25 

and glucose 11. The pH of the solution, when gassed with 95% O2 and 5% CO2 at 37 °C, 

ranged from 7.35 to 7.45. 

Ventricular myocytes were enzymatically dissociated from the canine hearts. A 

portion of the left ventricular wall containing an arterial branch large enough to cannulate 

was then perfused in a modified Langendorff apparatus, at a pressure of 60 cm H2O, with 

solutions in the following sequence: 1) isolation solution supplemented with CaCl2 (1.25 

mM) for 10 min; 2) isolation solution for another 10 min; 3) isolation solution (150 ml) 

containing collagenase (type I, 0.33 mg/ml; Sigma Chemical, St. Louis, MO, USA) (10 

min). Protease (type XIV, 0.04 mg/ml; Sigma Chemical) was added to the final perfusate 

and another 15-20 min of digestion was allowed. The isolation solution (Ca2+-free) was 

Eagle, Minimum Essential Medium, Joklik modification (Sigma Chemical), supplemented 

with (in mM) HEPES 10 and NaHCO3 4.4 (pH 7.2, adjusted with NaOH). Portions of the 

left ventricular wall judged to be well digested were diced into small pieces in isolation 

solution supplemented with CaCl2 (1.25 mM) for 15 min. These tissue samples were then 
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gently agitated in a small beaker to dislodge single myocytes from the extracellular matrix. 

The resulting cell suspension contained a mixture of subepicardial, midmyocardial and 

subendocardial myocytes. Throughout the entire isolation procedure, solutions were 

gassed with 100% O2, while their temperature was maintained at 37 °C. Myocytes were 

allowed to settle to the bottom of the beaker for 10 min, after which half of the supernatant 

was replaced with fresh solution. This procedure was repeated three times. Myocytes 

placed in isolation solution supplemented with CaCl2 (1.25 mM) were maintained at 12-14 

°C prior to the experimentation.(45) 

2.1.1.c. Preparation of guinea pig papillary muscles and ventricular myocytes 

Guinea pigs (300-500 grams) of either sex were used. The animals were sacrificed by 

cervical dislocation after receiving 400 IU/kg heparin intravenously. The chest was 

opened and the heart was quickly removed and immediately rinsed in oxygenated Locke's 

solution containing (in mM): NaCl, 120; KCl, 4; CaCl2, 2; MgCl2, 1; NaHCO3, 22; and 

glucose, 11. The pH of this solution was 7.35 to 7.45 when gassed with 95% O2 and 5% 

CO2 at 37 °C. Papillary muscles were obtained from the right ventricle of the hearts. The 

preparations were placed in a tissue bath and allowed to equilibrate for at least 1 h while 

superfused with oxygenated Locke's solution (flow rate 4–5 ml min−1) warmed to 37 °C. 
For patch-clamp experiments isolated myocytes were prepared by a method quite similar 

as for rabbit. After the hearts were excised and mounted on a Langendorff apparatus and 

retrogradely perfused with oxygenated isolation solution at 37°C. When hearts were clear 

of blood, the perfusate was changed to a nominally Ca2+-free isolation solution until 

contraction ceased. Perfusion was continued with the same solution containing collagenase 

(120 U/ml, Type II, Worthington) and 1% bovine serum albumin (Sigma Chemical, St. 

Louis, MO) until left ventricular tissue softened. Small pieces of tissue were removed, 

mechanically dissociated by trituration, and isolated cells kept in the storage solution at 

room temperature (73). 

2.1.2. Undiseased human preparations 

Patients: 

Hearts were obtained from organ donors whose hearts were explanted to obtain 

pulmonary and aortic valves for transplant surgery.  Before cardiac explantation, organ 

donor patients did not receive medication, except dobutamine, furosemide, and plasma 

expanders.  The investigations conform to the principles outlined in the Declaration of 

Helsinki (Cardiovascular Research 1997; 35:2-4) and all experimental protocols were 
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approved by the University of Szeged and National Scientific and Research Ethical 

Review Boards (No. 51-57/1997 OEj and 4991-0/2010-1018EKU (339/PI/010.)). Proper 

consent was obtained for use of each individual’s tissue for experimentation. After 

explantation, each heart was perfused with cardioplegic solution and kept cold (4 - 6 C) 

for 2-4 hours prior to dissection.   

2.2. Experimental techniques 

2.2.1. Voltage clamp measurements  

One drop of cell suspension was placed within a transparent recording chamber 

mounted on the stage of an inverted microscope (Olympus IX51, Tokyo, Japan), and 

individual myocytes were allowed to settle and adhere to the chamber bottom for at least 5 

minutes before superfusion was initiated. Only rod shape cells with clear striations were 

used. HEPES buffered Tyrode's solution served as the normal superfusate. Patch-clamp 

micropipettes were fabricated from glass capillaries (Clark, UK) using a using a 

microprocessor controlled horizontal puller (Sutter P-97, Sutter Co, Novato, CA, USA). 

These electrodes had resistances between 1.5 and 2.5 Mohms. During these experiments 

we used different types of external and internal solutions as follows:  

(1) For measuring R-L3 enantiomers: 

Compositions of solutions used (in mM): 

Pipette solution: KCl 140, MgCl2 4, K2ATP 5, HEPES 10, EGTA 1; pH adjusted to 

7.2 by KOH.  

External solution: Tyrode solution (NaCl 135, KCl 4.7, KH2PO4 1.2, MgSO4 1.2, 

HEPES 10, NaHCO3 4.4, glucose 10, CaCl2 1.8; pH adjusted to 7.2 by NaOH) containing 

1 µM nisoldipine (gift from the Bayer AG, Leverkusen, Germany) was placed in the 

external solution to eliminate inward Ca2+ current (ICa). The rapid IKr and slow IKs 

components of the delayed rectifier potassium current were separated by using 1 µM 

dofetilide (Sequoia Research Products, Ltd, UK), a selective IKr blocker. Cell capacitance 

(114.23±8.12 pF, n=20 for rabbit cell) was measured by applying a 10 mV hyperpolarising 

pulse from –10 mV. The holding potential was -90 mV. The capacity was measured by 

integration of the capacitive transient divided by the amplitude of the voltage step (10 

mV). When measuring IKs, sodium current (INa), was inactivated by applying a short 20 ms 

prepulse to -40 mV, which also largely inactivated transient outward current (Ito). 
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(2) For measuring delayed rectifier potassium currents in the comparative study 

Compositions of solutions used (in mM): 

Pipette solution: K-aspartate 100, KCl 45, K2ATP 3, MgCl2 1, EGTA 10, HEPES 5; 

pH adjusted to 7.2 by KOH. 

External solution: Tyrode solution (NaCl 135, KCl 4.7, KH2PO4 1.2, MgSO4 1.2, 

HEPES 10, NaHCO3 4.4, glucose 10, CaCl2 1.8; pH adjusted to 7.2 by NaOH) containing 

1 µM nisoldipine (gift from the Bayer AG, Leverkusen, Germany) was placed in the 

external solution to eliminate inward Ca2+ current (ICa). L-738,821, a selective IKs blocker 

(100 nM, Merck-Sharpe & Dohme, West Point, USA) was added to the control solution 

when we measured IKr current (74). While measuring IKs current, a selective IKr blocker (1-

5 µM E-4031, Drug Research Institute, Budapest) was added to the control solution (30). 

Cell capacitance was measured by applying a 10 mV hyperpolarising pulse from –10 mV. 

The holding potential was -90 mV. The capacity was measured by integration of the 

capacitive transient divided by the amplitude of the voltage step (10 mV). When 

measuring IKs, sodium current (INa), was inactivated by applying a short 20 ms prepulse to 

-40 mV, which also largely inactivated transient outward current (Ito). 

 

(3) For the measurement of the Na+/Ca2+ exchanger current (NCX) using ORM-

10103 

Compositions of solutions used (in mM): 

Pipette solution: CsOH 140, aspartic acid 75, TEACl 20, MgATP 5, HEPES 10, NaCl 

20, EGTA 20 and CaCl2 10 (pH adjusted to 7.2 with CsOH). 

External solution: K+-free bath solution – NaCl 135, CsCl 10, CaCl2 1, MgCl2 1, 

BaCl2 0.2, NaH2PO4 0.33, TEACl 10, HEPES 10, glucose 10 and ouabain 20 µM, 

nisoldipine 1 µM, and lidocaine 50 µM, at pH 7.4 (the method of Hobai et al (75) was 

applied, in which special K+-free bath and pipette solutions were used in order to block the 

Na+-, Ca2+-, K+-currents and the Na+/K+ pump current.) 

The I-V (current-voltage) relationship of Na+/Ca2+ exchanger current was measured 

through the use of ramp pulses at 20 s intervals. The ramp pulse initially led to 

depolarization from the holding potential of -40 mV to 60 mV with a rate of 100 mV/s, 

then to hyperpolarization to -100 mV, and depolarization back to the holding potential. 

The descending limb of the ramp was utilized to plot the I-V curve. 

The experimental protocol was as follows: 

1) the whole cell configuration was established in HEPES-buffered Tyrode’s solution; 
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2) the control I-V curve was recorded in the special K+-free bath solution after 8 – 10 min 

from establishing whole cell configuration; 

3) after 6-10 min incubation the I-V relation was recorded in the presence of ORM-10103; 

4) at the end of the experiments the Ni2+- insensitive current was measured by the 

application of 10 mM NiCl2. 

 

The NCX current was defined as the Ni2+- sensitive current i.e. the trace recorded in 

the presence of 10 mM NiCl2 subtracted from that measured in the absence of NiCl2. In 

separate experiments, the effect of ORM-10103 on the Ni2+- insensitive current was also 

tested.  

 

(4) For the measurement of L-type calcium current using ORM-10103 

Compositions of solutions used (in mM): 

Pipette solution: CsOH 110, CsCl 20, TEACl 10, MgATP 5, EGTA 5, HEPES 10 and 

GTP 0.1 (pH was adjusted to 7.2 by aspartic acid). 

External solution: Tyrode solution supplemented with 3 mM 4-aminopyridine 

 

ICaL current was evoked by 400 ms long depolarizing voltage pulses to various test 

potentials ranging from -35 mV to +55 mV. The holding potential was -80 mV. A short 

prepulse to -40 mV served to inactivate Na+ current. The amplitude of ICaL was defined as 

the difference between the peak inward current at the beginning of the pulse and the 

current at the end of the pulse.  

 

(5) For the measurement of K+ currents - inward rectifier (IK1), transient outward 

(Ito), rapid (IKr) and slow (IKs) delayed rectifier - using ORM-10103 

Compositions of solutions used (in mM): 

Pipette solution: KOH 110, KCl 40, K2ATP 5, MgCl2 5, EGTA 5, and HEPES 10 (pH 

was adjusted to 7.2 by aspartic acid). 

External solution: 1 µM nisoldipine was added to the Tyrode solution to eliminate 

ICaL. When IKr was recorded IKs was inhibited by using the selective IKs blocker HMR 1556 

(0.5 µM). During IKs measurements, IKr was blocked by 0.1 µM dofetilide. The currents 

were activated by applying depolarizing voltage pulses. 

With the exception of ORM-10103 (from Orion Pharma, Espoo, Finland), nisoldipine 

(gift from Bayer AG, Leverkusen, Germany) and strophanthin-G (from BDH Chemicals 
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Ltd, Poole, England) all chemicals were purchased from Sigma-Aldrich Fine Chemicals 

(St. Louis, MO, USA). 

Membrane currents were recorded with an Axopatch 200B amplifier (Molecular 

Devices-Axon Instruments, Union City, CA, USA) using the whole-cell configuration of 

the patch-clamp technique. After establishing a high (1-10 Gohm) resistance seal by gentle 

suction, the cell membrane beneath the tip of the electrode was disrupted by suction or by 

application of 1.5 V electrical pulses for 1-5 ms. The series resistance was typically 4-8 

Mohm before compensation (50 - 80%, depending on the voltage protocols). Experiments 

where the series resistance was high, or substantially increased during measurement, were 

terminated and the results were excluded from analyses. Membrane currents were 

digitized using a 333 kHz analog-to-digital converter (Digidata 1320 and 1440, Molecular 

Devices-Axon Instruments) under softwares control (pClamp 8.0 and pClmap10, Axon 

Instruments). Analyses were performed using Axon (pClamp 8.0 and pClamp 10) 

softwares after low-pass filtering at 1 kHz. All patch-clamp data were collected at 37 °C. 

2.2.2. Action potential measurements 

Initially, each preparation was stimulated at a basic cycle length of 1000 ms 

(frequency = 1 Hz), using 2 ms long rectangular constant voltage pulses isolated from 

ground and delivered via bipolar platinum electrodes in contact with the preparation using 

an EMG 4767 type stimulator (Medicor Ltd, Budapest, H-1147, Hungary). One hour or 

more was allowed for each preparation to equilibrate while continuously superfused with 

Tyrode's solution warmed to 37 °C. Transmembrane potentials were recorded using a 

conventional glass microelectrode filled with 3 M KCl with a tip resistance of 5-20 

Mohms connected to an high impedance electrometer (Bio-Logic VF102, CLAIX, F-

38640, France) referenced to ground. The first derivative of transmembrane potential 

(Vmax) was electronically obtained, derived using a Bio-Logic DV-140 (Claix, F-38640, 

France) differentiator designed and calibrated to have a linear response over the range of 

10 to 1000 V/s.  Amplifier outputs were digitized using an ADA 3300 analog-to-digital 

converter (Real Time Devices Inc, State College, PA 16804, USA) with a maximum 

sampling frequency rate of 50 kHz connected to an IBM compatible personal computer. 

Data was stored and analyzed on a personal computer (PC) while also monitored on a dual 

beam memory oscilloscope (Tektronix 2230, Beaverton, OR 97077, USA). Resting 

membrane potential (RP), action potential amplitude (APA), and action potential durations 

(APD), determined at 50% and 90% repolarization (APD50 and APD90), were 
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automatically measured with software developed in our laboratory (APES, Hugo Sachs 

Elektronik, March-Hugstetten, D-79229, Germany).  Stimulation pulses were also 

controlled by PC software providing constant current pulses with programmed timing and 

amplitudes to the preparation via an EMG 47671 type signal isolator (Medicor Ltd, 

Budapest, H-1147, Hungary).  

In each experiment, baseline action potential characteristics were first obtained during 

superfusion with normal 37 ºC Tyrode’s solution during while continuous pacing was 

maintained at a basic cycle length of 1000 ms. Recordings were continuously monitored to 

confirm one-to-one activation throughout the procedure. After baseline measurements 

were obtained, each preparation was superfused with Tyrode’s solution containing a single 

test drug diluted to the proper concentration for 40 to 60 minutes before measurements 

were repeated at 3 min intervals in the continued presence of the test drug until less than a 

5% change occurred in action potential characteristics between subsequent samples. When 

microelectrode impalement was lost, reimpalement was attempted.  If action potential 

characteristics recorded with the new impalement deviated by more than 5% from the 

preceding ones, the experiment was terminated, and results were excluded from 

evaluation. 

2.3. Statistics 

All data are expressed as means  SEM. Statistical analysis was performed with 

Student’s t-test for paired data. The results were considered statistically significant when p 

was  0.05.  

 

3. RESULTS 

3.1. Effects of the optical enantiomers of R-L3 on IKs in rabbit ventricular myocytes 

3.1.1. Chemical structure of R-L3 enantiomers  

The applied R-L3 enantiomers were (R)- and (S)-5-(2-Fluorophenyl)-1,3-dihydro-3-

(1H-indol-3-ylmethyl)-l-methyl-2H-1,4-benzodiazepin-2-one) (ZS_1270B) and  

(ZS_1271B) synthetized by Fülöp and his colleagues at the Department of Medicinal 

Chemistry, University of Szeged, utilizing the method of Evans et al. (76) (Figure 5).  
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Figure 5. Chemical structure of the R-L3 (L-364,373) enantiomers 
 

3.1.2. The investigation of the effect of R-L3 enantiomers on IKs current 

The effect of RL-3 enantiomers on IKs was tested on rabbit ventricular myocytes 

because relatively large and easily measured IKs currents have been described particularly 

in this species (72). 

The left panels of Figure 6 show original recordings of the IKs current obtained from 

rabbit ventricular myocyte. Test pulses of 5000 ms (IKs) in duration between -10 mV and 

+50 mV from the holding potential of -80 mV, were used to examine IKs current in this 

species. The pulse frequency was 0.05 Hz (IKr) or 0.1 Hz (IKs). Figure 6A shows the 

decaying tail of IKs current at -40 mV after the test pulse. We determined the amplitudes of 

the IKs tail currents as the difference between the peak tail current and the holding current 

level at -40 mV. To obtain a complete block of IKr dofetilide (1 µM) was added to the 

nutrient solution. The bottom panel of the same Figure 6A show that 1 µM ZS_1270B 

largely increased both outward depolarizing and deactivating tail currents. The 

corresponding current-voltage relationships of IKs, before and after the superfusion with 

ZS_1270B measured on an average of 6 cells are shown in the right panel of Figure 6. We 

can conclude that at 40 mV, IKs tail current amplitude increased by about 26% in a 

statistically significant extent from 45.9±4.97 pA to 66.1±4.54 pA, after drug superfusion 

(Figure 6B). 
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Figure 6. Panel A. Effect of ZS_1270B on the slow delayed rectifier K+ current (IKs). IKs current 
traces recorded from rabbit ventricular myocyte under control conditions (top) and in the presence 
of 1 μM ZS_1270B (bottom). Experiments were performed in the presence of the selective IKr 
blocker dofetilide (1 μM), added to the bath solution. Panel B. Corresponding IKs-tail current-
voltage relationship before and after application of 1 μM ZS_1270B. The inset in the top of the 
figure shows the voltage protocol applied during measurements. Values represent mean ± SEM, 
n=7, *p<0.05. 
 

 

The left panels of Figure 7 show original recordings of the current where we can see 

the effect of the left enantiomer ZS_1271B on the IKs current recorded in rabbit ventricular 

myocytes (Figure 7A). In Figure 7B the corresponding current-voltage relationships of IKs 

before and after the superfusion with ZS_1271B (1 µM) measured on an average of 7 cells 

clearly show that the left enantiomer is a potent inhibitor of the IKs current. At 40 mV, IKs 

tail current amplitude decreased in a statistically significant extent to about 47 % from 

97.1±9.7 pA to 45.86±11.6 pA, after drug superfusion (Figure 7B). 
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Figure 7. Panel A. Effect of ZS_1271B on the slow delayed rectifier K+ current (IKs). IKs current 
traces recorded from rabbit ventricular myocyte under control conditions (top)  and in the presence 
of 1 μM ZS_1271B (bottom). Experiments were performed in the presence of the selective IKr 
blocker dofetilide (1 μM), added to the bath solution. Panel B. Corresponding IKs-tail current-
voltage relationship before and after application of 1 μM ZS_1271B. The inset in the top of the 
figure shows the voltage protocol applied during measurements. Values represent mean ± SEM, 
n=7, *p<0.05. 
 

3.1.3. Effect of selective IKs blockade and activation on the APD 

In our above results we demonstrated that the two R-L3 enantiomers have indeed 

adversely modulating effects on the IKs current, and are suitable to test the effect of both 

selective blockade and activation of the IKs current on the ventricular action potential 

repolarization.  

To test this hypothesis we investigated the effect of the two R-L3 enantiomers in 

guinea pig ventricular papillary muscle preparations. Guinea pig is the species known to 

have significant larger IKs current than in myocytes originated from other species including 

human (77). It is known that IKs is relatively small current in most mammalians, and it was 

shown that blockade of IKs current did not lengthen action potential duration in normal 

condition (without sympathetic stimulation) in most species including rabbits (24,48,72).  

In a previous study we have reported that guinea pig is the only widely investigated 
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species where IKs is large enough so that even without sympathetic stimulation selective 

IKs blockade lengthened APD in noticeable manner (77).  

 

 
Figure 8. Guinea pig ventricular papillary muscle action potential recordings in the absence of any 
sympathetic agonist before and after 40 minutes of superfusion with the RL-3 enantiomers 1 μM 
ZS_1270B (left panel) and 1 μM ZS_1271B (right panel), respectively. Stimulation frequency was 
1 Hz. 
 

Therefore, we chose for these experiments guinea pig ventricular myocytes since in 

this species is expected to noticeably measure both lengthening and shortening of the 

ventricular APD. As Figure 8 shows in guinea pig right ventricular preparations the 

activator right enantiomer ZS_1270B (1 µM) shortened APD90 by about 12.2±0.9 % 

(n=4), *p<0.05), while the IKs blocker left enantiomer ZS_1271B (1 µM) lengthened it by 

about 14.2±1.3 % (n=4, *p<0.05) in the average of 4-4 cells. 

Table 1 summarizes all action potential data recorded in guinea pig ventricular 

preparations.   
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Table 1. The electrophysiological effects of the RL-3 enantiomers ZS_1271B and ZS_1270B in 
guinea pig right papillary muscle recorded at the basic cycle length of 1000 ms. 
 

3.2. The investigation of the properties of the rapid and slow delayed rectifier 
currents in undiseased human, dog, rabbit and guinea pig ventricular myocytes  

3.2.1. The current-voltage (I-V) relationship of the IKr and IKs currents 

IKr and IKs currents were present in all studied species (Figure 9). 1 µM nisoldipine 

was added to the external solution to eliminate inward Ca2+ current (ICa). We used L-

738,821 selective IKs blocker when we measured IKr current, while measuring IKs current, a 

selective IKr blocker (1-5 µM E-4031) was added to the control solution. The rapid delayed 

rectifier current (IKr) in human (HM), dog (DM), rabbit (RM) and guinea pig (GM) 

myocytes was measured by 1s test voltage pulses from -20 to 50 mV with pulse frequency 

of 0.05 Hz. The holding potential in these experiments was -40 mV. The deactivating so-

called tail current was measured as IKr after returning the voltage from the test potential to 

–40 mV. The amplitude of the IKr tail current was determined as the difference between 

the peak tail current and the holding current level at -40 mV.  

The amplitude of the E-4031 sensitive IKr tail current was very similar in HM and DM 

(0.35±0.07 and 0.38±0.02 pA/pF, respectively, n=12-15) but larger in RM and GM 

(0.66±0.05 pA/pF and 1.0±0.08 pA/pF, respectively, n=10). The slow delayed rectifier 

(IKs) was measured by 5 s test voltage pulses from -20 to +50 mV with the pulse frequency 

of 0.1 Hz. The holding potential in these experiments was -40 mV. IKr was completely 

blocked by 1-5 μM E-4031. The deactivating IKs tail current was measured after returning 

the voltage from +50 mV to -40 mV. The IKs tail current was considerably larger in GM 

(amplitude at -40 mV, after a 5 s long test pulse to 50 mV was 3.3±0.6 pA/pF, n=10) than 

in RM (1.22±0.7 pA/pF, n=7) and DM (0.9±0.05 pA/pF, n=24). In HM IKs tail was even 

smaller than in DM (0.2±0.05 pA/pF, n=14). 
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Figure 9. Original recordings of E-4031 sensitive (IKr) and L-735,821 sensitive (IKs) currents in 
undiseased human (Panel A), dog (Panel B), rabbit (Panel C) and guinea pig (Panel D) ventricular 
myocytes. Nisoldipine (1 µM) was used to block inward calcium current (ICa) Holding potential 
(HP) was -40 mV and pulse frequency was 0.05 Hz (IKr) or 0.1 Hz (IKs). 

 

In Figure 10 we can see that the IKr current started to activate at negative membrane 

potentials like the IKs current (between -10 and 0 mV). The amplitude of the IKr current 

increased rapidly and reached its maximum between 0 and 20 mV and at more positive 

voltages it was inwardly rectified (Figure 10 left panel). The amplitude of the slow 

component apparently did not rectify (Figure 10 right panel). 

3.2.2. The activation and deactivation kinetics of the IKr and IKs currents 

The activation kinetics of IKr and IKs tail currents were studied by applying the 

envelope of tails protocols. Currents were elicited by depolarisation from -40 mV to 30 

mV with pulses ranging from 10 ms to 5-7 s in duration, and tail currents were recorded 

after repolarisation to -40 mV, with the pulse frequency of 0.05 Hz (IKr) or 0.1 Hz (IKs). 
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Figure 10. The peak IKr and IKs tail current-voltage relationship in undiseased human (triangle), 
dog (circle), rabbit (diamond) and guinea pig (rectangle) ventricular myocytes. 

IKr-tail current presented fast activation kinetics. IKr activated rapidly and 

monoexponentially in each studied species. The corresponding activation time constants 

measured at 30 mV were: 36±3 ms in HM, 53±6 ms in DM, 35±3 ms in RM and 30±2 ms 

in GM, respectively (n=6-26) (Figure 11, top).  

 
Figure 11. Activation (top) and deactivation (bottom) of IKr current in human, dog, rabbit and 
guinea pig ventricular myocytes. Top. Activation kinetics was determined with the use of 
“envelope of tail test” protocol (see inset). IKr current was activated by test pulses with duration 
from 10 to 5000 ms to +30 mV, then the cells were clamped back to -40 mV. The amplitude of the 
tail current as a function of the duration of the depolarizing test pulse was well fitted by a single 
exponential functions. Bottom. For determining deactivation IKr current was activated by 1000 ms 
long test pulse to 30 mV from holding potential of -40 mV, then the cells were clamped back to -
40 mV. The deactivation time course of the IKr tail currents were fitted by double (HM, DM or 
RM) and triple (GM) exponential functions. 
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The deactivation of IKr in HM, DM and RM measured at -40 mV, after a pulse to 30 

mV was slow and biexponential (τ1=0.6±0.05s and τ2=6.7±0.9s in HM; τ1=0.4±0.02s and 

τ2=3.3±0.3s in DM; τ1=0.6±0.03s and τ2=6.5±0.3s in RM, respectively, n=8-26), while in 

GM the IKr tail current was best fitted triexponentially (τ1=0.14±0.01s, τ2=0.8±0.01s and 

τ3=6.6±.06s, n=10) (Figure 11, bottom). 

IKs measured at 30 mV, activated slowly and had apparently a monoxponential time 

course in HM, DM and RM (τ=0.9±0.2s in HM, τ=1±0.1s in DM, and τ=0.8±0.05s in RM, 

respectively, n=6-21). In contrast, in GM the activation was clearly biexponential 

(τ1=0.5±0.02s and τ2=3.2±0.01s, n=10) (Figure 12, top). In HM, DM and RM IKs 

deactivation measured at -40 mV, was fast and monoexponential (τ=0.15±0.02s, 

τ=0.14±0.01s and τ=0.16±0.05s, respectively, n=6-22), while in GM, in addition to the 

fast component (τ1=0.16±0.01s, A1=860±98 pA) an another slower component was also 

revealed (τ2=0.6± 0.1s, A2=670±79 pA, n=10) (Figure 12, bottom). 

 

Figure 12. Activation (top) and deactivation (bottom) of IKs current in human, dog rabbit 
and guinea pig ventricular myocytes. Top. Activation kinetics was determined with the use of 
“envelope of tail test” protocol (see inset). IKs current was activated by test pulses with duration 
from 10 to 7000 ms to +30 mV, and then the cells were clamped back to -40 mV. The amplitude of 
tail current as a function of the duration of the depolarizing test pulse was well fitted by a single 
exponential function in the case of HM, DM and RM and by double exponential function for GM. 
Bottom. For determining deactivation IKs current was activated by 5000-ms long test pulse to +30 
mV from holding potential of -40 mV, and then the cells were clamped back to -40 mV. The 
deactivation time course of the IKs tail currents were fitted by single (HM, DM and RM) or double 
(GM) exponential functions. The activation and deactivation kinetics of IKr and IKs measured 
at the whole range of activating and deactivating membrane potentials (Figure 13) were 
studied only in human and dog myocytes.  
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The voltage dependence of the IKr and IKs kinetics and are in principle similar between 

dog and human except the deactivation kinetics of IKr in the voltage range of -50 mV  to -

10 mV. In this range where the IKr deactivation kinetics were clearly biexponential, the 

deactivation time constant of the slow component was slower in human (τ 8000-10000 

ms in average) than in dog (τ 4000-5000 ms in average) (Figure 13C). 
 

 

 
 
Figure 13. Voltage dependence of the activation (panel A) and deactivation (panels B and C) of IKr 
and IKs currents in human (open and closed circles) and dog (open and closed rectangles) 
ventricular myocytes. Panel A. Activation kinetics was determined by applying the use of 
“envelope of tail test” protocol (see inset). IKr and IKs currents were activated by test pulses with 
duration from 10 to 5000 ms to various test potentials ranging from 0 to 50 mV, and then the cells 
were clamped back to -40 mV. The amplitude of the deactivating tail current as a function of the 
duration of the depolarizing test pulse was well fitted by a single exponential functions. Panel B. 
The voltage dependence of the IKs deactivation kinetics was determined by using the voltage 
protocol indicating the inset in panel B. IKs current was activated by 5000-ms long test pulse to 50 
mV from HP of -40 mV. Then the cells were clamped back to different potentials ranging from -50 
to 0 mV (this voltage step was 2 s long and the pulse frequency was 0.1 Hz) and the deactivation 
time course of the tail current was fitted by a single exponential function. Panel C. The voltage 
dependence of the IKr deactivation kinetics was determined by using a quite similar voltage 
protocol as for IKs. IKr current was activated by 1000-ms long test pulse to 30 mV from HP of -40 
mV. Then the cells were clamped back to different potentials ranging from -70 to 0 mV (this 
voltage step was 16 s long and the pulse frequency was 0.05 Hz) and the deactivation time course 
of the tail current was fitted by a double exponential function. Left panel shows the voltage 
dependence of slow and fast time constants. In order to better resolution the voltage dependence of 
the fast time constants are depicted in the right bottom panel. Right top panels show the relative 
ratio of the fast and slow components of the amplitudes of at different voltages in DM and HM. 
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3.2.3. Effect of selective IKr and IKs blockade on the action potential duration  

We tested the effect of IKr and IKs block on action potential using conventional 

microelectrode technique. Selective IKr blockade with E-4031 (1 µM) using test pulse 

1000 ms (1Hz) resulted in substantial and comparable APD lengthening (30-70%) in all 

species (Figure 14, top).  

 
 
Figure 14. Effect of selective IKr (by E-4031) and IKs (by chromanol and L-735,821) blockade on 
the action potential in undiseased human, dog, rabbit and guinea pig ventricular myocytes with the 
stimulation frequency of 1 Hz. 
 

IKs blockade with L-735,821 (100 nM) using test pulse 1000 ms did not lengthen 

significantly APD in HM, DM and RM (Figure 14, bottom, first three panels). In contrary, 

in GM, the other selective IKs blocker, chromanol 293 B (at the concentration of 10 µM, 

which blocks IKs to about 60%) significantly lengthened the APD (+12%). In this last 

experiment the test pulse was 500 ms (0.5 Hz) (Figure 14, Bottom, last panel).  

 

3.3. Effects of ORM – 10103 on the NCX current, ICaL, INa, and K+ currents and on 
the formation of EAD and DAD in the canine hearts 

3.3.1. Chemical structure of ORM-10103 

ORM-10103 [5-nitro-2-(2-phenylchroman-6-yloxy) pyridine] was put at disposal by 

Orion Pharma (Espoo, Finland) and its structure is depicted in Figure 15. 
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Figure 15. The chemical structure of ORM-10103 

3.3.2. Effects of ORM-10103 on the outward and inward NCX current 

Panel A of Figure 16 shows the original recording of the current in the presence of 

normal Tyrode solution during the voltage ramp pulse illustrated in the top right corner 

while, panel B illustrates a current recording after blocking Na+, Ca2+, K+ and Na+/K+ 

pump currents. In panel C, 1 µM ORM-10103 was applied and the current was recorded 

with the same voltage pulse. Finally, to obtain a complete block of the NCX current 10 

mM NiCl2 was added to the tissue bath and the resulting recording (part D) was subtracted 

from the control recording (to give trace B-D) and from the ORM-10103 recording (to 

give trace C-D). 

 
Figure 16. Determination of NCX current in canine ventricular myocytes. A: recording obtained 
with the voltage protocol shown in the inset with normal Tyrode solution. B: The current trace 
after blockade of Na+, Ca2+, K+ and Na+/K+ pump currents. C: The current trace after superfusion 
with 1 µM ORM-10103. D: The current trace at the end of the measurements after the application 
of 10 mM NiCl2. On the right the control NCX current is shown, which is obtained by subtracting 
trace D from trace B. The NCX current in the presence of 1 µM ORM-10103 is obtained by 
subtracting trace D from trace C. Note the difference in the intensity-time calibration in the left 
and right panels. 
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It is clear from Figure 16 that the Ni2+-sensitive current, i.e. the NCX current was 

markedly reduced by 1 µM ORM-10103. In latter measurements application of 10 µM 

ORM-10103 did not change the Ni2+-insensitive current, after blocking the below 

mentioned currents, indicate that the current reduced by ORM-10103 was indeed the NCX 

current and not a Ni2+-insensitive leakage current. Figures 17 and 18 demonstrate that both 

the outward and the inward NCX currents were considerably reduced by ORM-10103, in a 

concentration-dependent manner.  

 

 
Figure 17. The concentration-dependent effect of ORM-10103 on the NCX current in canine 
ventricular myocytes. Each panel presents Ni2+-sensitive (NCX) current traces before and after 
superfusion of the cells with a concentration of ORM-10103 ranging from 0.1 to 10 µM. 

 

The effect in the outward direction was statistically significant in the potential range 

between 0 and 60 mV in the presence of ORM-10103 concentrations higher than 0.5 µM 

(Figure 18A, right panel). At the same concentrations the blockade of the inward NCX 

current by ORM-10103 was also significant (Figure 18A, left panel). The estimated EC50 

values for the inward and outward NCX currents were 780 nM, and 960 nM, respectively 

(Figure 18B). 
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Figure 18. Panel A. The amplitude of the inward (left) and the outward (right) NCX currents in 
the absence or in the presence of 3 µM ORM-10103. Bars indicate  standard errors of the means, 
*p<0.05. Panel B. The drug-response curve of ORM-10103 on the inward (left) and outward 
(right) NCX currents in canine ventricular myocytes at -80 mV and at +20 mV, respectively. 
Values are means  SEM, n=3-8. 
 

3.3.3. The effect of ORM-10103 on the L-type inward calcium, inward sodium and 
outward potassium currents 

Further we studied the possible effect of ORM-10103 on the L-type inward calcium 

current in canine ventricular myocytes. These experiments clearly revealed that even at 

high (10 µM) concentration ORM-10103 did not influence significantly ICaL (Figure 18A). 

We can see that after adding the known selective ICaL blocker nifedipine (10 µM) we 

obtained an almost complete block of the current indicating that the recorded current was 

ICaL (Figure 19A). The effect of ORM-10103 on the inactivation kinetics was also 

investigated. The inactivation time constant was not significantly changed by 10 µM 

ORM-10103 (40.04.6 ms vs. 35.05.5 ms at 0 mV, n=8, n.s.). The effect of ORM-10103 

on the inward sodium current was assessed by measuring the dV/dtmax in the canine right 

ventricular papillary muscle with the conventional microelectrode technique. At the high 

concentration of 10 µM, ORM-10103 did not change dV/dtmax significantly at stimulation 

cycle lengths in the range 300-5000 ms, suggesting that it had not effect on the inward 

sodium current (Figure 19B).  
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Because the ICaL measurements exhibited a slight run down in some voltage clamp 

experiments, the effect of ORM-10103 was also studied on slow response action potentials 

recorded from guinea-pig papillary muscles. As Figure 20 shows, ORM-10103 at 10 µM 

did not affect the amplitude (control: 81.25.7 mV, ORM-10103: 81.66.1 mV, n=5, n.s.) 

or dV/dtmax (control: 12.42.3 V/s, ORM-10103: 11.82.6 V/s, n=5, n.s.) of these slow 

response action potentials, suggesting the lack of effect of ORM-10103 on the L-type 

calcium current. Using the calcium current blocker nisoldipine at 50 nM markedly reduced 

both the amplitude and dV/dtmax of the slow response action potentials. 

 
Figure 19. Panel A. Lack of effect of 10 µM ORM-10103 on the L-type ICa and INa assessed as 
dV/dtmax in canine ventricular myocytes. In the inset at the top, the voltage protocol is shown. The 
left panels indicate original current traces recorded in control conditions, in the presence of 10 µM 
ORM-10103, after washout of ORM-10103 and after application of 10 µM nifedipine. The right 
panel illustrates the current-voltage relation of ICaL in the absence and presence of 10 µM ORM-
10103, after washout of ORM-10103 and after application of 10 µM nifedipine. Values are means 
 standard errors of the means. Panel B. Lack of effect of 10 µM ORM-10103 on the dV/dtmax 
indicative of INa in canine right ventricular papillary muscles. Values are means  SEM. 
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Recording outward potassium currents (n=8-11) we found that IK1, Ito and IKs were not 

affected, however, IKr was slightly but significantly diminished (from 58.65.6 pA to 

43.15.1 pA at 20 mV test potential, n=8, p<0.05) in the presence of 3 µM ORM-10103 

(Figure 21). 

 
Figure 20. Lack of effect of ORM-10103 on slow response action potentials in guinea-pig 
ventricular myocytes. Panel A shows original slow action potential records under control 
conditions, in the presence of 10 µM ORM-10103 and after application of 50 nM nisoldipine. 
Panels B and C reveal the lack of effect of 10 µM ORM-10103 on the action potential amplitude 
and on the maximum rate of depolarization (dV/dtmax), respectively. 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 21. Effect of ORM-10103 on IK1 (Panel A), Ito (Panel B), IKr (Panel C) and on IKs (Panel D) 
currents. Insets show the applied voltage protocols. Values are means  SEM, *p<0.05. 
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3.3.4. Effects of ORM-10103 on the early and delayed afterdepolarizations 

By applying the conventional microelectrode technique the effects of ORM-10103 on 

early (EAD) and delayed (DAD) afterdepolarizations were studied in canine right 

ventricular papillary muscles and in canine cardiac Purkinje fibres, respectively.  

 
Figure 22. Panel A. Effects of 3 and 10 µM ORM-10103 (ORM) on the EAD evoked by 1 µM 

dofetilide + 100 µM BaCl2 in canine right ventricular papillary muscle. The stimulation cycle 

length was 2 s. Trace a is a control recording. Trace b reveals that EAD was elicited by 1 µM 

dofetilide + 100 µM BaCl2. In traces c and d 3 and 10 µM ORM-10103, respectively were applied 

in the continuous presence of dofetilide and BaCl2. As shown in trace e, after 30 min washout of 

ORM-10103 the EAD amplitude was similar to that prior to the application of ORM-10103. In 

diagram f the effects of 3 and 10 µM ORM-10103 on the EAD amplitude are to be seen. Bars 

represent means ± SEM. Panel B. The effect of 3 µM ORM-10103 on the DAD amplitude in 

canine right ventricular Purkinje fibres. DAD was evoked by a 40 stimulus train with a stimulation 

cycle length of 400 ms in the presence of 0.2 µM strophanthin. Trace a is a control recording, trace 

b indicates the induction of DAD by 0.2 µM strophanthin, and trace c demonstrates that 3 µM 
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ORM-10103 almost completely abolishes DAD in the continuous presence of strophanthin. 

Diagram d depicts the effects of 3 and 10 µM ORM-10103 on the amplitude of DAD. Bars 

represent means ± SEM.  

EAD was elicited in the papillary muscle preparation, stimulated at slow cycle lengths 

(1500-3000 ms), with a combination of 1 µM dofetilide and 100 µM BaCl2 (Figure 22A). 

Both 3 and 10 µM ORM-10103 clearly decreased the amplitude of the EAD. This effect 

was concentration-dependent and reversible upon washout of the ORM-10103 from the 

tissue bath containing dofetilide and BaCl2. Similar effects were seen in additional 

experiments (Figure 22A, right panel). 3 µM ORM-10103 decreased the amplitude of the 

EAD from 19.32.2 to 11.72.4 mV (n=6, p0.05). At higher concentration 10 µM, the 

compound had a more pronounced effect, decreasing EAD from 19.43.3 to 9.54.0 mV 

(n=4, p0.05). 

DAD was evoked in Purkinje fibre preparations superfused with 0.2 µM strophanthin 

for 40 min (Figure 22B, right panel). In these experiments, a train of 40 stimuli was 

applied with a cycle length of 400 ms in the train. The train was then followed by a 

stimulation-free period of 20 s to allow observation of DAD formation.  

Following the addition of 3 or 10 µM ORM-10103, the DAD amplitude was 

decreased (Figure 22B). This effect was also concentration-dependent; ORM-10103 at 

3μM decreased the DAD amplitude from 5.50.6 to 2.40.8 mV (n=6, p0.05), while 10 

µM ORM-10103 did so from 8.12.3 to 2.50.3 mV (n=5, p0.05).  In two experiments, 

strophanthin evoked a run of extra beats after the termination of the stimulus train, which 

could be successfully abolished by the application of 10 M ORM-10103 (not shown). 

 

4. DISCUSSION 

4.1. The effects of the two optical enatiomers of R-L3 

A previous study (53) which suggested that L-364,373 has two optical enantiomers 

that might have adverse modulating effect on the slow delayed rectifier potassium current 

(IKs) led us to the major finding of our study. We have analyzed the efficacy of ZS_1270B 

(right) and ZS 1271B (left), the two enantiomers of R-L3 (Figure 5). The right enantiomer 

ZS_1270B proved to be a successful activator of IKs current, at 1 μM it increased by about 

26 % (Figure 6), while the left enantiomer ZS_1271B, at 1 μM blocked the current by 

about 47% (Figure 7). Moreover, it seems that the two enantiomers have these adverse 

modulating effects at close concentrations. In some previous studies others showed that in 
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guinea pig and rabbit myocytes L-364,373 (R-L3) increased IKs markedly and in a 

concentration dependent manner (0.1–1 μM) causing a leftward shift in its activation 

curve (49,50). 

In 2006, in another study it was shown that at higher concentrations up to 3 μM R-L3 

failed to activate the IKs current in dog ventricular myocytes. At that time it was speculated 

whether this might be a species dependent, different blocking property of the compound 

(52). 

In a latter study performed by a Danish group, it was reported that the 

pharmacologically induced Long QT type 2 can be rescued by activating the IKs current 

with the application of the benzodiazepine R-L3 (53). In their paper they hypothesized that 

the left enantiomer of the R-L3 (S-L3) might be a potent IKs blocker, thereby even at small 

impurities in the racemic R-L3 used could therefore cause significant reductions in the 

APD shortening effect of optically pure R-L3 (53). After getting access to the two 

enatiomers we decided to test the IKs modulator effect on the cardiac repolarization. We 

have applied the right enantiomer on the action potential repolarization in guinea pig 

papillary muscle and we showed that 1 μM ZS_1270B shortened APD90, while conversely 

the left enantiomer ZS_1271B applied on the same concentration of 1 μM significantly 

lengthened the guinea pig repolarization (Figure 8). 

IKs current is composed by co-assembling expression of the KvLQT1 and MinK 

proteins that can associate to form functional cardiac IKs channels (13,78). It has been 

known for many years that the cardiac current IKs is upregulated following sympathetic 

stimulation (79). It would be an important question to discuss at which pathways activates 

the ZS_1270B compound the IKs current, ie. whether the IKs activating properties of the 

enantiomers is or not mediated via sympathetic stimulation. We have checked the 

chemical structures of isoprenaline and other beta adrenergic agonist compounds, and may 

say the beta-phenylethylamine structure is an important criteria for beta-adrenergic 

stimulation on adrenerg receptors. If we looked the structure of the IKs activator 

enantiomer ZS_1270B, we found that none of the three critical pharmacophoric groups 

(80) could be found in the structure of ZS_1270B, therefore, in principle we can conclude 

that the activating effect of this compound is not mediated via beta-adrenergic stimulation 

pathways.  

The observation that a racemic compound have two enantiomers with complete 

adverse modulating effect on a current, receptor, etc, (ie. one is an activator, while the 

other is a blocker, moreover with a more or less similar activity), is quite unique and 
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unusual, however not unknown at all (81,82,83). Similar observation were made in some 

other studies, for example, the stereoisomers of the new dihydropyridine derivative 202-

791 [isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-nitro-3 -

pyridinecarboxylate] were synthesized separately and tested on isolated rabbit aortic rings 

for effects on depolarization-induced contraction and depolarization-stimulated uptake of 

45Ca2+. The result in that investigation showed the right enantiomer inhibited contraction, 

while by contrast, the left enantiomer of 202-791 compound shifted the concentration-

response curve for depolarization-induced contraction in an almost parallel fashion to the 

left, thus enhancing contraction (84).  

 

4.2. Comparison of the properties of the IKr and IKs in human, dog, rabbit and guinea 
pig ventricular myocytes 

The available data regarding the IKr and IKs components in various species draws our 

attention to another important question. The different experimental conditions, whether 

they are related to the isolation procedures or to the recording methods, resulted in 

significantly different, moreover, often contradictory conclusions. Therefore, our 

originally presumption was that our human IK data can be discussed only, if we compare 

them with results obtained from other species and measured also in identical or at least 

similar experimental setting.  

In our experiments we separated the two components through pharmacological 

methods, choosing selective blockers in specific concentrations, which were used in earlier 

studies (13,74). In this study the well expressed presence of IKr and IKs was identified and 

characterised in undiseased human ventricle. IKr exhibited fast activation (τ  40 ms) and 

slow and biexponential deactivation (τ1  600 ms and τ2  7000 ms) kinetics (Figure 11, 

left panels). IKs exhibited slow activation (τ  900 ms) and fast and monoexponentially 

deactivation kinetics (τ 120 ms) (Figure 12, left panels).  Earlier reports regarding the 

existence of IKs in human ventricular myocytes were controversial, namely in some studies 

no evidence was found for IKs. It is also worth noting that the amplitude of the IKs tail 

current reported in this thesis is relatively small. But in the present studies the control 

solution contained neither CdCl2 nor BaCl2 as in the paper of Li et al (13,85).   

The kinetic properties of IKr and IKs measured by us in rabbit and dog ventricular 

myocytes were similar to those determined in human. In both species, IKr exhibited fast 

activation (τ35 ms, resp. 50 ms) and slow and biexponential deactivation (τ1640 ms 
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resp. 360 ms, and τ26500 ms resp. 3300 ms) kinetics (Figure 11, middle panels), while IKs 

current exhibited slow activation (τ 800 resp. 1000 ms) and fast monoexponential 

deactivation (τ 160 ms resp. 90 ms) (Figure 12, middle panels). The kinetic parameters of 

the IKr and IKs measured in rabbit and dog were similar to those measured in human 

(28,29,86). The amplitude of the IKr current in dog was similar to that measured in human 

myocytes, while in rabbit myocytes the amplitude was greater (Figure 10, left panel). The 

amplitude of IKs in human seems to be smaller than that measured in dog and rabbit 

(Figure 10, right panel). If we compare our results with those published in literature, we 

can conclude, that the amplitude of the IKr and IKs in rabbit and dog is similar to those 

measured by other groups (28,29,44).  

We observed an important difference in our guinea pig experiments. In guinea pig 

myocytes IKr exhibited fast activation (τ 30 ms) and slow triexponential deactivation 

(τ1140 ms, τ2800 ms és τ2 6600 ms ) (Figure 11, right panels). The characteristics of 

the IKs current obtained in guinea pig were distinct from those of other three species. The 

IKs current activated slowly, biexponentially (τ1500 ms and τ23000 ms) and the 

deactivation had two components: a fast (τ1160 ms) and a slow (τ2600 ms) one (Figure 

12, right panels). These results are different from those obtained by Sanguinetti’s group, 

where they showed that the activation and deactivation of the IKr current were fast, while 

the IKs current had a slow activation and deactivation (13). Based on this, they suggested 

that IKs blockers are able, in a reverse use dependent way, to lenghten the APD 

(Sanguinetti’s hypothesis) (40). In contradiction with Sanguinetti’s group, in our 

experiments we measured for IKs current slow kinetics, while for IKr slow deactivation 

kinetics (13). Based on this observation we questioned the ”Sanguinetti’s hypothesis” by 

suggesting that IKs, due to its fast deactivation, cannot accumulate during diastole, 

consequently its block cannot attenuate the reverse dependent properties of the Class III 

antiarrhythmic agents. In our earlier experiments the most selective IKs blocker was L-

735,821, which in another study, at a lower concentration than 100 nM totally blocked the 

IKs (74). This means that we could measure pure IKr current. 

We have to note that the amplitude of IKr and IKs recorded in guinea pig were distinct 

from those of other three species. The amplitude of both currents in guinea pig was three 

times larger than that in dog and human, but much greater than that in rabbit (Figure 10). 

Especially we emphasize the extent of the IKs current, namely in guinea pig it proves to be 

great. This fact played an important role in Sanguinetti’s hypothesis (13). In contrast with 
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the other species, the IKs in human is smaller and the role in the repolarisation of 

ventricular tissue must be different than that described earlier.  

It is well known that even the partial (30-50%) blockade of the IKr current resuls in a 

substantial but reverse use dependent lenghtening of the APD. In our experiments we 

showed that in all four species the IKr blocker E-4031, while in different proportion, but 

significantly lenghtened the APD (Figure 14, top panels). In our experiments the selective 

IKs blocker L-735,821 (100 nM) did not lenghten the APD in human, dog and rabbit 

ventricular muscle (Figure 14, bottom panels). These results can be best explained by the 

kinetic parameters of the IKs current, ie. IKs activated slowly and the current amplitude is 

relatively small. Due to its slow activation kinetics the IKs current under voltages relevant 

to an action potential plateau phase activated only in a small quantity, thereby its selective 

inhibiton did not resulted in a measurable APD lenghtening.  

In an earlier study we showed, that when the APD was artificially lengthened by 

pharmacological means (augmenting inward -INa- and decreasing outward -IKr- currents), 

IKs was more fully activated and thereby, the amplitude of IKs sufficiently increased so that 

its selective blockade produced a significant lengthening of the APD. We concluded that 

IKs had limited role in the repolarization of a „normal” healthy heart, but our observation 

that when the duration of rectangular or ”action potential-like” test pulse was increased 

and IKs was more fully activated, suggested that IKs may play an important role when 

cardiac APD is abnormally lengthened by other means (e.g. by reductions in IKr or IK1 or 

increases in INa or ICa). Under such conditions pharmacological block of IKs might be 

expected to have severe detrimental consequences when this protective mechanism is 

eliminated. For example, if repolarisation is excessively lengthened due to drug induced 

IKr block, hypokalaemia, genetic abnormality or bradycardia, the subsequent increase in 

APD would favour IKs activation and provide a negative feedback mechanism to limit 

further lengthening of APD (45,48).  

Based on the results reported in this thesis we need to point that this observation is 

true in human, dog and rabbit, where the amplitude of the slow activating IKs current is not 

so significant, thereby its selective blockade did not result in substantial APD lengthening. 

We have shown that in guinea pig the properties of IKs current (magnitude and kinectics as 

well) differed from those of other studied species. The current is sigfnificantly activated 

under voltages relevant to an action potential, thereby even the partial blockade of the 

current by 10 µM chromanol 293B (which inhibits by about 60 % of the IKs in GM) 

resulted in a significant APD lenghtening (  12%, Figure 14, right bottom panel). 
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4.3. Effects of the ORM-10103 on the NCX, delayed rectifier potassium current and 
on the early and delayed afterdepolarizations 

In our experiments NCX current is defined as Ni2+-sensitive current. ORM-10103 

inhibited INCX in canine ventricular myocytes at relatively low concentrations, with an 

estimated EC50 of 780 - 960 nM. In the same cells, even at the high concentration of 10 

M, ORM-10103 did not influence ICaL measured by the patch clamp technique, or INa 

estimated as dV/dtmax by the conventional microelectrode measurements. Consequently, 

decreases of the inward currents and thereby diminution of the Ca2+ load via the ICaL and 

INa can not explain the effects of ORM-10103 on the amplitudes of EAD and DAD.  

The main finding of this study was that ORM-10103 effectively inhibited the NCX 

current without affecting ICaL, and this effect was associated with decreases in the 

amplitudes of EAD and DAD evoked in canine ventricular papillary muscle and cardiac 

Purkinje fibres, respectively.  

ORM-10103 did not change considerably Ito, IK1 and IKs, and regarding IKr a slight but 

significant decrease of the current was found in the presence of ORM-10103. The 

reduction in outward potassium currents resulting in prolongation of repolarization would 

rather increase than decrease the liability to afterdepolarizations (87). Therefore, 

participation of the rapid delayed rectifier K+ current in the mechanism whereby ORM-

10103 decreases EAD and DAD is unlikely.  

In the literature two compounds, KB-R7943 and SEA0400 have been reported as 

potent inhibitors of the NCX current even in submicromolar concentrations. KB-R7943 

additionally abolishes experimental arrhythmias (88), while SEA-0400 significantly 

decreases the pharmacologically induced EAD and DAD in canine ventricular 

preparations in concentrations at which it does not interfere with ICaL (66). In other studies, 

it was demonstrated that KB-R7943 and SEA-0400 in micromolar concentrations do 

inhibit the L-type calcium current (89,90), which makes the interpretation of their 

antiarrhythmic effect somewhat uncertain. Our present investigation has provided further 

evidence that specific NCX inhibition results in suppression of triggered arrhythmias in in 

vitro cardiac preparations. 

The possible therapeutic implications of our study appear to be rather complex. 

Suppression of EAD and DAD may be antiarrhythmic in both ventricles and atria (91) 

during a Ca2+ overload, as in heart failure, digitalis intoxication, and at the beginning of 

atrial flutter and fibrillation, especially when K+ currents have been downregulated (92,93) 

and the NCX current upregulated (94). It has been considered that, on reperfusion after 
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myocardial ischaemia, Ca2+ influx occurs via NCX in the reverse mode contributing to 

Ca2+ overload and the release of Ca2+ from the sarcoplasmic reticulum and thereby causing 

cardiac arrhythmias (95). Accordingly, blockade of the reverse mode of the NCX current 

may be beneficial. 

Further research is clearly needed with both in vitro and in vivo methods in order to 

elucidate the potential therapeutic targets and, in a wider sense, the possible beneficial 

effect of specific NCX inhibition. 

 

5. CONCLUSIONS AND POTENTIAL SIGNIFICANCE 
 
(1) We have shown that the two optical enantiomers of the benzodiazepine R-L3 

(ZS_1270B and ZS_1271B) have adverse modulating effects on IKs in the same 

concentration range. ZS_1270B is a potent activator of IKs, therefore, this substance is 

adequate to test whether IKs activators are indeed ideal tools to suppress ventricular 

arrhythmias originating from prolongation of action potentials. 

(2)  The rapid (IKr) and the slow (IKs) components of the delayed rectifier potassium 

current are both expressed in the undiseased human cardiac ventricle. IKr activates fast 

(within 50 ms) and deactivates slowly (several seconds) and biexponentially, while, 

conversely IKs activates slowly (800-1000 ms) and deactivates rapidly ( 150 ms). 

Considering these kinetic properties it is concluded that the human cardiac delayed 

rectifier potassium currents best resemble those measured in the dog ventricle and rabbit 

heart, but are dissimilar to the kinetic properties of IKr and IKs found in guinea pig. Based 

also on our studies the IKr current plays the most important role in cardiac repolarization, 

and our new findings suggest that the dog and the rabbit are suitable species for preclinical 

evaluation of new drugs believed to affect cardiac repolarisation. 

(3) ORM-10103, a newly synthetised NCX selective blocker significantly reduced 

both the inward and outward NCX currents at submicromolar range. Even at a high 

concentration (10 M), ORM-10103 did not significantly change the L-type Ca2+ current 

or the fast inward Na+ current. ORM-10103 did not influence Na+/K+ pump and the main 

K+ currents of canine ventricular myocytes except the rapid delayed rectifier K+ current, 

which is slightly diminished by the drug at 3 µM concentration. The amplitude of 

pharmacologically induced early and delayed afterdepolarizations (EAD and DAD) were 

significantly decreased by ORM-10103 (3 and 10 M) in a concentration-dependent 

manner. In conclusion, our study has furnished evidence of the strong NCX-inhibitory 
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activity of ORM-10103 and its potential to suppress elementary arrhythmogenic 

phenomena, such as EAD and DAD. 

 

6. REFERENCES 
 
1 Thireau J, Pasquié  JL, Martel E,  Le Guennec JY, Richard S (2011). New drugs vs. old concepts 

A fresh look at antiarrhythmics. Pharmacology & Therapeutics, 13, 125–145. 
2 Vaughan William EM (1984). A classification of antiarrhythmic actions reasessed after a decade 

of new drugs. J Clin Pharmacol., 24, 129-147. 
3 The Sicilian Gambit (1991). A new approach to the classification of antiarrrhythmic drugs based 

on their actions on arrhytmogenic mechanisms. Task Force of the Working Group on 
Arrhythmias of the European Society of Cardiology. Circulation, 84, 1831-1851. 

4 Singh BN, Vaughan Williams EM (1970). A third class of anti-arrhythmic action. Effects on 
atrial and ventricular intracellular potentials, and other pharmacological actions on cardiac 
muscle, of MJ-1999 and AH-3474. Br J Pharmacol., 39, 675-687. 

5 Singh BN (1999). Current antiarrhythmic drugs. An overwiew of mechanisms of action and 
potential clinical utility. J Cardiovasc. Electrophysiol., 10, 283-301. 

6 Nattel S, Carlsson L (2006). Innovative approaches to anti-arrhythmic drug therapy. Nat Rev 
Drug Discov., 5(12), 1034-1049. 

7 Nattel S, Duker G, Carlsson L (2008). Model systems for the discovery and development of 
antiarrhythmic drugs. Prog Biophys Mol Biol., 98(2-3), 328-339.  

8 The CAST Investigators (1989): Preliminary report: effect of encainide and flecainide on 
mortality in randomized trial arrhythmia supression after myocardial infarction. N Engl J Med., 
321, 406-412. 

9 The CAST II Investigators (1992): Effect of the antiarrhythmic agent moricizine on survival 
after myocardial infarction. N Engl J Med., 327, 227-233. 

10 Waldo AL, Camm AJ, de Ruyter H, et al. for the SWORD Investigators (1996): Effect of d-
sotalol on mortality in patients with left ventricular dysfunction after recent and remote 
myocardial infarction. Lancet, 348, 7-12. 

11 Litovsky SH, Antzelevitch C (1988). Transient outward current prominent in canine ventricular 
epicardium but not endocardium. Circ Res., 62, 116-126. 

12 Li GR, Dong MQ (2010). Pharmacology of cardiac potassium channels. Adv Pharmacol., 59, 
93-134. 

13 Sanguinetti MC, Jurkiewicz NK (1990). Two components of cardiac delayed rectifier K+ 

current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol., 96, 
195-215. 

14 Bers DM (2002). Sarcolemmal Na/Ca exchange and Ca-pump. In: Bers DM (ed). Excitation-
contraction coupling and cardiac contractile force. Boston: Kluwer Academic Publishers, pp 
133-160. 

15 Lopatin AN, Makhina EN, Nichols CG (1994). Potassium channel block by cytoplasmic poly 
amines as the mechanism of intrinsic rectification. Nature, 372: 366-369. 

16 Ishihara K, Mitsuiye T, Noma A, Takano M (1989). The Mg2+ block and intrinsic gating 
underlying inward rectification of the K+ current in guinea-pig cardiac myocytes. J Physiol.,  
419: 297-320. 

17 Smith PL, Baukrowitz T, Yellen G (1996). The inward rectification mechanism of the HERG 
cardiac potassium channel. Nature, 37, 833-836. 

18 Rocchetti M, Besana A, Gurrola GB, Possani LD, Zaza A (2001). Ratedependency of delayed 
rectifier currents during the guinea-pig ventricular action potential. J Physio.,  534: 721-732. 

19 Shimoni Y, Clark RB, Giles WR (1992). Role of inwardly rectifying potassium current in rabbit 
ventricular action potential. J Physiol., 448: 709-727. 



46 

 
20 Maltsev VA, Sabbah HN, Higgins RS, Silverman N, Lesch M, Undrovinas AI (1998). Novel, 

ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation.,  
98(23): 2545-52. 

21 Kim J, Ghosh S, Liu H, Tateyama M, Kass RS, Pitt GS (2004). Calmodulin mediates Ca2+ 
sensitivity of sodium channels. J Biol Chem., 279(43): 45004-12. 

22 Wagner S, Maier LS. Modulation of cardiac Na(+) and Ca(2+) currents by CaM and  CaMKII 
(2006). J Cardiovasc Electrophysiol., 17 Suppl 1: S26-S33. 

23 Whalley DW, Wendt DJ, Grant AO (1995). Basic concepts in cellular cardiac electrophysio 
logy: part I: ion channels, membrane currents and action potential. PACE, 18, 1556-1574. 

24 Varró A, Papp JGy (1992). The impact of single cell voltage clamp on the understanding of the 
cardiac ventricular action potential. Cardioscience, 3, 131-144. 

25 Barry DM, Nerbonne JM (1996). Myocardial potassium channels: electrophysiological and 
molecular diversity. Annu Rev Physiol., 58, 363-394. 

26 Noble D, Tsien RW (1969). Outward membrane currents activated in the plateau range of 
potentials in cardiac Purkinje fibres. J Physiol., 200, 205-231. 

27 Varró A, Lathrop DA, Hester SB, Nánási PP, Papp JG (1993). Ionic currents and action 
potentials in rabbit, rat and guinea pig ventricular myocytes. Basic Res Cardiol, 88, 93-102. 

28 Gintant GA (1995). Regional differences in IK density in canine left ventricle: role of IK,s in 
electrical heterogeneity. Am J Physiol., 268, H605-H613.  

29 Liu DW, Antzelevitch C (1995). Characteristics of the delayed rectifier current (IKr and IKs) in 
canine ventricular epicardial, midmyocardial and endocardial myocytes. A weaker IKs 
contributes to the longer action potential of the M cell. Circ Res., 76, 351-365. 

30 Sanguinetti MC, Jurkiewicz NK (1990). Two components of cardiac delayed rectifier K
+
 

current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol., 96, 
195-215. 

31 Gintant GA (1996). Two components of delayed rectifier current in canine  atrium  and 
ventricle. Does IKs play a role in the reverse rate dependence of Class III agents? Circ Res., 
78,26-37. 

32 Carmeliet E (1992). Voltage and time-dependent block of the delayed  K
+
 current in cardiac 

myocytes by dofetilide. J Pharmacol Exp Ther., 262, 809-817. 
33 Follmer CH, Lodge NJ, Cullinan CA, Colatsky TJ (1992). Modulation of the delayed rectifier 

IK by cadmium in cat ventricular myocytes. Am J Physiol., 262, C75-C83. 
34 Bennett PB, McKinney LC, Kass RS, Begenisich T (1985). Delayed rectification in the calf 

Purkinje fiber. Evidence for multiple state kinetics. Biophys J., 48, 553-567. 
35 Apkon J, Nerbonne JM (1991). Characterization of two distinct depolarization-acvtivated K

+
  

currents  in isolated adult rat ventricular myocytes. J Gen Physiol., 97, 973-1011. 
36 Sanguinetti MC, Keating MT (1997). Role of delayed rectifier potassium channels in cardiac 

repolarisation and arrhythmias. News Phys Sci., 12, 152-158. 
37 Singh BN (1998). Antiarrhythmic drugs: a reorientation in light of recent developments in the 

control of disorders of rhythm. Am J Cardiol., 81, 3D-13D.  
38 Hohnloser SH, Woosley RL (1994). Sotalol. N Engl J Med., 331, 31-38. 
39 Singh BN, Vaughan Williams EM (1970). A third class of anti-arrhythmic action. Effects on 

atrial and ventricular intracellular potentials, and other pharmacological actions on cardiac 
muscle, of MJ-1999 and AH-3474. Br J Pharmacol., 39, 675-687.  

40 Jurkiewicz NK, Sanguinetti MC (1993). Rate-dependent prolongation of cardiac action poten 
tials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly 
activating delayed rectifier K+ current by dofetilide. Circ Res., 71, 75-83. 

41 Surawicz B (1989). Electrophysiologic substrate of Torsade de Pointes: Dispersion of repola 
risation or early afterdepolarisation? J Am Coll Cardiol., 14, 172-184. 

42 El-Sherif N (1992). The proarrhythmic mechanism of drugs that prolong repolarisation. Role of 
early afterdepolarisation. New Trends in Arrhythmias,  8, 617-626.  

43 Hondeghem LM, Snyders DJ (1990). Class III antiarrhythmic agents have a lot of potential but 
a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation, 
81, 686-690. 



47 

 
44 Salata JJ, Jurkiewicz NK, Jow B, Folander K, Guinosso PJ, Raynor B, Swanson R, Fermini B 

(1996). IK of rabbit ventricle is composed of two currents: evidence for IKs. Am J Physiol., 271, 
H2477-H2489. 

45 Varró A, B. Baláti, N. Iost, J. Takács, L. Virág, D. A. Lathrop, C. Lengyel, L. Tálosi, J. Gy. 
Papp (2000). The role of the delayed rectifier component IKs in dog ventricular muscle and 
Purkinje fibre repolarization. Journal of Physiology (London), 523, 67-81. 

46 Virág L, N Iost, M Opincariu, J Szolnoky, J Szécsi, G Bogáts, P Szenohradszky, A Varró, JGy 
Papp (2001). The slow component of the delayed rectifier potassium current in undiseased 
human ventricular myocytes. Cardiovasc. Res., 49, 790-797. 

47 Roden DM, Lazzara R, Rosen M, Schwartz PJ, Towbin J, Vincent GM (1996), for the SADS 
Foundation Task Force on LQTS. Multiple mechanisms in the long QT syndrome: current 
knowledge, gaps, and future directions. Circulation, 94, 1996 –2012. 

48 Jost N, Virág L, Bitay M, Takács J, Lengyel Cs, Biliczki P, Nagy ZA, Bogáts G, Lathrop DA, 
Papp JGy, Varró A (2005). Restricting excessive cardiac action potential and QT prolongation: 
a vital role for IKs in human ventricular muscle. Circulation, 112, 1392-1399. 

49 Salata JJ, Jurkiewicz NK, Wang J, Evans BE, Orme HT, Sanguinetti MC (1998). A novel 
benzodiazepine that activates cardiac slow delayed rectifier K+ currents. Mol Pharmacol., 54, 
220–230. 

50 Xu X, Salata JJ, Wang J, Wu Y, Yan GX, Liu T, Marinchak RA, Kowey PR (2002). Increasing 
IKs corrects abnormal repolarization in rabbit models of acquired LQT2 and ventricular 
hypertrophy. Am J Physiol., 283, H664–H670. 

51 Seebohm G, Pusch M, Chen J, Sanguinetti MC (2003). Pharmacological activation of normal 
and arrhythmia-associated mutant KCNQ1 potassium channels. Circ Res., 93, 941–947. 

52 Magyar J, Horváth B, Bányász T, Szentandrássy N, Birinyi P, Varró A, Szakonyi Z, Fülöp F, 
Nánási PP (2006). L-364,373 fails to activate the slow delayed rectifier K(+) current in canine 
ventricular cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol., 373, 85–90. 

53 Nissen JD, Diness JG, Diness TG, Hansen RS, Grunnet M, Jespersen T (2009). Pharmacolo 
gically induced long QT type 2 can be rescued by activation of IKs with benzodiazepine R-L3 in 
isolated guinea pig cardiomyocytes. J Cardiovasc Pharmacol., 54, 169-777. 

54 Dibb KM, Graham HK, Venetucci LA, Eisner DA, Trafford AW (2007). Analysis of cellular 
calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart. Cell Calcium, 
42(4-5), 503-512. 

55 Dibb KM, Eisner DA, Trafford AW (2007). Regulation of systolic [Ca2+]i and cellular Ca2+ flux 
balance in rat ventricular myocytes by SR Ca2+, L-type Ca2+ current and diastolic [Ca2+]i. J 
Physiol., 585(Pt 2), 579-92. 

56 Alexander SPH, Mathie A, Peters JA (2011). Guide to Receptors and Channels (GRAC), 5th 
Edition. Br J Pharmacol., 164 (Suppl. 1), S1–S324. 

57 Bers DM (2000). Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res.,  
87: 275−281.  

58 Bers DM (2002). Cardiac excitation−contraction coupling. Nature, 415: 198−205. 
59 Venetucci LA, Trafford AW, O'Neill SC, Eisner DA (2007). Na/Ca exchange: regulator of intra 

cellular calcium and source of arrhythmias in the heart. Ann N Y Acad Sci., 1099:315-325. 
60 Hardman JG, Limbird LE, Molinoff PB, Ruddon RW (1996). In Goodman & Gilman’s The 

Pharmacological Basis of Therapeutics, Roden DM: Antiarrhythmic drugs, Chapter 35, 839-
871. 

61 Volders PGA, Vos MA, Szabo B, Sipido KR, Marieke DE, Groot SH, Gorgels APM, Wellens 
HJJ, Lazzara R (2000). Progress in the understanding of cardiac early afterdepolarizations and 
torsades de pointes: time to revise current concepts. Cardiovasc Res.,  46, 376−392. 

62 Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001). Arrhythmogenesis and con -
tractile dysfunction in heart failure. Roles of sodium−calcium exchange, inward rectifier 
potassium current, and residual-adrenergic responsiveness. Circ Res.,  88, 1159−1167. 

63 Pogwizd SM, Bers DM (2002). Calcium cycling in heart failure: the arrhythmia connection. J 
Cardiovasc Electrophysiol., 13, 88−91. 



48 

 
64 Pogwizd SM (2003). Clinical potential of sodium−calcium exchanger inhibitors as antiarrhyth 

mic agents. Drugs, 63, 439−452.  
65 Elias CL, Lukas A, Shurraw S, Scott J, Omelchenko A, Gross GJ, Hnatowich M, Hryshko LV 

(2001). Inhibition of Na+/Ca2+ exchange by KB-R7943: transport mode selectivity and 
antiarrhythmic consequences. Am J Physiol., Heart Circ Physiol., 281, H1334−H1345. 

66 Nagy A, Virág L, Tóth A, Biliczki P, Acsai K, Bányász T, Nánási PP, Papp JGy, Varró A 
(2004). Selective inhibition of sodium-calcium exchanger by SEA-0400 decreases early and 
delayed afterdepolarization in canine heart. Br J Pharmacol., 143, 827–831. 

67 Roden DM (1998). Taking the "idio" out of "idiosyncratic": predicting torsades de pointes. 
Pacing Clin Electrophysiol., 21(5), 1029-34. 

68 Biliczki P, Virag L, Iost N, Papp JG, Varro A (2002). Interaction of different potassium 
channels in cardiac repolarization in dog ventricular preparations: role of repolarization reserve. 
Br J Pharmacol., 137(3), 361-368. 

69 Banyasz T, Magyar J, Szentandrassy N, Horvath B, Birinyi P, Szentmiklosi J, et al (2007). 
Action potential clamp fingerprints of K+ currents in canine cardiomyocytes: their role in 
ventricular repolarization. Acta Physiol (Oxf)., 190(3), 189-198. 

70 Mazzanti M, DiFrancesco D (1989). Intracellular Ca modulates K-inward rectification in car 
diac myocytes. Pflugers Arch., 413, 322-324. 

71 Nagy N, Acsai K, Kormos A, Sebők Z, Farkas AS, Jost N, Nánási PP, Papp JGy, Varró A, Tóth 
A. (2013). [Ca2+]i-induced augmentation of the inward rectifier potassium current (IK1) in 
canine and human ventricular myocardium. Pflügers Archiv Eur J Physiol, epub. 

72 Lengyel C, Iost N, Virág L, Lathrop AD, Varró A, Papp JG (2001).  Pharmacological block of 
the slow component of the outward delayed rectifier current (I(Ks)) fails to lengthen rabbit 
ventricular muscle QT(c) and action potential duration. Br J Pharmacol., 132(1), 101-110. 

73 Bosch RF, Gaspo R, Busch AE, Lang HJ, Li GR, Nattel S (1998). Effects of the chromanol 
293B, a selective blocker of the slow component of the delayed rectifier K+ current on 
repolarisation in human and guinea pig ventricular myocytes. Cardiovasc Res., 38:441-450. 

74 Gerlach U: IKs channel blockers: potential antiarrhythmic agents (2001). Drug Future, 26, 473-
484. 

75 Hobai IA, Khananshvili D, Levi AJ (1997). The peptide "FRCRCFa", dialysed intracellularly, 
inhibits the Na/Ca exchange in rabbit ventricular myocytes with high affinity. Pflugers Arch 
433: 455-463. 

76 Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Gould NP, Lundell 
GF, Homnick CF, Veber DF, Anderson PS, Chang RSL, Lotti VJ, Cerino DJ, Chen TJ, King 
PJ, Kunkel KA, Springer JP, Hirshfieldt J (1987). Design of  nonpeptidal ligands for a peptide 
receptor: cholecystokinin antagonists. J Med Chem., 30, 1229-1239. 

77 Jost N, Virág L, Hála O, Varró A, Thormählen D, Papp JGy (2004). Effect of the 
antifibrillatory compound tedisamil (KC-8857) on transmembrane currents in mammalian 
ventricular myocytes. Current Medicinal Chemistry, 11, 3219-3228. 

78 Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996). K(V)LQT1 and 
IsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature, 384:78-80. 

79 Volders PG, Stengl M, van Opstal JM, Gerlach U, Spatjens RL, Beekman JD, Sipido KR, Vos 
MA (2003). Probing the contribution of IKs to canine ventricular repolarization: key role for 
beta-adrenergic receptor stimulation. Circulation, 107, 2753-2760. 

80 Easson LH, Stedman E (1933). CLXX. Studies on the relationship between chemical consti - 
tution and physiological action. V. Molecular dissymmetry and physiological activity. 
Biochem. J.,  27, 1257-1266. 

81 González E, Ledesma de Paolo MI, Celener D, Celener FP, Rosembeck G, Panzitta MT, Bustos 
Fernández L (1993). The effect of different lactic acid isomers in the colon of rats. Acta 
Gastroenterol Latinoam., 23, 203-210. 

82 Zittoun J, Marquet J, Pilorget JJ, Tonetti C, De Gialluly E (1991). Comparative effect of 6S, 6R 
and 6RS leucovorin on methotrexate rescue and on modulation of 5-fluorouracil. Br J Cancer., 
63, 885-888. 



49 

 
83 Caillet C, Chauvelot-Moachon L, Montastruc JL, Bagheri H; French Association of Regional 

Pharmacovigilance Centers (2012). Safety profile of enantiomers vs. racemic mixtures: it's the 
same? Br J Clin Pharmacol., 74, 886-889. 

84 Hof RP, Rüegg UT, Hof A, Vogel A (1985). Stereoselectivity at the calcium channel: opposite 
action of the enantiomers of a 1,4-dihydropyridine. J Cardiovasc Pharmacol., 7, 689-693. 

85 Beuckelmann DJ, Näbauer M, Erdmann E (1993). Alteration of K+ currents in isolated human 
ventricular myocytes from patients with terminal heart failure. Circ Res., 73, 379-385.  

86 Varró A, Lathrop DA, Papp JG (2001). Role of the delayed rectifier component IKs in cardiac 
repolarization. J Cardiovasc Electrophysiol., 12, 1204–1205,  

87 Morissette P, Hreiche R, Turgeon J (2005). Drug-induced long QT syndrome and torsade de 
pointes. Can J Cardiol.,  21(10): 857-864. 

88 Elias CL, Lukas A, Shurraw S, Scott J, Omelchenko A, Gross GJ, Hnatowich M, Hryshko LV 
(2001). Inhibition of Na+/Ca2+ exchange by KB-R7943: transport mode selectivity and 
antiarrhythmic consequences. Am J Physiol, Heart Circ Physiol.,  281: H1334−H1345. 

89 Tanaka H, Nishimaru K, Aikawa T, Hirayama W, Tanaka Y, Shigenobu K (2002). Effect of 
SEA0400, a novel inhibitor of sodium−calcium exchanger, on myocardial ionic currents. Br J 
Pharmacol., 135: 1096−1100. 

90 Birinyi P, Acsai K, Banyasz T, Toth A, Horvath B, Virag L, Szentandrassy N, Magyar J, Varro 
A, Fulop F, Nanasi PP (2005). Effects of SEA-0400 and KB-R7943 on Na+/Ca2+ exchange 
current and L-type Ca2+ current in canine ventricular cardiomyocytes. Naunyn Schmiedebergs 
Arch Pharmacol.,  372: 63-70.  

91 Chen YJ, Chen SA, Chang MS, Lin CI (2000). Arrhythmogenic activity of cardiac muscle in 
pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovasc Res.,  
48: 265-273.  

92 Van Wagoner DR, Nerbonne JM (2000). Molecular basis of electrical remodeling in atrial 
fibrillation. J Mol Cell Cardiol.,  32: 1101−1117. 

93 Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S (1997). Ionic remodeling underlying action 
potential changes in a canine model of atrial fibrillation. Circ Res.,  81: 512−525. 

94 Studer R, Reinecke H, Bilger J, Eschenhangen T, Bohm M, Hasenfuss G, Just H, Holtz J, 
Drexler H (1994). Gene expression of the cardiac Na+-Ca2+ exchanger in end-stage human heart 
failure. Circ Res.,  75: 443−453. 

95 Levi A, Brooksby P, Hancox JC (1993). One hump or two? The triggering of calcium release 
from the sarcoplasmic reticulum and the voltage dependence of contraction in mammalian 
cardiac muscle. Cardiovasc Res.,  27: 1743−1757. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



50 

 

7. ACKNOWLEDGEMENTS 

I am very grateful to Professor Julius Gy. Papp MD, DSc, academian, for his 

continuous support, his kindness and critical reading of my manuscripts, his inspirational 

comments and constructive criticism were always of help and are greatly appreciated, and 

to Professor András Varró MD, DSc for providing me the opportunity for research as 

PhD student at the Department of Pharmacology and Pharmacotherapy, University of 

Szeged and the helpful discussions were exceptionally useful during my work. 

I am especially thankful to my PhD supervisor Dr. Norbert Jost, for personal 

guidance and for introducing me to the fascinating world of cardiac cellular 

electrophysiology. I always enjoyed his optimistic attitude to the scientific problems. 

Without his continuous support, never-failing interest and eagerness to discuss new ideas, 

plans and findings throughout these years, this PhD study could have hardly come to an 

end. 

I am indebted to Professor Ferenc Fülöp and his colleagues for the synthesis of the 

R-L3 enantiomers. 

Zsófia Kohajda is sincerely thanked for excellent collaboration during the years, for 

the many hours of splendid discussions and helpful scientific lessons.  

I wish to thank my senior colleague, Dr. László Virág and my PhD student 

colleagues Attila Kristóf, András Horváth and Amir Geramipour for their continuous 

support and help in my work, for creating a cheerful and social milieu in the laboratory, 

and to Mrs. Zsuzsanna Molnár and Mr. Gábor Girst for their helpful technical 

assistance. Dr. Károly Acsai is also gratefully acknowledged for inspiring discussions and 

lots of excellent advices. 

 I also wish to thank Dr. Attila Kun, my grandfather (Ferenc Mayer) and to my 

parents (Rita and Toma), to Whom I want to dedicate this thesis, for their endless love, 

trust and support.  

I am also thankful to my dear friends for their support and encouragement. 

This work was supported by grants from the Hungarian Scientific Research Fund 

(OTKA K-82079 and NK-104331), the National Innovation Office - Baross Programmes 

(REG-DA-09-2-2009-0115-NCXINHIB), the National Development Agency and co-

financed by the European Regional Fund (TÁMOP-4.2.2/B-10/1-2010-0012; TÁMOP-

4.2.2A-11/1/KONV-2012-0073), HU-RO Cross-Border Cooperation Programmes 

(HURO/1001/086/2.2.1_HURO-TWIN) and the Hungarian Academy of Sciences. 



51 

 
8. ANNEX 

 

Publications related to the subject of the Thesis 
 


