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Summary 

Neurodegenerative disorders are devastating brain diseases whose importance for the 

ageing population is steadily increasing. Huntington's disease (HD) is the most common 

known autosomal dominantly inherited neurodegenerative disorder caused by an expanded 

polyglutamine tract in the protein called huntingtin. Its characteristic neuropathological 

changes mainly affect the striatum. Despite continuous research efforts, the exact 

pathomechanism causing neurodegeneration is not fully known, and there is no specific 

neuroprotective therapy for Huntington’s disease or any other neurodegenerative disease so 

far. 

We investigated some aspects of two pathogenic hallmarks thought to be important in 

neurodegenerative diseases: disrupted axonal transport and mitochondrial dysfunction. 

Dynein is a motor protein responsible for intracellular transport of cargoes toward the minus-

end of microtubules and mediates retrograde axonal transport in neurons. Cramping mice 

bearing a point mutation in the dynein cytoplasmic heavy chain gene exhibit disturbed dynein 

function and develop characteristic phenotype including hind limb clasping, twisting the body 

and progressive loss of muscle tone. This phenotype is partially explained by early-onset 

sensory neuropathy. Substantial body of evidence suggest the involvement of mitochondrial 

dysfunction in neurodegeneration, and increased mitochondrial mass is observed in many of 

these diseases. This mitochondrial proliferation is suggested to be a compensatory 

mechanism, however the underlying processes are not fully known. Peroxisome proliferator-

activated receptor (PPAR) gamma coactivator 1 alpha (PGC-1α) is a transcriptional 

coactivator considered as master regulator of mitochondrial biogenesis and metabolism, 

moreover loss of its function was proposed as a key factor during neurodegeneration. 

We showed that Cramping mice carrying a dynein point mutation have striatal 

involvement which may be responsible for their behavioural abnormalities, such as 

hyperactivity, progressive motor incoordination and early muscle weakness. We confirmed 

the selective down-regulation of D1 dopamine receptors expression, striatal atrophy, 

accompanied with enlargement of lateral ventricles, decreased binding to either D1 or D2 

dopamine receptors and prominent astrocytosis in the striatum of Cramping mice. All these 

findings support the in vivo requirement of cytoplasmic dynein in the function of the striatum, 

and highlight the importance of the dynein motor and axonal transport disruption in the 

pathogenesis of striatal diseases, notably Huntington's disease.  

Others from our workgroup described systemic mitochondrial dysfunction (Eschbach et 

al., 2013) and compensatory mitochondrial proliferation accompanied by PGC-1α activation 
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in Cramping mice. We demonstrated that the genetic ablation of full length PGC-1α (FL- 

PGC-1α) in Cramping mice completely abolished the previously observed increases in 

mitochondrial DNA levels in muscles and reverted the mitochondrial phenotype. Moreover 

FL-PGC-1α ablation significantly worsened the overall and neurological phenotype of 

Cramping mice. Thus, FL-PGC-1α is required for the compensatory maintenance of 

mitochondrial function in vivo. This observation contributes to a better understanding of the 

underlying mechanisms in mitochondrial dysfunction related to disease. 

Further, we tested the effects of L-carnitine (LC) administration in the N171-82Q 

transgenic mouse model of HD. LC is an antioxidant nutrient also enhancing mitochondrial 

function. We demonstrated that L-carnitine administration in higher dose significantly 

extended the survival and ameliorated the motor symptoms of the N171-82Q transgenic HD 

mice. Moreover it preserved striatal neuron count and decreased the number of intranuclear 

huntingtin aggregates. Thus, our data suggest that L-carnitine is neuroprotective and may 

possibly be beneficial in the treatment of Huntington's disease. 

In all, our data highlight the role of the molecular motor dynein and mitochondrial 

dysfunction in neurodegeneration, notably in Huntington's disease. These findings contribute 

to better understanding of the pathomechanism of neurodegenerative diseases and offer 

potential therapeutic ways. 
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I. Introduction 

Neurodegenerative disorders are devastating diseases characterized by progressive, 

selective loss of specific neuronal systems. Besides the vulnerable neurons, the damage 

develops also in neighbouring non-neuronal supporting cells, and in multiple cell types in the 

periphery (Ilieva et al., 2009). Despite recent and continuous research efforts the exact 

pathomechanism which causes neuronal dysfunction and cell death still remains unknown in 

the most common sporadic or familial neurodegenerative diseases such as Alzheimer’s 

disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and in the 

inherited forms such as Huntington’s disease (HD), where the disease causing gene and its 

protein product is known. Despite the heterogeneity of neurodegenerative diseases, there are 

several common factors well documented for their importance in pathogenesis. Two of these 

factors, disrupted axonal transport and mitochondrial dysfunction, were investigated during 

this PhD work, with special focus on Huntington's disease.  

 

I.1. Huntington's disease 

Huntington’s disease (HD) is the most common known autosomal dominantly inherited 

neurodegenerative disorder. Clinically it is characterized by motor dysfunction, cognitive and 

behavioural impairment and psychiatric disturbances, typically starting in mid-life and 

progressing relentlessly to death after a course of 10-25 years (Walker, 2007). The motor 

abnormalities of HD derive from dysfunction of brain regions involved in involuntary 

movement control, in particular the striatum, leading to uncontrollable dance-like movements 

(‘‘chorea’’) as a clinical hallmark. Progressive gait impairment, brady-, and hypokinesia also 

develop.  

HD is caused by expansion of a cytosine-adenine-guanine (CAG) trinucleotide repeat in 

the protein coding region of the IT15 gene encoding an elongated polyglutamine tract in the 

huntingtin (HTT) protein (The Huntington's Disease Collaborative Research Group, 1993). 

The number of CAG repeats in the gene determines HD phenotype. Normal alleles also 

contain CAG repeats, with 35 or less being non-pathogenic. Incomplete penetrance is 

observed with 36–39 repeats. Over 40 repeats, the disease is fully penetrant. The length of 

CAG repeats expansion has been shown to account for about 60% of the variation in age-at-

onset, with the remainder represented by modifying genes and environmental factors (Gusella 

and Macdonald, 2009, Weydt et al., 2009). Neuropathological hallmark of HD is the loss of 

gamma-aminobutyric acidergic medium-sized spiny neurons (MSNs) in the striatum, neurons 

in the deeper layers of the cerebral cortex are also affected (Walker, 2007). The N-terminal 
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fragments of mutant HTT accumulate in the nuclei of the affected neurons and form 

intranuclear aggregates (DiFiglia et al., 1997, Gutekunst et al., 1999). 

A great advantage for investigating the pathomechanism of HD or testing potential 

protective compounds is the existence of animal models of the disease. Transgenic mice 

expressing the N-terminal fragment of HTT with 82 CAG repeat, develop a progressive 

neurological disorder (Schilling et al., 1999). These mice (N171-82Q) fail to gain weight, 

exhibit an irregular, uncoordinated gait, hypokinesis, tremor and frequent hind limb clasping. 

In the open field they show decreased spontaneous locomotor activity and reduced 

explorative behaviour (Klivényi et al., 2006). The animals have shortened lifespan, as they die 

at an average age of 110-130 days. The brain of these mice is slightly smaller, but grossly 

normal, and exhibits striatal atrophy and neuronal intranuclear inclusions that are 

immunopositive for huntingtin and ubiquitin (Schilling et al., 1999). The N171-82Q mouse 

strain has the advantage of a relatively fast disease progression which provides a good 

practical use of testing potentially neuroprotective compounds compared with other 

transgenic (Hodgson et al., 1999) or knock-in (Lin et al., 2001; Menalled et al., 2003) HD 

mouse models. Still this strain displays slighter phenotype than R6/2 transgenic mice 

(Mangiarini et al., 1996), which enables the tested compound to exert its supposed beneficial 

effects and facilitates the detection of potential differences in the onset of symptoms. 

 

I.2. Axonal transport and the molecular motor dynein 

Axonal transport is a bidirectional process through which materials and signals are 

exchanged between the neuronal cell body and the synapse. Neurons are among the largest 

cells in humans and have extensive processes with large distances separating neuronal cell 

bodies from axons and synapses which makes them uniquely dependent on axonal transport 

(Eschbach and Dupuis, 2011; Schiavo et al., 2013; Chevalier-Larsen and Holzbaur, 2006; 

Morfini et al., 2009). Protein synthesis occurs in the cell body, vesicles and materials are 

anterogradely transported to the synapses. On the other hand cell body is the site for 

degradation of misfolded or aggregated proteins, retrograde transport is required for return of 

degradation products. Further, communication between the cell periphery and the cell center 

via transport of signalling complexes and neurotrophic factors is also crucial for neuronal 

maintenance and survival. Axonal transport is mediated primarily by microtubule-based 

molecular motors, large enzymes that use the energy of ATP hydrolysis to generate 

movement. Members of the kinesin superfamily are most, but not all, responsible for 

anterograde transport, while retrograde axonal transport is mainly mediated by the 
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cytoplasmic dynein (Goldstein and Yang, 2000). 

Cytoplasmic dynein is ubiquitously expressed, and is indispensable for the normal 

development. It is a large motor protein complex composed by different subunits such as the 

heavy chain, intermediate chains, light-intermediate chains and light chains (Pfister et al., 

2006). At the core of the molecule lies a homodimer of heavy chains forming the sites of ATP 

binding and microtubule binding (Gee et al., 1997; Pfister et al., 2005; Gennerich et al., 

2007). At the base of the motor are a number of intermediate, light-intermediate and light 

chains which are thought to function by maintaining the stability of the complex and cargo 

attachment (Banks and Fisher, 2008). Dynein functions in association with a multi-protein 

regulatory complex called dynactin (Schafer et al., 1994; Karki and Holzbaur, 1995) which 

participates in cargo binding but binds also directly to microtubules probably to increase the 

efficiency of dynein mediated motility (King and Schroer, 2000). As the motor complex 

dynein/dynactin is mainly responsible for the retrograde transport, one of the most important 

roles might be the removal of aggregation-prone proteins from the cell periphery to the place 

of degradation (Rubinsztein et al., 2005). Of note, besides the role in the retrograde axonal 

transport, dynein is involved in other basic cellular functions, such as endoplasmic reticulum 

and Golgi trafficking, mitosis, autophagy and is required for normal development. 

Loss of dynein/dynactin function is considered an important factor in the pathogenesis 

of neurodegenerative diseases (Eschbach and Dupuis, 2011; Schiavo et al., 2013; Chevalier-

Larsen and Holzbaur, 2006; Levy and Holzbaur, 2006). Impairment of retrograde axonal 

transport appears to be one of the earliest pathogenic changes during neurodegeneration 

(Morfini et al., 2009), and transgenic inhibition of retrograde axonal transport induces the 

degeneration of motor neurons (LaMonte et al., 2002; Teuling et al., 2008). Mutations in the 

dynactin subunit p150glued were discovered in familiar forms of motor neuron disease, 

including ALS and distal spinal and bulbar muscular atrophy (Puls et al., 2003, 2005; Munch 

et al., 2004), as well as in Perry syndrome, a rare atypical form of Parkinson’s disease (Farrer 

et al., 2009; Wider et al., 2010). Moreover dynein itself is associated with human pathology, 

mutations in the gene encoding the dynein heavy chain (DYNC1H1) were found in Charcot-

Marie-Tooth disease axonal type 2 (Weedon et al., 2011), in spinal muscular atrophy with 

lower extremity predominance (SMA-LED) (Harms et al., 2012; Scoto et al., 2015) and in 

malformations of cortical development (Poirier et al., 2013). 

Several lines of evidence suggest that altered axonal transport and dynein contribute to 

the pathogenesis of HD. Swollen axons and accumulated vesicular proteins were found in HD 

patient tissue also in several animal models of HD (Chevalier-Larsen and Holzbaur, 2006; 
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Morfini et al., 2009). Dynein, as well as p150Glued, are binding partners of HTT and of 

huntingtin associated protein 1 (HAP1) (Li et al., 1995; Li et al., 1998). Moreover, the activity 

of the dynein complex is positively regulated by wild-type HTT, and strongly decreased by 

mutant HTT (Caviston et al., 2007; Gauthier et al., 2004). However, the effects of mutant 

HTT on axonal transport are widespread by affecting both anterograde and retrograde fast 

axonal transport (Morfini et al., 2009).  

The existence of mouse strains bearing mutations in the dynein heavy chain gene 

(Dync1h1) provides an advantage to investigate the role of dynein in neurodegeneration in 

vivo. There exist currently three mouse strains, Legs at odd angles (Loa) and Cramping (Cra) 

were created by N-ethyl-N-nitrosourea (ENU) mutagenesis, both have a point mutation in 

Dync1h1 (Hafezparast et al., 2003), while Sprawling (Swl) bears a radiation-induced 9-bp 

deletion in the gene (Chen et al., 2007). Both mutations are located in the domain involved in 

homodimerization of the molecular motor. It was shown in Loa/Loa embryos that the 

mutation impairs the ability of dynein to sustain fast retrograde transport (Hafezparast et al., 

2003), also leads to decreased retrograde transport in adult dynein mutant motor neurons 

(Perlson et al., 2009). The three mouse strains have similar phenotypes: homozygous pups die 

before or within 24 hours of birth, heterozygous mice show unusual twisting of the body, hind 

limb clasping when held by the tail, develop abnormal gait and have a normal life-span 

(Hafezparast et al., 2003; Chen et al., 2007). Initially it was suggested that Cra/+ and Loa/+ 

mice display lower motor neuron degeneration, but these findings were not reproduced. On 

the contrary, a proprioceptive sensory neuropathy was observed in these mice (Ilieva et al., 

2008; Dupuis et al., 2009; Chen et al., 2007). However we think that this could not fully 

explain the mouse phenotype and aimed at a more detailed characterisation.  

 

I.3. Mitochondria in neurodegeneration 

Mitochondria are the main energy source of cells and tissues as they provide the 

production of ATP via oxidative phosphorylation. Besides this major function they play many 

other roles, such as contributing to cellular stress responses, production of reactive oxygen 

species (ROS), regulating homeostatic signalling pathways, house parts of the pyrimidine and 

lipid biosynthesis and modulate Ca2+ flux (Nunnari and Suomalainen, 2012). They adopt to 

the cell's changing energetic needs and protect it from oxidative damage. Therefore 

mitochondria are key regulators of cell death and survival. They are especially important in 

tissues with high energy demands like the brain and muscles. Multiple lines of evidence 

indicate that mitochondrial dysfunction is an early, active, common contributor to all major 
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neurodegenerative diseases (Lin and Beal, 2006; Nunnari and Suomalainen, 2012). Mutations 

in mitochondrial DNA (mtDNA) or nuclear-encoded mitochondrial proteins cause a 

heterogeneous group of different diseases, including neurodegenerative and metabolic 

disorders (Nunnari and Suomalainen, 2012). 

Mitochondrial dysfunction and oxidative stress are also early signs in HD and there is a 

strong evidence for their causal involvement in the pathogenesis. Toxicological studies with 

3-nitropropionic acid (3-NP) and malonate, that selectively inhibit succinate dehydrogenase 

(complex II), have long established that striatal neurons are exquisitely vulnerable to 

mitochondrial dysfunction (Beal et al., 1993; Ludolph et al., 1991). Mutant HTT can affect 

mitochondrial function directly and indirectly (Lin and Beal, 2006). It directly alters the 

calcium signalling at the mitochondrial membrane leading to a calcium influx into the 

cytoplasm, which is a potent pro-apoptotic signal postulated to directly lead to cell death 

(Panov et al., 2002; Tang et al., 2005). Indirectly, mutant HTT could affect mitochondrial 

function by transcriptional dysregulation (Sugars and Rubinsztein, 2003). It interacts with 

several transcription factors and coactivators, including CREB-binding protein, Sp1 and 

TATA binding protein, p53 and peroxisome proliferator-activated receptor (PPAR) gamma 

coactivator 1 alpha (PGC-1α) (Cha, 2007). 

Peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1 alpha (PGC-

1α) is a transcriptional coactivator that regulates mitochondrial biogenesis and metabolic 

pathways. PGC-1α was discovered as a key regulator of adaptive thermogenesis which is a 

key component of energy expenditure in mammals (Puigserver et al., 1998). PGC-1α 

orchestrates in a promoter specific manner the activity of a wide range of important 

transcription factors such as PPARs, estrogen receptor and retinoic acid receptor. Through the 

regulation of these and other transcription factors, PGC-1α plays a key role in coordinating 

the expression of a wide range of nuclear encoded mitochondrial proteins. Due to this key 

position in the metabolic regulatory network PGC-1α is labelled as a “master regulator” of 

respiration and mitochondrial biogenesis (Canto et al., 2009; Handschin and Spiegelman, 

2006; Handschin 2009). 

PGC-1α exists in multiple isoforms, that fall into three major families: full length 

isoforms (FL) that are canonical isoforms including PGC-1α1, N terminal truncated isoforms 

(NT) that include the recently described NT- PGC-1α and PGC-1α4, and internally truncated 

(IT) isoforms such as PGC-1α2 and 3, that do not include exons 3-5 (Ruas et al., 2012; Zhang 

et al., 2009). Interestingly, the different PGC-1α functions are at least partially segregated 

among the different isoforms with FL-PGC-1α being more specialized in increasing 
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mitochondrial biogenesis, and NT-PGC-1α being more involved in muscle anabolism (Ruas 

et al., 2012).  

One important step which proposed PGC-1α for neurodegeneration, especially HD was 

the generation and analysis of animal models with genetically modified PGC-1α expression. 

Independently, two research teams developed PGC-1α knock-out mouse model (Leone et al., 

2005; Lin et al., 2004). Later it turned out that while knock-out mice from Lin and 

collaborators are complete PGC-1α knock-out (Ruas et al., 2012; Lin et al., 2004), mice from 

Leone et al. are only knock-out for FL-PGC-1α preserving all IT-isoforms and however NT-

isoforms are truncated for the 16 C-terminal amino-acids they show a roughly preserved 

function (Leone et al., 2005; Chang et al., 2012). These mice will thus be termed as FL-PGC-

1α -/- mice. The differences between the two PGC-1α knock-out models are due to different 

methods used for the PGC-1α gene targeting. Both research groups reported that their 

respective mouse lines display several metabolic abnormalities, such as cold intolerance and 

impaired body weight regulation. Moreover they share many phenotypical similarities to 

transgenic mouse models of HD. Mice show hind limb clasping, dystonic posturing, stimulus-

induced myoclonus and an exaggerated startling response. Whereas one strain exhibits 

profound hyperactivity (Lin et al., 2004), the other shows increased anxiety levels (Leone et 

al., 2005). At the histopathological level, both mouse strains display spongiform-like 

vacuolization predominantly in the striatum, and – less consistently – in other brain regions, 

such as the hippocampus or the pyramidal cells of the cortex (Leone et al., 2005; Lin et al., 

2004). In the striatum strong immunoreactivity for glial fibrillary acidic protein (GFAP) was 

detected, indicating gliosis (Lin et al., 2004). Further, more detailed neuropathological 

examination revealed that FL-PGC-1α -/- mice do not show immunostaining for a wide range 

of neurodegeneration-related proteins and rather suggested to model mitochondrial 

encephalopathies (Szalárdy et al., 2013). 

Further investigations provided more direct evidence of a role for PGC-1α function in 

the pathogenesis of HD (McGill and Beal, 2006). Profound temperature dysregulation was 

detected in HD transgenic mice and positive regulation of PGC-1α dependent genes, 

including uncoupling protein 1, was attenuated in brown adipose tissue (BAT) (Weydt et al., 

2006). Moreover mutant HTT supresses the expression of PGC-1α by interfering with the 

formation of a key transcription complex, the CREB/TAF complex (Cui et al., 2006). It was 

shown that genetic ablation of PGC-1α aggravates the phenotype of a knock-in HD mouse 

model and in vivo transfection with PGC-1α can rescue some aspects of the striatal pathology 

in the R6/2 transgenic HD mice (Cui et al., 2006). The clinical significance of the PGC-1α 
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system for HD is demonstrated by that common variants of the PPARGC1A gene are 

associated with a significant delay in onset of motor symptoms in HD patients of several 

years (Weydt et al., 2009, 2014; Taherzadeh-Fard et al., 2009; Soyal et al., 2012).  

Increased mitochondrial mass is frequently observed in human diseases directly or 

indirectly involving mitochondrial dysfunction (Michel et al., 2012), and is usually called 

“mitochondrial proliferation”. It is considered as a compensatory mechanism mitigating a 

compromised energy metabolism (Michel et al., 2012). Consistent with this view, muscle 

overexpression of FL-PGC-1α, leading to remarkable mitochondrial proliferation, is broadly 

protective for muscle function in mitochondrial myopathies (Wenz et al., 2008; Dillon et al., 

2012), also in amyotrophic lateral sclerosis (Da Cruz et al., 2012). Albeit mitochondrial 

proliferation might also be detrimental through alterations of mitochondrial regulatory 

functions such as apoptosis, calcium metabolism or oxidative stress. Increased mitochondrial 

mass was found to be associated with apoptotic features in muscle fibers (Aure et al., 2006) 

and forced mitochondrial biogenesis leads to muscle atrophy and dilated cardiomyopathy 

(Miura et al., 2006; Lehman et al., 2000). Indeed, increasing mtDNA through transgenic 

overexpression of Twinkle and Tfam, two factors that regulate mtDNA replication was 

deleterious for respiratory chain activities (Ylikkallio et al., 2010). Mechanisms underlying 

mitochondrial proliferation are unknown. Both increased mitochondrial biogenesis (Lin et al., 

2002) or decreased mitochondrial autophagy (Masiero et al., 2009) are sufficient to increase 

mitochondrial mass. Whether one of these mechanisms, or both, are involved to evoke 

mitochondrial proliferation in disease conditions remains unknown. 

Recently, others from our workgroup showed that the Cramping mice develop systemic 

mitochondrial dysfunction with ragged red fibers (Eschbach et al., 2013). Moreover, 

increased mitochondrial mass accompanied by PGC-1α activation was detected.  

An important opportunity provided by the existence of animal models of 

neurodegenerative diseases is the test of supposed protective agents. One possible candidate is 

L-carnitine (LC) which has antioxidant properties and is used to improve mitochondrial 

function. LC is a nutrient also synthesised in vivo from the amino acids lysine and 

methionine, however 75% comes from dietary sources (Steiber et al., 2004). The main role of 

LC is in cellular energy metabolism, it improves mitochondrial energetics and scavenges free 

radicals (Calabrese et al., 2012). It plays a role in the transport of long-chain fatty acids into 

the mitochondria for beta-oxidation, providing energy and acetyl-coenzyme A (CoA) 

formation. On the other hand, it contributes to the removal of short- and medium-chain fatty 

acids preventing these toxic accumulation in the mitochondria and leading to an increase of 
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free CoA (Calabrese et al., 2012). Thus, it controls the mitochondrial acetyl-CoA/ CoA ratio 

which is crucial for mitochondrial metabolism.  

Animal experimental data suggested long ago that LC may have antioxidant properties 

(Koudelova et al., 1994). It can reduce oxidative stress in aged animals (Poon et al., 2006, 

Long et al., 2009; Rani and Panneerselvam, 2002; Savitha et al., 2005) and acts as a free 

radical scavenger (Arockia Rani and Panneerselvam, 2001). LC also improves age-related 

oxidative DNA damage, nucleic acid status and mitochondrial enzymes activity in aged rats 

(Haripriya et al., 2004; 2005; Juliet et al., 2005). LC was found to be protective against 

nickel-induced neurotoxicity in Neuro-2a cell line via attenuating the harmful ROS and 

malondialdehyde level elevation, ATP reduction and disrupted mitochondrial membrane 

potential (He et al., 2011). Also it prevented peroxynitrite and free radicals production 

induced by methamphetamine in adult male mice (Virmani et al., 2002). Moreover acetyl-LC 

modulates endogenous cellular defence mechanisms and stress response by inducing heat-

shock proteins (HSPs), heme oxygenase 1 and SOD2 and prevents age-related changes in rats 

(Calabrese et al., 2006; 2010).  

A double-bind placebo controlled human study did not find any significant changes in 

HD patients as compared with healthy subjects that upon low dose L-carnitine (Goety et al., 

1990). We suggested that LC may be effective in higher doses.  
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II. Aims 

We investigated the role of the molecular motor dynein and mitochondrial dysfunction in 

neurodegeneration using different experimental mouse models. 

 

The aims of our studies were as follows: 

(i) to provide a direct genetic evidence linking cytoplasmic dynein mutation to striatal 

dysfunction by detailed characterisation of Cramping mice bearing a point mutation in the 

dynein heavy chain 1 gene.  

 

(ii) to study whether the recently showed systemic mitochondrial dysfunction (Eschbach et 

al., 2013) and compensatory mitochondrial proliferation in Cramping mice is FL-PGC-1α 

dependent. We investigated the effect of FL-PGC-1α ablation in Cramping mice with 

extended characterisation of the phenotype using longitudinally performed behavioural tests, 

muscle histology, electron microscopy.  

 

(iii) to study whether L-carnitine administration, in high dose, exerts beneficial effects on the 

survival as well as the behavioural and neuropathological phenotype in N171-82Q transgenic 

mouse model of HD. 
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III. Materials and methods 

III. 1. Animals 

We used different experimental mouse models such as Cramping mice carrying a point 

mutation in the dynein heavy chain 1 gene, FL-PGC-1α -/- mice and the N171-82Q transgenic 

mouse model of HD.  

Heterozygous Cra/+ mice were obtained from Ingenium Pharmaceuticals AG, 

Martinsried, Germany. They were identified by tail DNA genotyping as previously described 

(Hafezparast et al., 2003). Wild-type littermates were used as controls. FL-PGC-1α -/- mice 

were obtained from Prof. Daniel Kelly (Leone et al., 2005). They were initially published as 

full PGC-1α -/- mice but newer results of our workgroup and those of others (Chang et al., 

2012) show that these mice are only ablated for full length PGC-1α. We created Cramping 

FL-PGC-1α -/- (referred as Cra/FLα -/-) mice in two crossing steps and used F1-generation 

mice of the four genotypes in the same B6C3He-hybrid background. N171-82Q mice were 

originally obtained from Jackson Laboratories (Maine, USA) and backcrossed to the B6C3F1 

background. The offspring were genotyped by using a PCR assay on the tail DNA at the age 

of 4 weeks. Animals were maintained in a temperature- and humidity-controlled environment 

on a 12h light/dark cycle and received food and water ad libitum.  

For histological analysis, animals were deeply anesthetized with 1 mg/kg body weight 

ketamine chlorhydrate and 0.5 mg/kg body weight xylazine or with isoflurane (Abott 

Laboratories Ltd., Queenborough, UK), and transcardially perfused with 4% 

paraformaldehyde in 0.1 M pH 7.4 phosphate buffer. Tissues were then quickly dissected, 

post-fixed for 24 hours in 4% paraformaldehyde, and cryoprotected for 48 hours with 30% 

sucrose or 10% glycerol in PBS before cryostat sectioning. For biochemical analysis, animals 

were sacrificed and tissues were quickly dissected, snap frozen in liquid nitrogen and stored at 

-80°C until use.  

All animal experiments were performed under the supervision of authorized 

investigators, followed current EU regulations and were approved by the local animal care 

committee.  

 

III. 2. Measurement of body temperature and weight 

In Cra/FLα -/- and the 3 comparative mouse groups body temperature was monitored 3 

times every week from the age of 6 weeks as described previously (Weydt et al., 2006) at 

noon with a telemetry system using subcutaneously implanted transponders placed in the 
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interscapular space (Bio Medic Data Systems, Seaford, DE, USA). At the same time body 

weight was also measured. 

 

III. 3. Testing of motor performance and behaviour 

One week before the start of the tests, animals were brought to the behavioural analysis 

facility and handled every day. Only male mice were used for behavioural tests. A battery of 

behavioural tests were performed at 3 and 12 months of age in the study comparing Cra/+ 

versus wild-type mice including the following tests: grip strength, rotarod, open field, 

elevated plus maze, Morris water maze. Whereas the cohorts of the Cra/+, FL-PGC-1α -/- 

crossbreeding study were tested longitudinally from 2 to 12 months of age with the range of 

slightly different tests: modified SHIRPA, grip strength, rotarod, open field, elevated plus 

maze, string agility.  

Modified SHIRPA protocol (Rogers et al., 2001) was used to detect the overall 

neurological phenotype of the mice.  

Muscle grip strength was measured using a Bioseb gripmeter (Vitrolles, France) on 

forelimbs and all limbs. Each assay was performed in triplicate and measurements were 

averaged.  

The rotarod test was used to assess motor coordination and balance. Mice had to keep 

their balance on a rotating rod at a continuous acceleration from 4 to 40 rpm in 300 s (Rotarod 

Version 1.2.0. MED Associates Inc., St. Albans, VT). The time (or latency) it took the mouse 

to fall off the rod was measured. Each mouse had to perform 3 trials separated by 15 minutes 

each other, and the 3 trials were averaged.  

To identify differences in locomotor activity and exploratory behaviour, mice were 

tested in the open field. In this test, animals were placed at the border of a square arena (50 

cm x 50 cm) and allowed to explore the arena freely. The exploration time was 30 minutes in 

the study comparing Cra/+ versus wild-type mice and 10 minutes in the cohorts of PGC-1α 

ablation in these mice. Locomotor activity was assessed by the total distance moved and the 

average velocity. To determine the exploratory behaviour, the number of rearings was 

measured. Open field was also performed in the N171-82Q transgenic HD mice in a slightly 

different apparatus as described later.  

To assess anxiety, mice were evaluated using an elevated plus maze paradigm. The 

maze was elevated 92 cm above the floor, and consisted of 4 arms of 30 cm x 5 cm each, 

including 2 opposite ‘‘closed’’ arms surrounded by dark walls and 2 opposite ‘‘open’’ arms 

exposed without any walls. The centre of the maze was a 5 cm x 5 cm common area. Each 
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mouse was placed for a single trial at the centre of the maze facing a closed arm, and allowed 

to explore the maze freely for a period of 5 min. The amount of time (in seconds) spent in 

both the open arms and closed arms was recorded.  

To measure reference learning (acquisition) and memory (retention), the Morris water 

maze was performed. The device consisted of a circular pool of 120 cm diameter, filled with 

water (25-27°C), which was made opaque by adding 2 liter of milk. The pool was divided 

into 4 equal-sized quadrants and was surrounded by grey curtains covered with various visual 

cues, which helped the mice to orient their location in the pool. A 10 cm platform was placed 

in the quadrant A, such that the platform was 1 cm below the water surface and visually 

indiscernible to the animals. On each trial, mice were allowed to swim for a maximum of 60 s 

and were released from 4 different defined positions. If the animal failed to discover the 

location of the platform in 60 s, it was guided to the platform and then allowed to stay for 30 

s. After removal, mice were placed under an infrared lamp and allowed to warm up and dry 

off. The test was divided into 2 phases, an acquisition phase (18 trails, six/day), followed by a 

reversal phase during which the platform was moved to the opposite quadrant (12 trails, 

six/day). Escape latency and swum distance were analysed during both acquisition and 

reversal learning, and 2 successive trials were averaged into one block. All paths were tracked 

and analysed with an electronic imaging system (Viewer 2.2.0.55, BIOBSERVE GmbH, 

Bonn, Germany) at a frequency of 15 Hz and a spatial resolution of 720 x 576 pixels.  

String agility test was performed to access forepaw grip capacity and agility. Mice were 

placed in the centre of a 50 cm long string suspended about 33 cm above a padded surface 

between two platforms. Mice were allowed to grip the string with only their forepaws and 

then released for a maximum of 60 sec. A rating system, ranging between 0 and 5, was 

employed to assess string agility for a single 60 sec trial (0=animal unable to remain on string, 

1=hangs by two forepaws, 2=attempts to climb onto string, 3=two forepaws and one or both 

hindpaws around string, 4=four paws and tail around string, with lateral movement, 5=escape 

to the platform). As both Cramping and Cra/FLα  -/- mice showed a severe defect in muscle 

string agility (from early age score 0) we further detected the time spent on the string till 

falling down giving the maximum of 60 sec for the mice who reached the platform during the 

trial. 

 

III. 4. Real time (RT) qPCR 

Total RNA was extracted using Trizol (Invitrogen, Cergy-Pontoise, France) according 

to the manufacturer's instructions. cDNA synthesis was performed using 1 µg of total RNA 
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(iScript cDNA Synthesis kit; Bio-Rad, Marne La Coquette, France). PCR analysis was carried 

out as described (Dupuis et al., 2009) on a Bio-Rad CFX96 System using iQSYBR Green 

Supermix. A specific standard curve was performed for each gene in parallel, and each 

sample was quantified in duplicate. PCR conditions were 3 min at 94°C, followed by 40 

cycles of 45 s at 94°C and 10 s at 60°C. Data were analyzed using the iCycler software, and 

normalized to the reference genes encoding either the 18S ribosomal subunit and the RNA 

polymerase II mRNA.  

 

III. 5. In vivo brain imaging 

Magnetic resonance imaging (MRI) was performed in the In-vivo-Imaging Laboratory 

of Boehringer Ingelheim Pharma GmbH & Co. KG Biberach, Germany. MRI data were 

acquired on a Bruker Biospec 47/40 scanner (Bruker BioSpin, Ettlingen, Germany) at 4.7 

Tesla. Acquisitions were performed at 5 and 10 months of age, respectively (Cra/+, wild-type 

mice, n = 20). Mice were anaesthetized through continuous inhalation of 1.2-1.5% isoflurane 

(in 70:30 N2O:O2) and fixed in a stereotactic head holder. For anatomical analysis of the 

mouse brain contiguous sets of 6 horizontal T2-weighted images were acquired using a RARE 

sequence with slice thickness 600 μm (no gap). Data processing was performed via voxel-

based volumetry by the in-house developed software package Tissue Classification Software 

(TCS). The analysis was blinded, evaluated by the same experienced investigator. The 

striatum was identified in 4 consecutive horizontal slices as compared with the Mouse Brain 

Library (http://www.mbl.org/mbl_main/atlas.html) between Bregma: -3,24; Interaural: 6,76 

and Bregma: -5,04; Interaural: 4,96. The lateral ventricles were identified in the same 

horizontal sections by semi-automated region growth.  

Positron emission tomography (PET) imaging was performed on a Siemens Inveon 

small animal PET/CT system (Siemens Preclinical Solutions, Knoxville, TN, USA) using the 

D1 receptor ligand [11C] SCH-23390 or the D2/3 receptor ligand [18F]Fallypride with slightly 

different methods (for a detailed description see Appendix I., Braunstein et al., 2010). For 

[11C] SCH-23390 PET imaging 5 wild-type and 5 Cra/+ mice were used, for [18F]Fallypride 

PET measurements 10 animals of each group (Cra/+ and wild-type) were randomly selected 

at 10 months of age. Mice were anesthetized and a 60 minute emission scan was performed 

starting with bolus injection of the radioactively labelled specific receptor ligand via a tail 

vein catheter. The Simplified Reference Tissue Model (SRMT) (Lammertsma et al., 1996) 

was used to calculate the binding potential. Regions-of-interest were defined on co-registered 

PET/CT images.  

http://www.mbl.org/mbl_main/atlas.html
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III. 6. Analysis of brain astrocytosis 

Brain sections comprising the anterior part of the caudate nucleus and the putamen 

were cut on a vibratome at a thickness of 50 µm (Leica Microsystems, Wetzlar, Germany) 

and were stained by indirect immunofluorescence, using an antibody directed against the 

specific astrocyte marker glial fibrillary acidic protein (GFAP, Santa Cruz Biotechnology, 

Heidelberg, Germany) following the manufacturer’s instructions. Quantitative analysis of 

immunoreactivity was performed using ImageJ. 

 

III. 7. Stereological analysis of DARPP32 neurons 

Coronal sections were cut in six series at a thickness of 35 µm throughout the brains 

using a freezing microtome. One series of free-floating brain sections were processed for 

immunohistochemistry with a primary rabbit antibody against DARPP32 (1:1000, Chemicon, 

AB 1656) (Bode et al., 2008). Stereological estimations of the total number of DARPP32 

positive neurons in the striatum were performed unilaterally on blind-coded slides with the 

Computer Assisted Toolbox Software (New CAST) module in VIS software (Visiopharm, 

Horsholm, Denmark) by applying the optical fractionator principle (West et al., 1991). 

 

III. 8. mtDNA quantification 

Total DNA was extracted from muscle using standard methods. The content of mtDNA 

was determined using real-time quantitative PCR using 100 ng of purified DNA by measuring 

the threshold cycle ratio (ΔCt) of a mitochondrial-encoded gene Cox1 versus the nuclear-

encoded gene Ppia (cyclophilin A). 

 

III. 9. Muscle histology and electron microscopy 

For muscle histology, isopentane frozen samples were cut on a cryostat into slices 

16µm thick and processed for succinate dehydrogenase (SDH) staining using standard 

pathological stainings. For electron microscopy (EM) analysis, 12 months old mice were 

sacrificed and muscle tissues were quickly dissected and fixed with 2,5% glutaraldehyde, 

10% sucrose fixative. Samples were post-fixed, dehydrated, embedded in Epon, and sectioned 

for EM. EM was performed at the Central Electron Microscopy Department at the University 

of Ulm. 
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III. 10. L-carnitine administration in N171-82Q mice 

III. 9. 1. Survival 

Thirty transgenic N171-82Q mice were used in this experiment. Eleven animals 

received intraperitoneal (i.p.) injections of L-carnitine (Biocarn, MEDICE, Iserlohn, 

Germany) at a dose of 250 mg/bodyweight kg (diluted in 0.15 ml, pH 7.4) 5 times a week 

starting at 6 weeks of age until death; 19 animals received an i.p. injections of the vehicle of 

L-carnitine in the same volume at the same times.  

III. 9. 2. Open-field test  

A separate set of 6-week-old transgenic mice were used for behavioural studies. The 

same experimental protocol and drug administration were used as above (n= 7 per group). 

The Conducta system and programme (Conducta 1.0; Experimetria Ltd., Hungary) were used  

to detect and evaluate the changes in spontaneous motor activity and exploration activity in 

the open-field paradigm. Each mouse was placed in the centre of a square arena (48x48x40 

cm) and its behaviour was recorded for 5 minutes with the Conducta software. The 

ambulation distance, mean velocity, duration of immobility and number and duration of 

rearings were recorded. Tests were performed once a week for 10 weeks at the same time of 

the same day in order to avoid alterations due to the diurnal rhythm. 

III. 9. 3. Immunohistochemistry 

30-microm thick cryostat sections were cut to obtain sections from the entire striatum 

from 16 weeks old mice. Serial sections were immunostained with a polyclonal antibody 

recognizing the first 256 amino acids of human huntingtin (EM48, Chemicon International 

Inc., Temecula, CA, USA) at dilutions of 1:500. The specificity of the immune reactions was 

controlled by omitting the primary antiserum. An additional series of sections from each case 

were Nissl-stained with cresyl violet. 

 

III. 11. Statistical analysis 

Data are expressed as the mean ± SEM. Statistical analysis was accomplished using 

non-parametric Student t-test or ANOVA followed by Newman-Keuls multiple comparisons 

test (PRISM version 4.0b; GraphPad, San Diego, CA). Kaplan-Meier analysis and the 

Mantel-Cox log rank test were used to determine the survival differences between groups in 

N171-82Q mice. Differences at P < 0.05 were considered significant. 
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IV. Results 

 

The motor phenotype of Cra/+ mice is characterized by early muscle weakness, 

progressive incoordination and hyperactivity 

We first performed a battery of motor and behavioural tests in Cramping mice (Cra/+). 

Cra/+ mice showed reduced total and forelimb muscle grip strength compared with wild-type 

mice as early as 3 months of age (figure 1A), and suffered from an impairment in motor 

coordination that mildly increased with aging, as observed using an accelerating rotarod test 

(figure 1B).  

 

 
 
Figure 1. Locomotor and behavioural abnormalities in Cra/+ mice compared with wild-type mice (+/+) 
A. Grip muscle strength of forelimbs (left panel) and all limbs (right panel)  
B. Latency to fall in an accelerating rotarod test  
C. Track length (left panel) and average velocity (right panel) in an open field  
D. Time spent in closed arms (upper panel) and open arms (lower panel) in an elevated plus maze test  
E. Time spent (upper panels) and distance swum (lower panel) to reach the hidden platform in a Morris water 
maze test at 3 (left panel) and 12 (right panel) months of age. The platform was in position A during the first 3 
days of the test, and then moved to position C for the last two days.  
***P<0.001 versus corresponding wild-type, #P<0.05 versus 3 months old Cra/+ mice (n=12 mice per group), 
*P<0.05 versus corresponding wild-type. 
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Cra/+ mice displayed hyperactivity in the open field arena as revealed by increased track 

length and average velocity (figure 1C). No differences were observed in the number of 

rearings, indicating normal vertical behaviour (data not shown). The level of anxiety appeared 

similar between Cra/+ mice and their wild-type littermates as assessed using the elevated plus 

maze paradigm (figure 1D). In the Morris water maze test, Cra/+ mice tended to spend more 

time in reaching the platform at 12, but not 3 months of age, as compared to wild-type 

animals. This was likely due to impaired motor incoordination rather than to spatial memory 

deficits since the observed difference between genotypes was annulled when considering the 

distance swum by the mice (figure 1E). Taken together, Cra/+ mice display muscle weakness 

and incoordination with increased open field activity in the absence of anxiety and obvious 

spatial working memory deficits. 

 

Cra/+ mice present with striatal atrophy and lateral ventricle enlargement 

We found that forebrain, but not hindbrain, wet weight was decreased in Cra/+ mice 

(figure 2A), suggestive of atrophy. The striatum and cerebral cortex of Cra/+ mice appeared 

grossly normal using haematoxylin/eosin staining (figure 2B), and the cortical layer 

organisation was preserved (figure 2C), suggesting that the defect was not due to abnormal 

cortical development. In vivo brain imaging using MRI showed a significant reduction in the 

volume of the Cra/+ mice striata at both 5 and 10 months of age (figure 2D-E), while, 

concomitantly, the volumes of the lateral ventricles were significantly increased (figure 2D, 

F). Thus, mutation in dynein leads to striatal atrophy in mice. 
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Figure 2.  Striatal atrophy in Cra/+ mice 
Wild-type mice (+/+) are in empty columns, Cra/+ mice in black columns 
A. Wet weight of hindbrain (left) and forebrain (right) at 12 months of age. *P<0.05 versus corresponding wild-
type (n=4 mice per group). B. Low magnification photomicrographs of haematoxylin and eosin staining at 18 
months of age. CC: corpus callosum. Scale bar = 100 µm. C. Higher magnification of B showing the aspect of 
the six layers of the cortex. Scale bar = 50µm. D. Representative horizontal T2-weighted MRI slices at 5 and 10 
months of age. Note the enlargement of the lateral ventricles of the Cra/+ mouse. E. Striatal volume of at 5 (left) 
and 10 (right) months of age. ***P<0.001 versus corresponding wild-type (n=20 mice per group). F. Lateral 
ventricle volume at 5 (left) and 10 (right) months of age. ***P<0.001 versus corresponding wild-type (n=20 
mice per group). 
 

Progressive astrocytosis in the absence of neurodegeneration in the striatum 

Reactive astrocytosis represents a typical marker of neuronal stress and is often a sign 

of an underlying pathology. Interestingly, reactive astrocytosis, as revealed by glial fibrillary 

acidic protein (GFAP) immunoreactivity (figure 3A), was dramatically increased in the 

striatum of 8 months old Cra/+ mice, and this increase was even higher at 18 months of age 
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(figure 3B). Consistent with this observation, striatal GFAP mRNA levels as measured using 

RT-qPCR were higher in Cra/+ mice than in wild-type littermates at 8 months, but not at 4 

months of age (Figure 3C). 

 

 

 

 

 

Figure 3: Progressive striatal 

astrocytosis in Cra/+ mice 
A. Representative microphotographs 
showing haematoxylin/eosin staining 
(left panels) and GFAP 
immunoreactivity (right panels) in the 
striatum from wild-type mice (+/+, 
upper panels) and Cra/+ mice (lower 
panels) at 18 months of age. Scale bar = 
25µm.  
B. Quantification of the surface 
occupied by GFAP positive cells in the 
striatum at 8 and 18 months of age. Data 
are expressed as percentage of the total 
surface in the picture. *P<0.05 versus 
indicated condition (n=5 mice per 
group).  
C. mRNA levels of GFAP in the 
striatum at 4 and 8 months of age. 
*P<0.05 versus wild-type (n=5-7 mice 
per group). 
 
 

 

To determine whether astrocytosis was associated to neurodegeneration, we determined 

the total number of DARPP32 (dopamine and cAMP regulated phosphoprotein of a molecular 

weight of 32 kDa) positive medium spiny neurons (MSNs), the neuronal population 

comprising more than 95% of striatal neurons, using stereological analysis. The analysis of 

DARPP32 positive MSNs showed a non-significant trend towards decreased number at 6 

months of age (figure 4). These data show that the phenotype of dynein mutant mice is rather 

due to neuronal dysfunction than to neurodegeneration in the striatum. 
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Figure 4: No significant neuronal loss in the striatum of Cra/+ mice.  
A and B. Representative photographs of striatal sections processed for DARPP32 immunohistochemistry from 
wild-type mice (+/+) at 6 months of age as well as Cra/+ mice at 6 and 18 months of age.  
C. Stereological estimations of the total number of DARPP32 positive neurons in the unilateral striatum did not 
reveal any statistically significant differences between the groups (n= 4–6 mice per group) 
 

Altered dopamine signalling and D1 receptor binding in the striatum of Cra/+ mice 

D1, but not D2, dopamine receptor mRNA levels were decreased in 8 months old Cra/+ 

mice as shown using RT-qPCR (figure 5A). D1 receptor expressing cells synthesize substance 

P, whereas D2 receptor expressing cells synthesize pre-proenkephalin. We found that 

substance P, but not pre-proenkephalin, mRNA levels appeared decreased in 8 months old 

Cra/+ mice (figure 5A), which corroborates the selective down-regulation of the expression 

of D1 dopamine receptors in striatal neurons. In addition, we performed positron emission 

tomography (PET) analysis of the binding of the D1 receptor selective ligand [11C] SCH-

23390 (figure 5B). Quantification of [11C] SCH-23390 showed a decrease of the signal in the 

brains of Cra/+ mice (figure 5C), which further reinforces the presence of striatal 

dopaminergic impairment. We extended our D1-PET scans by using [18F]Fallypride, a high-

affinity selective dopamine D2/3 receptor ligand with the advantage of long half-life 

compared to [11C]Raclopride (Siessmeier et al., 2005). We observed a significant reduction of 
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[18F]Fallypride uptake in the striatum of Cra/+ mice compared with wild type animals (figure 

5D), lending further support for the involvement of the striatal dopaminergic system in the 

Cra/+ pathogenesis.  

 

 
Figure 5. Altered dopamine signalling and binding in the striatum of Cra/+ mice 
A. mRNA levels of the dopamine D1 and D2 receptor, substance P and pre-proenkephalin in the striatum of 
wild-type mice (+/+) and Cra/+ mice at 4 and 8 months of age. *P<0.05 versus wild-type (n=5-7). 
B. Representative [11C]SCH-23390 images (all frames averaged together) through the striatum of a wild-type 
mouse brain (+/+, upper panels) and a Cra/+ mouse brain (lower panels) are shown. 
C. Binding potentials (BPND) of [11C]SCH-23390 (n=5) and [18F]Fallypride (n=10) calculated using SRTM. 
*P<0.05 versus wild-type. 
 

In all, we showed that Cramping mice bearing a point mutation in the molecular motor 

dynein display striatal dysfunction which can better explain the phenotype observed in these 

mice. Thus, our findings support the role of dynein and retrograde axonal transport in striatal 

pathology.  

 

Mitochondrial proliferation in Cramping mice is dependent on endogenous FL-PGC-1α  

To determine whether PGC-1α is functionally involved in Cramping induced 

mitochondrial proliferation, we ablated FL-PGC-1α in these mice. We chose FL-PGC-1α 

ablation as this isoform is more specialized in increasing mitochondrial biogenesis and pan-

PGC-1α ablation is very toxic per se for muscle physiology (Handschin et al., 2007). We 

crossed FL-PGC-1α -/- mice with Cramping mice to generate Cramping mice deficient in FL-

PGC-1α (termed Cra/FLα -/- mice in the rest of the thesis).  
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The ablation of FL-PGC-1α in Cramping mice completely abolished the previously 

observed increases in mtDNA levels in muscles (figure 6A). At 6 months of age, i.e. an age at 

which mitochondrial dysfunction is not histologically and biochemically evident in Cramping 

mice, we observed a 20% increase in citrate synthase activity in Cramping muscle, which was 

fully reverted by FL-PGC-1α ablation (figure 6B). This was associated with unchanged 

mitochondrial respiratory complex activities and normal ratios between respiratory chain 

complex activities (data not shown in the thesis; see Appendix II., Róna-Vörös et al., 2013) 

suggesting that mitochondrial proliferation maintained close to normal respiratory activity at 

that age. From an ultrastructural point of view, the Cramping mutation leads to giant 

mitochondria invading sarcomeres (Eschbach et al., 2013). FL-PGC-1α deficiency reverted 

this mitochondrial proliferation (figure 6C, quantifications in 6D-E). 

 

 

 

 
Figure 6. Mitochondrial proliferation 

in Cramping mice is dependent upon 

FL-PGC-1α 
+/+ mice are in blue, Cramping mice in 
red, FL-PGC-1α  -/-  in green and 
compound Cra/FLα -/-in brown. 
A. Mitochondrial DNA (mtDNA) levels 
in tibialis anterior muscle. **, p<0.01 ; 
***, p<0.001, ANOVA followed by 
Newman-Keuls as compared with the 
indicated condition. n=8 per group. 
B. Citrate synthase activity in 
nmol/min/mg protein in gastrocnemius 
muscles. **, p<0.01 ; ***, p<0.001, 
ANOVA followed by Newman-Keuls 
as compared with the indicated 
condition. n=3 per group. 
C. Representative electron micrographs 
of glycolytic gastrocnemius muscle of  
+/+ (left column) and Cramping (right 
column) mice in either FL-PGC-1α +/+ 
(upper row) or -/- (lower row) 
background. Pairs of mitochondria are 
found in the I-band on both sides of the 
Z-band in wild type mice. Note the 
large increase in size in the 
mitochondria of Cramping mice 
disrupting the alignment of sarcomeres 
that is reverted by ablation of PGC-1α. 
As previously observed mitochondria of 
FL-PGC-1α -/- mice are smaller. 
Arrows show pairs of mitochondria in 
each picture. Scale bar: 600 nm. 
D-E. Quantification of mitochondrial 
area (D) and perimeter in experiments 
presented in C. 
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Thus, mitochondrial proliferation in Cramping mice is fully dependent upon 

endogenous FL-PGC-1α and cannot be rescued by the roughly normal expression of NT-

PGC-1a in FL-PGC-1α -/- mice. 

 

Endogenous FL-PGC-1α mitigates overall phenotype and mitochondrial dysfunction in 

Cramping mice 

We next asked whether ablating the increase in mitochondriogenesis in Cramping mice, 

through FL-PGC-1α ablation, modified the phenotype of the mice. Cra/FLα -/- mice 

displayed a much more severe phenotype than single mutations. They showed prominent 

kyphosis, and abnormal posture as well as progressive hair loss (figure 7A). Both male and 

female Cra/FLα -/- mice displayed body weight loss as compared with the three other 

genotypes (figure 7B-C). Body temperature of Cra/FLα -/- mice became progressively lower 

in females (figure 7D-E) while in males the defect was also present in single FL-PGC-1α -/- 

mice. 

 

 
 

 

 

 
 

 

Figure 7. FL-PGC-1α  
ablation exacerbates 
global phenotype of 

Cramping mice 
+/+ mice are in blue, 
Cramping mice in red, 
FL-PGC1α  -/-  in green 
and compound Cra/FLα 

-/- in brown. 
A. Left : representative 
photographs of  3 weeks 
old littermate Cramping 
and Cra/FLα -/-mice 
Right : typical kyphosis 
and hair loss in a 12 
months old Cra/FLα -/-
mouse. 
B-E. Body weight (B, 
C) and body 
temperature (D-E) of  
male (B, D) and female 
(C,E) mice. **, p<0.01 
for Cra/FLα -/- as 
compared with the three 
other groups. N=7-8 per 
gender per group. 
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At 12 months of age, both single Cramping and FL-PGC-1α -/- muscles showed the 

expected decrease in SDH activity in both tibialis anterior (TA) and soleus muscles (figure 8). 

The combination of both mutations potently exacerbated this mitochondrial defect (figure 8).  

 

Figure 8. FL-PGC-1α ablation exacerbates mitochondrial dysfunction in Cramping mice 
Representative photomicrographs showing muscle sections of +/+, Cramping, FL-PGC-1α -/- and compound 
Cra/FLα -/- tibialis anterior (upper pictures) and soleus muscles from 12 months old mice stained for succinate 
dehydrogenase activity (SDH). Scale bar : 200 µm. n=4-5 per group. 
 

Endogenous FL-PGC-1α mitigates the neurological phenotype of Cramping mice 

The Cramping mutation leads to a stereotypical neurological phenotype that includes 

loss of muscle strength and incoordination as prescribed above. As compared with Cramping 

mice, Cra/FLα -/- mice showed an earlier and stronger loss of grip strength in forelimbs and 

all limbs (figure 9A-B). Tremor, a phenotype occasionally observed in Cramping or FL-PGC-

1α -/- mice after 9 months of age, occurred systematically before 6 months of age in Cra/FLα 

-/- mice (figure 9C). Indeed, compound transgenic mice were unable to hang on a string as 

early as 4 months of age, while Cramping mice were still able to do so at least 10 seconds 

until 9 months of age (figure 9D). Further supporting this point, compound transgenic mice 

showed profoundly impaired rotarod performance as compared with all three other genotypes 

at 6, 9 and 12 months of age (figure 9E) and decreased rearing activity at 8 and 12 months of 

age (figure 9F). 
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Figure 9. FL-PGC-1α  ablation exacerbates neurological phenotype of Cramping mice 
+/+ mice are in blue, Cramping mice in red, FL-PGC-1α  -/-  in green and compound Cra/FLα -/-in brown. 
A-B. Forelimb (A) and all limb (B) grip strength. **, p<0.01 for Cra/FLα -/-  as compared with Cramping mice 
(repeated ANOVA). n= 14-16 per group. 
C. Kaplan-Meier plot depicting the onset of tremors. P<0.001 for Cra/FLα -/-as compared all three other groups. 
(log rank test). n= 14-16 per group. 
D-E. String agility score (in seconds, D) and rotarod performance (E). **, p<0.01 for Cra/FLα -/- as compared 
with Cramping mice (repeated ANOVA). n= 14-16 per group. 
F. Number of rearings in a 30 minute open field test for mice at 8 or 12 months of age.*, p<0.05  for Cra/FLα -/- 

as compared with the indicated condition (ANOVA followed by Newman-Keuls). n=7-8 per group. 
 

In all, we demonstrated that FL-PGC-1α is required for mitochondrial proliferation 

compensatory occurred in Cramping mice with overall mitochondriopathy. Moreover ablation 

of FL-PGC-1α notably worsened the phenotype of Cramping mice. These data help for better 

understanding the pathomechanism of mitochondrial dysfunction in neurodegeneration.  
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L-carnitine administration significantly improved the survival and ameliorated the 

motor symptoms of N171-82Q mouse model of HD 

The mean of survival of the vehicle-treated transgenic mice was 125.6 days. LC 

treatment caused a significant increase of 14.91% in the survival time (144.3 days) (figure 

10).  

 

 

 
 

 

Figure 10. Survival times of the L-carnitine-treated and 
control transgenic mice. The Kaplan–Meyer survival curve 
revealed that the L-carnitine-treated animals exhibited an 
increased duration of survival as compared with the control 
group (*p<0.05). 
 

 

From the age of 14 weeks the N171-82Q transgenic HD mice started to move more 

slowly and less compared with wild-type mice in the open field apparatus. This decreased 

motility was completely reverted by LC administration (figure 11A-C). LC itself did not have 

any influence in wild-type mice mobility (figure 11A-C). Further, the frequency of rearing 

was significantly reduced in transgenic mice at the age of 15 weeks (*p<0.05) not in the L-

carnitine treated group (figure 11D). 

 

Figure 11. Behavioural assessment of LC treated transgenic mice in open-field tests. (A) Ambulation 
distance (*p<0.05); (B) mean velocity (*p<0.05); (C) immobility time (**p<0.01, *p<0.05); (D) rearing time 
(**p<0.01, *p<0.05). 
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L-carnitine treatment was neuroprotective in N171-82Q HD mice 

L-carnitine treatment also ameliorated the striatal neuronal atrophy in transgenic HD 

mice. Our quantitative analysis demonstrated that the LC-treated transgenic animals had a 

significantly higher (*p<0.05) number of surviving striatal neurons concerning cresyl violet-

staining relative to the vehicle-treated group (figure 12). Moreover we quantified the 

huntingtin-immunoreactive (IR) aggregates visualized by EM48 polyclonal antibody in the 

outer lamina of the pyriform cortex (layer II), which is an important area of the N171-82Q 

transgenic mice and within the lateral striatum. The EM48-IR aggregates were much more 

prominent within the cortex as compared with the neostriatum. In the L-carnitine-treated 

group fewer huntingtin aggregates were detected in both areas compared with the vehicle-

treated transgenic group. LC treatment significantly (**p<0.01) reduced the number of 

cortical aggregates. In the lateral striatum LC treatment induced a slight, but not significant 

decrease of the huntingtin-IR aggregates (figure 13). 

 

 

 
Figure 12. Cresyl violet-stained neurons in the striatum.  
Wild-type (wt) (A), control transgenic (tg) (B) L-carnitine-treated wt (C), and the L-carnitine-treated tg (D) 
groups. Scale bar = 25mm. Diagram shows the mean numbers of cresyl violet-stained neurons in the striatal area 
of the wild-type mouse (striped grey bar), the control tg mouse (light bar), the control L-carnitine-treated wt 
mouse (dark bar) and the L-carnitine-treated tg mouse (dark grey bar) at 16 weeks of age. 
 
 
 



 

   

34 

 

Figure 13. Polyclonal EM48 positivity 
of cortical sections (A,C) and striatal 
sections (B,D) of 16-week-old control and 
L-carnitine-treated transgenic mouse 
brains. Scale bar = 25 mm. Diagram 
shows the mean number of EM48-IR cells 
in the pyriform cortex and in the striatum 
of L-carnitine-treated (dark bar) and 
control (light bar) transgenic mice.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

In all, we showed that L-carnitine treatment in higher dose significantly increased 

survival and ameliorated the motor symptoms in HD transgenic mice, moreover it was found 

to be neuroprotective for striatal neurons. 
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V. Discussion 

In this PhD work we showed additional evidence of the involvement of the molecular 

motor dynein and mitochondrial dysfunction in the pathogenesis of neurodegenerative 

diseases. 

First, we demonstrated the in vivo requirement of cytoplasmic dynein in the 

function of the striatum. Cramping mice display early onset motor and behavioural 

abnormalities such as abnormal gait, hind limb clasping, motor incoordination, muscle 

weakness and hyperactivity. A relatively mild proprioceptive neuropathy was proved 

previously in dynein mutant mice (Dupuis et al., 2009; Chen et al., 2007; Ilieva et al., 2008), 

but this does not explain the overall behavioural disturbances observed here, rather central 

involvement is suggested. The phenotype of Cra/+ mice resembles striatal pathology. 

Transgenic mice of HD also show abnormal gait and limb clasping when held by the tail, and 

at the early phase of the disease they have an increased spontaneous locomotor activity 

(Mangiarini et al., 1996; Schilling et al., 1999; Luesse et al., 2001; Bolivar et al., 2004). A 

similar phenotype is observed in PGC-1α -/- mice (Lin et al., 2004; Leone et al., 2005) and in 

transgenic mice lacking cortical BDNF or conditionally ablated for BDNF at adulthood 

(Baquet et al., 2004; Rauskolb et al., 2010). All of these transgenic animals present clear-cut 

lesion in the striatum. Besides, the genetic ablation of D1 dopamine receptor expressing cells 

within the striatum results also in a motor phenotype very similar to that observed in 

Cramping mice (Gantois et al., 2007). In addition others from our workgroup observed that 

dynein mutant mice exhibit HD-related peripheral phenotypes including increased adiposity 

and impaired brown adipose tissue thermogenesis (Eschbach et al., 2011), thus strengthening 

the analogy between HD animal models and dynein mutant mice. Our further histological, in 

vivo brain imaging findings verified the striatal involvement in Cramping mice. 

Interestingly, the behavioural phenotype of Cra/+ mice and striatal atrophy detected 

by MRI, appeared between 3 and 5 months of age, while astrocytosis, decreased gene 

expression of D1 receptors and decreased binding potential of D1, D2 receptors were 

detectable later, after 8 months of age. The fact that behavioural abnormalities forego marked 

histopathological and biochemical changes in the striatum is not without precedent. For 

instance, previous studies reported that motor dysfunction in huntingtin knock-in mice 

occurred long before any clear signs of striatal lesions (Menalled et al., 2002). Of note, 

conventional research of neurodegeneration focused on neuronal cell death related alterations 

as earlier the research possibilities were mainly limited to post mortem brain tissues from 

patients where cell death was obvious. The identification of neurodegeneration related genes 
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and the occurrence of transgenic animal models permitted to study early pathogenic events 

(Wong et al., 2002; Price et al., 2000). It turned out that significant abnormalities are 

detectable before any obvious signs of neuronal loss in most animal models. Moreover, 

further studies (behavioural, functional imaging, pathological, electrophysiological) in 

asymptomatic or early symptomatic patients with familial neurodegenerative diseases clearly 

demonstrated signs of neuronal dysfunction in the absence of overt neuronal cell death 

(Morfini et al., 2009). We did not detect decreased DARPP32 neuronal counts, showing that 

the striatal phenotype was not associated with cell death of MSNs. Our data however does not 

exclude the occurrence of a very slow and subtle process of striatal neurodegeneration that 

would be difficult to detect. Also, astrocytosis itself might be an astrocyte-autonomous event. 

Dynein expression and function in astrocytes has been poorly characterized and the 

elucidation of astrocytic dynein to the phenotype of dynein mutant mice will require the 

generation of conditional knock out mice. 

We found that gene expression of D1 receptor, as well as binding potential of [11C] 

SCH-23390, a D1 receptor selective radioligand, was decreased in Cra/+ striatum. Curiously, 

despite the binding potential of D2 receptor was decreased, its gene expression was 

unaffected. There are several potential explanations for this discrepancy. The binding 

potential calculated from PET analysis is a reflection of both the density of available receptor 

sides and the apparent ligand affinity (Laruelle, 2000). Since apparent ligand affinity is 

decreased by competition with the natural ligand, dopamine, an increase in striatal dopamine 

could in principle explain a decreased binding potential observed with PET. However, this 

explanation is unlikely in our case as [18F]Fallypride is a high affinity antagonist radioligand, 

and therefore less sensitive to changes in synaptic dopamine than agonist radioligands 

(Laruelle, 2000). Thus, the lower D2 binding potential observed in Cra/+ mice is most likely 

due to a reduction of D2 receptor binding sites rather than to increased striatal dopamine. 

Such a decrease might be explained by defects in the various trafficking events that modulate 

cell surface expression of D2 receptor (Xiao et al., 2009; Tirotta et al., 2008; Kim et al., 

2008). Indeed, given the involvement of dynein in a number of cellular trafficking events, it 

cannot be excluded that dynein mutation might directly impair D2 receptor trafficking. 

Other works also implicated dynein in diseases with striatal involvement, notably HD. 

The dynein/dynactin motor complex plays an important role in the delivery of 

autophagosome, in the process of autophagosome-lysosome fusion (Webb et al., 2004, 

Ravikumar et al., 2002). In neurons, autophagosome formation occurs at the axon tip, 

autophagosomes are transported retrogradely to perinuclear locations where lysosomes are 
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concentrated (Rubinsztein et al., 2005; Wong and Holzbaur 2014). Disrupted dynein function 

(even by inhibitors or genetic manipulations) results increased aggregate formation in cells, 

flies and mice, in connection with decreased autophagic clearance of aggregate-prone proteins 

e.g. mutant HTT (Ravikumar et al., 2005; Wiesner et al., 2014). Moreover, the toxicity of 

mutant HTT is enhanced by dynein dysfunction in neuronal precursor cell lines and the 

mutant HTT caused phenotype is aggravated in flies and mice by dynein mutation - detected 

when crossbreeding transgenic HD mice with Loa/+ dynein mutant mice (Ravikumar et al., 

2005). Huntingtin (HTT) and its associated protein HAP1 bind to dynein directly and 

indirectly, through dynactin subunit P150Glued (Li et al., 1995; Li et al., 1998). Mutant HTT 

disrupts these interactions and decreases dynein function (Caviston et al., 2007; Caviston and 

Holzbaur, 2009), although mutant HTT affects not only retrograde but also anterograde 

axonal transport (Morfini et al., 2009). On the other hand inhibition of dynein function in 

HeLa cells causes a significant redistribution of HTT to the cell periphery, suggesting that 

dynein is required for transport of HTT towards the cell center (Caviston et al., 2007). 

Moreover live-cell imaging studies proved that HTT and HAP1 colocalize with 

autophagosomes and control their dynamics via regulating the dynein and kinesin motors 

(Wong and Holzbaur, 2014). HTT/HAP1 complex enhances retrograde motility and promotes 

autophagosome transport towards the cell body for degradation. Further, in striatal cells from 

HD knock-in mice or mutant HTT expressing primary neurons disrupted autophagosome 

transport was observed causing defects in cargo degradation and ineffective clearance of 

dysfunctional mitochondria and mutant HTT (Wong and Holzbaur, 2014). 

Further to detect a mechanism which could be responsible for the striatal dysfunction 

we observed in Cramping mice we investigated abnormalities in striatal afferentation. The 

substantia nigra pars compacta dopaminergic neurons were however preserved when 

performing stereological assessments of tyrosine hydroxylase positive neurons (see Appendix 

I., Braunstein et al., 2010). We also examined whether deprivation or impaired response of 

brain-derived neurotrophic factor (BDNF), the major trophic factor for MSNs could be 

affected. But neither BDNF deprivation appeared to be a cause of dynein mutant striatal 

phenotype (see Appendix I., Braunstein et al., 2010). Indeed, we found that dynein mutant 

striatal neurons had dramatically impaired neuritic arborisation in cultured neurons while 

sparing survival of these cells (see Appendix I., Braunstein et al., 2010). 

In summary, our findings provide direct evidence of the involvement of axonal 

transport machinery, notably dynein in the maintenance of striatal function and may have 

major implications for our understanding of the pathogenesis of HD. 
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Besides dynein disruption we investigated the role of mitochondrial dysfunction in 

neurodegeneration. We showed that full length PGC-1α is absolutely required for 

compensatory mitochondrial proliferation occurring in Cramping mice, confirmed by 

the fact that its ablation strongly exacerbates metabolic and neurological phenotype in 

these mice. 

Increased number of mitochondria in muscle is a hallmark of human mitochondrial 

diseases although the underlying mechanisms are unclear. Mitochondrial proliferation is also 

observed in a subset of patients with neuropathies similar to DYNC1H1 mutations (Yu-Wai-

Man et al., 2010; Sitarz et al., 2012). Others from our workgroup previously described 

decreased mitochondrial respiration in white adipose tissue (WAT) and skeletal muscles 

along with increased mitochondrial area in muscle of Cramping mice (Eschbach et al., 2013). 

Furthermore, increased and not decreased mtDNA levels was found in tibialis anterior (TA) 

muscle, gastrocnemius muscle, WAT and striatum of Cramping mice (see Appendix II.,  

Róna-Vörös et al., 2013). This increased mitochondrial mass was not accompanied by large-

scale deletions of mtDNA suggesting that the mtDNA maintenance is functional. 

Interestingly, this compensatory response was not observed in cultured embryonic striatal 

neurons or fibroblasts, even in homozygous Cramping cells (see Appendix II., Róna-Vörös et 

al., 2013). Thus, mtDNA copy number is increased in vivo in Cramping mice as a possible 

compensatory response. The activation of PGC-1α, a transcriptional coactivator responsible 

for mitochondrial biogenesis, was hypothesized to underlie these observations. Overnight 

fasting followed by 6 hours of re-feeding further increased mtDNA levels in Cramping 

muscles accompanied by increased level of total PGC-1α mRNA (see Appendix II., Róna-

Vörös et al., 2013). This increase was due to FL- and NT-PGC-1α isoforms, the alternatively 

spliced IT-isoforms PGC-1α2 and 3 were unaffected. Moreover the expression of canonical 

targets of PGC-1α were examined for further support (see Appendix II., Róna-Vörös et al., 

2013). Altogether these data showed that mitochondrial proliferation in Cramping mice 

correlates with transcriptional induction of both FL- and NT-PGC-1α. 

The widely documented function of FL-PGC-1α in mitochondrial physiology suggested 

focusing on this specific isoform as a potential key player in mitochondrial proliferation. We 

showed definitive evidence of FL-PGC-1α involvement by a complete reversal of several 

indicators of mitochondrial proliferation upon FL-PGC-1α ablation in Cramping mice. In the 

FL-PGC-1α -/- mice we used for our experiments, NT isoforms are functionally preserved, as 

shown previously by others (Chang et al., 2012) and by our workgroup in skeletal muscle. It 

follows that NT isoforms are not able to substitute for FL isoforms and induce mitochondrial 
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proliferation. This function present in FL-PGC-1α but not in NT isoforms might be due to 

differences in nuclear import. Indeed, NT isoforms accumulate in the cytoplasm, while FL 

isoforms are exclusively nuclear (Chang et al., 2010; Shen et al., 2012). It is thus possible that 

a constitutive nuclear presence is necessary for PGC-1α to trigger mitochondrial proliferation. 

Alternatively, the domains of FL-PGC-1α not present in NT-isoforms include many 

interaction sites with important transcription factors such as PPARs, FoxO1 or MEFC2 

(Zhang et al., 2009). Each of these factors might be critical in this mitochondrial proliferation 

function. It is also possible that post-transcriptional mechanisms required for triggering 

mitochondrial proliferation target domains exclusively present in FL-isoforms. In all, FL-

PGC-1α is necessary for mitochondrial proliferation, while NT-PGC-1α is not sufficient. NT-

PGC-1α, although not sufficient, could however be necessary for mitochondrial proliferation, 

and answering this question will require specific knock-out mice that are currently not 

available. 

Our results support PGC-1α activation and increased mitochondrial biogenesis 

underlying the increased mitochondrial mass observed in Cramping mice, however it is not 

excluded that decreased mitochondrial autophagy caused by the dynein mutation may also 

partially contribute to this phenotype. The above discussed growing evidences for the role of 

dynein in autophagy stand for this potential (Wong and Holzbaur, 2014). Further 

investigations are needed to answer this question carefully. 

FL-PGC-1α ablation, and subsequent loss of mitochondrial proliferation, strongly 

exacerbated the previously observed abnormalities of Cramping mice, both metabolic (muscle 

mitochondrial function) and neurological (grip strength, rotarod, tremors). New defects 

appeared in Cra/FLα -/- mice that were absent in single transgenic mice, in particular a 

pronounced kyphosis, profound hair and weight loss and inability to rear. The respective 

mechanisms underlying these different phenotypes remain unknown, especially whether they 

are the consequences of worsened mitochondrial dysfunction. 

We observed gender differences in body temperature regulation. Others from our 

workgroup previously observed decreased rectal temperature in aged male Cramping mice 

(Eschbach et al., 2011). This difference in body temperature is also observed in the current 

study when considering only aged males, although the difference is smaller than reported by 

Eschbach et al., 2011. There are several explanations for this discrepancy, such as the use of 

different detection methods (subcutaneous temperature chips in this study, rectal probe in the 

other), also the different genetic background of the mice due to cross breedings. Our present 

data show, that the ablation of FL-PGC-1α was on its own sufficient to lead to hypothermia in 
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male mice, while addition of a Cramping allele was necessary to lead to hypothermia in 

females. This reinforces the observation that dynein and FL-PGC-1α are both important for 

thermogenesis in mice (Leone et al., 2005; Eschbach et al., 2011; Puigserver et al., 1998). It 

also illustrates the higher basal thermogenic capacity in female rodents as compared with 

males (Rodriguez-Cuenca et al., 2002) as well as the gender-dependent effects of FL-PGC-1α 

which was previously observed in another mouse model of neurodegeneration (Eschbach et 

al., 2013). The underlying mechanisms for impaired thermogenesis will require further 

investigation, in particular to determine whether this is due to impaired mitochondrial 

function and/or impaired beta-adrenergic signalling. 

Our cross breeding results indicate that the mitochondrial proliferation elicited by FL-

PGC-1α increased activity is able to mitigate the phenotype of Cramping mice. This is in line 

with other experiments that showed that transgenic overexpression of FL-PGC-1α is able to 

attenuate symptoms of mitochondrial diseases in a tissue specific manner (Wenz et al., 2008, 

2009; Dillon et al., 2012; Srivastava et al., 2009). Moreover PGC-1α overexpression 

selectively in skeletal muscle of transgenic mouse model of ALS improved muscle endurance 

and locomotor activity at symptomatic stages of the disease (Da Cruz et al., 2012). Lentiviral-

mediated expression of PGC-1α in the striatum of R6/2 transgenic mouse model of HD was 

neuroprotective preventing neuronal atrophy in these mice (Cui et al., 2006). On the other 

hand crossbreeding PGC-1α knock-out mice with HD knock-in mice worsened significantly 

the behavioural and neuropathological abnormalities, which deleterious effect was even more 

profound after 3-NP administration (Cui et al., 2006). 

Our data highlight the role of PGC-1α activation in diseases with mitochondrial 

dysfunction and might provide potential therapeutic targets. Such an approach has already 

been tested with bezafibrate, a pan-PPAR agonist able to increase PGC-1α activity (Wenz et 

al., 2008), but the mechanisms involved have recently been challenged (Viscomi et al., 2011; 

Yatsuga and Suomalainen, 2012). Besides, interventional studies with pioglitazone and 

rosiglitazone, both able to induce PGC-1α expression and activate the PPAR pathway 

(Hondares et al., 2006) were found to be beneficial in rodent models of ALS (Kiaei et al., 

2004; Schutz et al., 2005) or PD (Breidert et al., 2002; Dehmer et al., 2004). Interestingly, 

microtubule inhibitors were found to induce PGC-1α expression in primary satellite skeletal 

muscle cells (Arany et al., 2008). The elucidation of the mechanisms underlying re-feeding 

induced increase in mtDNA might provide alternative targets. This pathway might also be of 

high interest for other diseases in which PGC-1α modulates the disease process. This is 
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especially the case for HD, where specific PPARGC1A gene variants are associated with 

changes in the clinical course (Soyal et al., 2012; Weydt et al., 2014, 2009). 

In all, we demonstrated here that the full-length isoform of PGC-1α is required for 

disease induced mitochondrial proliferation and cannot be substituted by its N-terminally 

truncated isoforms. We also showed the protective potential of FL-PGC-1α against 

mitochondrial dysfunction, which has major implications in neurodegeneration and might 

provide potential therapeutic targets. 

An indirect way to support mitochondrial involvement in neurodegeneration is via 

therapeutic interventions with drugs affecting mitochondrial functions. We found that in 

higher doses L-carnitine (LC) produced significant improvement in survival and 

locomotor activity (including total distance moved, immobility time and velocity) in the 

N171/82Q transgenic mouse model of HD. Though in an earlier human study, no significant 

changes were observed upon low dose LC on the abnormal involuntary movement scale, the 

mini-mental status, the reaction time and verbal fluency (Goety et al., 1990). During the one 

week (45 mg/kg/day) treatment period there were no serious side effects detected (Goety et 

al., 1990). In our experiment, the improvement in survival of 14,91% is nearly equivalent to 

the effects of other compounds with antioxidant properties, such as BN82451, remacemide 

and coenzyme Q10, although slightly less than the effects of creatine and cysteamine 

(Dedeoglu et al., 2002; Ferrante et al., 2002; Klivényi et al., 2003, Schilling et al., 2001).  

The neuropathology of HD involves a selective neuronal loss, which occurs most 

markedly in the striatum and in deeper layers of the cerebral cortex (Ferrante et al., 1997). In 

the striatum, the loss of MSNs is most prevalent (Walker, 2007). The N171-82Q transgenic 

mouse model of HD resembles this pathological changes, others demonstrated 25% neuronal 

cell loss in the striatum of N171-82Q mice at 16 weeks of age and a 20% decrease in striatal 

cell volume (McBride et al., 2006). We also reproduced this striatal neuronal loss in vehicle-

treated transgenic HD mice compared with wild-type animals. This decline was significantly 

reverted under LC treatment.   

The N-terminal fragments of mutant HTT, which are expressed ubiquitously in both the 

nervous system and the peripheral tissues (Ferrante et al., 1997; Landwehrmeyer et al., 1995; 

Sharp et al., 1995; Strong et al., 1993) accumulate in the nucleus of affected neurons and form 

intranuclear aggregates (DiFiglia et al., 1997; Gutekunst et al., 1999). These huntingtin 

aggregates usually cause transcriptional dysregulation (Cha, 2000; Sugars and Rubinsztein, 

2003), which leads to subsequent altered signal cascades among others involved in oxidative 

stress (Beal and Ferrante 2004). In our results there were significant decreases in EM48 
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immunoreactivity in the pyriform cortex of LC-treated N171-82Q mice and a slight decrease 

in the striatum relative to the vehicle-treated group. 

LC and its acetyl ester, acetyl-LC (ALC) were found to be neuroprotective in different 

animal models of neuronal dysfunction / neurodegeneration, such as in spinal cord injury 

(Karalija et al., 2012; 2014), mitochondrial toxin models induced by MPTP, 3-NP, rotenone 

(Virmani et al., 2005; Silva-Adaya et al., 2008; Zaitone et al., 2012), and methamphetamine 

induced neurotoxicity (Virmani et al., 2002). ALC showed neuroprotective properties in rats 

exposed to global hypoxia via inducing PGC-1α and nuclear respiratory factor-1 mediated 

mitochondrial biogenesis (Hota et al., 2012). Recent data obtained from patients with 

inherited neurometabolic diseases confirmed the involvement of L-carnitine in the 

pathogenesis and supposed LC supplementation as beneficial (Ribas et al., 2014). Several 

studies were performed in AD and dementia, and however preclinical studies and earlier 

clinical studies suggested a protective effect of ALC treatment, a Cochrane meta-analysis 

revealed that there is no evidence of benefit for ALC treatment in dementia and AD (Hudson 

and Tabet, 2003). Though recently published data of a phase II randomized clinical trial with 

combinatorial nutritional supplementation (also including ALC) is promising, confirming a 

significant improvement in dementia rating scale (Remington et al., 2015). 

The importance of reactive oxygen species (ROS) and free radicals has an increased 

attention in the last decade, since these molecules are aggravating factors in cellular injury 

and aging processes (Halliwell, 2001; Calabrese et al., 2012). A substantial body of evidence 

suggests a role of excitotoxicity and oxidative damage in the HD pathogenesis (Johri et al., 

2013; Chaturvedi and Beal, 2013; Gil-Mohapel et al., 2014). It has been demonstrated that the 

expression of mutant HTT in neuronal and non-neuronal cells causes increased ROS, which 

contributes to cell death (Wyttenbach et al., 2002; St-Pierre et al., 2006). They raise the 

possibility that agents, which have antioxidative activity, may be useful as therapies to slow 

the progression of neurodegeneration in HD. 

We demonstrated that L-carnitine administration to N171-82Q transgenic mice extends 

the survival, ameliorates the motor performance, preserves striatal neuron count and decreases 

the number of intranuclear HTT aggregates, these parameters being important in the 

pathomechanism of HD. We suggest that L-carnitine may develop its effect through 

decreasing the oxidative damage. While the exact mechanism responsible for the beneficial 

effects of LC in N171-82Q mice is uncertain, our data suggest that L-carnitine is 

neuroprotective and may possibly be beneficial in the treatment of HD. 

 



 

   

43 

VI. Conclusions 

We investigated the role of retrograde axonal transport, notably the molecular motor 

dynein and mitochondrial dysfunction in neurodegeneration using different mouse models. 

First, we showed that cytoplasmic dynein is required for the maintenance of striatal function. 

We demonstrated that the Cramping mutation in the dynein heavy chain gene caused a 

characteristic behavioural phenotype with striatal atrophy and dysfunction in mice confirmed 

by multimodal approaches. This finding may have major implications for our understanding 

of the pathogenesis of striatal diseases, notably HD. Second, we proved that the overall 

mitochondrial proliferation observed in Cramping mice is FL-PGC-1α dependent. We 

showed that genetic ablation of FL-PGC-1α significantly worsened the overall, neurological 

and mitochondrial phenotype of these mice. It suggests that FL-PGC-1α is required for the 

compensatory maintenance of mitochondrial function in Cramping mice. This observation 

helps to understand better the underlying mechanisms in mitochondrial dysfunction related to 

disease. Third, we showed that L-carnitine, a nutrient with antioxidant properties also 

enhancing mitochondrial function, ameliorates the motor symptoms and increases survival in 

a HD transgenic mouse model. Moreover it was found to be neuroprotective for striatal 

neurons, the neuronal population markedly affected in HD. Thus, L-carnitine may be a 

promising compound in the therapy of Huntington's disease. 

In all, our findings highlight the role of the molecular motor dynein and mitochondrial 

dysfunction in neurodegeneration, notably in Huntington's disease. These data contribute to 

better understanding of the pathomechanism of neurodegenerative diseases and offer potential 

therapeutic ways. 

 

VII. Acknowledgements 

I would like to express my gratitude to my supervisors, Péter Klivényi, Professor at the 

Department of Neurology, University of Szeged, and Luc Dupuis, research director at 

INSERM, University of Strasbourg and Professor at the Department of Neurology, Ulm 

University, for their excellent scientific guidance, practical advice and continuous support of 

my research activities. I would like to thank Professor László Vécsei, Head of the Department 

of Neurology, University of Szeged, and Professor Albert Ludolph, Head of the Department 

of Neurology, Ulm University, for their scientific supervision and the opportunity to work at 

their department and for all the support in my research career. Also I would like to thank 

Patrick Weydt and Anke Witting for their support and shaping my scientific thinking and 

attitude as well as their friendship. I wish to thank all my colleagues, co-workers and 



 

   

44 

technical assistants I performed the experiments with for all their help, especially Judith 

Eschbach, whose friendship I also highly value. Last but not least, I am grateful to my 

family, particularly my husband for their continuous support and patience during my work 

and that they let me have all the time necessary for writing the thesis. 

 

VIII. References 
 
Arany Z, Wagner BK, Ma Y, Chinsomboon J, Laznik D, Spiegelman BM (2008) Gene expression-based 

screening identifies microtubule inhibitors as inducers of PGC-1alpha and oxidative phosphorylation. 

Proc Natl Acad Sci U S A, 105:4721-6.  

Arockia Rani PJ, Panneerselvam C (2001) Carnitine as a free radical scavenger in aging. Exp Gerontol, 

36:1713–26. 

Aure K, Fayet G, Leroy JP, Lacene E, Romero NB, Lombes A (2006) Apoptosis in mitochondrial myopathies is 

linked to mitochondrial proliferation. Brain, 129:1249-1259. 

Banks GT, Fisher EM (2008) Cytoplasmic dynein could be key to understanding neurodegeneration.Genome 

Biol, 9:214. 

Baquet ZC, Gorski JA, Jones KR (2004) Early striatal dendrite deficits followed by neuron loss with advanced 

age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci, 24:4250-4258. 

Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen 

BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions 

produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci, 13:4181-92. 

Beal MF, Ferrante RJ (2004) Experimental therapeutics in transgenic mouse models of Huntington’s disease. 

Nat Rev Neurosci, 5:373–84. 

Bode FJ, Stephan M, Suhling H, Pabst R, Straub RH, Raber KA, Bonin M, Nguyen HP, Riess O, Bauer A 

(2008) Sex differences in a transgenic rat model of Huntington's disease: decreased 17beta-estradiol levels 

correlate with reduced numbers of DARPP32+ neurons in males. Hum Mol Genet, 17:2595-2609. 

Bolivar VJ, Manley K, Messer A (2004) Early exploratory behavior abnormalities in R6/1 Huntington's disease 

transgenic mice. Brain Res, 1005:29-35. 

Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC (2002) Protective action of the 

peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson's 

disease. J Neurochem, 82:615-24. 

Calabrese V, Colombrita C, Sultana R, Scapagnini G, Calvani M, Butterfield DA, Stella AM (2010) Redox 

modulation of heat shock protein expression by acetylcarnitine in aging brain: relationship to antioxidant 

status and mitochondrial function. Antioxid Redox Signal, 8:404-16. 

Calabrese V, Colombrita C, Sultana R, Scapagnini G, Calvani M, Butterfield DA, Stella AM (2006) Redox 

modulation of heat shock protein expression by acetylcarnitine in aging brain: relationship to antioxidant 

status and mitochondrial function. Antioxid Redox Signal, 8:404-16. 

Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli 

E, Calabrese EJ (2012) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and 

longevity. Biochim Biophys Acta, 1822:753-83. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Arany%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=18347329
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wagner%20BK%5BAuthor%5D&cauthor=true&cauthor_uid=18347329
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ma%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18347329
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chinsomboon%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18347329
http://www.ncbi.nlm.nih.gov/pubmed/?term=Laznik%20D%5BAuthor%5D&cauthor=true&cauthor_uid=18347329
http://www.ncbi.nlm.nih.gov/pubmed/?term=Spiegelman%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=18347329
http://www.ncbi.nlm.nih.gov/pubmed/18347329
http://www.ncbi.nlm.nih.gov/pubmed/18373888
http://www.ncbi.nlm.nih.gov/pubmed/?term=Storey%20E%5BAuthor%5D&cauthor=true&cauthor_uid=7692009
http://www.ncbi.nlm.nih.gov/pubmed/?term=Srivastava%20R%5BAuthor%5D&cauthor=true&cauthor_uid=7692009
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rosen%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=7692009
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rosen%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=7692009
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hyman%20BT%5BAuthor%5D&cauthor=true&cauthor_uid=7692009
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calabrese%20V%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Colombrita%20C%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sultana%20R%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Scapagnini%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calvani%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Butterfield%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stella%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calabrese%20V%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Colombrita%20C%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sultana%20R%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Scapagnini%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calvani%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Butterfield%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stella%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=16677087
http://www.ncbi.nlm.nih.gov/pubmed/16677087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calabrese%20V%5BAuthor%5D&cauthor=true&cauthor_uid=22108204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cornelius%20C%5BAuthor%5D&cauthor=true&cauthor_uid=22108204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dinkova-Kostova%20AT%5BAuthor%5D&cauthor=true&cauthor_uid=22108204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Iavicoli%20I%5BAuthor%5D&cauthor=true&cauthor_uid=22108204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Di%20Paola%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22108204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Koverech%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22108204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cuzzocrea%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22108204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rizzarelli%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22108204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rizzarelli%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22108204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calabrese%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=22108204
http://www.ncbi.nlm.nih.gov/pubmed/22108204


 

   

45 

Canto C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy 

expenditure. Current opinion in lipidology, 20:98-105. 

Caviston JP, Holzbaur EL (2009) Huntingtin as an essential integrator of intracellular vesicular trafficking. 

Trends Cell Biol, 19:147-55. 

Caviston JP, Ross JL, Antony SM, Tokito M, Holzbaur EL (2007) Huntingtin facilitates dynein/dynactin-

mediated vesicle transport. Proc Natl Acad Sci U S A, 104:10045-10050. 

Cha JH (2000) Transcriptional dysregulation in Huntington’s disease. Trends Neurosci, 23: 387–92. 

Cha JH (2007) Transcriptional signatures in Huntington's disease. Progress in neurobiology, 83:228-48. 

Chang JS, Fernand V, Zhang Y, Shin J, Jun HJ, Joshi Y, Gettys TW (2012) NT-PGC-1alpha protein is sufficient 

to link beta3-adrenergic receptor activation to transcriptional and physiological components of adaptive 

thermogenesis. J Biol Chem, 287:9100-9111. 

Chang JS, Huypens P, Zhang Y, Black C, Kralli A, Gettys TW (2010) Regulation of NT-PGC-1alpha subcellular 

localization and function by protein kinase A-dependent modulation of nuclear export by CRM1. J Biol 

Chem, 285:18039-18050. 

Chaturvedi RK, Beal MF (2013) Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's 

diseases. Mol Cell Neurosci, 55:101-14.  

Chen XJ, Levedakou EN, Millen KJ, Wollmann RL, Soliven B, Popko B (2007) Proprioceptive sensory 

neuropathy in mice with a mutation in the cytoplasmic Dynein heavy chain 1 gene. J Neurosci, 27:14515-

14524. 

Chevalier-Larsen E and Holzbaur EL (2006) Axonal transport and neurodegenerative disease. Biochim Biophys 

Acta, 1762:1094-1108. 

Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-

1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127:59-69. 

Da Cruz S, Parone PA, Lopes VS, Lillo C, McAlonis-Downes M, Lee SK, Vetto AP, Petrosyan S, Marsala M, 

Murphy AN, Williams DS, Spiegelman BM, Cleveland DW (2012) Elevated PGC-1alpha Activity 

Sustains Mitochondrial Biogenesis and Muscle Function without Extending Survival in a Mouse Model of 

Inherited ALS. Cell Metab, 15:778-786. 

Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB (2004) Protection by pioglitazone in the MPTP model 

of Parkinson's disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS 

activation. J Neurochem, 88:494-501. 

Dedeoglu A, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, Matson WR, Cooper AJ, Ratan 

RR, Beal MF, Hersch SM, Ferrante RJ (2002) Therapeutic effects of cystamine in a murine model of 

Huntington’s disease. J Neurosci, 22:8942–50. 

DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP,  Aronin N (1997) Aggregation of 

huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 277:1990–3. 

Dillon LM, Williams SL, Hida A, Peacock JD, Prolla TA, Lincoln J, Moraes CT (2012) Increased mitochondrial 

biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet, 

21:2288-2297. 

http://www.ncbi.nlm.nih.gov/pubmed/19269181
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chaturvedi%20RK%5BAuthor%5D&cauthor=true&cauthor_uid=23220289
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beal%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=23220289
http://www.ncbi.nlm.nih.gov/pubmed/23220289
http://www.ncbi.nlm.nih.gov/pubmed/?term=Williams%20DS%5BAuthor%5D&cauthor=true&cauthor_uid=22560226
http://www.ncbi.nlm.nih.gov/pubmed/?term=Spiegelman%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=22560226
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cleveland%20DW%5BAuthor%5D&cauthor=true&cauthor_uid=22560226
http://www.ncbi.nlm.nih.gov/pubmed/?term=Matson%20WR%5BAuthor%5D&cauthor=true&cauthor_uid=12388601
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cooper%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=12388601
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ratan%20RR%5BAuthor%5D&cauthor=true&cauthor_uid=12388601
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ratan%20RR%5BAuthor%5D&cauthor=true&cauthor_uid=12388601
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beal%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=12388601
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hersch%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=12388601
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferrante%20RJ%5BAuthor%5D&cauthor=true&cauthor_uid=12388601
http://www.ncbi.nlm.nih.gov/pubmed/?term=Aronin%20N%5BAuthor%5D&cauthor=true&cauthor_uid=9302293


 

   

46 

Dupuis L, Fergani A, Braunstein KE, Eschbach J, Holl N, Rene F, Gonzalez De Aguilar JL, Zoerner B, 

Schwalenstocker B, Ludolph AC, Loeffler JP (2009) Mice with a mutation in the dynein heavy chain 1 

gene display sensory neuropathy but lack motor neuron disease. Exp Neurol, 215:146-152. 

Eschbach J, Dupuis L (2011) Cytoplasmic dynein in neurodegeneration. Pharmacol Ther, 130:348-63.  

Eschbach J, Fergani A, Oudart H, Robin JP, Rene F, Gonzalez de Aguilar JL, Larmet Y, Zoll J, Hafezparast M, 

Schwalenstocker B, Loeffler JP, Ludolph AC,Dupuis L (2011) Mutations in cytoplasmic dynein lead to a 

Huntington's disease-like defect in energy metabolism of brown and white adipose tissues. Biochim 

Biophys Acta, 1812:59-69. 

Eschbach J, Schwalenstocker B, Soyal SM, Bayer H, Wiesner D, Akimoto C, Nilsson AC, Birve A, Meyer T, 

Dupuis L, Danzer KM, Andersen PM, Witting A,Ludolph AC, Patsch W, Weydt P (2013) PGC-1alpha is 

a male-specific disease modifier of human and experimental amyotrophic lateral sclerosis. Hum Mol 

Genet, 22:3477-84. 

Eschbach J, Sinniger J, Bouitbir J, Fergani A, Schlagowski AI, Zoll J, Geny B, Rene F, Larmet Y, Marion V, 

Baloh RH, Harms MB, Shy ME, Messadeq N, Weydt P, Loeffler JP, Ludolph AC, Dupuis L (2013) 

Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and 

function with age. Neurobiol Dis, 58:220-30 

Farrer MJ, Hulihan MM, Kachergus JM, Dachsel JC, Stoessl AJ, Grantier LL, Calne S, Calne DB, Lechevalier 

B, Chapon F, Tsuboi Y, Yamada T, Gutmann L,Elibol B, Bhatia KP, Wider C, Vilariño-Güell C, Ross 

OA, Brown LA, Castanedes-Casey M, Dickson DW, Wszolek ZK (2009) DCTN1 mutations in Perry 

syndrome. Nat Genet, 41:163-165. 

Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG, Hersch SM, Beal MF (2002) Therapeutic 

effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J 

Neurosci, 22:1592–9. 

Ferrante RJ, Gutekunst CA, Persichetti F, McNeil SM, Kowall NW, Gusella JF, MacDonald ME, Beal 

MF, Hersch SM (1997) Heterogeneous topographic and cellular distribution of huntingtin expression in 

the normal human neostriatum. J Neurosci, 17:3052–63. 

Gantois I, Fang K, Jiang L, Babovic D, Lawrence AJ, Ferreri V, Teper Y, Jupp B, Ziebell J, Morganti-Kossmann 

CM, O'Brien TJ, Nally R, Schütz G, Waddington J, Egan GF, Drago J (2007) Ablation of D1 dopamine 

receptor-expressing cells generates mice with seizures, dystonia, hyperactivity, and impaired oral 

behavior. Proc Natl Acad Sci U S A, 104:4182-4187. 

Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald 

ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic support and survival of 

neurons by enhancing BDNF vesicular transport along microtubules. Cell, 118:127-138. 

Gee MA, Heuser JE, Vallee RB (1997) An extended microtubule-binding structure within the dynein motor 

domain. Nature, 390:636-9. 

Gennerich A, Carter AP, Reck-Peterson SL, Vale RD (2007) Force-induced bidirectional stepping of 

cytoplasmic dynein. Cell, 131:952-65. 

Gil-Mohapel J, Brocardo PS, Christie BR (2014) The role of oxidative stress in Huntington's disease: 

are antioxidants good therapeutic candidates? Curr Drug Targets, 15:454-68. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Loeffler%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=18952079
http://www.ncbi.nlm.nih.gov/pubmed/21420428
http://www.ncbi.nlm.nih.gov/pubmed/?term=Loeffler%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=20887786
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ludolph%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=20887786
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dupuis%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20887786
http://www.ncbi.nlm.nih.gov/pubmed/?term=Danzer%20KM%5BAuthor%5D&cauthor=true&cauthor_uid=23669350
http://www.ncbi.nlm.nih.gov/pubmed/?term=Andersen%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=23669350
http://www.ncbi.nlm.nih.gov/pubmed/?term=Witting%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23669350
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ludolph%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=23669350
http://www.ncbi.nlm.nih.gov/pubmed/?term=Patsch%20W%5BAuthor%5D&cauthor=true&cauthor_uid=23669350
http://www.ncbi.nlm.nih.gov/pubmed/?term=Weydt%20P%5BAuthor%5D&cauthor=true&cauthor_uid=23669350
http://www.ncbi.nlm.nih.gov/pubmed/?term=Baloh%20RH%5BAuthor%5D&cauthor=true&cauthor_uid=23742762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Harms%20MB%5BAuthor%5D&cauthor=true&cauthor_uid=23742762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shy%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=23742762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Messadeq%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23742762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Weydt%20P%5BAuthor%5D&cauthor=true&cauthor_uid=23742762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Loeffler%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=23742762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ludolph%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=23742762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dupuis%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23742762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tsuboi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yamada%20T%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gutmann%20L%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Elibol%20B%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bhatia%20KP%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wider%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vilari%C3%B1o-G%C3%BCell%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ross%20OA%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ross%20OA%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20LA%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Castanedes-Casey%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dickson%20DW%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wszolek%20ZK%5BAuthor%5D&cauthor=true&cauthor_uid=19136952
http://www.ncbi.nlm.nih.gov/pubmed/?term=MacDonald%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=9096140
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beal%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=9096140
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beal%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=9096140
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hersch%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=9096140
http://www.ncbi.nlm.nih.gov/pubmed/?term=O%27Brien%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=17360497
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nally%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17360497
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sch%C3%BCtz%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17360497
http://www.ncbi.nlm.nih.gov/pubmed/?term=Waddington%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17360497
http://www.ncbi.nlm.nih.gov/pubmed/?term=Egan%20GF%5BAuthor%5D&cauthor=true&cauthor_uid=17360497
http://www.ncbi.nlm.nih.gov/pubmed/?term=Drago%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17360497
http://www.ncbi.nlm.nih.gov/pubmed/?term=Saudou%20F%5BAuthor%5D&cauthor=true&cauthor_uid=15242649
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gee%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=9403697
http://www.ncbi.nlm.nih.gov/pubmed/?term=Heuser%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=9403697
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vallee%20RB%5BAuthor%5D&cauthor=true&cauthor_uid=9403697
http://www.ncbi.nlm.nih.gov/pubmed/?term=gee+ma%2C+heuser+je
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gennerich%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18045537
http://www.ncbi.nlm.nih.gov/pubmed/?term=Carter%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=18045537
http://www.ncbi.nlm.nih.gov/pubmed/?term=Reck-Peterson%20SL%5BAuthor%5D&cauthor=true&cauthor_uid=18045537
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vale%20RD%5BAuthor%5D&cauthor=true&cauthor_uid=18045537
http://www.ncbi.nlm.nih.gov/pubmed/?term=gennerich+a%2C+carter+ap+2007
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gil-Mohapel%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24428525
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brocardo%20PS%5BAuthor%5D&cauthor=true&cauthor_uid=24428525
http://www.ncbi.nlm.nih.gov/pubmed/?term=Christie%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=24428525
http://www.ncbi.nlm.nih.gov/pubmed/24428525


 

   

47 

Goety CG, Tanner CM, Cohen JA, Thelen JA, Carroll VS, Klawans HL, Fariello RG (1990) Lacetyl-carnitine in 

Huntington’s disease: double-blind placebo controlled crossover study of drug effects on movement 

disorder and dementia. Mov Disord, 5:263–5. 

Goldstein LS, Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and 

dyneins.Annu Rev Neurosci, 23:39-71. 

Gusella JF, Macdonald ME. Huntington's disease: the case for genetic modifiers (2009) Genome medicine, 1:80. 

Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ, Hersch SM, Li XJ (1999) 

Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci, 

19:2522–34. 

Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, 

Hummerich H, Nicholson S, Morgan PJ, Oozageer R,Priestley JV, Averill S, King VR, Ball S, Peters 

J, Toda T, Yamamoto A, Hiraoka Y, Augustin M, Korthaus D, Wattler S, Wabnitz P, Dickneite 

C, Lampel S, Boehme F, Peraus G, Popp A, Rudelius M, Schlegel J, Fuchs H, Hrabe de Angelis 

M, Schiavo G, Shima DT, Russ AP, Stumm G, Martin JE, Fisher EM (2003) Mutations in dynein link 

motor neuron degeneration to defects in retrograde transport. Science, 300:808-812. 

Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for 

antioxidant treatment. Drugs Aging, 18:685–716. 

Handschin C (2009) The biology of PGC-1alpha and its therapeutic potential. Trends Pharmacol Sci, 30:322-9. 

Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 

coactivators, energy homeostasis, and metabolism. Endocrine reviews, 27:728-35. 

Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal 

muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-

out animals. J Biol Chem, 282:30014-30021. 

Haripriya D, Devi MA, Kokilavani V, Sangeetha P, Panneerselvam C (2004) Age-dependent alterations in 

mitochondrial enzymes in cortex, striatum and hippocampus of rat brain - potential role of L-Carnitine. 

Biogerontology, 5:355-64. 

Haripriya D, Sangeetha P, Kanchana A, Balu M, Panneerselvam C (2005) Modulation of age-associated 

oxidative DNA damage in rat brain cerebral cortex, striatum and hippocampus by L-carnitine. Exp 

Gerontol, 40:129-35. 

Harms MB, Ori-McKenney KM, Scoto M, Tuck EP, Bell S, Ma D, Masi S, Allred P, Al-Lozi M, Reilly MM, 

Miller LJ, Jani-Acsadi A, Pestronk A, Shy ME, Muntoni F,Vallee RB, Baloh RH (2012) Mutations in the 

tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology, 78:1714-1720. 

He MD, Xu SC, Lu YH, Li L, Zhong M, Zhang YW, Wang Y, Li M, Yang J, Zhang GB, Yu ZP, Zhou Z (2011) 

L-carnitine protects against nickel-induced neurotoxicity by maintaining mitochondrial function in Neuro-

2a cells. Toxicol Appl Pharmacol, 253:38-44 

Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada 

N, McCutcheon K, Nasir J, Jamot L, Li XJ, Stevens ME,Rosemond E, Roder JC, Phillips AG, Rubin 

EM, Hersch SM, Hayden MR (1999) A YAC mouse model for Huntington's disease with full-length 

mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23:181-92. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Fariello%20RG%5BAuthor%5D&cauthor=true&cauthor_uid=2143808
http://www.ncbi.nlm.nih.gov/pubmed/10845058
http://www.ncbi.nlm.nih.gov/pubmed/10845058
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rye%20D%5BAuthor%5D&cauthor=true&cauthor_uid=10087066
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferrante%20RJ%5BAuthor%5D&cauthor=true&cauthor_uid=10087066
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hersch%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=10087066
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20XJ%5BAuthor%5D&cauthor=true&cauthor_uid=10087066
http://www.ncbi.nlm.nih.gov/pubmed/?term=Morgan%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Oozageer%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Priestley%20JV%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Averill%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=King%20VR%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ball%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Peters%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Peters%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Toda%20T%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yamamoto%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hiraoka%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Augustin%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Korthaus%20D%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wattler%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wabnitz%20P%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dickneite%20C%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dickneite%20C%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lampel%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Boehme%20F%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Peraus%20G%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Popp%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rudelius%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schlegel%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fuchs%20H%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hrabe%20de%20Angelis%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hrabe%20de%20Angelis%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schiavo%20G%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shima%20DT%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Russ%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stumm%20G%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Martin%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fisher%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=12730604
http://www.ncbi.nlm.nih.gov/pubmed/?term=Haripriya%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15547323
http://www.ncbi.nlm.nih.gov/pubmed/?term=Devi%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=15547323
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kokilavani%20V%5BAuthor%5D&cauthor=true&cauthor_uid=15547323
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sangeetha%20P%5BAuthor%5D&cauthor=true&cauthor_uid=15547323
http://www.ncbi.nlm.nih.gov/pubmed/?term=Panneerselvam%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15547323
http://www.ncbi.nlm.nih.gov/pubmed/15547323
http://www.ncbi.nlm.nih.gov/pubmed/?term=Haripriya%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15763389
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sangeetha%20P%5BAuthor%5D&cauthor=true&cauthor_uid=15763389
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kanchana%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15763389
http://www.ncbi.nlm.nih.gov/pubmed/?term=Balu%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15763389
http://www.ncbi.nlm.nih.gov/pubmed/?term=Panneerselvam%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15763389
http://www.ncbi.nlm.nih.gov/pubmed/15763389
http://www.ncbi.nlm.nih.gov/pubmed/15763389
http://www.ncbi.nlm.nih.gov/pubmed/?term=Miller%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=22459677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jani-Acsadi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22459677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pestronk%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22459677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shy%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=22459677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Muntoni%20F%5BAuthor%5D&cauthor=true&cauthor_uid=22459677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vallee%20RB%5BAuthor%5D&cauthor=true&cauthor_uid=22459677
http://www.ncbi.nlm.nih.gov/pubmed/?term=Baloh%20RH%5BAuthor%5D&cauthor=true&cauthor_uid=22459677
http://www.ncbi.nlm.nih.gov/pubmed/?term=He%20MD%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xu%20SC%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lu%20YH%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20L%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhong%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20YW%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20J%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20GB%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yu%20ZP%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhou%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=21419151
http://www.ncbi.nlm.nih.gov/pubmed/21419151
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hodgson%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Agopyan%20N%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gutekunst%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Leavitt%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=LePiane%20F%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Singaraja%20R%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Smith%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bissada%20N%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bissada%20N%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=McCutcheon%20K%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nasir%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jamot%20L%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20XJ%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stevens%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rosemond%20E%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Roder%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Phillips%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rubin%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rubin%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hersch%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hayden%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=10402204
http://www.ncbi.nlm.nih.gov/pubmed/?term=hodgson+1999+agopyan


 

   

48 

Hondares E, Mora O, Yubero P, Rodriguez de la Concepcion M, Iglesias R, Giralt M, Villarroya F (2006) 

Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-

1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via 

peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology, 147:2829-38. 

Hota KB, Hota SK, Chaurasia OP, Singh SB (2012) Acetyl-L-carnitine-mediated neuroprotection during 

hypoxia is attributed to ERK1/2-Nrf2-regulated mitochondrial biosynthesis. Hippocampus, 22:723-36. 

Hudson S, Tabet N (2003) Acetyl-L-carnitine for dementia. Cochrane Database Syst Rev, CD003158. 

Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: 

ALS and beyond. J Cell Biol, 187:761-72. 

Ilieva HS, Yamanaka K, Malkmus S, Kakinohana O, Yaksh T, Marsala M, Cleveland DW (2008) Mutant dynein 

(Loa) triggers proprioceptive axon loss that extends survival only in the SOD1 ALS model with highest 

motor neuron death. Proc Natl Acad Sci U S A, 105:12599-12604. 

Johri A, Chandra A, Beal MF (2013) PGC-1α, mitochondrial dysfunction, and Huntington's disease. Free Radic 

Biol Med, 62:37-46. 

Juliet PA, Joyee AG, Jayaraman G, Mohankumar MN, Panneerselvam C (2005) Effect of L-carnitine on nucleic 

acid status of aged rat brain. Exp Neurol, 191:33-40. 

Karalija A, Novikova LN, Kingham PJ, Wiberg M, Novikov LN (2014) The effects of N-acetyl-cysteine 

and acetyl-L-carnitine on neural survival, neuroinflammation and regeneration following spinal cord 

injury. Neuroscience, 269:143-51 

Karalija A, Novikova LN, Kingham PJ, Wiberg M, Novikov LN (2012) Neuroprotective effects of N-acetyl-

cysteine and acetyl-L-carnitine after spinal cord injury in adult rats. PLoS One, 7:e41086 

Karki S, Holzbaur EL (1995) Affinity chromatography demonstrates a direct binding between cytoplasmic 

dynein and the dynactin complex. J Biol Chem, 270:28806-11 

Kiaei M, Bush AI, Morrison BM, Morrison JH, Cherny RA, Volitakis I,  Beal MF, Gordon JW (2004) 

Genetically decreased spinal cord copper concentration prolongs life in a transgenic mouse model of 

amyotrophic lateral sclerosis. J Neurosci, 24:7945-50. 

Kim OJ, Ariano MA, Namkung Y, Marinec P, Kim E, Han J, Sibley DR (2008) D2 dopamine receptor 

expression and trafficking is regulated through direct interactions with ZIP. J Neurochem, 106:83-95. 

King SJ, Schroer TA (2000) Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol, 

2:20-24. 

Klivényi P, Bende Z, Hartai Z, Penke Z, Nemeth H, Toldi J, Vécsei L (2006) Behaviour changes in a transgenic 

model of Huntington’s disease. Behav Brain Res, 169:137–41. 

Klivényi P, Ferrante RJ, Gardian G, Browne S, Chabrier PE, Beal MF (2003) Increased survival and 

neuroprotective effects of BN82451 in a transgenic mouse model of Huntington’s disease. J Neurochem, 

86:267–72. 

Koudelova J, Mourek J, Drahota Z, Rauchova H (1994) Protective effect of carnitine on lipoperoxide formation 

in rat brain. Physiol Res, 43:387–9. 

Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 

4:153-158. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Villarroya%20F%5BAuthor%5D&cauthor=true&cauthor_uid=16513826
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hota%20KB%5BAuthor%5D&cauthor=true&cauthor_uid=21542052
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hota%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=21542052
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chaurasia%20OP%5BAuthor%5D&cauthor=true&cauthor_uid=21542052
http://www.ncbi.nlm.nih.gov/pubmed/?term=Singh%20SB%5BAuthor%5D&cauthor=true&cauthor_uid=21542052
http://www.ncbi.nlm.nih.gov/pubmed/21542052
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hudson%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12804452
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tabet%20N%5BAuthor%5D&cauthor=true&cauthor_uid=12804452
http://www.ncbi.nlm.nih.gov/pubmed/12804452
http://www.ncbi.nlm.nih.gov/pubmed/19951898
http://www.ncbi.nlm.nih.gov/pubmed/19951898
http://www.ncbi.nlm.nih.gov/pubmed/?term=Johri%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23602910
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chandra%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23602910
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beal%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=23602910
http://www.ncbi.nlm.nih.gov/pubmed/?term=johri+2013+beal
http://www.ncbi.nlm.nih.gov/pubmed/?term=johri+2013+beal
http://www.ncbi.nlm.nih.gov/pubmed/?term=Juliet%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=15589510
http://www.ncbi.nlm.nih.gov/pubmed/?term=Joyee%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=15589510
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jayaraman%20G%5BAuthor%5D&cauthor=true&cauthor_uid=15589510
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mohankumar%20MN%5BAuthor%5D&cauthor=true&cauthor_uid=15589510
http://www.ncbi.nlm.nih.gov/pubmed/?term=Panneerselvam%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15589510
http://www.ncbi.nlm.nih.gov/pubmed/15589510
http://www.ncbi.nlm.nih.gov/pubmed/?term=Karalija%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24680856
http://www.ncbi.nlm.nih.gov/pubmed/?term=Novikova%20LN%5BAuthor%5D&cauthor=true&cauthor_uid=24680856
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kingham%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=24680856
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wiberg%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24680856
http://www.ncbi.nlm.nih.gov/pubmed/?term=Novikov%20LN%5BAuthor%5D&cauthor=true&cauthor_uid=24680856
http://www.ncbi.nlm.nih.gov/pubmed/24680856
http://www.ncbi.nlm.nih.gov/pubmed/22815926
http://www.ncbi.nlm.nih.gov/pubmed/22815926
http://www.ncbi.nlm.nih.gov/pubmed/7499404
http://www.ncbi.nlm.nih.gov/pubmed/7499404
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beal%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=15356208
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gordon%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=15356208


 

   

49 

LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascano J, Tokito M, Van Winkle T, Howland DS, 

Holzbaur EL (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing 

late-onset progressive degeneration. Neuron, 34:715-727. 

Landwehrmeyer GB, McNeil SM, Dure LS, Ge P, Aizawa H, Huang Q, Ambrose CM, Duyao MP, Bird 

ED, Bonilla E (1995) Huntington’s disease gene: regional and cellular expression in brain of normal and 

affected individuals. Ann Neurol, 37:218–30. 

Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical 

review. J Cereb Blood Flow Metab, 20:423-451. 

Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated 

receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest, 106:847-856. 

Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam 

N, Bernal-Mizrachi C, Chen Z, Holloszy JO,Medeiros DM, Schmidt RE, Saffitz JE, Abel 

ED, Semenkovich CF, Kelly DP (2005) PGC-1alpha deficiency causes multi-system energy metabolic 

derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol, 3:e101. 

Levy JR, Holzbaur EL (2006) Cytoplasmic dynein/dynactin function and dysfunction in motor neurons. Int. J. 

Dev. Neurosci., 24, 103-111. 

Li SH, Gutekunst CA, Hersch SM, Li XJ (1998) Interaction of huntingtin-associated protein with dynactin 

P150Glued. J Neurosci, 18:1261-1269. 

Li XJ, Li SH, Sharp AH, Nucifora FC, Schilling G, Lanahan A, Worley P, Snyder SH, Ross CA (1995) A 

huntingtin-associated protein enriched in brain with implications for pathology. Nature, 378:398-402. 

Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse AB, Ren S, Li XJ, Albin RL, Detloff 

PJ (2001) Neurological abnormalities in a knock-in mouse model of Huntington's disease. Hum Mol 

Genet, 10:137-44. 

Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick 

RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP,Fan MC, Rohas LM, Zavacki AM, Cinti 

S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM (2004) Defects in adaptive energy metabolism 

with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 119:121-35. 

Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell 

BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the 

formation of slow-twitch muscle fibres. Nature, 418:797-801. 

Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 

443:787-95. 

Long J, Gao F, Tong L, Cotman CW, Ames BN, Liu J (2009) Mitochondrial decay in the brains of old rats: 

ameliorating effect of alpha-lipoic acid and acetyl-L-carnitine. Neurochem Res, 34:755-63. 

Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1991) 3-Nitropropionic acid-exogenous animal 

neurotoxin and possible human striatal toxin. The Canadian journal of neurological sciences, 18:492-8. 

Luesse HG, Schiefer J, Spruenken A, Puls C, Block F, Kosinski CM (2001) Evaluation of R6/2 HD transgenic 

mice for therapeutic studies in Huntington's disease: behavioral testing and impact of diabetes mellitus. 

Behav Brain Res, 126:185-195. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ambrose%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=7847863
http://www.ncbi.nlm.nih.gov/pubmed/?term=Duyao%20MP%5BAuthor%5D&cauthor=true&cauthor_uid=7847863
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bird%20ED%5BAuthor%5D&cauthor=true&cauthor_uid=7847863
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bird%20ED%5BAuthor%5D&cauthor=true&cauthor_uid=7847863
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bonilla%20E%5BAuthor%5D&cauthor=true&cauthor_uid=7847863
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=15760270
http://www.ncbi.nlm.nih.gov/pubmed/?term=Holloszy%20JO%5BAuthor%5D&cauthor=true&cauthor_uid=15760270
http://www.ncbi.nlm.nih.gov/pubmed/?term=Medeiros%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=15760270
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schmidt%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=15760270
http://www.ncbi.nlm.nih.gov/pubmed/?term=Saffitz%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=15760270
http://www.ncbi.nlm.nih.gov/pubmed/?term=Abel%20ED%5BAuthor%5D&cauthor=true&cauthor_uid=15760270
http://www.ncbi.nlm.nih.gov/pubmed/?term=Abel%20ED%5BAuthor%5D&cauthor=true&cauthor_uid=15760270
http://www.ncbi.nlm.nih.gov/pubmed/?term=Semenkovich%20CF%5BAuthor%5D&cauthor=true&cauthor_uid=15760270
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kelly%20DP%5BAuthor%5D&cauthor=true&cauthor_uid=15760270
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lin%20CH%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tallaksen-Greene%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chien%20WM%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cearley%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jackson%20WS%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Crouse%20AB%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ren%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20XJ%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Albin%20RL%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Detloff%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=Detloff%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=11152661
http://www.ncbi.nlm.nih.gov/pubmed/?term=lin+ch%2C+tallaksen-greene
http://www.ncbi.nlm.nih.gov/pubmed/?term=lin+ch%2C+tallaksen-greene
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mootha%20VK%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=J%C3%A4ger%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vianna%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Reznick%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Reznick%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cui%20L%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Manieri%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Donovan%20MX%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wu%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cooper%20MP%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fan%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rohas%20LM%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zavacki%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cinti%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cinti%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shulman%20GI%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lowell%20BB%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Krainc%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Spiegelman%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=15454086
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lowell%20BB%5BAuthor%5D&cauthor=true&cauthor_uid=12181572
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lowell%20BB%5BAuthor%5D&cauthor=true&cauthor_uid=12181572
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bassel-Duby%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12181572
http://www.ncbi.nlm.nih.gov/pubmed/?term=Spiegelman%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=12181572
http://www.ncbi.nlm.nih.gov/pubmed/?term=Long%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18846423
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gao%20F%5BAuthor%5D&cauthor=true&cauthor_uid=18846423
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tong%20L%5BAuthor%5D&cauthor=true&cauthor_uid=18846423
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cotman%20CW%5BAuthor%5D&cauthor=true&cauthor_uid=18846423
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ames%20BN%5BAuthor%5D&cauthor=true&cauthor_uid=18846423
http://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18846423
http://www.ncbi.nlm.nih.gov/pubmed/18846423


 

   

50 

Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, 

Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause 

a progressive neurological phenotype in transgenic mice. Cell, 87:493-506. 

Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, 

Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab, 10:507-515. 

McBride JL, Ramaswamy S, Gasmi M, Bartus RT, Herzog CD, Brandon EP, Zhou L, Pitzer MR, Berry-Kravis 

EM, Kordower JH (2006) Viral delivery of glial cell line-derived neurotrophic factor improves behavior 

and protects striatal neurons in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A, 

103:9345–50. 

McGill JK, Beal MF (2006) PGC-1alpha, a new therapeutic target in Huntington's disease? Cell, 127:465-8. 

Menalled LB, Sison JD, Wu Y, Olivieri M, Li XJ, Li H, Zeitlin S, Chesselet MF (2002) Early motor dysfunction 

and striosomal distribution of huntingtin microaggregates in Huntington's disease knock-in mice. J 

Neurosci, 22:8266-8276. 

Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P (2012) Crosstalk between mitochondrial 

(dys)function and mitochondrial abundance. J Cell Physiol, 227:2297-2310. 

Miura S, Tomitsuka E, Kamei Y, Yamazaki T, Kai Y, Tamura M, Kita K, Nishino I, Ezaki O (2006) 

Overexpression of peroxisome proliferator-activated receptor gamma co-activator-1alpha leads to muscle 

atrophy with depletion of ATP. Am J Pathol, 169:1129-1139. 

Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH, Brown H, Tiwari A, 

Hayward L Edgar J, Nave KA, Garberrn J, Atagi Y, Song Y, Pigino G, Brady ST (2009) Axonal transport 

defects in neurodegenerative diseases. J Neurosci, 29:12776-12786. 

Morfini GA, You YM, Pollema SL, Kaminska A, Liu K, Yoshioka K, Bjorkblom B, Coffey ET, Bagnato C, Han 

D Huang CF, Banker G, Pigino G, Brady ST (2009) Pathogenic huntingtin inhibits fast axonal transport 

by activating JNK3 and phosphorylating kinesin. Nat Neurosci, 12:864-871. 

Munch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, Prudlo J, Peraus G, Hanemann CO, Stumm 

G, Ludolph AC (2004) Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. 

Neurology, 63:724-726. 

Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell, 148:1145-1159. 

Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002)  Early 

mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nature 

neuroscience, 5:731-6. 

Perlson E, Jeong GB, Ross JL, Dixit R, Wallace KE, Kalb RG, Holzbaur EL (2009) A switch in retrograde 

signaling from survival to stress in rapid-onset neurodegeneration. J Neurosci, 29:9903-9917. 

Pfister KK, Fisher EM, Gibbons IR, Hays TS, Holzbaur EL, McIntosh JR, Porter ME, Schroer TA, Vaughan 

KT, Witman GB, King SM, Vallee RB (2005) Cytoplasmic dynein nomenclature. J Cell Biol, 171:411-3 

Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EM (2006) Genetic 

analysis of the cytoplasmic dynein subunit families. PLoS Genet, 2:e1 

Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, Parrini E, Valence S, Pierre BS, Oger 

M, Lacombe D, Geneviève D, Fontana E, Darra F, Cances C, Barth M, Bonneau D, Bernadina 

BD, N'guyen S, Gitiaux C, Parent P, des Portes V, Pedespan JM, Legrez V, Castelnau-Ptakine 

http://www.ncbi.nlm.nih.gov/pubmed/8898202
http://www.ncbi.nlm.nih.gov/pubmed/8898202
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhou%20L%5BAuthor%5D&cauthor=true&cauthor_uid=16751280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pitzer%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=16751280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Berry-Kravis%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=16751280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Berry-Kravis%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=16751280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kordower%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=16751280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Edgar%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19828789
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nave%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=19828789
http://www.ncbi.nlm.nih.gov/pubmed/?term=Garberrn%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19828789
http://www.ncbi.nlm.nih.gov/pubmed/?term=Atagi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=19828789
http://www.ncbi.nlm.nih.gov/pubmed/?term=Song%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=19828789
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pigino%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19828789
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brady%20ST%5BAuthor%5D&cauthor=true&cauthor_uid=19828789
http://www.ncbi.nlm.nih.gov/pubmed/?term=Huang%20CF%5BAuthor%5D&cauthor=true&cauthor_uid=19525941
http://www.ncbi.nlm.nih.gov/pubmed/?term=Banker%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19525941
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pigino%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19525941
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brady%20ST%5BAuthor%5D&cauthor=true&cauthor_uid=19525941
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ludolph%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=15326253
http://www.ncbi.nlm.nih.gov/pubmed/?term=Greenamyre%20JT%5BAuthor%5D&cauthor=true&cauthor_uid=12089530
http://www.ncbi.nlm.nih.gov/pubmed/16260502
http://www.ncbi.nlm.nih.gov/pubmed/16440056
http://www.ncbi.nlm.nih.gov/pubmed/16440056
http://www.ncbi.nlm.nih.gov/pubmed/?term=Poirier%20K%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lebrun%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Broix%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tian%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Saillour%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Boscheron%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Parrini%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Valence%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pierre%20BS%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Oger%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Oger%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lacombe%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Genevi%C3%A8ve%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fontana%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Darra%20F%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cances%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Barth%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bonneau%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bernadina%20BD%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bernadina%20BD%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=N%27guyen%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gitiaux%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Parent%20P%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=des%20Portes%20V%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pedespan%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Legrez%20V%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Castelnau-Ptakine%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23603762


 

   

51 

L, Nitschke P, Hieu T, Masson C, Zelenika D, Andrieux A, Francis F, Guerrini R, Cowan NJ, Bahi-

Buisson N, Chelly J (2013) Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of 

cortical development and microcephaly. Nat Genet, 45: 639-47.  

Poon HF, Calabrese V, Calvani M, Butterfield DA (2006) Proteomics analyses of specific protein oxidation and 

protein expression in aged rat brain and its modulation by L-acetylcarnitine: insights into the mechanisms 

of action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. Antioxid 

Redox Signal, 8:381-94. 

Price DL, Wong PC, Markowska AL, Lee MK, Thinakaren G, Cleveland DW, Sisodia SS, Borchelt DR (2000) 

The value of transgenic models for the study of neurodegenerative diseases.Ann N Y Acad Sci, 920:179-

91.  

Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of 

nuclear receptors linked to adaptive thermogenesis. Cell, 92:829-39. 

Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, Floeter MK, Bidus K, Drayna D, Oh SJ 

Brown RH Jr, Ludlow CL, Fischbeck KH (2003) Mutant dynactin in motor neuron disease. Nat Genet, 

33:455-456. 

Puls I, Oh SJ, Sumner CJ, Wallace KE, Floeter MK, Mann EA, Kennedy WR, Wendelschafer-Crabb G, 

Vortmeyer A, Powers R Finnegan K, Holzbaur EL,Fischbeck KH, Ludlow CL (2005) Distal spinal and 

bulbar muscular atrophy caused by dynactin mutation. Ann Neurol, 57:687-694. 

Rani PJ, Panneerselvam C (2002) Effect of L-carnitine on brain lipid peroxidation and antioxidant enzymes in 

old rats. J Gerontol A Biol Sci Med Sci, 57:B134-7. 

Rauskolb S, Zagrebelsky M, Dreznjak A, Deogracias R, Matsumoto T, Wiese S, Erne B, Sendtner M, Schaeren-

Wiemers N, Korte M Barde YA (2010) Global deprivation of brain-derived neurotrophic factor in the 

CNS reveals an area-specific requirement for dendritic growth. J Neurosci, 30:1739-1749. 

Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine 

expansions are degraded by autophagy. Hum Mol Genet, 11:1107-17. 

Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O'Kane CJ, Brown SD, Rubinsztein DC 

(2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet, 37:771-

776. 

Remington R, Bechtel C, Larsen D, Samar A, Doshanjh L, Fishman P, Luo Y, Smyers K, Page R, Morrell 

C, Shea TB (2015) A Phase II Randomized Clinical Trial of a Nutritional Formulation for Cognition and 

Mood in Alzheimer's Disease. J Alzheimers Dis, 45:395-405 

Ribas GS, Vargas CR, Wajner M (2014) L-carnitine supplementation as a potential antioxidant therapy for 

inherited neurometabolic disorders. Gene, 533:469-76. 

Rodriguez-Cuenca S, Pujol E, Justo R, Frontera M, Oliver J, Gianotti M, Roca P (2002) Sex-dependent 

thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown 

adipose tissue. J Biol Chem, 277:42958-42963. 

Rogers DC, Peters J, Martin JE, Ball S, Nicholson SJ, Witherden AS, Hafezparast M, Latcham J, Robinson TL, 

Quilter CA, Fisher EM (2001) SHIRPA, a protocol for behavioral assessment: validation for longitudinal 

study of neurological dysfunction in mice. Neurosci Lett, 306:89-92. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Castelnau-Ptakine%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nitschke%20P%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hieu%20T%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Masson%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zelenika%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Andrieux%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Francis%20F%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Guerrini%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cowan%20NJ%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bahi-Buisson%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bahi-Buisson%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chelly%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23603762
http://www.ncbi.nlm.nih.gov/pubmed/23603762
http://www.ncbi.nlm.nih.gov/pubmed/?term=Poon%20HF%5BAuthor%5D&cauthor=true&cauthor_uid=16677085
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calabrese%20V%5BAuthor%5D&cauthor=true&cauthor_uid=16677085
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calvani%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16677085
http://www.ncbi.nlm.nih.gov/pubmed/?term=Butterfield%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=16677085
http://www.ncbi.nlm.nih.gov/pubmed/16677085
http://www.ncbi.nlm.nih.gov/pubmed/16677085
http://www.ncbi.nlm.nih.gov/pubmed/11193148
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20RH%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=12627231
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ludlow%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=12627231
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fischbeck%20KH%5BAuthor%5D&cauthor=true&cauthor_uid=12627231
http://www.ncbi.nlm.nih.gov/pubmed/?term=Finnegan%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15852399
http://www.ncbi.nlm.nih.gov/pubmed/?term=Holzbaur%20EL%5BAuthor%5D&cauthor=true&cauthor_uid=15852399
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fischbeck%20KH%5BAuthor%5D&cauthor=true&cauthor_uid=15852399
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ludlow%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=15852399
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rani%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=11909877
http://www.ncbi.nlm.nih.gov/pubmed/?term=Panneerselvam%20C%5BAuthor%5D&cauthor=true&cauthor_uid=11909877
http://www.ncbi.nlm.nih.gov/pubmed/11909877
http://www.ncbi.nlm.nih.gov/pubmed/?term=Barde%20YA%5BAuthor%5D&cauthor=true&cauthor_uid=20130183
http://www.ncbi.nlm.nih.gov/pubmed/11978769
http://www.ncbi.nlm.nih.gov/pubmed/11978769
http://www.ncbi.nlm.nih.gov/pubmed/?term=Remington%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bechtel%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Larsen%20D%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Samar%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Doshanjh%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fishman%20P%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Luo%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Smyers%20K%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Page%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Morrell%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Morrell%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shea%20TB%5BAuthor%5D&cauthor=true&cauthor_uid=25589719
http://www.ncbi.nlm.nih.gov/pubmed/25589719
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ribas%20GS%5BAuthor%5D&cauthor=true&cauthor_uid=24148561
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vargas%20CR%5BAuthor%5D&cauthor=true&cauthor_uid=24148561
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wajner%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24148561
http://www.ncbi.nlm.nih.gov/pubmed/24148561
http://www.ncbi.nlm.nih.gov/pubmed/11403965
http://www.ncbi.nlm.nih.gov/pubmed/11403965


 

   

52 

Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, 

Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z,Leinwand LA, Spiegelman BM (2012) A PGC-1alpha 

isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 151:1319-1331. 

Savitha S, Sivarajan K, Haripriya D, Kokilavani V, Panneerselvam C (2005) Efficacy of levo carnitine and alpha 

lipoic acid in ameliorating the decline in mitochondrial enzymes during aging. Clin Nutr, 24:794-800. 

Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory 

network. Biochim Biophys Acta, 1813:1269-1278. 

Schafer DA, Gill SR, Cooper JA, Heuser JE, Schroer TA (1994) Ultrastructural analysis of the dynactin 

complex: an actin-related protein is a component of a filament that resembles F-actin. J Cell Biol, 

126:403-12. 

Schiavo G, Greensmith L, Hafezparast M, Fisher EM (2013) Cytoplasmic dynein heavy chain: the servant of 

many masters. Trends Neurosci. 36:641-51.  

Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper 

JK, Jenkins NA, Copeland NG, Price DL, Ross CA, Borchelt DR (1999) Intranuclear inclusions and 

neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol 

Genet, 8:397–407. 

Schilling G, Coonfield ML, Ross CA, Borchelt DR (2001) Coenzyme Q10 and remacemide hydrochloride 

ameliorate motor deficits in a Huntington’s disease transgenic mouse model. Neurosci Lett, 315:149–53. 

Schutz B, Reimann J, Dumitrescu-Ozimek L, Kappes-Horn K, Landreth GE, Schurmann B, Zimmer A, Heneka 

MT (2005) The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral 

sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci, 25:7805-12. 

Scoto M, Rossor AM, Harms MB, Cirak S, Calissano M, Robb S, Manzur AY, Martínez Arroyo A, Rodriguez 

Sanz A, Mansour S, Fallon P, Hadjikoumi I, Klein A, Yang M, De Visser M, Overweg-Plandsoen WC, 

Baas F, Taylor JP, Benatar M, Connolly AM, Al-Lozi MT, Nixon J, de Goede CG, Foley AR, Mcwilliam 

C, Pitt M, Sewry C, Phadke R, Hafezparast M, Chong WK, Mercuri E, Baloh RH, Reilly MM, Muntoni F 

(2015) Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy. 

Neurology, 84:668-79 

Sharp AH, Loev SJ, Schilling G, Li SH, Li XJ, Bao J, Wagster MV, Kotzuk JA, Steiner JP, Lo A (1995) 

Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron, 14:1065–74. 

Shen T, Liu Y, Schneider MF (2012) Localization and regulation of the N terminal splice variant of PGC-1alpha 

in adult skeletal muscle fibers. J Biomed Biotechnol, 2012:989263 

Siessmeier T, Zhou Y, Buchholz HG, Landvogt C, Vernaleken I, Piel M, Schirrmacher R, Rosch F, 

Schreckenberger M, Wong DF, Cumming P, Gründer G,Bartenstein P (2005) Parametric mapping of 

binding in human brain of D2 receptor ligands of different affinities. J Nucl Med, 46:964-972. 

Silva-Adaya D, Pérez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernández J, Binienda 

Z, Ali SF, Santamaría A (2008) Excitotoxic damage, disrupted energy metabolism, and oxidative stress in 

the rat brain: antioxidant and neuroprotective effects of L-carnitine. J Neurochem, 105:677-89. 

Sitarz KS, Yu-Wai-Man P, Pyle A, Stewart JD, Rautenstrauss B, Seeman P, Reilly MM, Horvath R, Chinnery 

PF (2012) MFN2 mutations cause compensatory mitochondrial DNA proliferation. Brain, 135:e219. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Lanza%20IR%5BAuthor%5D&cauthor=true&cauthor_uid=23217713
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rasbach%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=23217713
http://www.ncbi.nlm.nih.gov/pubmed/?term=Okutsu%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23217713
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nair%20KS%5BAuthor%5D&cauthor=true&cauthor_uid=23217713
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yan%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=23217713
http://www.ncbi.nlm.nih.gov/pubmed/?term=Leinwand%20LA%5BAuthor%5D&cauthor=true&cauthor_uid=23217713
http://www.ncbi.nlm.nih.gov/pubmed/?term=Spiegelman%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=23217713
http://www.ncbi.nlm.nih.gov/pubmed/?term=Savitha%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15919137
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sivarajan%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15919137
http://www.ncbi.nlm.nih.gov/pubmed/?term=Haripriya%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15919137
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kokilavani%20V%5BAuthor%5D&cauthor=true&cauthor_uid=15919137
http://www.ncbi.nlm.nih.gov/pubmed/?term=Panneerselvam%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15919137
http://www.ncbi.nlm.nih.gov/pubmed/15919137
http://www.ncbi.nlm.nih.gov/pubmed/7518465
http://www.ncbi.nlm.nih.gov/pubmed/7518465
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schiavo%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24035135
http://www.ncbi.nlm.nih.gov/pubmed/?term=Greensmith%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24035135
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hafezparast%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24035135
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fisher%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=24035135
http://www.ncbi.nlm.nih.gov/pubmed/24035135
http://www.ncbi.nlm.nih.gov/pubmed/?term=Slunt%20HH%5BAuthor%5D&cauthor=true&cauthor_uid=9949199
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ratovitski%20T%5BAuthor%5D&cauthor=true&cauthor_uid=9949199
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cooper%20JK%5BAuthor%5D&cauthor=true&cauthor_uid=9949199
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cooper%20JK%5BAuthor%5D&cauthor=true&cauthor_uid=9949199
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jenkins%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=9949199
http://www.ncbi.nlm.nih.gov/pubmed/?term=Copeland%20NG%5BAuthor%5D&cauthor=true&cauthor_uid=9949199
http://www.ncbi.nlm.nih.gov/pubmed/?term=Price%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=9949199
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ross%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=9949199
http://www.ncbi.nlm.nih.gov/pubmed/?term=Borchelt%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=9949199
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zimmer%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16120782
http://www.ncbi.nlm.nih.gov/pubmed/?term=Heneka%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=16120782
http://www.ncbi.nlm.nih.gov/pubmed/?term=Heneka%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=16120782
http://www.ncbi.nlm.nih.gov/pubmed/25609763
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cumming%20P%5BAuthor%5D&cauthor=true&cauthor_uid=15937307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gr%C3%BCnder%20G%5BAuthor%5D&cauthor=true&cauthor_uid=15937307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bartenstein%20P%5BAuthor%5D&cauthor=true&cauthor_uid=15937307
http://www.ncbi.nlm.nih.gov/pubmed/?term=Silva-Adaya%20D%5BAuthor%5D&cauthor=true&cauthor_uid=18194214
http://www.ncbi.nlm.nih.gov/pubmed/?term=P%C3%A9rez-De%20La%20Cruz%20V%5BAuthor%5D&cauthor=true&cauthor_uid=18194214
http://www.ncbi.nlm.nih.gov/pubmed/?term=Herrera-Mundo%20MN%5BAuthor%5D&cauthor=true&cauthor_uid=18194214
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mendoza-Macedo%20K%5BAuthor%5D&cauthor=true&cauthor_uid=18194214
http://www.ncbi.nlm.nih.gov/pubmed/?term=Villeda-Hern%C3%A1ndez%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18194214
http://www.ncbi.nlm.nih.gov/pubmed/?term=Binienda%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=18194214
http://www.ncbi.nlm.nih.gov/pubmed/?term=Binienda%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=18194214
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ali%20SF%5BAuthor%5D&cauthor=true&cauthor_uid=18194214
http://www.ncbi.nlm.nih.gov/pubmed/?term=Santamar%C3%ADa%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18194214
http://www.ncbi.nlm.nih.gov/pubmed/18194214


 

   

53 

Soyal SM, Felder TK, Auer S, Hahne P, Oberkofler H, Witting A, Paulmich M, Landwehrmeyer GB, Weydt P, 

Patsch W (2012) A greatly extended PPARGC1A genomic locus encodes several new brain-specific 

isoforms and influences Huntington disease age of onset. Hum Mol Genet, 21:3461-3473. 

Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT (2009) PGC-1alpha/beta induced expression 

partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. 

Hum Mol Genet, 18:1805-1812. 

Steiber A, Kerner J, Hoppel CL (2004) Carnitine: a nutritional, biosynthetic, and functional perspective. Mol 

Aspects Med, 25:455-73. 

St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon 

DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by 

the PGC-1 transcriptional coactivators. Cell, 127:397-408. 

Strong TV, Tagle DA, Valdes JM, Elmer LW, Boehm K, Swaroop M,  Kaatz KW, Collins FS, Albin RL (1993) 

Widespread expression of the human and rat Huntington’s disease gene in brain and nonneural tissues. 

Nat Genet, 5:259–65. 

Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet, 19:233–

8. 

Szalardy L, Zadori D, Plangar I, Vecsei L, Weydt P, Ludolph AC, Klivenyi P, Kovacs GG (2013) 

Neuropathology of partial PGC-1α deficiency recapitulates features of mitochondrial encephalopathies 

but not of neurodegenerative diseases. Neurodegener Dis, 12:177-88. 

Taherzadeh-Fard E, Saft C, Andrich J, Wieczorek S, Arning L (2009) PGC-1alpha as modifier of onset age in 

Huntington disease. Molecular neurodegeneration, 4:10. 

Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny I 

(2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. 

Proceedings of the National Academy of Sciences of the United States of America, 102:2602-7. 

Teuling E, van Dis V, Wulf PS, Haasdijk ED, Akhmanova A, Hoogenraad CC, Jaarsma D (2008) A novel 

mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like 

features in motor neurons and improves lifespan in SOD1-ALS mice. Hum Mol Genet, 17:2849-2862. 

The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat 

that is expanded and unstable on Huntington's disease chromosomes. Cell, 72:971-83. 

Tirotta E, Fontaine V, Picetti R, Lombardi M, Samad TA, Oulad-Abdelghani M, Edwards R, Borrelli E (2008) 

Signaling by dopamine regulates D2 receptors trafficking at the membrane. Cell Cycle, 7:2241-2248. 

Virmani A, Gaetani F, Binienda Z (2005) Effects of metabolic modifiers such as carnitines, coenzyme Q10, and 

PUFAs against different forms of neurotoxic insults: metabolic inhibitors, MPTP, and methamphetamine. 

Ann N Y Acad Sci, 1053:183-91. 

Virmani A, Gaetani F, Imam S, Binienda Z, Ali S (2002) The protective role of L-carnitine against neurotoxicity 

evoked by drug of abuse, methamphetamine, could be related to mitochondrial dysfunction. Ann N Y 

Acad Sci, 965:225-32. 

Viscomi C, Bottani E, Civiletto G, Cerutti R, Moggio M, Fagiolari G, Schon EA, Lamperti C, Zeviani M (2011) 

In vivo correction of COX deficiency by activation of the AMPK/PGC-1alpha axis. Cell Metab, 14:80-90. 

Walker FO (2007) Huntington's disease. Lancet, 369:218-28. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Steiber%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15363636
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kerner%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15363636
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hoppel%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=15363636
http://www.ncbi.nlm.nih.gov/pubmed/15363636
http://www.ncbi.nlm.nih.gov/pubmed/15363636
http://www.ncbi.nlm.nih.gov/pubmed/?term=Handschin%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17055439
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zheng%20K%5BAuthor%5D&cauthor=true&cauthor_uid=17055439
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lin%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17055439
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20W%5BAuthor%5D&cauthor=true&cauthor_uid=17055439
http://www.ncbi.nlm.nih.gov/pubmed/?term=Simon%20DK%5BAuthor%5D&cauthor=true&cauthor_uid=17055439
http://www.ncbi.nlm.nih.gov/pubmed/?term=Simon%20DK%5BAuthor%5D&cauthor=true&cauthor_uid=17055439
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bachoo%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17055439
http://www.ncbi.nlm.nih.gov/pubmed/?term=Spiegelman%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=17055439
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kaatz%20KW%5BAuthor%5D&cauthor=true&cauthor_uid=8275091
http://www.ncbi.nlm.nih.gov/pubmed/?term=Collins%20FS%5BAuthor%5D&cauthor=true&cauthor_uid=8275091
http://www.ncbi.nlm.nih.gov/pubmed/?term=Albin%20RL%5BAuthor%5D&cauthor=true&cauthor_uid=8275091
http://www.ncbi.nlm.nih.gov/pubmed/23406886
http://www.ncbi.nlm.nih.gov/pubmed/23406886
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kristal%20BS%5BAuthor%5D&cauthor=true&cauthor_uid=15695335
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hayden%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=15695335
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bezprozvanny%20I%5BAuthor%5D&cauthor=true&cauthor_uid=15695335
http://www.ncbi.nlm.nih.gov/pubmed/?term=Virmani%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16179522
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gaetani%20F%5BAuthor%5D&cauthor=true&cauthor_uid=16179522
http://www.ncbi.nlm.nih.gov/pubmed/?term=Binienda%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=16179522
http://www.ncbi.nlm.nih.gov/pubmed/16179522
http://www.ncbi.nlm.nih.gov/pubmed/?term=Virmani%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12105098
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gaetani%20F%5BAuthor%5D&cauthor=true&cauthor_uid=12105098
http://www.ncbi.nlm.nih.gov/pubmed/?term=Imam%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12105098
http://www.ncbi.nlm.nih.gov/pubmed/?term=Binienda%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=12105098
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ali%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12105098
http://www.ncbi.nlm.nih.gov/pubmed/12105098
http://www.ncbi.nlm.nih.gov/pubmed/12105098


 

   

54 

Webb JL, Ravikumar B, Rubinsztein DC (2004) Microtubule disruption inhibits autophagosome-lysosome 

fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell 

Biol, 36:2541-50. 

Weedon MN, Hastings R, Caswell R, Xie W, Paszkiewicz K, Antoniadi T, Williams M, King C, Greenhalgh L, 

Newbury-Ecob R, Ellard S (2011) Exome sequencing identifies a DYNC1H1 mutation in a large pedigree 

with dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet, 89:308-312. 

Wenz T (2009) PGC-1alpha activation as a therapeutic approach in mitochondrial disease. IUBMB Life, 

61:1051-1062. 

Wenz T, Diaz F, Spiegelman BM, Moraes CT (2008) Activation of the PPAR/PGC-1alpha pathway prevents a 

bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab, 8:249-

256. 

West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons 

in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec, 231:482-497. 

Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton 

GJ, Bammler TK, Strand AD, Cui L, Beyer RP, Easley CN, Smith AC, Krainc D, Luquet S, Sweet 

IR, Schwartz MW, La Spada AR (2006) Thermoregulatory and metabolic defects in Huntington's disease 

transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab, 4:349-62. 

Weydt P, Soyal SM, Gellera C, Didonato S, Weidinger C, Oberkofler H, Landwehrmeyer GB, Patsch W (2009) 

The gene coding for PGC-1alpha modifies age at onset in Huntington's Disease. Molecular 

neurodegeneration, 4:3. 

Weydt P, Soyal SM, Landwehrmeyer GB, Patsch W; European Huntington Disease Network. (2014) A single 

nucleotide polymorphism in the coding region of PGC-1α is a male-specific modifier of Huntington 

disease age-at-onset in a large European cohort. BMC Neurol, 14:1. 

Wider C, Dachsel JC, Farrer MJ, Dickson DW, Tsuboi Y, Wszolek ZK (2010) Elucidating the genetics and 

pathology of Perry syndrome. J Neurol Sci, 289:149-154. 

Wiesner D, Sinniger J, Henriques A, Dieterlé S, Müller HP, Rasche V, Ferger B, Dirrig-Grosch S, Soylu-

Kucharz R, Petersén A, Walther P, Linkus B, Kassubek J, Wong PC, Ludolph AC, Dupuis L (2014) Low 

dietary protein content alleviates motor symptoms in mice with mutant dynactin/dynein-mediated 

neurodegeneration. Hum Mol Genet, Epub ahead of print 

Wong PC, Cai H, Borchelt DR, Price DL (2002) Genetically engineered mouse models of neurodegenerative 

diseases. Nat Neurosci, 5:633-9. 

Wong YC, Holzbaur EL (2014) The regulation of autophagosome dynamics by huntingtin and HAP1 is 

disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci, 

34:1293-305.  

Wyttenbach A, Sauvageot O, Carmichael J, az-Latoud C, Arrigo AP, Rubinsztein DC (2002) Heat shock protein 

27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused 

by huntingtin. Hum Mol Genet, 11:1137–51. 

Xiao MF, Xu JC, Tereshchenko Y, Novak D, Schachner M, Kleene R (2009) Neural cell adhesion molecule 

modulates dopaminergic signaling and behavior by regulating dopamine D2 receptor internalization. J 

Neurosci, 29:14752-14763. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Webb%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=15325591
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ravikumar%20B%5BAuthor%5D&cauthor=true&cauthor_uid=15325591
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rubinsztein%20DC%5BAuthor%5D&cauthor=true&cauthor_uid=15325591
http://www.ncbi.nlm.nih.gov/pubmed/?term=webb+2004+ravikumar
http://www.ncbi.nlm.nih.gov/pubmed/?term=webb+2004+ravikumar
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ellard%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21820100
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gilbert%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Morton%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Morton%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bammler%20TK%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Strand%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cui%20L%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Beyer%20RP%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Easley%20CN%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Smith%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Krainc%20D%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Luquet%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sweet%20IR%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sweet%20IR%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schwartz%20MW%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=La%20Spada%20AR%5BAuthor%5D&cauthor=true&cauthor_uid=17055784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Landwehrmeyer%20GB%5BAuthor%5D&cauthor=true&cauthor_uid=19133136
http://www.ncbi.nlm.nih.gov/pubmed/?term=Patsch%20W%5BAuthor%5D&cauthor=true&cauthor_uid=19133136
http://www.ncbi.nlm.nih.gov/pubmed/24383721
http://www.ncbi.nlm.nih.gov/pubmed/24383721
http://www.ncbi.nlm.nih.gov/pubmed/24383721
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wiesner%20D%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sinniger%20J%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Henriques%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dieterl%C3%A9%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=M%C3%BCller%20HP%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rasche%20V%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferger%20B%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dirrig-Grosch%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Soylu-Kucharz%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Soylu-Kucharz%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Peters%C3%A9n%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Walther%20P%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Linkus%20B%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kassubek%20J%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wong%20PC%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ludolph%20AC%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dupuis%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25552654
http://www.ncbi.nlm.nih.gov/pubmed/25552654
http://www.ncbi.nlm.nih.gov/pubmed/12085093
http://www.ncbi.nlm.nih.gov/pubmed/12085093
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wong%20YC%5BAuthor%5D&cauthor=true&cauthor_uid=24453320
http://www.ncbi.nlm.nih.gov/pubmed/?term=Holzbaur%20EL%5BAuthor%5D&cauthor=true&cauthor_uid=24453320
http://www.ncbi.nlm.nih.gov/pubmed/24453320
http://www.ncbi.nlm.nih.gov/pubmed/24453320


 

   

55 

Yatsuga S, Suomalainen A (2012) Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. 

Hum Mol Genet, 21:526-535. 

Ylikallio E, Tyynismaa H, Tsutsui H, Ide T, Suomalainen A (2010) High mitochondrial DNA copy number has 

detrimental effects in mice. Hum Mol Genet, 19:2695-2705. 

Yu-Wai-Man P, Sitarz KS, Samuels DC, Griffiths PG, Reeve AK, Bindoff LA, Horvath R, Chinnery PF (2010) 

OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum 

Mol Genet, 19:3043-3052. 

Zaitone SA, Abo-Elmatty DM, Shaalan AA (2012) Acetyl-L-carnitine and α-lipoic acid affect rotenone-induced 

damage in nigral dopaminergic neurons of rat brain, implication for Parkinson's disease therapy. 

Pharmacol Biochem Behav, 100:347-60.  

Zhang Y, Huypens P, Adamson AW, Chang JS, Henagan TM, Boudreau A, Lenard NR, Burk D, Klein J, 

Perwitz N, Shin J, Fasshauer M, Kralli A, Gettys TW (2009) Alternative mRNA splicing produces a novel 

biologically active short isoform of PGC-1alpha. J Biol Chem, 284:32813-32826. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Zaitone%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=21958946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Abo-Elmatty%20DM%5BAuthor%5D&cauthor=true&cauthor_uid=21958946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shaalan%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=21958946
http://www.ncbi.nlm.nih.gov/pubmed/21958946
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shin%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19773550
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fasshauer%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19773550
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kralli%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19773550
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gettys%20TW%5BAuthor%5D&cauthor=true&cauthor_uid=19773550

	List of abbreviations
	Summary
	I. Introduction
	I.1. Huntington's disease
	I.2. Axonal transport and the molecular motor dynein
	I.3. Mitochondria in neurodegeneration

	II. Aims
	III. Materials and methods
	IV. Results
	V. Discussion
	VI. Conclusions
	VIII. References

