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INTRODUCTION 

Genetic risk factors are important determinants of disease susceptibility and prognosis in 

chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). The 

pathogenesis of these disorders is complex; in the majority of patients the disease develops 

through the interaction of environmental and genetic risk factors. Hereditary forms represent a 

minority of patients, where solely a genetic etiology is apparent. To date, several highly 

penetrant susceptibility genes have been identified in hereditary pancreatitis and familial 

pancreatic cancer syndromes, while low penetrance genetic risk factors often accumulate and 

interact with lifestyle and environment in sporadic or idiopathic cases. 

A genetic background for CP was first described in a pedigree with an autosomal dominant 

inheritance pattern in 1952
1
. In 1996 Whitcomb et al. identified the protease serine 1 

(PRSS1)
2
 gene encoding the human cationic trypsinogen as the first gene associated with CP

2
. 

Using candidate gene approaches several pancreatitis associated variants have been 

discovered in genes encoding serine protease inhibitor Kazal type 1 (SPINK1)
3
, chymotrypsin 

C (CTRC)
4
, cystic fibrosis transmembrane conductance regulator (CFTR)

5
, carboxypeptidase 

A1 (CPA1)
6
 and carboxyl ester lipase (CEL)

7
, while genome-wide association studies 

identified numerous other susceptibility loci. Despite these recent advances, many patients 

with idiopathic CP do not carry mutations in any of the known susceptibility genes, 

suggesting the involvement of other yet unidentified genes. 

Chronic pancreatitis is an established risk factor for pancreatic cancer. Indeed, hereditary CP 

patients harboring the p.R122H mutation in the PRSS1 gene are at 50% lifetime risk for 

developing cancer
8
. It has been reported that common variants are shared between CP and 

PDAC, suggesting the idea that these conditions not only have common environmental but 

also common genetic risk factors
9
. About 5% of PDAC cases are familial, involving highly 

penetrant susceptibility genes, such as breast cancer 2, early onset (BRCA2), ataxia 

teleangiectasia mutated (ATM), and partner and localizer of BRCA2 (PALB2)
10

. The 

remaining 95% of cases considered to be ‘sporadic’ have a significant germline genetic 

component as well, and are estimated to represent up to 30% of pancreatic cancer 

susceptibility
11

. Such common variants were first identified in the AB0 blood group gene
12

. 

To date, five genome-wide association studies (GWAS) have described multiple susceptibility 

loci associated with the risk of pancreatic cancer.
13–17

 However, estimates of heritability 

suggest a large number of loci remain to be discovered.  
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In the field of pancreas genetics there is a clear need to further explore the complex genetic 

background. Functional analysis of the disease-associated variants provides a better 

understanding of the molecular pathogenesis and may open up new treatment possibilities. 

The other challenge is to understand what variations mean for an individual patient and how 

to apply this knowledge for treatment decisions. Although in its infancy, there is a growing 

body of evidence suggesting that individualized therapies that are based upon the specific 

genetic alterations of an individual patient will soon be a reality.   

In this thesis genetic investigations regarding chronic pancreatitis and pancreatic cancer have 

been reviewed together with the description of the author’s experimental data in order to gain 

a deeper comprehension of the pathophysiology of pancreatic diseases. 

 

Genetic risk factors of chronic pancreatitis 

Chronic pancreatitis (CP) is an irreversible, progressive inflammatory disease of the pancreas, 

characterized by morphological changes of the gland, exocrine and/or endocrine insufficiency 

and chronic abdominal pain. The prevalence of CP is about 50/100.000. Patients experience 

substantial impairment in health-related quality of life
18

, have an increased risk for developing 

pancreatic cancer, and face a markedly decreased life expectancy
19

. CP is most commonly 

associated with excessive alcohol consumption but other factors such as smoking, metabolic 

disturbances, anatomic abnormalities, autoimmunity and genetic variations have also been 

implicated. In a substantial proportion of patients the cause of the disease remains obscure; 

thus, up to 30% of all cases are classified as having idiopathic CP. Whether or not the disease 

becomes manifest depends on the individual combination of genetic predisposition and 

exogenous insults, particularly alcohol intake and smoking. 
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Figure 1.  

Model of interaction between genetic susceptibility and environmental risk factors in chronic 

pancreatitis 

 

The fact that the majority of individuals with high alcohol intake does not develop alcoholic 

CP suggest a genetic basis for susceptibility as well, such as variations in SPINK1, CTRC, and 

CFTR genes
20

. In idiopathic CP the genetic risk is more apparent. Comprehensive screenings 

of the major risk genes in larger cohorts revealed that 30-50% of idiopathic CP patients carry 

one or more known disease associated mutations
21,22

. In hereditary pancreatitis heterozygous 

mutations of PRSS1 are causative. There have been major discoveries about the mechanism of 

action of CP associated mutations, involving premature activation of digestive enzymes, 

endoplasmic reticulum stress and diminished ductal bicarbonate secretion.  

 

Protease-antiprotease imbalance 

Tissue autodigestion in pancreatitis is a century-old paradigm. This pathogenic concept has 

been supported by several lines of genetic evidence, indicating that trypsin plays a key role in 

triggering an activation cascade of the digestive zymogens. Mutations in PRSS1 cause 

increased autoactivation of mutant trypsinogens by directly increasing trypsinogen 

autoactivation or by altering the CTRC-dependent activation and/or degradation of cationic 

trypsinogen
23

. CTRC is a pancreatic serine protease which regulates autoactivation of cationic 
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trypsinogen by selectively cleaving regulatory sites within the activation peptide and the 

calcium binding loop. CP-associated mutations of CTRC cause impaired activity and/or 

decreased secretion, resulting in diminished trypsin-degrading activity
4
. Consistent with the 

trypsin-paradigm, a protective, loss-of-function variant of PRSS2 encoding human anionic 

trypsinogen has been identified
24

. The SPINK1 gene encodes the pancreatic secretory trypsin 

inhibitor, which is believed to play a part in protecting the pancreas against premature 

trypsinogen activation. The p.N34S mutation is the most frequent and best studied SPINK1 

variant, which is clearly a risk factor for CP, although the mechanism remains unclear
25

. It is 

plausible that intronic mutations in linkage disequilibrium with p.N34S may be responsible 

for the clinical effect. Taken together, gain-of-function mutations in PRSS1, or loss-of-

function mutations in the trypsinogen-regulatory protease CTRC and protease inhibitor 

SPINK1 result in elevated intrapancreatic trypsin activity, leading to self-digestion of the 

gland. 

 

 

Figure 2. 

Trypsin-central paradigm of pancreatitis. 

 

Endoplasmic reticulum stress 

The endoplasmic reticulum (ER) is a membrane-enclosed organelle responsible for the 

synthesis, folding, modification, and quality control of numerous secretory and membrane 
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proteins. The ER responds to the accumulation of unfolded proteins in its lumen (ER stress) 

by activating intracellular signal transduction pathways; cumulatively called the unfolded 

protein response (UPR). UPR increases the ER protein-folding capacity, reduces global 

protein synthesis, and enhances ER-associated degradation of misfolded proteins. Pancreatic 

acinar cells are particularly vulnerable to ER dysfunction, since they secrete enormous 

amount of proteins. First evidence that protein misfolding may be associated with CP came to 

light by investigation of several CP-associated SPINK1 missense mutants, that exhibited a 

protein secretion defect 
25

. Next, a hereditary CP associated PRSS1 variant, namely p.R116C 

was found to induce misfolding and consequent ER stress, due to an unpaired cysteine 

residue
26

. A similar phenotype was observed for PRSS1 variant p.C139S. Certain CTRC 

mutations also exhibited secretion defect and ER stress, that was proportional to the loss of 

secretion
27

. Mutations in CPA1 were found to associate with CP, and the mechanism by 

which these variants confer increased pancreatitis risk was found involve misfolding-induced 

ER stress.
6
 In a more recent study a carboxyl ester lipase hybrid allele (CEL-HYB) originating 

from a crossover between CEL and its neighboring pseudogene, CELP was found to increase 

susceptibility to idiopathic and alcoholic CP as well. Functional investigations revealed 

intracellular retention and impaired secretion.
7
 Besides genetic evidence, ER stress was also 

observed in experimental models of pancreatitis, such as in the cerulein hyperstimulation 

model or the arginine-induced experimental acute pancreatitis model.
28

  

Ductal secretion defect 

Fluid and HCO3
-
 secretion is a vital function of pancreatic ductal epithelium and is 

fundamental for the integrity of the tissue. The human pancreas secretes 1–2 liters of alkaline, 

isotonic juice per day, which contains concentrations of bicarbonate that may exceed 

140mM
29

. This bicarbonate rich fluid flushes out digestive enzymes from the ductal tree, 

facilitates solubilization of macromolecules, neutralizes the protons secreted by acinar cells, 

prevents premature activation of trypsinogen and neutralizes gastric acid in the duodenum 

providing an optimal pH environment for digestive enzymes. One of the functional 

consequences of CP is the reduction in secretin-stimulated bicarbonate content in pancreatic 

juice
30

. Impaired HCO3
-
 secretion disrupts the physiological interaction between acinar and 

duct cells, resulting in decreased intraluminal pH, premature trypsinogen activation, impaired 

acinar secretion, obstruction of the lumen with protein plugs and finally destruction of the 

parenchyma.
31

. Several pancreatitis associated toxic factors, such as ethanol
32

, bile acids
33

, 

trypsin
34

 and cigarette smoke extract
35

 displayed inhibitory effects on bicarbonate secretion 
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and influenced the activity of the CFTR chloride channel. Not only functional inhibition, but 

also genetic defects of CFTR can increase the risk for pancreatitis. Association of CFTR 

mutations and the development of CP
5,36

, and recurrent acute pancreatitis
38

 has been reported. 

Genetic defects in the CFTR gene result in a wide disease spectrum (classic cystic fibrosis 

(CF), non-classic CF, CF-related diseases), which is dependent on organ-specific protein 

requirements, the amount of functional protein, - which is influenced by the genotype -, as 

well as genetic modifiers and environmental factors. CFTR variants found in CP patients are 

in most cases ‘mild’ variants with residual CFTR function, and it is yet unknown why 

heterozygote carriers are at increased disease risk. Heterozygous CF-causing severe and mild 

CFTR variants increase the risk 2.9 and 4.5-fold respectively
22

. These observations indicate 

that insufficient electrolyte transport is pathogenic for CP   

 

Figure 3.  

Model of pancreatic ductal secretion.  

 

SLC26A6 anion transporter 

Pancreatic bicarbonate secretion is not only dependent on CFTR but also on the solute-linked 

carrier 26 (SLC26) anion transporters, localized in the apical membrane of the ductal cells. 

SLC26 isoforms constitute a conserved family of anion transporters with 10 distinct members. 

All SLC26 isoforms - except for SLC26A5 (prestin) - are versatile anion exchangers 

mediating apical chloride/base exchange in epithelial tissues. Several diseases have been 

linked to mutations in members of the family, including diastrophic dysplasias (SLC26A2), 

congenital chloride diarrhea (SLC26A3), Pendred’s syndrome (SLC26A4), hearing loss 



13 
 

(SLC26A5) and asthma (SLC26A9)
39,40

. The SLC26A6 anion exchanger is expressed in the 

apical membrane of pancreatic ducts, intestinal epithelium and kidney proximal tubule
40

. It 

mediates multiple anion exchange modes, including, Cl
-
/HCO3

-
 exchange, Cl

-
/formate 

exchange and Cl
-
/oxalate exchange. Earlier studies revealed a direct molecular interaction 

between CFTR and two SLC26 exchangers, namely A3 and A6, which results in mutual 

upregulation of their transport activity
41

. This process is mediated by binding of the regulatory 

(R) domain of CFTR to the highly conserved STAS (sulphate transporter and anti-sigma 

antagonist) domain of SLC26 and this interaction is required for activation of both SLC26 

transporters and CFTR. Notably, CF causing CFTR mutations that retain normal or substantial 

Cl
-
 conductance exhibited a severe defect in CFTR dependent Cl

-
/HCO3

-
 exchange activity. 

This indicates that impairment of the coupled bicarbonate transport mechanism is sufficient to 

damage pancreatic function even in the presence of CFTR Cl
-
 channel activity 

42
. On the basis 

of its localization in the apical membrane of the pancreatic duct and its function as a Cl
-

/HCO3
-
 exchanger, SLC26A6 has been proposed to be a major contributor to the apical HCO3

-
 

secretion in the pancreatic duct
43

 

Genetic risk factors of pancreatic cancer 

Carcinoma of the exocrine pancreas is a genetic disease that is caused by inherited and 

acquired mutations in specific cancer-associated genes. It has the highest mortality rate of all 

malignancies. There is no effective screening available and advanced disease is commonly 

present at initial diagnosis.
44

 The incidence of the disease is 8/100,000, and it is the fourth 

leading cause of cancer-related death among both men and women.
45

 The majority of these 

tumors (85 percent) are adenocarcinomas arising from the ductal epithelium. Established risk 

factors are cigarette smoking, chronic inflammation of the pancreas, diabetes mellitus and 

increased body mass.
46

 Chronic pancreatitis and PDAC share common environmental risk 

factors, such as smoking and heavy alcohol consumption and share some common genetic 

susceptibility factors as well. Cumulative risk for pancreatic cancer in CP reaches 1.8% at 10 

years and 4% at 20 years, independent of the type of pancreatitis.
47

 Hereditary pancreatitis is 

associated with a markedly increased, more than 50% lifetime risk for pancreatic cancer, 

although it accounts for a very small fraction of pancreatic cancer cases. The signaling 

mechanisms that underlie the transition from CP to invasive cancer involve inflammation 

induced transdifferentiation and oncogenic stimulation, resulting in metaplastic duct lesions or 

other precancerous lesions known as pancreatic intraepithelial neoplasia (PanIN). Eventually, 

PanIN can further progress to PDAC once cells acquire additional transforming mutations.
48
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Sequencing of pancreatic adenocarcinoma tissue samples revealed that multiple combinations 

of genetic mutations are commonly present that can be divided into three broad categories: 

mutational activation of oncogenes such as KRAS; inactivation of tumor suppressor genes 

such as TP53, p16/CDKN2A, and SMAD4; inactivation of genome maintenance genes, such 

as hMLH1 and MSH2, which control the repair of DNA damage.
49

 Although most of these 

genetic aberrations represent somatic mutations, others are present in the germline of kindreds 

who carry a familial predisposition to pancreatic cancer. Advances in our understanding of the 

genes involved in the molecular pathogenesis of pancreatic cancer have provided insight into 

the progression of normal pancreatic ductal cells to noninvasive precursor lesions and to 

invasive carcinoma; and important implications for the development of chemoprevention and 

early detection strategies. 

High penetrance susceptibility genes 

Pancreatic cancer aggregates in some families; an estimated 5-10% of individuals with 

pancreatic cancer have a family history of the disease. There are two broad categories of 

hereditary risk for pancreatic cancer: defined syndromes in which patients are at risk for a 

number of malignancies, including pancreatic cancer; and familial pancreatic cancer. Several 

high-penetrance germline mutations are involved in these cases, such as
50

:  

- BRCA and PALB2 - hereditary breast and ovarian cancer syndrome: Germline mutations in 

BRCA1 and especially BRCA2 are associated with an increased risk of pancreatic cancer. 

BRCA2 mutations are found in as many as 12-17% of patients with familial pancreatic cancer 

- Germline mutations in STK11 - Peutz-Jeghers syndrome. In individuals with PJS, the 

lifetime risk may be as high as 36%. 

- Mutations in CDKN2A - Familial atypical multiple-mole melanoma (FAMMM) syndrome, a 

disorder associated with multiple nevi, cutaneous and ocular malignant melanomas, as well as 

pancreatic cancers. 

- Ataxia-telangiectasia mutated (ATM) - Ataxia-telangiectasia is an autosomal recessive 

disorder associated with defective DNA repair mechanisms associated with an increased risk 

of pancreatic cancer 

- Mismatch repair genes (MMR) - Lynch syndrome. Individuals with Lynch syndrome are 

also at increased risk of cancer of the ovary, stomach, pancreas, small bowel, hepatobiliary 
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system, transitional cell cancer of the renal pelvis and ureter, brain (glioma), and sebaceous 

neoplasms 

- PRSS1 mutations – hereditary pancreatitis and pancreatic cancer 

However, combined, these known genetic factors account for less than 20% of the observed 

familial aggregation, suggesting that other as yet unidentified susceptibility genes may exist.  

Low penetrance susceptibility genes 

In sporadic cases of pancreatic cancer more common genetic variants are implicated that 

represent a minor risk for the disease. Epidemiologic evidence suggested that people with 

blood group 0 may have a lower risk of pancreatic cancer than those with groups A or B. 

Later risk variants in the AB0 blood group gene have been identified.
5,6

 To date, five GWAS 

studies have described multiple susceptibility loci associated with the risk of pancreatic 

cancer.
13–17

 Several of these loci harbor plausible candidate genes that have been implicated in 

pancreas development, pancreatic beta-cell function and predisposition to diabetes. The effect 

size of these susceptibility loci is generally small, with odds ratios (ORs) usually not higher 

than 1.2 or not lower than 0.8. When the cumulative association of risk alleles with pancreatic 

cancer was evaluated, it was found that compared to individuals with the most prevalent 

number (n = 10) of risk alleles in controls, those with ≤6 risk alleles had an OR of 0.55 (95% 

CI 0.44–0.68) and those with ≥14 risk alleles had an OR of 2.24 (95% CI 1.80–2.80) for 

pancreatic cancer
52

.  

 

Figure 4. 
52

 

Cumulative association of risk alleles with pancreatic cancer 
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Cholecystokinin-B receptor 

The gastrin/CCK-B receptor is a member of the G protein-coupled receptor superfamily, 

physiologically expressed in the human pancreas.
53

 Binding of gastrin or CCK triggers 

activation of multiple signal transduction pathways that relay mitogenic signals to the nucleus 

and promote cell proliferation. Numerous studies have shown that CCK-B receptor plays a 

significant role in carcinogenesis and tumor progression.
54,55

 An alternatively spliced mRNA 

form of the receptor generated by retention of intron 4 (designated CCK-BRi4sv for intron 4-

containing splice variant; also referred to as CCK-C receptor) was reported in various 

tumours
56

, including pancreatic cancer.
57

 The resulting CCK-BRi4sv receptor protein exhibits 

constitutive (agonist-independent) activation of cell proliferation pathways.
58

 Smith et al. 

(2012) reported a common single nucleotide polymorphism (SNP) in the cholecystokinin-B 

receptor gene (CCKBR) as a risk factor for PDAC, which has not been observed in prior 

GWAS studies.
59

 The authors showed in a small cohort (51 cases and 39 controls) that variant 

c.811+32C>A (rs1800843) located in intron 4 of CCKBR increased PDAC risk and was also 

associated with poorer survival. In a more recent follow-up study, Smith et al. (2014) 

replicated their results in a larger North-American multi-center cohort (931 cases and 59 

controls) and confirmed both increased PDAC risk (odds ratio 2.28, CC versus AC plus AA 

genotypes) and shorter survival (hazard ratio 1.56) associated with variant c.811+32C>A.
60

 

Using immunohistochemistry, Smith et al. (2012) found that tumors with variant 

c.811+32C>A expressed CCK-BRi4sv receptor protein, suggesting that the variant might be 

directly responsible for intron retention. The authors speculated that binding of the splicing 

factor SRp55 might be reduced by the intronic variant resulting in enhanced retention of 

intron 4 
12, 13

. 
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AIMS 

I. On the basis of its localization in the apical membrane of the pancreatic duct and 

 its function as a Cl
-
/HCO3

-
 exchanger, SLC26A6 has been proposed to be a major 

contributor to the apical HCO3
-
 secretion in the pancreatic duct. However, the role of 

genetic variations in SLC26A6 has remained unexplored in CP. Therefore we aimed to 

investigate SLC26A6 gene variants in chronic pancreatitis. 

 

Specific aims: in this study, we aimed to sequence the entire coding region of SLC26A6 

in 100 non-alcoholic CP cases. We aimed to further investigate the identified variants in 

Hungarian and German cohorts of non-alcoholic and alcoholic CP. 

 

II. There are few known risk factors in pancreatic adenocarcinoma and a better 

understanding of the molecular pathogenesis is urgently needed. Therefore, we aimed to 

re-evaluate the role of CCKBR variant c.811+32C>A as a novel genetic prognostic 

marker.  

 

Specific aims: in this study we had three objectives: (1) to replicate the association 

between variant c.811+32C>A and the risk for developing pancreatic cancer in an 

independent population, (2) to evaluate the impact of the variant on patient survival and 

(3) to examine the functional effect of the variant on pre-mRNA splicing.  

 

  



18 
 

PATIENTS AND METHODS OF GENETIC ANALYSIS 

OF SLC26A6 IN CHRONIC PANCREATITIS 

Subjects and study design 

The study protocol was approved by the national ethical review committee ETT-TUKEB 

(22254-1/2012). The study population has been collected and characterized by members of 

the Hungarian Pancreatic Study Group (see the list of coauthors). Therefore, characterization 

of study cohort which can be found in the manuscript is other coauthors scientific 

achievement. All patients gave written informed consent for genetic analysis. The study 

included CP patients originating from Hungary (n = 106) and Germany (n = 361). Clinico-

pathological information on individual patients including symptoms, diagnostic criteria and 

etiology were collected from medical records and questioners completed by the patients. 

Diagnosis of CP was based on at least two of the following criteria: constant or recurrent 

abdominal pain, calcifications on sonography or CT, ductal irregularities on ERCP or MRCP 

examination, EUS based diagnosis of CP and histologically confirmed CP. According to 

etiology, patients were divided into alcoholic CP and non-alcoholic CP groups. Alcoholic CP 

was defined by consumption of more than 80g/d (man) ethanol or more than 60g/d (women) 

for at least two years. 99 Hungarian and 171 German control subjects were recruited from 

adult volunteers who considered themselves generally healthy, from inpatients who had no 

history of pancreatic disease and from blood donors. 

 

DNA extraction and genotyping 

Genomic DNA was isolated from whole blood using QIAamp DNA Blood mini kit (Qiagen, 

Hilden, Germany). In a discovery cohort of 60 non-alcoholic Hungarian CP patients the entire 

coding sequence and adjacent intronic sequences were amplified and sequenced. Primers were 

designed according to the published sequence of the human SLC26A6 gene (GenBank: 

NM_022911.2) (Table 1). Our analysis did not include the non-functional alternative splice 

variant SLC26A6d 
61

, which retains an unspliced intron, resulting in a different carboxy 

terminus lacking the STAS domain. PCR was performed in a total volume of 30 µl, which 

contained 0.5 U HotStarTaq DNA Polymerase (Qiagen, Hilden, Germany), 1.5 mM Mg2Cl, 

0.2 mM dNTP, 0.5 µM primer and 10-50 ng genomic DNA. Amplification was performed 

under the following cycle conditions: 95 °C for 15 min to activate the enzyme, followed by 40 

http://www.ncbi.nlm.nih.gov/nuccore/20336275
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cycles of 30 s denaturation at 94 °C, 30 s at specific annealing temperatures and 1 min 

extension at 72 °C, with a final extension of 5 min. Prior to sequencing PCR products were 

visualized by agarose gel electrophoresis. 

Restriction fragment length polymorphism. 

Genotyping of the p.V206M and c.1191C>A (p.P397=) variants in the Hungarian cohort was 

carried out by restriction fragment length polymorphism analysis. PCR was performed with 

primer sets 7 and 16, (see Table1) and the products were digested with NlaIII (Thermo 

Scientific, Vilnius, Lithuania) and BmrI (New England Biolabs, Ipswich, MA USA) 

restriction enzymes, respectively. 

Statistical analysis 

Quantitative variables were described as mean ± SD. We tested the significance of the 

differences between allele frequencies in cases and controls by Fisher's exact test and 

calculated p-values and odds ratios using GraphPad Prism v6.0a (San Diego, CA USA).   

 

PATIENTS AND METHODS OF GENETIC ANALYSIS 

OF CCKBR VARIANT IN PANCREATIC CANCER 

Study population 

The study protocol has been approved by the Regional and Institutional Committee of Science 

and Research Ethics. The study population has been collected and characterized by members 

of the Hungarian Pancreatic Study Group (see the list of coauthors). Therefore, 

characterization of study cohort which can be found in the manuscript is other coauthors 

scientific achievement. All participants gave written informed consent for genetic analysis. 

122 cases with a confirmed diagnosis of PDAC were recruited from the Hungarian National 

Pancreas Registry. For each patient, information about gender, age at diagnosis, method of 

diagnosis and date of death or date of last follow-up was collected. Two patients had 

synchronous or metachronous cancer suggestive of inherited cancer syndromes. Other cases 

were sporadic; no patients fulfilled the criteria for familial pancreatic cancer (two or more 

first degree relatives with pancreatic cancer). 106 control subjects were recruited from adult 

volunteers who considered themselves generally healthy and from inpatients, who had no 

history of pancreatic diseases. Tumor stage and survival of patients is described in Table 3. 
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DNA extraction and genotyping 

Genomic DNA was isolated from 300 µl EDTA-blood using QIAamp DNA Blood mini kit 

(Qiagen, Hilden, Germany). Primers were designed according to the genomic sequence of 

CCKBR on chromosome 11 (GenBank NC_000011.10) (see primer sequences in Table 4). 

PCR was performed in a total volume of 30 µl, which contained 0.5 U HotStarTaq DNA 

Polymerase (Qiagen), 1.5 mM MgCl2, 0.2 mM dNTP, 0.5 µM of each primer and 10-50 ng 

genomic DNA. Amplification was performed under the following cycle conditions: 95 °C for 

15 min to activate the enzyme, followed by 40 cycles of 30 s denaturation at 94 °C, 30 s 

annealing at 58 °C and 1 min extension at 72 °C, with a final extension of 5 min. Prior to 

sequencing PCR products were purified with QIAquickPCR Purification Kit (Qiagen). 

Nucleotide sequence analysis was carried out in a commercial laboratory (Delta Bio 2000 

Ltd., Szeged, Hungary) using a 3500 Genetic Analyser (Applied Biosystems) automatic dye-

terminator sequencing machine. The reverse PCR primer was used as sequencing primer. 

Chromatograms were analyzed with ChromasPro software (Technelysium, South Brisbane, 

Australia). 

Construction of expression plasmids harboring CCKBR minigenes 

We designed CCKBR minigenes that contain intron 4 placed in the appropriate context of the 

full length coding DNA. CCKBR coding DNA (GenBank NM_176875.3) was custom 

synthesized (GenScript) and cloned into the pcDNA3.1(-) plasmid using XhoI and EcoRI 

restriction sites. To create CCKBR minigenes, a 584 nucleotide long fragment containing 

intron 4 with or without the c.811+32C>A variant was custom synthesized and cloned into the 

pcDNA3.1(-) CCKBR plasmid using BsrGI and BamHI restriction sites. 
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Figure 6. Minigene constructs used to analyze the effect of the c.811+32C>A variant on pre-

mRNA splicing. Intron 4 was placed in the appropriate context of the CCKBR cDNA. 

Numbers indicate exons.  

 

Construction of lentiviral vectors 

The pWPI lentivirus vector plasmid and the packaging plasmids (psPAX2 and pMD2.G) were 

obtained from Didier Trono’s laboratory (http://tronolab.epfl.ch/; Ecole Polytechnique 

Federale de Lausanne, Lausanne, Switzerland) through Addgene (Addgene plasmids 12254, 

12260, and 12259). First, CCKBR minigene templates were PCR amplified with Phusion 

Flash High-Fidelity PCR Master Mix (Thermo Scientific) using the following primers 5’-

GCTTAATTAACCATGGAGCTGCTAAAGCTGAACC-3’ containing PacI restriction site 

and 5’ phosphorilated 5’-CTCAGCCAGGGCCCAGTGTG-3’. CCKBR minigene inserts 

were then subcloned into pWPI plasmid between PmeI and PacI restriction sites. The 

lentivirus production in HEK 293T packaging cells was performed as described previously
62

. 

Briefly, 293T cells were co-transfected with the pWPI expression plasmids, the packaging 

plasmid psPAX2 and the envelope vector pMD2.G. Transfection medium was changed after 

16 h, and the lentivirus-containing medium was subsequently harvested after 48 hours and 

frozen at −80°C. Viral preparations were titrated on HEK 293T cells.  

Cell culture, transfection and viral transduction 

Human embrionic kidney (HEK) 293T cells were cultured in 6-well plates in Dulbecco’s 

Modified Eagle Medium (DMEM) (Sigma, Budapest, Hungary) supplemented with 10% fetal 

bovine serum, 4 mM glutamine, and 1% penicillin/streptomycin at 37 °C in a humified 

atmosphere containing 5% CO2. Transfections of HEK 293T cells were performed at 70-80% 

http://tronolab.epfl.ch/
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confluence using 2 µg plasmid DNA and 10 µL Lipofectamine 2000 (Life Technologies, 

Carlsbad, CA, USA)  in 2 ml Opti-MEM Reduced Serum Medium (Life Technologies). After 

4 h of incubation, cells were washed and the transfection medium was replaced with 2 ml 

DMEM. Cells were harvested 24 h after this medium change. Capan-1 pancreatic 

adenocarcinoma cells were maintained in RPMI-1640 Medium (Sigma) supplemented with 

15% fetal bovine serum 4 mM glutamine, and 1% penicillin/streptomycin at 37°C. To 

establish stable cell-lines a total number of 10
5
 cells were plated in 6-well plates and 

transduced with viral supernatant at multiplicity of infections (MOIs) of four. Expression 

analysis was performed at first, second and third passages.  

RNA extraction and reverse transcription 

Total RNA was isolated from transfected cells using RNeasy Mini Kit (Qiagen). To avoid 

plasmid and genomic DNA contamination, an additional on-column DNase digestion step was 

applied with RNase-Free DNAse (Qiagen). Two µg RNA was reverse transcribed using High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) in 

the presence of RNase inhibitor RNasin Plus (Promega, Fitchburg, WI, USA). 

Quantification of CCKBR expression and splicing  

Real-time PCR reactions were performed with Maxima SYBR Green/ROX qPCR Master Mix 

(2X)  (Fermentas) on an ABI PRISM 7000 Sequence Detection System (Applied Biosystems) 

platform with the following conditions: 10 min initial denaturation at 95 °C, followed by 40 

two-step cycles: 15 s at 95 °C and 1 min at 60 °C. Primer sequences are given in Table 3. 

Threshold cycle (CT) values were determined using the 7000 Sequence Detection System 

Software V.1.2.3. Relative expression was calculated using the comparative CT method 

(ΔΔCT method). Expression level of CCKBR was first normalized to the glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) internal control gene (ΔCT) and then to expression levels 

measured in cells transfected with empty vector (ΔΔCT). Results were expressed as fold 

changes calculated with the formula 2
−ΔΔCT

. Relative expression of splice variants was studied 

by using two different primer sets, one amplifying both the spliced and unspliced forms of 

CCKBR and the other amplifying the intron 4-retaining splice variant (CCKB-Ri4sv) only. For 

absolute quantification of total CCKBR and CCK-BRi4sv expression, we generated external 

calibration curves using serial dilutions of minigene plasmid templates. Using the calibration 

curves, copy numbers of total CCKBR and unspliced CCK-BRi4sv were determined and 
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expressed as percent of total (spliced plus unspliced) CCKBR expression. All reactions were 

performed in duplicates. 

Statistical analysis 

Quantitative variables were described as mean ± SE. Observed genotype frequencies in the 

study population were compared to the expected Hardy–Weinberg equilibrium. To test the 

association between pancreatic cancer and genotype/allele frequencies we used two-tailed 

Fisher's exact test. Additional odds ratios (OR) with 95% confidence interval (CI) were 

estimated. Overall survival (OS) was defined as the time interval between diagnosis and death 

(uncensored observation) or the last date when the patient was still known to be alive 

(censored observation). Survival curves were calculated for OS of patients according to 

Kaplan-Meier. Two-sided log rank test was used to compare the difference between survival 

of pancreatic cancer patients harboring the A-allele (A/A or A/C) with survival of those 

patients with the C/C genotype. Median survival time was calculated using data from all 

patients; median follow-up time was computed with censored observations. All the analyses 

were performed with GraphPad Prism (San Diego, CA, USA). For sample size calculation we 

used Quanto v.1.2.4.
63

. 

 

 

RESULTS OF THE SCL26A6 STUDY 

In the Hungarian discovery cohort we included 55 adult and five pediatric patients with non-

alcoholic CP. No genetic testing was performed previously in the adult group. The pediatric 

patients were tested for PRSS1, CTRC, SPINK1 and CFTR mutations and no pathogenic 

variants were found. We sequenced 21 exons of SLC26A6
64

. We found four common variants: 

a missense variant c.616G>A (p.V206M; rs13324142) in exon 6 and three intronic variants: 

c.23+71_103del in intron 1 (rs72201074); c.183-4C>A in intron 2 (rs34368826); and 

c.1134+32C>A in intron 9 (rs3821876) in complete linkage disequilibrium, indicating a 

conserved haplotype.  
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Figure 5. Schematic overview of the human SLC26A6 gene. Squares represent exons. The 

p.V206M associated haplotype is indicated by red arrows.  

 

One homozygous and heterozygous patients were identified with the haplotype (allele 

frequency 15.8%). One patient carried a synonymous mutation c.1191C>A (p.P397=) in exon 

10 (rs369278809). Subsequently, we determined the distribution of the p.V206M associated 

haplotype in the Hungarian cohort by genotyping the p.V206M variant in 46 subjects with 

alcoholic CP and 99 control subjects. When genotype-frequencies were compared, the 

distribution of the p.V206M variant did not show a statistically significant difference between 

patients and controls. The Hungarian cohorts were also genotyped for the c.1191C>A 

(p.P397=) variant but beyond the single case identified by sequencing no additional carriers 

were found. 

We performed a replication study in a German cohort consisting of 202 subjects with non-

alcoholic CP, 159 subjects with alcoholic CP and 171 controls. In 40 non-alcoholic CP cases 

the coding region was sequenced and the p.V206M associated haplotype was detected in five 

patients (three heterozygous and two homozygous). Additionally, two intronic variants 

c.1248+9_20del and c.-10C>T (rs150438742) were detected in single cases. In agreement 

with our findings in the Hungarian cohort, the distribution of the p.V206M variant did not 

show a statistically significant difference between cases with alcoholic or non-alcoholic 

etiology and controls (Table 2a and b). 
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RESULTS OF THE CCKBR STUDY  

Variant c.811+32C>A does not predict risk for PDAC 

First, we attempted to replicate the published association between variant c.811+32C>A in 

intron 4 of CCKBR and the risk for developing pancreatic cancer. To this end, we sequenced 

this region of CCKBR in our Hungarian cohort and detected variant c.811+32C>A in 35 

heterozygous and 5 homozygous cases (allele frequency 18.4%), and in 32 heterozygous and 

3 homozygous controls (allele frequency 17.9%). Similarly to allele frequencies, genotype 

frequencies did not show a statistically significant difference between cases and controls 

either (Table 5). Genotype frequencies in cases and controls were found to conform to the 

Hardy-Weinberg equilibrium. Additionally, we identified two variants in exon 5: c.955C>T 

(p.R319W, rs113168010) in one control subject and c.956G>A (p.R319Q, rs1805001) in a 

single patient. 

 

Figure 7. Sequence electropherograms of CCKBR gene variants found in our cohort. 

 

Variant c.811+32C>A does not predict survival in PDAC 

To address the hypothesis that variant c.811+32C>A may have a prognostic relevance, we 

analyzed this variant in relation to patient survival. Median follow-up time was 334 days, 

12.3% of the observations were censored. Median survival of cases with A/C and A/A 

genotypes was not significantly different from those with the CC genotype (257 days and 266 

days, respectively; p=0.45), indicating that this variant does not modify survival of PDAC 

patients.  
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Figure 8.  

Kaplan-Meier survival curves according to genotype.  

Censored cases are shown as dots and squares. 

 

Variant c.811+32C>A does not affect splicing of intron 4 in CCKBR 

To determine whether variant c.811+32C>A has an effect on pre-mRNA splicing; we have 

tested two different cell lines. HEK 293T cells were transfected with expression plasmids 

carrying CCKBR minigenes with or without the intron 4 variant and examined mRNA 

expression. CCKBR expression in transfected HEK 293T cells was about six orders of 

magnitude higher than endogenously expressed levels (Figure 8A). Interestingly, CCKBR 

mRNA was expressed at 1.5-fold higher levels when cells were transfected with intron-

containing minigenes compared to cells transfected with the intronless CCKBR cDNA 

construct. This phenomenon is in agreement with published observations that the presence of 

introns can enhance gene expression.
65,66

 For absolute quantification of different splice-forms, 

we generated calibration curves using minigene plasmids as template. We found that 

expression of the CCK-BRi4sv intron 4-retaining splice variant corresponded to about 10% of 

total CCKBR mRNA and was not different between cells transfected with minigenes with or 



27 
 

without the c.811+32C>A variant (Figure 8C).Since splicing factors can be differently 

expressed in carcinoma cells, we have analyzed CCKBR splicing in Capan-1 pancreatic 

adenocarcinoma cells as well. In line with the data on HEK 293T cells, splicing was not 

affected by the variant c.811+32C>A (Figure 8B, 8D). 

 

 

 

Figure 9. Functional analysis of the effect of variant c.811+32C>A on pre-mRNA splicing 

(A) Expression of CCKBR mRNA in transfected HEK 293T cells and transduced Capan-1 

cells (B) with the indicated constructs. (C) Expression of the intron-retaining splice variant 

relative to the total amount of CCKBR mRNA. Results are from three independent 

transfections with seven parallels each. 

 

 

A B 

C D 
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DISCUSSION 

Role of SLC26A6 variants in chronic pancreatitis 

Pancreatic ductal HCO3
-
 secretion is essential for the maintenance of tissue integrity, and is 

impaired in CP. In the present study we investigated the association of SLC26A6 variants with 

CP, based on the crucial role of this candidate gene in the maintenance of ductal fluid and 

bicarbonate secretion. However, the SLC26A6 variants we identified did not alter the risk for 

development of either alcoholic or non-alcoholic CP. Smoking represents an independent risk 

factor for the development of CP
67

, possibly by impairing HCO3
-
 transport

6869
 Therefore, we 

compared the occurrence of the p.V206M variant in patients where data on smoking habits 

were available. It is conceivable, that mutations of the SLC26A6 anion transporter could 

influence the effects of smoking, however, we did not find a significant difference between 

genotype frequencies of smokers and non-smokers (data not shown). Previously, Amato et al. 

(2012) examined SLC26 anion transporter and epithelial Na
+
 channel genes in 39 patients 

with CFTR related disorders, and found no association.
70

 They described the SLC26A6 

variants which we also identified as the p.V206M associated haplotype, however, they did not 

report linkage of these variants.  

Studies on native pancreatic ducts isolated from Slc26a6
-/-

 mice have been controversial 

regarding the effect on ductal fluid and bicarbonate secretion
71,72

. Our group investigated two 

acute pancreatitis models in Slc26a6
-/-

 mice, and we did not detect a difference in disease 

severity compared to the wild type animals (unpublished observations).  

On the other hand, Slc26a6
-/-

 mice exhibit a high incidence of oxalate nephrolithiasis
73

, due to 

defective intestinal oxalate secretion and urinary excretion
74

. In an attempt to identify 

association with nephrolithiasis, SLC26A6 variants were screened in familiar hyperoxaluria 

and primary hyperparathyroidism, but none of the variants increased disease risk 
75,76

 Notably, 

the authors also reported co-segregation of 3 intronic variations with p.V206M. Functional 

analysis of the p.V206M mutation in Xenopus oocyte expression studies revealed a 30% 

decrease of oxalate transport activity. However, the variant did not influence oxalate excretion 

in heterozygous carrier subjects 
75

. Surmising that heterozygosity would result in a 15% 

reduction in transport, this defect may not be sufficient to alter oxalate homeostasis. 
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The STAS domain of SLC26A6 plays a key role in the functional interaction with CFTR
41

. 

The p.V206M mutation is located outside the STAS domain, and therefore, most likely does 

not have a substantial effect on bicarbonate transport.  

In conclusion, in this study we tested the hypothesis that pancreatitis-associated mutations 

may be located in the SLC26A6 gene encoding a pancreatic Cl
-
/HCO3

-
 transporter, which 

interacts with CFTR. We did not find association between genetic variants of SLC26A6 and 

CP.  

Role of CCKBR variant c.811+32C>A in pancreatic cancer 

Identification of pancreatic cancer susceptibility genes is of outmost importance to define 

high-risk populations who may benefit from early detection by screening tests. Based on its 

role in pancreatic carcinogenesis and regulation of tumor growth CCKBR is a promising 

candidate for a susceptibility gene. Indeed, several somatic mutations were identified in 

colorectal and gastric cancers that alter receptor activity, sensitization and localization.
77,78

 

Some of these mutations are located in the third intracellular loop of the receptor, which plays 

a critical role in signal transduction. The same loop is altered by the tumor associated CCK-

BRi4sv splice variant, which retains intron 4 and codes for an insertion of 69 additional amino 

acid residues that enhances receptor activity.
58

 The molecular basis for this alternative 

splicing has been explained by aberrant expression of certain auxiliary splicing factors in 

carcinoma cells that are necessary for the spliceosome assembly.
79

 Alternatively, Smith et al. 

(2012, 2014) proposed that the c.811+32C>A intronic variant in CCKBR can induce retention 

of intron 4 and thereby increase risk for the development of PDAC and also lead to poorer 

survival in carriers [12, 13]. In contrast, here we demonstrated that variant c.811+32C>A has 

no effect on CCKBR mRNA splicing, and it is not associated with increased risk for 

pancreatic cancer, nor with shorter survival in PDAC. Although we had more than 85% 

statistical power to replicate the previously described odds ratio of 2.28, we detected no 

enrichment of the variant in our PDAC cohort. The reasons for the discrepancy between our 

results and those of Smith et al. (2012, 2014) are not readily apparent but may be related to 

ethnic and geographic variability of the frequency of the c.811+32C>A variant and the 

admixed nature of the US cohort. Association studies in ethnically admixed populations are 

potentially vulnerable to spurious association due to the ethnic variability of the SNP 

frequency studied. Indeed, data retrieved from the 1000 Genome Project database 

(www.1000genomes.org) show that the allele frequency of variant c.811+32C>A is 18.4% in 
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subjects of European origin, whereas it is 2% in subjects of Asian descent and 23% in subjects 

of African descent. We also note that the control group in the study by Smith et al. (2014) was 

unusually small (59 subjects), which might result in the incorrect determination of control 

genotype frequencies. Indeed, the reported minor allele frequency (11.8%) for this control 

cohort is appreciably smaller than the incidence found in our controls (17.9%) which 

compares well with the 1000 Genomes data. 

In conclusion, data presented here argue that intronic variant c.811+32C>A in CCKBR is not 

associated with PDAC risk or survival in a Hungarian cohort and does not alter splicing of the 

CCKBR pre-mRNA. Despite the fact that our study was not designed to detect a potentially 

small effect of variant c.811+32C>A on cancer risk and we did not take into account age and 

tumor stage at diagnosis when analyzing survival, our findings are convincingly self-

consistent. Therefore, we propose that variant c.811+32C>A is functionally harmless and it 

should be considered a common polymorphism with no clinical significance. Finally, our 

results highlight the necessity for replication studies and the importance of functional testing 

of new genetic risk markers. 

SUMMARY 

Background: Genetic risk factors are important determinants of disease susceptibility and 

prognosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). In this 

thesis two genetic investigations were conducted to gain a deeper comprehension of the 

pathophysiology of these diseases.  

I. Pancreatic ductal HCO3
-
 secretion is critically dependent on the cystic fibrosis 

transmembrane conductance regulator chloride channel (CFTR) and the solute-linked carrier 

26 member 6 anion transporter (SLC26A6). Deterioration of HCO3
-
 secretion is observed in 

CP, and CFTR mutations increase CP risk. Therefore, SLC26A6 is a reasonable candidate for 

a CP susceptibility gene, which has not been investigated in CP patients so far.  

II. Single nucleotide polymorphism c.811+32C>A in intron 4 of the cholecystokinin-B 

receptor gene (CCKBR) was previously reported to correlate with higher PDAC risk and 

poorer survival. The variant was suggested to induce retention of intron 4, resulting in a new 

spliceform with enhanced receptor activity. Our objective was to validate the c.811+32C>A 

variant as an emerging biomarker for pancreatic cancer risk and prognosis. 
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Patients and methods 

I. As a first screening cohort, 106 subjects with CP and 99 control subjects with no 

pancreatic disease were recruited from the Hungarian National Pancreas Registry. In 60 non-

alcoholic CP cases the entire SLC26A6 coding region was sequenced. In the Hungarian cohort 

variants c.616G>A (p.V206M) and c.1191C>A (p.P397=) were further genotyped by 

restriction fragment length polymorphism analysis. In a German replication cohort all exons 

were sequenced in 40 non-alcoholic CP cases and variant c.616G>A (p.V206M) was further 

analyzed by sequencing in 321 CP cases and 171 controls. 

II. We genotyped variant c.811+32C>A in 122 pancreatic adenocarcinoma cases and 106 

controls by sequencing and examined its association with cancer risk and patient survival. To 

test the functional effect of variant c.811+32C>A on pre-mRNA splicing, we transfected HEK 

293T cells and Capan-1 cells with CCKBR minigenes. 

Results  

I. Sequencing of the entire coding region revealed four common variants: intronic 

variants c.23+78_110del, c.183-4C>A, c.1134+32C>A, and missense variant c.616G>A 

(p.V206M) which were found in linkage disequilibrium indicating a conserved haplotype. The 

distribution of the haplotype did not show a significant difference between patients and 

controls in the two cohorts. A synonymous variant c.1191C>A (p.P397=) and two intronic 

variants c.1248+9_20del and c.-10C>T were detected in single cases.  

II. The allele frequency of the variant was similar between patients and controls (17.9% 

and 18.4%, respectively). Survival analysis showed no significant difference between median 

survival of patients with the C/C genotype (266 days) and patients with the A/C or A/A 

genotypes (257 days). CCKBR minigenes with or without variant c.811+32C>A exhibited no 

difference in expression of the intron-retaining splice variant. 

Conclusion  

I. Our data show that SLC26A6 variants do not alter the risk for the development of CP. 

II: These data indicate that variant c.811+32C>A in CCKBR does not have a significant 

impact on pancreatic cancer risk or survival. 
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TABLES 

 

Exon 
Primer 

name 
Sequence (5′→3′) 

PCR 

product 

(bp) 

Annealing 

temperature (
o
C) 

Exon 1 
Primer 01. F TCCGGAGCGTAGCGGCCT 

289 58.7 - 60 
Primer 01. R GCACAGCCCAAGGGACTGG 

Exon 2-3 
Primer 02. F GATGCCTTCACTGTGTCTCTC 

522 53.5 - 59.7 
Primer 02. R CTGGGTTAGGTGCCATAGTTC 

Exon 4 
Primer 03. F ATCGTTTCAAGATCTGCTCTCC 

214 53 – 59.7 
Primer 03. R CCATGATGGATGTGGGCAT 

Exon 5 
Primer 04. F AGTGTCCTCTCCTCTTCAGAC 

217 53 – 58.1 
Primer 04. R CATACTCCTGACTGTTCCACAC 

Exon 6-7 
Primer 05. F CTGCGCTCCTCATTAGCAACC 

538 65.1 
Primer 05. R TACAGGAGGCTGCCCACGTGG 

Exon 8-9 
Primer 06. F CTCACCTCACAGTGGTTTATGT 

704 52 – 60 
Primer 06. R GATGCCTCCGATAAGGTTACTG 

Exon 10-

11 

Primer 07. F TACAGTGGAACAGTGACCAGC 
424 57 – 60.2 

Primer 07. R CTCGCCTGAACCTAGACTGG 

Exon 12-

13 

Primer 08. F GAGGAGGGTTGTCAGCATC 
401 56.2 – 60.6 

Primer 08. R CCCTGTGGTACTCTCTCACTA 

Exon 12-

13 

Primer 09. F GGGACTTCAGGCTCCTTC 
219 53 – 56.2 

Primer 09. R CGAATCCACAAAGGCTCATTC 

Exon 14 
Primer 10. F GCAGGCACTGGGCACACTAGG 

235 60 – 65.1 
Primer 10. R GACCTGCTAGGGGAGTGAAGC 

Exon 15-

16 

Primer 11. F ATTCCCTGTCTTCCCTGGTGTA 
235 53 – 60.6 

Primer 11. R CATCGGCGCAACACCCT 

Exon 17 
Primer 12. F TCCTGTCTTTGCACACCTATG 

409 54.6 – 61 
Primer 12. R GAGTGCTCTCAGGGCAAATTA 

Exon 18 
Primer 13. F CCCAAACCCTCAAAGCTC 

207 56 – 61 
Primer 13. R AAAGTATCCTACCCTCTTCCC 

Exon 19 
Primer 14. F GGAGTTGAGTTCCTAGAGGTTC 

321 53 – 61 
Primer 14. R CATGGCCACCAGGAAAGA 

Exon 20 
Primer 15. F TCTTTGGATAAAGCTGTTCTAGGG 

200 57 – 58.6 
Primer 15. R GGGACTCCTGGGTAGCA 

Exon 21 
Primer 16 F TCAATGAGACAGCCAGAGATGC 

620 57-61 
Primer 16 R CATTCAACAGCTTCACCACCAC 

 

 

Table 1. Oligonucleotide primers and conditions used for PCR amplification and sequencing 

of the coding exons and the exon-intron junctions in the SLC26A6 gene.  



33 
 

 

Table 2. Distribution of the p.V206M SLC26A6 variant (genotypes in Table 3A and allele 

frequencies in Table 3B) in non-alcoholic and alcoholic chronic pancreatitis patients and 

control subjects from Hungary and Germany. Calculations were performed for a recessive 

model (GG+GA vs. AA) and a dominant model (GG vs. GA+AA) using two-sided Fisher 

Exact test. P-values are displayed for the dominant model (no significant p-value was 

obtained for the recessive model).  

Table 2A 

Country Genotype p-

Value 
OR (95% CI) 

Hungary GG GA AA   

Non-alcoholic CP 

(n=60) 
43 (71.6%) 16 (26.6%) 1 (1.6%) 0.78 1.11 (0.54-2.28) 

Alcoholic CP 

(n=46) 
36 (78.2%) 9 (19.5%) 1 (2.2%) 0.56 0.78 (0.34-1.26) 

Controls (n=99) 
73 (73.7%) 24 (24.2%) 2 (2%) n.a. n.a. 

Germany      

Non-alcoholic CP 

(n=202) 
159 (78.7%) 36 (17.8%) 7 (3.4%) 0.57 0.87 (0.54-1.41) 

Alcoholic CP 

(n=159) 
128 (80.5%) 28 (17.6%) 3 (1.9%) 0.27 0.74 (0.44-1.26) 

Controls  

(n=171) 
129 (75.4%) 32 (18.7%) 10 (5.9%) n.a. n.a. 

 

Table 2B 

Country Allele p-Value OR (95% CI) 

Hungary G A   

Non-alcoholic CP 

(n=120) 
102 (85%) 18 (15%) 0.83 1.07 (0.56-2.03) 

Alcoholic CP (n=92) 
81 (88%) 11 (12%) 0.61 0.82 (0.39-1.74) 

Controls  

(n=198) 
170 (85.9%) 28 (14.1%) n.a. n.a. 

Germany     

Non-alcoholic CP 

(n=404) 
354 (87.6%) 50 (12.4%) 0.26 0.79 (0.52-1.20) 

Alcoholic CP 

(n=318) 
284 (89.3%) 34 (10.7%) 0.09 0.67 (0.42-1.06) 

Controls  

(n=342) 
290 (84.8%) 52 (15.2%) n.a. n.a. 
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Table 3. Tumor stage and survival of patients 

 
no. of cases 

median survival±SD, 

days 

localized 9 480±312 

locally 

advanced 78 321±267 

metastasized 29 222±204 

unknown 5 

  

 

Table 4. Oligonucleotide primers used in this study. 

Primers used for genotyping 

 

forward 5’-CTGTGTTGCCTTCAGGTCCG-3’ 

 

reverse 5'-ATCACCAGCAACATTCGCAC-3'  

Primers used for RT-PCR 

CCKBR-total 
forward 5’-TCTCCTCAACAGCAGCAGTG-3’  

reverse 5’-CCCAGGACCACGATGATGAG-3’ 

CCKB-Ri4sv 
forward 5’-AATGGAGTTGAGCTGGGAGC-3’ 

reverse 5’-TGGGCGGTCAGAGAAAAAGG-3’ 

GAPDH 
forward 5’-CACCATCTTCCAGGAGCGAG-3’ 

reverse 5’- GACTCCACGACGTACTCAGC -3’  

 

 

Table 5. Genotype and allele frequencies of variant c.811+32C>A in PDAC patients and 

controls. OR, odds ratio; CI, confidence interval. 

 
PDAC cases  Controls  genotypic OR (95% CI) p value 

CC 82/122 71/106 Reference - 

AC 35/122 32/106 0.947 (0.5328-1.683) 0.884 

AA 5/122 3/106 1.443 (0.339-6.255) 0.7271 

AC+AA 40/122 35/106 0.9895 (0.5686-1.722) 1 

   
allelic OR (95% CI) 

 
Minor allele 

frequency 
18.4% 17.9% 1.01 (0.58-1.76) 1 
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Background: Pancreatic ductal HCO3
- secretion is critically dependent on the cystic fibrosis trans-

membrane conductance regulator chloride channel (CFTR) and the solute-linked carrier 26 member 6
anion transporter (SLC26A6). Deterioration of HCO3

- secretion is observed in chronic pancreatitis (CP),
and CFTR mutations increase CP risk. Therefore, SLC26A6 is a reasonable candidate for a CP susceptibility
gene, which has not been investigated in CP patients so far.
Methods: As a first screening cohort, 106 subjects with CP and 99 control subjects with no pancreatic
disease were recruited from the Hungarian National Pancreas Registry. In 60 non-alcoholic CP cases the
entire SLC26A6 coding regionwas sequenced. In the Hungarian cohort variants c.616G > A (p.V206M) and
c.1191C > A (p.P397¼) were further genotyped by restriction fragment length polymorphism analysis. In
a German replication cohort all exons were sequenced in 40 non-alcoholic CP cases and variant
c.616G > A (p.V206M) was further analyzed by sequencing in 321 CP cases and 171 controls.
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Results: Sequencing of the entire coding region revealed four common variants: intronic variants
c.23 þ 78_110del, c.183-4C > A, c.1134 þ 32C > A, and missense variant c.616G > A (p.V206M) which were
found in linkage disequilibrium indicating a conserved haplotype. The distribution of the haplotype did
not show a significant difference between patients and controls in the two cohorts. A synonymous
variant c.1191C > A (p.P397¼) and two intronic variants c.1248 þ 9_20del and c.-10C > T were detected in
single cases.
Conclusion: Our data show that SLC26A6 variants do not alter the risk for the development of CP.
Copyright © 2015, IAP and EPC. Published by Elsevier India, a division of Reed Elsevier India Pvt. Ltd. All
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Introduction
Chronic pancreatitis (CP) is an intractable inflammatory disease
of the pancreas, leading to progressive and irreversible destruction
of the parenchyma. In the majority of patients the etiology is
complex, the disease results from the interaction of multiple risk
factors. CP is most commonly associated with excessive alcohol
consumption but other factors such as smoking, metabolic distur-
bances, anatomic abnormalities, autoimmunity and genetic varia-
tions have also been implicated. Discoveries of association of CP
with PRSS1 [1], SPINK1 [2] and CTRC [3] gene mutations suggest a
central role for trypsin in the development of CP, while association
with CFTR [4] variants highlight the importance of ductal changes
contributing to disease development.

Fluid and HCO3
- secretion is a vital function of pancreatic ductal

epithelium and is fundamental for the integrity of the tissue. The
human pancreas secretes 1e2 L of alkaline, isotonic juice per day,
which contains concentrations of bicarbonate that may exceed
140 mM [5]. This bicarbonate rich fluid flushes out digestive en-
zymes from the ductal tree, facilitates solubilization of macromol-
ecules, neutralizes the protons secreted by acinar cells, prevents
premature activation of trypsinogen and neutralizes gastric acid in
the duodenum providing an optimal pH environment for digestive
enzymes.

One of the functional consequences of CP is the reduction in
secretin-stimulated bicarbonate content in pancreatic juice [6]. On
the other hand, in cystic fibrosis (CF), pancreatic HCO3

- secretion is
impaired. Impaired HCO3

- secretion disrupts the physiological
interaction between acinar and duct cells, resulting in decreased
intraluminal pH, premature trypsinogen activation, impaired acinar
secretion, obstruction of the lumen with protein plugs and finally
destruction of the parenchyma [7]. Several pancreatitis associated
toxic factors, such as ethanol [8], bile acids [9], trypsin [10] and
cigarette smoke extract [11] displayed inhibitory effects on bicar-
bonate secretion and influenced the activity of the cystic fibrosis
transmembrane conductance regulator chloride channel (CFTR).
Not only functional inhibition, but also genetic defects of CFTR can
increase the risk for pancreatitis. Association of CFTRmutations and
the development of CP [4,12,13], and recurrent acute pancreatitis
[14] has been reported. CF-causing severe and mild CFTR variants
increase the risk 2.9 and 4.5-fold respectively [15]. These observa-
tions indicate that insufficient electrolyte transport is pathogenic
for CP (Fig. 1).

Pancreatic bicarbonate secretion is not only dependent on CFTR
but also on the solute-linked carrier 26 (SLC26) anion transporters,
localized in the apical membrane of the ductal cells. SLC26 isoforms
constitute a conserved family of anion transporters with 10 distinct
members. All SLC26 isoforms - except for SLC26A5 (prestin) - are
versatile anion exchangers mediating apical chloride/base ex-
change in epithelial tissues. Several diseases have been linked to
mutations in members of the family, including diastrophic
t al., Genetic analysis of the bi
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dysplasias (SLC26A2), congenital chloride diarrhea (SLC26A3),
Pendred's syndrome (SLC26A4), hearing loss (SLC26A5) and
asthma (SLC26A9) [16,17].

The SLC26A6 anion exchanger is expressed in the apical mem-
brane of pancreatic ducts, intestinal epithelium and kidney proximal
tubule [17]. It mediates multiple anion exchange modes, including,
Cl�/HCO3

- exchange, Cl�/formate exchange and Cl�/oxalate ex-
change. Earlier studies revealed a direct molecular interaction be-
tween CFTR and two SLC26 exchangers, namely A3 and A6, which
results in mutual upregulation of their transport activity [18]. This
process is mediated by binding of the regulatory (R) domain of CFTR
to the highly conserved STAS (sulphate transporter and anti-sigma
antagonist) domain of SLC26 and this interaction is required for
activation of both SLC26 transporters and CFTR. Notably, CF causing
CFTR mutations that retain normal or substantial Cl� conductance
exhibited a severe defect in CFTR dependent Cl�/HCO3

- exchange
activity. This indicates that impairement of the coupled bicarbonate
transport mechanism is sufficient to damage pancreatic function
even in the presence of CFTRCl� channel activity [19]. On the basis of
its localization in the apical membrane of the pancreatic duct and its
function as a Cl�/HCO3

� exchanger, SLC26A6 has been proposed to be
a major contributor to the apical HCO3

- secretion in the pancreatic
duct [20]. However, the role of genetic variations in SLC26A6 has
remained unexplored in CP.

In this study, we sequenced the entire coding region of SLC26A6
in 100 non-alcoholic CP cases. The identified variants were further
investigated in Hungarian and German cohorts of non-alcoholic
and alcoholic CP.
Methods

Subjects and study design

The study protocol was approved by the national ethical review
committee ETT-TUKEB (22254-1/2012). All patients gave written
informed consent for genetic analysis. The study included CP pa-
tients originating from Hungary (n ¼ 106) and Germany (n ¼ 361).
Clinico-pathological information on individual patients including
symptoms, diagnostic criteria and etiology were collected from
medical records and questioners completed by the patients. Diag-
nosis of CP was based on at least two of the following criteria:
constant or recurrent abdominal pain, calcifications on sonography
or CT, ductal irregularities on ERCP or MRCP examination, EUS
based diagnosis of CP and histologically confirmed CP. According to
etiology, patients were divided into alcoholic CP and non-alcoholic
CP groups. Alcoholic CP was defined by consumption of more than
80 g/d (man) ethanol or more than 60 g/d (women) for at least two
years. 99 Hungarian and 171 German control subjects were
recruited from adult volunteers who considered themselves
generally healthy, from inpatients who had no history of pancreatic
disease and from blood donors (Table 1).
carbonate secreting anion exchanger SLC26A6 in chronic pancreatitis,



Fig. 1. Model of pancreatic ductal secretion. Bicarbonate secretion is dependent on the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) and the solute-
linked carrier 26 member 6 (SLC26A6) anion transporter. Pancreatitis associated toxic factors such as ethanol, bile acids, trypsin and cigarette smoke alter bicarbonate secretion by
inhibiting CFTR and SLC26A6. Genetic variants of CFTR are associated with CP. However, the role of genetic variations of the SLC26A6 anion transporter has not been investigated
yet.
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Polymerase chain reaction and DNA sequencing

Genomic DNA was isolated from whole blood using QIAamp
DNA Blood mini kit (Qiagen, Hilden, Germany). In a discovery
cohort of 60 non-alcoholic Hungarian CP patients and in 40 non-
alcoholic German CP patients the entire coding sequence and
adjacent intronic sequences were amplified and sequenced.
Primers were designed according to the published sequence of the
human SLC26A6 gene (GenBank: NM_022911.2) (Table 2). Our
analysis did not include the non-functional alternative splice
variant SLC26A6d [21], which retains an unspliced intron, resulting
in a different carboxy terminus lacking the STAS domain. PCR was
performed in a total volume of 30 ml, which contained 0.5 U Hot-
StarTaq DNA Polymerase (Qiagen, Hilden, Germany), 1.5 mMMg2Cl,
0.2 mM dNTP, 0.5 mM primer and 10e50 ng genomic DNA. Ampli-
fication was performed under the following cycle conditions: 95 �C
for 15 min to activate the enzyme, followed by 40 cycles of 30 s
denaturation at 94 �C, 30 s at specific annealing temperatures and
1 min extension at 72 �C, with a final extension of 5 min. Prior to
sequencing PCR products were visualized by agarose gel electro-
phoresis. In the German cohort variant c.616G > A (p.V206M) was
further analyzed by sequencing.
Table 1
Demographic data of cases and controls.

Hungary

alcoholic CP (n ¼ 46) non-alcoholic CP

Age of onset range 19e74 3e85
Median age of onset ± SD 45.1 ± 10.9 44.7 ± 17.8
Male 41 35
Female 5 25

Controls (n ¼ 99)

Age 53.2 ± 17.7
Male 43
female 53
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Restriction fragment length polymorphism

Genotyping of the p.V206M and c.1191C > A (p.P397¼) variants
in the Hungarian cohort was carried out by restriction fragment
length polymorphism analysis. PCR was performed with primer
sets 7 and 16, (see Table 1) and the products were digested with
NlaIII (Thermo Scientific, Vilnius, Lithuania) and BmrI (New England
Biolabs, Ipswich, MA USA) restriction enzymes, respectively.

Statistical analysis

Quantitative variables were described as mean ± SD. We tested
the significance of the differences between allele frequencies in
cases and controls by Fisher's exact test and calculated p-values and
odds ratios using GraphPad Prism v6.0a (San Diego, CA USA).

Results

In the Hungarian discovery cohort we included 55 adult and five
pediatric patients with non-alcoholic CP. No genetic testing was
performed previously in the adult group. The pediatric patients
were tested for PRSS1, CTRC, SPINK1 and CFTR mutations and no
Germany

(n ¼ 60) alcoholic CP (n ¼ 159) non-alcoholic CP (n ¼ 202)

18e73 3e75
41.6 ± 11.2 33.2 ± 16.7
137 100
22 102

Controls (n ¼ 171)

63.8 ± 2.9
83
88

carbonate secreting anion exchanger SLC26A6 in chronic pancreatitis,



Table 2
Oligonucleotide primers and conditions used for PCR amplification and sequencing of the coding exons and the exon-intron junctions in the SLC26A6 gene.

Exon Primer name Sequence (50 / 30) PCR product (bp) Annealing temperature (�C)

Exon 1 Primer 01. F TCCGGAGCGTAGCGGCCT 289 58.7e60
Primer 01. R GCACAGCCCAAGGGACTGG

Exon 2e3 Primer 02. F GATGCCTTCACTGTGTCTCTC 522 53.5e59.7
Primer 02. R CTGGGTTAGGTGCCATAGTTC

Exon 4 Primer 03. F ATCGTTTCAAGATCTGCTCTCC 214 53e59.7
Primer 03. R CCATGATGGATGTGGGCAT

Exon 5 Primer 04. F AGTGTCCTCTCCTCTTCAGAC 217 53e58.1
Primer 04. R CATACTCCTGACTGTTCCACAC

Exon 6e7 Primer 05. F CTGCGCTCCTCATTAGCAACC 538 65.1
Primer 05. R TACAGGAGGCTGCCCACGTGG

Exon 8e9 Primer 06. F CTCACCTCACAGTGGTTTATGT 704 52e60
Primer 06. R GATGCCTCCGATAAGGTTACTG

Exon 10e11 Primer 07. F TACAGTGGAACAGTGACCAGC 424 57e60.2
Primer 07. R CTCGCCTGAACCTAGACTGG

Exon 12e13 Primer 08. F GAGGAGGGTTGTCAGCATC 401 56.2e60.6
Primer 08. R CCCTGTGGTACTCTCTCACTA

Exon 12e13 Primer 09. F GGGACTTCAGGCTCCTTC 219 53e56.2
Primer 09. R CGAATCCACAAAGGCTCATTC

Exon 14 Primer 10. F GCAGGCACTGGGCACACTAGG 235 60e65.1
Primer 10. R GACCTGCTAGGGGAGTGAAGC

Exon 15e16 Primer 11. F ATTCCCTGTCTTCCCTGGTGTA 235 53e60.6
Primer 11. R CATCGGCGCAACACCCT

Exon 17 Primer 12. F TCCTGTCTTTGCACACCTATG 409 54.6e61
Primer 12. R GAGTGCTCTCAGGGCAAATTA

Exon 18 Primer 13. F CCCAAACCCTCAAAGCTC 207 56e61
Primer 13. R AAAGTATCCTACCCTCTTCCC

Exon 19 Primer 14. F GGAGTTGAGTTCCTAGAGGTTC 321 53e61
Primer 14. R CATGGCCACCAGGAAAGA

Exon 20 Primer 15. F TCTTTGGATAAAGCTGTTCTAGGG 200 57e58.6
Primer 15. R GGGACTCCTGGGTAGCA

Exon 21 Primer 16 F TCAATGAGACAGCCAGAGATGC 620 57e61
Primer 16 R CATTCAACAGCTTCACCACCAC
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pathogenic variants were found. We sequenced 21 exons of
SLC26A6 (Fig. 2.) [22]. We found four common variants: a missense
variant c.616G > A (p.V206M; rs13324142) in exon 6 and three
intronic variants: c.23þ 78_110del in intron 1 (rs556322139); c.183-
4C > A in intron 2 (rs34368826); and c.1134 þ 32C > A in intron 9
(rs3821876) in complete linkage disequilibrium, indicating a
conserved haplotype. One homozygous and heterozygous patients
were identified with the haplotype (allele frequency 15.8%). One
patient carried a synonymous mutation c.1191C > A (p.P397¼) in
exon 10 (rs369278809). Subsequently, we determined the
Fig. 2. Schematic overview of the human SLC26A6 gene. Squares represent
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distribution of the p.V206M associated haplotype in the Hungarian
cohort by genotyping the p.V206M variant in 46 subjects with
alcoholic CP and 99 control subjects using RFLP. When genotype-
frequencies were compared, the distribution of the p.V206M
variant did not show a statistically significant difference between
patients and controls. The Hungarian cohorts were also genotyped
for the c.1191C > A (p.P397¼) variant but beyond the single case
identified by sequencing no additional carriers were found.

We performed a replication study in a German cohort consisting
of 202 subjects with non-alcoholic CP, 159 subjects with alcoholic
exons. The p.V206M associated haplotype is indicated by red arrows.

carbonate secreting anion exchanger SLC26A6 in chronic pancreatitis,
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CP and 171 controls. In 40 non-alcoholic CP cases the coding region
was sequenced and the p.V206M associated haplotype was detec-
ted in five patients (three heterozygous and two homozygous).
Additionally, two intronic variants c.1248 þ 9_20del and c.-10C > T
(rs150438742) were detected in single cases. The rest of the German
cohort was genotyped for variant p.V206M by sequencing. In
agreement with our findings in the Hungarian cohort, the distri-
bution of the p.V206M variant did not show a statistically signifi-
cant difference between cases with alcoholic or non-alcoholic
etiology and controls (Table 3a and b). In order to exclude the
possibility of interactions between pancreatitis susceptibility genes,
one of the cohorts (German patients) were screened for risk vari-
ants in PRSS1, CFTR, SPINK1, and CPA1 genes. Importantly, no vari-
ants were detected in linkage disequilibrium with p.V206M (data
not shown).

Discussion

Pancreatic ductal HCO3
� secretion is essential for the mainte-

nance of tissue integrity, and is impaired in CP. In the present study
we investigated the association of SLC26A6 variants with CP, based
on the crucial role of this candidate gene in the maintenance of
ductal fluid and bicarbonate secretion. However, the SLC26A6 var-
iants we identified did not alter the risk for development of either
alcoholic or non-alcoholic CP. Smoking represents an independent
risk factor for the development of CP [23], possibly by impairing
HCO3

- transport [24,25] Therefore, we compared the occurrence of
the p.V206M variant in patients where data on smoking habits
were available. It is conceivable, that mutations of the SLC26A6
anion transporter could influence the effects of smoking, however,
we did not find a significant difference between genotype fre-
quencies of smokers and non-smokers (data not shown). Previ-
ously, Amato et al. (2012) examined SLC26 anion transporter and
Table 3
Distribution of the p.V206M SLC26A6 variant (genotypes in Table 3A and allele frequencies
subjects fromHungary and Germany. Calculations were performed for a recessivemodel (G
test. P-values are displayed for the dominant model (no significant p-value was obtained

A

Country Genotype

GG GA

Hungary
Non-alcoholic CP (n ¼ 60) 43 (71.6%) 16 (26.6%)
Alcoholic CP (n ¼ 46) 36 (78.2%) 9 (19.5%)
Controls
(n ¼ 99)

73 (73.7%) 24 (24.2%)

Germany
Non-alcoholic CP (n ¼ 202) 159 (78.7%) 36 (17.8%)
Alcoholic CP (n ¼ 159) 128 (80.5%) 28 (17.6%)
Controls
(n ¼ 171)

129 (75.4%) 32 (18.7%)

B

Country Allele

G

Hungary
Non-alcoholic CP (n ¼ 120) 102 (85%)
Alcoholic CP (n ¼ 92) 81 (88%)
Controls (n ¼ 198) 170 (85.9%)
Germany
Non-alcoholic CP (n ¼ 404) 354 (87.6%)
Alcoholic CP (n ¼ 318) 284 (89.3%)
Controls (n ¼ 342) 290 (84.8%)

Recessive model.
p-value ¼ 0.87; OR ¼ 0.82; 95%CI ¼ 0.73e9.27.
p-value ¼ 0.95; OR ¼ 1.08; 95%CI ¼ 0.09e12.2.
p-value ¼ 0.28; OR ¼ 0.58; 95%CI ¼ 0.22e1.56.
p-value ¼ 0.08; OR ¼ 0.31; 95%CI ¼ 0.08e1.15.
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epithelial Naþ channel genes in 39 patients with CFTR related
disorders, and found no association [26]. They described the
SLC26A6 variants which we also identified as the p.V206M associ-
ated haplotype, however, they did not report linkage of these
variants.

Studies on native pancreatic ducts isolated from Slc26a6�/�

mice have been controversial regarding the effect on ductal fluid
and bicarbonate secretion [27,28]. Our group investigated two
acute pancreatitis models in Slc26a6�/�mice, andwe did not detect
a difference in disease severity compared to the wild type animals
(unpublished observations).

On the other hand, Slc26a6�/� mice exhibit a high incidence of
oxalate nephrolithiasis [29], due to defective intestinal oxalate
secretion and urinary excretion [30]. In an attempt to identify as-
sociation with nephrolithiasis, SLC26A6 variants were screened in
familiar hyperoxaluria and primary hyperparathyroidism, but none
of the variants increased disease risk [31,32] Notably, the authors
also reported co-segregation of 3 intronic variations with p.V206M.
Functional analysis of the p.V206M mutation in Xenopus oocyte
expression studies revealed a 30% decrease of oxalate transport
activity. However, the variant did not influence oxalate excretion in
heterozygous carrier subjects [31]. Surmising that heterozygosity
would result in a 15% reduction in transport, this defect may not be
sufficient to alter oxalate homeostasis.

The STAS domain of SLC26A6 plays a key role in the functional
interaction with CFTR [18]. The p.V206M mutation is located
outside the STAS domain, and therefore, most likely does not have a
substantial effect on bicarbonate transport.

In conclusion, in this study we tested the hypothesis that
pancreatitis-associated mutations may be located in the SLC26A6
gene encoding a pancreatic Cl�/HCO3

- transporter, which interacts
with CFTR. We did not find association between genetic variants of
SLC26A6 and CP in Hungarian and German cohorts.
in Table 3B) in non-alcoholic and alcoholic chronic pancreatitis patients and control
GþGAvs. AA) and a dominantmodel (GG vs. GAþAA) using two-sided Fisher Exact
for the recessive model).

p-Value OR (95% CI)

AA

1 (1.6%) 0.78 1.11 (0.54e2.28)
1 (2.2%) 0.56 0.78 (0.34e1.26)
2 (2%) n.a. n.a.

7 (3.4%) 0.57 0.87 (0.54e1.41)
3 (1.9%) 0.27 0.74 (0.44e1.26)

10 (5.9%) n.a. n.a.

p-Value OR (95% CI)

A

18 (15%) 0.83 1.07 (0.56e2.03)
11 (12%) 0.61 0.82 (0.39e1.74)
28 (14.1%) n.a. n.a.

50 (12.4%) 0.26 0.79 (0.52e1.20)
34 (10.7%) 0.09 0.67 (0.42e1.06)
52 (15.2%) n.a. n.a.
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Objectives: Variant c.811+32C>A in intron 4 of the cholecystokinin-B
receptor gene (CCKBR) was reported to correlate with higher pancreatic
cancer risk and poorer survival. The variant was suggested to induce reten-
tion of intron 4, resulting in a new splice form with enhanced receptor ac-
tivity. Our objective was to validate the c.811+32C>A variant as an
emerging biomarker for pancreatic cancer risk and prognosis.
Methods:We genotyped variant c.811+32C>A in 122 pancreatic adeno-
carcinoma case patients and 106 control subjects by sequencing and exam-
ined its association with cancer risk and patient survival. We tested the
functional effect of variant c.811+32C>A on pre–messenger RNA splicing
in human embryonic kidney 293T and Capan-1 cells transfected with
CCKBR minigenes.
Results: The allele frequency of the variant was similar between patients
and control subjects (18.4% and 17.9%, respectively). Survival analysis
showed no significant difference between median survival of patients with
the C/C genotype (266 days) and patients with the A/C or A/A genotypes
(257 days). CCKBR minigenes with or without variant c.811+32C>A ex-
hibited no difference in expression of the intron-retaining splice variant.
Conclusion: These data indicate that variant c.811+32C>A in CCKBR
does not have a significant impact on pancreatic cancer risk or survival
in a Hungarian cohort.
From the *First Department of Medicine, University of Szeged, Szeged,
Hungary; †Department of Molecular and Cell Biology, Boston University
Henry M. Goldman School of Dental Medicine, Boston, MA; ‡Department
of Pharmacology and Pharmacotherapy, Faculty ofMedicine, University of Sze-
ged, Szeged, Hungary; §2nd Department of Pediatrics, Comenius University
Medical School, University Children's Hospital, Bratislava, Slovakia; ||First De-
partment of Internal Medicine, University of Pécs, Hungary; ¶Institute of Sur-
gery, University of Debrecen, Clinical Center, Debrecen, Hungary; #Heim Pál
Children's Hospital, Budapest, Hungary; **First Department of Medicine,
Szent György Teaching Hospital of County Fejér, Székesfehérvár, Hungary;
††Department of Oncotherapy, University of Szeged, Szeged, Hungary; and
‡‡MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary.
Received for publication March 11, 2015; accepted August 7, 2015.
Reprints: Péter Hegyi, MD, PhD, DSc, First Department of Medicine,

University of Szeged, Koranyi fasor 8-10, H-6720 Szeged, Hungary
(e‐mail: hegyi.peter@med.u-szeged.hu).

This study was supported by Hungarian National Development Agency grants
(TÁMOP-4.2.2.A-11/1/KONV-2012-0035, TÁMOP-4.2.2-A-11/1/KONV-
2012-0052, and TÁMOP-4.2.2.A-11/1/KONV-2012-0073) and the
Hungarian Scientific Research Fund (OTKA K101521 and NF100677).
This study was also supported by the European Union and the State of
Hungary, cofinanced by the European Social Fund in the framework of
TÁMOP-4.2.4.A2-710-SZJÖ-TOK-13-0017 and TÁMOP-4.2.4.-A/2-11-
1-2012-0001 “National Excellence Program” and MTA-SZTEMomentum
Grant (LP2014-10/2014). Functional studies in the laboratory of M.S.-T.
were supported by National Institutes of Health grants R01DK058088,
R01DK082412, and R01DK095753.

The authors declare no conflict of interest.
Supplemental digital contents are available for this article. Direct URL citations

appear in the printed text and are provided in the HTML and PDF versions
of this article on the journal's Web site (www.pancreasjournal.com).

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

Pancreas • Volume 00, Number 00, Month 2015

Copyright © 2015 Wolters Kluwer Health, Inc. Unau
Key Words: pancreatic adenocarcinoma, CCK-B receptor,
alternative splicing, survival, genetic risk factor

(Pancreas 2015;00: 00–00)

P ancreatic ductal adenocarcinoma (PDAC) has the highest mor-
tality rate of all malignancies. There is no effective screening

available and advanced disease is commonly present at initial diag-
nosis.1 Established risk factors are cigarette smoking, chronic pan-
creatitis, diabetes mellitus, and increased body mass.2 Inherited
genetic factors also play an important role in familiar and sporadic
occurrences of pancreatic cancer. Several highly penetrant suscep-
tibility genes have been identified, includingBRCA1, BRCA2, p16/
CDKN2A, STK11/LKB, TP53, APC, PRSS1, SPINK1, PALLD,
and PALB2, which are mainly associated with familial cancer
syndromes and familial pancreatic cancer.3,4 In sporadic case
patients, more common genetic variants are implicated, which
represent a minor risk for the disease, such as variants in the
ABO blood group gene.5,6 To date, 5 genome-wide association
studies have described multiple susceptibility loci associated with
the risk of pancreatic cancer.5–9 Smith et al10 reported a common
single nucleotide polymorphism in the cholecystokinin-B recep-
tor gene (CCKBR) as a risk factor for PDAC, which has not been
observed in prior genome-wide association studies. The authors
showed in a small cohort (51 case patients and 39 control subjects)
that variant c.811+32C>A (rs1800843) located in intron 4 of
CCKBR increased PDAC risk and was also associated with poorer
survival. In a more recent follow-up study, Smith et al11 replicated
their results in a larger North American multicenter cohort (931
case patients and 59 control subjects) and confirmed both in-
creased PDAC risk (odds ratio [OR], 2.28; CC vs. AC plus AA
genotypes) and shorter survival (hazard ratio, 1.56) associated
with variant c.811+32C>A. The gastrin/CCK-B receptor is a
member of the G protein–coupled receptor superfamily, physio-
logically expressed in the human pancreas.12 Binding of gastrin
or CCK triggers activation of multiple signal transduction path-
ways that relay mitogenic signals to the nucleus and promote cell
proliferation. Numerous studies have shown that the CCK-B re-
ceptor plays a significant role in carcinogenesis and tumor pro-
gression.13,14 An alternatively spliced messenger RNA (mRNA)
form of the receptor generated by retention of intron 4 (designated
CCK-BRi4sv for intron 4–containing splice variant, also referred
to as CCK-C receptor) was reported in various tumors,15 includ-
ing pancreatic cancer.16 The resulting CCK-BRi4sv receptor pro-
tein exhibits constitutive (agonist independent) activation of cell
proliferation pathways.17 Using immunohistochemistry, Smith
et al found that tumors with variant c.811+32C>A expressed
CCK-BRi4sv receptor protein, suggesting that the variant might
be directly responsible for intron retention. The authors speculated
that binding of the splicing factor SRp55 might be reduced by the
intronic variant resulting in enhanced retention of intron 4.12,13
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thorized reproduction of this article is prohibited.

mailto:hegyi.peter@med.u-szeged.hu
http://www.pancreasjournal.com
http://www.pancreasjournal.com


T1 T2

T3

F1

TABLE 1. Characteristics of Patients and Control Subjects

PDAC Patients Control Subjects

n 122 106
Sex
Female 59 61
Male 63 45

Age at diagnosis/recruitment, y
Mean (SD) 65.6 (10.4) 51.5 (18.8)
Range 31–89 18–89

Survival days
Mean (SD) 336 (251.8)
Median (25%-75%) 260 (118–465)

Balázs et al Pancreas • Volume 00, Number 00, Month 2015
There are few known risk factors in pancreatic adenocarci-
noma, and a better understanding of the molecular pathogenesis
is urgently needed. Therefore, we aimed to reevaluate the role of
variant c.811+32C>A as a novel genetic prognostic marker. In this
study, we had 3 objectives: (1) to replicate the association between
CCKBR variant c.811+32C>A and the risk for developing pancre-
atic cancer in an independent population, (2) to evaluate the im-
pact of the variant on patient survival, and (3) to examine the
functional effect of the variant on pre-mRNA splicing.
TABLE 3. Oligonucleotide Primers Used in This Study

Primers Used for Genotyping
METHODS

Study Population
The study protocol has been approved by the Regional and

Institutional Committee of Science and Research Ethics. All par-
ticipants gavewritten informed consent for genetic analysis. A total
of 122 case patients with a confirmed diagnosis of PDAC were re-
cruited from the Hungarian National Pancreas Registry. For each
patient, information about sex, age at diagnosis, method of diagno-
sis, and date of death or date of last follow-up was collected. Two
patients had synchronous or metachronous cancer suggestive of
inherited cancer syndromes. Other case patients were sporadic;
no patients fulfilled the criteria for familial pancreatic cancer
(2 or more first-degree relatives with pancreatic cancer). A total
of 106 control subjects were recruited from adult volunteers
who considered themselves generally healthy and from inpatients
who had no history of pancreatic diseases. Characteristics of case
patients and control subjects are described in Tables 1 and 2.

DNA Extraction and Genotyping
GenomicDNAwas isolated from 300 μL of EDTAblood using

a QIAamp DNA Blood mini kit (Qiagen, Hilden, Germany).
Primers were designed according to the genomic sequence of
CCKBR on chromosome 11 (GenBank NC_000011.10) (see
primer sequences in Table 3). Polymerase chain reaction (PCR)
TABLE 2. Tumor Stage and Survival of Patients

No. Patients Survival, Median (SD), Days

Localized 9 480 (312)
Locally advanced 78 321 (267)
Metastasized 29 222 (204)
Unknown 5

2 www.pancreasjournal.com
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was performed in a total volume of 30 μL, which contained
0.5 U HotStarTaq DNA Polymerase (Qiagen), 1.5 mM MgCl2,
0.2 mM dNTP, 0.5 μMof each primer, and 10-50 ng of genomic
DNA. Amplification was performed under the following cycle
conditions: 95°C for 15 minutes to activate the enzyme, followed
by 40 cycles of 30-second denaturation at 94°C, 30-second an-
nealing at 58°C, and 1-minute extension at 72°C, with a final ex-
tension of 5 minutes. Before sequencing, PCR products were
purified with a QIAquick PCR Purification Kit (Qiagen). Nucleo-
tide sequence analysis was carried out in a commercial laboratory
(Delta Bio 2000 Ltd, Szeged, Hungary) using a 3500 Genetic
Analyser (Applied Biosystems) automatic dye-terminator sequenc-
ing machine. The reverse PCR primer was used as sequencing
primer. Chromatograms were analyzed with ChromasPro software
(Technelysium, South Brisbane, Australia).
Construction of Expression Plasmids Harboring
CCKBR Minigenes

We designed CCKBRminigenes that contain intron 4 placed
in the appropriate context of the full-length coding DNA (Fig. 1).
CCKBR coding DNA (GenBank NM_176875.3) was custom syn-
thesized (GenScript) and cloned into the pcDNA3.1(−) plasmid
usingXhoI andEcoRI restriction sites. To createCCKBRminigenes,
a 584-nucleotide-long fragment containing intron 4 with or without
the c.811+32C>Avariant was custom synthesized and cloned into
the pcDNA3.1(−) CCKBR plasmid using BsrGI and BamHI re-
striction sites. Full sequences of CCKBR minigenes are provided
in the Supplementary Material, http://links.lww.com/MPA/A453.
Construction of Lentiviral Vectors
The pWPI lentivirus vector plasmid and the packaging plas-

mids (psPAX2 and pMD2.G) were obtained from Didier Trono's
laboratory (http://tronolab.epfl.ch/; Ecole Polytechnique Federale
de Lausanne, Lausanne, Switzerland) throughAddgene (Addgene
plasmids 12254, 12260, and 12259). First, CCKBR minigene
templates were PCR amplified with Phusion Flash High-Fidelity
PCRMaster Mix (Thermo Scientific) using the following primers:
5′-GCTTAATTAACCATGGAGCTGCTAAAGCTGAACC-3′
containing a PacI restriction site and 5′ phosphorylated 5′-
CTCAGCCAGGGCCCAGTGTG-3′. CCKBR minigene inserts
were then subcloned into the pWPI plasmid between PmeI and
PacI restriction sites. The lentivirus production in human embry-
onic kidney (HEK) 293T packaging cells was performed as de-
scribed previously.18 Briefly, 293T cells were cotransfected with
the pWPI expression plasmids, the packaging plasmid psPAX2,
and the envelope vector pMD2.G. Transfection medium was
changed after 16 hours, and the lentivirus-containing medium
Forward 5′-CTGTGTTGCCTTCAGGTCCG-3′
Reverse 5′-ATCACCAGCAACATTCGCAC-3′

Primers Used for RT-PCR
CCKBR-total Forward 5′-TCTCCTCAACAGCAGCAGTG-3′

Reverse 5′-CCCAGGACCACGATGATGAG-3′
CCKB-Ri4sv Forward 5′-AATGGAGTTGAGCTGGGAGC-3′

Reverse 5′-TGGGCGGTCAGAGAAAAAGG-3′
GAPDH Forward 5′-CACCATCTTCCAGGAGCGAG-3′

Reverse 5′- GACTCCACGACGTACTCAGC-3′

© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 1. Minigene constructs used to analyze the effect of the c.811+32C>A variant on pre-mRNA splicing. Intron 4 was placed in the
appropriate context of the CCKBR cDNA. Numbers indicate exons.

TABLE 4. Genotype and Allele Frequencies of Variant c.811
+32C>A in PDAC Patients and Control Subjects

PDAC
Patients

Control
Subjects

Genotypic
OR (95% CI) P

CC 82/122 71/106 Reference —
AC 35/122 32/106 0.947 (0.5328–1.683) 0.884
AA 5/122 3/106 1.443 (0.339–6.255) 0.7271
AC + AA 40/122 35/106 0.9895 (0.5686–1.722) 1

Allelic OR (95% CI)
Minor allele
frequency

18.4% 17.9% 1.01 (0.58–1.76) 1

CI indicates confidence interval.
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was subsequently harvested after 48 hours and frozen at −80°C.
Viral preparations were titrated on HEK 293T cells.

Cell Culture, Transfection, and Viral Transduction
Human embryonic kidney 293T cells were cultured in 6-well

plates in Dulbecco Modified Eagle Medium (Sigma, Budapest,
Hungary) supplemented with 10% fetal bovine serum, 4 mM glu-
tamine, and 1% penicillin/streptomycin at 37°C in a humidified
atmosphere containing 5% CO2. Transfections of HEK 293T cells
were performed at 70%-80% confluence using 2 μg of plasmid
DNA and 10 μL of Lipofectamine 2000 (Life Technologies, Carls-
bad, Calif ) in 2 mL of Opti-MEM Reduced Serum Medium (Life
Technologies). After 4 hours of incubation, cells were washed and
the transfection medium was replaced with 2 mL of Dulbecco
Modified Eagle Medium. Cells were harvested 24 hours after this
medium change. Capan-1 pancreatic adenocarcinoma cells were
maintained in RPMI-1640 Medium (Sigma) supplemented with
15% fetal bovine serum, 4 mM glutamine, and 1% penicillin/
streptomycin at 37°C. To establish stable cell lines, a total number
of 105 cells were plated in 6-well plates and transduced with viral
supernatant at multiplicities of infection of 4. Expression analysis
was performed at the first, second, and third passage.

RNA Extraction and Reverse Transcription
Total RNA was isolated from transfected cells using an

RNeasy Mini Kit (Qiagen). To avoid plasmid and genomic
DNA contamination, an additional on-column DNase digestion
step was applied with RNase-Free DNAse (Qiagen). Two micro-
grams of RNA was reverse transcribed using a High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Foster
City, Calif ) in the presence of RNase inhibitor RNasin Plus
(Promega, Fitchburg, Wis).

Quantification of CCKBR Expression and Splicing
Real-time PCR reactionswere performedwithMaxima SYBR

Green/ROX qPCR Master Mix (2�) (Fermentas) on an ABI
PRISM 7000 Sequence Detection System (Applied Biosystems)
platform with the following conditions: 10 minutes initial dena-
turation at 95°C, followed by 40 two-step cycles: 15 seconds
at 95°C and 1 minute at 60°C. Primer sequences are given in
Table 3. Threshold cycle (CT) values were determined using the
7000 Sequence Detection System Software V.1.2.3. Relative ex-
pression was calculated using the comparative CTmethod (ΔΔCT
method). Expression level of CCKBR was first normalized to the
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) internal
control gene (ΔCT) and then to expression levels measured in cells
transfected with empty vector (ΔΔCT). Results were expressed as
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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fold changes calculated with the formula 2−ΔΔCT. Relative expres-
sion of splice variants was studied by using 2 different primer sets,
one amplifying both the spliced and unspliced forms of CCKBR
and the other amplifying the intron 4–retaining splice variant
(CCKB-Ri4sv) only. For absolute quantification of total CCKBR
and CCK-BRi4sv expression, we generated external calibration
curves using serial dilutions ofminigene plasmid templates. Using
the calibration curves, copy numbers of total CCKBR and
unspliced CCK-BRi4sv were determined and expressed as per-
centage of total (spliced plus unspliced) CCKBR expression. All
reactions were performed in duplicate.
Statistical Analysis
Quantitative variables were described as mean ± SE. Ob-

served genotype frequencies in the study population were com-
pared with the expected Hardy-Weinberg equilibrium. To test
the association between pancreatic cancer and genotype/allele fre-
quencies, we used 2-tailed Fisher exact test. Additional ORs with
95% confidence interval were estimated. Overall survival was de-
fined as the time interval between diagnosis and death (uncen-
sored observation) or the last date when the patient was still
known to be alive (censored observation). Survival curves were
calculated for overall survival of patients according to Kaplan-
Meier. Two-sided log rank test was used to compare the difference
between survival of pancreatic cancer patients harboring the
A-allele (A/A or A/C) with survival of those patients with the
C/C genotype. Median survival time was calculated using data
from all patients; median follow-up time was computed with
censored observations. All the analyses were performed with
www.pancreasjournal.com 3
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FIGURE 2. Sequence electropherograms of CCKBR gene variants found in our cohort.
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GraphPad Prism (San Diego, Calif ). For sample size calculation,
we used Quanto v.1.2.4.19
AQ1

FIGURE 3. Kaplan-Meier survival curves according to genotype.
Censored case patients are shown as dots and squares.
RESULTS

Variant c.811+32C>A Does Not Predict Risk
for PDAC

First, we attempted to replicate the published association be-
tween variant c.811+32C>A in intron 4 ofCCKBR and the risk for
developing pancreatic cancer. To this end, we sequenced this re-
gion of CCKBR in our Hungarian cohort and detected variant
c.811+32C>A in 35 heterozygous and 5 homozygous case pa-
tients (allele frequency, 18.4%) and in 32 heterozygous and 3 ho-
mozygous control subjects (allele frequency, 17.9%). Similar to
allele frequencies, genotype frequencies did not show a statistically
significant difference between case patients and control subjects
either (Table 4). Genotype frequencies in case patients and control
subjects were found to conform to the Hardy-Weinberg equilib-
rium. Additionally, we identified 2 variants in exon 5: c.955C>T
(p.R319W, rs113168010) in 1 control subject and c.956G>A
(p.R319Q, rs1805001) in a single patient (Fig. 2).

Variant c.811+32C>A Does Not Predict Survival
in PDAC

To address the hypothesis that variant c.811+32C>A may
have a prognostic relevance, we analyzed this variant in relation
to patient survival (Fig. 3). Median follow-up time was 334 days;
12.3% of the observations were censored. Median survival of case
patients with A/C and A/A genotypes was not significantly differ-
ent from those with the CC genotype (257 days and 266 days, re-
spectively; P = 0.45), indicating that this variant does not modify
survival of PDAC patients.

Variant c.811+32C>A Does Not Affect Splicing of
Intron 4 in CCKBR

To determine whether variant c.811+32C>A has an effect on
pre-mRNA splicing; we have tested 2 different cell lines. Human
embryonic kidney 293T cells were transfected with expression
plasmids carrying CCKBR minigenes with or without the intron
4 variant and examined mRNA expression. CCKBR expression
in transfected HEK 293T cells was about 6 orders of magnitude
higher than endogenously expressed levels (Fig. 4A). Interestingly,
CCKBRmRNAwas expressed at 1.5-fold higher levels when cells
were transfected with intron-containing minigenes compared with
cells transfected with the intronless CCKBR cDNA construct. This
phenomenon is in agreement with published observations that the
presence of introns can enhance gene expression.20,21 For absolute
quantification of different splice forms, we generated calibration
curves using minigene plasmids as template. We found that
expression of the CCK-BRi4sv intron 4–retaining splice variant
4 www.pancreasjournal.com
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corresponded to approximately 10% of total CCKBR mRNA
and was not different between cells transfected with minigenes
with or without the c.811+32C>Avariant (Fig. 4C). Because splic-
ing factors can be differently expressed in carcinoma cells, we have
analyzed CCKBR splicing in Capan-1 pancreatic adenocarcinoma
cells as well. In line with the data on HEK 293T cells, splicing was
not affected by the variant c.811+32C>A (Figs. 4B, D).

DISCUSSION
Identification of pancreatic cancer susceptibility genes is of

outmost importance to define high-risk populations who may
benefit from early detection by screening tests. Based on its role
in pancreatic carcinogenesis and regulation of tumor growth,
CCKBR is a promising candidate for a susceptibility gene. Indeed,
several somatic mutations were identified in colorectal and gastric
cancers that alter receptor activity, sensitization, and localiza-
tion.22,23 Some of these mutations are located in the third intracel-
lular loop of the receptor, which plays a critical role in signal
transduction. The same loop is altered by the tumor-associated
CCK-BRi4sv splice variant, which retains intron 4 and codes for
an insertion of 69 additional amino acid residues that enhances re-
ceptor activity.17 The molecular basis for this alternative splicing
has been explained by aberrant expression of certain auxiliary
splicing factors in carcinoma cells that are necessary for the
spliceosome assembly.24 Alternatively, Smith et al10,14 proposed
that the c.811+32C>A intronic variant in CCKBR can induce re-
tention of intron 4 and thereby increase risk for the development
of PDAC and also lead to poorer survival in carriers.12,13 In con-
trast, here we demonstrated that variant c.811+32C>A has no
effect on CCKBR mRNA splicing, and it is not associated with
increased risk for pancreatic cancer or with shorter survival in
PDAC. Although we had more than 85% statistical power to
replicate the previously described OR of 2.28, we detected no
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 4. Functional analysis of the effect of variant c.811+32C>A
on pre-mRNA splicing. Expression of CCKBR mRNA in transfected
HEK 293T cells (A) and transduced Capan-1 cells (B) with the
indicated constructs. Expression of the intron-retaining splice
variant relative to the total amount of CCKBR mRNA in HEK 293T
cells (C) and Capan-1 cells (D).
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enrichment of the variant in our PDAC cohort. The reasons for the
discrepancy between our results and those of Smith et al10,14 are
not readily apparent but may be related to ethnic and geographic
variability of the frequency of the c.811+32C>A variant and the
admixed nature of the US cohort. Association studies in ethnically
admixed populations are potentially vulnerable to spurious associ-
ation because of the ethnic variability of the single nucleotide
polymorphism frequency studied. Indeed, data retrieved from the
1000 Genome Project database (www.1000genomes.org) show
that the allele frequency of variant c.811+32C>A is 18.4% in sub-
jects of European origin, whereas it is 2% in subjects of Asian de-
scent and 23% in subjects of African descent. We also note that
the control group in the study by Smith and Solomon14 was un-
usually small (59 subjects), which might result in the incorrect de-
termination of control genotype frequencies. Indeed, the reported
minor allele frequency (11.8%) for this control cohort is apprecia-
bly smaller than the incidence found in our control subjects
(17.9%), which compares well with the 1000 Genomes data.

In conclusion, data presented here argue that the intronic
variant c.811+32C>A in CCKBR is not associated with PDAC
risk or survival in a Hungarian cohort and does not alter splicing
of the CCKBR pre-mRNA. Despite the fact that our study was
not designed to detect a potentially small effect of variant c.811
+32C>A on cancer risk and we did not take into account age and
tumor stage at diagnosis when analyzing survival, our findings
are convincingly self-consistent. Therefore, we propose that variant
c.811+32C>A is functionally harmless and it should be considered
a common polymorphism with no clinical significance. Finally,
our results highlight the necessity for replication studies and the
importance of functional testing of new genetic risk markers.
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