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1. Motiváció
A tomográfia egy képfeldolgozási eszköz képek (vagy, általánosságban, függ-
vények) megállapítására (rekonstrukciójára) az azokon vett mérések (vetüle-
tek) alapján. A diszkrét tomográfia (DT), a képfeldolgozás egy viszonylag
új területe, azzal a speciális esettel foglalkozik, amikor a képek / függvények
értékkészlete egy ismert véges halmaz. Ez utóbbi feltételt sok valós életbeli
probléma esetén igen könnyű teljesíteni, ily módon lehetővé téve a DT hasz-
nálatát ezekben az esetekben.

Jelen dolgozat a DT két eltérő alkalmazását tárgyalja: Az első olyan tár-
gyak képeinek rekonstrukciójával foglalkozik, amik néhány geometriai alakzat-
ból állnak, mint pl. csövek, hengerek és gömbök. Az itt tekintett konkrét eset
ipari nemroncsoló anyagvizsgálat közben merült fel, ahol tárgyakat vizsgáltak
radiográfiai mérésekkel. Másrészt, a második alkalmazás deformált polikris-
tályos anyagminták orientáció- és szemcsetérképének rekonstrukciójával fog-
lalkozik, méghozzá az azok röntgendiffrakciós mintáiból. Bár ezek a feladatok
igen komplikáltak, mégis kritikusak sok anyagtudományi téma szempontjából.

2. Geometriai Alakzatokkal Paraméterezhető Tár-
gyak Rekonstrukciója

Azért, hogy a motivációban felvetett problémát kezelni tudja, a szerző egy új
sztochasztikus DT rekonstrukciós módszert dolgozott és fejlesztett ki, amely
tárgyak 2D keresztmetszeti képeit képes rekonstruálni. Ezekről a tárgyakról
feltételezzük, hogy egy konkrét geometriai szerkezettel bírnak: egész ponto-
san, körlapok és körgyűrűk kompozíciójaként írhatók le. Továbbá, a tárgy
4-féle homogén anyagból állhat, amelyek eltérő pixel intenzitásszintekként
fognak megjelenni. Az algoritmus bemenetként kevés számú, párhuzamos
geometriával vett vetületet vár. A mérési hibákkal szembeni robusztusság
céljából a rekonstrukciós problémát optimalizációs feladatként fogalmazzuk
meg oly módon, hogy a megoldásokat a tárgyat alkotó geometriai alakzatok
paramétereivel fejezzük ki.

A szerző ezután kiterjesztette a fenti megközelítést, hogy az képes legyen
csöveket, hengereket és gömböket tartalmazó 3D tárgyak rekonstrukciójára.
Ez az algoritmus natív 3D rekonstrukciót nyújt ahelyett, hogy 2D alproblé-
mákra vezetné vissza a problémát.

Mivel a későbbi szimulációs futásokhoz nagyméretű teszt adathalmazra
volt szükség, a szerző kifejlesztett egy olyan algoritmust, ami a tárgyparamé-
terek véletlen konfigurációit képes automatikusan generálni oly módon, hogy
bármely konfigurációt azonos valószínűséggel válasszuk.

Azon célból, hogy biztosítsa az optimalizációs folyamat gyorsabb konver-
gálását, a szerző kifejlesztett és megvalósított egy módszert a kezdőkonfigu-
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(a) (b) (c) (d)

(e) (f)

2.1. ábra. Az I. Teszteset rekonstrukciója 4 vetületből. (a) Kezdő-
konfiguráció. A két kisebb körlap véletlenszerűen lett hozzáadva. (b)
Rekonstruált konfiguráció. (c)–(d) Szűrt visszavetítéssel (FBP) készült
rekonstrukciók. (e) A (b) szimulált vetülete ϑ = 0° esetén. (f) Bemeneti
vetület ϑ = 0° esetén.

rációk automatikus és determinisztikus konstruálására a bemeneti vetületek
alapján. Mivel a fizikai mérések során a pontos pixel intenzitások néha nem
állnak rendelkezésre, az algoritmus ezek értékéről is szolgáltat egy becslést.

A rekonstrukciós módszerek hatásosságát, valamint azok érzékenységét kü-
lönféle tényezőkkel szemben először szimulációs tesztekkel vizsgáltuk. A kö-
vetkező paramétereket tekintettük: a konfiguráció geometriai bonyolultsága, a
bemeneti vetületek száma, a vetületekben jelenlevő zaj mennyisége, valamint
a kezdőkonfiguráció minősége. Azért, hogy minél közelebb kerüljünk a fizi-
kai méréseknél tapasztalható körülményekhez, a szerző egy additív zajmodellt
fejlesztett ki, amit a szimulált vetületek eltorzítására használhatunk.

Azon kívül, hogy megfelelő kezdőkonfigurációból indítjuk az optimalizációs
folyamatot, további gyorsulást értünk el az algoritmus logikájának optimali-
zálásával.

Végezetül, a szerzőnek lehetősége volt számos fizikai méréssel is tesztelni
az algoritmust. Ezek között 2D (ld. 2.1. ábra) és 3D (ld. 2.2. ábra) tárgyak is
voltak, amiket röntgen-, neutron- és gamma-sugárzással vizsgáltak.

A fentebb bemutatott eredmények itt kerültek publikálásra: [2, 3, 5–9].
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(a) (b) (c) (d)

(e) (f) (g) (h)

2.2. ábra. A II. Teszteset rekonstrukciója 4 vetületből. (a) Kezdő-
konfiguráció. A legkisebb henger véletlenszerűen lett hozzáadva. (b)–(e)
A rekonstruált konfiguráció különböző nézetei. (f) Az egyik keresztmet-
szeti kép szűrt visszavetítéssel (FBP) készült rekonstrukciója. (g) A (b)–
(e) szimulált vetülete ϑ = 180° esetén. (h) Bemeneti vetület ϑ = 180°
esetén.

3. Deformált Polikristályos Minták Rekonstruk-
ciója

Amásodik ipari alkalmazás során a feladat az, hogy polikristályos minták mik-
roszerkezetét határozzuk meg. Az általános esetet megcélzó első próbaként, a
szerző kitalált és megvalósított egy új sztochasztikus DT rekonstrukciós tech-
nikát, ami egy deformált polikristály 2D keresztmetszetében képes rekonstru-
álni az orientáció-térképet röntgendiffrakciós mérésekből. A mintáról feltéte-
lezzük, hogy egyfázisú, azaz egyféle anyagból és egyetlen kristályszerkezetből
áll. Azért, hogy robusztusabb legyen a mérési pontatlanságokkal szemben,
a rekonstrukciós problémát optimalizációs feladatként fogalmazzuk meg, ami
az összes lehetséges orientáció-térképet tartalmazó térben keres megoldást.
Számos alternatíva áttekintése után a szerző végül úgy döntött, hogy az ori-
entációkat egységkvaterniókkal reprezentálja, valamint az orientáció-térképet
Markov valószínűségi mezőként modellezi.

Mivel a fent említett általános esetet látszólag nehéz volt hatékonyan ke-
zelni, a szerző kiterjesztette a rekonstrukciós módszert, hogy az képes legyen
szimultán egy orientáció- és egy szemcsetérképet gyártani úgy, hogy mind-
két térképet Markov valószínűségi mezőként modellezzük. Ez a megközelítés
mérsékelten deformált mintákhoz használható, amik esetében értelmes módon
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lehetséges az orientáció-térképből a szemcsetérképet kinyerni.
Mivel mindkét technika az orientációk hasonlóságának fogalmán alapszik,

a szerző definiált és megvalósított egy módszert, amivel ezt a mennyiséget
kristályszimmetriák jelenléte esetén kifejezhetjük és hatékonyan kiszámolhat-
juk.

A rekonstrukciós módszer gyorsabbá tétele érdekében a szerző számos op-
timalizálást alkalmazott az algoritmus logikájában, hogy a módszer megfelelő
teljesítményt nyújtson gyakorlati használatra.

Mindkét rekonstrukciós módszert teszteltük egy sor szimulációval, mind
deformálatlan (ld. 3.2. ábra), mind mérsékelten deformált (ld. 3.1. ábra) orientáció-
térképekkel, amik mindegyikét fizikai kísérletek során nyerték ki. Ezek a vizs-
gálatok segítették a szerzőt, hogy meghatározza néhány tényezőnek a beha-
tását a rekonstrukciós minőségre: az orientáció szórásának nagysága a szem-
cséken belül, a szemcsetérképek morfológiai bonyolultságának foka, és a vetü-
letekben jelenlevő zaj mennyisége. Ahhoz, hogy minél valósághűbb tesztkör-
nyezetet kapjunk, ami a fizikai méréseket imitálja, a szerző egy multiplikatív
zajmodellt valósított meg, amivel eltorzíthatók a szimulált vetületek,

Az itt bemutatott eredmények a következő helyeken lettek publikálva: [1,
10,11].

4. Konklúziók
Két ipari problémával foglalkoztunk. Miközben eléggé eltérő természetűek,
mégis volt pár közös pontjuk: mindkettő feltételezte, hogy a kinyerendő kép
értékkészlete egy véges, ismert halmaz, továbbá hogy tipikusan csak limitált
számú mérések állnak rendelkezésre. Ezek a problémák együtt komoly akadá-
lyokat állítanak a klasszikus tomográfiai megközelítések elé.

A keresett képről rendelkezésre álló néhány előzetes információ segítségével
a DT technikák még ilyen szituációkban is sikeresek lehetnek. A dolgozatban
bemutatott esetekben ezek az előzetes információk egyrészt a várt geometriai
szerkezetből, másrészt a szemcse-morfológiák statisztikai eloszlásából és pár
egyéb lokális képjellemzőből álltak. Amint demonstráltuk, a szerző által ki-
fejlesztett új módszerek jó rekonstrukciós minőséget tudnak nyújtani azáltal,
hogy az előzetes információkat beépítik a rekonstrukciós folyamatba.

A Disszertáció Tézispontjai
A disszertációban bemutatott eredmények két téziscsoportba oszthatók. A
4.1 táblázat mutatja, melyik tézispont a szerző melyik publikációjában van
leírva.
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(a) (b) (c)

(d) (e)
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(f)

3.1. ábra. Az I. Teszteset rekonstrukciója zajmentes vetületekből. (a)
Referencia orientáció-térkép. (b) Kezdő orientáció-térkép. (c) Rekonst-
ruált orientáció-térkép. (d) A referencia és a rekonstruált szemcsetérkép
különbsége. A fekete pixelek azonos, míg a fehér pixelek eltérő szemcse-
címkét jelölnek. (e) A referencia és a rekonstruált orientáció-térkép kü-
lönbsége. A pixelek intenzitását az egymásnak megfelelő orientáció-párok
távolsága (a diszorientáció-szög) határozza meg, amint ezt az (f) mutatja.

5



(a) (b) (c)

(d) (e)
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(f)

3.2. ábra. Az V. Teszteset rekonstrukciója zajmentes vetületekből. A tér-
képek elhelyezkedése, valamint a szürkeségi szintek értelmezése a 3.1. ábra
alapján. Az orientáció-térképben a fekete pixelek légüres régiót jelölnek.
(Megjegyzés: a (d)-ben látható hibát illetően lásd a disszertáció szövegé-
ben található magyarázatot.)
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Geometriai Alakzatokkal Paraméterezhető Tárgyak Re-
konstrukciója
Az eredmények a [8] konferenciakiadványban, a [2,5–7,9] cikkekben, valamint
a [3] könyvfejezetben kerültek publikálásra.

I/1. A szerző kifejlesztett és megvalósított egy új sztochasztikus DT rekonst-
rukciós módszert, ami olyan tárgyak 2D diszkrét képeit képes rekonst-
ruálni, amik egyszerű geometriai alakzatok (konkrétan, körlapok és kör-
gyűrűk) kompozíciójaként írhatók le, és 4-féle homogén anyagból állnak
(amelyek különféle pixel intenzitásként jelennek meg). Az algoritmus
bemenetként kevés számú, párhuzamos geometriájú vetületet vár. A
rekonstrukciós problémát optimalizációs feladatként fogalmazzuk meg a
konfigurációk terében, tehát a megoldásokat a tárgyat alkotó geometriai
alakzatok paramétereivel fejezzük ki. [8, 9] (4.2. alfejezet)

I/2. A szerző kiterjesztette a megközelítést, hogy az képes legyen csöveket,
hengereket és gömböket tartalmazó 3D tárgyak rekonstrukciójára, amik
továbbra is 4-féle homogén anyagból állnak. Néhány más technikától
eltérően ez a módszer natív 3D rekonstrukciót ad, azaz a 3D eredmény
nem úgy születik, hogy az egyes 2D keresztmetszeteket egyszerűen egy-
másra halmozzuk. [3, 5–7] (4.3. alfejezet)

I/3. Azért, hogy lehetőség legyen a rekonstrukciós megközelítés hatékonysá-
gának tesztelésére, a szerző kifejlesztett egy algoritmust, ami a tárgypa-
raméterek véletlen konfigurációit képes automatikusan generálni. Ez az
automatikus folyamat arra törekszik, hogy bármely potenciális konfigu-
rációt azonos valószínűséggel válasszuk. [5, 8, 9] (4.4. alfejezet)

I/4. A szerző kifejlesztett és megvalósított egy módszert a kezdőkonfigurá-
ciók automatikus és determinisztikus konstruálására a bemeneti vetü-
letek alapján, amely konfigurációk utána a rekonstrukciós módszerek
kezdőpontjává válhatnak A megközelítés geometriai elvekkel kombinált
heurisztikára épül. Ezen eljárás részeként a szerző kiterjesztette az algo-
ritmust, hogy az becslést tudjon adni a tárgy rekonstrukciójához szük-
séges pixel intenzitásokról, melyek a fizikai mérések során esetleg nem
elég pontossággal ismertek. [5] (4.5. alfejezet)

I/5. A szerző számos szimulációs kísérlet segítségével megvizsgálta a rekonst-
rukciós technikák hatékonyságát, amelyek nagyrészt véletlenül gene-
rált konfigurációt, másrészt néhány manuálisan konstruált konfigurációt
használtak mind 2D-ben, mind 3D-ben. Ennek a tanulmánynak az volt
a célja, hogy meghatározza, mennyire érzékenyek az algoritmusok a kö-
vetkező tényezőkkel szemben: a konfiguráció geometriai bonyolultsága,
a bemeneti vetületek száma, és a vetületekben jelenlevő zaj mennyisége.
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Az is meg lett határozva, mi a befolyása, ha automatikusan megállapí-
tott kezdőkonfigurációt használunk véletlen helyett. Azon célból, hogy
szimulálhassuk a fizikai mérések pontatlan természetét, a szerző egy
additív zajmodellt fejlesztett ki, amit a szimulált vetületek eltorzításá-
ra használhatunk. A rekonstrukciós eredményének pontosságát minden
esetben több mérőszámmal mértük; ezek közül az egyiket a szerző ta-
lálta ki és valósította meg. A rekonstrukció teljesítményének javítása
érdekében a szerző számos optimalizálást hajtott végre az algoritmus
logikáján. Az egyik kritikus lépésként a célfüggvény – amire az optima-
lizáció miatt van szükség – kiértékelése fel lett gyorsítva azáltal, hogy
a számolásokat inkrementális módon hajtjuk végre, tehát a célfüggvény
aktuális értéke frissítésre kerül a javasolt konfigurációban elkövetett vál-
toztatás alapján. [3, 5–9] (5.1.2. és 5.3. alfejezet)

I/6. A szerző számos fizikai méréssel tesztelte az algoritmusokat. A 2D eset-
ben két tárgy lett rekonstruálva, amelyek vetülete röntgen- ill. neutron-
sugárzással lett begyűjtve. A technikát 3D tárgyak rekonstrukciójával
is kiértékeltük; konkrétan, ugyanaz a tárgy lett rekonstruálva röntgen-,
neutron- és gamma-sugárzással készült vetületekből. A rekonstrukció
pontosságát a 2D keresztmetszetek és egy klasszikus technika (FBP)
eredményének összevetésével ellenőriztük. [2, 3, 5–9] (6.2. alfejezet)

Deformált Polikristályos Minták Rekonstrukciója
Az eredmények a [10,11] cikkekben és a [1] könyvfejezetben kerültek publiká-
lásra.

II/1. A szerző kifejlesztett és megvalósított egy új sztochasztikus DT rekonst-
rukciós módszert, ami egy deformált polikristály 2D keresztmetszetében
képes rekonstruálni az orientáció-térképet röntgendiffrakciós mérések-
ből. Néhány más megközelítéstől eltérően ez a módszer a változatlan
vetületeket (diffrakciós mintákat) használja, és diszkrét megoldást nyújt.
Az algoritmus egyféle anyagból és egyetlen kristályszerkezetből álló min-
tákkal használható. A rekonstrukciós problémát optimalizációs feladat-
ként fogalmazzuk meg, ami az összes lehetséges orientáció-térképet tar-
talmazó térben keres megoldást, ahol minden pixel a kristályrács azon
pontján mért lokális orientációját reprezentálja egységkvaterniókkal. Az
orientáció-térképeket Markov valószínűségi mezőként modellezzük egy
homogenitási feltétel és klikk konfigurációk kombinációja segítségével,
ahol az utóbbiak lokális képjellemzőket fejeznek ki (konkrétan, szemcse-
határokat). [10] (7.2. alfejezet)

II/2. A szerző kiterjesztette a rekonstrukciós módszert, hogy az képes legyen
szimultán egy orientáció- és egy szemcsetérképet gyártani. A bemene-

8



ti vetületek (röntgendiffrakciós minták) mellett az algoritmusnak egy
kis előzetes információra is szüksége van, mégpedig a tipikus szemcse-
morfológiák statisztikája, valamint a szemcsék megközelítő helyzete és
alaporientációja formájában. A kiterjesztett megközelítés mérsékelten
deformált mintákhoz használható, amik esetében értelmes módon lehet-
séges az orientáció-térképből a szemcsetérképet kinyerni. A lokális kép-
jellemzők előnyeinek kihasználása érdekében mindkét térképet Markov
valószínűségi mezőként modellezzük. [1, 11] (7.3. alfejezet)

II/3. A szerző definiált és megvalósított egy módszert, amivel az orientáci-
ók hasonlóságát kristályszimmetriák jelenléte esetén kifejezhetjük. Az
alapdefiníció mellett a szerző arra is kitért, hogyan lehet ezt a mennyi-
séget hatékonyan kiszámolni. [1, 10,11] (7.4. alfejezet)

II/4. A rekonstrukció teljesítményének javítása érdekében a szerző számos
optimalizálást alkalmazott az algoritmus logikájában. Az egyik ilyen
ötlet a look-up táblák használata volt számolásigényes kifejezésekben.
További gyorsulást értünk el kvantált egységkvaterniók használatával
az orientációk reprezentációja esetén, továbbá a célfüggvény értékének
inkrementális frissítésével a javasolt térképben vagy térkép-párban elkö-
vetett változtatás alapján. [1, 10,11] (8.1.2. alfejezet)

II/5. A szerző számos szimulációt futtatott, hogy számszerűsítse a rekonst-
rukciók minőségét, egyrészt egy deformálatlan, valamint 4 mérsékelten
deformált orientáció-térképpel, amik mindegyikét fizikai kísérletek során
nyerték ki. Ezeknek a vizsgálatoknak az volt a céljuk, hogy megállapít-
sák, mennyire érzékenyek az algoritmusok a következő tényezőkkel szem-
ben: az orientáció szórásának nagysága a szemcséken belül, a szemcse-
térképek morfológiai bonyolultságának foka, és a vetületekben jelenlevő
zaj mennyisége. Azért, hogy jobban utánozzuk a fizikai mérésekben
megtalálható pontatlanságokat, a szerző egy multiplikatív zajmodellt
valósított meg, amivel eltorzíthatók a szimulált vetületek. A rekonst-
rukciók eredményének pontosságát minden esetben két mérőszámmal
mértük, ahol az egyik a szemcsetérképen, a másik az orientáció-térképen
volt definiálva. [1, 11] (8.3. alfejezet)
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