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1 Introduction

The main task of tomography is to reconstruct images representing two-dimensional cross-sections
of three-dimensional objects from their projections. Undoubtedly, the main applications of to-
mography arise from the field of medicine, but it is a very useful imaging tool also in physics,
chemistry, biology, industry, and so on. An important subfield is binary tomography [24], which
aims to reconstruct binary images. In the most common applications of this field usually just
few projections of the object can be measured, since the acquisition of the projection data can
be expensive or damage the object. Moreover, the physical limitations of the imaging devices
make it sometimes impossible to take projections from numerous angles. Owing to the small
number of projections the binary reconstruction can be extremely ambiguous. A common way
to reduce the number of solutions of the reconstruction task is to assume that the image to be
reconstructed satisfies certain geometrical properties.

In many applications of binary tomography the image itself is naturally not known in advance.
However, when one thinks of encoding binary images by their projections for data security or
image compression reasons, it is clear that the original image is available. Then, in the decoding
phase it becomes important to know whether the image, possibly with some additional prior
information, can be uniquely revealed from the projection data [25]. Therefore, analysis of
binary patterns plays a vital role in binary tomography.

In the field of binary tomography an important substructure of a binary matrix is the so-
called switching component, which also plays a significant role in data analysis, biogeography,
and binary matrices describing the relationship between datasets.

This thesis is a summary of the Author’s research in the field of binary tomography and
binary matrices. The central concept of this work was to examine additional prior information
for the reconstruction task from at most two projections, expand the theoretical background
for switching components and the complexity of the reconstruction, determine the number of
solutions for certain classes of binary images, and develop new algorithms connected to the field
of binary tomography.

2 The Binary Reconstruction Problem

In binary tomography the task is to reconstruct a two-dimensional binary image from a set of
projections. The image can be represented by a binary matrix A = (aij), or can be defined as a
finite subset of Z2 (definition is up to translation), where the size of the image is defined by the
size of its minimal bounding discrete rectangle. In binary tomography, usually only a few number
of projections are given. In case of only two projections, the horizontal and vertical projection
of a binary image can be defined as the vector of the row and column sums, respectively, of the
image matrix. The task is to reconstruct the binary image A from its horizontal and vertical
projections. The related questions to the problems are the complexity of the algorithms, the
number of solutions, and what prior information could reduce the number of solutions.

3 Eliminating Switching Components in Binary Matrices

Binary matrices can describe the connection between the data represented in rows and the
data represented in columns; they can contain binary patterns in a natural way; or can repre-
sent a whole digital image. Analyzing binary matrices is an important task of intelligent data
analysis [4], data mining [32], low-level image processing [14], and machine learning [29]. One
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Figure 1: Three matrices with rearranged columns and rows to form a triangluar (nested) shape
as close as possible. a) A fully nested (switching component free) matrix; b) a nearly fully nested
matrix with low number of flips; c) a uniform random matrix.

commonly performed task is to localize and enumerate special subpatterns in the binary matrix.
Such a basic and essential subpattern of a binary matrix is the so-called switching component,
which is a 2× 2 submatrix with exactly two 1-s in the diagonal and two 0-s in the antidiagonal
(or vice versa). The absence of these subpatterns is a necessary and sufficient condition for the
unique reconstruction of the matrix from the vectors of its row and column sums [30]. Even
if the matrix contains switching components, there is still a chance to reconstruct the matrix
uniquely, if properly chosen elements of the original matrix are stored as well [10], using them
as prior information. One can store, e.g., the positions of 0-s which need to be inverted to 1-s
(by so-called 0-1 flips) in order to make the matrix switching component free. The aim is then
to find the minimal number of 0-1 flips needed to achieve uniqueness.

Apart from image reconstrucion, the number and the position of switching components play
also important roles in the field of biogeography and ecology. In those cases, binary matrices
can represent the presence or absence of certain species (rows) on certain locations (columns),
which is also strongly connected to the theory of 0-1 flips [27]. Here, the so-called nestedness is
a relevant measure of the matrix, which describes how strongly the species depend on each other
and their locations. If the matrix is not fully nested, but close to be one, then the number of
switching components, and thus the number of flips in order to make the matrix fully nested, is
low (see Fig. 1 for example).

Unfortunately, as it was proven in [27], determining the minimal number of 0-1 flips to
achieve uniqueness is generally an NP-hard problem. In the thesis we showed that the minimal
number of 0-1 flips can be found by determining the proper ordering of the columns of the
matrix according to a certain filling function, instead of searching through matrix elements and
switching components. Based on theoretical results, we developed two deterministic, polynomial-
time heuristics to find the minimal number of 0-1 flips. We compared those methods to another
well-known methods in the literature, on a wide set of random binary matrices, and also a real
life dataset of presence-absence matrices. Finally, we showed how to use these algorithms in a
simple way for general binary image compression.

3.1 Problem Setting

The Minimum Flip Augmentation Problem (Mfa) is the following: given a binary matrix, what
is the minimum number of 0-1 flips to make the binary matrix switching component free. First
we define the canonical expansion. The canonical expansion of the binary matrix A is a binary

2



matrix ψA of the same size as A, with elements defined by

ψaij =

{
0 if aij′ = 0 for every j′ ≥ j,
1 otherwise.

We proved the following theorem:

Theorem 1 Let A be a binary matrix of size m× n, and let A∗ denote a solution of Mfa(A).
Then there is a column permutation π of order n such that π−1ψπA = A∗.

Thus, to find a solution of the Mfa(A) problem, it is sufficient to search for the corresponding
column permutation π.

3.2 Heuristics and Results

We describe four different heuristics for the Mfa problem. Algorithms Switch and Columns
are taken from [27] for comparison. The first one is a switching component searching algorithm,
while the second one is a naive but fast approach for column permutations. Our own methods
ColPerm1 (Algorithm 1) and ColPerm2 (Algorithm 2) are based on the previous theorem.

Algorithm 1 ColPerm1

Let π be the identical permutation
for each column index i do

Let j > i be the column index for which the column permutation πij yields the biggest
decrease in the number of 0-1 flips when applying the operator ψ
Swap columns i and j by πij
π ← π · πij

end for
return A′ ← π−1ψπA

Algorithm 2 ColPerm2

while true do
Let i and j be column indices for which the column permutation πij yields the biggest
decrease in the number of 0-1 flips when applying the operator ψ
if there are such i and j indices then

Swap columns i and j by πij
π ← π · πij

else
Break loop

end if
end while
return A′ ← π−1ψπA

We studied the performance of the heuristics on random binary matrices and on an existing
database containing real life data. Our test set contained matrices of size 20×20, 40×40, 60×60,
80× 80, and 100× 100 and with exactly 10%, 20%, . . . , 90% number of 1-s related to the total
number of the matrix entries, thus providing matrices of different densities. With each size and
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Figure 2: An example of image compression. a) Original image; b) the stored data of the
projections and the forbidden positions (0-1 flips); c) the unique solution of the reconstruction
using Chang’s algorithm.

density we generated 50 binary matrices from uniform random distribution. Thus, our test set
contained a total of 2250 matrices.

We deduce that searching through column permutations yields a result much faster than
searching through switching components, as Switch does. Furthermore, ColPerm2 gave better
results for the number of 0-1 flips, especially when the matrix was big and sparse. We also deduce
that Switch performs better if the number of switching components is small, which occurs if
the matrix is small and/or dense.

We also tested our algorithms on a real life dataset [27]. The majority of the dataset were
assembled for a meta-analysis of nested subset distribution patterns and the metrics used to
evaluate them. The dataset contains binary matrices describing 150 archipelagos, to identify
poorly represented taxa (many invertebrate groups), life-zones (especially aquatic and marine
systems), or geographic locations (e.g., tropical systems). The database contains 289 matrices
overall. We classified the matrices into 9 groups according to their density. We compared the
algorithms by the number of flips, and counted how many times they provided the best or the
worst result out of four. The results of the real dataset are highy correlated to the results of
the artificial dataset, namely, ColPerm2 provided usually the best results (most wins and least
losses), while Switch gave usually good results, especially on dense matrices. ColPerm2 was
moderate in the number of flips, and Columns was usually the worst, however, the last two
heuristics was much faster than the first two. ColPerm2 and Switch took several seconds on
large matrices, while ColPerm1 and Columns always gave an answer within a fraction of a
second.

If we store the positions of the 0-1 flips, we can use Chang’s algorithm [10], a polyominal-time
algorithm for reconstructing binary images from the horizontal and vertical projections, and the
positions of the flips. Figure 2 shows an example of such a reconstruction. The proposed method
can be comparable with current lossless image compression methods, which a future plan of the
authors.

The findings of this reasearch have been published in a conference proceeding [18] and ac-
cepted for publication in a journal [17].
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Figure 3: Binary images of size 5 × 5 with different properties: (a) a general polyomino with
holes; (b) an h-convex but not v-convex polyomino; (c) an hv-convex polyomino; (d) an hv-convex
8-connected but not 4-connected binary image. Note that the last one is not a polyomino.

4 Reconstruction and Random Generation of hv-Convex

Images from the Horizontal Projection

Many of the subclasses of binary images had been studied, where the image to be reconstructed
has to meet some certain properties. One of the most frequently studied classes of binary images
is that of hv-convex polyominoes, where each rows and columns are convex, and the binary image
is 4-connected. See Fig. 3 for examples of binary images with different properties.

Although the reconstruction of hv-convex polyominoes from the horizontal and vertical pro-
jections along with the identification of the number of possible solutions have been extensively
studied [2, 3, 8, 11, 12, 13], those problems have been surprisingly not yet investigated if just
one projection is given. We filled this gap by describing a linear-time reconstruction algorithm
and providing formulas for the number of solutions with minimal and with any given number of
columns. Also, we extended the above results by giving an elementary enumeration algorithm
which provides a method for generating hv-convex polyominoes with given horizontal projection
from a uniform random distribution, in quadratic time. We also had similar results for canonical
hv-convex images and their subclass of hv-convex 8-connected but not 4-connected images. We
showed that reconstructing an hv-convex canonical image with minimal width from the horizontal
projection is always possible in time linear in the length of the horizontal projection.

4.1 Reconstructing hv-Convex Polyominoes

Let H = (h1, . . . , hm) ∈ Nm be a vector of size m. We give an algorithm called GreedyRec which
constructs an A hv-convex polyomino with m rows and the minimal possible number of columns.
Algorithm 3 gives the pseudo code. In the followings, we call the consecutive 1-s in the i-th row
of an hv-convex polyomino as the i-th strip.

Theorem 2 GreedyRec constructs an hv-convex polyomino satisfying the horizontal projection
with minimal number of columns, in O(m) time.

One can easily modify the output of GreedyRec to expand it to have a predefined number of
columns (if possible) by moving the k-th, (k + 1)-st, . . . , m-th strips further to the right, if the
previous strip allows it (i.e., when the image remains hv-convex and 4-connected). The smallest
possible number of columns (provided by GreedyRec) is Nmin = Nm, where

Ni =


hi if i = 1 ,
Ni−1 if hi ≤ hi−1 ,
Ni−1 + hi − hi−1 if hi > hi−1 .

(1)
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Algorithm 3 GreedyRec
s1 ← 1
for i = 2→ m do

if hi = hi−1 then
Let the i-th strip be just below the (i− 1)-th strip

end if
if hi < hi−1 then

Let the i-th strip be aligned to the right of the (i− 1)-th strip
end if
if hi > hi−1 then

Let the i-th strip be aligned to the left of the (i− 1)-th strip
end if

end for
return s1, . . . , sm trip positions

This formula can be easily derived from the steps of the algorithm GreedyRec. The biggest
possible number of columns is

Nmax =
m∑
i=1

hi −m+ 1 , (2)

where every strip is connected with the previous and the next strips through only one element.
The modified GreedyRec can construct any solution between Nmin and Nmax in linear time.

4.2 Enumerating hv-Convex Polyominoes

We give a formula to calculate the number of hv-convex polyominoes with a given horizontal
projection H = (h1, . . . , hm), if there is no restriction on the number of colums of the resulted
image. We use the definitions of upper stack polyomines, lower stack polyominoes, parallelogram
polyominoes, smallest left anchor position k, smallest possible left anchor position K, greatest
right anchor position l, and greatest possible right anchor position L.

If Sk(H), Sl(H) and Pk,l(H) denote the number of upper stack, lower stack, and parallelogram
polyominoes for fixed anchor positions, respectively, then the number of solutions are (assuming
K < L):

S1(H) = 1, Sk(H) =
k∏
i=2

(hi − hi−1 + 1) (k ≥ 2) , (3)

Sm(H) = 1, Sl(H) =
m−1∏
i=l

(hi − hi+1 + 1) (l < m) , (4)

Pk,l(H) =
l−1∏
i=k

min{hi, hi+1} . (5)

The number of hv-convex polyominoes with the horizontal projection H is

PK<L(H) = 2 ·
K∑
k=1

m∑
l=L

(
Sk−1(H) · (hk − hk−1) · Pk,l(H) · (hl − hl+1) · Sl+1(H)

)
. (6)
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If K ≥ L, then the number of solutions is

PK≥L(H) = PK<L(H)− SL(H) · SK(H) . (7)

We also give a recursive formula to calculate the number Pn(H) of hv-convex polyominoes
having the horizontal projection H = (h1, . . . , hm), when the number of columns is fixed to n.
First, assume again that K < L. Let r ≥ 1 and P (p1, . . . , pr, n) denote the number of paral-
lelogram polyominoes with n columns, having the horizontal projection (p1, . . . , pr). Trivially,
P (p1, n) = 1 if p1 = n, and P (p1, n) = 0 if p1 6= n. Furthermore, for r > 1 we have the following
recursion:

P (p1, . . . , pr, n) =


∑p1

i=1 P (p2, . . . , pr, n− i+ 1) if p1 ≤ p2 ,∑p2
i=1 P (p2, . . . , pr, n− (p1 − p2)− i+ 1) if p1 > p2 .

(8)

The number of solutions for a fixed n is

Pn(H) = 2 ·
K∑
k=1

m∑
l=L

(
Sk−1(H) · (hk − hk−1) · P (hk, . . . , hl, n) · (hl − hl+1) · Sl+1(H)

)
, (9)

where P (hk, . . . , hl, n) = 0 if k > l.
Based on these results, a random generation of hv-convex polyominoes satisfying a given

horizontal projection is possible for either fixed or arbitrary number of columns. The algorithm
we described in the thesis has a running time of O(m2) for arbitrary number of columns.

4.3 Reconstructing Canonical hv-Convex Images

An hv-convex image is called canonical [1], if it consists of a single 4-connected component or
the smallest containing rectangles of the 4-connected components are 8-connected to each other
with their bottom-right and upper left corners. The task is given a horizontal projection and
an integer, construct a canonical hv-convex image such that the result satisfies the horizontal
projection and contains exactly the given number of 4-connected components, where the size of
the binary image is minimal. Figure 4 shows an example of such a reconstructed image.

The algorithm CanonicalRec (see Algorithm 4) gives an 8-connected solution of the recon-
struction problem in O(m) time. The definition of breakpoints can be found in the thesis. One
can also modify the CanonicalRec algorithm in a way that the obtained image has n number of
columns, where n can be any value between the minimal value provided by CanonicalRec and

the maximal value of
(∑m

i=1 hi

)
−m+ k, where k is the number of 4-connected components.

Algorithm 4 CanonicalRec

1) Find c1, c2, . . . , ck−1 (1 ≤ ci < m, and ci 6= cj if i 6= j) such that
∑

ci
min{hci , hci+1} is

minimal
2) Create image G with GreedyRec from H
3) Create image F ∗ by using the series of ci as breakpoints in G
return F ∗

The findings of this reasearch have been published in two conference proceedings [15, 20],
and one journal paper [19].
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Figure 4: (a) A minimal width canonical hv-convex image; (b) the result of the proposed al-
gorithm CanonicalRec. Both images contains 11 columns. Note that the second image is 8-
connected.

5 Morphological Skeleton as Additional Information for

the Reconstruction

We studied the reconstruction from an additional shape descriptor, the so-called morphological
skeleton [14, 31]. The morphological skeleton of a discrete binary image can be expressed via
morphological operations, such as the iterative morphological dilation (⊕k), and the iterative
morphological erosion (	k). We omit the lower right index for k = 1. The morphological
skeleton S(F, Y ) of a binary image F determined by a structuring element Y ⊂ Z2 is defined by

S(F, Y ) =
K⋃
k=0

Sk(F, Y ), (10)

where
Sk(F, Y ) = (F 	k Y ) \

[
(F 	k+1 Y )⊕ Y

]
, (11)

and K is the radius of the largest inscribed disk. A point p ∈ F is called a skeletal point if
p ∈ S(F, Y ) for a fixed structuring element Y .

An important property of the morphological skeleton is that the image F can be exactly
reconstructed from the skeletal subsets and the structuring element:

F =
K⋃
k=0

[
Sk(F, Y )⊕k Y

]
=

⋃
p∈S(F,Y )

(
p⊕κp Y

)
, (12)

where κp denotes the skeletal label of p such that p ∈ Sκp(F, Y ). Since the skeletal subsets
are disjoint, the labels are unique and well-defined. We assume that the structuring element Y
corresponds to the 4-neighbors of the origin and the origin itself:

Y = { (−1, 0), (0,−1), (0, 0), (0, 1), (1, 0) } . (13)

Our task is to reconstruct a binary image from its two projections and the morphological
skeleton. Figure 5 gives an example of the reconstruction problem. We managed to prove the
following theorems:
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Figure 5: (a) The image F to be reconstruced; (b) if the skeletal label is known for each p ∈
S(F, Y ), F is uniquely reconstructable; (c) the considered problem is to reconstruct F from
S(F, Y ) and the two projections.

Theorem 3 The reconstruction of polyominoes from two projections and the morphological skele-
ton is NP-complete. The reconstruction of general binary images from two projections and the
morphological skeleton is NP-complete. The reconstruction of general binary images from one
projection and the morphological skeleton is NP-complete.

5.1 Reconstruction as Optimization Problem

Although the reconstruction from two projections and morphological skeleton is generally NP-
hard, under some circumstances an acceptable image quality can be achieved. We transform the
problem into an energy minimization (or function minimization) task, where finding a minimum
of the given function is equivalent to finding an optimal solution to the reconstruction problem.
We chose Simulated Annealing (SA) [9, 26, 28] as the optimization method for our problem
because its simplicity, robustness, and flexibility in the control parameters.

We need to define our reconstruction problem as an energy function. Let H ∈ Nn
0 and V ∈ Nn

0

be two vectors, and S ⊂ Z2 be a finite set of points. Our task is to reconstruct an image F for
which S(F, Y ) = S, and which (at least approximately) satisfies H(F ) = H and V(F ) = V . For
each point p ∈ S(F, Y ) there is a unique skeletal label κp, thus, the image F can be uniquely
represented by a vector K(S(F, Y )) = (κp1 , κp2 , . . . , κp|S(F,Y )|) ∈ Z|S(F,Y )|. Now our goal is to find
a K∗(S) = (κ∗p1 , κ

∗
p2
, . . . , κ∗p|S|

) which corresponds to the image F ∗ generated by (12), such that

f(x∗) = ||Ax∗ − b||22 is minimal. Here, x∗ is the column vector representing F ∗; b is a vector
containing the projections, and A is binary matrix describing the connection between the pixels
and the projection values. An adjusted version of SA is described in Algorithm 5.

We empirically established the parameters. We developed three different strategies for the
reconstruction. In two strategies the following property of the skeletal labels was used, which we
proved in the thesis:

Lemma 1 For every skeletal point p and q with the previously given structuring element Y , it
holds that d(p, q) > |κp − κq|, where d(p, q) denotes the Manhattan-distance of p and q.

We want to enforce that the difference on 8-adjacent skeletal labels are 1 at most.

1. No Skeletal Constraint (NSC): In the SA modification step, we choose a kappap randomly,
and change it randomly between its bounds.
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Algorithm 5 Simulated Annealing on the Introduced Problem

K(S)← K0(S) initial skeletal labels
t← 0
repeat
K ′(S)← MODIFY(K(S))
Calculate x′ and x from K ′(S) and K(S), respectively

if f(x′) < f(x) or RAND < exp
(
f(x)−f(x′)

T (t)

)
then

K(S)← K ′(S)
end if
t← t+ 1

until the termination criterion is satisfied
return K(S) skeletal labels

2. Dynamic Skeletal Constraint (DSCC): In each step, we modify a randomly chosen κp
by defining its new value such that |κp − κq| ≤ C holds for each q 8-adjacent to p. If
C = 1, we allow only 1 as a difference for 8-adjacent skeletal points. Because it also
means slow convergence during iterations, we allow higher C values in the beginning of the
reconstruction, and decrease C through time.

3. Combined Energy Function (CEFα): We incorporate restriction on the skeletal labels by
using an extended energy function:

f(x) = α||Ax− b||22 + (1− α)g(x),

where α is a weighting parameter (0 ≤ α ≤ 1),

g(x) =
∑

0<d1(p,q)≤2

h(κp, κq)
(
p, q ∈ S, κp, κq ∈ K(S)

)
,

and

h(κp, κq) =

{
0 if |κp − κq| ≤ 1

|κp − κq|/2 otherwise.

We tested our algorithm on 50 artificial images. Six of our test samples have one point thin
morphological skeleton consisting of few 8-connected components. However, we also tested on
many other images which have more complex skeletons. All of the test images have the size of
256 × 256. We performed each test 10 times and measured the mean CPU time and errors of
the reconstruction. For the numerical evaluation of the quality of the reconstructed images, we
calculated the relative mean error of the resulted images.

We found that without assuming the properties of Lemma 1, a rough reconstruction is always
possible in a short time and a small number of iterations. With additional restrictions the result
will be smoother, although the convergency of the method becomes slower. The NSC variant
provides overall satisfactory results, but it contained a lot of error around the edges. The DSC
creates smoother results in most cases, but needs more iterations to converge. The CEF variant
is just slightly worse than the NSC, but much slower. Beside that, in all the three considered
variants we found that the result is much more dependent on the number of the skeletal points,
rather than on the size of the image. We also tested our algorithms if only one projection and
the morphological skeleton was given; the results were slightly worse, but overall the algorithms
performed similarly.
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Figure 6: Example images of Bk,l: (a) the B4,2 image; (b) the B5,1 image. Grey and black
pixels indicate the corresponding subset G and H, respectively. From the horizontal and vertical
projections and the morphological skeleton the reconstruction of B4,2 is non-unique, B5,1 is
uniquely reconstructable.

5.2 A Uniqueness Result for Reconstructing hv-Convex Polyominoes

Uniqueness of certain type of binary images is a related issue to the reconstruction. We studied
the uniqueness of the reconstruction of certain type of 4-connected hv-convex images, using
two projections and the morphological skeleton. We showed that the uniqueness of a certain
parametric subclass of hv-convex binary images is strongly connected to its parameters. For
given k, l ∈ N0, let Gk,l be the binary image

Gk,l = (p⊕k Y ) ∪ (q ⊕l Y ) ∪ (r ⊕l Y ) ∪ (s⊕k Y ), (14)

where p = (i, j), q = (i, j + k + l + 1), r = (i+ k + l + 1, j), s = (i+ k + l + 1, j + k + l + 1).
Furthermore, let Hk,l ⊂ Z2 be constructed from G = Gk,l by

Hk,l =
{

(u, v) | ∃(u1, u2) u1<u<u2,

(u1, v) ∈ G, (u2, v) ∈ G, (u, v) /∈ G
}⋃ {

(u, v) | ∃(v1, v2) v1<v<v2,

(u, v1) ∈ G, (u, v2) ∈ G, (u, v) /∈ G
}
.

Finally, let Bk,l = Gk,l ∪̇ Hk,l, where ∪̇ denotes the disjoint union. Figure 6 shows examples with
k = 4, l = 2, and k = 5, l = 1.

We found the following relation between k, l and the uniqueness of the reconstruction of the
image Bk,l.

Theorem 4 Let B = Bk,l for arbitrary fixed k ≥ l. Then the reconstruction of B is non-unique
if and only if ⌊

k + l

2

⌋
≤ 2l. (15)
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The findings of this reasearch have been published in two conference proceedings [16, 22], and
two journal papers [23, 21]. Finally, up to date, there have been four independent references to
the findings of the results [5, 6, 7, 33].

Summary of the author’s contributions

The findings of the research can be divided into three thesis groups. Table 1 gives the connection
between the results and the publications of the Author.

In the first thesis group, I examined the methods for eliminating switching components in
binary matrices with possibly low number of 0-1 flips. The results were published in a conference
proceeding [18] and accepted for publication in a journal [17].

I/1. I provided a proof to reduce the search space drastically while the optimal solutions still can
be found in the reduced search space. I managed to give two heuristics that outperform the
previous methods in the number of 0-1 flips to make a binary image switching component
free.

In the second thesis group I examined the binary reconstruction of hv-convex polyominoes
and hv-convex canonical images where only the horizontal projection is given. The results were
published in two conference proceedings [15, 20], and one journal paper [19].

II/1. I managed to give an algorithm to reconstruct hv-convex polyominoes with running time
linear in the size of the horizontal projection. I proved that the algorithm always gives a
result with minimal number of columns. Moreover, the algorithm can be easily modified to
provide an image with a given size. Furthermore, I provided a formula for the exact number
of solutions with arbitrary number of columns according to a given horizontal projection,
and a recursive formula with fixed number of columns.

II/2. I provided an algorithm for the uniform random generation of hv-convex polyominoes,
according to a given horizontal projection. The worst case running time of the algorithm
is O(m2), where m is the size of the projection. The algorithm can be modified to generate
polyominoes with fixed number of columns.

II/3. I showed how to reconstruct hv-convex canonical images from one projection. I provided
an algorithm which always gives an 8-connected result minimal in size.

In the third thesis group, I examined the reconstruction problem of binary images if the
morphological skeleton with a certain structuring element is also provided. The results were
published in two conference proceedings [16, 22], and two journal papers [23, 21].

III/1. I proved that the reconstruction of polyominoes from two projections and the morpho-
logical skeleton (considering a certain structuring element) is NP-complete. Furthermore,
without the restriction of the 4-connectedness the problem is still NP-complete. If only the
horizontal projection is given with the morphological skeleton, finding a solution is, again,
NP-complete.

III/2. I redefined the problem as an energy minimization problem, and used simulated annealing
to solve the reconstruction of general binary images. I studied three variants of a parametric
SA, and showed that a rough reconstruction is usually possible in a short time and a small
number of iterations.
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III/3. I defined a certain parametric subclass of hv-convex polyominoes, and showed that the
uniqueness of the reconstruction from two projections and the morphological skeleton is
determined by the parameters.

[15] [16] [17] [18] [19] [20] [21] [22] [23]
I/1. • •
II/1. •
II/2. •
II/3. •
III/1. • •
III/2. • •
III/3. •

Table 1: The connection between the thesis points and the Author’s publications.
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