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Notation and Abbreviation

A, B, . . . , F , G, . . . Binary matrices with aij, bij, . . . , fij, gij, . . . ele-

ments

p, q, . . . Points of Z2 with coordinates (ip, jp), (iq, jq), . . .

N4(p) The set of 4-adjacent points to p

|A| The number of 1-s in the binary matrix A

w(A) The width (the number of columns) of the binary

matrix A

A ⊆ B The binary matrix A is a subset of the binary ma-

trix B with equal size, i.e., ∀i∀j(aij = 1→ bij = 1)

H(A) = (h1, . . . , hm) The horizontal projection of A, containing the

number of 1-s in each row of A

V(A) = (v1, . . . , vn) The vertical projection of A, containing the num-

ber of 1-s in each column of A

⊕; 	; ⊕k Morphological dilation; morphological erosion; it-

erative morphological dilation with iteration num-

ber k

S(F, Y ); Sk(F, Y ) The morphological skeleton of the binary image F

with the structuring element Y ; the k-th skeletal

subset

κp The skeletal label of point p

||.||2 Euclidean norm of a vector

b.c The �oor function

Mfa Minimum Flip Augmentation Problem

SA Simulated Annealing
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Introduction

The main task of tomography is to reconstruct images representing two-dimensional

cross-sections of three-dimensional objects from their projections. Undoubtedly,

the main applications of tomography arise from the �eld of medicine, but it is

a very useful imaging tool also in physics, chemistry, biology, and industry. An

important sub�eld is binary tomography [48], which aims to reconstruct binary

images. In the most common applications of this �eld, e.g., electron tomography [1,

12] and non-destructive testing [13], usually just few projections of the object

can be measured, since the acquisition of the projection data can be expensive or

damage the object. Moreover, the physical limitations of the imaging devices make

it sometimes impossible to take projections from numerous angles. Owing to the

small number of projections the binary reconstruction can be extremely ambiguous.

The presence of certain binary patterns in the image can violate the unique

reconstruction of the image, especially from small number of projections. Therefore,

analysis of binary patterns plays a vital role in binary tomography. If uniqueness is

guaranteed, then the binary image can be stored in a (lossless) compressed form by

its projections. Nevertheless, even if the image contains speci�c patterns causing

the projections not being able to determine the image in a unique way, there is still

a chance to reconstruct the original image uniquely, if properly chosen elements of

that are stored as well [25].

Besides, a common way to reduce the number of solutions of the reconstruction

task is to assume that the image to be reconstructed satis�es certain geometrical

properties. In many applications of binary tomography the image itself is naturally

unknown in advance. However, when one thinks of encoding binary images by

their projections for data security or image compression reasons, it is clear that the

original image is available. Then, in the decoding phase it becomes important to

know whether the image, possibly with some additional prior information, can be

uniquely revealed from the projection data [51].

Assuming di�erent prior information about the original image, several theoret-

ical results are known, regarding the e�cient reconstruction of binary images and

the number of solutions, using just the horizontal and vertical projections. In [9, 21],

the authors use certain structured images for lossless data compression, which again

1



2 Contents

shows the usefulness of binary reconstruction in the �eld of image encoding. The

reconstruction complexity and the number of solutions are well-studied in numerous

classes of images when two projections are available [10, 27, 30]. Furthermore, in

the reconstruction process the prior knowledge is often incorporated into an energy

function, thus the reconstruction task becomes equivalent to a function minimiza-

tion problem. There are various methods to solve that kind of problems [35, 63, 66].

This thesis is a summary of the Author's research in the �eld of binary tomog-

raphy. The central focus of this work is to examine additional prior information

for the reconstruction task from at most two projections, expand the theoretical

background of complexity, determine the number of solutions for certain classes of

binary images, and develop new algorithms for binary tomography.

The structure of the dissertation is the following. First, Chapter 1 gives the

necessary preliminaries. This chapter does not contain any new contribution (with

the exception of Lemma 1.4.1). We summarize previous results of the �eld, and

provide the mathematical backgrounds for understanding the results of the thesis.

Then, Chapters 2, 3, and 4 give a detailed description of our results.

Chapter 2 deals with binary patterns which can ensure uniqueness of the re-

construction. In binary images, the reconstrucion can be unique if these patterns

are �xed in a preprocessing step. However, �nding the minimal number of patterns

to �x is generally hard, thus the existence of a deterministic, polynomial-time al-

gorithm for �nding the global optimum in general case is questionable. In this

chapter, we show how to reduce the searching space drastically, without losing the

global optimum, and give deterministic, polyominal-time heuristics based on our

theoretical results. We compare those algorithms to another well-known methods

in the literature, on a wide set of random binary matrices, and also a real-life

dataset of presence-absence matrices. We conclude that our algorithms perform

better than the previous ones, both in the number of pattern alteration and run-

ning time, especially on sparse matrices.

The reconstruction of speci�c binary structures from few projections is an ex-

tensively studied problem in discrete tomography. Several algorithms exist to solve

this task from two projections. For testing the e�ciency of those (and of more

general reconstruction) algorithms in the average case, enumeration and random

generation of these images according to several parameters is an important issue.

In Chapter 3, we study the reconstrucion only from the horizontal projection, and

provide fast algorithms to reconstruct special binary images with a prescribed hor-

izontal projection. With certain modi�cations we also can generate such images

from a uniform distribution. Furthermore, formulas for the number of solutions

with minimal and with any given number of columns are provided as well.

In Chapter 4 we investigate a new kind of prior information to aim the recon-
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struction, the so-called morphological skeleton � a region-based shape descriptor

� which represents the general form of binary objects [38]. We prove that the

reconstrucion is generally still hard in the term of complexity, however, a rough

reconstruction is always possible in a short time and a small number of iterations.

We propose some variants of a method based on a stochastic function minimizer

algorithm to reconstruct binary images from their horizontal and vertical projec-

tions and the given prior information. With additional restrictions the result will

be smoother, however, the convergency of the method becomes slower. A related

issue is the uniqueness of the reconstruction. Regardless of the complexity of the

reconstruction, the possible number of the solutions can be exponential in the size

of the image [30, 65]. We study the uniqueness of the reconstruction of certain type

of images, using two projections and the shape descriptor prior.

Finally, in Chapter 5 we give a conclusion of the thesis. For each chapter we

summarize our results, and discuss possible further extensions.





Chapter 1

Preliminaries

1.1 The Binary Reconstruction Problem

In binary tomography the task is to reconstruct a two-dimensional binary image

from a set of projections. The image can be represented by a binary matrix1

A = (aij), or can be de�ned as a �nite subset of Z2 (de�nition is up to translation),

where the size of the image is de�ned by the size of its minimal bounding discrete

rectangle. If a point p = (ip, jp) of Z2 is in the given subset, then it is called an object

point, and indicated by aij = 1 in the binary matrix representation. Otherwise, it

is called a background point, and then aij = 0 in the corresponding position of the

binary matrix. Figure 1.1 shows three di�erent representations of the same binary

image.

Generally, in the continuous setting the binary reconstruction task is to recover

an unknown binary function f(x, y) : R2 → {0, 1} (the image) from a bunch of its

1In the literature, a binary matrix is often denoted by A, B, etc., while a binary image is
usually denoted by F , G, etc. In this thesis those de�nitons are equivalent, and we use both
notations.


1 1 0 0 0
0 1 1 1 1
0 0 1 1 0
0 1 0 1 0
1 0 1 1 0


a) b) c)

Figure 1.1: Di�erent representations of the same binary image: (a) a set of pixels
using two colors; (b) a representation of a subset of Z2; (c) a binary matrix.

5



6 Preliminaries

line integrals, the so-called projections given by the Radon-transform

[Rf ](s, θ) =

∫ ∞
−∞

f(s cos θ − u sin θ, s sin θ + u cos θ)du (1.1)

for certain �xed θ angles. Here s and u denote the variables of the coordinate system

rotated by the angle θ and [Rf ](s, θ) is called the θ-angle parallel projection of f (see

Fig. 1.2 for example). In some applications of this �eld usually just few projections

of the object can be measured, since the acquisition of the projection data can be

expensive or damage the object. Moreover, the physical limitations of the imaging

devices make it sometimes impossible to take projections from numerous angles. In

binary tomography we assume the image to be reconstructed is homogeneous, and

for the reconstruction usually only a few number of projections are given. In case

of only two projections, the horizontal and vertical projection of a binary image is

de�ned as the vector of the row and column sums, respectively, of the image matrix.

Formally, given a binary image A of size of m × n, the horizontal and vertical

projection is de�ned by the vector H(A) = (h1, . . . , hm) and V(A) = (v1, . . . , vn),

respectively, where

hi =
n∑
j=1

aij, i = 1, . . . ,m , (1.2)

and

vj =
m∑
i=1

aij, j = 1, . . . , n . (1.3)

The task is to reconstruct the binary image A from its horizontal and vertical

projections. The basic question about the general reconstruction problem is the

following:

Problem. Binary Reconstruction from Two Projections

Instance. H and V �nite vectors of non-negative integers, possible additional

prior information.

Question. Is there a binary image A such that H(A) = H, V(A) = V , and A

matches with the given prior information?

However, one can consider the following problems related to binary reconstruc-

tion as well.

• How many solutions are there?

• Is there a way to give the n-th solution with an acceptable amount of com-

putation (hence, without listing the �rst n− 1 solution)?

• How hard is to �nd a single solution? Is there a polynomial-time algorithm
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 f (x,y)
x

 y

 s

 u

[Rf ](s,θ)

θ

Figure 1.2: The continuous setting of the binary reconstruction task.

for the given task?

• What kind of heruristics can speed up the search for a solution?

• What is considered as a solution? Can it be an image satisfying just approx-

imately the projection vectors, and/or the additional prior information?

Similar questions can be asked in case of more than two projections. In this the-

sis we only focus on the above questions if only two projections are known, at most.

Generally, if only the horizontal and vertical projections are given, the number of

solutions can be exponential [27]. A common way to reduce the number of solutions

of the reconstruction task is to assume that the image to be reconstructed satis�es

certain geometrical properties (e.g., convexity and/or connectedness, as in [23]).

The �rst method to answer the question of the binary reconstruction problem

from two projections was published in [65]. In the same work it was also showed

that the solution is not always uniquely determined. Furthermore, in practical

applications noisy projection data also complicates the reconstruction. To overcome

those problems one can transform the original task to a function minimization

problem (assuming the size of the image is m× n)

f(x) = ||Ax− b||22 + α · g(x) → min , (1.4)

where x is an (mn)× 1 binary vector representing the unknown image in a vector

form using row-by-row traversal; b =
(
H(F ),V(F )

)T is an (m+n)× 1 vector con-
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a) b) c)

Figure 1.3: Three matrices with rearranged columns and rows to form a triangluar
(nested) shape as close as possible. a) a fully nested (switching component free)
matrix; b) a nearly fully nested matrix with low number of �ips; c) a uniform
random matrix.

taining the projections, and A is an (m+ n)× (mn) binary matrix, with aij = 1

if and only if the pixel xi is hit by the j-th projection ray, 0 otherwise. The func-

tion g(x) handles additional information of the image, such as shape, connectivity,

perimeter, etc. (as in [23]). The lower value it takes the closer the reconstructed

image is to the expected one. g(x) is multiplied by the weighting parameter α > 0.

In this thesis, especially in Chapter 4 we use the function g(x) to add prior infor-

mation about the image to the minimization task.

1.2 The Minimum Flip Augmentation Problem

In the �eld of biogeography and ecology, nestedness is an important measurment of

presence-absence binary matrices, where rows can represent species, while columns

can represent certain locations. The nestedness of the matrix describes the connec-

tion and dependency between species in di�erent location. Similarly, data mining

and intelligent data analysis can use nestedness � or nestedness-like measurements

� to show the connection between the data represented by rows and columns of a

binary matrix [58]. A binary matrix is called fully nested, if and only if its rows

form a chain of subsets; that is, any two rows are ordered by the subset relation,

where we view each row as a subset of the columns indicated by the 1-entries. If

a matrix is fully nested, it is possible to permute the rows and columns in a way

that the resulted binary image forms a triangular shape, as Fig. 1.3a shows.

Nestedness is strongly connected to the concept of switching components. A

switching component is a 2 × 2 submatrix of a given binary matrix such that the

diagonal of the submatrix contains 1-s, and the anti-diagonal contains 0-s, or vice

versa. Formally, the indices i1, j1, i2, j2 form a switching component in the binary

matrix A = (aij), if either ai1j1 = ai2j2 = 1 and ai1j2 = ai2j1 = 0, or ai1j1 = ai2j2 = 0

and ai1j2 = ai2j1 = 1. A binary matrix is switching component free, if it does not



1.3 Chang's Algorithm 9

a) b)

Figure 1.4: Examples of switching components and a switching component free
matrix: a) a binary image with two examples of switching components marked
with gray squares and disks; b) a switching component free binary image.

contain any switching components. For examples, see Fig. 1.4.

A matrix is fully nested if and only if it is switching component free [58]. If the

matrix contains switching components, no permutation on the rows and columns

could lead to a triangular shaped image. See Fig. 1.3b and Fig. 1.3c for examples.

Let us de�ne 0-1 �ips as an operation that changes a 0 element of a given binary

matrix to 1. The Minimum Flip Augmentation Problem (Mfa) plays an important

role in determining the nestedness of a binary matrix.

Problem. Minimum Flip Augmentation (Mfa)

Instance. A binary matrix A.

Question. Constructing a switching component free binary matrix A∗ from A

using 0-1 �ips, what is the minimum number of �ips?

Unfortunately, as it was proven in [58], determining the minimal number of

0-1 �ips, thus to achieve uniqueness of the reconstruction from two projections is

generally an NP-hard problem. The goal of Chapter 2 is to give heuristics for this

problem.

1.3 Chang's Algorithm

Chang's algorithm [25] is a polyominal-time binary image reconstruction algorithm

for unique matrices. A binary matrix is unique if and only if there is exactly

one solution for the reconstruction task that satis�es the given horizontal and

vertical projections. The algorithm requires the absence of switching components

in the matrix, which is the necessary and su�cient condition of non-uniqueness [65].

However, the algorithm can deal with a set of so-called forbidden positions, i.e.,

positions which has a �xed value in the matrix. Algorithm 1 shows the pseudo-code

of Chang's Algorithm.

In Chapter 2 we show how to compress (not necessarily unique) binary images



10 Preliminaries

Algorithm 1 Chang's Algorithm
Require: Vector of column and rows sums C and R, respectively; set of forbidden
positions Q

Ensure: Binary matrix A satisfying C, R, and Q
Let A be a matrix full of free elements
Fix every position of Q in A; update C and R by substracting the �xed 1-s
while there are free elements in A do

Find a row (column) where all the free elements must be either 0 or 1 to ful�l
the corresponding row sum (column sum)
if there is no such a row (column) then
The solution does not exist or is non-unique
return ∅

else

Fix the free elements in the found row or column to 0-s (or 1-s) in A, and
update C and R

end if

end while

return A

in a lossless way using Chang's algorithm as the decoding algorithm.

1.4 The Morphological Skeleton

The skeleton is a region-based shape descriptor which represents the general form of

binary objects [17]. One way of de�ning the skeleton of a 2-dimensional continuous

object is as the set of the centers of all maximal inscribed (open) disks [36]. A disk

is maximal inscribed if it is included in an object, but it is not contained by any

other inscribed disk. Discrete skeletons are analogues of the continuous skeleton,

but they can be calculated only approximately. There are three frequently used

techniques for extracting skeletons from discrete binary images: thinning, Voronoi-

based, and distance-based methods [69].

Special skeletons of discrete binary images can be expressed via morphological

operations [38], where the continuous disks are approximated by successive dilations

of the selected structuring element that is to represent the unit disk. We know

that those dilated structuring elements cannot provide �good� approximations of

Euclidean disks [67]. Consequently, the heuristic morphological skeletons do not

yield �reasonable� skeletons. Despite of this drawback, the original binary image

can be exactly reconstructed from the skeletal subsets of arbitrary morphological

skeletons.

The morphological dilation of a binary image F with the structuring element
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a) b) c)

Figure 1.5: An example of the basic morphological operations: (a) original image;
(b) the result of morphological dilation; (c) the result of morphological erosion.
The structuring element is the origin and its 4-neighbors. Dark gray pixels indicate
unaltered object points, light gray pixels indicate altered points.

Y ⊂ Z2 is de�ned by

F ⊕ Y =
{
p ∈ Z2 |

(
F ∩ (Ŷ )p

)
⊆ F

}
, (1.5)

where Ŷ denotes the re�ection of Y through the origin and (X)p denotes X trans-

lated to the point p.

The de�nition of the morphological erosion is analogous,

F 	 Y =
{
p ∈ Z2 | (Y )p ⊆ F

}
. (1.6)

Figure 1.5 shows an example of morphological dilation and erosion.

The iterative morphological dilation is a morphological dilation applied k times

(k ∈ N0), i.e.,

F ⊕k Y =

{
F if k = 0,

(F ⊕k−1 Y )⊕ Y if k > 0.
(1.7)

The de�nition of the iterative morpological erosion F 	k Y is similar to (1.7).

The morphological skeleton [38, 67] S(F, Y ) of a binary image F determined by a

structuring element Y ⊂ Z2 is de�ned by

S(F, Y ) =
K⋃
k=0

Sk(F, Y ), (1.8)

where

Sk(F, Y ) = (F 	k Y ) \
[
(F 	k+1 Y )⊕ Y

]
, (1.9)

and K is the radius of the largest inscribed disk. In other words,

K = max{ k | F 	k Y 6= ∅ } . (1.10)
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Figure 1.6: An example of the morphological skeleton S(F, Y ) of a binary image
F (dark and light gray pixels). Light gray pixels indicate the skeletal points with
their corresponding labels.

a) b)

Figure 1.7: An example of the morphological skeleton: (a) original image F ; (b) the
morphological skeleton S(F, Y ), which represents the shape of the original image.

A point p ∈ F is called a skeletal point if p ∈ S(F, Y ) for a �xed structuring

element Y .

An important property of the morphological skeleton is that the image F can

be exactly reconstructed from the skeletal subsets and the structuring element:

F =
K⋃
k=0

[
Sk(F, Y )⊕k Y

]
=

⋃
p∈S(F,Y )

(
p⊕κp Y

)
, (1.11)

where κp denotes the skeletal label of p such that p ∈ Sκp(F, Y ). Since the skeletal

subsets are disjoint, the labels are unique and well-de�ned.

From now we assume that the structuring element Y corresponds to the 4-

neighbors of the origin and the origin itself:

Y = { (−1, 0), (0,−1), (0, 0), (0, 1), (1, 0) } . (1.12)

Figure 1.6 shows an example of the morphological skeleton and the skeletal labels.

Figure 1.7 shows another example of the morphological skeleton, while Fig. 1.8

shows how to create the morphological skeleton step by step.

The following lemma provides an important property of the labels.
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F = F 	0 Y (F 	1 Y )⊕ Y S0(F, Y )

F 	1 Y (F 	2 Y )⊕ Y S1(F, Y )

F 	2 Y (F 	3 Y )⊕ Y S2(F, Y )

S(F, Y )

Figure 1.8: Generating the morphological subsets Sk(F, Y ) (k = 0, 1, 2) according
to (1.9). The top left image equals the original image F . In each row, the image in
the third column is the di�erence of the previous two images. Note that Sk(F, Y ) =
∅ for k ≥ 3, thus the �nal morphological skeleton is S(F, Y ) = S0(F, Y )∪S1(F, Y )∪
S2(F, Y ).
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Figure 1.9: An example of the assumption in Lemma 1.4.1. Gray pixels indicate P̂ ,
dark gray pixels indicate Q̂, where Q̂ ( P̂ . Here, d1(p, q) = 3, κp = 5 and κq = 2.
Note that (q′ ⊕κq+1 Y ) ⊂ P̂ , enclosed with thick lines.

Lemma 1.4.1 Let p ∈ Sκp(F, Y ) and q ∈ Sκq(F, Y ) be two distinct skeletal points

of a binary image F and the structuring element Y de�ned by (1.12). The Man-

hattan distance of the skeletal points is greater than the di�erence on their labels,

i.e.,

d1(p, q) > |κp − κq| . (1.13)

Proof

Assume to the contrary that p and q are skeletal points of F with d1(p, q) ≤ |κp−κq|.
Without loss of generality, let κp ≥ κq, therefore our assumption is

d1(p, q) + κq ≤ κp . (1.14)

Let P̂ = (p⊕κpY ) and Q̂ = (q⊕κqY ). From (1.11) we know that P̂ , Q̂ ⊂ F . Also
because of the attributes of Y de�ned by (1.12) and the morphological dilatation,

u ∈ P̂ ⇐⇒ d1(p, u) ≤ κp (1.15)

v ∈ Q̂ ⇐⇒ d1(q, v) ≤ κq (1.16)

for any u, v ∈ Z2.
Therefore, for every point v ∈ Q̂, using (1.14) and (1.16),

d1(p, v) ≤ d1(p, q) + d1(q, v) ≤ d1(p, q) + κq ≤ κp . (1.17)

Overall with (1.15), (v ∈ Q̂) → (v ∈ P̂ ), and since p 6= q, it follows that
Q̂ ( P̂ . Hence, there exists a point q′ such that q and q′ are 4-neighbors and
(q′ ⊕κq+1 Y ) ⊂ P̂ ⊂ F , so q′ ∈ (F 	κq+1 Y ) (see Fig. 1.9 for an example).
Consequently, q ∈

[
(F 	κq+1 Y )⊕ Y

]
, which means q /∈ Sκq(F, Y ) by (1.9), which

is a contradiction. 2

The morphological skeleton plays a great role in Chapter 4, where it is used as
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additional information for the binary reconstruction task.

1.5 Simulated Annealing

Simulated Annealing (SA) was intruduced in [61], and later independently de-

scribed in [53] and [24]. SA is a generic probabilistic method for global optimiza-

tion problems, i.e., �nding the global minimum of functions whose characteristics

are usually unknown and/or extremely complex. It only assumes that evaluation

of the function is possible at arbitrary points. Unlike gradient descent methods,

with SA the probability of �nding global optimal solution tends to 1.

SA, as its name suggests, simulates the physical phenomenon of annealing,

where the goal is to �nd the state with the minimal internal energy of a system

through controlled cooling, regardless the initial state. During the cooling process,

the energy of the state might increase due to the thermal noise, hence can avoid

local optimum. Overall, if the cooling process is approached carefully, the process

terminates in a state having (nearly) minimal energy. In terms of SA, the system is

the function to be minimized, and the states are simply the values of the function.

See Algorithm 2 for the pseudo-code for SA.

Algorithm 2 Simulated Annealing
Require: f function, x initial solution, T initial temperature
Ensure: x∗ solution for minimizing f
repeat

x′ ← x, modify x′ randomly
if f(x′) < f(x) then
x← x′

else

x← x′ with a probability of e
f(x′)−f(x)

T

end if

Decrease T
until the termination criterion is satis�ed
return x∗ ← x

SA is simple to implement, robust, and �exible in the sense of controlling its

parameters. However, one serious drawback of the method is that one has to

�ne-tune many parameters to achieve an acceptable approximation of the global

minimum of f , including random modi�cation of the actual solution, the annealing

schedule, and the selection of the starting parameters. Furthermore, in many

practical applications it is not trivial to describe the optimization problem as a

function minimization problem, which can bring more parameters into the process.

In the literature there are many studies where SA have been applied to solve an

image reconstruction problem. In [52], the authors found that SA ensured slightly
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better reconstruction quality than the iterative method for single photon emission

computed tomography (SPECT). In [60] a variation of SA was proposed to solve

the electrical impedance tomography (EIT) reconstruction problem. In [57], the

authors used SA for reconstructing discrete images on a triangular grid from six

projections. The authors of [56] studied the performance of various implementa-

tions of the SA algorithm when applied to binary functions, especially in binary

reconstruction.

We use SA in Chapter 4 for solving the reconstruction problem, where one or two

of the projections are given, as well as the morphological skeleton (see Section 1.4).



Chapter 2

Eliminating Switching Components

in Binary Matrices

2.1 Introduction

Studying the structure of binary matrices plays a vital role in numerous applica-

tions of computer science. Binary matrices can describe the connection between

the data represented in rows and the data represented in columns; they can contain

binary patterns in a natural way; or can represent a whole digital image. There-

fore, analyzing binary matrices is an important task of intelligent data analysis [15],

data mining [71], low-level image processing [38], and machine learning [62], among

others. One commonly performed task is to localize and enumerate special sub-

patterns in the binary matrix. Such a basic and essential subpattern of a binary

matrix is the so-called switching component, which is a 2 × 2 submatrix with ex-

actly two 1-s in the diagonal and two 0-s in the antidiagonal, or vice versa (for a

formal de�nition, see Section 1.2). The importance of searching switching compo-

nents � if they exist � in a binary matrix comes from the fact that the absence

of these patterns is a necessary and su�cient condition for the unique reconstruc-

tion of the matrix from the vectors of its row and column sums [65]. Therefore, if

uniqueness is guaranteed then the binary image represented by the binary matrix

can be stored in a (lossless) compressed form by those two vectors. The presence of

even one switching component makes the solution non-unique when no additional

prior information is available about the binary matrix to be reconstructed. Nev-

ertheless, even if the matrix contains switching components, then there is still a

chance to reconstruct the matrix uniquely [25], if properly chosen elements of the

original matrix are stored as well, using them as prior information. One can store,

e.g., the positions of 0-s which need to be inverted to 1-s (by so-called 0-1 �ips)

in order to make the matrix switching component free. The aim is then to �nd

17
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the minimal number of 0-1 �ips needed to achieve uniqueness. Apart from image

reconstruction, the number and the position of switching components also play an

important role in the �eld of biogeography and ecology. There, binary matrices

can represent the presence or absence of certain species (rows) on certain locations

(columns), which is also strongly connected to the theory of 0-1 �ips (see [58], and

the references given there). Then, the so-called nestedness is a relevant measure

of the matrix, which describes how strongly the species depend on each other and

their locations. Similarly, data mining and intelligent data analysis can also use

nestedness � or nestedness-like measurements � to show the connection between

the data represented by a binary matrix (see again references in [58]).

Unfortunately, as it was proven in [58], determining the minimal number of

0-1 �ips to achieve uniqueness is generally an NP-hard problem. Besides, one can

consider 1-0 �ips instead of 0-1 �ips. In that case, the minimal number of �ips can

di�er for a certain matrix, but the problem is still generally NP-hard due to the

symmetrical roles of 1-s and 0-s. Moreover, if both 0-1 and 1-0 �ips are allowed,

�nding the minimal number of �ips is considered to be NP-hard, although it has not

been proven yet. In this chapter, we focus only on the 0-1 �ips. We show that the

minimal number of 0-1 �ips can be found by determining the proper ordering of the

columns of the matrix according to a certain �lling function, instead of searching

through matrix elements and switching components. Based on theoretical results,

we develop two deterministic, polynomial-time heuristics to �nd the minimal num-

ber of 0-1 �ips. We compare those methods to another well-known methods in the

literature, on a wide set of random binary matrices, and also a real-life dataset of

presence-absence matrices. We conclude that the algorithms searching for proper

column permutations perform better, regarding both the number of 0-1 �ips and

running time, especially on sparse matrices. Moreover, we show how to use these

algorithms in a simple way for general binary image compression with Chang's

algorithm, previously described in Section 1.3.

2.2 Problem Setting and Theoretical Results

Our goal is to answer the Minimum Flip Augmentation problem, described in
Section 1.2. The aim is to determine the minimal number of 0-s needed to change
into 1-s of a binary matrix in order to make the matrix switching component free.
Changing each 0 to 1 in a given A binary matrix would yield a binary matrix with
no switching component, therefore such a switching component free binary matrix
A∗ always exists. On the other hand, in [58] the following lemma is proven.

Lemma 2.2.1 Mfa is NP-complete.
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a) b)

Figure 2.1: An example of the canonical expansion function: a) a binary image,
some of the switching components are marked with squares and disks, (b) the same
image after applying the canonical expansion function. Dark gray pixels indicate
the 0-1 �ips.

A naive approach to �nd a (not necessary optimal) solution may include a searching

through the switching components of A, and eliminate them by changing 0 values

into 1-s, in a sequential order. There can be O(m2n2) switching components, and a

certain 0 can belong to O(mn) switching components. For example, in the identity

matrix any 0 element under the main diagonal forms a switching component with

any 0 element above the main diagonal with the corresponding 1-s. The aim is to

identify a minimal sized sequence of those 0-s, thus an exhaustive search for the op-

timal solution may require O((mn)!) steps. We show how to speed up the searching

process through special operations in order to gain much faster approximate solu-

tions. In that case, the exhaustive search will require at most O((min{m,n})! ·mn)
steps. Before describing the heuristics, we provide some theoretical results. First,

we give the de�nition of the canonical expansion function.

The canonical expansion of the binary matrix A is a binary matrix ψA of the

same size as A, with elements de�ned by

ψaij =

{
0 if aij′ = 0 for every j′ ≥ j,

1 otherwise.

Figure 2.1 shows an example of a canonical expansion. Since ψ performs only 0-1

�ips in A, thus A ⊆ ψA. If ψA = A for a binary matrix A, then A is called a

canonical matrix1. Note that ψψA = ψA, therefore the canonical expansion of any

binary matrix is a canonical matrix.

Besides, given the binary matrix A of size m× n and a permutation π of order

n, let πA denote the binary matrix which consists of the columns of A according

to π. The following lemmas show important properties of canonical matrices.

Lemma 2.2.2 Any canonical matrix is switching component free.

1Not to be confused with canonical hv-convex images described in Chapter 3.
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Proof

The presence of a switching component requires a row in the binary matrix contain-
ing a 0 followed by a 1 somewhere in the same row (not necessarily on an adjacent
position). Since ψA = A for a canonical matrix A, A clearly has no such rows. 2

Lemma 2.2.3 Let A be a switching component free binary matrix with non-incre-

asing column sums. Then A is a canonical matrix.

Proof

Assume to the contrary that A is a switching component free binary matrix with
non-increasing column sums, and A is not a canonical matrix. Since A is not a
canonical matrix, there exists a row i such that aij = 0 and aij′ = 1 for some j < j′

columns. But the j-th column contains at least as much 1-s as the j′-th column,
and therefore there must be a row i′ such that ai′j = 1 and ai′j′ = 0. Then, aij,
aij′ , ai′j and ai′j′ form a switching component, which is a contradiction. 2

The next lemma describes a property of the canonical expansion.

Lemma 2.2.4 Let A and B be two binary matrices of the same size m × n. If

A ⊆ B then ψA ⊆ ψB.

Proof

Let i ∈ {1, . . . ,m} be an arbitrary row index. Moreover, let jl(A) denote the position
of the last 1 in the i-th row of A, i.e., aijl(A)

= 1 and aij = 0 for j > jl(A). Similarly,
let jl(B) denote the position of the last 1 in the i-th row of B, hence bijl(B)

= 1 and
bij = 0 for j > jl(B). From A ⊆ B it follows that jl(A) ≤ jl(B).

By the de�nition of the canonical expansion, ψaj = 1 if and only if 1 ≤ j ≤ jl(A).
Similarly, ψbj = 1 if and only if 1 ≤ j ≤ jl(B). Since jl(A) ≤ jl(B), it follows that
ψbk = 1 whenever ψak = 1 for k = 1, . . . , n. The row index i was chosen arbitrarily,
thus we get ψA ⊆ ψB. 2

Finally, the following theorem reveals the connection between canonical expan-

sions and the solutions of the Mfa problem.

Theorem 2.1 Let A be a binary matrix of size m×n, and let A∗ denote a solution
of Mfa(A). Then there is a column permutation π of order n such that π−1ψπA =

A∗.

Proof

Let π be a (not necessarily unique) permutation such that πA∗ is a binary matrix
with non-increasing column sums. Trivially, A ⊆ A∗, and by the de�nition of the
column permutation and the subset relation, πA ⊆ πA∗. A column permutation
has no e�ect on the existence of switching components, hence πA∗ is still switching
component free. But then, by Lemma 2.2.3, πA∗ is canonical and therefore ψπA∗ =
πA∗. Since πA ⊆ πA∗, by Lemma 2.2.4 we get ψπA ⊆ ψπA∗ = πA∗. Therefore,
π−1ψπA ⊆ A∗.
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On the other hand, by the de�nition of canonical expansion, πA ⊆ ψπA, and
therefore, A ⊆ π−1ψπA. Moreover, on the basis of Lemma 2.2.2, ψπA is switching
component free, thus π−1ψπA is also switching component free. Furthermore, from
the arguments of the previous paragraph it follows that |π−1ψπA| ≤ |A∗|, and
therefore

(
|π−1ψπA| − |A|

)
≤
(
|A∗| − |A|

)
. Since A∗ is a solution of the Mfa(A)

problem, the right hand side of above inequality is minimal. Therefore the left
hand side must be also minimal, thus π−1ψπA must be a solution of the Mfa(A)
problem. We have that |π−1ψπA| = |A∗| which together with π−1ψπA ⊆ A∗ yields
π−1ψπA = A∗. 2

Figure 2.2 illustrates Theorem 2.1. Unfortunately, the proof of the theorem de-

�nes π as a function of the solution A∗, and due to Lemma 2.2.1 �nding the proper

column permutation is generally NP-complete. Nevertheless, the number of possi-

ble column permutations is much smaller than the number of possible sequences of

switching components, in general.

Corollary 2.1 To �nd a solution of the Mfa(A) problem, it is su�cient to search

for the corresponding column permutation π. The number of such permutations is

O(n!), or considering the transposed matrix, O((min{m,n})!).

Constructing the canonical expansion of a matrix can be done in O(mn)

time, and thus an exhaustive search for the optimal column permutation requires

O((min{m,n})! ·mn) time, in the worst case.

2.3 Heuristics

We now describe four di�erent heuristics for the Mfa problem, which try to min-

imize the number of 0-s needed to be �ipped to 1-s in order to make the matrix

switching component free. All of them are deterministic methods and have a poly-

nomial running time. We note that the algorithms work for 1-0 �ips as well, if one

inverts the elements of the input matrix, runs the algorithm, and inverts again the

elements of the resulted matrix. Unfortunately, the di�erence between the number

of necessary 0-1 �ips and 1-0 �ips can be arbitrary large. For example, consider

the binary matrix I of size n× n with 1-s in the main diagonal and 0-s elsewhere.

It is easy to see that any column permutation π leads to an optimal solution, since

π−1ψπI results the same number of 0-1 �ips, which is n(n − 1)/2. On the other

hand, considering 1-0 �ips the optimal solution is to change I into an empty matrix,

which has only n number of 1-0 �ips. Since the number of necessary 0-1 and 1-0

�ips can di�er, using the ones (or even a mixture of them) which provide smaller

number of �ips is considerable; although for the tests we only considered 0-1 �ips.

Algorithms Switch (Algorithm 3) and Columns (Algorithm 4) are taken

from [58] for comparison. Switch is a switching component searching algorithm,
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A

A∗ πA

πA∗ = ψπA

A∗ = π−1ψπA

optimal π

π ψ

π−1

Figure 2.2: Illustration of Theorem 2.1. One of the optimal solutions (A∗) found by
exhaustive search (left image of the second row), π de�ned as a column permutation
in a way that πA∗ has non-increasing column sums (third row). Numbers indicate
the original column indices.
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while Columns works with column permutations. Although [58] does not use

the concept of canonical expansions, for technical convenience, we give the pseudo

code of Columns to our terms. Our own methods ColPerm1 (Algorithm 5)

and ColPerm2 (Algorithm 6) are based on Theorem 2.1 and Corollary 2.1. All

algorithms require a binary matrix A with the size of m× n as input, and provide

a binary matrix A′ such that A ⊆ A′ and A′ is switching component free. The

worst-case time complexity of Switch is O(m2n2 log(mn)) according to [58]. Ex-

amining the pseudo-codes, it is easy to see that the time complexity for Columns

is O(n log n+m), for ColPerm1 is O(mn2), and for ColPerm2 is O(mn3). Note

that m and n are interchangeable considering the transpose of the matrices.

Algorithm 3 Switch
C ← zero matrix with a size of m× n
A′ ← A
for each row index i and column index j do
Let cij be the number of switching components including aij = 0

end for

while A′ is not switching component free do
(i, j)← argmax{cij}
a′ij ← 1
Update C

end while

return A′

Algorithm 4 Columns
Let π be a column permutation such that πA contains the columns of A in a
non-increasing order by the sum of their elements
return A′ ← π−1ψπA

Algorithm 5 ColPerm1
Let π be the identical permutation
for each column index i do
Let j > i be the column index for which the column permutation πij yields
the biggest decrease in the number of 0-1 �ips when applying the operator ψ
Swap columns i and j by πij
π ← π · πij

end for

return A′ ← π−1ψπA

SinceMfa is NP-complete by Lemma 2.2.1, a polyominal-time algorithm cannot

necessary �nd the optimal solution in all cases (unless P = NP). Figure 2.3 shows

small counter-examples demonstrating that the given algorithms can fail in �nding

the real optimal solution.
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Algorithm 6 ColPerm2
while true do

Let i and j be column indices for which the column permutation πij yields the
biggest decrease in the number of 0-1 �ips when applying the operator ψ
if there are such i and j indices then
Swap columns i and j by πij
π ← π · πij

else

Break loop
end if

end while

return A′ ← π−1ψπA

Optimal

Result of...

Switch Columns Colperm1 Colperm2

Figure 2.3: Example images to show the non-optimality of the heuristics. Dark gray
pixels indicate the 1-s in the original matrix, while light gray pixels indicate 0-1
�ips. The resulted image is always switching component free, but not necessarily
minimal in the number of 0-1 �ips.

2.4 Numerical Results

We studied the performance of the algorithms described in Section 2.3 on random

binary matrices and on an existing database containing real-life data. We imple-

mented the algorithms in MATLAB 7.13.0.564. The test was performed under

Windows 7 on one core of an Intel Core i5-2410M of 2.3 GHz PC with 4GB of

RAM.

2.4.1 Arti�cial Dataset

Our test set contained matrices of size 20 × 20, 40 × 40, 60 × 60, 80 × 80, and

100× 100 and with exactly 10%, 20%, . . . , 90% number of 1-s related to the total

number of the matrix entries, thus, providing matrices with di�erent densities.
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Table 2.1: Average number of 0-1 �ips calculated by the algorithms Switch (SWI),
Columns (COL), ColPerm1 (CP1), and ColPerm2 (CP2).

20× 20 40× 40 60× 60
SWI COL CP1 CP2 SWI COL CP1 CP2 SWI COL CP1 CP2

121.8 133.5 120.7 114.2 831.9 851.3 768.3 729.4 2341.5 2325.7 2088.0 2024.9

172.1 191.7 170.9 163.7 986.2 1008.6 928.1 900.3 2481.4 2475.8 2316.7 2269.9

175.4 200.6 180.0 173.2 929.5 965.3 900.8 879.8 2297.6 2283.2 2181.7 2139.2

161.6 183.5 168.4 162.0 823.4 854.7 811.1 797.1 2003.8 2012.5 1940.0 1915.2

145.7 162.6 151.3 147.8 695.0 729.1 698.9 687.8 1684.4 1702.1 1652.4 1634.3

121.8 136.0 127.2 125.0 563.0 592.8 570.8 564.0 1343.2 1372.8 1338.3 1327.5

91.3 102.3 95.7 93.9 423.0 447.7 433.4 427.8 1000.6 1036.2 1011.4 1005.4

62.6 69.3 66.1 64.1 283.5 298.6 290.9 287.3 668.4 691.7 678.2 673.7

30.5 33.4 32.0 31.4 141.9 149.3 145.1 143.9 334.5 345.7 339.6 337.3

80× 80 100× 100
SWI COL CP1 CP2 SWI COL CP1 CP2

4596.0 4554.4 4139.5 4039.0 7587.4 7460.6 6892.0 6764.5

4636.3 4585.2 4352.7 4282.3 7459.6 7358.1 7055.4 6951.2

4210.8 4183.2 4024.6 3970.5 6706.9 6631.8 6441.8 6377.5

3675.5 3653.4 3550.4 3517.1 5819.4 5766.7 5632.9 5592.6

3069.4 3071.0 3000.4 2977.6 4874.9 4846.1 4752.6 4724.3

2456.0 2473.6 2425.1 2410.6 3899.1 3895.1 3834.3 3815.0

1828.2 1864.4 1832.3 1822.1 2915.3 2932.5 2890.5 2879.8

1215.2 1244.6 1224.6 1220.5 1922.9 1957.6 1934.5 1926.4

607.1 622.2 613.1 611.1 960.0 978.5 968.1 965.1

With each size and density we generated 50 binary matrices from uniform random

distribution. Thus, our test set contained a total of 2250 matrices.

Table 2.1 shows the results for the number of 0-1 �ips provided by each algo-

rithm. From top to bottom the rows represent the density of the 1-s in the matrices,

from 10% to 90%. The numerical entries are the averaged result on the 50 matrices

for the given size and density. The smallest numbers are typeset in bold. In a sim-

ilar way, Table 2.2 shows the average running time of the algorithms Switch and

ColPerm2 which provided the best values from the viewpoint of optimality. We

did not provide the exact running time values for Columns and ColPerm1 due

to their high speed: Columns processed the result in less than 0.002 seconds for

all matrices, while ColPerm1 had a running time of 0.344 seconds in the slowest

case.

From the tables we deduce that searching through column permutations yields

a result much sooner than searching through switching components, as Switch

does. Furthermore, ColPerm2 gives better results for the number of 0-1 �ips,

especially when the matrix is big and sparse. We deduce that Switch performs

better if the number of switching components is small, which occurs if the matrix

is small and/or dense.

2.4.2 Real Dataset

As we described in Section 1.2, nestedness is an important measurement of pres-

ence-absence binary matrices in the �eld of biogeography and ecology. Here, we
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Table 2.2: Average running time of the algorithms Switch (SWI) and ColPerm2
(CP2) in seconds.

20× 20 40× 40 60× 60 80× 80 100× 100
SWI CP2 SWI CP2 SWI CP2 SWI CP2 SWI CP2
0.094 0.084 2.361 0.516 15.111 2.921 52.522 9.383 132.550 24.700
0.145 0.045 3.082 0.483 17.112 2.445 55.919 7.850 139.931 20.639
0.156 0.041 3.194 0.460 17.103 2.188 55.075 7.305 139.507 17.371
0.149 0.038 3.080 0.369 16.010 1.877 51.955 5.951 128.205 15.130
0.159 0.033 2.776 0.332 15.147 1.623 46.227 4.882 114.348 12.227
0.136 0.027 2.389 0.257 12.329 1.267 39.843 3.812 98.638 10.162
0.116 0.026 1.832 0.227 9.817 0.998 31.580 3.212 79.335 7.664
0.080 0.018 1.324 0.169 6.994 0.710 22.027 2.203 53.989 5.330
0.041 0.015 0.684 0.098 3.778 0.438 11.550 1.288 28.745 3.053

tested our algorithms on a real-life dataset containing information about the re-

lation between two datasets. The majority of the dataset were assembled for a

meta-analysis of nested subset distribution patterns and the metrics used to eval-

uate them2. The dataset contains binary matrices describing 150 archipelagos, to

identify poorly represented taxa (many invertebrate groups), life-zones (especially

aquatic and marine systems), or geographic locations (e.g., tropical systems). The

database contains 289 matrices overall. One representative example of the dataset

is seen in Fig. 2.4. Furthermore, Figures 2.5 and 2.6 show two examples on the

performance of the heuristics.

We classi�ed the matrices into 9 groups according to their densities. Figures 2.7

and 2.8 show two examples of the result in the number of �ips. The other groups

showed similar results.

We compared the algorithms by the number of �ips, and counted how many

times they provided the best or the worst result out of four. Table 2.3 shows these

results. The �rst coulmn indicates the densities of the matrices, the second column

indicates the number of matrices with the given density in the database. The

number of wins (respectively, losses) show how many times the given algorithm

provided the best (repectively, worst) result, including ties. Table 2.4 shows the

same results, but excluding ties (the given algorithm was strictly the best / worst).

Best results are shown in bold.

The results of the real dataset are highy correlated to the results of the arti�-

cial dataset, namely, ColPerm2 provided usually the best results (most wins and

least losses), while Switch gave usually good results, especially on dense matri-

ces. ColPerm2 was moderate in the number of �ips, and Columns was usually

the worst, however, the last two heuristics were much faster than the �rst two.

ColPerm2 and Switch took several seconds on large matrices, while ColPerm

2http://aics-research.com/nestedness/tempcalc.html available in February 2015, also used
in [58].
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a) b) c)

Figure 2.4: The Fullglas matrix of the real dataset. a) the original matrix con-
tains the presence of goldenrods, milkweeds, and legumes in 102 prairie fragments
in Iowa and Minnesota; b) the fully nested matrix provided by ColPerm2; c)
the original matrix with rearranged rows and columns according to the row sums
and coulmn sums of the second matrix. Black pixels indicate 1-s (presence), white
pixels indicate 0-s (absence).

Figure 2.5: The Artiherb matrix: Understory herbs in planted stands of trees in
the Alexandria Moraine, Minnesota (isolates). The rows and columns are permuted
according to the heuristics: Switch, Columns, ColPerm1, ColPerm2 (left to
right, respectively).
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Figure 2.6: The Tanganyo matrix: Ostracods in Lake Tanganyika, Africa; areas
not isolated from each other. The rows and columns are permuted according to the
heuristics: Switch, Columns, ColPerm1, ColPerm2 (left to respectively).

Figure 2.7: Numerical results for the group with density between 0% and 10% (5
matrices). Vertical axis indicates the number of 0-1 �ips.
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Figure 2.8: Numerical results for the group with density between 50% and 60% (35
matrices). Vertical axis indicates the number of 0-1 �ips.

Table 2.3: The number of wins and losses on the real dataset inluding ties.

Density (%)
Num. of Num. of wins Num. of losses
matrices SWI COL CP1 CP2 SWI COL CP1 CP2

0 � 10 5 2 0 0 3 0 5 0 0

10 � 20 26 7 1 2 26 4 16 7 0

20 � 30 66 36 15 25 58 25 44 16 9

30 � 40 76 42 23 36 69 28 42 33 11

40 � 50 50 40 16 34 46 18 40 22 15

50 � 60 35 30 15 20 33 15 27 17 11

60 � 70 20 18 12 15 18 12 19 12 12

70 � 80 7 7 4 4 6 2 5 5 2

80 � 90 4 4 3 4 4 3 4 3 3

Table 2.4: The number of wins and losses on the real dataset excluding ties.

Density (%)
Num. of Num. of wins Num. of losses
matrices SWI COL CP1 CP2 SWI COL CP1 CP2

0 � 10 5 2 0 0 3 0 5 0 0

10 � 20 26 0 0 0 18 4 15 6 0

20 � 30 66 8 0 0 20 15 36 6 0

30 � 40 76 6 1 0 17 14 28 19 0

40 � 50 50 1 0 1 6 3 25 7 0

50 � 60 35 2 0 0 3 4 14 4 0

60 � 70 20 2 0 0 1 1 7 0 0

70 � 80 7 1 0 0 0 0 2 2 0

80 � 90 4 0 0 0 0 0 1 0 0
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a) b) c)

Figure 2.9: An example of image compression. a) original image; b) the stored
data of the projections and the forbidden positions (0-1 �ips); c) Chang's algorithm
found the unique solution of the reconstruction.

and Columns always gave their output within a fraction of a second.

2.5 Data Compression

Chang's algorithm (see the pseudo code in Section 1.3) is a polyominal-time algo-

rithm for reconstructing unique matices from the horizontal and vertical projec-

tions, i.e., when the number of solutions is exactly one. The algorithm requires the

absence of switching components, which is the necessary and su�cient condition

of non-uniqueness [65]. However, the algorithm can deal with a set of so-called

forbidden positions, i.e., positions which have �xed values (0 or 1) in the matrix.

As a consequence, any binary matrix can be reconstructed from their projections

uniquely if the forbidden positions are the positions of the 0-1 �ips, which make the

matrix switching component free. Consequently, an arbitrary matrix can be stored

� and reconstructed � through its projections with the additional information of

the positions of the 0-1 �ips. The less number of 0-1 �ips is needed in order to

make the matrix switching component free, the less data should be stored for a

unique reconstruction. Thus, �nding fast heuristics providing low number of 0-1

�ips is essential for this type of data compression. Figure 2.9 shows an example of

such a reconstruction.

For an image with the size of n × n, one has to store the bits of the two

projections plus the bits of the forbidden positions. Thus the overall number of

bits to be stored is at most

2ndlog ne+ |Q| · 2dlog ne = (2|Q|+ 2n) · dlog ne,

where |Q| is the number of forbidden positions (the number of 0-1 �ips). The
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overall data compression ratio is

n2

(2|Q|+ 2n) · dlog ne
.

As a comparison, one can determine the morphological skeleton of the image (see

Section 1.4 for de�nition). The image is uniquely reconstructable in polyominal-

time if the positions of the morphological skeletal points and their labels are given,

hence the number of bits to be stored is at most

|S| · 2ndlog ne+ |S| · dlog ne = 3|S| · dlog ne,

where |S| is the number of skeletal points. In this case the data compression ratio

is
n2

3|S| · dlog ne
.

2.6 Summary

Switching components are special patterns in binary matrices that play an essential

role in many image processing and pattern analysis tasks. The minimal number

of 0-1 �ips needed to make the binary matrix switching component free is an

important measurement on the binary matrix. However, determining the minimal

number of 0-1 �ips is generally NP-complete. In this chapter we studied this

problem, and proved that the task is equivalent to �nding a proper permutation of

the columns. Based on that result, we designed heuristic algorithms, and compared

them with previously published algorithms both on an arti�cial and a real dataset.

We found that the column based heuristics performed signi�cantly faster and gave

better results in the average case than switching component based heuristics. We

showed how to use Chang's algorithm with the provided heuristics for binary image

compression.

The �ndings of this research have been published in a conference proceeding [42]

and are accepted for publication in a journal [41].





Chapter 3

Reconstruction and Random

Generation of hv-Convex Images

from the Horizontal Projection

3.1 Introduction

Projections of binary images, as described in Section 1.1, are fundamental shape

descriptors widely used in tasks of pattern recognition, image processing, binary

tomography, etc. In binary tomography [48, 49] they are used to reconstruct binary

images from them. In the last 20 years, many of the subclasses of binary images

had been studied, where the image to be reconstructed has to meet some special

properties. One of the most frequently studied classes of binary images is that of

hv-convex 4-connected binary images (with other term, hv-convex polyominoes).

Another deeply studied type of binary images is the class of canonical hv-convex

images1 and its subclass of hv-convex 8-connected but not 4-connected images [6].

In [9, 21], the authors use hv-convex polyominoes for lossless data compression.

The authors of [14] use hv-convexity in deciding when a form of local consistency

called path consistency is su�cient to guarantee that a network is both minimal

and globally consistent. In [31] it had been showed that hv-convex polyominoes are

closed under composition, intersection, and transposition; establishing that path

consistency over these constraints produces a minimal and decomposable network.

Many studies have been made about the reconstruction complexity and the

number of solutions in the class of hv-convex images when the horizontal and

vertical projections are available [10, 27, 30]. In [8] a detailed complexity analysis of

the methods for reconstructing hv-convex polyominoes from horizontal and vertical

1Not to be confused with canonical matrices described in Chapter 2. The de�nitions are
di�erent, both used by the literature. We kept the terminology, since the two de�nitions should
not interfere.

33
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projections is given, both for the worst and for the average cases. Average time

complexity is often measured empirically by generating inputs for an algorithm from

a uniform random distribution. However, for that purpose, a uniform generator of

the studied class of binary images is needed, which is usually not easy to develop.

For hv-convex polyominoes such generator algorithms were described in [22] and

in [50]. In [28] and [29] a general method has been also presented for the recursive

enumeration and generation of several types of polyominoes.

Although the reconstruction of hv-convex polyominoes from the horizontal and

vertical projections along with the identi�cation of the number of possible solutions

have been extensively studied [8, 10, 23, 26, 27, 30], those problems have been

surprisingly not yet investigated if just one projection is given. Moreover, even if

the exact number of solutions are known for reconstructing certain type of images, it

is not necessarily true that an enumeration of the solutions � and thus, the uniform

random generation � would be a trivial task. In this chapter, we �ll this gap by

describing a linear-time reconstruction algorithm and providing formulas for the

number of solutions with minimal and with any given number of columns. Later on,

we extend the above results by giving an elementary enumeration algorithm which

provides a method for generating hv-convex polyominoes with given horizontal

projection from a uniform random distribution, in quadratic time.

Despite the fact that the reconstruction from two projections is NP-hard in the

general class of binary images [70], various polynomial-time algorithms are known

for reconstructing canonical and 8-connected but not 4-connected images [7, 8,

11, 23, 26, 54]. In the end of this chapter, we complement the previous results

by showing that reconstructing an hv-convex canonical image with minimal width

from the horizontal projection is possible in linear in time of size of the horizontal

projection. We propose an algorithm which not just reconstructs such an image

but results always in an 8-connected image. Furthermore, the algorithm can be

easily extended to reconstruct general hv-convex images with arbitrary width in

the same running time. Thus, we deduce that reconstructing a 4-connected, an

8-connected, or even a general hv-convex binary image from one projection are

similarly easy problems, from the viewpoint of computational complexity. This

is in contrast to the case of two projections, where reconstructing a 4-connected

or 8-connected hv-convex binary image is possible in polyominal time, while the

reconstruction of general hv-convex binary images is NP-complete.

3.2 De�nitions

Two positions p = (ip, jp) and q = (iq, jq) in a binary image are said to be 4-

adjacent if |ip − iq| + |jp − jq| = 1. p and q is 8-adjacent if they are 4-adjacent
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a) b) c) d)

Figure 3.1: Binary images of size 5 × 5 with di�erent properties: (a) a general
polyomino with holes; (b) an h-convex but not v-convex polyomino; (c) an hv-
convex polyomino; (d) an hv-convex 8-connected but not 4-connected binary image.
Note that the last one is not a polyomino.

or |ip − iq| = |jp − jq| = 1. The positions p and q are 4-connected if there is a

sequence of distinct black pixels p0 = p, . . . , pk = q in the binary image such that

pl is 4-adjacent to pl−1, respectively, for each l = 1, . . . , k. A binary image F is 4-

connected if any two di�erent object points in F are 4-connected. The 4-connected

binary images are also called polyominoes [37]. The de�nition of 8-connectedness

can be given analogously with 8-connected object points. The binary image F

is horizontally and vertically convex, or shortly hv-convex if the black pixels are

consecutive in each row and column of the image. See Fig. 3.1 for examples of

binary images with di�erent properties.

For the de�nition of canonical images, we have to de�ne 4-components. A max-

imal 4-connected set of black pixels of a binary image F is called a 4-component

(shortly, component) of F . Every binary image F can be partitioned into com-

ponents F1, F2, . . . , Fk (k ≥ 1) in a uniquely determined way. Let us denote

by [il, i
′
l] × [jl, j

′
l] the minimal bounding rectangle of the l-th component of F

(l = 1, . . . , k). An hv-convex image is called canonical 2, if it consists of a single

4-connected component or the smallest containing rectangles of the 4-connected

components are 8-connected to each other with their bottom-right and upper left

corners. Figure 3.2 shows an example of a canonical hv-convex image. In case of

a canonical hv-convex image F with k components, we can assume for the com-

ponents � without loss of generality � that i1 = 1, il = i′l−1 + 1 (l = 2, . . . , k), and

i′k = m, where m is the number of rows in F .

Upper stack polyominoes are special hv-convex polyominoes which contain the

two bottom corners of their minimal bounding rectangles. Similarly, lower stack

polyominoes are hv-convex polyominoes that contain the two top corners of their

minimal bounding rectangles. Finally, parallelogram polyominoes are hv-convex

polyominoes that contain both their top left and bottom right, or both their top

right and bottom left corners of their minimal bounding rectangles. Any hv-convex
2Again, not to be confused with canonical matrices described in Chapter 2.
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Figure 3.2: A canonical hv-convex image F with horizontal projection
(2, 4, 1, 3, 3, 4, 3, 3, 5, 4, 1), containing three 4-connected components F1, F2, and
F3. Thick lines indicate the smallest containing rectangles of the components. The
width of the image is w(F ) = 17.

polyomino can be constructed (not necessarily uniquely) from an upper stack, a

parallelogram, and a lower stack polyomino [50]. Figure 3.3 shows examples of the

special types of polyominoes, and such a construction.

In the followings, we call the consecutive 1-s in the i-th row of an hv-convex

polyomino as the i-th strip. Through the chapter, we assume that hv-convex binary

images are encoded with the starting positions of their strips.

3.3 Reconstructing hv-Convex Polyominoes

Let H = (h1, . . . , hm) ∈ Nm be a vector of size m. We give an algorithm called

GreedyRec which constructs an F hv-convex polyomino with m rows and the mini-

mal possible number of columns. Algorithm 7 gives the pseudo code. For position-

ing the i-th strip, see Fig. 3.4 for examples. Finally, Fig. 3.5a shows an example

result of the algorithm.

Theorem 3.1 GreedyRec constructs an hv-convex polyomino satisfying the hori-

zontal projection with minimal number of columns, in O(m) time.

Proof

It is clear that the resulted image is an hv-convex polyomino with the required
horizontal projection. We prove by induction that no solution exists with less
number of columns.

Let n(k)
o be the number of columns in a minimal-column solution of the problem

(i.e., an hv-convex polyomino satisfying the projections with minimal number of
columns), considering only the �rst k components of the input (h1, . . . , hk), where
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Figure 3.3: An hv-convex polyomino T composed of an upper stack S, a parallel-
ogram P , and a lower stack S polyomino.

Algorithm 7 GreedyRec

Require: Projection values h1 ≤ · · · ≤ hm
Ensure: Strip positions s1, . . . , sm
s1 ← 1
for i = 2→ m do

if hi = hi−1 then
Let the i-th strip si be aligned just below the (i− 1)-st strip

end if

if hi < hi−1 then
Let the i-th strip si be aligned to the right of the (i− 1)-st strip

end if

if hi > hi−1 then
Let the i-th strip si be aligned to the left of the (i− 1)-st strip

end if

end for

return s1, . . . , sm

a) b) c)

Figure 3.4: Steps of GreedyRec with the (i − 1)-st and the i-th rows. Cases: (a)
hi = hi−1; (b) hi < hi−1; (c) hi > hi−1.
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a) b)

Figure 3.5: Example results of a reconstruction. (a) the minimum-size output of
GreedyRec for H = (2, 3, 5, 3, 3, 7, 5, 1) with 9 columns; (b) another solution with
13 columns.

Figure 3.6: Examples of k-simple columns. Here, h4 = 4 and h5 = 6. Thick
lines indicate 5-simple columns. The maximal number of 5-simple columns are
h5 − h4 = 2.

k ≤ m. Similarly, let n(k)
g be the number of columns in the result of GreedyRec for

the �rst k components of the input.
For k = 1, n(1)

g = n
(1)
o = h1, so GreedyRec is optimal. For k > 1 assume that

n
(k−1)
g = n

(k−1)
o .

If hk ≤ hk−1, then n
(k)
g = n

(k−1)
g (Cases 2(a) and 2(b) of GreedyRec), therefore

the number of columns does not change. Since n(k)
o ≥ n

(k−1)
o , therefore n(k)

g = n
(k)
o ,

and GreedyRec is still optimal.
If hk > hk−1, then n

(k)
g = n

(k−1)
g + hk − hk−1 (Case 2(c) of GreedyRec). Assume

to the contrary that an arbitrary optimal algorithm provides a better result, hence
n
(k)
o < n

(k−1)
o + hk − hk−1.

For a further analysis, let us call a column k-simple if its (k − 1)-st element
is 0 and its k-th element is 1 (see Fig. 3.6). The number of k-simple columns is
at least hk − hk−1, and due to vertical convexity, in a k-simple column there is no
1-s above the k-th row. Therefore, the �rst k − 1 number of strips must �t into
n
(k)
o −(hk−hk−1) number of non-k-simple columns at most. Due to h-convexity and

connectivity, non-k-simple-columns must be successive. Therefore, the �rst k − 1

number of strips �t into a matrix with a column number of n(k)
o − (hk − hk−1) <

n
(k−1)
o +hk−hk−1−(hk−hk−1) = n

(k−1)
o , which is a contradiction to the minimality

of n(k−1)
o . Hence, GreedyRec is still optimal.
The complexity of the algorithm is straightforward, if the polyomino is repre-

sented by the �rst positions of its strips. 2
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One can easily modify the output of GreedyRec to expand it to have a prede�ned

number of columns (if possible) by moving the k-th, (k + 1)-st, . . . , m-th strips

further to the right, if the previous strip allows it (i.e., when the image remains

hv-convex and 4-connected). The smallest possible number of columns, provided

by GreedyRec, is Nmin = Nm, where

Ni =


hi if i = 1 ,

Ni−1 if hi ≤ hi−1 ,

Ni−1 + hi − hi−1 if hi > hi−1 .

(3.1)

This formula can be easily derived from the steps of the algorithm. The largest

possible number of columns is

Nmax =
m∑
i=1

hi −m+ 1 , (3.2)

where every strip is connected to the previous and the next strips through only

one element. The modi�ed GreedyRec can construct any solution between Nmin

and Nmax in linear time. An example result of the modi�ed algorithm is given in

Fig. 3.5b.

3.4 Enumerating hv-Convex Polyominoes

Enumeration of polyominoes according to several parameters (area, perimeter, size

of the bounding rectangle, etc.) is an extensively studied �eld of combinatorial

geometry. Regarding the number of hv-convex polyominoes satisfying two projec-

tions, several results have been published. The authors of [30] determined an upper

and lower bound to the maximum number of convex polyominoes having the same

orthogonal projections, and also proved that under some conditions, the ambiguity

of the solution can be exponential. A method was given in [28] for the enumera-

tion of hv-convex polyominoes from two projections. The authors also determined

the generating function of convex polyominoes. In [34] a method was proposed

to determine the number of hv-convex polyominoes that �t into a discrete rect-

angle of given size. In this section, we provide formulas to enumerate hv-convex

polyominoes satisfying the given horizontal projection.

3.4.1 Arbitrary Number of Columns

We �rst give a formula to calculate the number of hv-convex polyominoes with

a given horizontal projection H = (h1, . . . , hm), if there is no restriction on the

number of colums of the resulted image.
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Figure 3.7: An hv-convex polyomino with H = (1, 2, 4, 6, 6, 2, 5, 4, 4, 3, 2), where
K = 5, and L = 7. The smallest left anchor position is k = 3, the greatest right
anchor position is l = 9. The (k − 1)-st strip can be placed on the top of the k-th
strip in 2 di�erent ways, and cannot occupy the position marked by x, since the
k-th strip must be the leftmost strip.

Given an hv-convex polyomino F , the smallest integer k for which fk1 = 1 is

called the smallest left anchor position. Similarly, the greatest right anchor position

is the greatest integer l for which fln = 1. Furthermore, let K denote the greatest

integer for which h1 ≤ h2 ≤ · · · ≤ hK . Similarly, let L be the smallest integer for

which hL ≥ hL+1 ≥ · · · ≥ hm. Figure 3.7 illustrates these de�nitions.

First, assume that K < L. Then, K < k, l < L cannot hold, due to v-convexity.

Also note that for every k < l solution, a vertically mirrored image is also a solution

with l < k, and vice versa. For this reason, we only count the cases with k < l

(i.e., 1 ≤ k ≤ K and L ≤ l ≤ m), and multiply the result by 2.

Let Sk(H) denote the number of upper stack polyominoes having the hori-

zontal projection (h1, . . . , hk). Similarly, let Sl(H) denote the number of lower

stack polyominoes having the horizontal projection (hl, . . . , hm). Furthermore, let

Pk,l(H) denote the number of parallelogram polyominoes with the horizontal pro-

jection (hk, . . . , hl), having the smallest left anchor position k and the greatest right

anchor position l.

Lemma 3.4.1 S1(H) = 1, and Sk(H) =
∏k

i=2(hi−hi−1+1) (k ≥ 2). Sm(H) = 1,

and Sl(H) =
∏m−1

i=l (hi − hi+1 + 1) (l < m).

Proof

The formula S1(H) = 1 is trivial. If k ≥ 2, then the (k − 1)-st strip can be placed
on the top of the k-th strip in hk−hk−1+1 di�erent ways. Similarly, the (k−2)-nd
strip can be placed on the top of the (k − 1)-st strip, in hk−1 − hk−2 + 1 di�erent
ways. And so on. Finally, the �rst strip can be placed in h2 − h1 + 1 ways on the
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top of the second strip. The formula for the lower stack polyominoes can be proven
analogously. 2

Lemma 3.4.2 Pk,l(H) =
∏l−1

i=kmin{hi, hi+1}.

Proof

The k-th strip is �xed (it is in the leftmost position), and we can place the (k+1)-
st strip under the k-th strip in min{hk, hk+1} ways. The (k + 2)-nd strip can be
placed under the (k + 1)-st strip in min{hk+1, hk+2} ways. And so on. Finally the
l-th strip can be placed under the (l − 1)-st strip in min{hl−1, hl} ways. 2

In the sequel we use the convention that empty (non-de�ned) factors of a prod-

uct are always equal to 1.

Theorem 3.2 Let H ∈ Nm. If K < L then the number of hv-convex polyominoes

with the horizontal projection H is

PK<L(H) = 2·
K∑
k=1

m∑
l=L

(
Sk−1(H)·(hk−hk−1)·Pk,l(H)·(hl−hl+1)·Sl+1(H)

)
. (3.3)

If K ≥ L, then the number of solutions is

PK≥L(H) = PK<L(H)− SL(H) · SK(H) . (3.4)

Proof

We observe that an hv-convex polyomino with the smallest left anchor position
k and the greatest right anchor position l can be uniquely decomposed into a
(possibly empty) upper stack polyomino consisting of the �rst k−1 rows, a (possibly
empty) lower stack polyomino of consisting of the last rows from l + 1 to m, and
a parallelogram polyomino consisiting of the k-th, (k + 1)-st, ..., l-th rows. If k is
the smallest left anchor position, then the (k − 1)-st strip (the bottom strip of the
upper stack polyomino) cannot reach the leftmost position (see the position marked
by x in Fig. 3.7), therefore the upper stack can be connected to the parallelogram
in (hk − hk−1) ways. With a similar argument, the lower stack can be connected
to the bottom row of the parallelogram in (hl − hl+1) ways. Thus, using lemmas
3.4.1 and 3.4.2, for �xed k and l the number of possible solutions is Sk−1(H) · (hk−
hk−1) ·Pk,l(H) · (hl−hl+1) ·Sl+1(H). Including also the mirrored cases we get (3.3).

If K ≥ L, then the same formula as in (3.3) can be applied. However, in
this case, it counts some of the solutions twice through symmetry (where the par-
allelogram poliominoes are rectangular). Note that the longest strips in H are
hL = hL+1 = · · · = hK , and (3.3) counts all the cases twice when these strips are
right under each other. Regarding that the L-th strip is the bottom of the upper
stack polyomino, and the K-th strip is the uppermost row of the lower stack poly-
omino, the number of cases counted twice is SL(H) ·SK(H), using Lemma 3.4.1.2
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3.4.2 Fixed Number of Columns

Now, we give a recursive formula to calculate the number Pn(H) of hv-convex
polyominoes having the horizontal projection H = (h1, . . . , hm), when the num-
ber of columns is �xed to n. First, assume again that K < L. Let r ≥ 1 and
P (p1, . . . , pr, n) denote the number of parallelogram polyominoes with n columns,
having the horizontal projection (p1, . . . , pr).

Lemma 3.4.3 P (p1, n) = 1 if p1 = n. P (p1, n) = 0 if p1 6= n. Furthermore, for

r > 1 we have the following recursion

P (p1, . . . , pr, n) =


∑p1

i=1 P (p2, . . . , pr, n− i+ 1) if p1 ≤ p2 ,∑p2
i=1 P (p2, . . . , pr, n− (p1 − p2)− i+ 1) if p1 > p2 .

Proof

If r = 1, then either the strip itself of length p1 occupies n number of columns (and
should be counted as a solution) or not. If r > 1 and p1 ≤ p2, then we count recur-
sively every possible solution where the second strip is shifted to the right under
the �rst strip, and the number of remaining columns decreases proportionately. If
r > 1 and p1 > p2, then additionally, we have to substract the di�erence from the
number of required columns, since the second strip must be shifted with at least
p1 − p2 positions to the right, relatively to the �rst position of the �rst strip. 2

Therefore, including the possible stack polyominoes and the mirrored cases, the

number of solutions for a �xed n is

Pn(H) = 2·
K∑
k=1

m∑
l=L

(
Sk−1(H)·(hk−hk−1)·P (hk, . . . , hl, n)·(hl−hl+1)·Sl+1(H)

)
,

where P (hk, . . . , hl, n) = 0 if k > l.

If K ≥ L then we have to substract some of the solutions in the same way as in

(3.4). Note that this concerns only PNmin
(H) (where n is minimal), since for every

other case a mirrored solution is truly a di�erent solution.

Pn(H) also provides a di�erent formula for calculating the number of solutions,

if the size of the polyomino can be arbitrary, namely

Nmax∑
n=Nmin

Pn(H) ,

where Nmin and Nmax is given by (3.1) and (3.2), respectively.
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3.5 Random Generation of hv-Convex Polyominoes

The authors of [5] collected several statistics on hv-convex binary images, including

the number of solutions of the reconstruction from given horizontal and vertical pro-

jections. In [8] three algorithms had been compared for reconstructing hv-convex

polyominoes and hv-convex 8-connected binary images from two projections. In

the study the algorithms listed all the possible solutions for the given problem.

In [4], the author described a method to generate some special hv-convex binary

images from a uniform random distribution.

In this section we provide an elementary enumeration algorithm based on how

we counted the number of possible solutions in Section 3.4. The algorithm ensures

a method for generating hv-convex polyominoes with given horizontal projection

from a uniform random distribution. We prove that the algorithm has a quadratic

running time in the length of the horizontal projection.

3.5.1 Arbitrary Number of Columns

In this subsection we provide an algorithm for generating hv-convex polyominoes

with arbitrary number of columns. For a given H = (h1, . . . , hm) and a non-

negative integer b (0 ≤ b ≤ P − 1) the algorithm constructs the b-th hv-convex

polyomino with horizontal projection H with respect to a certain ordering, where

P is the number of solutions (see (3.3) and (3.4)). Note that there is always at

least one hv-convex polyomino satisfying the given horizontal projection.

Let us encode the hv-convex polyomino F with (s1, . . . , sm) where si denotes

the starting position of the i-th strip (1 ≤ i ≤ m). Then, for a �xed row number i,

fij = 1 if and only if j ∈ {si, si + 1, . . . , si + hi − 1}, and fij = 0 otherwise. First,

we give generating algorithms for special polyominoes. The generation of upper

stack polyominoes is given by Algorithm 8. In the pseudo-code, b mod d is the

remainder of the integer division b/d. Figure 3.8 shows an example of generating

upper stack polyominoes.

Algorithm 8 GenUpperStack

Require: Projection values h1 ≤ · · · ≤ hr and ordinal number b
Ensure: Strip positions s1, . . . , sr
sr ← 1, s← 1
for i = r − 1→ 1 do
d← hi+1 − hi + 1
si ← s+ (b mod d)
s← si
b← bb/dc

end for

return s1, . . . , sr
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Figure 3.8: Example of generating upper stack polyominoes with the horizontal
projection H = (1, 2, 4) for b = 0, 1, . . . , 5, respectively.

Lemma 3.5.1 For a given vector H = (h1, . . . , hr) (h1 ≤ · · · ≤ hr) GenUpper-
Stack generates di�erent upper stack polyominoes for di�erent values 0 ≤ b ≤
Sr(H) − 1, where Sr(H) is the number of possible upper stack polyominoes with

horizontal projection H.

Proof

The condition h1 ≤ · · · ≤ hr is necessary for an upper stack polyomino. The
last strip must be in the �rst position, i.e., sr = 1. The position of the i-th
strip (i = r − 1, r − 2, . . . , 1) depends on the current ordinal number b and the
previous relative position s, where s = 1 in the beginning. The i-th strip can be
placed on the top of the (i + 1)-st strip in d = hi+1 − hi + 1 di�erent ways, i.e.,
si ∈ {s, s+ 1, . . . , s+ d− 1}. The algorithm chooses one of these cases depending
on the remainder of the integer division b/d, which can be 0, 1, . . . , d− 1. Namely,
let si = s + (b mod d). Then the algorithm modi�es s for the next strip, i.e.,
s = si, and also divides b by d for further positioning. Finally, the algorithm
returns with the strip positions. Since these positions are calculated by a sequence
of integer divisions, the algorithm generates di�erent solutions for di�erent values
of b (0 ≤ b ≤ Sr(H)− 1). 2

In a smiliar way, one can provide GenLowerStack for generating lower stack

polyominoes. The next algorithm generates parallelogram polyominoes with re-

spect to the ordinal number b, where the �rst strip is a left anchor, and the last

strtip is a right anchor (see Algorithm 9). Note that if r = 1, then the condition

of the for-loop of the algorithm cannot be satis�ed, and therefore the operations

of the cycle are never performed. Figure 3.9 shows an example of generating par-

allelogram polyominoes.

Lemma 3.5.2 For a given vector H = (h1, . . . , hr) GenPara generates di�erent

parallelogram polyominoes (with left anchor position 1 and right anchor position

r) for di�erent values 0 ≤ b ≤ P1,r(H) − 1, where P1,r(H) is the number of such

polyominoes with horizontal projection H.
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Algorithm 9 GenPara

Require: Projection values h1, . . . , hr and ordinal number b
Ensure: Strip positions s1, . . . , sr
s1 ← 1, s← 1
for i = 2→ r do
if hi < hi−1 then
s← s+ hi−1 − hi

end if

d← min{hi−1, hi}
si ← s+ (b mod d)
s← si
b← bb/dc

end for

return s1, . . . , sr

Figure 3.9: Example of generating parallelogram polyominoes with the horizontal
projection H = (2, 3, 4) for b = 0, 1, . . . , 5, respectively.

Proof

The �rst strip is in the �rst position (s1 = 1), and the i-th strip can be put under
the (i− 1)-st strip in min{hi−1, hi} di�erent ways (i = 2, . . . , r). If hi < hi−1, then
we have to increase the possible �rst position s with hi−1 − hi due to v-convexity
and the right anchor property of the last strip. The rest of the algorithm is similar
to GenUpperStack. 2

The following lemma describes an important property of Algorithm GenPara.

Lemma 3.5.3 GenPara provides a parallelogram polyomino with minimal number

of columns if and only if b = 0.

Proof

If b = 0, then GenPara is equivalent to GreedyRec, that provides a solution with
minimal number of columns (see again Algorithm 7 of Section 3.3, and Theo-
rem 3.1). If b > 0, then a position t (1 < t ≤ r) exists, such that the t-th strip is
shifted further to the right, relative to the solution provided by GreedyRec. Hence
all the t-th, (t + 1)-st, . . . , r-th strips are shifted to the right, and the number of
columns cannot be minimal. 2
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Algorithm GenAnchor (see Algorithm 10) generates hv-convex polyominoes

with �xed left and right anchor positions.

Algorithm 10 GenAnchor

Require: Projection values h1, . . . , hm, �rst left anchor position k, last right an-
chor position l (k ≤ l), and ordinal number b

Ensure: Strip positions s1, . . . , sm
if k ≥ 2 then
b← b mod Sk−1(H), b←

⌊
b/Sk−1(H)

⌋
(s1, . . . , sk−1)← GenUpperStack(h1, . . . , hk−1, b)
d← hk − hk−1
R← (b mod d) + 1, b←

⌊
b/d
⌋

s1 ← s1 +R, . . . , sk−1 ← sk−1 +R
end if

if l ≤ m− 1 then
b← b mod Sl+1(H), b←

⌊
b/Sl+1(H)

⌋
(sl+1, . . . , sm)← GenLowerStack(hl+1, . . . , hm, b)
d← hl − hl+1

R← (b mod d)− 1, b← bb/dc
end if

(sk, . . . , sl)← GenPara(hk, . . . , hl, b)
if l ≤ m− 1 then
R← R + sl
sl+1 ← sl+1 +R, . . . , sm ← sm +R

end if

return s1, . . . , sm

Lemma 3.5.4 For a given vector H = (h1, . . . , hm) GenAnchor generates di�erent
hv-convex polyominoes with �xed smallest left anchor position k, and �xed greatest

right anchor position l (k ≤ l) for di�erent values 0 ≤ b ≤ P̂ − 1, where P̂ =

Sk−1(H) · (hk − hk−1) ·Pk,l(H) · (hl − hl+1) · Sl+1(H) is the number of possible such

polyominoes with horizontal projection H.

Proof

The algorithm generates the upper stack, the lower stack, and the parallelogram
polyominoes separately. Since k is the position of the smallest left anchor, the
upper stack polyomino is determined by the �rst k − 1 strips (if k = 1, there is
no upper stack polyomino). GenUpperStack provides the b-th solution from the
possible upper stack polyominoes, where 0 ≤ b < Sk−1(H) is a valid input of the
algorithm. The ordinal number b is divided by the number of existing solutions for
the further parts of the construction.

The (k− 1)-st strip (the last strip of the upper stack polyomino) can only be in
the 2nd, 3rd, . . . , (hk−hk−1 +1)-st position. Therefore, the algorithm has to shift
the �rst k− 1 strip further to the right with R ∈ {1, 2, . . . , hk − hk−1}. The choice
of R depends on the current ordinal number, which is decreased further after the
choice of R.
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The generation of the lower stack polyomino is similar. The algorithm also has
to shift the positions at least to the position of the l-th strip. Note that the size
of the shift (see R) can be calculated after the parallelogram stack polyomino is
generated by GenPara due to the relative positions to sl. We have to decrease b
�rst, so GenPara will be the last part of our algorithm but we have to call GenPara
�rst, because we need sl in order to calculate the relative shifting R of the lower
stack polyomino. That is the reason why the �nal R is calculated in two parts,
unlike R.

It is easy to see that GenAnchor provides di�erent solutions for di�erent ordinal
numbers, if 0 ≤ b ≤ P̂ − 1. 2

Algorithm GenAnchor has an ordering described in the following lemma.

Lemma 3.5.5 In GenAnchor the ordinal number of any solution with minimal

number of columns is less than the ordinal number of any solution with non-minimal

number of columns. In other words, GenAnchor orders the solutions by starting

with all the smallest sized solutions.

Proof

Using our defnition of decomposition of an hv-convex polyomino into an upper
stack, a lower stack, and a parallelogram polyomino, the width of the hv-convex
polyomino is equal to the width of its parallelogram part (see again Fig. 3.3, for
example). GenAnchor builds the stack polyominoes and their relative shifts �rst
and the parallelogram polyomino last. Therefore, in the algorithm the function
GenPara(hk, . . . , hl, 0) is called if and only if the non-negative ordinal number b is
less than P · P , where P (respectively, P ) denotes the number of di�erent ways
the upper (respectively, lower) stack polyominoes can be composed with the par-
allelogram polyominoes. Both P and P are independent from the choice of b. As a
consequence of Lemma 3.5.3, the resulted hv-convex polyomino is minimal in the
number of columns if and only if 0 ≤ b < P · P . 2

Before describing the next algorithm, we recall a de�nition from [26]. An hv-

convex polyomino is called a centered polyomino if it has a left anchor position that

is also a right anchor position (see Fig. 3.10, for example). The following properties

are important for the rest of the chapter:

• if F is a centered polyomino, then K ≥ L, and hL = hL+1 = · · · = hK ,

• if F is a centered polyomino, then sL = sL+1 = · · · = sK = 1 (which also

yields that F can be decomposed such that its parallelogram polyomino part

is a single rectangle),

• the set of centered polyominoes with the same horizontal projection is closed

with respect to vertical mirroring,



48 Reconstruction and Random Generation of hv-Convex Images

a) b)

Figure 3.10: Examples of centered and non-centered polyominoes. (a) a centered
polyomino; (b) a non-centered polyomino with the same horizontal projection. Note
that 4 = K ≥ L = 3, and the �rst image is minimal in the number of columns,
while the second one is not.

• if K ≥ L and F is an hv-convex polyomino with minimal number of columns

then F is a centered polyomino.

Also note that for a non-centered polyomino if k < l (where k and l is the �rst

left anchor and the last right anchor positions, respectively), a vertically mirrored

non-centered hv-convex polyomino exists with the same horizontal projection and

with k > l.

The following algorithm called GenCentered generates centered polyominoes

(see Algorithm 11). Figure 3.11 shows an example of generating centered polyomi-

noes.

Algorithm 11 GenCentered

Require: Projection values h1, . . . , hm with K ≥ L, and ordinal number b
Ensure: Strip positions s1, . . . , sm
b← b mod SL(H), b←

⌊
b/SL(H)

⌋
(s1, . . . , sL)← GenUpperStack(h1, . . . , hL, b)
(sK , . . . , sm)← GenLowerStack(hK , . . . , hm, b)
sL+1 ← 1, . . . , sK−1 ← 1
return s1, . . . , sm

Lemma 3.5.6 For a given vector H = (h1, . . . , hm) GenCentered generates dif-

ferent centered polyominoes for di�erent values 0 ≤ b ≤ SL(H) · SK(H)− 1, where

SL(H) ·SK(H) is the number of possible centered polyominoes with horizontal pro-

jection H.

Proof

The proof is trivial due to the properties of the centered polyominoes. 2

Finally, we describe GenAll to generate the b-th solution out of all the possible

hv-convex polyominoes with the given horizontal projection (see Algorithm 12). In

the algorithm,
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Figure 3.11: Example of generating centered polyominoes from the horizontal pro-
jection H = (1, 3, 3, 2, 1). The values of b are going from 0 to 11, respectively. Note
that k = 2 and k = 3 are both left and right anchors. Also note that vertical
mirroring does not bring any new solutions.

• the number of centered solutions is 0 if K < L (see the properties of centered

polyominoes), and SL(H) · SK(H) otherwise,

• the number of non-centered solutions for �xed k < l is Sk−1(H) · (hk−hk−1) ·
Pk,l(H) · (hl−hl+1) ·Sl+1(H) if K < L, and Sk−1(H) · (hk−hk−1) ·

(
Pk,l(H)−

1
)
· (hl − hl+1) · Sl+1(H) otherwise,

• the number of centered solutions for �xed k < l is 0 if K < L (again, see the

properties of centered polyominoes), and Sk−1(H) · (hk − hk−1) · (hl − hl+1) ·
Sl+1(H) otherwise,

• FlipMatrix �ips the positions as a vertical matrix �ip, i.e., si = n−si−hi+2

for i = 1, . . . ,m, where n is the number of columns, n = max
i
{si + hi − 1}.

Theorem 3.3 For a given vector H = (h1, . . . , hm) GenAll generates di�erent hv-
convex polyominoes for di�erent values 0 ≤ b ≤ P − 1, where P is the number of

possible hv-convex polyominoes with horizontal projection H. The algorithm runs

in O(m2) time.

Proof

The algorithm GenAll �rst enumerates all the centered polyominoes (if there is
any), then enumerates all the non-centered polyominoes with k < l and vertically
mirrors the solution if necessary, depending on the parity of the ordinal number
b. The separation of centered and non-centered cases is necessary since the set of
centered polyominoes is closed with respect to vertical mirroring.

The number of centered polyominoes is either SL(H) · SK(H) or 0 (depending
on the relation of K and L). If the ordinal number b is less than the number of
centered polyominoes then the algorithm returns with the b-th centered polyomino.
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Algorithm 12 GenAll

Require: Projection values h1, . . . , hm and ordinal number b
Ensure: Strip positions s1, . . . , sm
if b < #centered soultions then
(s1, . . . , sm)← GenCentered(h1, . . . , hm, b)
return s1, . . . , sm

else

b← b−#centered soultions
end if

is�ipped← b (mod 2), b← bb/2c
for k = 1→ K do

for l = L→ m do

if b < #non-centered solutions for �xed k and l then
b← b+#centered solutions for �xed k and l
(s1, . . . , sm)← GenAnchor(h1, . . . , hm, k, l, b)
if is�ipped = 1 then
(s1, . . . , sm)← FlipMatrix(s1, . . . , sm)

end if

return s1, . . . , sm
else

b← b−#non-centered solutions for �xed k and l
end if

end for

end for

Otherwise (if b is equal or greater than that value) the algorithm decreases b with
the number of centered polyominoes.

The rest of the algorithm deals with non-centered polyominoes with k < l,
therefore it divides the (already decreased) ordinal number b by 2, and it will verti-
cally mirror the solution depending of the remainder of this division (it correspods
to the case k > l).

For every k and l, the algorithm checks if the ordinal number b is less than
the number of non-centered cases with those k and l. If b is less than that value,
then the algorithm found the anchor positions k and l, and EnumAnchor generates
the b-th solution. Otherwise, b is decreased and the iteration goes on. Note that
according to Lemma 3.5.5 and the properties of the centered polyominoes, the
solutions of EnumAnchor for small ordinal numbers are centered polyominoes (if
there is any). Therefore, the ordinal number has to be increased by the number of
centered poliominoes in order to skip them. Finally, the algorithm vertically �ips
the solution if necessary (see the argument above).

It is easy to see that the runtime of GenUpperStack, GenLowerStack, GenPara,
GenAnchor, and GenCentered is O(m). The number of centered and non-centered
solutions for all k and l can be calculated in advance in O(m2) time. The proce-
dure GenAnchor (possibly together with Flipmatrix) is only called once during the
process (as the last step of the generation). This means that the worst case time
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Figure 3.12: Examples of the distribution of the solutions. Horizontal axis shows
the width of the solutions (number of columns), vertical axis shows the number of
solutions. The projections are (2, 4, 2, 9, 1, 10, 4, 1, 4, 8) with 512 solutions in total,
and (7, 3, 3, 7, 6, 5, 7, 8, 6, 6) with 2 154 600 solutions in total, respectively.

complexity of GenAll is O(m2). 2

3.5.2 Fixed Number of Columns

The Algorithm GenAll can be easily modi�ed to generate polyominoes with �xed

number of columns. The width of an hv-convex polyomino is determined by its

parallelogram polyomino, since for �xed anchors the change of the upper and lower

stack polyominoes has no e�ect on the number of columns. Such a modi�ed al-

gorithm could use a di�erent version of GenPara in GenAnchor for generating

parallelogram polyomines with �xed number of columns. Lemma 3.4.3 gives a

recursive formula to calculate the number P (p1, . . . , pr, n) of parallelogram poly-

ominoes with n columns, and having the horizontal projection (p1, . . . , pr). Using

that recurrence one can provide a dynamic programming algorithm for enumerat-

ing all the solutions in a similar way as seen in GenPara and GenAll. Note that

due to the minimality property of centered polyominoes and the �xed number of

columns, Lemma 3.5.3 is not needed in the modifed version of GenPara.

We also studied how the number of possible hv-convex polyominoes varies de-

pending on the number of the prescribed columns. Figure 3.12 shows just two

examples of our general observation that the histogram of the number of solutions

follows generally a normal-like distribution. This information could also be ex-

ploited in the future, to design more sophisticated reconstruction algorithms for

the class of hv-convex polyominoes.
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3.6 Reconstructing Canonical hv-Convex Images

The reconstruction of hv-convex 8-connected but not 4-connected images, as well

as canonical hv-convex images from two projections was previously deeply stud-

ied. In [11], the authors examined the problem of reconstructing a discrete binary

image satisfying some convexity conditions from its two orthogonal projections.

They also showed that determining the existence of an h-convex (v-convex) poly-

omino or arbitrary binary image with connected rows (columns) having assigned

orthogonal projections is an NP-complete problem. The authors of [26] showed that

reconstructing a special class of centered hv-convex polyominoes, which contains

a row whose length equals the total width of the object, can be solved in linear

time, if the horizontal and vertical projections are given. In [54] the reconstruc-

tion algorithms and complexity results are summarized in the case of hv-convex

images, hv-convex polyominoes, hv-convex 8-connected images, and directed h-

convex images. Moreover, it is shown that certain h-convex images are uniquely

reconstructible with respect to the row and column sum vectors. In [8], the au-

thors compared three reconstruction algorithms used for reconstructing hv-convex

8-connected binary images from two projections. The authors of [23] proposed an

algorithm for reconstructing a binary image satisfying some convexity conditions

from two projections, with a worst case complexity of O
(
mn log(mn)min{m2, n2}

)
for an image with size of m×n. In some special cases they gave an upper bound for

the complexity of the algorithm as O
(
mn log(mn)

)
. The authors of [7] introduced

an algorithm for reconstructing 8-connected but not 4-connected hv-convex binary

images with worst case complexity of O(mnmin{m,n}).
In this section, we show that reconstructing an hv-convex canonical image with

minimal width from the horizontal projection is possible in O(m) time, where m

is the size of the horizontal projection vector. First, we propose an algorithm

that reconstructs such an image, and show that the resulted image is always 8-

connected. This algorithm can be easily extended to reconstruct general hv-convex

images with arbitrary width in the same running time.

3.6.1 Properties of the Reconstruction

We set the following reconstruction problem:

Reconstruction-Can-hv(H,k)

Instance: A vector H = (h1, . . . , hm) ∈ Nm, and an integer k (1 ≤ k ≤ m).

Task: Construct a canonical hv-convex image F with exactly k number of 4-

connected components such that H(F ) = H, and w(F ) is minimal.
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a) b)

Figure 3.13: (a) A minimal width canonical hv-convex image F with the same
projection and component number as of Fig. 3.2; (b) replacing each of the
components by the result of a GreedyRec reconstruction, results in F ∗. Here,
w(F ) = w(F ∗) = 11. Note that F ∗ is 8-connected.

Figure 3.13a shows an example of such a reconstructed image.

It is easy to see that if H contains only positive integers, then a solution of

the above problem, and thus one with a minimal width also exists. We will show

that �nding a solution can be done in O(m) time, and that the solution is always

8-connected and unique.

First, the following lemma provides an important property of the components

of a canonical hv-convex image.

Lemma 3.6.1 Let F be a solution of the Reconstruction-Can-hv(H,k) prob-

lem with the components F1, . . . , Fk. Let Gi be the result of the GreedyRec algo-

rithm (see again Algorithm 7 in Section 3.3) from the input vector H(Fi), where
1 ≤ i ≤ k. Then w(Fi) = w(Gi), and replacing Fi with Gi in F for some i

yields also a (not necessarily di�erent) solution F ∗ of the Reconstruction-Can-

hv(H,k) problem.

Proof

Clearly, the number of rows of Fi equals the number of rows of Gi, and both images
are hv-convex polyominoes. Due to Theorem 3.1, w(Gi) ≤ w(Fi). Replacing Fi
with Gi in F yields an hv-convex image F ∗ with k 4-connected components, too.
Since F is of minimal width, w(Fi) ≤ w(Gi) (there are no zero-columns in F ).
Hence, F ∗ is also of a minimal width canonical hv-convex image with k components
and with the same horizontal projection, thus it is a solution of the Reconstruc-
tion-Can-hv(H,k) problem. Figure 3.13 shows an example of such an exchange.2

As a consequence, it is enough to search for a solution F ∗ of the Reconstruc-

tion-Can-hv(H,k) problem, where each of the components F ∗i is provided by the
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GreedyRec algorithm from the corresponding part of H. The next lemma shows

that F ∗ is 8-connected.

Lemma 3.6.2 A binary image G obtained by GreedyRec has a black pixel both in

its top left and bottom right corners, i.e., if the size of G is m × n, then g1,1 = 1

and gm,n = 1.

Proof

The black color of the pixel in the top left corner is a consequence of Step 1 of
GreedyRec. The black color of the pixel in the bottom right corner is a consequence
of Step 2 of the algorithm (see previous Fig. 3.4). 2

As a direct consequence, the solution F ∗ of the Reconstruction-Can-

hv(H,k) problem (where each component is provided by GreedyRec) is 8-connected

(again, see Fig. 3.13b for example).
Before the following lemma, we introduce the concept of breaking.

De�nition 3.1 Let G be a binary image with the horizontal projection H = (h1,

. . . , hm), and let cG denote the binary image that is derived from G by shifting the

(c+1)-st, (c+2)-nd, . . . , m-th strip to the right with min{hc, hc+1} positions (where
1 ≤ c < m). In that case we say that we got cG by breaking G at the breakpoint
c. We say that the c is minimal if c = arg min

1≤j<m

{
min{hj, hj+1}

}
.

Note that the minimal breakpoint is not necessarily unique. Figure 3.14 shows an

example of breaking.

Generally breaking a binary image does not necessarily modify the number of

the 4-connected components. The following lemma describes a property of breaking

special hv-convex binary images.

Lemma 3.6.3 Let F ∗ be an (8-connected) canonical hv-convex image with hor-

izontal projection H, and with exactly two components G1 and G2, where both

components are obtained by the GreedyRec algorithm from the corresponding part

of H. Let r denote the number of rows of G1. Then F
∗ = rG, where G is the result

of the GreedyRec algorithm from H, and w(F ∗) = w(rG) = w(G)+min{hr, hr+1}.

Proof

Let G be the result of the GreedyRec algorithm from H. Then rG can be decom-
posed into two sub-images, one consisting of the pixels of rG (and their smallest
containing rectangle) of the �rst r rows, and another one consisting of the pixels
of the last m − r rows (and their smallest containing rectangle), where m is the
number of elements in H. Since in GreedyRec the position of the i-th strip only
depends on the position of the (i− 1)-st strip (and the corresponding values of H),
it follows that both sub-images are the result of the GreedyRec algorithm from the
corresponding part of H. By the de�nition of breaking, the second sub-image is
shifted to the right with min{hr, hr+1} positions. We show that the sub-images are
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(a) G (b) 2G

(c) 3G (d) 4G

Figure 3.14: Examples of breaking: (a) an obtained image G of GreedyRec; (b) G
is broken at the breakpoint c = 2; (c) G is broken at the minimal breakpoint c = 3;
(d) G is broken at another minimal breakpoint c = 4.

actually 4-connected components, which are 8-connected but not 4-connected to
each other.

If hr ≤ hr+1, then the position of the (r+1)-st strip is the same as the position
of the r-th strip in G (as described in GreedyRec). In rG, the (r + 1)-st strip is
shifted to the right with hr positions. Therefore, the r-th and the (r + 1)-st strips
are 8-connected but not 4-connected.

If hr > hr+1, then the (r + 1)-st strip is shifted to the right relative to the r-th
strip with hr − hr+1 positions in G. In rG, it is shifted further with hr+1 positions.
The overall amount of shifting is hr, and again, the r-th and the (r + 1)-st strips
are 8-connected but not 4-connected.

As a consequence, rG is an 8-connected canonical hv-convex image with two
components, furthermore, F ∗ = rG, and due to the shifting, w(rG) = w(G) +

min{hr, hr+1}. 2

The following consequence of Lemma 3.6.3 plays an important role in our pro-

posed algorithm.

Corollary 3.1 For each canonical hv-convex F ∗ image with k component, there

exists a series of k − 1 number of breakpoints in G, such that the obtained image

is equivalent to F ∗, where G is the result of the GreedyRec algorithm from H(F ∗).
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3.6.2 Algorithm for Reconstructing Canonical hv-Convex

Images

We are now ready to provide an algorithm, CanonicalRec which gives an 8-connect-

ed solution of the Reconstruction-Can-hv(H,k) problem in O(m) time (see

Algorithm 13). Note that the algorithm always provides a solution if H contains

only positive integers, and 1 ≤ k ≤ m. Furthermore, if k = 1 then the whole image

is a single 4-connected component, while for k = m, each of the strips itself is a

4-connected component.

Algorithm 13 CanonicalRec

Require: A vector of projection values H = (h1, . . . , hm) and a number k of
components (1 ≤ k ≤ m)

Ensure: A minimal-width 8-connected canonical hv-convex image F ∗ with k com-
ponents
1) Find c1, c2, . . . , ck−1 (1 ≤ ci < m, and ci 6= cj if i 6= j) such that∑

ci
min{hci , hci+1} is minimal

2) Create image G with GreedyRec from H
3) Create image F ∗ by using the series of ci as breakpoints in G
return F ∗

Theorem 3.4 CanonicalRec is correct and has a running time of O(m).

Proof

If k = 1, then CanonicalRec is equivalent to GreedyRec, which constructs an hv-
convex image containing one 4-connected component with minimal width, therefore
CanonicalRec is correct. For the rest of the proof assume k > 1, thus the series of ci
breakpoints in Step 1 is non-empty. Without loss of generality, we can suppose that
the ci breakpoints in Step 1 are ordered in a way that the series of min{hci , hci+1}
values is non-decreasing.

According to Lemma 3.6.3, the obtained F ∗ is a canonical hv-convex image
with k number of components and with the horizontal projection H(F ∗) = H.
Furthermore, F ∗ is 8-connected according to the consequence of Lemma 3.6.2. We
only have to prove that F ∗ is of minimal width.

Assume to the contrary that there exist an F ′ solution such that w(F ′) < w(F ∗).
Note that according to Corollary 3.1, such an F ′ can also be given with a series of
breakpoints c′1, c

′
2, . . . , c

′
k−1 in G. Again, let the series of min{hc′i , hc′i+1} values be

ordered in a non-decreasing way.
Since F ′ cannot be a result of the CanonicalRec algorithm,

∑
c′i
min{hc′i , hc′i+1}

is not minimal. Since both the min{hci , hci+1} and the min{hc′i , hc′i+1} series are or-
dered by magnitude, there exists a smallest j index for which
min{hc′j , hc′j+1} > min{hcj , hcj+1}.

Let F̂ be the image which is constructed from F ′ such that the (c′j+1)-st, (c′j+2)-
nd, . . . , m-th strip is shifted to the left with min{hc′j , hc′j+1} positions. According
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to Lemma 3.6.3, F̂ is canonical, hv-convex with k − 1 components, and w(F̂ ) =

w(F ′)−min{hc′j , hc′j+1}. Now, using cj as a breakpoint in F̂ , the obtained F̃ image

is canonical, hv-convex with k components, and w(F̃ ) = w(F̂ ) +min{hcj , hcj+1} =
w(F ′)−min{hc′j , hc′j+1}+min{hcj , hcj+1}. Since min{hc′j , hc′j+1} > min{hcj , hcj+1},
it follows that w(F̃ ) < w(F ′), therefore F̃ is a solution of the Reconstruction-
Can-hv(H,k) problem with less number of columns, which is a contradiction to
the width-minimality of F ′. Therefore, the result of CanonicalRec is correct.

As of Step 1, �nding the breakpoints c1, c2, . . . , ck−1 is equivalent to select-
ing the k − 1 smallest elements from the series min{h1, h2}, min{h2, h3}, . . . ,
min{hm−1, hm} in any order. The (k − 1)-st smallest element can be found with
the Median of medians algorithm in O(m) time [18], and after that the �rst k − 1

smallest elements can be identi�ed simply by scanning at most two times the series
of possible breakpoints. Overall, �nding the breakpoints has a run-time of O(m).
Step 2 and Step 3 can be done with O(m) moves according to Theorem 3.1. The
overall run-time of the CanonicalRec algorithm is O(m). 2

3.6.3 Reconstructing General hv-Convex Images

Similarly to the modi�ed version of GreedyRec described in the end of Section 3.3,

one can modify the CanonicalRec algorithm in a way that the obtained image has

n number of columns, where n can be any value between the minimal value pro-

vided by CanonicalRec and the maximal value of
(∑m

i=1 hi

)
−m + k. Moreover,

the horizontal relative order of the 4-connected components of the result can be

arbitrarily changed, still providing hv-convex binary images with the same hori-

zontal projection. Hence, if there are at least two 4-connected components, it is

possible to give also a solution which is hv-convex but not connected (see Fig. 3.15

for example).

3.7 Summary

The reconstruction of hv-convex polyominoes from few projections is an extensively

studied problem in discrete tomography. Several algorithms exist to solve this task

from two projections. From the viewpoint of testing the e�cacy of those (and

of more general reconstruction) algorithms in the average case, the reconstruction,

enumeration and random generation of hv-convex polyominoes according to several

parameters is an important issue.

In this chapter, we showed how to reconstruct hv-convex polyominoes from a

given horizontal projection with minimal number of columns in linear time. This

algorithm can easily be extended to give a solution with any required number of

columns, if such a solution exists. We also gave formulas for counting all possi-
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a) b)

c) d)

Figure 3.15: (a) The reconstruction result of the CanonicalRec algorithm with
k = 3, where w(F1) = 11; (b) the modi�ed result with w(F2) = 14; (c-d) modi�ed
results which are not 8-connected.

ble solutions, one for any number of columns, and another one for �xed number

of columns. Furthermore, we provided an algorithm that generates an hv-convex

polyomino with a prescribed horizontal projection from a uniform distribution. In

the end of this chapter we provided a fast polynomial-time algorithm that can

reconstruct canonical hv-convex images with certain number of 4-connected com-

ponents and with minimal number of columns from a given horizontal projection in

O(m) time. We also showed that the results of the proposed algorithm are always

8-connected. Furthermore, the algorithm can be extended in a straightforward

way to give a solution with any required number of columns, if such a solution

exists. Even more important is that a further extension of the algorithm yields

a polynomial-time reconstruction algorithm for the general class of hv-convex bi-

nary images, when only one projection is given. When both the horizontal and the

vertical projections are given the problem is known to be NP-complete.

The �ndings of this research have been published in two conference proceed-

ings [39, 44], and one journal paper [43].



Chapter 4

Morphological Skeleton as

Additional Information for the

Reconstruction

4.1 Introduction

In binary tomography, as described in Section 1.1, due to the small number of

available projections the reconstruction is usually very underdetermined. There-

fore, additional information is needed to reduce the number of possible solutions.

However, in certain cases the reconstruction can be NP-hard. Determining the

computational complexity of di�erent variants of the main problem is essential,

however, the complexity highly depends on the additional requirements the image

to be reconstructed must satisfy.

In the most simple case only two projections are availble1. Without further

restrictions, reconstruction from those projections can be performed in O(mn +

n log n) time for an image with size of m × n, although the number of solutions

can be extremely high [64]. Using additional information such as h-convexity or v-

complexity (or even both) can cause the reconstruction problem to be NP-complete

in general [70]. 4-connectedness alone also yields NP-completeness [70], even with

h- or v-complexity together [11]. However, in [11] and [26], it is shown that there

is a polynomial-time reconstruction algorithm if the image to be reconstructed

satis�es both hv-convexity and 4-connectedness. On the other hand, using more

than two projections can, again, make the problem NP-complete in general [32].

Chapter 3 gives additional references about the previous results in �eld.

In this chapter we study the reconstruction from an additional shape descriptor,

the so-called morphological skeleton. The skeleton is a region-based shape descrip-

1In extreme cases, as we have shown in Chapter 3, only one.

59
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a) b) c)

Figure 4.1: Examples of two kinds of reconstruction problems: (a) the image F
to be reconstruced; (b) if the skeletal label is known for each p ∈ S(F, Y ), F is
uniquely reconstructable by (1.11) of Section 1.4; (c) the considered problem is to
reconstruct F from S(F, Y ) and the two projections.

tor which represents the general form of binary objects. We provide a detailed

explanation of the morphological skeleton in Section 1.4. In this chapter, we deal

with the reconstruction problem in which the entire morphological skeleton (in-

stead of the individual skeletal subsets) and one or two projections of the original

image are known. Figure 4.1 gives an example of the reconstruction problem. A

practical application of morphological skeleton and image reconstruction can be

used in the �eld of data compressing, in a similar way of [59].

First, we show that the reconstruction of 4-connected images (polyominoes)

from the horizontal and vertical projections is still NP-complete, even if the mor-

phological skeleton is given. Moreover, we show that the solution is not necessarily

unique. Despite the theoretical drawback, under some circumstances an acceptable

image quality can be achieved. In the reconstruction process a priori knowledge is

often incorporated into an energy function, thus the reconstruction task becomes

equivalent to a function minimization problem. There are various methods to solve

that kind of problems [35, 63, 66]. In this chapter we show how to use Simulated

Annealing (SA) for the binary reconstruction problem using morphological skeleton

and two projections in one case, and only one projection in the other. We propose

three variants of a method to solve the above problem, based on parametric SA

reconstruction.

A related issue, as mentioned in Chapter 3, is the uniqueness of the reconstruc-

tion. In the end of this chapter we study the uniqueness of the reconstruction

of certain type of 4-connected hv-convex images, using two projections and the

morphological skeleton. We show that the unique reconstructability of a certain

parametric subclass of hv-convex binary images is strongly connected to its param-

eters.
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F1 F2

Figure 4.2: Two di�erent images F1 and F2 having the same projections and mor-
phological skeleton, where S(F1, Y ) = S(F2, Y ) = {p, q, r, s}.

4.2 Reconstructing Polyominoes is NP-complete

In this section we prove the NP-completeness of the problem where the horizontal

and the vertical projections and the morphological skeleton of the polyomino to be

reconstructed are given. Recalling the de�nitions from Chapter 3, two positions

p = (ip, jp) and q = (iq, jq) in a binary image are said to be 4-adjacent if |ip− iq|+
|jp−jq| = 1. The positions p and q are 4-connected if there is a sequence of distinct

black pixels p0 = p, . . . , pk = q in the binary image such that pl is 4-adjacent to

pl−1, respectively, for each l = 1, . . . , k. A binary image F is 4-connected and is

called a polyomino if any two di�erent object points in F are 4-connected. Note

that in our de�nition holes are allowed inside a polyomino.

Now we can give the formal de�nition of our problem.

Problem. Skel Rec Poly

Instance. H ∈ Nm, V ∈ Nn vectors and S ⊂ Z2 binary image.

Question. Does there exist a polyomino F of size m × n such that H = H(F ),
V = V(F ) and S = S(F, Y ), where Y is given by (1.12)?

Figure 4.2 shows that there can be more than one solution. Furthermore, we

prove that �nding even one solution, if exists, is generally NP-complete. Our

proof is based on [70], where the reconstruction of polyominoes from vertical and

horizontal projections was examined. Our reduction is done from the following

version of the NP-complete problem published in [33]. The following problem is

known to be NP-complete.

Problem. Three Partition

Instance. Positive integers a1, . . . , a3k that are encoded in unary and that ful�l
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the condition2
∑3k

i=1 ai = k(2B + 1) for some integer B.

Question. Does there exists a partitioning of a1, . . . , a3k into k triples such that

the elements of every triple add up to exactly 2B + 1?

For example, if B = 6, k = 3 and the positive a integers are 2, 3, 4, 4, 4, 5, 5,

6, 6, the answer is yes, since the partition I =
{
{1, 6, 8}, {2, 3, 9}, {4, 5, 7}

}
gives

us a solution 2 + 5 + 6 = 3 + 4 + 6 = 4 + 4 + 5 = (2B + 1) = 13.

We will give the transformation from a Three Partition instance to a Skel

Rec Poly instance and declare all the necessery lemmas for the proof. Frow now,

k and B are �xed integers for a particular Three Partition instance a1, . . . , a3k.

The main idea behind the transformation is to describe a Three Partition

instance as a 4-connected image, parts of which resemble a permutation matrix

with i number of columns. Each column in the permutation matrix corresponds

to ai number of contiguous elements of the image, whose positions describe which

partition contains that particular ai in the Three Partition problem. If the

Three Partition instance has a solution, then a valid permutaton matrix, thus

a polyomino satisfying the morphological skeleton and the projections can be easily

constructed. On the other hand, if there is a polyomino with the given morpholog-

ical skeleton and the projections � hence, Skel Rec Poly has a solution � then

that image must encode a valid permutation matrix, which provides a solution to

the original Three Partition instance. Figure 4.3 shows the core idea of the

transformation. For a more detailed example, see Fig. 4.5 and 4.6. We explain the

construction and the function of those images later.

For two arbitrary vectors ~a ∈ Nn and ~b ∈ Nm let ��� denote the concatenation:

~a �~b = (a1, . . . , an, b1, . . . , bm) . (4.1)

For any s ∈ N let the exponentiation of a vector denote the iterative concatenation:

~as = ~a if s = 1,

~as = ~as−1 � ~a if s > 1.
(4.2)

Let ~u be a �xed vector of size 1× 36k:

~u =
(
(0)11 � (1)

)3k
= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)3k . (4.3)

Let CV , C00, C01, C10 and C11 be �xed binary images of size 5 × 12 as shown in

Fig. 4.4. CV is called a skeletal cell, the others are called object cells. Let R =

{1, . . . , 2B+1}×{1, . . . , 3k}×{1, . . . , k}. Finally, let ϕ : R → {CV , C00, C01, C10, C11}
2In the original version of Three Partition, each ai satis�es 2B+1

4 < ai <
2B+1

2 . This
version is more general and thus is still NP-hard.
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Figure 4.3: The core idea of the transformation for k = 2. Black pixels indicate the
elements corresponding to the ai numbers. Gray pixels indicate the parts respon-
sible for the 4-connectedness, while dark gray pixels denote the borders between
the partitions. Here, the �rst partition in the solution of the Three Partition
instance contains (a4, a2, a5), the second one is (a6, a1, a3).

a) b) c)

e) f)

Figure 4.4: Di�erent type of cells: (a) a skeletal cell CV ; (b) object cell C00; (c)
object cell C01; (d) object cell C10; (e) and object cell C11 (e).
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and let Gϕ be the following binary matrix of size
(
k(5(2B+1)+1)+1

)
×
(
36k+1

)
:

Gϕ =



~1

~1T

~u

(1, 1, 1)ϕ (1, 2, 1)ϕ . . . (1, 3k, 1)ϕ

(2, 1, 1)ϕ (2, 2, 1)ϕ . . . (2, 3k, 1)ϕ
...

(2B+1, 1, 1)ϕ (2B+1, 2, 1)ϕ . . . (2B+1, 3k, 1)ϕ

~u

(1, 1, 2)ϕ (1, 2, 2)ϕ . . . (1, 3k, 2)ϕ

(2, 1, 2)ϕ (2, 2, 2)ϕ . . . (2, 3k, 2)ϕ
...

(2B+1, 1, 2)ϕ (2B+1, 2, 2)ϕ . . . (2B+1, 3k, 2)ϕ

...

~u

(1, 1, k)ϕ (1, 2, k)ϕ . . . (1, 3k, k)ϕ

(2, 1, k)ϕ (2, 2, k)ϕ . . . (2, 3k, k)ϕ
...

(2B+1, 1, k)ϕ (2B+1, 2, k)ϕ . . . (2B+1, 3k, k)ϕ



, (4.4)

where (r, i, j)ϕ is called a cell of Gϕ. We say that (r, i, j)ϕ and (r′, i′, j′)ϕ are in

the same cell block if j = j′, in the same cell column if i = i′ and in the same cell

row if r = r′, and also j = j′. (r, i, j)ϕ is in the j-th cell block, in the i-th cell

column and in the r-th cell row of the j-th cell block.

Now we give the transformation from a Three Partition instance to a Skel

Rec Poly instance.

Let m = k(5(2B+1)+1)+1, n = 36k+1 and H ∈ Nm be the following vector:

H = (n) �
(
(3k + 1) �H1 �HB−1

2 �H1 �HB−1
2 �H1

)k
, (4.5)

where

H1 = (1)5 +H(C11) + (3k − 1) · H(C00) (4.6)

and

H2 = (1)5 +H(C10) + (3k − 1) · H(C00) (4.7)

Moreover, let V ∈ Nn be the following vector:

V = (m) � V1 � V2 � · · · � V3k , (4.8)
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Figure 4.5: The skeletal set S and the required projections given by the transfor-
mation if k = 2 and B = 5. Black pixels denote object points. Gray pixels indicate
the background points of vectors ~u. Broken lines indicate the border of the cells.
The size of S is 113× 73.

where

Vi = (1)12 + k ·
(
(0)11 � (1)

)
+ V(C11) + (ai − 1) · V(C10) +

+ (k(2B + 1)− ai) · V(C00) (4.9)

for i = 1, . . . , 3k.

Finally, let the skeletal set S = Gϕv of size m × n, where ϕv : R → {CV },
(r, i, j)ϕv = CV for every (r, i, j) in R. Figure 4.5 shows an example of S and the

required projections if k = 2 and B = 5.

Lemma 4.2.1 If the Three Partition instance has a solution, then there exists

a polyomino F of size m × n with horizontal projection H, vertical projection V ,

and skeletal set S.

Proof

Let aj1 , aj2 and aj3 be the elements in the j-th triple in the solution of the Three
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Partition instance. Let F = Gϕ′ , where ϕ′ : R → {C11, C10, C00}, and the j-th
cell block has the following object cells in the j1-th cell column:

(r, j1, j)ϕ
′ =


C11 if r = 1 ,

C10 if r ∈ {2, . . . , aj1} ,

C00 otherwise,

(4.10)

in the j2-th cell column:

(r, j2, j)ϕ
′ =


C11 if r = B + 1 ,

C10 if r ∈ {aj1 + 1, . . . , aj1 + aj2} \ {B + 1} ,

C00 otherwise,

(4.11)

and �nally in the j3-th cell column:

(r, j3, j)ϕ
′ =


C11 if r = 2B + 1 ,

C10 if r ∈ {aj1 + aj2 + 1, . . . , aj1 + aj2 + aj3 − 1} ,

C00 otherwise.

(4.12)

Figure 4.6 shows an example, where the instance of the Three Partition problem
is a1 = 3, a2 = 3, a3 = 3, a4 = 4, a5 = 4, a6 = 5 (k = 2, B = 5).

It is easy to verify that S(C, Y ) = CV for any object cell C. Moreover, due
to the construction of Gϕ, and since (p ⊕ Y ) ∩ S = ∅ for any p ∈ Z2, it follows
that S(Gϕ, Y ) = S(S, Y ) = S for any ϕ : R → {CV , C00, C01, C10, C11}. Therefore,
S(F, Y ) = S.

Note that the number of C10 cells in the i-th cell column is ai−1, the number of
C11 cells is one and every other cell is C00. With the �rst row and the �rst column
and with the ~u vectors, it is easy to verify that V = V(F ) according to (4.8).

Similarly, each cell row contains exactly one C10 or C11 � depending on the
corresponding horizontal projections �, and every other cell is C00, therefore with
the additional elements in F we have H = H(F ) according to (4.5).

The 4-connectedness of Gϕ′ is a consequence of the attributes of Gϕ′ and the
object cells: every object point in a C10 cell is 4-connected to the object points of a
C11 cell (possibly through other C10 cells in the same cell column), and every object
point in a C11 cell is 4-connected to the �rst row of F through the ~u vectors and
other C11 cells. The object points in the C00 cells are 4-connected to the �rst and
last columns of other cells or the �rst column of F . Finally, the �rst column of F
is trivially 4-connected to the �rst row of F . Again, see Fig. 4.6 for example. 2

Lemma 4.2.2 If there exists a polyomino F of size m×n with horizontal projection

H, vertical projection V , and skeletal set S, then a ϕ : R → {C00, C01, C10, C11}
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Figure 4.6: An instance of Skel Rec Poly transformed from an instance of
Three Partition, with a1 = 3, a2 = 3, a3 = 3, a4 = 4, a5 = 4, a6 = 5. Black
pixels denote the object points in cells C11, dark gray pixels denote the object
points in cells C10. Light gray pixels indicate the remaining object points (C00 cells,
~u vectors, the �rst row and the �rst column of F ). Broken lines indicate the ~u
vectors. It is clearly visible that the �rst triple of the solution is (a4, a2, a5), the
second one is (a6, a1, a3), and the sum of the triples is 11.
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Figure 4.7: The notation of the skeletal points in C, enclosed with thick black lines.
Every skeletal point other than p2,3, p3,5, p3,9, and p4,10 has a skeletal label 0 due
to the 4-connectedness. Broken lines indicate parts of neighbor cells.

exists such that F = Gϕ.

Proof

According to (1.11), in order to determine F , we only have to �nd the labels of the
skeletal points in S. Since S = Gϕv , S is built up from cells. Let C be an arbitrary
submatrix in F corresponding to a skeletal cell in S. Let pi,j be the point in the
i-th row and the j-th column in C (i = 1, . . . , 5, j = 1, . . . 12).

A special case of Lemma 1.4.1 is κp = κq, if p and q are 4-neighbors. Note that
there are lots of 4-connected skeletal points in S, see previous example of Fig. 4.5,
therefore their labels are all the same. Due to the projections, it is easy to verify
that those labels must be 0.

The skeletal points with the unknown labels are p2,3, p3,5, p3,9, and p4,10, since
those points are not 4-connected to the rest of the skeletal points (see Fig. 4.7).
We can establish an upper bound for each label using Lemma 1.4.1. For example,
2 = d1(p2,3, p2,1) > |κp2,3−κp2,1|, then, since κp2,1 = 0, it follows that κp2,3 ≤ 1. The
determination of the other bounds is similar. To summarize:

κp2,3 ≤ 1 because of p2,1 ,
κp3,5 ≤ 3 because of p2,3 ,
κp3,9 ≤ 1 because of p1,9 ,
κp4,10 ≤ 1 because of p4,12 .

(4.13)

Let us now investigate the vertical projection value of F in the 11-th column of
C. According to (4.9), it is equal to

1 + k · 0 + 2 + (ai − 1) · 2 + (k(2B + 1)− ai) · 2 = 2k(2B + 1) + 1 (4.14)

for any i = 1, . . . , 3k. There is one object point in the �rst row of F and in all
the p1,11 points of the k(2B + 1) number of C submatrices in the same column.
Therefore, there has to be other k(2B + 1) object points in this column in order
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Table 4.1: Possible labels for the non-trivial skeletal points in submatrix C within
their bounds. �*� denotes an arbitrary non-negative integer.

κp2,3 ≤ 1 κp3,5 ≤ 3 κp3,9 ≤ 1 κp4,10 ≤ 1 Note

* * * 0 Contradicts the projection value
of the 11-th column

0 {0,1} * * Contradicts the 4-connectedness
0 2 0 1 Equals to C10
0 2 1 1 Equals to C11
0 3 * * Contradicts Lemma 1.4.1
1 0 * * Contradicts the 4-connectedness
1 1 0 1 Equals to C00
1 1 1 1 Equals to C01
1 {2,3} * * Contradicts the projection value

of the 1-st row

to ful�l the vertical projections. Those object points cannot belong to any of the
~u vectors (since the corresponding horizontal projections are already satis�ed).

Assume that κp4,10 = 0 for some submatrix C. Thus, there can be no other
object points in the 11-th column of this particluar submatrix. Overall, there has
to be k(2B + 1) object points in the 11-th column of k(2B + 1) − 1 submatrices,
which is a contridaction, due to the upper bounds of the skeletal labels. Therefore,
κp4,10 = 1 for every submatrix C.

Let us take a look at p2,3 and p3,5. If κp2,3 = 0, then κp3,5 ≥ 2, otherwise F
cannot be 4-connected, due to the upper bound of the remaining skeletal labels.
Also, if κp2,3 = 0, then κp3,5 < 3 because of Lemma 1.4.1. Therefore, if κp2,3 = 0,
then κp3,5 = 2.

Finally, if κp2,3 = 1, then κp3,5 ≥ 1 because of the 4-connectedness of F . Ac-
cording to (4.6) and (4.7), the horizontal projection value of F corresponding to
the 1-st row of submatrix C is

1 + 5 + (3k − 1) · 5 = 15k + 1 (4.15)

in both of the rows H1 and H2. There is one object point in the �rst column of F
and p1,9, p1,10, p1,11 and p1,12 points in the �rst row of 3k number of C submatrices
in the same row. Therefore, there is 3k further object points in 3k submatrices, in
order to ful�l the horizontal projections. Similarly to the previous case, if κp2,3 = 1,
the only solution satisfying the requirements is κp3,5 = 1.

Table 4.1 shows all the possible cases for the labels of an arbitrary submatrix
C. It is easy to verify that using valid labels yields the submatrix C to be equal to
one of the object cells, hence F can be described as Gϕ with some ϕ. 2

Lemma 4.2.3 If there exists a polyomino F of size m×n with horizontal projection

H, vertical projection V , and skeletal set S, then the number of C11 cells is one,

the number of C10 cells is ai − 1, and the number of C00 cells is k(2B + 1)− ai in
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Table 4.2: The number of the cells in the i-th cell column.

#C00 #C01 #C10 #C11
Case 1 k(2B + 1)− ai 0 ai − 1 1
Case 2 k(2B + 1)− ai − 1 1 ai 0

the i-th cell column of F = Gϕ. Moreover, F does not contain any C01 cells with a

certain ϕ : R → {C00, C01, C10, C11}.

Proof

From Lemma 4.2.2 we know that F can be described with a Gϕ matrix, hence F is
built up from cells. According to (4.8), the vertical projection value corresponding
to the 8-th column of the i-th cell column is equal to

1 + k · 0 + 1 + (ai − 1) · 0 + (k(2B + 1)− ai) · 0 = 2. (4.16)

Since one object point is in the �rst row of F , and only C01 and C11 contain object
points in the 8-th column, the sum of the number of C01 and C11 cells are one for
all i.

The vertical projection value corresponding to the 7-th column of the i-th cell
column is equal to

1 + k · 0 + 1 + (ai − 1) · 1 + (k(2B + 1)− ai) · 0 = ai + 1. (4.17)

Again, one object point is in the �rst row of F , and only C10 and C11 contain object
points in the 7-th column, therefore the sum of the number of those cells is ai for
all i.

Similarly, the vertical projection value corresponding to the 2-nd column of the
i-th cell column is equal to

1 + k · 0 + 0 + (ai − 1) · 0 + (k(2B + 1)− ai) · 1 = k(2B + 1)− ai + 1. (4.18)

Only C00 and C01 contain object points in the 2-nd column, therefore the sum of
the number of those cells is k(2B + 1)− ai for all i.

Overall, we have 3 equations for 4 non-negative integer variables (for the number
of cells in the i-th cell column), and since the sum of two of those variebles is one,
it is easy to verify that we have only two solutions, as Table 4.2 shows. Both cases
satisfy the requirements of the vertical projections of F .

Note that in an arbitrary C10 cell the (p3,5 ⊕2 Y ) component is not necessary
4-connected to a skeletal point labelled trivially by 0, but it can be 4-connected
to other components of C10 or C11 cells in the same cell column (through skeletal
points p1,5 and p5,5, again, see Fig. 4.6 for example). If there is no C11 cell in a
cell column, then there is at least one C10 in that cell column, and its (p3,5 ⊕2 Y )

component cannot be 4-connected to the other parts of F . Therefore, the second
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case in Table 4.2 is not possible. 2

Lemma 4.2.4 If there exists a polyomino F of sizem×n with horizontal projection

H, vertical projection V , and skeletal set S, then the number of C11 cells is one in
the cell row corresponding to H1 in (4.5), the number of C10 cells is one in the cell

row corresponding to H2 in (4.5), the number of C00 cells is 3k− 1 in any cell row,

and F has no C01 cells.

Proof

The horizontal projection value of F corresponding to the 5-th row of any cell row
is equal to

1 + 3 + (3k − 1) · 2 = 6k + 2, (4.19)

according to (4.6) and (4.7). There is one object point in the �rst column of F
and at least two object points in every cell in a cell row (skeletal points p5,10 and
p5,12). There are 3k number of cells in a cell row, which yields 6k+1 object points
overall. Only cell C10 and cell C11 contain additional object points in the 5-th row,
and there is no C01 in F according to Lemma 4.2.3. Therefore the number of cells
C00 is 3k−1. Similarly, due to the 2-nd row of any cell row, it is easy to verify that
the number of cells C11 is one in the cell row corresponding to H1 in (4.5), and 0

otherwise. Moreover, the number of cells C10 is one in the cell row corresponding
to H2 in (4.5), and 0 otherwise. 2

Lemma 4.2.5 If there exists a polyomino F of sizem×n with horizontal projection

H, vertical projection V , and skeletal set S, then the Three Partition instance

has a solution.

Proof

According to Lemma 4.2.3, the number of Cx cells is ai in the i-th cell column in
F , where x ∈ {10, 11}. Those cells have to form a contiguous interval of cells in a
cell column due to the 4-connectedness of F , previously mentioned in Lemma 4.2.3
(there is exactly one C11 cell in every cell column). Moreover, owing to the ~u
vectors, they all have to be in one cell block.

Let P be a partitioning of the numbers ai into k parts: Number ai belongs to
partition j if and only if the ai number of Cx cells in i-th cell column are in the
j-th cell block.

According to Lemma 4.2.4 and (4.5), the number of C11 cells in a cell block is 3,
therefore exactly 3 contiguous intervals of Cx belong to a cell block, which means 3
of the ai numbers belong to the same partition in P . Since the number of the C10
cells is 2B − 2, the sum of the Cx cells in a cell block is 2B + 1, which means that
the sum of the corresponding ai numbers in a partition of P is 2B + 1. Therefore,
P is a solution to the Three Partition instance. 2

We now have all the facts needed to prove our main theorem.

Theorem 4.1 Skel Rec Poly is NP-complete.
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a) b) c)

e) f)

Figure 4.8: Di�erent type of cells in the proof of the NP-competeness if the image
has to be a simple connected polyomino: (a) the skeletal cell CV ; (b) object cell
C00; (c) object cell C01; (d) object cell C10; (e) object cell C11.

Proof

To prove that Skel Rec Poly is in NP, we need to validate in polynomial time
whenever a binary image F of size m× n satis�es the requirements of Skel Rec
Poly. As for the horizontal and vertical projections, the validation can be done
in O(nm). To generate the skeletal set S(F, Y ), O(nm · max{n,m}) time is suf-
�cient [59]. Finally, the 4-connectedness can be checked in polynomial time with,
e.g., connected-component labeling algorithms [68].

The transformation from a Three Partition instance to a Skel Rec Poly

instance is polynomial. The NP-hardness of Skel Rec Poly is a direct conse-
quence of Lemma 4.2.1, Lemma 4.2.5 and the NP-hardness of Three Partition.2

Although our de�nition of the polyominoes allows holes, the NP-completeness

still holds for simply connected binary images. If we replace the skeletal cell and

the object cells in Fig. 4.4 with the images shown in Fig. 4.8, and modify the

required skeletal set S, and the vectors H and V according to the new cells, then

the proof works similarly as that of Theorem 4.1. Note that in that case, in (4.13)

κp3,9 ≤ 1 owing to p3,11.

In the next section we show that without even requiring 4-connectedness on the

image the problem is still generally NP-complete.

4.3 Reconstructing Binary Images is NP-complete

In this section in a similar way of Section 4.2 we prove that the reconstruction is NP-

complete even if there is no connectivity constraints on the image to reconstruct.

First, we de�ne our introduced problem as a decision problem and name it as Skel

Rec. The idea behind the reduction is similar to the one in [70].

Problem. Skel Rec
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Figure 4.9: The (3, 4)-widget W3,4.

Instance. H ∈ Nm, V ∈ Nn vectors and S ⊂ Z2 binary image.

Question. Does there exist a binary image F of size m× n such that H = H(F ),
V = V(F ) and S = S(F, Y ), where Y is given by (1.12)?

In order to prove the NP-completeness, �rst we prove that Skel Rec is NP-

hard through reduction. Once again, we use the Three Partition problem de-

scribed in the previous section, where an instance contains the non-negaive integers

a1, . . . , a3k, and the question is, if there exists a partitioning of a1, . . . , a3k into k

triples such that the elements of every triple add up to exactly 2B + 1. We give a

(logspace) reduction from Three Partition to Skel Rec, showing NP-hardness

of the latter. To achieve this, we de�ne a widget, that is, a parametrized skeleton

image equipped with horizontal projection values: given k, a > 0, let the (k, a)-

widget Wk,a be a skeleton image of height a + 2, width 3k with (i, j) being the

skeletal pixel if and only if j ≡ 2 (mod 3) and 1 < i < a+2 (i.e., starting with the

second column, every third column is all-one except for the �rst and the last rows),

equipped with the following horizontal projection vector: 1, k+2, k+2, . . . , k+2, 1,

where k + 2 is repeated a times. See Fig. 4.9 for an example.

Note that if a widget occurs as a subpattern in a Skel Rec instance, then the

skeletal label of each skeletal point in the widget must be either 0 or 1. Indeed, the

skeletal points belonging to the same vertical lines are 4-connected, thus they have

to have the same label according to Theorem 1.4.1 (this common label will also be

called the label of the line). Should this label be at least 2, the horizontal projection

in each non-border row would exceed k+2, even if all the other vertical lines have

label 0: the others would contribute k−1 object points and the one having at least

label 2 would contribute at least 5 object points, yielding a horizontal projection

of at least k + 4.

By an analogous argument one can see that at most one vertical line can have a

label of 1, and all the others 0, since a line with label 1 contribute 3 object points,

two of them would contribute 6, and along with the other k − 2 lines a horizontal

projection of at least k+ 4 would appear. Observe that the six object pixels could

not overlap in this case, that is the point of the two-column gap between the lines.

Now we are ready to de�ne the reduction. Given an instanceB and non-negative
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integers a1, . . . , a3k of Three Partition, we construct the following instance of

Skel Rec:

• the skeletal image equipped with horizontal projections is Wk,a1 � Wk,a2 � · · ·
� Wk,a3k , where � stands for the vertical composition of skeletal images and

horizontal projections,

• the vector of the vertical projections is
(
2B + 1, k(2B + 1) + 6, 2B + 1

)
repeated k times.

The result of the reduction applied to the input of the previous example is

shown in Fig. 4.10.

Lemma 4.3.1 If the instance of the Three Partition problem has a solution,

then the instance of the Skel Rec resulted by the reduction also has a solution.

Proof

Suppose I = {I1, . . . , Ik} is a solution of the Three Partition instance, i.e.,

|Ij| = 3 and
∑
i∈Ij

ai = 2B + 1 for each 1 ≤ j ≤ k, and
k⋃
j=1

Ij = {1, . . . , 3k}. Then

for each 1 ≤ i ≤ 3k, if i ∈ Ij, then let the label of the j-th vertical line be 1

in Wk,ai corresponding to the i-th widget; let the label of the other lines 0. A
straightforward calculation shows that all the horizontal and vertical projections
are satis�ed, and that the original skeleton image is indeed the skeleton of this
image. Thus, the Skel Rec instance is consistent. 2

Lemma 4.3.2 If the instance of the Skel Rec resulted by the reduction has a

solution, then the instance of the original Three Partition problem also has a

solution.

Proof

Let P a solution image of the Skel Rec problem. Since the labels of the skeletal
points � thus, the labels of the lines in the skeletal image � de�ne P uniquely, we
will talk about labels of lines with respect to P . The horizontal projections require
that in each Wk,ai widget there is exactly one vertical line with label 1 and all
others have label 0. We claim that the partition I = {Ij : 1 ≤ j ≤ k} with i ∈ Ij if
and only if the j-th vertical skeletal line (which is in column 3j − 1) of the widget
Wk,ai has label 1, is a solution to the Three Partition instance.

From the previous argument we have that I is indeed a partition of {1, . . . ,
3k}. For any 1 ≤ j ≤ k, we have to show that |Ij| = 3 and

∑
i∈Ij ai = 2B+1. The

vertical projection constraint on column 3j − 1 is k(2B + 1) + 6. If each vertical
skeletal line in that column would have label 0, then by construction the projection
would be exactly k(2B + 1). When we decide to increase the label of a line to 1,
the projection value increases by two (again, see Fig. 4.10 for example). Observe
that these freshly added object points cannot overlap, since there are two empty
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rows between the vertical skeletal lines. Thus, there are exactly three indices i such
that the j-th line in the i-th widget has label 1, hence |Ij| = 3.

For the sum, consider the constraint on column 3j, which is 2B + 1. If each
vertical skeletal line in column 3j− 1 would have label 0, the projection of column
3j would be 0 (note that since the maximal label is 1 for every line by the horizontal
constraints, no label of any other line can a�ect the projection of column 3j). If
we set the label of the j-th line in the i-th widget to 1, we increase the projection
by ai. Hence,

∑
i∈Ij ai = 2B + 1.

Overall, I is a solution to the Three Partition instance. 2

Theorem 4.2 The decision problem Skel Rec is NP-complete.

Proof

The reduction from Three Partition to Skel Rec is clearly logspace. From
Lemma 4.3.1 and Lemma 4.3.2, we know that Skel Rec is at least as hard as
Three Partition. The NP-hardness of the latter proves the NP-hardness of the
former.

It is also easy to prove that Skel Rec is in NP. Considering a possible solution
F with size ofm×n to the problem, we need to validate its correctness in polynomial
time. The validation of the projections can be done in O(mn). The morphological
set S(F, Y ) can be constructed in O(mn ·max{m,n}) [59], and comparing S(F, Y )

to S is also polynomial. Thus, Skel Rec is in NP, and overall it is NP-complete.2

If only the horizontal projection and the morphological skeleton is given, the

problem is still NP-complete, considering the structuring element Y of (1.12). This

can be proven similarly to Theorem 4.2. Figure 4.11 shows an example of the

reduction.

4.4 Reconstruction as Optimization Problem

Although the reconstruction from two projections and morphological skeleton is

generally NP-hard, under some circumstances an acceptable image quality can be

achieved. We transform the problem into an energy minimization (or function

minimization) task, where �nding a minimum of the given function is equivalent

to �nding an optimal solution to the reconstruction problem. Moreover, a solu-

tion to the reconstruction is acceptable if the value of the corresponding energy

function is close to its minimum. There are various methods to solve that kind of

problems. In [35], the authors used a memetic algorithm for reconstructing binary

images from horizontal, vertical, diagonal and anti-diagonal projections. In [63] a

fan-beam projection model is implemented and used in systematic experiments in

order to determine the optimal parameter values for reconstruction with Simulated

Annealing. The authors of [66] presented a method that uses DC programming,
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Figure 4.10: An example of the reduction, where 2B + 1 = 16, k = 3 and the
non-negative integers are 2, 3, 4, 4, 4, 5, 5, 6, 6. Left: the Skel Rec instance
after the reduction. Right: a reconstruction corresponding to the solution I =
{
{
1, 6, 8}, {2, 3, 9}, {4, 5, 7}

}
.
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Figure 4.11: An example of the reduction if only the horizontal projection and the
morphological skeleton is known. The image is cut in half for the better visibility.
The Three Partition instance has non-negative integers 1, 2, 2, 2, 3, 4, 5, 6, 8
(with k = 3 and B = 5), with the solution I =

{
{1, 3, 9}, {2, 6, 7}, {4, 5, 8}

}
. Light

gray pixels indicate the skeleton.

a non-convex optimization technique, to solve the reconstruction of binary objects

from few projection directions.

We choose Simulated Annealing (SA) as the optimization method for our prob-

lem owing to its simplicity, robustness, and �exibility in the control parameters.

Section 1.5 gives a detailed description of the general method. Perhaps the most

important advantage of SA over the competitive methods is that it can guarantee

a near optimal solution in a reasonable time. SA also provides a natural way to

encode the requirements of the projections, as well as the morphological skeleton,

into an energy function. We propose three variants of a method to solve the recon-

struction problem for two projections, and also for only the horizontal projection,

based on parametric SA reconstruction.

First, we need to de�ne our reconstruction problem as an energy function. Let

H ∈ Nn
0 and V ∈ Nn

0 be two vectors, and S ⊂ Z2 be a �nite set of points. Our

task is to reconstruct an image F for which S(F, Y ) = S, and which (at least

approximately) satis�es H(F ) = H and V(F ) = V (see again Fig. 4.1c for an

example).

As (1.11) of Section 1.4 states, at each point p ∈ S(F, Y ) there is a unique

skeletal label κp value with p ∈ Sκp(F, Y ). Thus, the image F can be uniquely

represented by a vector K(S(F, Y )) = (κp1 , κp2 , . . . , κp|S(F,Y )|) ∈ Z|S(F,Y )|. Using

the notions of (1.4) of Section 1.1 and given a set of points S, our goal is to �nd

a K∗(S) = (κ∗p1 , κ
∗
p2
, . . . , κ∗p|S|) which corresponds to the image F ∗ generated by

(1.11), such that f(x∗) = ||Ax∗ − b||22 is minimal. Here, x∗ is the column vector

representing F ∗. Figure 4.12 shows an example. Note that even if there is no F

such that S = S(F, Y ) and the function value of f is zero (e.g. in case of noisy

projection data), it can be still possible to give a solution, whose projections are
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a) b) c)

Figure 4.12: An example of the studied reconstruction problem: (a) the skeleton S
and the projections H and V ; (b) a reconstruction attempt F with H(F ) and V(F )
given by some K(S); (c) the optimal solution F ∗ with H(F ∗) = H and V(F ∗) = V
given by K∗(S) (c). Projection elements that di�er from the required ones are
shown underlined.

close to the required ones.

The following lemma gives an upper bound for each element of K(S(F, Y )) of

an arbitrary binary image F .

Lemma 4.4.1 Let F be a binary image of size n × n and K(S(F, Y )) = (κp1 ,

κp2 , . . . , κp|S(F,Y )|) ∈ Z|S(F,Y )|. Then κpi <
⌊
n+1
2

⌋
for each i = 1, . . . , |S(F, Y )|,

where b.c stands for the �oor function.

Proof

From (1.10) of Section 1.4 we know that the maximum value of K(S(F, Y )) is
max{k | F 	k Y 6= ∅}. Since the size of the structuring element Y is 3 × 3, it
follows that the size of F 	t+1 Y is smaller by two in each dimension than the size
of F 	t Y for some non-negative integer t (see the de�nition of the morphological
erosion in (1.6) of Section 1.4). As a consequence, F 	bn+1

2 c Y = ∅. Thus, the

possible maximum value in K(S(F, Y )) is less than
⌊
n+1
2

⌋
. 2

Since the size of the image is known, the searching space is bounded by

Lemma 4.4.1. The following lemma provides a sharper upper bound.

Lemma 4.4.2 For any skeletal set S of points and any (i, j) ∈ S it holds that

κ(i,j) ≤ min

{
i− 1, j − 1, n− i, n− j,

⌊
hi − 1

2

⌋
,

⌊
vj − 1

2

⌋}
,

where κ(i,j) ∈ K(S) is the corresponding skeletal label in K, hi and vj is the corre-

sponding horizontal and vertical projection value, respectively.

Lemma 4.4.2 is trivial due to the size of the image and the fact that F =⋃
p∈S(F,Y )

(
p ⊕κp Y

)
. The lemma simply states that the skeletal labels must be
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small enough, otherwise the corresponding projection values would be bigger. Fur-

thermore, together with Lemma 4.4.1, they de�ne a unique maximum value for

each κp ∈ K(S(F, Y )).

Note that in some variations of the parametric SA we will integrate Lemma 1.4.1

into the energy function as a restriction on the skeletal labels.

4.5 Solving the Reconstruction Problem with Para-

metric SA

We focus on the reconstruction of general binary images from at most two projec-

tions and the morphological skeleton. Since the decision problem is NP-complete, a

straightforward consequence is that there is no polynomial-time algorithm for �nd-

ing an exact solution to the problem described in the �rst paragraph in Section 4.4

with a 0 valued minimum of (1.4) of Section 1.1 (if the morphological skeleton is

involved), unless P=NP.

Nevertheless, we still have the chance to solve (1.4) approximately with SA. An

adjusted version of SA is described in Algorithm 14.

Algorithm 14 Simulated Annealing on the Introduced Problem
Require: Projections H and V , set of skeletal points S, and starting position
K0(S)

Ensure: K(S)
K(S)← K0(S)
t← 0
repeat

K ′(S)← MODIFY(K(S))
Calculate x′ and x from K ′(S) and K(S), respectively
if f(x′) < f(x) or RAND < exp

(
f(x)−f(x′)

T (t)

)
then

K(S)← K ′(S)
end if

t← t+ 1
until the termination criterion is satis�ed
return K(S) and the corresponding image

The basic energy function f we use is simply f(x) = ||Ax − b||22, where x is

de�ned by the actual solution F . The goal is to �nd K∗(S) which describes an

image x∗ where f(x∗) is minimal, i.e., it has the lowest energy. We know that if

f(x1) < f(x2), then the image F1 is better than F2 in the sense that its projections

are closer to the required ones, therefore function f(x) is a proper energy function.

T (t) is the temperature function or the cooling schedule, such that T (0) is positive,

and T (t)→ 0 as t→∞.
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We choose the following exponential function

T (t) = T0 ·
(
Ts
T0

)t/M
,

where t denotes time, so the temperature will decrease over time,M is the maximal

number of allowed iterations, T0 is the chosen value for the starting temperature

and Ts is a parameter controlling the shape of the cooling schedule. We empirically

established the starting temperature T0 = 10 and the parameter Ts = 0.001. In

each iteration the time t is increased by 1. The process terminates when the

iteration number t reaches M , or the energy of the current solution is 0.

RAND is a �oating point number taken in each iteration from a uniform random

distribution (0 ≤ RAND ≤ 1). With the function MODIFY we alter a state to

another one simply by choosing a κp ∈ K(S) randomly, and updating its value

between the corresponding bounds de�ned by Lemmas 4.4.1 and 4.4.2. For the

initial solution we choose the κp-s such that the initial image satis�es Lemma 1.4.1

(see Section 1.4) for every 8-adjacent skeletal points � i.e., their Manhattan-distance

is not greater than 2 � and its projections are close to the required ones. We choose

to consider only 8-adjacency, because its validity is easy to compute locally. We

developed three di�erent strategies for the reconstruction:

1. No Skeletal Constraint (NSC): In the SA modi�cation step, we choose a κp
randomly, and change it randomly between its bounds, omitting Lemma 1.4.1.

2. Dynamic Skeletal Constraint (DSCC): We apply Lemma 1.4.1 in the following

way: in each step, we modify a randomly chosen κp by de�ning its new value

such that |κp − κq| ≤ C holds for each q 8-adjacent to p. If C = 1, we

allow only those di�erences that mentioned in Lemma 1.4.1 for 8-adjacent

skeletal points. Because it also means slow convergence during iterations, we

allow higher C values in the beginning of the reconstruction, and decrease C

through time. For that we use a function C(t), which is similar to the cooling

schedule:

C(t) =

⌈
C0 ·

(
Cs
C0

)t/M⌉
,

where d.e denotes the ceil function, C0 is the starting parameter, so C(0) =

C0, Cs is a parameter established to 0.15 explicitly. Note that C(t) → 1 as

t → M , so we force SA to search a solution that satis�es Lemma 1.4.1 (for

8-adjacency) as much as possible.

3. Combined Energy Function (CEFα): We incorporate the constraints of
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Lemma 1.4.1 by using an extended energy function:

f(x) = α||Ax− b||22 + (1− α)g(x),

where α is a weighting parameter (0 ≤ α ≤ 1),

g(x) =
∑

0<d1(p,q)≤2

h(κp, κq)
(
p, q ∈ S, κp, κq ∈ K(S)

)
,

and

h(κp, κq) =

{
0 if |κp − κq| ≤ 1

|κp − κq|/2 otherwise.

Note that if a solution F satis�es Lemma 1.4.1 for 8-adjacent skeletal points,

then g(x) = 0. In case of α = 1, this method is equivalent to the No Skeletal

Constraint method (i.e. CEF1 = NSC).

4.6 Numerical Results

4.6.1 Implementation Details

For testing our proposed algorithm we developed a general reconstruction frame-

work. For initialization, one has to specify the initial temperature T0, the parameter

Ts, the maximal number of allowed iterations and the initialization strategy. Some

of the variants of the presented SA method have also additional parameters, such

as α or C0. Certain parameters were �xed, such as Cs or the structuring element

Y . We also �xed the cooling schedule. These parameters were chosen empirically,

since we found that the reconstruction is robust for those settings. The framework

was implemented in C++ language using Dev-C++ environment, and the test was

performed under Windows 7 on one core of an Intel Core 2 Duo T2520 of 1.5 GHz

PC with 2GB of RAM.

4.6.2 Experimental Results for Two Projections

We tested our algorithm on 50 arti�cial images. Here we show 8 samples of them,

which we found the best representatives of our results. Six of our test samples have

one point thin morphological skeleton consisting of few 8-connected components.

However, we also show two other images which have more complex skeletons. All

of the test images have size of 256× 256.

Since SA is a randomized algorithm, we performed each test 10 times and

measured the mean CPU time and errors of the reconstruction. For the numerical
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a) b) c)

Figure 4.13: A test image and a reconstruction attempt: (a) the original image;
(b) its morphological skeleton; (c) one of the reconstructed images with CEF0.5.

evaluation of the quality of the reconstructed images, we calculated

E = ||b− b′||2 ,

where b and b′ is the projection vector of the original and the reconstructed image,

respectively. We also calculated the relative mean error (RME) to measure the

distance between the original and the reconstructed image,

RME =

∑n2

i=1 |pi − p′i|∑n2

i=1 pi
· 100,

where pi and p′i is the i-th pixel value of the original and the reconstructed image,

respectively. Note that E and RME do not necessarily correlate (although RME

= 0 implies E = 0). For all tests, we set T0 = 10, Ts = 0.001, and M = 50 000.

First, we tested the images containing just one convex object (see the upper

two images of Table 4.3). An example of the reconstruction is shown in Fig. 4.13.

We found that 50 000 iterations were more than enough to converge to such a

reconstructed image in most cases. All three variants of the SA method provided

results with low projection error and RME, and DSC turned out to be the best

choice in term of RME. In one case, setting the parameter C = 1 of DSC we

could even perfectly reconstruct the original image in all 10 runs, using only 21 220

iterations on average.

In the second turn, we studied images of convex objects arranged in a 2 × 2 and

a 3 × 3 array (bottom two images of Table 4.3). We observed that the initial state

misleaded the DSC algorithm in some cases. The main reason was that the initial

image was very dissimilar to the original one, and DSC converged very slowly,

meaning that it would have needed much more than 50 000 iterations.

The third group of test data contained images consisting of convex objects

forming random groups (upper two images of Table 4.4). For the �rst image,
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a) b) c)

d) e) f)

Figure 4.14: An example of the convergence of DSC10: (a) original image; (b)
the morphological skeleton; (c) the initial reconstruction; (d) result after 5 000
iterations; (e) after 25 000 iterations; (f) �nal result after 50 000 iterations with
E = 325 and RME = 2.08.

a) b) c)

Figure 4.15: A test image with coarse boundaries: (a) the test image; (b) its
morphological skeleton that contains numerous isolated pixels; (c) one of the re-
constructed images with NSC.
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Table 4.3: Reconstruction results from two projections. CPU values are in millisec-
onds and E values are rounded to integers. Results with lowest errors are typeset
in boldface.

Image Method CPU E RME
NSC 3842 1060 0.64
DSC10 4030 98 0.16
DSC5 4116 97 0.15
DSC1 4563 18 0.04

CEF0.3 4358 2468 1.18
CEF0.5 4415 1675 0.86
CEF0.7 4435 1305 0.72
NSC 7276 1285 0.90
DSC10 7900 174 0.28
DSC5 8127 146 0.13
DSC1 4473 0 0

CEF0.3 7626 2578 1.09
CEF0.5 7665 1849 0.82
CEF0.7 7691 1505 0.79
NSC 3784 3405 7.27
DSC10 3038 1291 3.09

DSC5 3164 4288 4.26
DSC1 3566 5307 5.74
CEF0.3 5412 5665 4.20
CEF0.5 5387 4829 3.62
CEF0.7 5328 3212 3.62
NSC 4346 6136 4.43

DSC10 4733 1066145 48.48
DSC5 4609 1722350 52.87
DSC1 4926 3302481 59.77
CEF0.3 7308 14371 5.94
CEF0.5 7243 8896 5.30
CEF0.7 7222 7402 4.67

the results are similar to the �rst group's results (see the upper two images of

Table 4.3), even if there are more skeletal points now yielding a bigger searching

space. Figure 4.14 shows an example of the convergence of the DSC10 method.

However, for the second image NSC produced the best results.

Finally, we examined images that have many skeletal points with few connec-

tions (bottom two images of Table 4.4). An example reconstruction result can be

seen in Fig. 4.15. One of the reasons of the poor results could be the skeleton,

which contains many isolated pixels. It makes the method slow and ambiguous

due to the large searching space. Here, NSC proved to be the best choice, since

it did not use the constraints of Lemma 1.4.1, yielding the most robust approach

of all. Although even this method could reach just a rough approximation of the

original object, the RME of the results is suprisingly low regarding that just two
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Table 4.4: Reconstruction results of more complex images from two projections.
CPU values are in milliseconds and E values are rounded to integers. Results with
lowest errors are typeset in boldface.

Image Method CPU E RME
NSC 1666 1341 4.34
DSC10 1215 292 2.01

DSC5 1234 314 2.06
DSC1 1302 294 2.03
CEF0.3 2904 2534 6.56
CEF0.5 2827 1950 5.59
CEF0.7 2851 1732 5.61
NSC 2165 2709 3.14

DSC10 1713 6042 5.00
DSC5 1724 7962 13.06
DSC1 1910 6360 6.28
CEF0.3 4123 5688 4.55
CEF0.5 4131 4178 3.69
CEF0.7 4114 3346 3.24
NSC 3537 2530 7.49

DSC10 2852 9154 15.73
DSC5 2981 13138 18.79
DSC1 3226 67493 27.37
CEF0.3 6380 5183 8.90
CEF0.5 6367 4102 8.69
CEF0.7 6343 3029 8.65
NSC 2757 4034 21.75

DSC10 2304 4523 27.98
DSC5 2467 7472 28.91
DSC1 2430 13096 38.14
CEF0.3 8884 6663 25.24
CEF0.5 8856 5012 24.13
CEF0.7 8959 4407 25.16

projections were used.

Beside our previous database we tested the NVC algorithm � which resulted

generally low RME � on hv-convex 4-connected images, a well-de�ned class of

images where uniform random generation is possible [50]. We selected 50 images

from the benchmark of [3] with the size of 150 × 150, and ran the algorithm 10

times with the same parameters. Some of the images can be seen in Fig. 4.16,

while the reconstruction results for an image are shown in Fig. 4.17. The mean of

the energies for the reconstructed images were E = 723 with standard deviation of

σ = 184.86, the mean of the RMEs were 8.40 with σ = 3.76, while the mean of the

CPU times were 1715 miliseconds with σ = 629.83.
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Figure 4.16: Samples from the hv-convex 4-connected set.

a) b) c)

d) e) f) g) h)

i) j) k) l) m)

Figure 4.17: Reconstruction results for an hv-convex 4-connected image: (a) origi-
nal image; (b) morphological skeleton; (c) the combined gray-value image that we
get by superimposing the reconstruction results (d-m) on each other, and calculat-
ing the average value on each pixel. Numbers indicate the RME values.
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Table 4.5: Reconstruction results from the horizontal projection. CPU values are
in milliseconds and E values are rounded to integers. Results with lowest errors
are typeset in boldface.

Image Method CPU E RME
NSC 5524 995 1.52
DSC10 6020 106 0.29

DSC5 6012 422 1.01
DSC1 6675 318 1.11
CEF0.3 5618 2332 2.80
CEF0.5 5689 1499 2.01
CEF0.7 5737 1177 1.89
NSC 10401 1353 0.94
DSC10 11871 124 0.18
DSC5 12327 153 0.19
DSC1 14006 8 ∼0
CEF0.3 10302 2600 1.40
CEF0.5 10470 1901 1.05
CEF0.7 10441 1546 0.93
NSC 4707 2381 11.48
DSC10 4135 1310 10.41

DSC5 4265 1511 10.54
DSC1 4913 5189 12.82
CEF0.3 5796 4501 11.25
CEF0.5 5784 3482 11.42
CEF0.7 5713 2892 10.74
NSC 5527 4118 8.00

DSC10 6940 600270 60.82
DSC5 8131 967214 57.92
DSC1 10943 1823806 63.09
CEF0.3 7470 7037 9.83
CEF0.5 7503 5072 8.39
CEF0.7 7326 4436 8.44

4.6.3 Experimental Results for One Projection

Since the results show that the morphological skeleton carries so much information

about the shape of the original image, and can greatly improve the quality of

the reconstruction, we decided to run the tests considering only the horizontal

projection of the image besides its morphological skeleton. The parameters were

identical to the ones before, except the lack of the second projection. Table 4.5

and Table 4.6 show the results.

The results are fairly similar to the reconstruction results of two projections,

however, the RME values are signi�cantly higher, due to the lesser amount of in-

formation. Since the algorithms try to minimize E, which holds now only the

horizontal projection, there is also a signi�cant di�erence between the correspond-
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Table 4.6: Reconstruction results of more complex images from the horizontal
projection. CPU values are in milliseconds and E values are rounded to integers.
Results with lowest errors are typeset in boldface.

Image Method CPU E RME
NSC 1999 1583 13.14
DSC10 1445 1445 17.48
DSC5 1560 1363 12.66
DSC1 1706 2328 14.86
CEF0.3 2592 2427 17.95
CEF0.5 2590 2216 14.51
CEF0.7 2598 1360 9.23

NSC 2475 3927 29.88
DSC10 2202 4086 32.17
DSC5 2303 3970 34.16
DSC1 2558 5004 35.67
CEF0.3 3623 5472 28.44
CEF0.5 3642 4229 28.42
CEF0.7 3641 3375 21.96

NSC 4984 2563 15.63
DSC10 4407 3789 20.63
DSC5 4602 6744 25.50
DSC1 5070 34355 30.81
CEF0.3 6738 2395 13.37

CEF0.5 6736 3043 16.31
CEF0.7 6712 3152 15.40
NSC 3342 1896 43.85

DSC10 3025 1638 46.89
DSC5 3108 2152 43.37
DSC1 3155 3524 39.52

CEF0.3 7949 3474 45.32
CEF0.5 7897 2920 44.73
CEF0.7 7903 2431 44.32

ing E and RME errors. A good example is the last image of Table 4.6, where NSC

managed to minimize E better, but DSC1 achieved better RME, thus a more similar

result to the original one. However, the reconstruction results of those images are

quite poor, similarly to Table 4.4. On the other hand, some of the reconstruction

results are surprisingly good. For example, for the second image of Table 4.5, the

reconstructed image di�ered from the original one in just a few pixels, yielding a

nearly 0 error in both E and RME. This indicates that the morphological skeleton

carries really much information about the original image.

Fig. 4.18 shows some of the reconstruction results for an hv-convex 4-connected

image. The mean of the energies for the reconstructed images were E = 266 with

standard deviation of σ = 27.85, the mean of the RMEs were 11.86 with σ = 2.93,
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a) b) c)

d) e) f) g) h)

i) j) k) l) m)

Figure 4.18: Reconstruction results from the horizontal projection for an hv-convex
4-connected image: (a) original image; (b) morphological skeleton; (c) the combined
gray-value image that we get by superimposing the reconstruction results (d-m) on
each other, and calculating the average value on each pixel. Numbers indicate the
RME values.

while the mean of the CPU times were 1697 miliseconds with σ = 640.77.

4.7 A Uniqueness Result for Reconstructing hv-

Convex Polyominoes

As mentioned before, uniqueness of certain type of binary images is a related issue

to the reconstruction. In [30], the authors determined an upper and lower bound to

the maximum number of hv-convex polyominoes having the same orthogonal pro-

jections, and proved that under some conditions, the ambiguity can be exponential.

In [55], the authors gave a formula for enumerating certain type of parallelogram

polyominoes according to their symmetry types and their perimeter or area. In this

section, we study the uniqueness of the reconstruction of certain type of 4-connected

hv-convex images, using two projections and the morphological skeleton. We show

that the uniqueness of a certain parametric subclass of hv-convex binary images is

strongly connected to its parameters.

First, we introduce some de�nitions. Given a �nite set F ⊂ Z2 and a point

p ∈ Z2, we say that q ∈ F is a closest point of F to p, if there is no r ∈ F such

that d1(p, r) < d1(p, q).
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Let pq denote the sequence p = (ip, jp), (ip + 1, jp + 1), . . . , (ip + n, jp + n) = q.

We use the same notion for the line segment between p and q if q ∈
{
(ip + n, jp −

n), (ip − n, jp + n), (ip − n, jp − n)
}
.

Let N4(p) denote the set of 4-adjacent points to p. A point p ∈ F is called a

border point if p has a 4-adjacent background point.

For the de�nition of 4-connectedness and polyominoes, see the �rst paragraph

of Section 4.2. Furthermore, a binary image is diagonally convex (antidiagonally

convex), if the object points are consecutive in each diagonal (antidiagonal).

We can de�ne now a special class of polyominoes, described by two parame-

ters. Later we will show that the uniqueness of the reconstruction of these images

depends only on their parameters.

For given k, l ∈ N0, let Gk,l be the binary image

Gk,l = (p⊕k Y ) ∪ (q ⊕l Y ) ∪ (r ⊕l Y ) ∪ (s⊕k Y ), (4.20)

where p = (i, j), q = (i, j+k+l+1), r = (i+k+l+1, j), s = (i+k+l+1, j+k+l+1),

and Y is the structuring element given by (1.12) of Section 1.4. Furthermore, let

Hk,l ⊂ Z2 be constructed from G = Gk,l by

Hk,l =
{
(u, v) | ∃(u1, u2) u1<u<u2,

(u1, v) ∈ G, (u2, v) ∈ G, (u, v) /∈ G
}⋃ {

(u, v) | ∃(v1, v2) v1<v<v2,

(u, v1) ∈ G, (u, v2) ∈ G, (u, v) /∈ G
}
.

Finally, let Bk,l = Gk,l ∪̇ Hk,l, where ∪̇ denotes the disjoint union. Figure 4.19

shows examples with k = 4, l = 2, and k = 5, l = 1.

In the sequel, let p, q, r, and s denote the points in (4.20) for an arbitrary Bk,l

with �xed k and l. The following attributes are easy to verify for Bk,l:

• the size of the image is n× n, where n = 3 ·max{k, l}+min{k, l}+ 2,

• Bk,l is 4-connected, hv-convex, diagonally and antidiagonally convex,

• Bk,l has rotational symmetry of order 2,

• Bk,l = Tx(Bl,k) = Ty(Bl,k), where Tx and Ty denotes the re�ection transfor-

mation across the horizontal and vertical axis, respectively,

• H(Bk,l) = H(Tx(Bk,l)) and V(Bk,l) = V(Ty(Bk,l)).

The images with k = l are trivial cases; in the reconstruction from two projec-

tions can be performed uniquely in polynomial time [11, 26, 65], and � in a �nal step
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a) b)

Figure 4.19: Example images of Bk,l: (a) the B4,2 image; (b) the B5,1 image.
Grey and black pixels indicate the corresponding subset G and H, respectively.
From the horizontal and vertical projections and the morphological skeleton the
reconstruction of B4,2 is non-unique, B5,1 is uniquely reconstructable.

� we only need to check whether the morphological skeleton of the reconstructed

image is the set S. Furthermore, since Bk,l = Tx(Bl,k), it is su�cient to focus on

the case k > l. We will prove that there is a connection between the uniqueness

of the reconstruction and the value of k and l. Namely, the reconstruction of Bk,l

(k > l) is non-unique if and only if⌊
k + l

2

⌋
≤ 2l. (4.21)

4.7.1 Some Properties of the Morphological Skeleton and

the Bk,l Images

First, we show some general properties of the morphological skeleton with the

structuring element Y in (1.12) of Section 1.4. The following lemma gives another

de�nition of the morphological skeleton with Y .

Lemma 4.7.1 Let p ∈ F be an object point of a binary image F , and let Y be the

structuring element in (1.12) of Section 1.4. Then

p ∈ Sk(F, Y ) ⇐⇒


(p⊕k Y ) ⊂ F,

(p⊕k+1 Y ) 6⊂ F,

∀q ∈ N4(p) (q ⊕k+1 Y ) 6⊂ F.

(4.22)
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Proof

For the proof we use the equivalency

p ∈ (F 	k Y ) ⇐⇒ (p⊕k Y ) ⊂ F. (4.23)

Assume p ∈ Sk(F, Y ). Then p ∈ (F 	k Y ) \ [(F 	k+1 Y )⊕ Y ] ⊂ (F 	k Y ) \
(F 	k+1 Y ), according to the de�nition of the skeletal subset in (1.9). Therefore,
(p ⊕k Y ) ⊂ F and (p ⊕k+1 Y ) 6⊂ F , using (4.23). Assume to the contrary that
there exists a q ∈ N4(p) such that (q ⊕k+1 Y ) ⊂ F . According to (4.23), q ∈
(F 	k+1 Y ). But then p ∈ [(F 	k+1 Y )⊕ Y ], since d1(p, q) = 1, which contradicts
to the de�nition of the skeletal subset.

For the other direction, let p ∈ F a particular point. From (p ⊕k Y ) ⊂ F , it
follows that p ∈ (F 	k Y ), and from (p ⊕k+1 Y ) 6⊂ F we get p /∈ (F 	k+1 Y ),
using (4.23). Since there is no point q ∈ N4(p) with q ∈ (F 	k+1 Y ), we get
p 6∈ [(F 	k+1 Y )⊕ Y ]. Therefore, according to (1.9), p ∈ Sk(F, Y ). 2

We describe a property of the points in Bk,l with its border points.

Lemma 4.7.2 Let B = Bk,l for �xed k and l. Moreover, let u = (iu, ju) ∈ B

an arbitrary object point of B and t ∈ N0 such a value that (u ⊕t Y ) ⊂ B and

(u⊕t+1Y ) 6⊂ B. Then, there exists a border point v = (iv, jv) such that d1(u, v) = t

and either iu = iv or ju = jv.

Proof

Since (u⊕0Y ) = u ∈ B and B is �nite, the unique existence of t is clear. Assume to
the contrary that none of the v1 = (iu− t, ju), v2 = (iu, ju+ t), v3 = (iu+ t, ju) and
v4 = (iu, ju − t) points are border points (as Fig. 4.20 shows). Thus, every point
4-adjacent to them is in B, including the oi points shown in Fig. 4.20 (i = 1, . . . , 4).
Since B is both diagonally and antidiagonally convex, every point in oioi+1 is in B
(i = 1, . . . , 4, o5 = O1), too. Therefore, (u⊕t+1 Y ) ⊂ B, which is a contradiction.2

Now, we give three lemmas to decide whether a certain point of Bk,l is an

element of the morphological skeleton of the image. First, we identify which object

points cannot be skeletal points.

Lemma 4.7.3 Let B = Bk,l for arbitrary �xed k and l, and let u = (iu, vu) ∈ B
an arbitrary object point of B. If u /∈ (ps ∪ rq) then u /∈ S(B, Y ).

Proof

Assume that u /∈ (ps ∪ rq) and let t ∈ N0 be a value such that (u ⊕t Y ) ⊂ B and
(u ⊕t+1 Y ) 6⊂ B. Without loss of generality, let us assume that a closest point to
u from the set {p, q, r, s} is p (the proof of the other cases are similar). Let c be a
closest border point to u in a way that either c = (iu− t, ju) or c = (iu, ju− t). We
know from Lemma 4.7.2 that at least one of the cases holds.

The rest of the proof can be followed in Fig. 4.21. If c = (iu − t, ju), then let
w = (iw, jw) be the closest point to u such that w ∈ ps and jw = ju (in the other
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Figure 4.20: Assumption for Lemma 4.7.2, where oi ∈ B (i = 1, . . . , 4) are denoted
by black pixels. Dark grey pixels indicate the set (u ⊕t Y ). Since B is both
diagonally and antidiagonally convex, every element indicated by light grey pixels
are in B. Therefore, (u⊕t+1 Y ) ⊂ B, which is a contradiction.

case, if c = (iu, ju − t), then iw = iu). Since c is also the closest border point to
w and d1(c, w) = d1(u,w) + t, we get (w ⊕d1(u,w)+t Y ) ⊂ B (in a similar way as in
Lemma 4.7.2). As a consequence, (u ⊕t Y ) ( (w ⊕d1(u,w)+t Y ) (note that u 6= w),
therefore there is a v point such that V ∈ N4(u) and (v ⊕t+1 Y ) ⊂ B. According
to Lemma 4.7.1, u /∈ St(F, Y ) for any t ∈ N0, therefore, u /∈ S(F, Y ). 2

The next lemma describes which object points must be skeletal points.

Lemma 4.7.4 Let B = Bk,l for arbitrary �xed k ≥ l. Then ps ⊂ S(B, Y ).

Proof

Let u ∈ ps and let t ∈ N0 be a value such that (u⊕t Y ) ⊂ B and (u⊕t+1 Y ) 6⊂ B.
According to Lemma 4.7.1, we only have to prove that (v ⊕t+1 Y ) 6⊂ B for any
v ∈ N4(u) point. Without loss of generality, we only have to check two of the
4-adjacent points, since B has rotational symmetry of order 2. Let u = (i, j),
v1 = (i− 1, j), and v2 = (i, j + 1) (see Fig. 4.22). Through the symmetries, either
c1 = (i− t, j) or c2 = (i, j + t) is a closest border point to u.

Assume the �rst case holds. Then, (i− t− 1, j) /∈ B. Since B is hv-convex and
k ≥ l, w = (i− t−1, j+1) /∈ B. Note that d1(w, v1) = d1(w, v2) = t+1. Therefore
(v1 ⊕t+1 Y ) 6⊂ B and (v2 ⊕t+1 Y ) 6⊂ B, which yield that u ∈ S(B, Y ), indeed. The
proof is similar if c2 is the closest border point to u. 2

Finally, we give a necessary and su�cient condition for the remaining points of

Bk,l.

Lemma 4.7.5 Let B = Bk,l for arbitrary �xed k ≥ l. Then rq ⊂ S(B, Y ) if and

only if ⌊
k + l

2

⌋
≤ 2l. (4.24)
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Figure 4.21: Illustration for the proof of Lemma 4.7.3. Grey pixels indicate B4,3.
Here, t = 3, d1(u,w) = 3. Note that, since (u ⊕3 Y ) ( (w ⊕6 Y ) ⊂ B (dark grey
and black pixels), it holds that (v ⊕4 Y ) ⊂ B, therefore u cannot be a skeletal
point.

Figure 4.22: Illustration for the proof of Lemma 4.7.4, assuming c1 is a closest
border point to u. Note that d1(u, c1) = t, d1(v1, w) = t+ 1 and d1(v2, w) = t+ 1.
Since w /∈ B (due to the hv-convexity of B) and k > l, it follows that (v1⊕t+1Y ) 6⊂
B and (v2 ⊕t+1 Y ) 6⊂ B. Therefore, u is a skeletal point.

Proof

Let us denote the points of rq with r = r0 = (i, j), r1 = (i − 1, j + 1), r2 =

(i − 2, j + 2), . . . , rn, where n = b(k + l + 1)/2c. Note that d1(r, rt) ≤ d1(q, rt)

for 0 ≤ t ≤ n, while the remaining points of rq are always closer to q than to
r. Furthermore, let c0 = (i + l, j), c1 = (i + l, j + 1), c2 = (i + l, j + 2), . . . ,
c2l+1 = (i+ l, j + 2l+ 1), which are all border points of B below the rt points (see
Fig. 4.23). Note, that a similar set can also be de�ned to the left of the rt points.

If n ≤ 2l, then ct is a closest border point to rt, having d1(ct, rt) = l + t.
Therefore (rt⊕l+t Y ) ⊂ B and (rt⊕l+t+1 Y ) 6⊂ B. Since ct and ct+1 are both border
points, for all the 4-adjacent v ∈ N4(rt) points it is true that (v ⊕l+t+1 Y ) 6⊂ B.
According to Lemma 4.7.1, rt ∈ S(B, Y ). As a consequence, rq ⊂ S(B, Y ).

If n > 2l and k + l is odd, then rn ∈ ps, therefore rn ∈ S(B, Y ) according
to Lemma 4.7.4. If n = 2l + 1, then rq ⊂ S(B, Y ) still holds. However, if n >
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Figure 4.23: Illustration for the proof of Lemma 4.7.5. Dark grey pixels indicate
the Gk,l sub-image in Bk,l. Light grey pixels indicate the rt elements (t = 0, . . . , n),
where r = r0 = (i, j). Here, only the �rst 2l + 1 of them are shown. Black pixels
indicate c0, c1, . . . , c2l+1. Note that one of the closest border points to ra is ca.

2l + 1, then rt /∈ S(B, Y ) for 2l + 1 ≤ t < n, since there exist a v ∈ N4(rt) that
(v ⊕l+t+1 Y ) ⊂ B. Therefore, rq ⊂ S(B, Y ) if and only if n =

⌊
k+l+1

2

⌋
≤ 2l + 1, or

equivalently,
⌊
k+l
2

⌋
≤ 2l.

Finally, if n > 2l and k+l is even, then rn /∈ ps. If n ≥ 2l+1, then rt /∈ S(B, Y )

for every 2l + 1 ≤ t ≤ n, similarly to the previous case. Therefore, rq ⊂ S(B, Y )

if and only if n =
⌊
k+l+1

2

⌋
≤ 2l, i.e.,

⌊
k+l
2

⌋
≤ 2l. 2

4.7.2 Proof of the Uniqueness Result

Now we establish the relation between k, l and the uniqueness of the reconstruction

of the image Bk,l.

Theorem 4.3 Let B = Bk,l for arbitrary �xed k ≥ l. Then the reconstruction of

B is non-unique if and only if ⌊
k + l

2

⌋
≤ 2l. (4.25)

Proof

Note that if k = l, the reconstruction is unique (see the last paragraph of Sec-
tion 4.7). From now we assume that k > l.

First, let assume that (4.25) holds for B = Bk,l with arbitrary �xed k > l.
According to Lemma 4.7.4, ps ⊂ S(B, Y ). As Lemma 4.7.5 states, rq ⊂ S(B, Y ).
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Figure 4.24: Illustration for the proof of Theorem 4.3: The assumption that there
is a v skeletal point closer to p than u. If (u ⊕κu Y ) reaches the �rst row (light
grey pixels), then (v ⊕κv Y ) must reach the �rst row (dark grey pixels), according
to Lemma 1.4.1, which is a contradiction to h∗1 = 1. Black pixels denote ps.

There is no other skeletal point, according to Lemma 4.7.3, therefore S(B, Y ) =

ps ∪ rq (note that the skeleton has a re�ection symmetry to both horizontal and
vertical axis). As a consequence, S(Bk,l, Y ) = S(Bl,k, Y ). Since H(Bk,l) = H(Bl,k)

and V(Bk,l) = V(Bl,k) (although Bk,l 6= Bl,k), the reconstruction is non-unique.
For the other direction of the proof, we assume to the contrary that there is

an F 6= B image (which is not necessarily an hv-convex polyomino) with H∗ =

H(B) = H(F ), V ∗ = V(B) = V(F ) and S∗ = S(B, Y ) = S(F, Y ), but
⌊
k+l
2

⌋
> 2l.

We use the notation of p, q, r and s in S∗ as in de�nition (4.20). Let n = 3k+ l+2

denote the width (and height) of the image B. Since k > l, there is only 1 object
point in the �rst and last row of B, and in the �rst and last column of B. Therefore
h∗1 = 1, h∗n = 1, v∗1 = 1, v∗n = 1. According to (1.11), we have to �nd the skeletal
labels of S∗ in order to reconstruct F . Let u ∈ S∗ be the skeletal point such that
the projection value h∗1 came from (u ⊕κu Y ). Then u and p (or q) must coincide
with κu = k, otherwise, there exists a v skeletal point such that d1(u, v) = 2

and v is closer to p (or q). Since κv ≥ κu − 1, according to Lemma 1.4.1 (i.e.,
2 = d1(u, v) > |κu−κv| ), (v⊕κv Y ) reaches the �rst row. Therefore, h∗1 ≥ 2, which
is a contradiction (see Fig. 4.24). In a similar way, we get either κp = κs = k or
κq = κr = k.

If κp = κs = k, then let F ′ = S∗ ∪ (p⊕k Y ) ∪ (s⊕k Y ) ⊂ F . Let H ′ = H(F ′).
We observe that h∗1 = h′1, . . . , h

∗
k−l = h′k−l (see Fig. 4.25), and also the di�erence

h∗k−l+1 − h′k−l+1 = 2l + 1.
Let qi denote the i-th skeletal point in qr in a way that q0 = q and qi =

qi−1 + (1,−1) (i = 0, . . . , 2l). It follows that κqi ≤ l + i, because h∗k−l is already
ful�lled, and κqi ≥ l + i. Otherwise h∗k−l+1 cannot be ful�lled, since none of the qi
points are in the same column. Therefore, κqi = l + i. The same holds for the ri
series de�ned similarly. Note that κq = κr = l.

Now, let F ′′ = F ′ ∪ (qi ⊕l+i Y ) ∪ (ri ⊕l+i Y ) with i = 0, . . . , 2l. If F ′′ ful�ls the
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Figure 4.25: An example of κp = κs = k in the proof of Theorem 4.3. Dark grey
pixels indicate (p ⊕k Y ). Note that every horizontal projection value h′1, . . . , h

′
k−l

ful�ls the corresponding horizontal projection values in H∗, due to (p⊕kY ). There-
fore, for every i, (qi ⊕κqi Y ) must reach the thick line in order to ful�l the value
h∗k−l+1. Here, κq1 = 2 (light grey pixels).

projections, then F = F ′′. Otherwise, we have to add additional points to F ′′ in
order to ful�l the projections. We have to �ll the pqrs rectangle in order to get
F (since the rest of the projection values are already ful�lled). In this way we get
F = B, which is a contradiction to our assumption F 6= B.

The reconstruction is similar if κq = κr = k. In this case, B = Tx(F ). However,
ps ⊂ S∗, but rq 6⊂ S∗ according to Lemmas 4.7.4 and 4.7.5. Therefore, S(F, Y ) 6=
Tx(S(F, Y )) = S(Tx(F ), Y ) = S(B, Y ) = S∗. F cannot be a solution to the
reconstruction problem (see Fig. 4.26).

Since there cannot be any other image F̃ with H(F̃ ) = H∗, V(F̃ ) = V ∗ and
S(F̃ , Y ) = S∗, our assumption that

⌊
k+l
2

⌋
> 2l was false. 2

4.8 Summary

Determining the computational complexity of the reconstruction problems is im-

portant to analyze the e�ciency of the reconstrucion algorithms. We showed that

even though additional information, such as the morphological skeleton � with or

without considering 4-connectedness � of the image with a particular structuring

element may reduce the ambiguity of the reconstruction, the problem still remains

NP-complete. Thus, we rede�ned the problem as an optimization task, and pro-

posed three variants of a method based on Simulated Annealing to solve the task.

Without assuming 8-connected morphological skeletons, a rough reconstruction is

always possible in a short time and a small number of iterations. With additional

restrictions the result will be smoother, although the convergency of the method

becomes slower. The No Skeletal Constraint variant provides overall satisfactory
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a) b)

c) d)

Figure 4.26: A reconstruction attempt, where k = 5 and l = 1. Here, the assump-
tion is κq = κr = k. The steps are (a) the skeleton S∗, (b) - (c) intermediate steps
(light grey pixels indicate the newly added object points), (d) the �nal image F
and its skeleton (black pixels). Numbers show the di�erence of the actual and the
required horizontal projections. Note that S(F, Y ) 6= S∗, hence F cannot be a
solution: our assumption was false.
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results. The Dynamic Skeletal Constraint creates smoother results in most cases,

but needs more iterations to converge. The Combined Energy Function variant is

just slightly worse than the NSC, but much slower. Beside that, in all the three

considered variants we found that the result is much more dependent on the number

of the skeletal points, rather than on the size of the image.

Furthermore, the number of hv-convex polyominoes satisfying the given hori-

zontal and vertical projections can be exponential, although there exists a poly-

nomial time algorithm for �nding one of those solutions. We showed that the

reconstruction of hv-convex polyominoes is non-unique even if the morphological

skeleton of the image is additionally given. However, for a certain parametric type

of those images the question of the uniqueness can be answered by the parameter

values.

The �ndings of this research have been published in two conference proceed-

ings [40, 46], and two journal papers [47, 45]. Up to date, there have been four

independent citations [16, 19, 20, 72] to the results of this chapter.





Chapter 5

Conclusion

This dissertation gives a summary of the Author's research in the �eld of binary

matrices and binary tomography.

First, we investigated switching components that play an essential role in binary

reconstruction and data analysis. Searching for switching components in a binary

matrix is a relevant task in discrete image reconstruction, as well as in biogeography

and ecology. Although �nding the minimal number of 0-1 �ips in order to make a

binary image switching component free is generally NP-hard, we managed to give

two heuristics that outperform the previous methods in the number of 0-1 �ips to

make a binary image switching component free. For that aim we have shown how

to reduce the size of the search space radically while keeping the optimal solutions

in the search space. Moreover, we explained how to use those heuristics for binary

image compression using Chang's binary reconstruction algorithm. The results

could lead to design more e�cient lossless and lossy image compression methods

based on storing projections, 0-1 and 1-0 �ips; not just for binary images, but for

grayscale and color images as well.

Furthermore, we proposed a method to reconstruct hv-convex polyominoes from

a given horizontal projection with minimal number of columns in linear time. The

method can be extended in numerous ways, including searching for solutions with

arbitrary number of columns, or reconstructing 8-connected binary images with

given number of 4-connected components. We also provided formulas for counting

the possible solutions, and gave a method to generate uniform random hv-convex

binary images satisfying the given horizontal projection in polyominal time. We be-

lieve that an e�cient heuristic could be to solve two instances of the one-projection

reconstruction problem (one for the horizontal and one for the vertical projection),

and then to combine the results of both of them. By combining the results of

the one-projection reconstructions we could also develop a novel method to re-

construct hv-convex polyominoes from two projections, by which we could gain a

deeper understanding of the problem.

101
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Finally, we introduced a novel problem where the task is to reconstruct certain

type of binary images from the given projections and the morhological skeleton. We

proved that for polyominoes and general binary images the problem is generally NP-

complete. Nevertheless, we showed that a rough reconstruction is always possible

in a short time and a small number of iterations using optimization methods. We

also investigated the uniqueness of certain sub-classes of polyominoes.

Reconstruction from the projections and morphological skeleton brings many

open questions. What is the complexity of reconstructing hv-convex polyominoes

with given morphological skeleton from two projections? Do three or more pro-

jections make the reconstruction easier? Does the NP-completeness result of this

dissertation hold for other structuring elements, too? What is the number of the so-

lutions if the reconstruction is not unique? Moreover, what algorithms are e�cient

to give an acceptable solution in a reasonable time for an NP-hard reconstruction?

Since SA is rather sensitive to the initial state, in a further work, one could try

to apply further strategies for choosing a starting image, e.g., by using Ryser's

algorithm to obtain an initial solution. Apart from SA, tabu search and genetic al-

gorithms [2] can also be used as function minimizers, altough the latter could have

signi�cantly higher running time and require more memory to handle each instance

in a generation. These open questions are worth to investigate in the future.



Appendix A

Summary in English

Analysis of patterns in binary matrices plays a vital role in numerous applications

of computer science. One such important application is binary tomography, where

the task is to reconstruct binary images representing two-dimensional cross-sections

of three-dimensional homogeneous objects from their projections. Very often, just

few projections of the object can be measured, since the acquisition of the projec-

tion data can be expensive or damage the object. The presence of certain binary

patterns in the image can violate the uniqueness of the reconstruction of the image,

especially from small number of projections. Moreover, the physical limitations of

the imaging devices make it sometimes impossible to take projections from numer-

ous angles. Owing to the small number of projections the binary reconstruction can

be extremely ambiguous. A common way to reduce the number of solutions of the

reconstruction task is to assume that certain geometrical properties are satis�ed.

Such property can be the horizontal or vertical convexity, 4- or 8-connectedness,

etc. We can also reduce the number of solutions if the morphological skeleton of

the image is given.

Another fundamental question is the complexity of the reconstruction. Al-

though many variants of the original reconstruction problem can be NP-hard, the

prior knowledge can be often incorporated into an energy function, thus the recon-

struction task is equivalent to a function minimization problem. A further question

is whether a lower or upper bound, or even an exact formula can be given for the

number of solutions.

This thesis is a summary of the Author's research in the �eld of binary tomog-

raphy. The main focus of this work was to examine additional prior information

for the reconstruction task from at most two projections, examine the theoretical

background for complexity, give formulas for the number of solutions for certain

classes of binary images, and develop new algorithms for binary tomography.
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Key points of the thesis

The �ndings of the research can be divided into three thesis groups. Table A.1

gives the connection between the results and the publications of the Author.

In the �rst thesis group, I examined the methods for eliminating switching

components in binary matrices with possibly low number of 0-1 �ips. The results

were published in a conference proceeding [42] and accepted for publication in a

journal [41].

I/1. I provided a proof to reduce the search space drastically while the optimal

solutions still can be found in the reduced search space. I managed to give

two heuristics that outperform the previous methods in the number of 0-1

�ips to make a binary image switching component free.

In the second thesis group I examined the binary reconstruction of hv-convex

polyominoes and hv-convex canonical images where only the horizontal projection

is given. The results were published in two conference proceedings [39, 44], and

one journal paper [43].

II/1. I managed to give an algorithm to reconstruct hv-convex polyominoes with

running time linear in the size of the horizontal projection. I proved that the

algorithm always gives a result with minimal number of columns. Moreover,

the algorithm can be easily modi�ed to provide an image with a given size.

Furthermore, I provided a formula for the exact number of solutions with

arbitrary number of columns according to a given horizontal projection, and

a recursive formula with �xed number of columns.

II/2. I provided an algorithm for the uniform random generation of hv-convex

polyominoes, according to a given horizontal projection. The worst case

running time of the algorithm is O(m2), where m is the size of the projection.

The algorithm can be modi�ed to generate polyominoes with �xed number

of columns.

II/3. I showed how to reconstruct hv-convex canonical images from one projection.

I provided an algorithm which always gives an 8-connected result minimal in

size.

In the third thesis group, I examined the reconstruction problem of binary

images if the morphological skeleton with a certain structuring element is also

provided. The results were published in two conference proceedings [40, 46], and

two journal papers [47, 45].
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III/1. I proved that the reconstruction of polyominoes from two projections and

the morphological skeleton (considering a certain structuring element) is NP-

complete. Furthermore, without the restriction of the 4-connectedness the

problem is still NP-complete. If only the horizontal projection is given with

the morphological skeleton, �nding a solution is, again, NP-complete.

III/2. I rede�ned the problem as an energy minimization problem, and used Simu-

lated Annealing to solve the reconstruction of general binary images. I studied

three variants of a parametric SA, and showed that a rough reconstruction is

usually possible in a short time and a small number of iterations.

III/3. I de�ned a certain parametric subclass of hv-convex polyominoes, and showed

that the uniqueness of the reconstruction from two projections and the mor-

phological skeleton is determined by the parameters.

[39] [40] [41] [42] [43] [44] [45] [46] [47]
I/1. • •
II/1. •
II/2. •
II/3. •
III/1. • •
III/2. • •
III/3. •

Table A.1: The connection between the thesis points and the Author's publications.
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Appendix B

Summary in Hungarian

A bináris mátrixok elemzése fontos szerepet játszik a számítástudomány több te-

rületén is. Egy ilyen terület a bináris tomográ�a, ahol a cél egy háromdimenziós

homogén objektum kétdimenziós szeleteit ábrázoló képeinek el®állítása a vetüle-

tek ismeretében. Mivel a vetületképzés költséges, illetve roncsolhatja a vizsgált

objektumot, legtöbbször csak kevés vetület áll rendelkezésre. Ennek következmé-

nyeként az el®állítandó kép a rendelkezésre álló adatok alapján nem egyértelm¶en

meghatározott, bizonytalan lehet. Éppen ezért fontos, hogy bináris tomográ�a

esetén a bináris mátrixok tulajdonságait alaposan megvizsgáljuk. A lehetséges

megoldások számának csökkentése érdekében gyakran feltételeznek a rekonstruá-

landó képr®l bizonyos geometriai tulajdonságokat. Ilyen tulajdonságok lehetnek a

horizontális illetve vertikális konvexitás, 4- illetve 8-összefügg®ség, és így tovább.

Szintén segíthet a megoldások számának csökkentésében, ha ismertnek tekintjük a

kép morfológiai vázát.

A rekonstrukció egy másik alapvet® kérdése a probléma bonyolultsága. Habár

az eredeti rekonstrukciós probléma sok változata ismerten NP-nehéz, a rekonstru-

álandó képre tett megszorítások gyakran megfogalmazhatók energiafüggvényként.

Ily módon a probléma ekvivalens egy függvény minimumának megkeresésével. Az

e�éle optimalizációs probléma közelít® megoldására sokféle matematikai módszer

ismert. A rekonstrukció egy másik lényeges kérdése, hogy milyen módon adható

alsó illetve fels® becslés egy adott rekonstrukciós feladat megoldásainak számára,

esetenként megadható-e akár pontosan ez az érték.

Jelen értekezés a Szerz® bináris tomográ�ában, illetve az azzal kapcsolatos bi-

náris mátrixok elemzésében végzett kutatásait foglalja össze. A kutatás f® célja

a két vetületb®l történ® bináris rekonstrukcióra tett megszorítások, a problémá-

hoz kapcsolodó bonyolultságelmélet, valamint a lehetséges megoldások számának

vizsgálata.
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Az eredmények tézisszer¶ összefoglalása

A kutatás eredményei három csoportba oszthatók. Az eredmények és a hozzájuk

kapcsolódó publikációk viszonyát a B.1 táblázat tartalmazza.

Az els® téziscsoportban azt vizsgáltam, hogyan lehet a lehet® legkevesebb 0-1

váltással kapcsoló komponens mentessé tenni bináris mátrixokat. Az eredmények

egy konferencia kiadványban [42] jelentek meg, illetve egy folyóiratban [41] kerültek

elfogadásra.

I/1. Megmutattam, hogy hogyan lehetet a keresési teret drasztikusan csökkenteni

úgy, hogy közben optimális megoldást ne veszítsünk el. Ez alapján megad-

tam két olyan heurisztikát, amik az eddig publikált módszereknél a legtöbb

esetben jobbnak bizonyultak a 0-1 váltások számának minimalizálásában.

A második tézispontban hv-konvex poliominók és hv-konvex kanonikus mátri-

xok rekonstrukcióját vizsgáltam egy vetületb®l. Az eredmények két konferenciaki-

adványban [39, 44], és egy folyóiratcikkben [43] kerültek publikálásra.

II/1. Megadtam egy olyan algoritmust, amely a horizontális vetület méretével line-

áris id®ben megad egy, a vetületet kielégít® hv-konvex poliominót. Bebizonyí-

tottam, hogy az eljárás mindig minimális méret¶ mátrixot állít el®, továbbá

megmutattam, hogy az eljárás könnyen módosítható tetsz®leges szélesség¶

mátrix el®állításához. Ezen felül megadtam egy zárt képletet a megoldások

számának pontos meghatározásához tetsz®leges mátrixméret esetén, illetve

egy rekurzív formulát rögzített mátrixméret esetén.

II/2. Megadtam egy eljárást olyan hv-konvex poliominók véletlen generálásához,

amelyek egy adott horizontális vetületet kielégítenek. Az eljárás legrosszabb

futásideje O(m2), ahol m a vetület méretét jelöli. Az eljárás módosítható

rögzített méret¶ mátrixok véletlen generálásához.

II/3. Megmutattam, hogyan lehet hv-konvex kanonikus mátrixokat el®állítani egy

vetületb®l. Az eljárás bizonyítottan mindig minimális szélesség¶, 8-összefüg-

g® képpel tér vissza.

A harmadik téziscsoportban a rekonstrukció azon változatát vizsgáltam, ahol

két vetület mellett a rögzített szerkeszt®elemmel el®állított morfológiai váz is is-

mert. A téziscsoport eredményei két konferenciakiadványban [40, 46] és két folyó-

iratcikkben [47, 45] jelentek meg.
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III/1. Bebizonyítottam, hogy poliominók rekonstrukciója két vetület illetve a mor-

fológiai váz ismeretében NP-teljes. Ezenfelül, ha eltekintünk a 4-összefügg®-

ségt®l, a probléma továbbra is NP-teljes. Akkor is NP-teljes a probléma, ha a

morfológiai váz mellett csak egy vetületnek kell megfelelnie a rekonstrukciós

eredménynek.

III/2. Megadtam egy módszert a rekonstrukció függvényminimalizációs probléma-

ként történ® leírására. A rekonstrukcióhoz a szimulált h¶tés három változatát

használtam, és megmutattam, hogy egy elfogadható min®ség¶ rekonstrukció

már rövid id®n belül, kevés iterációval is el®állítható, a probléma nehézsége

ellenére.

III/3. Megadtam a hv-konvex poliominók egy speciális, parametrikus alosztályát,

és bebizonyítottam, hogy a két vetületb®l és morfológiai vázból történ® re-

konstrukció egyértelm¶sége csak a paraméterekt®l függ.

[39] [40] [41] [42] [43] [44] [45] [46] [47]
I/1. • •
II/1. •
II/2. •
II/3. •
III/1. • •
III/2. • •
III/3. •

B.1. táblázat. A tézispontok és a Szerz® publikációinak kapcsolata.
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