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RÖVIDÍTÉSEK JEGYZÉKE 

 

2-HIBA 2-hidroxiizobutirát (2-hidroxi-2-metilpropánsav) [2-hydroxyisobutyric acid] 

BLAST [Basic Local Alignment Search Tool] 

BTEX  benzol, toluol, etil-benzol, xilolok 

CFU  telepképző egység [Colony Forming Unit] 

COG  [Clusters of Orthologous Groups] 

CSIA  komponens-specifikus stabil izotóp analízis  

 [Compound-specific Stable Isotope Analysis] 

DEE  dietil-éter 

DIPE   diizopropil-éter 

EDTA  etilén-diamin-tetraecetsav [Ethylene Diamine Tetraacetic Acid] 

ETBE   etil-terc-butil-éter 

GC-MS gázkromatográfia-tömegspektroszkópia 

 [Gas Chromatography-Mass Spectroscopy] 

GEO   éter típusú üzemanyag-oxigenát [Gasoline Ether Oxygenate] 

Hcm  2-hidroxiizobutiril-KoA mutáz [2-hydroxyisobutyryl-CoA mutase] 

HS [headspace] 

Koc  talaj szerves szén-víz megoszlási hányados  

 [Soil Organic Carbon - Water Partitioning Coefficient] 

Kow  oktanol-víz megoszlási hányados [Octanol - Water Partitioning Coefficient] 

LMP  alacsony olvadáspontú [Low Melting Point] 

LNAPL könnyű, nem vizes fázisú folyadék [Light Non-Aqueous Phase Liquid] 

MPD  2-metilpropán-1,2-diol 

MSA  minimál táptalaj [Mineral Salts Agar] 

MSM  minimál tápoldat [Mineral Salts Medium] 

MTBE  metil-terc-butil-éter 

NA  nutrient táptalaj [Nutrient Agar] 

NB  nutrient tápoldat [Nutrient Broth] 

OTU  taxonómiai alapegység [Operational Taxonomic Unit] 

PFGE  pulzáló mezejű gélelektroforézis [Pulsed Field Gel Electrophoresis] 

PMSF  fenil-metil-szulfonil-fluorid [Phenyl Methyl Sulfonyl Fluoride] 

RT-PCR valós idejű polimeráz láncreakció [Real-Time Polymerase Chain Reaction] 

SDS   nátrium-dodecil-szulfát [Sodium Dodecyl Sulphate] 

SIP  stabil izotópos vizsgálat [Stable Isotope Probing] 

TAA  terc-amil-alkohol 

TBAc  terc-butil-acetát 

TBF  terc-butil-formiát 

TAEE  terc-amil-etil-éter 

TAME  terc-amil-metil-éter 

TBA   terc-butil-alkohol 

TSA  tripton-szója táptalaj [Tryptic Soy Agar] 

TSB  tripton-szója tápoldat [Tryptic Soy Broth] 

(US)EPA az Egyesült Államok Környezetvédelmi Hivatala  

  [(United States) Environmental Protection Agency] 

VOC  illékony szerves anyag [Volatile Organic Compound] 
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1. BEVEZETÉS 

 

Korunk emberének élete teljesen elképzelhetetlen a mobilitás, a különböző 

közlekedési eszközök használata nélkül. Az elmúlt években az autógyártás lendülete 

töretlenül növekedett, a világ útjain közlekedő járművek száma 2010-ben elérte az egy 

milliárdot (http://wardsauto.com/). Ugyanezen évben a világon egy nap alatt felhasznált 

motorhajtóanyagok mennyisége meghaladta a 22 millió barrelt (hozzávetőlegesen 3,5 

milliárd liter) (International Energy Statistics; http://www.eia.gov/). 

A növekvő igények kielégítése mellett az üzemanyagoknak szigorú minőségi 

kritériumoknak is meg kell felelniük. A különféle üzemanyagok fizikai és kémiai 

tulajdonságainak javítása, a motorok teljesítményének optimalizálása és élettartamának 

növelése, valamint a vonatkozó környezetvédelmi és egészségügyi rendelkezések 

irányelveinek teljesítése érdekében számos adalékanyagot kevernek a 

motorhajtóanyagokhoz. Közéjük tartoznak a különböző oktánszámnövelő adalékok és az 

üzemanyagok tökéletesebb égését biztosító oxigenátok. Az éter típusú üzemanyag-

adalékok olyan vegyületek, melyek mindkét szerepet be tudják tölteni. 

A világ üzemanyag-éter szükséglete 2009-ben 16,5 millió tonna volt, amelynek 78%-

át tette ki az MTBE, a fennmaradó részen az ETBE, a TAME és a TAEE osztozott (The 

European Fuel Oxygenates Association; http://www.efoa.eu/). A 2009 és 2015 közötti 

időszakban az igények további, évenkénti 1,8 millió tonnával történő növekedésével 

számoltak a szakemberek. Az újabb előrejelzések szerint az éterek iránti kereslet várhatóan 

stabil marad a következő évtizedekben is, ugyanakkor a szakértők az ETBE és a TAEE 

piacának növekedését, ezzel párhuzamosan pedig az MTBE-ének a csökkenését 

valószínűsítik. 

A fentiekben vázolt tendenciák alapján biztosra vehető, hogy a közeljövőben a 

környezet üzemanyag-éterek általi terhelése jelentősen növekszik majd. Az utóbbi években 

hazánkban is egyre több MTBE-vel szennyezett terület vált ismertté, mely szennyezések 

döntően üzemanyag eredetűek. Minthogy az éter típusú oxigenátok meglehetősen 

ellenállóak a természetes fizikai-kémiai és biológiai degradációs folyamatokkal szemben, 

így a környezetből való eltávolításuk legtöbbször remediációs beavatkozást igényel. Az 

irodalmi adatok alapján a bioaugmentációs eljárások megfelelő választást jelenthetnek, 

amelyekben egy előzetesen szelektált és felszaporított mikroorganizmus tenyészetét 

alkalmazzák, amely a szennyezőanyag gyors és hatékony lebontására képes. 

http://wardsauto.com/
http://www.eia.gov/
http://www.efoa.eu/
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A dolgozat témája egy új MTBE-bontó baktérium izolátum részletes bemutatása, 

amely a laboratóriumi eredmények fényében komoly potenciált hordoz magában, és a 

szennyezett közegek kármentesítése alkalmával a közeljövőben terepi beavatkozások során 

is bevetésre kerülhet. 
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2. IRODALMI ÁTTEKINTÉS 

 

2.1 Az éter típusú üzemanyag-adalékok bevezetésének 

előzményei, körülményei és hatásai 

 

Alkilezett ólomszármazékokat az 1920-as évektől kezdve adagoltak az 

üzemanyagokhoz a kopogásos égés kiküszöbölésére [1]. A kopogásos égés kialakulása 

elsősorban az üzemanyag összetételével és ezáltal oktánszámával áll összefüggésben. A 

motorok működése szempontjából ideális oktánszámok beállítására több lehetséges 

alternatíva közül az ólom-tetraetilt rendszeresítették, elsősorban hatékonysága és alacsony 

előállítási költségei miatt. A benzin iránti igény világméretű növekedésével és ezáltal az 

ólmozott üzemanyagok elégetéséből származó károsanyag-kibocsátás emelkedésével az 

ólomszennyezettség mértéke drasztikusan megnőtt, hovatovább a közlekedés vált az 

ólomszennyezés legjelentősebb forrásává [2]. Az 1970-es évek során a járművekből 

származó ólomkibocsátás egészségre gyakorolt sokrétű, káros hatása világméretű 

problémává nőtte ki magát. Számos tanulmány demonstrálta a környezetbe ily módon 

kikerülő ólomnak a természetre és az emberi egészségre gyakorolt destruktív hatásait, 

elsősorban a központi idegrendszert, a hem szintézist és a szaporító szervrendszert érintő, 

valamint a különböző pszichológiai és idegi-viselkedési problémákat [3-7]. Az ólom-

tetraetil kiváltása ezen felül azért is szükséges volt, mivel az ólmozott üzemanyagok égése 

nyomán a háromutas katalitikus konverterekkel szerelt modern gépjárművekben 

ólomtartalmú bevonat alakult ki a katalizátor felületén, ami rövidtávon csökkentette annak 

hatásfokát, hosszabb távon pedig tönkre is tette azt. Mindezen negatív hatások nyomán az 

alkilezett ólomszármazékokat az 1980-as évek során fokozatosan lecserélték, és az 1990-es 

évekre a legtöbb Európában forgalmazott üzemanyagból eltűntek. Hazánkban 1999. április 

1-től nem forgalmaznak ólmozott benzint.  

Az ólom-tetraetil kiváltására szánt éter típusú vegyületek előállítása az 1970-es 

években indult meg. Ezek az anyagok az oktánszám növelésén túlmenően, az 

üzemanyagok oxigéntartalmának növelésén keresztül („oxigenát”), azok tökéletesebb 

égését is biztosították, ami pedig hozzájárult a káros kibocsátások csökkenéséhez és ezáltal 

a levegőminőség javulásához is. Európában az MTBE gyártása 1973-ban, Olaszországban 

kezdődött el, piaca lendületesen fejlődött, kiváltképp az 1990-es évek óta, az előállított 
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MTBE több mint 98%-át üzemanyag-adalékként használták fel [8]. Az ETBE-t először 

1992-ben Franciaországban alkalmazták üzemanyag-oxigenátként, azóta viszont széles 

körben elterjedt az Európai Unió területén. 

A GEO vegyületek oktánszámnövelőként történő alkalmazásának gyors 

elterjedésével az ólomszennyezettségnek való kitettség lényegében egy évtizeden belül 

megszűnt, ez pedig magával hozta az általános egészségi állapot rohamos javulását is. Egy 

közelmúltbeli tanulmány statisztikailag is értékeli az ólmozott benzin kivonásával együtt 

járó pozitív egészségügyi hatásokat, bemutatja az ólomkoncentráció drasztikus 

csökkenését a vérben (20 µg/dl-ről 3 µg/dl-re) és számos, az ólmozott benzin 

alkalmazásával összefüggésbe hozható betegség standardizált halálozási arányának 

változását is szemlélteti az adott időszakban (1981-2007) [9]. Elmondható tehát, hogy az 

alkilezett ólomszármazékok GEO vegyületek általi kiváltása nagymértékben hozzájárult az 

emberi egészség megőrzéséhez és javításához. 

 

2.2 Az éter típusú üzemanyag-adalékok termelésének és 

felhasználásának alakulása Európában 

 

2010-ben mintegy 55, MTBE-t, ETBE-t és/vagy TAME-t előállító ipari létesítmény 

működött az EU területén [8]. A teljes európai termelés 50%-a Németországban, 

Franciaországban és Hollandiában lokalizálódott. Ugyanakkor DIPE és TBA üzemanyag-

adalékként történő felhasználásáról nincsenek adatok Európából. Míg MTBE gyártás 

Európa számos országában folyik, addig ETBE-t legnagyobb mennyiségben 

Németországban, Franciaországban és Spanyolországban, TAME-t és TAEE-t pedig 

Finnországban, Németországban, Olaszországban és Görögországban állítanak elő. Az 

előállított GEO (MTBE, ETBE, TAME) összes mennyisége Európában a 2002-es 4108 

kilotonnás értékről 2010-re 6049 kilotonnára nőtt. Ezzel párhuzamosan az ETBE piaci 

részesedése ugyanebben az időszakban 15%-ról körülbelül 60%-ra emelkedett, az MTBE-é 

80%-ról 30%-ra csökkent, a TAME és a TAEE együttesen pedig konstans 10% körüli piaci 

részesedéssel állt. Hazánkban a 2010-es termelési adatok szerint Százhalombattán 55 

kilotonna ETBE-t és 53 kilotonna MTBE-t, Tiszaújvárosban pedig 31 kilotonna MTBE-t 

állítottak elő [8]. 

Az MTBE-t az oktánszám növelésére eleinte viszonylag alacsony, 2-5%-os 

koncentrációban (m/m) keverték a különféle üzemanyagokhoz. Később már, azért, hogy az 
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üzemanyagok égésének hatásfokát is növeljék, lényegesen nagyobb, 11-15%-os (V/V) 

koncentrációkat alkalmaztak nemcsak Európa egyes részein, hanem Észak-Amerikában is. 

A GEO vegyületeket az egyes motorbenzin típusoktól függően különböző koncentrációban 

adják hozzá az üzemanyagokhoz. Ezen felül az alkalmazott oxigenát típusa és 

koncentrációja földrajzi régiónként és időszakonként (évszakonként) is eltérő lehet. 

Jelenleg az EU területén az éter típusú oxigenátoknak az üzemanyagokban megengedett 

legnagyobb koncentrációja 15% (V/V) [8].  

Az éter típusú üzemanyag-adalékok (1. ábra) számos nyersanyagtípusból kiindulva 

előállíthatóak vegyipari szintézissel. MTBE-t leggyakrabban földgáz eredetű metanolból, 

ETBE-t pedig kukoricából vagy más mezőgazdasági biomasszából fermentáció révén nyert 

etanolból gyártanak. Az MTBE és az ETBE előállításához egyaránt felhasznált izobutilént 

vagy földgázból nyerik vagy pedig a kőolajfinomítás során képződik melléktermékként. 

Jól látható tehát az, hogy az előállítást végző ipari létesítmények minden különösebb 

nehézség nélkül tudnak átváltani MTBE és ETBE termelés között. A TAME előállítása 

során izoamilének keverékét (2-metil-but-1-én és 2-metil-but-2-én) reagáltatják metanollal 

[10]. 

Hosszú távon az Európai Unió területén a felhasznált motorbenzin mennyiségének 

stabilizálódása vagy csökkenése várható, köszönhetően a dízel üzemű járművek növekvő 

térhódításának, illetve a benzinmotorok növekvő hatékonyságának [8,11]. A GEO 

vegyületek iránti igény várhatóan kisebb mértékben fog csökkenni, mint a motorbenzinek 

iránti általános kereslet, köszönhetően az EU bioüzemanyag direktívájának. Ennek 

értelmében ugyanis a megújuló forrásból származó komponensek részarányát növelni kell 

az üzemanyagokban. Ez az érték 2005-ben 2%, 2010-ben 5,75% volt, 2020-ra pedig a 8%-

os részarány elérése van előirányozva. Ez a tény pedig tovább növelheti az ETBE 

térnyerését az MTBE-hez képest, lévén a bioetanolból előállított, így részben megújuló 

forrásból származó ETBE bioüzemanyag-komponensnek minősül. MTBE esetében a 

biometanolból történő előállítás kaphat nagyobb szerepet. Az előbbi tendencia hazánkban 

is megfigyelhető: a MOL Nyrt. Dunai Finomítója 2005. július 1. óta, a meglévő MTBE 

üzem átalakításával a korábbi technológiában alkalmazott metanol helyett, biológiai 

eljárással nagy cukortartalmú növényi alapanyagokból gyártott bioetanolt dolgoz fel. Az 

így előállított ETBE alkalmazástechnikai tulajdonságai megegyeznek a korábban 

megszokott MTBE tulajdonságaival, ezért a gépjárművek számára a biológiai eredetű 

ETBE semmilyen kockázattal nem jár. A MOL Nyrt. 2006-tól Szlovákiában (Slovnaft), 

majd 2007-től Tiszaújvárosban folytatta az ETBE gyártó kapacitás kiszélesítését. 
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1. ábra Az éter típusú üzemanyag-adalékok legelterjedtebb képviselői és a belőlük származtatható 

legfontosabb alkoholok. 

 

Noha az ólomtartalmú adalékok kiváltása éter típusú vegyületekkel egyértelműen 

jótékonyan hatott a levegő minőségére és a lakosság általános egészségügyi állapotára is, 

új környezeti problémákat hozott magával. A többi üzemanyag-komponenssel 

összehasonlítva ugyanis, e vegyületek sokkal jobb vízoldhatóságot mutatnak, és döntően 

kémiai szerkezetükből adódóan, lényegesen jobban ellenállnak a biológiai lebontó 

folyamatoknak, tartós vízszennyezéseket okozva ezáltal. Széleskörű használatának 

következtében az MTBE, főleg az USA-ban, ahol 1979 óta van használatban, az egyik 

leggyakrabban kimutatott szennyezőjévé vált a talajvizeknek és a felszíni vizeknek 

egyaránt, elsősorban a városi területeken [12,13]. Ezenfelül a GEO vegyületek rendkívül 

alacsony organoleptikus (szag és íz) küszöbkoncentrációkkal rendelkeznek, így minimális 

mennyiségben (akár már 2 µg/l koncentrációban) is ihatatlanná tudják tenni az ivóvizet. 

Jelenleg is folynak kutatások és vizsgálatok az MTBE kiváltására alkalmas, új éter 

típusú vegyületek bevezetését illetően. A lehetséges alternatívák között nagyobb 

szénatomszámú, ezáltal kevésbé vízoldékony és kevésbé illékony vegyületeket találunk. 

Ilyen magasabb rendű éter típusú oxigenát jelöltek a következők: terc-hexil-etil-éter 

(THxEE), terc-hexil-metil-éter (THxME), terc-heptil-etil-éter (THpEE), terc-heptil-metil-
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éter (THpME) és a terc-oktil-metil-éter (TOcME) [14-16]. Ezen vegyületekről és 

lehetséges környezeti kockázataikról azonban még meglehetősen hiányosak az adatok, így 

széles körű elterjedésükre még várni kell. 

 

2.3 Az éter típusú üzemanyag-adalékok jellemző forrásai az 

egyes környezeti elemekben 

 

Az éter típusú üzemanyag-adalékok mindegyike szintetikus vegyület, melyek 

jelenlegi ismereteink szerint természetes úton nem képződnek, a környezetbe minden 

esetben emberi tevékenység révén kerülnek ki. Az egyes környezeti elemek GEO 

vegyületek általi szennyezése származhat tiszta GEO vegyületekből és GEO tartalmú 

üzemanyagokból egyaránt. A gyakorlati tapasztalatok azonban azt mutatják, hogy a 

szennyezések döntő többsége üzemanyag eredetű. Fizikai és kémiai tulajdonságaiknak 

köszönhetően ezek a vegyületek a környezeti elemekbe kikerülve könnyen átkerülnek az 

üzemanyagokból a vizes vagy a gőz fázisba, ami nagymértékben hozzájárul gyors 

terjedésükhöz, akár nagy távolságokra is. Közülük is a vizes fázisban megjelenő GEO 

vegyületeknek van nagyobb jelentősége, köszönhetően a GEO vegyületek kiváló 

vízoldhatóságának és mobilitásának, a vízi környezet korlátozott visszatartó képességének, 

továbbá mivel a légnemű fázissal összehasonlítva a különböző degradációs folyamatok itt 

lényegesen lassabban mennek végbe. 

Az atmoszférában megjelenő GEO vegyületek leggyakrabban ipari kibocsátásokból, 

üzemanyagtöltő állomásokon keletkező véletlenszerű kiömlésekből, valamint az 

üzemanyagok nem tökéletes égésének vagy a katalitikus konverter csökkent hatásfokának 

köszönhetően a gépjárművek kipufogó gázaiból származnak. A GEO vegyületek 

féléletideje a légkörben meglehetősen alacsony, MTBE esetében mindössze 3-7 nap 

[17,18], elsősorban a levegőben jelen lévő fotoindukált hidroxil gyökök koncentrációja 

határozza meg, melyek elsődlegesen részt vesznek lebontásukban. 

Tekintettel a GEO vegyületek légköri jelenlétére, könnyen belátható, hogy ezek az 

anyagok jelen vannak a különböző csapadékformákban is [19]. Több tanulmány arról 

számol be, hogy szoros kapcsolat figyelhető meg a GEO vegyületek csapadékban történő 

eloszlása és a különböző területhasználati típusok között a vidéki és a városi vagy ipari 

területek vonatkozásában [20,21]. Ezen túlmenően évszakonkénti tendenciák is 

megfigyelhetők, például a téli időszakban növekedés tapasztalható a csapadék GEO 
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koncentrációjában a városi területeken. Az elfolyó csapadékvízben fellelhető GEO 

tartalom, különösen a városi területeken, mintegy 80%-ban a jármű eredetű kibocsátások 

direkt felvételéből származik egy-egy esőzés alkalmával, és csak körülbelül 20% az a 

mennyiség, ami a légköri GEO vegyületek beoldódásából ered [18,20]. 

A folyók és tavak esetében a GEO vegyületek kisebb mértékben a csapadékból, az 

utakról lefolyó eső- és olvadékvízből, a szennyvíztisztító telepekről kikerülő tisztított 

vizekből, illetve az összegyűjtött csapadékvíz és a szennyvíz direkt bevezetéséből 

származnak. Hasonlóan a csapadékvíz esetében ismertetett tendenciával, a felszíni vizek 

városi területeken szintén nagyobb GEO koncentrációkkal terheltek, mint a vidéki körzetek 

esetében [22]. Nagyobb mennyiségben ezek az anyagok elsősorban pontszerű forrásokból 

jutnak be a felszíni vizekbe, így például üzemanyag kiömlésekből és szivárgásokból 

(gépjárművekből, üzemanyagtöltő állomásokról, üzemanyagtároló tartályokból), ipari 

kibocsátásokból vagy vízi járművekből [18]. Az MTBE féléletidejét folyókban 30 perctől 

52 napig, tavakban 10 naptól 193 napig terjedő időintervallumban adják meg [18]. 

A GEO vegyületek a talajvízbe legnagyobb részben pontszerű forrásokból jutnak. Ez 

magában foglalja a szivárgó tároló tartályokat, az előállítás, tárolás, szállítás során, illetve 

az üzemanyagtöltő állomásokon és a finomítók területén bekövetkező véletlenszerű 

kiömléseket és a közúti baleseteket [18]. Amikor a talajba jutott üzemanyag eléri a 

telítetlen zónát, majd a talajvíztestet, általában bekövetkezik a GEO vegyületek 

elkülönülése az üzemanyag többi komponensétől. Ennek oka az, hogy az alkil éterek az 

üzemanyagokban található vegyületek döntő többségéhez képest lényegesen jobb 

vízoldhatósággal rendelkeznek, így a helyi viszonyoktól függően akár különálló GEO 

csóva is létrejöhet, ami gyakorlatilag a talajvíz terjedési sebességével halad [8]. Az MTBE 

féléletidejét a talajvízben 2-3 évre becsülik [23]. Összehasonlításképpen a BTEX 

vegyületek esetében, melyek az üzemanyagok legvízoldékonyabb szénhidrogén 

komponensei, ez az időtartam 2-3 hónapra tehető [24].  

A GEO vegyületeket tartalmazó esővíz, illetve az utakról és autópályákról lefolyó 

csapadékvíz- és olvadékvíz-többlet beszivárgása a talajba, elsősorban a városi területeken, 

diffúz, nem pontszerű forrásként jelenik meg, ami viszonylag nagy területen okozhat 

alacsony, de kimutatható szennyezést.  

Általánosságban véve elmondható, hogy szoros összefüggés figyelhető meg a 

talajvízben jelen lévő GEO vegyületek mennyisége, valamint a területhasználat, a 

népsűrűség és az üzemanyagokban alkalmazott GEO koncentrációk között [20]. Mivel a 

TAME és a DIPE az MTBE-hez és az ETBE-hez képest lényegesen kevésbé elterjedten 
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alkalmazott oxigenát, így ezeket a vegyületeket jóval ritkábban mutatják ki a talajvízből 

szennyezőként. 

 

2.4 Az éter típusú üzemanyag-adalékok sorsa és transzportja a 

talajban és a talajvízben 

 

A GEO vegyületek felszín alatti transzportfolyamatait az egyes vegyületek fizikai és 

kémiai tulajdonságai (1. táblázat), az adott közeg hidrogeológiai és geokémiai viszonyai, 

valamint a környezetbe való kijutás adott területre jellemző módja együttesen határozza 

meg. A telítetlen zónában a GEO vegyületek elsősorban lefelé irányuló mozgást végeznek, 

de a geológiai tulajdonságok változása nyomán (pl.: alacsony áteresztőképességű rétegek 

vagy törések) oldalirányban is terjednek, mozgásukat alapvetően a gravitáció és a kapilláris 

erők gradiensei határozzák meg. A GEO vegyületek a telítetlen zónában négy különböző 

fázisban lehetnek jelen: gáz (gőz), vízben oldott, talaj vagy üledék felületéhez szorpcióval 

kötődött és önálló szerves folyadék fázis formájában (LNAPL). A telített zónában a GEO 

vegyületek vándorlása főleg vízszintes (oldalirányú), mozgásukat alapvetően a talajvíz 

mozgás- és nyomásviszonyai alakítják. A GEO vegyületek a telített zónában három 

különböző fázisban lehetnek jelen: vízben oldott, talaj vagy üledék felületéhez szorpcióval 

kötődött és LNAPL fázisként. Amikor az LNAPL fázis (tiszta GEO vegyület vagy 

üzemanyag) eléri a talajvíztestet, megkezdődik a vízoldékony komponensek beoldódása és 

oldott szennyezőanyag-csóva kifejlődése.  

A telítetlen zónában a GEO vegyületek transzportját alapvetően a diffúzió határozza 

meg. A szorpciós folyamatok hatása a GEO vegyületek felszín alatti transzportjára 

általában alacsony és a GEO vegyületek jellemzően a felszín alatti közeg számottevő 

visszatartó hatása nélkül transzportálódnak a talajvízben [19]. A TAME és a THxEE 

kivételével valamennyi GEO vegyület (az ETBE, TAEE, THxME, DIPE, MTBE, TBA 

csökkenő sorrend szerint) a benzollal összehasonlítva kevésbé hajlamos a szorpcióra, ezért 

jóval mobilisebbek a talajvízben [8]. A szorpciónak a GEO transzportra gyakorolt hatását 

az ún. késleltetési vagy más néven retardációs (R) faktor jellemzi. Ez egy dimenzió nélküli 

mennyiség, melyet megkapunk, ha a talajvíz áramlási sebességét elosztjuk a 

szennyezőanyag terjedési sebességével. Ez az érték MTBE esetében 1,1 körül van [23], 

ami azt jelenti, hogy gyakorlatilag a talajvíz-fronttal együtt terjed. Benzol esetében 1,6 

körüli értéket mértek hasonló körülmények között [25], tehát hozzávetőlegesen másfélszer 
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lassabban terjed a talajvízben. A volatilizáció hatása a GEO vegyületek felszín alatti 

transzportjában általában alacsony és a GEO vegyületek általában nehezen mennek át a 

vizes fázisból a gáz (gőz) fázisba [8]. A GEO vegyületek mindegyike az illékony szerves 

vegyületek (VOC) közé tartozik, közülük is az MTBE rendelkezik a legnagyobb 

gőznyomással. Az MTBE, a DIPE és az ETBE gőznyomása nagyobb, mint a benzolé és 

általában a GEO vegyületek könnyen átmennek egy LNAPL fázisból a gáz (gőz) fázisba 

[8]. 

 

Tulajdonság MTBE ETBE TAME TAEE DIPE TBA benzol 

Összegképlet C5H12O C6H14O C6H14O C7H16O C6H14O C4H10O C6H6 

Moláris tömeg (g/mol) 88,15 102,18 102,18 116,20 102,18 74,12 78,11 

Sűrűség (g/cm
3
) 0,740 0,736 0,770 0,761 0,725 0,775 0,874 

Vízoldhatóság (mg/l) 48000 12000 11500 4000 2000 elegyedik 1780 

Gőznyomás (Hgmm) 245 130 75 50 159 42 76 

Henry-állandó (dimenzió nélküli)  0,027 0,110 0,081 n. a. 0,199 0,00048 0,22 

log Koc 1,035 0,95 1,27 n. a. 1,46 1,57 1,83 

log Kow 0,94 1,74 1,55 n. a. 1,52 0,35 2,13 

Kísérleti oktánszám  118 118 112 105 110 109 123 
 

1. táblázat A legfontosabb GEO vegyületek néhány környezeti szempontból is releváns fizikai-kémiai 

tulajdonsága (25 °C-on) összehasonlítva a TBA és a benzol megfelelő adataival ([26] alapján). 

 

Amikor egy GEO tartalmú LNAPL fázis kapcsolatba kerül a talajvízzel, 

megkezdődik a vízoldékony komponensek beoldódása a talajvízbe. A GEO vegyületek 

LNAPL fázisból történő beoldódása a talajvízben található GEO vegyületek legfőbb 

forrása. A GEO vegyületek vízoldhatósága körülbelül 2000 mg/l-től (DIPE) mintegy 

50 000 mg/l-ig (MTBE) terjed 25 °C-on. A TBA gyakorlatilag minden arányban elegyedik 

a vízzel. Az összes GEO vegyület vízoldhatósága nagyobb, mint a benzolé (1800 mg/l) [8]. 

A talajvízben az MTBE képes meglehetősen nagy csóvákat létrehozni, melyek általában 

kiterjedtebbek, mint a benzol esetében [27]. A GEO vegyületek meglehetősen magas 

vízoldhatósága szolgál magyarázattal arra, hogy a GEO vegyületek gyorsabban elhagyják 

az LNAPL fázist és nagyobb csóvákat képeznek magasabb koncentrációkkal, mint más 

benzin komponensek (pl.: BTEX vegyületek) [8]. 
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2.5 Az éter típusú üzemanyag-adalékok előfordulása az európai 

környezetben 

 

A talajvíz esetében meglehetősen nagy mennyiségű ismeretanyag áll rendelkezésre a 

GEO vegyületek előfordulását illetően, elsősorban az észak- és nyugat-európai 

viszonyokról [8,28-30]. Az adatok alapján az MTBE a leginkább vizsgált GEO vegyület az 

európai talajvizekben, melyről mind térbeli, mind pedig időbeli vonatkozásban a legtöbb 

adat elérhető. Az előállítást végző ipari létesítmények, tankautótöltő és üzemanyagtöltő 

állomások, valamint üzemanyag lerakatok és raktárak környékén találjuk a legmagasabb 

szennyezési értékeket a talajvízben. Alacsony, ún. háttér MTBE koncentrációk 

megtalálhatóak városi és vidéki területeken egyaránt, gyakoriságuk azonban jelentősen 

eltér. Városi vagy ipari területeken 40-60% a detektálási gyakoriság, míg vidéki vagy 

mezőgazdasági területeken csak 10-20%. Ezeken a területeken tipikusan 0,01-1 µg/l 

MTBE koncentrációkat találunk, azaz lényegesen a szag, íz és egészségügyi határértékek 

alatti mennyiségeket. Az 1 µg/l-t meghaladó koncentrációk esetében feltételezhető egy 

pontszerű MTBE-forrás közelsége.  

Az ivóvíz minőségét Európában nagyon szigorú előírások szabályozzák. Az USA 

Környezetvédelmi Hivatala (USEPA) által az MTBE-re javasolt szag küszöbértéket (20 

µg/l) meghaladó koncentrációt sehol sem detektáltak az ivóvízmintákban, a kevés számú 

pozitív mintában jellemzően nyomnyi mennyiségben volt MTBE kimutatható (0,01-0,2 

µg/l). Összehasonlítva a talajvíz és a felszíni vizek esetében rendelkezésre álló 

adatmennyiséggel, az ivóvíz esetében fellelhető, GEO vegyületekre vonatkozó 

ismeretanyag meglehetősen kevés, és zömmel szintén Észak- és Nyugat-Európára 

szorítkozik [8,28,29,31,32]. A kimutatási gyakoriság mintegy 30%-tól (Hollandia) 

körülbelül 40%-ig (Németország) terjed. Jellemzően az ivóvízben esetlegesen jelen lévő 

MTBE legfőbb forrása az előállításához felhasznált felszíni víz.  

A felszíni vizek esetében az irodalmi adatok többsége a nagyobb folyókra és főbb 

mellékfolyóikra vonatkozóan, elsősorban néhány nyugat-európai országot illetően áll 

rendelkezésre [8,22,33], tavak esetében lényegesen kevesebb információ érhető el [8,30]. 

A vizsgálatok eredményei azt mutatják, hogy a felszíni vizekben fellelhető GEO háttér 

koncentráció értéke a kimutatási határtól körülbelül 0,5 µg/l-ig terjed, és szignifikáns 

különbség figyelhető meg a városi és a vidéki területek esetében, illetve szezonális hatások 

is jelentkeznek (motorcsónak használat, vízszint változásai). Az átlagosnál lényegesen 
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magasabb értékek hátterében legtöbbször valamilyen pontszerű forrás, például vízi 

járműből, tankhajóból vagy ipari létesítményből származó kibocsátás áll.  

Az utakról és autópályákról lefolyó esővíztöbblet GEO tartalmáról nagyon 

szórványosak az adatok, mindössze Svájc és Németország, illetve az USA területéről 

ismertek információk ezt illetően [8,20,34]. Ezeken a helyeken MTBE-t, TAME-t és 

DIPE-t sikerült kimutatni, ETBE-t nem. A mért koncentrációk értéke nagymértékben 

függött az eső intenzitásától és a környék területhasználatától, a detektált koncentrációk 

jellemzően a 0,05-1 µg/l tartományban mozogtak. Feltételezhetően, különösen a nagy 

forgalmú területeken, az elfolyó csapadékvíz-többlet a GEO vegyületek számottevő 

forrásának minősül.  

A GEO vegyületek különféle csapadékformákban való jelenlétét kiterjedten csak 

Németországban vizsgálták, ott is csak MTBE-re vonatkozóan [8,20,21,29]. A kimutatási 

gyakoriság az esővízminták esetében sokkal nagyobb volt a városi területeken (86%), mint 

a vidéki körzetekben (18%), de mindenütt 0,1 µg/l alatti koncentrációkat mértek. 

Hóminták esetében nem volt megfigyelhető ekkora eltérés a városi és a vidéki területek 

vonatkozásában, a detektált MTBE koncentrációk általában magasabbak voltak, mint az 

esővízben mértek, a kimutatási gyakoriság pedig 65% körüli volt. Ezekből arra lehet 

következtetni, hogy a hó vélhetően hatékonyabban veszi fel az MTBE-t a légkörből, mint 

az esővíz.  

A levegőben jelen lévő GEO koncentrációkra vonatkozó információk rendkívül 

korlátozottak, így általános tendenciákat nem lehet erre vonatkozóan felállítani. Mindössze 

Finnországban, Németországban és Belgiumban végeztek méréseket ebben a témában 

[8,20,35-37]. Egy Finnországban végzett felmérés eredményei azt mutatták, hogy a városi 

területek levegőjében lényegesen nagyobb MTBE koncentrációk voltak jelen (1,1-2,8 

µg/m
3
), mint a vidéki területek esetében (0,08-0,15 µg/m

3
). Benzinkutakon és közvetlen 

közelükben alkalmanként a fentieknél lényegesen nagyobb értékeket is detektáltak.  

A talajok esetében rendelkezésre álló adatok arra engednek következtetni, hogy a 

GEO vegyületek nem rendelkeznek általános háttér koncentrációkkal az európai 

talajokban, ugyanakkor a városi területeken előfordulhatnak a kimutatási határt meghaladó 

GEO koncentrációk pontszerű forrásoktól távolabb is [8]. 
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2.6 Az éter típusú üzemanyag-adalékokat érintő szabályozások 

Európában és hazánkban 

 

Európában a GEO vegyületekre vonatkozó szabályozások nem nevezhetők 

következetesnek és az egyes környezeti elemeket illetően esetenként hiányosak is. Az EU 

törvényhozása sem támaszt általános követelményeket ezt illetően, így csak néhány 

küszöbérték és irányelv van használatban az MTBE-re vonatkozóan az ivóvíz és a talajvíz 

esetében. Az általános, egészségügyi alapú küszöbkoncentrációk hiányának egyik oka az, 

hogy szaglás és ízlelés útján az MTBE akár már 4-5 nagyságrenddel alacsonyabb 

koncentrációban is érzékelhető, mint a toxikológiai vizsgálatok alapján az emberi 

egészségre ártalmasnak adódott koncentrációk. Dánia az elsők között volt, ahol kivonták a 

forgalomból az MTBE-t, mivel ivóvizének 98%-át a talajvízből nyeri. Ezen felül az ivóvíz 

esetében törvényi úton 5 µg/l-ben megállapított határértéket is bevezettek rá vonatkozóan. 

Az MTBE esetében érvényes szag és íz küszöbértékeket az ivóvízben az Egészségügyi 

Világszervezet (WHO) 15 µg/l-ben, az USEPA pedig 20, illetve 40 µg/l-ben határozta meg 

[8]. 

Hazánkban a jelenleg érvényes rendeletben (6/2009. (IV.14.) KvVM-EüM-FVM 

együttes rendelet a földtani közeg és a felszín alatti víz szennyezéssel szembeni védelméhez 

szükséges határértékekről és a szennyezések méréséről) az MTBE nem szerepel, így nincs 

„B” szennyezettségi határérték érvényben Magyarországon erre a vegyületre. Ennek 

ellenére már egyre több környezetvédelmi felügyelőség elrendeli az MTBE vizsgálatát is 

egy-egy tényfeltárás alkalmával és egyedi „D” kármentesítési határértékeket határoznak 

meg, többnyire a területen elvégzett kockázatfelmérés alapján. Az utóbbi időszakban 40-

200 µg/l MTBE koncentrációkra adtak meg egyedi határértéket. 

 

2.7 Az éter típusú üzemanyag-adalékok ökotoxikológiai és 

humán egészségügyi vonatkozásai 

 

Az éter típusú oxigenátoknak az élővilágot és az emberi egészséget érintő esetleges 

negatív hatásait kiterjedten vizsgálták, különösen az MTBE esetében. Számos, olykor 

egymásnak ellentmondó eredmény látott napvilágot a témában, melyek időnként heves 

vitákat váltottak ki a szakértők körében.  
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A GEO vegyületek kiváló vízoldhatóságuknak köszönhetően, a környezetbe 

kikerülve, nagy valószínűséggel valamilyen vizes fázisban (felszíni víz, talajvíz) jelennek 

meg. Egy számos élőlénycsoportot (baktériumok, algák, rákok, halak, kétéltűek) érintő 

áttekintés arra a következtetésre jutott, hogy a felszíni vizekben jelen lévő átlagos MTBE 

koncentrációk (<0,1 mg/l) akut módon nem toxikusak az édesvízi élőlényekre [38]. A 

vízszennyezésekre kimondottan érzékeny szivárványos pisztránggal végzett kísérletek 

eredményei azt mutatták, hogy az MTBE alacsony toxicitással rendelkezik a pisztráng 

esetében [39]. Egy másik vizsgálatban azonban, amelyben az MTBE-nek néhány 

kultúrnövény (búza, fejes saláta, kukorica, zab) csírázására, valamint hajtás- és 

gyökérfejlődésére gyakorolt hatását tanulmányozták, azt tapasztalták, hogy mindegyik 

vizsgált növényfaj esetében visszaesés volt megfigyelhető az MTBE-vel kezelt talajokban 

[40]. Salmonella typhimurium törzsek esetében MTBE-vel és TBA-val végzett 

mutagenitási tesztek során nem kaptak szignifikáns mutációs választ, így a szerzők arra 

következtettek, hogy ezek a vegyületek nem mutagének baktériumokban [41].  

Az egyes élőlénycsoportokban elvégzett vizsgálatok alapján károsnak bizonyult 

koncentrációk a legtöbb esetben olyan magas értékek voltak (több száz vagy több ezer 

mg/l MTBE koncentráció), melyek az egyes környezeti elemekben egyáltalán nem 

tekinthetők gyakorinak vagy általánosnak, hanem csak a pontszerű szennyező források 

közvetlen közelében találhatók meg. 

Az emberek többsége passzív módon, a levegő vagy az ivóvíz révén kerül 

kapcsolatba az MTBE-vel. Azt a légköri MTBE koncentrációt, mellyel a társadalom döntő 

hányada érintkezik, 1 µg/m
3
-re teszik [42]. Ennél lényegesen nagyobb koncentrációknak 

vannak kitéve az üzemanyagokat előállító vagy tároló létesítményekben és a 

benzinkutakon vagy ezek közelében tartózkodó személyek. Emberek esetében az MTBE 

toxikokinetikai profilja hasonló képet mutat belégzés és lenyelés esetén [43]. A 

szervezetbe kerülő MTBE gyorsan a véráramba jut, majd a májban citokróm P450 típusú 

enzimek (CYP2A6 és CYP2E1) TBA-vá alakítják [44]. A további intermedierek 

megegyeznek a mikrobiális lebontási útvonalakban azonosított metabolitokkal: 2-

metilpropán-1,2-diol (MPD), 2-hidroxiizobutirát (2-HIBA) [45], formaldehid, metanol és 

hangyasav [43]. A TBA átalakítását katalizáló enzimeket még nem sikerült azonosítani. 

Míg a lebomlás több köztitermékének (formaldehid, metanol, hangyasav) ismertek a 

toxikus hatásai, addig a TBA, az MPD és a 2-HIBA esetében nem állnak rendelkezésre 

információk erre vonatkozóan. Az egyes metabolitok a kilélegzett levegővel vagy a vizelet 

útján távoznak. Az MTBE kis hányada (<1%-a) átalakulás nélkül ürül ki a szervezetből 
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[43]. A TBA, az MPD és a 2-HIBA tartózkodási ideje a szervezetben körülbelül 8-34 óra 

[45]. Köszönhetően kisebb illékonyságának, nagyobb féléletidejének és alacsonyabb 

kimutathatósági határának a TBA pontosabb markere lehet az MTBE-vel való 

érintkezésnek, mint maga az MTBE [46].  

Az MTBE-nek az emberi egészségre gyakorolt állítólagos káros hatásait a mai napig 

nagy viták övezik. A korai, módszertanilag nem maradéktalanul korrekt tanulmányok 

MTBE akut hatásaként enyhe, rövid ideig tartó, nem specifikus tüneteket említenek: 

nyálkahártya irritációt, fejfájást, szédülést. Későbbi, laboratóriumban, kontrollált 

körülmények között megismételt vizsgálatok ezeket a tüneteket nem erősítették meg [43]. 

Patkányokban, egerekben és nyulakban is vizsgálták az MTBE élettani hatásait eltérő 

elrendezésű és különböző ideig tartó kezelések során. Belégzés esetén akut tünetekként 

neurotoxikus hatást, az autonóm idegrendszert és a légzőrendszert érintő problémákat 

észleltek. Szubkrónikus belégzés során a fenti tüneteken kívül, szöveti elváltozásokat is 

tapasztaltak, főleg a májban és a vesékben. Krónikus, szájon át történő adagolás esetén 

tumorok kialakulását diagnosztizálták a májban, a vesékben és a herékben [43]. Az 

állatkísérletek eredményei alapján az USEPA a lehetséges humán karcinogén anyagok 

közé sorolta az MTBE-t.  

Noha a jelenleg elfogadott nézet szerint a társadalom döntő többségét a belélegzett 

levegő és/vagy az ivóvíz révén érő MTBE-koncentrációk mellett jellemzően nem kell 

komolyabb egészségügyi problémáktól tartani, fontos megjegyezni, hogy az ivóvízzel a 

szervezetbe kerülő MTBE krónikus hatásait emberben mindeddig még nem vizsgálták. 

 

2.8 Az éter típusú üzemanyag-adalékok mikrobiális bontása 

 

2.8.1 Az éterkötést tartalmazó vegyületek mikrobiális bontása 

 

Az éterkötést tartalmazó vegyületek meglehetősen gyakoriak a természetben (pl.: 

lignin), ebből következően pedig a környezetben megtalálhatóak az éterkötés hasítására 

képes mikroorganizmusok is. Emberi tevékenység révén szintén sokféle éter típusú 

vegyület kerül ki a környezetbe, így fenoxi-alkanoátok és difenil-éterek (herbicidek), 

alkohol- és alkilfenol-etoxilátok (detergensek) és különböző poliéterek (polietilén- és 

polipropilén-glikolok). Az éterkötés felnyitásának biokémiai hátterét kiterjedten vizsgálták 
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baktériumokban [47], a kapott eredmények pedig a GEO vegyületek biodegradációja 

szempontjából is relevánsnak bizonyultak. A dialkil éterek aerob lebontási útvonalának 

kezdő lépését a legtöbb esetben egy oxigenáz enzim katalizálja, mely hidroxilálja az 

éterkötésben részt vevő -CH2 vagy -CH3 csoportot, és ezáltal a stabil éter vegyületből egy 

instabil hemiacetál jön létre, mely általában spontán diszmutációval aldehidre és alkoholra 

esik szét. A GEO vegyületek mikrobiális bontását a stabil és kevéssé reaktív éterkötés 

jelenlétén túlmenően tovább nehezíti a tercier szénatomot tartalmazó, elágazó szerkezetű 

terc-butil vagy terc-amil csoport is, melyek sztérikus gátlást jelentenek a katabolikus 

enzimek számára. Emiatt sokáig azt gondolták, hogy ezek az anyagok perzisztensek 

lesznek az egyes környezeti elemekben. Noha a GEO vegyületek csak mintegy 40 éve 

vannak jelen a környezetben, mára több mikrobiális konzorcium és egyedi izolátum vált 

ismertté, mely hatékony bontásukra képes anaerob vagy aerob körülmények között. 

 

2.8.2 Az éter típusú üzemanyag-adalékok anaerob biodegradációja 

 

A felszín alatti régiókban az abiotikus folyamatoknak elhanyagolható szerepe van a 

GEO vegyületek lebontásában [8]. Itt már a különböző mikrobiális lebontó folyamatok a 

legjelentősebb csökkentői az egyes szennyező anyagok koncentrációinak. Ahogyan azt már 

korábban említettük, a GEO vegyületek a legtöbb esetben kevert szennyezések formájában, 

jellemzően az üzemanyagok komponenseiként kerülnek ki a környezetbe. Miközben ezek 

az összetett szennyezések a telítetlen zónán keresztül a talajvíztest felé vándorolnak, 

kapcsolatba kerülnek a talaj mikroflórájával. Az aerob mikrobák a vizes fázisban oldott 

oxigént meglehetősen gyorsan elhasználják a könnyebben metabolizálható szénforrások 

(alkánok, BTEX vegyületek) hasznosításához, ezáltal pedig anaerob viszonyok állnak elő. 

Ennek következtében az anaerob biodegradációs folyamatoknak fontos szerepe van a GEO 

vegyületek koncentrációinak csökkentésében az üzemanyagokkal szennyezett felszín alatti 

régiókban. 

Termodinamikai számítások szerint mind az MTBE, mind pedig a TBA 

biodegradációja lejátszódhat nemcsak aerob körülmények között, hanem elméletileg 

bármely, környezeti szempontból releváns standard redox állapot mellett is [48]. 

Ugyanakkor a tapasztalatok szerint a GEO vegyületek anaerob körülmények közötti 

bonthatósága nagymértékben területspecifikus [49], hiszen számos tanulmány nem tudott 
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számottevő biodegradációt kimutatni [50,51], míg más szerzők hasonló anaerob 

viszonyokkal jellemezhető területekről hatékony lebontásról számoltak be [52,53]. 

Számos vizsgálat igazolta az MTBE biodegradációját nitrátredukáló [54,55], 

szulfátredukáló [55,56], Fe(III)-redukáló [55,57,58] és metanogén [55,59-62] körülmények 

között, máskor viszont nem tapasztaltak lebontást anaerob viszonyok mellett [56,59,63-

66]. Egyes esetekben az MTBE teljes, CO2-ig történő lebontását figyelték meg [54,55], 

máskor viszont TBA-ban végződő, részleges átalakítását [56]. TBA esetében 

nitrátredukáló, szulfátredukáló, Mn(IV)-redukáló és metanogén körülmények között 

figyeltek meg anaerob mikrobiális lebontást [62,64,67]. ETBE esetében egyetlen 

alkalommal számoltak be számottevő anaerob lebontásról [67], egy másik esetben pedig, 

felszíni vízi üledékekkel végzett kísérletek során nem tudtak kimérni ETBE fogyást nitrát-, 

szulfát- és Fe(III)-redukáló, valamint metanogén körülmények között [56]. TAME anaerob 

biodegradációját leírták felszíni vízi üledékekben szulfátredukáló [56] és általános anaerob 

körülmények között [68], továbbá egy másik vizsgálat során nem tapasztaltak lebontást 

nitrát- és Fe(III)-redukáló, valamint metanogén körülmények között szintén felszíni vízi 

üledékekben [56]. 

Általában a GEO vegyületek anaerob biodegradációjának sebessége sokkal kisebb, 

mint ugyanazon átalakulás aerob körülmények között mért értéke [61,65]. Valamennyi 

vizsgált anaerob körülmény közül metanogén viszonyok mellett kapták a legmagasabb 

biodegradációs sebesség értékeket. MTBE esetében a terepi viszonyok között, metanogén 

körülmények mellett mért biodegradációs sebesség értékek a természetes aerob lebontási 

folyamatok sebességének tartományában vannak. Hasonló redox körülmények között a 

TBA esetében tapasztalt biodegradációs sebesség értékek nagyobbak, mint az MTBE 

esetében mértek [8].  

Az MTBE és a TBA, valamint általában a GEO vegyületek anaerob lebontási 

útvonalairól kevés információ áll rendelkezésre, mivel eddig még nem sikerült egyedi 

bontóképes anaerob törzseket izolálni. A meglévő adatok mindegyike bakteriális 

konzorciumokkal végzett kísérletekből ered. Metanogén [69] és szulfátredukáló [61,70] 

mikrokozmosz rendszerekből származó stabil izotópos vizsgálati eredmények arra 

engednek következtetni, hogy az MTBE lebontása az oxigénatom és a metil csoport 

szénatomja közötti kötés hasításával kezdődik. Ezt támasztja alá az a megfigyelés is, 

miszerint ezekben a rendszerekben az MTBE és a TAME bontása során sztöchiometrikus 

mennyiségben TBA, illetve TAA keletkezik és halmozódik fel [56]. Leírták továbbá, hogy 

a metanogén és a szulfátredukáló folyamatok specifikus inhibitorainak (2-
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brómetánszulfonsav, ill. nátrium-molibdenát) alkalmazása nyomán az MTBE-bontó 

aktivitás nem szűnt meg, valamint metoxi csoportot tartalmazó aromás vegyületek (aromás 

metil éterek) koszubsztrátként történő adagolása növelte az MTBE-bontás sebességét [53]. 

Ezek alapján feltételezik, hogy a GEO vegyületek anaerob lebontásának kezdő lépését 

acetogén baktériumok végzik, melyekről korábban leírták, hogy aromás éterek 

demetilezésére képesek. MTBE-bontó anaerob bakteriális közösségek mikrobiális 

összetételének vizsgálata során a filogenetikai analízis három domináns törzs tagjait 

mutatta ki: Deltaproteobacteria, Firmicutes és Chloroflexi [71]. Közülük a Firmicutes 

törzsből már leírtak aromás éterek demetilezésére képes acetogén izolátumokat. TBA-

bontó anaerob bakteriális konzorciumok mikrobiális összetétel-vizsgálata nyomán 

molekuláris biológiai módszerekkel azonosítottak egy domináns klónt, melynek 

mennyisége jól korrelált a TBA-bontó aktivitással, és a legközelebbi rokonságot egy 

Ochrobactrum nemzetséghez tartozó izolátummal mutatta [72]. Az Ochrobactrum törzsek 

általában aerobok, bár denitrifikáló izolátumok is ismertek [73], továbbá egy aerob 

törzsükről leírták, hogy MTBE bontására képes [74]. 

 

2.8.3 Az éter típusú üzemanyag-adalékok aerob biodegradációja 

 

2.8.3.1 Az éter típusú üzemanyag-adalékok aerob biodegradációjának általános 

jellemzői 

 

Amikor a GEO vegyületek az üzemanyagok komponenseiként vándorolnak a felszín 

alatti közegben, általában a szennyezés (telítetlen zóna) vagy a szennyezőanyag-csóva 

(telített zóna) frontjában vannak jelen, köszönhetően kiváló vízoldhatóságuknak, nagy 

gőznyomásuknak és a talajmátrix csekély mértékű visszatartó képességének. Emiatt a 

telítetlen zónában lefelé haladó komplex LNAPL fázisban a GEO vegyületek 

érintkezhetnek leginkább az oxigénnel és ezáltal aerob biodegradációjuk lehetségessé válik 

[8]. A telítetlen zónában lejátszódó aerob lebontó folyamatok akkor tudnak igazán 

hatékonyan működni, ha a légkör felől biztosított az oxigén folyamatos utánpótlása [75]. 

Mivel azonban az aerob mikrobák képesek gyorsan elhasználni a vizes fázisban oldott 

oxigént a könnyebben hasznosítható szénforrások (alkánok, BTEX vegyületek) 

lebontásához, a talaj mélyebb régióiban jellemzően anaerob viszonyok uralkodnak, az 

aerob viszonyok meglehetősen ritkák [8].  
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1988-ban egy terepi kísérlet során, Kanadában vizsgálták először részletesen az 

MTBE in situ degradációját egy sekély, aerob viszonyokkal jellemezhető talajvíz zónában 

[8]. Az első adatsorok kiértékelése azt mutatta, hogy az MTBE meglehetősen ellenáll a 

különböző lebontó folyamatoknak. Emiatt néhány évig azt gondolták, hogy az MTBE 

perzisztensen jelen van a talajvízben. A korábban vizsgált helyről 1995-ben történt újabb 

mintavételezés eredménye azonban azt mutatta, hogy a korábban detektált értéknek 

mindössze 3%-a volt már csak jelen a területen [76,77]. Ezt követően a laboratóriumi 

vizsgálatok megerősítették, hogy a csökkenés legnagyobb részben aerob biodegradációs 

folyamatoknak volt köszönhető. A továbbiakban számos terepi vizsgálat bizonyította, hogy 

az MTBE és a TBA aerob biodegradációjára való képesség területről területre változik, 

ahogyan az az anaerob biodegradáció esetében is megfigyelhető [8]. Egy adott terület 

endemikus mikroflórájának az MTBE biodegradációjára való képessége nagymértékben 

függ a szennyezés korától, vagyis, hogy az endogén mikrobák számára mennyi idő állt 

rendelkezésre az alkalmazkodáshoz [8]. A későbbiekben számos tanulmány beszámolt 

MTBE és TBA aerob biodegradációjáról terepi körülmények között, valamint 

laboratóriumban talaj-, talajvíz-, iszap- vagy üledékmintákból összeállított mikrokozmosz 

rendszerekben egyaránt [65,78-84]. TAME és ETBE aerob lebontására képes mikrobiális 

konzorciumokat is leírtak [65,85-87]. 

 Az MTBE és a TBA aerob biodegradációs sebességeinek összehasonlításakor 

kiderül, hogy a TBA esetében jellemzően magasabb értékek figyelhetők meg [8]. Az 

MTBE biodegradációja során a TBA esetleges akkumulációjára vonatkozóan nem lehet 

általános érvényű megállapításokat tenni. TBA átmeneti akkumulációja megfigyelhető volt 

számos esetben szigorúan anaerob körülmények között [79,81,88], de miután aerob 

körülmények alakultak ki, a TBA teljes biodegradációja lejátszódott. TBA esetében 

mindeddig még nem írták le, hogy aerob körülmények között mikrokozmosz 

rendszerekben perzisztensen felhalmozódott volna [48,64]. A GEO vegyületek 

leggyakrabban összetett szennyezések formájában, legtöbbször alkánokkal és BTEX 

vegyületekkel együtt fordulnak elő a különböző környezeti elemekben. Rajtuk kívül más 

egyszerű vegyületek, cukrok, alkoholok, szerves savak is jelen lehetnek a szennyezett 

felszín alatti közegben, sokszor a szennyezés nem GEO komponenseinek lebontási 

köztitermékeiként. Ezek a vegyületek gyakran eltérő módon hatnak a GEO vegyületek 

biodegradációjára. Leírták, hogy egyes könnyen hasznosítható szénforrások (cukrok, 

alkoholok, szerves savak) gátolhatják az MTBE és a BTEX vegyületek biodegradációját 

aerob és anaerob körülmények között is [67,89]. Egyes esetekben a BTEX vegyületek 
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gátolták (etil-benzol, xilolok) vagy nagymértékben lassították (benzol, toluol) az MTBE és 

a TBA aerob biodegradációját [90], máskor viszont nem volt kimutatható gátló hatásuk, sőt 

olykor még növelték is az MTBE és a TBA biodegradációjának sebességét [91,92]. 

Megmutatták azt is, hogy alkánok, alkoholok és BTEX vegyületek bizonyos esetekben 

növekedési szubsztrátként hasznosulhatnak aerob kometabolikus MTBE-bontás során [93]. 

Kimutatták továbbá, hogy a TAME jelenléte nem befolyásolja az MTBE aerob 

biodegradációjának sebességét, és a két vegyület egymás mellett egyidejűleg bontható 

[65]. 

 

2.8.3.2 Az éter típusú üzemanyag-adalékok kometabolikus bontása 

 

Kometabolizmus során egy szén- és energiaforrásként hasznosuló vegyület 

lebontásával kapcsoltan egy másik molekula átalakítása is megtörténik, melyet a 

növekedési szubsztrát által indukált enzim(ek) katalizál(nak). Ennek az ún. 

koszubsztrátnak az egyedüli szén- és energiaforrásként történő hasznosítására a mikroba 

nem képes, kometabolikus átalakítása nem jár energianyereséggel a sejt számára, továbbá a 

növekedési szubsztrát egyidejű jelenléte vagy azon történő előnövesztés nélkül átalakulása 

nem játszódik le. A GEO vegyületek, különösen az MTBE vonatkozásában számos esetben 

leírtak kometabolikus átalakítást. 

A propánon előnövesztett Nocardia sp. ENV425 jelű izolátum az MTBE, az ETBE 

és a TAME hatékony kometabolikus bontására volt képes [94]. Az MTBE és az ETBE 

átalakítása során közel sztöchiometrikus mennyiségben TBA, TAME esetében pedig TAA 

keletkezett. Az MTBE metoxi metil csoportját formaldehiden keresztül, a TBA-t pedig 

MPD-n és 2-HIBA-n át szén-dioxiddá oxidálta a törzs, ugyanakkor ezen utóbbi 

intermedierek egyike sem bizonyult hatékony növekedési szubsztrátnak. A TBA 

átalakítása lényegesen lassabb volt, mint az MTBE-é, és mindaddig nem indult meg, amíg 

MTBE jelen volt a rendszerben. Igazolták, hogy az MTBE és a TBA oxidációját egyaránt 

egy szolubilis, citokróm P450 típusú monooxigenáz enzim katalizálta, minden 

valószínűség szerint az az enzim, amely a propán oxidációjáért is felelős (propán 

monooxigenáz). A kámforon előnövesztett Pseudomonas putida CAM (ATCC 17453) 

törzs az MTBE-t sztöchiometrikusan szintén TBA-vá alakította citokróm P450cam 

enzimének segítségével. 
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A Graphium sp. ATCC 58400 jelű fonalas gomba törzs esetében leírták, hogy a 

DEE-n és a n-butánon előnövesztett micéliumai egyaránt kometabolikus MTBE-bontást 

végeznek [95,96]. Az átalakulás TBF-en keresztül történik, mely abiotikus vagy biotikus 

hidrolízis nyomán TBA-vá alakul, ami akkumulálódik a rendszerben. A DEE és az MTBE 

oxidációját ennél a törzsnél is citokróm P450 típusú monooxigenáz végzi. 

A Gordonia terrae IFP 2007 jelű izolátum, etanol, mint növekedési szubsztrát 

jelenlétében az MTBE-t és a TAME-t kometabolikusan oxidálta [97]. A reakciót ebben az 

esetben is citokróm P450 monooxigenáz katalizálta, sztöchiometrikus mennyiségben TBA, 

ill. TAA keletkezett, továbbá mindkét szubsztrát esetében intermedierként hangyasavat is 

sikerült azonosítani. 

Az Arthrobacter sp. ATCC 27778 jelű izolátum n-butánon nőtt tenyészete az MTBE 

és a TBA hatékony oxidációjára volt képes [98]. Az MTBE oxidációja során TBA 

köztiterméket azonosítottak, vélhetően mind az MTBE, mind pedig a TBA átalakítását a 

butánt is oxidáló enzim (alkán monooxigenáz) katalizálta. 

A Mycobacterium vaccae JOB5 propánon előnövesztett tenyészete az MTBE-t 

oxidálta, a két domináns intermedier, a TBF és a TBA extracellulárisan kimutatható volt 

[99]. A törzs propánon történő előnövesztés után a TBA-t is oxidálta, de ennek a 

folyamatnak a köztitermékeit nem sikerült azonosítani. Mind az MTBE, mind pedig a TBA 

oxidációját gátolta az acetilén vagy a propán jelenléte. Ebből arra következtettek, hogy 

mindkét átalakítást a propán oxidációjáért is felelős, rövid láncú alkán monooxigenáz 

enzim katalizálta. Megfigyeléseik és a korábbi irodalmi adatok alapján javaslatot tettek az 

MTBE-lebontás útvonalának kezdeti lépéseire. Eszerint az MTBE-ből alkán 

monooxigenáz enzim révén, vélhetően egy hemiacetál típusú instabil vegyület (terc-

butoxi-metanol) képződik, ami vagy spontán diszmutáció révén TBA-ra és formaldehidre 

bomlik, vagy pedig feltételezhetően egy alkohol dehidrogenáz aktivitású enzim TBF-é 

alakítja, amit egy észteráz enzim TBA-ra és hangyasavra hasít el. A keletkezett TBA-t az 

alkán monooxigenáz enzim MPD-vé oxidálja. Később leírták, hogy a JOB5 esetében az 

MTBE önmaga is képes indukálni azokat a géneket, melyek kometabolikus bontásához 

szükségesek [100]. Megfigyelték ugyanis, hogy egyszerű, nem alkán szénforrásokon 

(glicerin, cukrok, szerves savak), mint növekedési szubsztrátokon MTBE jelenlétében 

növesztett JOB5 tenyészetekben MTBE-fogyás, ill. lebontási intermedierek (TBF, TBA) 

megjelenése volt kimutatható. 

Pseudomonas mendocina KR-1 rövid láncú n-alkánokon (C5-C8) nőtt tenyészetei az 

MTBE-t nagy hatékonysággal TBA-vá alakították [101]. TBF köztiterméket nem tudtak 
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kimutatni a folyamat során. A törzs n-pentánon nőtt tenyészete sem a TBF-et, sem a TBA-t 

nem tudta továbbalakítani, viszont az MTBE dealkilezése során képződő formaldehidet 

gyorsan hasznosította. Az MTBE oxidációját ebben az esetben is egy indukálható alkán 

monooxigenáz enzim végezte. 

Pseudomonas putida GPo1 gazdag tápoldaton alkán hidroxiláz enzim inducer 

(diciklopropilketon [DCPK]) jelenlétében, valamint n-oktánon nőtt tenyészetei az MTBE-t 

oxidálták és sztöchiometrikus mennyiségben TBA keletkezett, TBF-et nem tudtak 

kimutatni [102]. A DCPK jelenlétében előnövesztett tenyészet TAME oxidációjára is 

képes volt, de ETBE, TBF, TBA és TAA bontására nem, az MTBE és a TAME 

demetilezése során képződő formaldehidet viszont gyorsan lebontotta. Igazolták, hogy az 

MTBE oxidációját az OCT plazmidon kódolt alkán hidroxiláz (AlkB) enzim végezte. 

Pseudonocardia sp. ENV478 tetrahidrofuránon nőtt tenyészete az MTBE-t TBA-vá 

oxidálta [103]. A reakciót valószínűleg a törzs tetrahidrofurán monooxigenáz enzime 

katalizálta, mely az alkán hidroxilázok rokonsági körébe tartozik. 

Pseudonocardia tetrahydrofuranoxydans K1 tetrahidrofuránon nőtt sejtjei az MTBE-

t, az ETBE-t és a TAME-t tercier alkoholokká oxidálták kometabolikusan, de a keletkezett 

TBA-t és TAA-t már nem tudták továbbalakítani [104,105]. Az oxidációs reakciókat ebben 

az esetben is vélhetően a tetrahidrofurán monooxigenáz enzim katalizálta. 

A kometabolikus MTBE-bontásra képes mikrobákat tehát alapvetően két csoportba 

sorolhatjuk az MTBE-bontás mértéke és a keletkezett intermedierek alapján. Az egyik 

csoport tagjai az MTBE-t egy rövid láncú alkán(ok) által indukálható alkán hidroxiláz 

enzimükkel TBA-vá alakítják formaldehid képződése mellett, TBF köztitermék viszont 

nem keletkezik. A TBA-t azonban nem tudják tovább bontani, így az felhalmozódik. Ebbe 

a kategóriába tartoznak a fent említett Pseudomonas izolátumok, bár újabban leírták olyan 

törzseiket is, melyeknél nincs TBA akkumuláció, hanem teljes, CO2-ig menő 

kometabolikus lebontás történik [106]. A másik csoportba tartozó izolátumok az MTBE 

átalakítása során TBF-et képeznek, amit egy észteráz enzim TBA-ra és hangyasavra bont 

el. Az így keletkezett TBA-t ugyanaz az alkán monooxigenáz enzim alakítja tovább MPD-

vé, ami az MTBE oxidációját is végzi. Ide tartozik a Mycobacterium vaccae JOB5, az 

Arthrobacter sp. ATCC 27778 és részben a Graphium sp. ATCC 58400 is, bár ez 

utóbbinál a TBA átalakítása meglehetősen csekély mértékű. 
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2.8.3.3 Az éter típusú üzemanyag-adalékok egyedüli szén- és energiaforrásként 

történő hasznosítása 

 

Az első MTBE- és TBA-bontásra képes izolátumokat aktív iszapból és páfrányfenyő 

(Ginkgo biloba) magköpenyéről izolálták [107]. A Methylobacterium, Rhodococcus és 

Arthrobacter nemzetségekbe tartozó törzsek az MTBE-t meglehetősen alacsony 

növekedési sebesség mellett hasznosították és a biomassza termelésük is alacsony volt, 

amiből arra következtettek, hogy az MTBE gyenge szén- és energiaforrásnak minősül. 

Leírták, hogy az összetett bakteriális konzorciumok, összehasonlítva az egyedi bontóképes 

izolátumokkal, hatékonyabb bontásra és nagyobb biomassza hozamra voltak képesek 

MTBE-n, mint egyedüli szén- és energiaforráson. Megfigyelték továbbá, hogy könnyen 

bontható, egyszerű szénforrások (pl.: aceton, piruvát) egyidejű jelenléte visszavetette az 

MTBE-bontás sebességét. 

A Rhodococcus ruber IFP 2001 (korábban Gordonia terrae IFP 2001) jelű törzs 

hatékony ETBE-bontásra képes, viszont MTBE, TAME és tercier alkoholok (TBA, TAA) 

egyedüli szén- és energiaforrásként történő hasznosítására nem [97]. Az ETBE oxidációját 

citokróm P450 típusú monooxigenáz végzi, és sztöchiometrikus mennyiségben TBA 

keletkezik, ami extracellulárisan felhalmozódik. Az átalakulás kezdő lépésében az ETBE 

etoxi csoportja szubterminális pozícióban oxidálódik és feltételezhetően egy instabil, 

hemiacetál típusú intermedier (terc-butoxi-etanol) képződik, amit egy még ismeretlen, 

dehidrogenáz aktivitású enzim TBAc-vé alakít, melyet egy észteráz enzim TBA-ra és 

acetátra hasít el (2. ábra). Leírták, hogy az ETBE-n előnövesztett tenyészet MTBE és 

TAME bontására is képes, és szintén sztöchiometrikus arányban TBA, ill. TAA keletkezik. 

Az IFP 2001 jelű törzsben az ETBE-bontó képesség indukálható jelleget mutat, de sikerült 

izolálni egy konstitutívan expresszáló vonalat is (IFP 2007) az IFP 2001 ismételt 

átoltásával ETBE-n, mint egyedüli szénforráson. Leírták, hogy a törzs könnyen elveszíti 

ETBE-bontó képességét, ami együtt jár egy 14,3 kb méretű kromoszómális DNS darab 

spontán deléciójával, amely az ethRABCD operont hordozza [108]. Ennek tagjai az ETBE-

bontás kezdő lépésében közreműködő fehérjéket kódolják: a ferredoxin reduktázt (ethA), a 

citokróm P450 monooxigenázt (ethB), a ferredoxint (ethC), egy 10 kDa méretű, egyelőre 

ismeretlen funkciójú fehérjét (ethD), valamint egy feltételezett pozitív transzkripciós 

regulátort (ethR). Az operont mindkét oldalról egy-egy 5,6 kb méretű, azonos, direkt repeat 

szekvencia határolja, amelyek a II-es osztályba tartozó transzpozonok, és egy TnpA 

transzpozázt, a TnpR rekombináz egy csonkolt formáját, valamint egy 38 bp méretű 
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terminális fordított repeat szekvenciát hordoznak. Valószínű, hogy az ETBE-bontás 

elvesztésével járó spontán deléció a két azonos direkt repeat szekvencia közötti homológ 

rekombináció révén megy végbe, jellemzően nem szelektív növesztési körülmények 

között. Nagyon hasonló felépítésű eth operonokat találtak két másik ETBE-bontó törzsben 

is (Rhodococcus zopfii IFP 2005 és Mycobacterium sp. IFP 2009), melyekben szintén 

meglehetősen instabil volt az ETBE-bontásra való képesség [109]. Megfigyelték, hogy az 

egyébként meglehetősen konzervált eth operonok a három törzs esetében különböző, 

egymással nem rokon szekvenciák között helyezkedtek el, ami fajok közötti horizontális 

géntranszferre utalhat, melynek során az újonnan szerzett gének eltérő genomi környezetbe 

integrálódtak a kromoszómán. 

 

 

2. ábra Az ETBE metabolikus útvonala a Rhodococcus ruber IFP 2001-ben ([110] alapján). 

 

A hidrogénoxidáló Hydrogenophaga flava ENV735 jelű izolátum lassú növekedésre 

volt képes MTBE-n és TBA-n egyaránt, de már kis mennyiségű élesztőkivonat adagolása 

is nagymértékben növelte a lebontás sebességét, ugyanakkor H2 hozzáadása nem 

befolyásolta számottevően a biodegradációt [111]. Az MTBE-oxidáló aktivitás 

konstitutívan jelen volt a törzsben, a TBA-bontás viszont indukálható jelleget mutatott. 

Emiatt, valamint a két reakció inhibitorokkal szemben történő eltérő viselkedése miatt, 
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valószínűsíthető, hogy az MTBE és a TBA oxidációját különböző enzimek katalizálják az 

ENV735-ben, melyek génjei egymástól függetlenül szabályozódnak. Az MTBE bontása 

során TBA és 2-HIBA intermediereket tudtak kimutatni, TBF-et viszont nem, ami arra 

utal, hogy a terc-butoxi-metanol spontán diszmutáció révén alakul tovább a törzsben. Ezt 

támasztja alá az is, hogy az ENV735 nő formaldehiden, mint egyedüli szénforráson. 

A Mycobacterium austroafricanum IFP 2012 jelű törzset TBA-bontóként izolálták, 

de a későbbiekben igazolták, hogy MTBE, TAME és TAA bontására is képes, ETBE-n 

viszont gyengén nő [112]. Az MTBE lebontási köztitermékei közül a TBF-et, a TBA-t, az 

MPD-t, a 2-HIBA-t és az acetont azonosították. A kísérleti eredmények alapján a törzsben 

az MTBE és a TBA oxidációját minden valószínűség szerint ugyanaz az alkán 

monooxigenáz enzim végzi, citokróm P450 típusú oxigenázt nem találtak az IFP 2012-ben. 

Az MTBE lebontása során az egyes átalakításokat katalizáló enzimek és a keletkező 

intermedierek között összetett, kompetíción és inhibíción alapuló szabályozási rendszert 

tártak fel [113,114]. Az MTBE/TBA monooxigenáznak alacsony az affinitása a TBA 

irányába, emiatt az MTBE bontása során a TBA felhalmozódik és csak azután alakul 

tovább, miután az MTBE elfogyott a rendszerből. A TBF az MTBE/TBA monooxigenáz 

működését, a TBA pedig a TBF-et bontó észteráz működését szabályozza negatív 

visszacsatolással. A TBF kis részben spontán hidrolízis révén is bomlik. Mivel az IFP 2012 

metilotróf izolátum, ezért a TBF hidrolízise nyomán keletkező formiátot is képes 

hasznosítani. Az aceton továbbalakítását vélhetően katalizáló monooxigenáz enzim nem 

azonos az MTBE/TBA monooxigenázzal, így az aceton nem befolyásolja annak 

működését kompetíció révén. A 2-HIBA átalakítását egy, a működéséhez Co
2+

 ionokat 

igénylő dekarboxiláz aktivitású enzim végzi, a reakció során 2-propanol keletkezik, amit 

egy dehidrogenáz alakít acetonná. Az MTBE-, a TBA- és a 2-HIBA-bontó aktivitások 

indukálható jelleget mutattak az IFP 2012-ben. Az MTBE és a TBA indukálták ezeket az 

aktivitásokat, a TBA jobb inducernek bizonyult, mint maga az MTBE.  

A Mycobacterium austroafricanum IFP 2015 jelű izolátumot, az előzőekben 

bemutatott IFP 2012 törzs közeli rokonát, nagymértékben hasonló tulajdonságok jellemzik 

[115]. Degradációs profiljuk megegyezik (MTBE, TAME, ETBE), lényeges különbség 

viszont, hogy az IFP 2015 sokkal hatékonyabban nő ETBE-n. Az MTBE katabolikus 

útvonala is jó egyezést mutat, hiszen ugyanazokat a lebontási intermediereket 

azonosították itt is (TBF, TBA, MPD, 2-HIBA, aceton), mint az IFP 2012 esetében. 

Ezenfelül az IFP 2015 is fakultatív metilotróf, metanolon és hangyasavon, mint egyedüli 

szénforrásokon is nő. 
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Leírták, hogy a fenti két Mycobacterium austroafricanum törzs jól nő C2-C16 n-

alkánokon is [116]. Az alkán hidroxiláz enzimet (AlkB) kódoló alkB gén mindkét 

izolátumban jelen volt egy-egy kópiában. RT-PCR vizsgálatokkal sikerült igazolni, hogy 

az alkB gén nagymértékben indukálódott nemcsak n-alkánokon, hanem TBA-n történő 

növesztés során is. Ezenfelül a különböző n-alkánokon előnövesztett IFP 2012 és IFP 2015 

sejtek hatékony TBA-bontásra voltak képesek. Mindebből arra lehetett következtetni, hogy 

a TBA oxidációját ezekben a törzsekben az alkB gén terméke végzi, amiből egyúttal az is 

következett, a korábban említett megfigyelések alapján, hogy az MTBE oxidációjáért is az 

AlkB felelős az IFP 2012-ben és az IFP 2015-ben. Az MTBE lebontása során az MPD    2-

HIBA átalakulás enzimatikus és genetikai hátterét is feltárták az IFP 2012-ben [117]. A két 

lépésben történő átalakítás első reakcióját egy alkohol dehidrogenáz aktivitású enzim 

(MpdB) katalizálja, és hidroxiizobutiraldehid (2-hidroxi-2-metilpropanal) keletkezik, mely 

intermediert mindeddig még nem sikerült kimutatni. A második lépésben egy aldehid 

dehidrogenáz aktivitású enzim (MpdC) 2-HIBA-t állít elő az aldehidből. A két 

dehidrogenáz enzimet kódoló gén (mpdB és mpdC) az mpd génklaszter részét képezi, 

melynek működését feltételezhetően az mpdR gén szabályozza. 

Az L10 és L108 [118], valamint a CIP I-2052 [119] jelű izolátumokat MTBE-vel 

szennyezett talajvízből, illetve aktív iszapból izolálták. Kemotaxonómiai, fiziológiai és 

DNS-alapú vizsgálatok alapján a három törzs ugyanabba a fajba, az Aquincola 

tertiaricarbonis-ba tartozik [120]. Az ismert mikrobák közül az Aquincola tertiaricarbonis 

L108 rendelkezik a legnagyobb potenciállal az éter típusú üzemanyag-adalékok 

lebontásában, lévén az MTBE, az ETBE, a TAME, a TAEE és a DIPE, valamint 

legfontosabb metabolitjaik, a TBA, a TAA és a 2-HIBA nagy hatékonyságú degradációjára 

képes az abiotikus környezeti tényezők (hőmérséklet, pH) széles tartományában [121,122]. 

A terc-butil csoportot tartalmazó vegyületek hasznosításához a törzsnek kobaltra van 

szüksége Co
2+

 vagy kobalamin (B12-vitamin) formájában [118]. Az L108 esetében az alkil 

éterek biodegradációs útvonalában három lépésnek ismert az enzimatikus és a genetikai 

háttere. A lebontás kezdő lépését egy citokróm P450 típusú monooxigenáz (EthB) 

katalizálja, melyet a hozzá kapcsolódó, elektrontranszferben szerepet játszó fehérjékkel 

együtt az ethABCD gének kódolnak, a Rhodococcus ruber IFP 2001 esetében megismert 

elrendezés szerint, azzal a lényeges különbséggel, hogy az L108-ból hiányzik az ethR 

regulátor gén, így a génklaszter tagjai konstitutívan expresszálódnak [122]. A TBA 

oxidációját vélhetően egy két alegységből álló fehérje végzi, amely szekvencia homológia 

alapján egy ftalát-4,5-dioxigenáz enzimmel mutatja a legközelebbi rokonságot [123]. A 
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fehérje egy 55 kDa-os, hidroxiláz aktivitású (MdpJ), és egy 38 kDa-os oxidoreduktáz 

aktivitású alegységből (MdpK) épül fel. A 2-HIBA-t, a működéséhez kobalamint igénylő, 

2-hidroxiizobutiril-KoA mutáz (Hcm) enzim (S)-3-hidroxibutiril-KoA-vá alakítja 

reverzibilis reakcióban, ami azután a központi anyagcsere-útvonalakon keresztül alakul 

tovább [124]. A két alegységes enzim egy nagyobb, szubsztrátkötő (HcmA), és egy kisebb 

kobalaminkötő alegységből (HcmB) áll, melyeket a hcmA, ill. a hcmB gének kódolnak. Az 

L108-ban az MTBE és az ETBE lebontása TBA-n keresztül történik, azonban kis 

mennyiségben, melléktermékként izobutilén is keletkezik [125]. Az izobutilén képződése 

TBA-ból alacsony oxigénkoncentráció mellett figyelhető meg és valószínűleg az MdpJK 

deszaturáz aktivitásának tulajdonítható. A TAME és a TAEE katabolikus útvonala TAA 

köztiterméken át vezet, melyből kevés oxigén jelenlétében számottevő mennyiségben β- és 

γ-izoamilén is képződik [125]. Elegendő oxigén mellett a TAA-ból az MdpJ deszaturáz 

aktivitása nyomán 2-metil-3-butén-2-ol keletkezik, mely prenol és prenal intermediereken 

keresztül 3-metilkrotonsavvá alakul, ami azután a leucin katabolikus útvonalába 

csatlakozhat be [126]. Lényeges különbség tehát, hogy a TBA metabolizmusával 

összehasonlítva TAA esetében az MdpJ nem hidroxilációs reakciót katalizál, továbbá a 

TAA-n történő növekedéshez az L108 nem igényel kobalamint, viszont biotinra szüksége 

van. 

A PM1 jelű törzset egy komposzt alapú biofilterből származó, dúsított, MTBE-bontó 

bakteriális konzorciumból izolálták az Egyesült Államokban, Kaliforniában [127]. A 

laboratóriumi tesztek alapján nagyon hatékony izolátumnak bizonyult, jelentősebb lag fázis 

nélkül képes volt akár 500 µg/ml koncentrációban adagolt MTBE gyors lebontására is. 

MTBE-bontó képességét vizsgálták környezeti mintákból (talajvíz, üledék) összeállított 

mikrokozmosz rendszerekben is [127,128], és igazolták, hogy a PM1 sejtszámának 

növekedése együtt járt az MTBE koncentrációjának csökkenésével [128]. A PM1 16S 

rRNS génjére tervezett specifikus primerek alkalmazásával sikerült MTBE-vel szennyezett 

területekről a PM1-hez rendkívül hasonló (≥99%) izolátumok jelenlétét kimutatni 

[129,130], de ezeket a törzseket nem izolálták. E PM1-szerű törzsek esetében is 

megfigyelték mikrokozmosz rendszerekben, illetve terepi kísérletek során in situ 

körülmények között is, hogy sejtszámuk növekedése és az MTBE fogyása pozitív 

korrelációt mutatott [129]. A PM1 jelű izolátumot végül később a Methylibium nemzetség 

első tagjaként, Methylibium petroleiphilum PM1-ként írták le [131]. A PM1 az alkil éterek 

és jelentősebb intermediereik közül az MTBE és a TAME, valamint a TBA, a TAA és a 2-

HIBA nagy hatékonyságú lebontására képes [118,125,131]. A PM1 esetében az MTBE 
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lebontási útvonalában három reakció enzimatikus és genetikai háttere ismert, melyek közül 

kettőt az L108-nál megismert enzimekhez nagymértékben hasonló fehérjék katalizálnak. 

Az MTBE-bontás kezdő lépésében mutatkozik jelentős eltérés az L108-hoz képest. Míg ott 

egy citokróm P450 monooxigenáz (EthB), addig a PM1-ben egy az alkán hidroxilázokkal 

rokon enzim, az MdpA végzi a kezdő oxidációs lépést [132]. Az MdpA tartalmazza a 

membránkötött alkán hidroxilázokra jellemző 6 konzervált transzmembrán régiót, valamint 

a 3 klaszterbe rendeződött szintén konzervált 8 hisztidin aminosavat is. Az alkán 

hidroxilázokat két csoportra osztják az aktív centrumukban, egy kitüntetett pozícióban lévő 

aminosav-oldallánc típusa szerint, mely nagymértékben meghatározza az enzim által 

átalakítható szubsztrátok mérettartományát [133]. Az AH1 csoport esetében ez egy 

nagyméretű aminosav (Trp, Tyr), így az ide tartozó enzimek a rövid vagy közepes 

lánchosszúságú alkánok hidroxilálására képesek. Az AH2 csoportnál viszont jellemzően 

egy kisebb méretű aminosav-oldallánc (Ile, Leu, Val) található ebben a pozícióban, így 

ezek az enzimek hosszú láncú alkánok oxidációját végzik. Az MdpA esetében Thr 

található ezen a helyen, így, noha a filogenetikai vizsgálatok szerint az AH1 csoporttal 

rokon, egyik fenti csoportba sem sorolható, hanem egy önálló alcsaládot képvisel az alkán 

hidroxilázok között. Az MdpA-t és redox partnereit, a rubredoxint és a rubredoxin 

reduktázt kódoló gének (mdpA, mdpB, mdpD) [134], melyek a Pseudomonas putida GPo1 

alkB, alkF/G és alkT génjeivel homológok [135], a PM1 megaplazmidján, egy 10 kb 

méretű lókuszban találjuk. A megaplazmidot nem tartalmazó mutáns PM1 vonal nem volt 

képes MTBE-bontásra [136]. Az MdpA alacsony szintű konstitutív expressziót mutat, 

MTBE viszont erősen indukálja a termelődését [132]. Methimazol, a flavin kofaktort 

(FAD) tartalmazó monooxigenázok irreverzibilis inhibitora gátolta a PM1 MTBE-bontását, 

az acetilén, az alkán monooxigenázok másik ismert inaktivátora/inhibitora, azonban nem 

volt rá hatással [132]. Leírták, hogy bizonyos körülmények között az MdpA ugyan részt 

vehet a TBA-bontás szabályozásában, de a TBA oxidációjáért egy másik monooxigenáz 

felelős a PM1-ben. Ezt támasztja alá az a megfigyelés is, miszerint az mdpA knockout 

(KO) mutáns PM1 vonal MTBE-bontásra nem volt képes, TBA-t viszont továbbra is 

bontott [132]. A PM1 teljes transzkriptom analízise során azonosították a TBA oxidációját 

végző enzimet, mely egy hidroxiláz (MdpJ) és egy oxidoreduktáz (MdpK) alegységből 

épül fel, és a filogenetikai elemzés alapján a ftalát dioxigenázok rokonsági körébe tartozik, 

hasonlóképpen az L108 esetében megismert enzimmel [134]. A teljes transzkriptom adatok 

vizsgálata feltárta továbbá azt is, hogy az MTBE-n történő növekedés során más 

vegyületcsoportok, így aromás vegyületek (toluol, fenol) és alkánok lebontási útvonalában 
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szereplő gének is indukálódnak. A PM1 esetében is megfigyelhető a TBA-ból és a TAA-

ból illékony, telítetlen szénhidrogén melléktermékek (izobutilén, ill. izoamilének) 

képződése alacsony oxigénkoncentráció mellett az L108-nál bemutatott mechanizmus 

szerint, de itt lényegesen kisebb intenzitású a folyamat [125]. A két törzsnél az mdpJ gén 

esetében megfigyelhető nagyfokú azonosság (~97%), valamint a csaknem egyforma 

génkörnyezet alapján feltételezik, hogy a TAA metabolizmusa a PM1-ben szintén az L108-

nál leírt útvonalon megy végbe, melyet alátámaszt az a tény, hogy a PM1 képes a 2-metil-

3-butén-2-ol egyedüli szén-és energiaforrásként történő hasznosítására [126]. A 2-HIBA 

metabolizmusa a PM1-ben nagy valószínűség szerint szintén az L108-nál leírtak szerint 

játszódik le. Erre utal, hogy az L108 Hcm alegységeit kódoló gének (hcmA és hcmB) 

nagymértékű azonosságot (>97%) mutatnak a PM1 homológjaival (mdpO/R), és a gének 

elrendeződése is megegyezik a két törzsben [118,124,136]. A teljes transzkriptom 

vizsgálata során az mdpO/R géneken kívül két másik gén indukcióját is kimutatták MTBE-

n nőtt sejtekben, melyek valószínűsíthetően szintén a 2-HIBA lebontási útvonalában 

vesznek részt: az acil-KoA szintetázét (2-HIBA-KoA ligáz) (mdpP) és a 3-hidroxibutiril-

KoA dehidrogenázét (mdpX) [134]. 

A fent bemutatott izolátumokon kívül egyéb törzsekről is leírták, hogy az éter típusú 

üzemanyag-oxigenátok bontására képesek [74,119,137-145], de mivel esetükben a 

biodegradáció részletei, különös tekintettel a folyamatban részt vevő génekre és enzimekre, 

valamint a lebontási útvonalra vonatkozóan egyáltalán nem, vagy legfeljebb csak néhány 

részletükben ismertek, ezért itt most ezeket a törzseket nem tárgyaljuk részletesen.  

Az éter típusú üzemanyag-adalékok aerob mikrobiális lebontásának részletes 

áttekintése után elmondhatjuk, hogy kisszámú kivételtől eltekintve, a biodegradációs 

folyamatokban részt vevő gének és/vagy enzimek, nincsenek minden kétséget kizáróan 

azonosítva, sokszor csak indirekt bizonyítékok (pl.: szekvencia homológiák, enzim 

inhibitorok) utalnak egy adott gén vagy enzim részvételére egy adott lépésben. Ezenfelül 

nincs olyan mikroorganizmus, melyben valamelyik GEO vegyület teljes lebontási útvonala 

ismert lenne. Az egyes törzsekben azonosított intermedierek, valamint katabolikus gének 

és enzimek felhasználásával azonban leírták az MTBE valószínűsíthető biodegradációs 

útvonalát, melynek felső, 2-HIBA-ig tartó szakaszát a 3. ábra mutatja be, míg a 2-HIBA 

lehetséges további átalakulásait a 4. ábra szemlélteti. 



35 

 

 

3. ábra Az MTBE aerob biodegradációs útvonalának felső, 2-HIBA-t eredményező legvalószínűbb útvonala 

([93] alapján). (A szögletes zárójelben feltüntetett intermediereket mindeddig még nem sikerült kimutatni.) 

 

2.9 A Methylibium nemzetség általános jellemzése 

 

A Methylibium nemzetség a Betaproteobacteria osztály Burkholderiales rendjének 

Comamonadaceae családjába tartozik, legközelebbi rokonai az Aquabacterium, a 

Piscinibacter és a Rhizobacter nemzetségek tagjai között találhatóak [131,136,146]. A 

nemzetség jelenleg egyetlen leírt faja a M. petroleiphilum, melynek típustörzse a PM1
T
. A 

PM1 Gram-negatív, sejtjei egyenes pálca alakúak, mozgékonyak, egy poláris flagellummal  
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4. ábra A 2-HIBA átalakulásának lehetséges útvonalai az MTBE-lebontás alsó szakaszában ([93] alapján). 

 

rendelkeznek. Fakultatív anaerob, optimális növekedése 6,5-es pH-n és 30 °C-on 

figyelhető meg, 37 °C-on nem nő. 2-3 nap alatt NA táplemezen 2-3 mm átmérőjű, 

krémszínű telepeket képez. Vitaminokat nem igényel a szaporodásához, a mikroelemek 

közül a Co, a Cu, a Fe, a Mn, a Mo, a Ni és a Zn szükséges a növekedéséhez minimál 
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tápoldatban MTBE-n, mint egyedüli szénforráson. Fakultatív metilotróf, a C1 vegyületek 

közül a metanol, a formaldehid és a hangyasav hasznosítására képes. Számos alkoholt és 

szerves savat hasznosít egyedüli szén- és energiaforrásként, így etanolt, butanolt, acetátot, 

piruvátot és tejsavat, viszont nem nő egyedüli szénforrásként alkalmazott glükózon, 

citráton és DL-glicinen. Nagyszámú aromás vegyületet metabolizál, így benzolt, toluolt, 

etil-benzolt, o-xilolt, fenolt és különböző dihidroxibenzoátokat, naftalint azonban nem 

bont. A nyílt láncú telített szénhidrogének közül a C5-C12 n-alkánok bontására képes. 

A törzs teljes genomszekvenciája ismert, genommérete 4,6 Mb. Cirkuláris 

kromoszómája mintegy 4 Mb méretű, továbbá rendelkezik egy megközelítőleg 600 kb-os 

megaplazmiddal (pPM1) is [136]. Az alifás és aromás szénhidrogének metabolizmusában 

részt vevő, valamint a különböző nehézfémek elleni rezisztenciákért (Cd, Co, Cr, Cu, Zn) 

és a metilotrófiáért felelős géneket a kromoszómán találjuk. A megaplazmidon 

lokalizálódnak az MTBE-lebontás és a kobalamin szintézis útvonalában közreműködő 

gének. A kromoszóma és a megaplazmid is nagy számban tartalmaz inszerciós 

szekvenciákat (IS elemek), de eloszlásuk meglehetősen eltér a két replikonon. Az MTBE 

bontásában részt vevő gének szomszédságában is számos IS elem található, melyek 

szerepet játszhatnak az mdp génklaszter esetleges mobilitásában, deléciójában vagy 

átrendeződésében. A PM1 és az eltérő földrajzi helyekről izolált PM1-szerű törzsek 

megaplazmidjai nagymértékben konzervált nukleotid szekvenciákkal rendelkeznek (~99% 

azonosság), kromoszómáikban azonban lényeges eltérések figyelhetők meg. A 

kromoszómán, illetve a megaplazmidon kódolt fehérjék legközelebbi homológjainak 

filogenetikai eloszlása meglepő módon nagy különbségeket mutat. A fentiek 

figyelembevételével, valamint kiegészítve azzal, hogy a kromoszóma és a megaplazmid 

GC-tartalma is különbözik (69,2%, ill. 66%), valószínűsíthető, hogy a plazmidot a 

közelmúltban horizontális transzfer során szerezte a törzs. 
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3. CÉLKITŰZÉSEK 

 

Hazánkban számos MTBE-vel szennyezett terület vált ismertté az utóbbi időben, 

mely szennyezések döntő hányada üzemanyag eredetű. Ahogyan az előző fejezetben 

ismertettük, Magyarországon jelenleg még nincs érvényben rendeletileg előírt környezeti 

határérték az üzemanyag-oxigenátokra vonatkozóan, de a közeljövőben várható az MTBE 

környezeti küszöbkoncentrációinak Európai Unió szintű szabályozása, ami maga után 

vonja majd a szennyezett területek kötelező kármentesítését. A környezeti kármentesítések 

során a bioremediációs eljárások sok esetben elsőbbséget élveznek a fizikai-kémiai 

módszerekkel szemben, elsősorban alacsonyabb költségeik és a szennyezett közegek 

ökoszisztémáját lényegesen kevésbé károsító tulajdonságaik miatt. 

A szakirodalomban ugyan egyre több információ áll rendelkezésre üzemanyag-

adalékokat bontó konzorciumok, és ezáltal közvetve a forrásukként szolgáló, üzemanyag-

adalékokkal szennyezett közegek mikrobiális összetételéről is a világ számos pontjáról, de 

legjobb tudomásunk szerint hazánkban mindeddig még nem történt részletes felmérés az 

MTBE-vel szennyezett területek mikrobiális viszonyait (diverzitás, biodegradációs 

potenciál) illetően, pedig a hatékony remediáció szempontjából ez elengedhetetlenül 

szükséges. 

Munkánk során ezért célul tűztük ki hazai, MTBE-vel és rokon vegyületekkel 

szennyezett felszín alatti közegekből bontóképes konzorciumok izolálását, mikrobiális 

összetételük meghatározását és ezáltal a lokális MTBE-bontó potenciálok felmérését. 

Végső célunk, a későbbi hatékony terepi beavatkozások érdekében, az üzemanyag-

oxigenátok, mindenekelőtt az MTBE bontására képes bakteriális konzorciumokból egyedi 

bontóképes baktériumtörzs(ek) izolálása és jellemzése volt. Az izolátum(ok) jellemzésének 

első lépéseként először laboratóriumi szinten kívántuk meghatározni az optimális MTBE-

bontáshoz szükséges abiotikus paramétereket, majd feltérképezni a törzs(ek)ben az MTBE 

lebontási útvonalát, megadni a hasznosítható szénforrások spektrumát, azonosítani a 

biodegradációban szerepet játszó géneket és enzimeket, végül pedig a kapott eredményeket 

összevetni az irodalmi adatokkal. Az azonosított gének, mint az aktív MTBE-bontási 

képesség meglétét igazoló molekuláris markerek, a jövőbeni kármentesítési eljárások során 

a remediációs folyamatban alkalmazott törzs terepi nyomon követését, és a beavatkozás 

hatékonyságának igazolását tehetik lehetővé. 
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4. ANYAGOK ÉS MÓDSZEREK 

 

4.1 MTBE-bontó konzorciumok izolálása talajvízmintákból 

 

MTBE-bontó konzorciumok izolálásához az alábbi földrajzi helyekről származó, 

jellemzően MTBE-tartalmú üzemanyagokkal, vagy más, döntően alifás és aromás 

szénhidrogénekkel szennyezett talajvízmintákat használtuk fel: Baja, Balassagyarmat, 

Barcs, Békéscsaba, Bonyhád, Fonyód, Füzesabony, Gyöngyös, Jánossomorja, Komárom, 

Pálmonostora, Püspökladány, Sátoraljaújhely, Tihany, Tiszaújváros, Vásárosnamény, Vép, 

Zalaegerszeg, Zalalövő. A vízmintákból 25-25 ml-eket lecentrifugáltunk (9500 g, 10 perc), 

a kiülepedett pelleteket háromszor mostuk 1,5-1,5 ml MSM tápoldattal, majd 250 ml-es, 

teflonbetétes kupakkal légmentesen zárható üvegekbe 50-50 ml MSM tápoldatba 

inokuláltuk azokat, egyedüli szén- és energiaforrásként 200 mg/l koncentrációban MTBE-t 

mértünk be és a rendszereket 25 °C-on 150 rpm-el rázatva inkubáltuk 30 napig. Ezután 

azokból a tenyészetekből, melyek ez idő alatt számottevő növekedést mutattak, 500-500 

µl-eket friss 50-50 ml MSM tápoldatba oltottunk át, majd 200 mg/l MTBE hozzáadása 

után tovább inkubáltuk őket. A dúsításhoz használt MSM tápoldat és a megfelelő MSA 

táptalaj összetételét a 2. táblázat mutatja be. 

 

4.2 MTBE-bontó konzorciumok mikrobiális összetételének 

meghatározása piroszekvenálással 

 

Az előző lépésben izolált konzorciumok közül a GC-MS analitikai eredmények 

alapján leghatékonyabbnak bizonyult RL és SC jelű dúsítások MTBE-n nőtt tenyészeteiből 

UltraClean™
 
Microbial DNA Isolation Kit (MO BIO Laboratories, Inc.) felhasználásával 

genomi DNS-t tisztítottunk a gyártó utasításai szerint. Ezekről a templátokról a 16S rDNS 

szekvenciák amplifikálását, a kapott termékek piroszekvenálását ([147] alapján), valamint 

a nyers szekvencia adatok előzetes bioinformatikai feldolgozását 

(http://www.researchandtesting.com/docs/Archive/Data_Analysis_Methodology-01-26-2012.pdf 

szerint) a Research and Testing Laboratory (Lubbock, Texas, USA) végezte. 

 

http://www.researchandtesting.com/docs/Archive/Data_Analysis_Methodology-01-26-2012.pdf
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K2HPO4 0,425 g 

KH2PO4 0,350 g 

(NH4)2SO4 0,124 g 

MgSO4*7H2O 0,050 g 

CaCl2*2H2O 0,0125 g 

Mikroelem oldat 1 ml 

Vitamin oldat  1 ml 

Agar (amennyiben szükséges) 15 g 

Desztillált víz 1000 ml 

 pH 6,7 

Mikroelem oldat:  

FeSO4*7H2O 1,00 g 

CoCl2*6H2O 1,00 g 

MnSO4*H2O 1,00 g 

ZnSO4*7H2O 1,00 g 

Na2MoO4*2H2O 1,00 g 

Na2WO4*2H2O 1,00 g 

NiCl2*6H2O 0,25 g 

H3BO3 0,10 g 

CuSO4*5H2O 0,10 g 

Desztillált víz 1000 ml 

  

Vitamin oldat:  

Biotin 200 mg 

Kalcium-pantotenát 50 mg 

Nikotinsav 50 mg 

p-amino-benzoesav 50 mg 

Riboflavin 50 mg 

Folsav 20 mg 

Tiamin 15 mg 

Cianokobalamin (B12-vitamin) 1,5 mg 

Desztillált víz 1000 ml 
 

2. táblázat Az MSM tápoldat, illetve az MSA táptalaj összetétele. 

 

4.3 MTBE-bontásra képes egyedi baktériumtörzsek izolálása az 

MTBE-bontó konzorciumokból 

 

A GC-MS analitikai eredmények alapján hatékony MTBE-bontásra képes 

konzorciumok tenyészeteiből hígítási sorokat készítettünk, majd egyedüli szénforrásként 

MTBE-t vagy TBA-t tartalmazó MSA lemezekre szélesztettük őket. A lemezeket 25 °C-on 

két hétig inkubáltuk. A megjelenő telepeket izoláltuk és 2-2 ml, 200 mg/l MTBE vagy 

TBA szénforrással kiegészített MSM tápoldatba oltottuk le őket ún. headspace (HS) 

(Chromacol 20-HSV T717) üvegekbe. A rendszereket két hétig inkubáltuk 25 °C-on 150 
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rpm-el rázatva. A számottevő optikai denzitásbeli (OD600) növekedést mutató tenyészetek 

tisztaságát ½ × TSA és NA lemezekre történő szélesztéssel ellenőriztük, majd további 

ellenőrzésként egyedüli szénforrásként MTBE-t vagy TBA-t tartalmazó MSA lemezekre is 

kiszélesztettük, valamint 50 ml, 200 mg/l koncentrációban MTBE-t vagy TBA-t tartalmazó 

MSM tápoldatba is átoltottuk őket. Azokkal az izolátumokkal dolgoztunk tovább, amelyek 

a ½ × TSA és az NA szélesztések alapján is egyneműnek bizonyultak, valamint MSA 

táptalajon és MSM tápoldatban is felnőttek MTBE-n vagy TBA-n, mint egyedüli 

szénforrásokon. A TSA és az NA táptalajok, valamint a megfelelő TSB és NB tápoldatok 

összetételét a 3. és a 4. táblázat tartalmazza. 

 

Kazein pepton (pankreász hidrolizátum) 17 g 

Szója pepton (papain hidrolizátum) 3 g 

NaCl 5 g 

K2HPO4 2,5 g 

D-(+)-glükóz-monohidrát 2,5 g 

Agar (amennyiben szükséges) 15 g 

Desztillált víz 1000 ml 
 

3. táblázat A TSB tápoldat, illetve a TSA táptalaj összetétele. 

 

Pepton 5 g 

Marhahús kivonat 3 g 

Agar (amennyiben szükséges) 15 g 

Desztillált víz 1000 ml 
 

4. táblázat Az NB tápoldat, illetve az NA táptalaj összetétele. 

 

4.4 Az izolált MTBE- vagy TBA-bontásra képes egyedi 

baktériumtörzsek azonosítása 

 

A hatékony MTBE- vagy TBA-bontásra képes izolátumok azonosítását a 16S rRNS-t 

kódoló génjük (16S rDNS) szekvenciájának meghatározásával végeztük el. A 16S rDNS 

szekvenciák amplifikálásához az eubaktériumok körében univerzális EubA (1522R; 5’-

AAG GAG GTG ATC CAN CCR CA-3’) és EubB (27F; 5’-AGA GTT TGA TCM TGG 

CTC AG-3’) primereket használtuk [148]. Az 50 µl végtérfogatban összemért PCR 

reakciók templátjaként minden esetben 1-1, ½ × TSA lemezről izolált, 20 µl 

nukleázmentes vízben (AccuGENE™, Lonza) felvett egyedi kolónia sejtszuszpenziójának 
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1 µl-e szolgált. Az alkalmazott program az alábbi volt: 95 °C 5 min, majd 30 ciklus: 95 °C 

20 s, 55 °C 10 s, 70 °C 40 s, végül 70 °C 5 min. A termékeket pJET1.2 vektorba 

(Fermentas) klónoztuk, majd Escherichia coli DH5α™ kémiai kompetens sejtekbe 

(Invitrogen) transzformáltuk a gyártó utasításai szerint. Az inszertet hordozó pozitív 

klónokból plazmid DNS-t tisztítottunk EZ-10 Spin Column Plasmid DNA Kit (Bio Basic 

Canada Inc.) segítségével, majd az inszerteket mindkét irányból megszekvenáltattuk. A 

törzsek szekvencia homológia alapján történő azonosítása érdekében a kapott 16S rDNS 

szekvenciákat a SILVA nem redundáns rRNS gén szekvencia adatbázisával 

(http://www.arb-silva.de) [149] hasonlítottuk össze. 

 

4.5 Az MTBE- és az ETBE-bontásban részt vevő ismert gének 

PCR-alapú kimutatási tesztjei a konzorciumokban és két 

egyedi izolátumban 

 

Az MTBE-bontó konzorciumokból (5K, 5L, 8K, RL, SC) és két egyedi izolátumból 

(M28, T29) genomi DNS-t izoláltunk UltraClean™
 
Microbial DNA Isolation Kit (MO 

BIO Laboratories, Inc.) felhasználásával. Ezt követően ezeken a templátokon az MTBE és 

az ETBE lebontási útvonalában azonosított gének kimutatását végeztük el PCR reakciók 

segítségével ([150] alapján). A vizsgált géneket, az alkalmazott primerek szekvenciáját, 

valamint a termékek várható méretét az 5. táblázat tartalmazza. 

 

4.6 A T29 jelű izolátum növekedési tesztjei különböző 

szubsztrátokon és szubsztrát keverékeken 

 

A T29 jelű izolátum által egyedüli szén- és energiaforrásként hasznosítható 

vegyületek vizsgálatát 200 mg/l koncentrációban alkalmazott egyedi szubsztrátokkal MSM 

tápoldatban végeztük el. A rendszereket 28 °C-on, 2 hétig, 150 rpm-el rázatva inkubáltuk 

3-3 párhuzamosban, HS üvegekben 2 ml térfogatban. A törzs növekedési képességét az 

adott szubsztráton a 600 nm-en mért optikai denzitás (OD600) mérésével határoztuk meg az 

inkubációs idő végén. A vizsgálatokhoz MTBE-n előnövesztett sejteket használtunk, az 

egyes rendszerekbe annyi sejtet inokuláltunk, hogy a kiindulási OD600 érték 0,03 legyen. 

http://www.arb-silva.de/
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Az alábbi egyedi szubsztrátok vizsgálatára került sor: metanol, etanol, 1-propanol, 2-

propanol, 1-butanol, formaldehid, aceton, hangyasav, 2-metilpropánsav (izobutirát), tejsav, 

piroszőlősav (Na-piruvát), ecetsav (Na-acetát), citromsav (Na-citrát), glükóz, glicerin, 

glicin, 2-HIBA, n-hexán, n-dodekán, n-hexadekán, ciklohexán, benzol, toluol, etilbenzol, 

o-xilol, m-xilol, p-xilol, fenol, naftalin, MTBE, ETBE, TAME, DIPE, tetrahidrofurán és 

TBA. Az üzemanyag-oxigenátok, az alifás és az aromás szénhidrogének esetében 

szubsztrát mixeken is elvégeztük a szubsztráthasznosítási teszteket a fentiekkel teljesen 

megegyező elrendezésben. Az üzemanyag-oxigenát keverék (”étermix”) MTBE-t, ETBE-t, 

TAME-t, DIPE-t és TBA-t, az alifás szénhidrogén keverék (”n-alkánmix”) n-pentánt, n-

hexánt, n-oktánt, n-dekánt és n-dodekánt, az aromás szénhidrogén keverék (”BTEX mix”) 

pedig benzolt, toluolt, etilbenzolt, o-xilolt, m-xilolt és p-xilolt tartalmazott. A 

szubsztrátmixek esetében az alkotó egyedi komponensek koncentrációja azonos volt a 2 ml 

végtérfogatban. Ez az érték az étermix és a n-alkánmix esetében 40-40 mg/l, a BTEX-mix 

esetében pedig 33,3-33,3 mg/l volt komponensenként. 

 

Célgén (kódolt fehérje) Primer pár Szekvencia (5’-3’) 

Termék 

mérete 

(bp) 

Referencia 

alkB  

(alkán hidroxiláz) 

Rhose2 

Rhoas1 

ACG GSC CAY TTC TAC RTC G 

CCG TAR TGY TCG AGR TAG 
343 [116] 

ethB  

(citokróm P450 

monooxigenáz) 

EthB-F2 

EthB-R2 

CAC GCG CTC GGC GAC TGG CAG ACG TTC 

AGT 

TCC GAC GCA CAT GTG CGG GCC GTA CCC 

GAA 

881 [151] 

ethR 

 (eth gének regulátora) 

EthRfor 

EthRrev 

ATG GGA ACG TCG ACG ACG AG 

CTA GGA GCG CAA GGT GTC CG 
995 [152] 

icmB  

(izobutiril-KoA mutáz B12-

vitaminkötő alegység) 

ICMB-f 

ICMB-r 

ATG GAC CAA ATC CCG ATC CGC 

TCA GCG GGC GCC GCG CGC GG 
410 [118] 

mdpA 

 (MTBE monooxigenáz) 

MdpA1F 

MdpA1R 

CTT ACC GGG CTC AAC TAT GC 

CGC TTC CCT GGA TCG ATG TT 
796 [152] 

mpdB  

(alkohol dehidrogenáz) 

MpdB-F 

MpdB-R1 

ACG GTC TCG TCG GCA AAT AC 

GCA CAT CCC AGG TCT GAT 
590 [117] 

mpdC  

(aldehid dehidrogenáz) 

MpdC-F2 

MpdC-R2 

GTC AAC CTG GAA CTC GGC GGG AAG 

AGC CCG TTG 

CAC CGC TGT GAC GGG CCC GAA GAT CTC 

CTC 

437 [117] 

pdo/mdpJ 

 (ftalát-4,5-dioxigenáz) 

PDO2-for 

PDO2-rev 

TGT TGT CGT CGG TCG GGT GC 

CGT CGA CGG CAA ACT GCT GG 
379 [123,134] 

piso/mdpK  

(ftalát-4,5-dioxigenáz 

oxidoreduktáz alegység) 

PISO3-for 

PISO3-rev 

CAC CTG CGC GAT CGA CTT GT 

CGC TGA ACC TGC GGG TCC GG 
767 [123] 

 

5. táblázat Az MTBE- és az ETBE-bontás ismert génjeinek PCR-alapú kimutatása során alkalmazott 

primerek és néhány tulajdonságuk. 
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4.7 A T29 jelű izolátum MTBE-bontási sebességének 

összehasonlítása a Methylibium petroleiphilum PM1-ével 

 

A Methylibium petroleiphilum PM1-et a BCCM-től (Belgian Co-ordinated 

Collections of Micro-organisms; http://bccm.belspo.be/) szereztük be. A liofilizált 

formában érkezett tenyészetet MSM tápoldatban szuszpendáltuk föl, majd félórányi 

rehidratálást követően tisztaságának ellenőrzése céljából ½ × TSA táptalajra szélesztettük 

ki. A továbbiakban a törzs fenntartását a T29-ével megegyező módon végeztük.  

A két törzs MTBE-bontási sebességének összehasonlításához a T29 és a PM1 MSM 

tápoldatban MTBE-n előnövesztett tenyészeteiből a sejteket centrifugálással kiülepítettük, 

kétszer mostuk őket MSM tápoldattal, majd HS üvegekbe, MSM tápoldatba belőlük annyit 

inokuláltunk, hogy 2 ml végtérfogatban a kiindulási, 600 nm-en mért optikai denzitás érték 

0,100 legyen. Az egyes rendszerekben 200 mg/l MTBE koncentrációt állítottunk be, majd 

28 °C-on, 150 rpm-el rázatva inkubáltuk őket 6, 12, 18 és 24 órát. Mindkét törzs esetében 

mindegyik időpontban 3-3 párhuzamos minta levétele történt, melyek maradék MTBE 

koncentrációját HS-GC-MS méréssel határoztuk meg. Kontrollként sejteket nem 

tartalmazó abiotikus rendszereket használtunk, melyekben a kísérlet kezdetén szintén 200 

mg/l MTBE koncentrációt állítottunk be, majd 0 és 24 óra inkubáció után ezekből is 3-3 

párhuzamos mintát analizáltunk GC-MS méréssel. 

 

4.8 Az MTBE lebontási útvonalában szereplő intermedierek 

azonosítása a T29 jelű izolátumban 

 

A T29 jelű izolátum MTBE-n előnövesztett tenyészetéből a sejteket centrifugálással 

kiülepítettük, háromszor mostuk őket 20 mM foszfát pufferrel (7,8 mM NaH2PO4, 12,2 

mM Na2HPO4, pH=7,0), majd HS üvegekbe, 20 mM foszfát pufferbe belőlük annyit 

inokuláltunk, hogy 2 ml végtérfogatban a 600 nm-en mért optikai denzitás érték 1,000 

legyen. A rendszerekben 200 mg/l MTBE koncentrációt állítottunk be, majd 28 °C-on, 150 

rpm-el rázatva inkubáltuk őket ½, 1, 2, 3 és 4 órát. Minden időpontban 2-2 párhuzamos 

mintát vettünk le, melyekben a lehetséges köztitermékeket GC-MS analízissel SCAN 

módban kerestük. 

 

http://bccm.belspo.be/
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4.9 Az analitikai mérések módszertani leírása 

4.9.1 Nagy koncentrációjú MTBE, ETBE, TAME, DIPE és TBA 

mennyiségi meghatározása 

 

A headspace üvegekben lévő 2 ml mintákat lefagyasztottuk és az analízisek 

kezdetéig -20 °C-on tároltuk. A rendszerekhez nem adtunk belső standardot (ISTD), mivel 

külső standardos kalibrációt használtunk a meghatározáshoz. A fagyasztott mintákhoz 10 

ml mátrixmódosító oldatot (MMS: 6,16 M NaCl; EPA Method 5021 alapján) pipettáztunk 

és az azonnali visszazárást követően a gázkromatográf mintatartójába helyeztük őket. Az 

automata mintaadagoló az üvegeket egyenként 20 percen át rázta 80 °C-on (CTC HS 

PAL), majd ezt követően vett a gázfázisból 250 µl mintát és a készülékbe (Agilent 

Technologies 6850 Network GC System) injektálta. A mintabeviteli port (inlet) 250 °C-os 

volt, a split arány 1:500. Az elválasztást DB-VRX (60 m × 0,250 mm × 1,4 µm) kolonnán 

végeztük a következő fűtésprogrammal: kezdő hőmérséklet 40 °C 3 percen át, 7 °C/min 

fűtési sebességgel fűtve 100 °C-ra és 100 °C-on tartva 0,43 percen át. A detektáláshoz 

Agilent Technologies 5975C VL MS detektort használtunk. A vivőgáz hélium volt (Linde, 

6.0). A méréseket az EPA 8260B szabvánnyal összhangban végeztük. A mérés pontossága 

±10% volt. 

 

4.9.2 Az MTBE lebontás lehetséges intermediereinek analitikai vizsgálata 

 

A headspace üvegekben lévő 2 ml mintákat lefagyasztottuk és az analízisek 

kezdetéig -20 °C-on tároltuk. A fagyasztott mintákhoz 10 ml mátrixmódosító oldatot 

(MMS: 6,16 M NaCl; EPA Method 5021 alapján) pipettáztunk és az azonnali visszazárást 

követően a gázkromatográf mintatartójába helyeztük őket. Az automata mintaadagoló az 

üvegeket egyenként 20 percen át rázta 98,5 °C-on (CTC Combi PAL), majd ezt követően 

vett a gázfázisból 1,5 ml mintát és a készülékbe (Agilent Technologies 6850 Network GC 

System) injektálta. A mintabeviteli port (inlet) 250 °C-os volt, splitless módban használva 

(split vent 20 ml/min, 0,05 percen át). Az elválasztást DB-VRX (60 m × 0,250 mm × 1,4 

µm) kolonnán végeztük a következő fűtésprogrammal: kezdő hőmérséklet 40 °C 3 percen 

át, majd 7 °C/min fűtési sebességgel fűtve 120 °C-ra. A detektálást Agilent Technologies 
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5975C VL MS detektorral végeztük, melyet BFB tune módban használtunk, az MTBE 

elúciós ideje alatt off módban detektálva. A vivőgáz hélium volt (Linde, 6.0). 

 

4.9.3 Nagy koncentrációjú n-alkánok és BTEX komponensek mennyiségi 

meghatározása 

 

A headspace üvegekben lévő 2 ml mintákat lefagyasztottuk és az analízisek 

kezdetéig -20 °C-on tároltuk. A rendszerekhez nem adtunk belső standardot (ISTD), mivel 

külső standardos kalibrációt használtunk a meghatározáshoz. A fagyasztott mintákhoz 10 

ml mátrixmódosító oldatot (MMS: 6,16 M NaCl (pH 2,0; foszforsavval); EPA Method 

5021 alapján) pipettáztunk és az azonnali visszazárást követően a gázkromatográf 

mintatartójába helyeztük őket. Az automata mintaadagoló az üvegeket egyenként 20 

percen át rázta 80 °C-on (CTC HS PAL), majd ezt követően vett a gázfázisból 250 µl 

mintát, és a készülékbe (Agilent Technologies 6850 Network GC System) injektálta. A 

mintabeviteli port (inlet) 250 °C-os volt, a split arány 1:200. Az elválasztást DB-VRX (60 

m × 0,250 mm × 1,4 µm) kolonnán végeztük a következő fűtésprogrammal: kezdő 

hőmérséklet 40 °C 3 percen át, 7 °C/min fűtési sebességgel fűtve 240 °C-ra, majd 240 °C-

on tartva 2,14 percen át. A detektálást Agilent Technologies 5975C VL MS detektorral 

végeztük. A vivőgáz hélium volt (Linde, 6.0). A mérés pontossága ±10% volt. 

 

4.10 Methylibium izolátumok antibiotikum rezisztenciájának 

vizsgálata 

 

Az M28, T29, T29-B és PM1-B jelű izolátumaink antibiotikum rezisztenciáját 

vizsgáltuk és hasonlítottuk össze a Methylibium petroleiphilum PM1-ével. ½ × TSB 

tápoldaton felnövesztett tenyészeteikből 5-5 µl-t cseppentettünk pozitív kontrollként ½ × 

TSA lemezre, majd az alábbi antibiotikumokat a jelzett koncentrációkban tartalmazó ½ × 

TSA lemezekre: ampicillin (Amp) (50 és 100 µg/ml), apramicin (Apr) (25 és 50 µg/ml), 

kanamicin (Km) (25 és 50 µg/ml), kloramfenikol (Cm) (15 és 30 µg/ml), sztreptomicin 

(Sm) (12,5 és 25 µg/ml) és tetraciklin (Tc) (6,25 és 12,5 µg/ml). A lemezeket 28 °C-on 1 

hétig inkubáltuk és ezután értékeltük az egyes törzsek esetében a rezisztencia mértékét az 

egyes antibiotikumokkal szemben. 
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4.11 Methylibium izolátumok higany rezisztenciájának 

vizsgálata 

 

Az M28, T29, T29-B és PM1-B jelű izolátumaink higany rezisztenciáját vizsgáltuk 

és hasonlítottuk össze a Methylibium petroleiphilum PM1-ével. ½ × TSB tápoldaton 

felnövesztett tenyészeteikből 20-20 µl-t inokuláltunk pozitív kontrollként 2 ml ½ × TSB 

tápoldatba, majd HgCl2-ot 12,5, 25, 50 és 100 mg/l koncentrációban tartalmazó 2-2 ml ½ × 

TSB tápoldatba. Mindegyik törzs esetében valamennyi HgCl2 koncentráció hatását három 

párhuzamos rendszerben vizsgáltuk. A rendszereket 28 °C-on 150 rpm-el rázatva 

inkubáltuk 1 hétig és ezután értékeltük az egyes törzsek esetében a rezisztencia mértékét a 

HgCl2-dal szemben a tenyészetek optikai denzitásának (OD600) meghatározásán keresztül. 

 

4.12 Methylibium izolátumok genomjának összehasonlítása 

pulzáló mezejű gélelektroforézis (PFGE) vizsgálattal 

 

Az M28 és a T29 jelű izolátumokat, valamint a Methylibium petroleiphilum PM1-et 

½ × TSA lemezeken növesztettük 1 hétig 28 °C-on. Mindegyik törzs esetében a lemezeken 

kiválasztottunk 1-1, körülbelül 1-2 mm átmérőjű telepet és 100 µl 50 mM EDTA-ban 

felszuszpendáltuk azokat. Centrifugálással (9500 g, 3 perc) kiülepítettük a sejteket, majd 

visszavettük őket friss 100 µl 50 mM EDTA-ba. A sejtszuszpenziókhoz azonos térfogatú, 

50 mM EDTA-ban feloldott 2%-os koncentrációjú alacsony olvadáspontú (LMP) agarózt 

adtunk, majd öntőformába töltöttük és 30 percre 4 °C-ra helyeztük. A megszilárdult agaróz 

dugókat 1 ml lízis puffert (50 mM Tris-HCl pH 7,5, 100 mM EDTA, 0,5% N-lauril-

szarkozin, 0,5% SDS, 0,2% nátrium-dezoxikolát, 100 μg/ml proteináz K, 20 μg/ml RNáz 

A) tartalmazó 2 ml-es mikrocentrifuga csövekbe emeltük át és 24 órán át 55 °C-on 

inkubáltuk. Ezt követően a dugókat kétszer mostuk 30 percig 37 °C-on 1,5 ml inaktiváló 

pufferrel (50 mM Tris-HCl pH 7,5, 10 mM EDTA, 1 mM PMSF) és további felhasználásig 

0,5 M EDTA-ban (pH 8,0) 4 °C-on tároltuk. Használat előtt a dugókat ötször mostuk 1,5 

ml TE pufferrel (10 mM Tris-HCl pH 8,0, 1 mM EDTA) 55 °C-on, alkalmanként 15-15 

percig, majd körülbelül 5 mm × 4 mm × 1 mm nagyságú darabokra vágtuk fel őket steril 

pengével. Az így kapott gélkockákat 37 °C-on 30 percig inkubáltuk a későbbiekben 

használni kívánt restrikciós enzimek saját puffereinek 100 μl-ében. Ezután 16 órán át, 37 
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°C-on, 100 μl friss pufferben inkubáltuk a kockákat immáron kiegészítve a megfelelő 

restrikciós enzimekkel (AseI, BcuI, BspTI, HpaI; 20 U, Fermentas). Az inkubációs idő 

letelte után a gélkockákat kétszer mostuk 500 μl ½ × TBE pufferrel (45 mM Tris-bázis, 45 

mM H3BO3, 1 mM EDTA pH 8,0, 100 μM tiourea), majd a fésűre helyeztük és 15 percig 

száradni hagytuk őket. Ezután a fésűt, rajta a gélkockákkal 100 ml folyékony, 1,2%-os 

agaróz (SeaKem
®

 LE) gélbe helyeztük és 1 órán át állni hagytuk, hogy megszilárduljon. 

Az agarózt előzetesen ½ × TBE pufferben oldottuk fel és etídium-bromidot nem adtunk 

hozzá. Miután megszilárdult, a gélt 14 °C-ra előhűtött futtató pufferbe (½ × TBE puffer 

100 μM tioureával kiegészítve [153]) helyeztük és fél órát állni hagytuk benne, hogy 

ekvilibrálódjon. Az elektroforézishez CHEF Mapper
® 

XA System (Bio-Rad) készüléket 

használtunk, a futtatás paraméterei pedig a következők voltak: 6 V/cm feszültség, 30-90 s 

pulzushossz, 120°-os orientációs szög és 24 óra futási idő. A futtatás után a gélt 0,5 μg/ml 

koncentrációban etídium-bromidot tartalmazó desztillált vízben festettük meg 1 órán át. Az 

eredményt Infinity VX2 (Vilber Lourmat) típusú géldokumentációs rendszer segítségével 

rögzítettük. 

 

4.13 Plazmid detektálás és izolálás a Methylibium izolátumokból 

 

A plazmidok kimutatását és méretének hozzávetőleges meghatározását S1 nukleáz 

kezelést követő PFGE analízissel, [154] alapján végeztük el. A vizsgálathoz az egyes 

Methylibium törzseket a lehető legszelektívebb növesztési körülményeket alkalmazva, 

MSM tápközegben szaporítottuk fel: a T29-et és a T29-B-t tetraciklin (12,5 µg/ml) 

jelenlétében MTBE-n, illetve TBA-n (200-200 mg/l), az M28-at és a PM1-et pedig MTBE-

n (200-200 mg/l). A PM1-B-t egyedüli kivételként ½ × TSB tápoldatban növesztettük, 

mivel ez az izolátum nem nőtt egyik üzemanyag-oxigenáton sem. A kísérlet során a 

mintaelőkészítés, valamint az S1 nukleáz kezelést követő elektroforézis lépései és 

körülményei megegyeztek a 4.12 fejezetben foglaltakkal. 

Plazmid izoláláshoz a T29 és a T29-B törzseket 100-100 ml MSM tápoldatban 

növesztettük elő az előzőekben ismertetett módon. A tenyészeteket centrifugálással 

kiülepítettük (17600 g, 10 perc), ezt követően ([155] szerint) a sejteket 1-1 ml GTE 

pufferben (50 mM glükóz, 10 mM Tris-HCl, 10 mM EDTA, pH 8,0) felszuszpendáltuk, 

majd 2-2 ml lízis oldatot (0,2 M NaOH, 1% SDS) adtunk a rendszerekhez és alapos 

homogenizálás után szobahőmérsékleten 5 percig inkubáltuk őket. Ezt követően 1,5 ml 7,5 
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M ammónium-acetát oldatot és 1,5 ml kloroformot mértünk a lizátumhoz, alapos 

homogenizálást követően 10 percig jégen inkubáltuk, majd centrifugáltuk (9000 g, 10 

perc). A felülúszókhoz 2,4-2,4 ml kicsapó oldatot (30% polietilén glikol 6000, 1,5 M 

NaCl) pipettáztunk, alapos homogenizálás után 10 percig jégen inkubáltuk, majd 

centrifugáltuk (9000 g, 10 perc). A felülúszók eltávolítása után a DNS pelletet 1-1 ml 75%-

os etanollal mostuk, steril fülkében megszárítottuk, végül pedig 300-300 μl nukleázmentes 

vízben (AccuGENE™, Lonza) feloldottuk. Ezt követően RNáz A-val (Sigma) és 

PlasmidSafe™ ATP-függő DNáz-zal (Epicentre) kezeltük a mintákat a gyártók utasításai 

szerint. Az enzimkezelések után a rendszereket fenol és kloroform 1:1 arányú elegyével 

extraháltuk, a DNS-t izopropanollal kicsaptuk, 70%-os etanollal mostuk, majd 50-50 μl TE 

pufferben (1 mM Tris-HCl, 0,1 mM EDTA, pH 8,0) visszaoldottuk.  

 

4.14 A T29 és a T29-B törzsek de novo genomszekvenálása, 

illetve a pT29A és pT29B jelű plazmidok de novo 

szekvenálása 

 

Genomi DNS-t MSM tápoldatban 200 mg/l MTBE (T29), illetve TBA (T29-B) 

szénforrásokon növesztett tenyészetekből UltraClean™
 
Microbial DNA Isolation Kit (MO 

BIO Laboratories, Inc.) felhasználásával tisztítottunk a gyártó utasításai szerint. A kinyert 

DNS mennyiségét Qubit
®
 dsDNA BR Assay Kit (Invitrogen) segítségével határoztuk meg. 

A tenyészetek tisztaságát ½ × TSA lemezekre történő szélesztéssel ellenőriztük. Átlagosan 

10-20 μg DNS-t sikerült tisztítani, melyből 1 μg-ot használtunk fel a genomi könyvtár 

készítéséhez. A genomi könyvtárat IonXpress Plus Fragment Library Kit (Life 

Technologies) felhasználásával készítettük el, minőségét Agilent Bioanalyzer készülékkel 

ellenőriztük. Az emulziós PCR-t Ion PGM Template OT2 200 Kit (Life Technologies) 

felhasználásával Ion OneTouch™ v2 készülékkel végeztük, majd egy dúsítási lépés után a 

genomi könyvtárat hordozó gyöngyöket Ion 316™ v2 Chip-re töltöttük fel és Ion PGM™ 

200 Sequencing Kit v2 (Life Technologies) segítségével egy Ion PGM™ Sequencer 

készüléken végeztük a szekvenálást. A nyers adatokat a Torrent Serveren futó Torrent 

Suite 4.0.1 segítségével dolgoztuk fel, amely a beépített minőségi szűrő segítségével 

szükség esetén a szekvenciák végéről levágta a nem megbízható részeket. A kontigok de 

novo összeépítését a GS De Novo Assembler 2.9 (454 Life Sciences, Roche) szoftver 
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végezte, ezután sorba rendezésük a Mauve programmal [156] történt a Methylibium 

petroleiphilum PM1 kromoszómáját és megaplazmidját használva referenciaként. A sorba 

rendezett kontigok összehasonlítása a PM1-ével a MUMmer 3.0 szoftver [157] 

segítségével történt, az eltérések ábrázolását a program mummerplot nevű szkriptje 

végezte. Az összerendezett szekvenciák annotálásához a Prokka 1.8 (Prokka: Prokaryotic 

Genome Annotation System; http://vicbioinformatics.com/) programot [158] használtuk. 

A 4.13 fejezetben foglaltak szerint izolált és kezelt plazmid preparátumok 

szekvenálását és a kapott adatok bioinformatikai feldolgozását alapvetően a teljes 

genomokéval megegyező módon hajtottuk végre. Esetükben azonban a 

szekvenciarészletek összeépítését a SPAdes 3.0 [159] program végezte, az annotálás itt is 

Prokka 1.8 szoftverrel történt. 

 

4.15 A T29 jelű izolátum transzformációs hatékonyságának 

összehasonlítása a Methylibium petroleiphilum PM1-ével 

kétféle protokoll szerint 

 

A T29 és a PM1 jelű törzseket 60-60 ml ½ × TSB tápoldatban, 28 °C-on, 150 rpm-el 

rázatva növesztettük a korai logaritmikus fázisnak megfelelő optikai denzitás értékek 

eléréséig (OD600=0,140-0,160). Ezt követően mindkét tenyészetet két egyenlő részre 

osztottuk a kétféle transzformációs protokoll kivitelezéséhez. 

Az első módszer esetében ([160] alapján) a 30 ml tenyészeteket szobahőmérsékleten 

lecentrifugáltuk (17600 g, 10 perc), a kiülepedett sejteket háromszor mostuk 1-1 ml 

szobahőmérsékletű 300 mM szacharóz oldattal, majd 300 mM szacharóz oldatban 

reszuszpendáltuk őket (120 μl végtérfogat). 

A másik eljárás esetében ([136] módosításával) a 30 ml tenyészeteket 30 percig 

jégen inkubáltuk, majd 4 °C-ra hűtött centrifugában kiülepítettük a sejteket (17600 g, 10 

perc), háromszor mostuk őket 1-1 ml jéghideg 10%-os glicerin oldattal, majd jéghideg 

10%-os glicerin oldatban reszuszpendáltuk őket (120 μl végtérfogat).  

A 120 μl sejtszuszpenziókat mindkét módszer esetében 40 μl-es térfogatokra 

osztottuk szét, 50-50 ng pBBR1MCS2 [161] vektort mértünk hozzájuk, majd 2 mm-es 

résméretű elektroporációs küvettákba (Bio-Rad) pipettáztuk őket (a 10% glicerin módszer 

esetében 0 °C-ra hűtött küvettákat alkalmaztunk), majd BTX Electro Cell Manipulator 600 

http://vicbioinformatics.com/
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típusú elektroporátor készülékben 1,8 kV feszültség, 186 Ω ellenállás és 25 μF kapacitás 

mellett transzformáltunk. Ezután a sejteket 1-1 ml ½ × TSB tápoldatban reszuszpendáltuk, 

150 rpm-el rázatva 28 °C-on 1 órát inkubáltuk, majd 50 μg/ml koncentrációban kanamicint 

tartalmazó ½ × TSA lemezekre szélesztettünk a T29 tenyészeteiből 1 és 5, a PM1 

tenyészeteiből pedig 100 és 500 μl-eket. A lemezeket 10 napig 28 °C-on inkubáltuk, a 

kinőtt rezisztens telepeket összeszámoltuk és a transzformációs hatékonyság értékeket 

meghatároztuk. 

 

4.16 MTBE-bontásra képtelen inszerciós mdpA knockout 

mutáns vonalak előállítása a T29 jelű izolátumból 

 

A knockout (KO) konstrukciók létrehozásához a T29 jelű izolátum mdpA génjének 

529, illetve 784 bp hosszúságú darabját hibajavító KOD Hot Start DNS polimeráz 

(TOYOBO) segítségével amplifikáltuk. A 10 μl végtérfogatú reakcióelegyek összetétele a 

következő volt: 1 × KOD Hot Start DNS polimeráz puffer, 1,5 mM MgSO₄, 0,2 mM 

dNTP, 10% DMSO, 10 ng genomi DNS templát, 0,05 U/μl KOD Hot Start DNS 

polimeráz, 0,6-0,6 μM MO31 primer (5’-CAC GGT GCC TGT TCA CTA TCT CG-3’) és 

MO32 primer (5’-CGC GAT CAC GAG GAA CCA GTA G-3’) az 529 bp méretű, illetve 

MO31 és MO33 (5’-CCG ATA CAG AGG CGG AAC ATG AC-3’) primer a 784 bp 

méretű géndarab amplifikálásához. Az alkalmazott program az alábbi volt: 95 °C 2 min, 

majd 35 ciklus: 95 °C 20 s, 61 °C 10 s, 70 °C 40 s. A termékeket 1%-os agaróz gélen 

választottuk el, a megfelelő méretű fragmenteket EZ-10 Spin Column DNA Gel Extraction 

Kittel (Bio Basic Canada Inc.) tisztítottuk, majd HincII enzimmel linearizált pSm18 

vektorba ligáltuk. A klónozás eredményét teszt PCR-rel és restrikciós emésztéssel 

ellenőriztük, a helyes klónokat megszekvenáltattuk. A KO konstrukciókat (pSm18-

mdpA529 és pSm18-mdpA784) a T29 jelű izolátum kompetens sejtjeibe elektroporációval 

juttattuk be ([160] alapján). A spontán rezisztenciát szerzett klónoktól a beépülést 

hordozókat teszt PCR-rel válogattuk szét, amelyben egy vektorspecifikus (M13F(-62) [5’-

GAT TAA GTT GGG TAA CGC CAG GGT T-3’] vagy M13R(-73) [5’-TCC GGC TCG 

TAT GTT GTG TGG AAT-3’]) és egy mdpA-specifikus primert (MO29: 5’-CCG CCA 

GAT CGT CAT CCA CAA AG-3’) használtunk. A reakciók körülményei megegyeztek a 

fentiekkel. 
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4.17 Az mdpA knockout mutáns T29 vonalak növekedésének 

vizsgálata MTBE-n, TAME-n, TBA-n és 2-HIBA-n 

 

A növekedési tesztekhez a T29 jelű törzs mdpA knockout mutáns vonalainak 25 

µg/ml sztreptomicinnel kiegészített ½ × TSA lemezeken (½ × TSASm) felnőtt 

szélesztéseiről 3-3 telepet izoláltunk, majd ½ × TSB tápoldatban 25 µg/ml sztreptomicin 

mellett (½ × TSBSm) felnövesztettük őket. Kontrollként a vad típusú T29 jelű izolátum ½ × 

TSB tápoldatban felnövesztett három, ½ × TSA lemezről izolált egyedi telepe, valamint a 

vad típusú törzs pSm18-mdpA529 jelű konstrukcióval történő transzformálása során kapott 

sztreptomicin rezisztens, de a PCR tesztek eredményei alapján intakt mdpA gént hordozó 

illegitim rekombináns vonal ½ × TSBSm tápoldatban felnövesztett három, ½ × TSASm 

lemezről izolált egyedi telepe szolgált. Mindegyik tenyészetből 10-10 ml-t 

lecentrifugáltunk (9000 g, 2 min), a kiülepedett sejteket háromszor mostuk 1-1 ml MSM 

tápoldattal, végül 2-2 ml MSM tápoldatban reszuszpendáltuk őket. Ezekből a 

sejtszuszpenziókból minden esetben annyit inokuláltunk HS üvegekbe, hogy azokban 2 ml 

végtérfogatban a kiindulási OD600 érték 0,100 legyen. Valamennyi vizsgált szubsztrát 

(MTBE, TAME, TBA, 2-HIBA) MSM tápoldatban előzetesen elkészített 2 g/l 

koncentrációjú törzsoldatából az egyes üvegekbe 200-200 µl-t mértünk be (200 mg/l 

végkoncentráció), majd MSM tápoldattal 2 ml-re egészítettük ki a térfogatot és 25 µg/ml 

koncentrációban sztreptomicint adtunk a rendszerekhez. Minden szubsztrát esetében 3-3, 

sejteket nem tartalmazó abiotikus kontroll rendszert is összeállítottunk. A rendszereket 14 

napig inkubáltuk 28 °C-on, 150 rpm-el rázatva. Az inkubációs idő letelte után a maradék 

szubsztrátok mennyiségét az MTBE, a TAME és a TBA esetében GC-MS analitikával 

határoztuk meg. A 2-HIBA vonatkozásában a növekedési képességet az optikai denzitás 

(OD600) változásának meghatározásán keresztül követtük nyomon. 
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5. EREDMÉNYEK ÉS MEGVITATÁSUK 

 

5.1 MTBE-bontó konzorciumok izolálása talajvízmintákból és 

mikrobiális összetételük meghatározása 

 

A 19 különböző földrajzi helyről származó talajvízminták felhasználásával összesen 

öt, hatékony MTBE-bontásra képes bakteriális konzorciumot sikerült izolálnunk, melyeket 

az 5K, 5L, 8K, RL és SC jelöléssel láttunk el. Közülük is az optikai denzitás értékek 

(OD600) és a GC-MS analitikai eredmények alapján (nem bemutatott adatok) a 

legintenzívebb növekedést és a leghatékonyabb MTBE-degradációt (100% 

szubsztrátfogyás az inkubációs idő végére) az RL jelű konzorcium esetében figyeltük meg. 

Valamennyi konzorcium képes volt továbbá TBA-n és TAME-n is, mint egyedüli szén- és 

energiaforrásokon növekedni, az SC konzorcium pedig ezeken túlmenően hatékony ETBE-

bontónak is bizonyult. A bontóképes konzorciumok mindegyike Tiszaújváros és 

Zalaegerszeg térségéből származó talajvízmintákból történő dúsítással lett izolálva. 

Az öt konzorcium közül mikrobiális összetétel vizsgálatra az RL és az SC jelűeket 

választottuk ki, mivel az RL konzorcium mind közül kimagaslóan a leggyorsabb MTBE 

degradációra volt képes, az SC jelű pedig valamennyi vizsgált üzemanyag-oxigenátot 

hasznosítani tudta egyedüli szén- és energiaforrásként.  

A piroszekvenálás eredményei nyomán az RL konzorciumban 37, az SC-ben pedig 

összesen 31 baktérium nemzetséget azonosítottunk. Mindkét konzorciumban a domináns 

törzs (phylum) a Proteobacteria volt, amely az RL konzorcium esetében a nemzetségek 

64,9, az SC esetében pedig 58,1%-át foglalta magába. A Proteobacteria törzsön belül az 

Alphaproteobacteria volt a leggyakoribb osztály mindkét rendszerben, ahová az RL 

konzorcium nemzetségeinek 40,5, míg az SC nemzetségeinek 25,8%-a tartozott. Jelentős 

volt még a Bacteroidetes törzs részaránya is, amely az RL konzorcium esetében az 

azonosított nemzetségek 10,8, az SC esetében pedig a 19,4%-át tömörítette. Az 

Actinobacteria törzs és osztály az RL konzorciumban a nemzetségek 13,5%-ával a 

harmadik legnépesebb volt. A kimutatott nemzetségek törzsek és osztályok szerinti 

százalékos megoszlását a két konzorciumban a 7. táblázat mutatja be. 

Az RL konzorcium 37 nemzetségéből 14, az SC 31 nemzetségéből pedig 7 aránya 

haladta meg az 1%-ot. Az 1%-os részarányt meghaladó nemzetségek az RL konzorcium 
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esetében az összes mikrobák 89,8%-át tették ki, míg az SC konzorciumnál ez az érték 

95,9% volt. Az RL és az SC konzorciumok esetében ezeket a dominánsnak tekintett 

nemzetségeket az 5., illetve a 6. ábra mutatja be. 

Az ismert MTBE-bontó törzset vagy törzseket tartalmazó, 1%-os részarányt 

meghaladó nemzetségek közül a Methylibium (49,7% [RL], ill. 29,9% [SC]) megtalálható 

volt mindkét konzorciumban, míg a Variovorax (7,5%), a Pseudomonas (3,9%), az 

Achromobacter (2,0%) és a Pseudoxanthomonas (1,3%) nemzetségek csak az RL, a 

Hydrogenophaga (2,3%) pedig csak az SC konzorciumból volt kimutatható. Az ismert 

TBA-bontó fajokat tartalmazó nemzetségek közül egyedül a Hydrogenophaga (2,3%) volt 

jelen az SC konzorciumban. Az irodalomban leírt ETBE-bontók közül egyik sem volt 

kimutatható az SC konzorciumból. 

 

Törzs Osztály 
Konzorcium 

RL SC 

Acidobacteria Acidobacteria 2,7% (1) 3,2% (1) 

Actinobacteria Actinobacteria 13,5% (5) 3,2% (1) 

Armatimonadetes - - 3,2% (1) 

Bacteroidetes 

Bacteroidia 2,7% (1) 6,5% (2) 

Cytophagia - 3,2% (1) 

Flavobacteriia 2,7% (1) 6,5% (2) 

Sphingobacteriia 5,4% (2) 3,2% (1) 

Chloroflexi Chloroflexi - 3,2% (1) 

Fibrobacteres Fibrobacteria - 3,2% (1) 

Firmicutes Clostridia 2,7% (1) - 

Gemmatimonadetes Gemmatimonadetes 2,7% (1) 3,2% (1) 

Planctomycetes Planctomycetia 2,7% (1) - 

Proteobacteria 

Alphaproteobacteria 40,5% (15) 25,8% (8) 

Betaproteobacteria 8,1% (3) 16,1% (5) 

Gammaproteobacteria 16,2% (6) 6,5% (2) 

Deltaproteobacteria - 6,5% (2) 

Epsilonproteobacteria - 3,2% (1) 

Verrucomicrobia Opitutae - 3,2% (1) 

 

7. táblázat Az azonosított baktérium nemzetségek százalékos megoszlása törzs és osztály szinten a két 

vizsgált konzorciumban a piroszekvenálási eredmények alapján (zárójelben az adott osztályhoz tartozó 

nemzetségek száma van feltüntetve az egyes konzorciumokban). 
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Kiemelkedő a Methylibium nemzetség részaránya a konzorciumokban, hiszen az RL 

konzorciumban csaknem 50%, az SC-ben pedig közel 30% a részesedése, ami alapján az 

RL konzorciumnak magasan a leggyakoribb, míg az SC-nek a második leggyakoribb 

nemzetségét alkotja. Az irodalmi adatok ismeretében mindezek alapján valószínűsíthető, 

hogy a Methylibium törzseknek mindkét rendszerben döntő szerepük van a hatékony 

MTBE-bontásban. További potenciálisan MTBE-bontó nemzetségek tagjai ugyan 

megtalálhatóak mindkét konzorciumban, azonban részarányuk a Variovorax nemzetség 

(RL) kivételével olyannyira alacsony, hogy az MTBE-bontásban való részvételük nem 

tekinthető jelentősnek. 

 

5. ábra Az 1%-os részarányt meghaladó baktérium nemzetségek százalékos megoszlása az RL 

konzorciumban. 

 

A Lysobacter nemzetségbe [162], amely az SC konzorcium domináns 

nemzetségének bizonyult, aerob, Gram-negatív fajok tartoznak, melyek szerves anyagban 

és mikrobákban gazdag élőhelyeken, jellemzően a talajban és édesvizekben fordulnak elő, 

és kemoorganotróf életmódot folytatnak. Az ide tartozó fajok közös ismertetőjegye, hogy 

hidrolitikus exoenzimeket termelnek, melyek révén nemcsak más baktériumok, hanem 
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cianobaktériumok, algák, fonalas gombák, sőt egyes törzsek fonálférgek lizálására is 

képesek. A nemzetségnek mindezidáig nem ismert olyan törzse, amely valamelyik éter 

típusú üzemanyag-adalék hasznosítására képes volna. Mindezek alapján feltételezhető, 

hogy a Lysobacter törzsek az SC konzorciumban nem vesznek részt az MTBE 

lebontásában, hanem vélhetően az MTBE lebontása során keletkező egyszerűbb 

intermediereket és/vagy az elpusztult sejtek anyagait hasznosítják, vagy exoenzimeikkel 

élő sejteket támadnak meg. Közel 20%-os részarányával a Fibrobacter nemzetség [163] 

jelenléte is számottevő az SC konzorciumban, annak ellenére, hogy a nemzetséghez tartozó 

ismert fajok anaerob környezetből, elsődlegesen az emlősök, mindenekelőtt a kérődzők 

emésztő szervrendszerének különböző szakaszaiból lettek elkülönítve. Azonban több 16S 

rDNS szekvencia lelhető fel különböző nukleinsav adatbázisokban, amelyek a 

legközelebbi rokonságot a Fibrobacter nemzetséggel mutatják, de eredetileg talajból vagy 

valamilyen vízi élőhelyről származnak. Jelenlétük tehát ebből a szempontból ugyan 

magyarázható, azonban szigorúan anaerob életmódjuk oldaláról nézve meglehetősen 

szokatlan. 

 

6. ábra Az 1%-os részarányt meghaladó baktérium nemzetségek százalékos megoszlása az SC 

konzorciumban. 

37,6 

29,9 

19,6 

3,6 
2,3 

4,1 

Lysobacter

Methylibium

Fibrobacter

Acidovorax

Hydrogenophaga

Bacteroides

Hyphomicrobium

Egyéb (24 nemzetség)



57 

 

Nem a Fibrobacter az egyetlen anaerob nemzetség a konzorciumokban, hiszen az 

RL konzorciumban az Alkaliflexus és a Thermodesulfobium, az SC-ben pedig a 

Bacteroides nemzetség előfordulása is kimutatható volt számottevő mennyiségben. 

Mindkét konzorcium esetében megfigyelhető volt az a jelenség, hogy a sejtek egy része 

szabad szemmel is jól látható, makroszkopikus, esetenként néhány mm átmérőjű 

aggregátumokat képzett, vagy az üveg falán kitapadva, helyenként bevonatot hozott létre. 

Ezekben a képződményekben jó eséllyel alakulhattak ki olyan oxigén-limitált vagy teljesen 

oxigénmentes mikrokörnyezetek, amelyekben az anaerob mikrobák életfeltételei adottak 

voltak. Az Alkaliflexus nemzetségről továbbá leírták, hogy kis vagy közepes mértékben 

képes tolerálni az oxigén jelenlétét is [164]. A Bacteroides nemzetség tagjai a 

Fibrobacteréhez hasonlóan az emlősök gasztrointesztinális rendszeréből ismertek [165]. 

Ugyanakkor sekély, BTEX vegyületekkel és MTBE-vel szennyezett talajvíz zónából 

számos baktérium taxont azonosítottak, amelyek a legközelebbi rokonságot a 

Bacteroidetes törzshöz, illetve a Cytophaga-Flavobacterium-Bacteroidetes csoporthoz 

tartozó nem tenyésztett izolátumokkal mutatták [166]. Korábban hasonló megfigyelést 

tettek aerob MTBE-bontó bioreaktorok mikrobiális összetételének vizsgálatakor is, amikor 

a Cytophaga-Flexibacter-Bacterioides törzshöz tartozó, szintén nem tenyésztett 

izolátumokat sikerült nagy gyakorisággal kimutatni a vizsgált rendszerekből [167]. 

Az egyetlen aerob MTBE-bontó konzorcium esetében, amelyet mikrobiális összetétel 

és aktivitás szempontjából, multidiszciplináris eszközökkel részletesen vizsgáltak, 

meglepően hasonló eredményeket kaptak, mint a mi rendszereinknél [168]. Az US3-M jelű 

konzorciumot, egy, az Egyesült Államokból származó, üzemanyaggal szennyezett 

talajvízmintából MTBE-n, mint egyedüli szén- és energiaforráson történő dúsítással 

izolálták. A konzorciumban azonosított 26 baktérium taxon (OTU) 66,3%-a a 

Proteobacteria törzshöz (phylum) tartozott, melyből 36,6% volt a Betaproteobacteria, és 

20,3% az Alphaproteobacteria osztály részesedése. A domináns törzs tehát itt is a 

Proteobacteria volt, nagyon hasonló - az RL-ével szinte megegyező - részaránnyal, mint a 

mi konzorciumaink esetében. Az osztályok tekintetében viszont a mi rendszereinkben az 

Alphaproteobacteria volt a legnépesebb, a Betaproteobacteria az SC esetében (16,1%) a 

második, az RL-nél (8,1%) viszont csak a negyedik legnépesebb rendszertani kategória 

volt. A Bacteroidetes (10,8%) és az Actinobacteria (9,5%) törzsek részaránya szintén 

nagyfokú hasonlóságot mutat az RL konzorcium esetében tapasztalt gyakoriság értékekkel 

(10,8, ill. 13,5%). Az US3-M-ben a domináns taxon (19%) a legközelebbi rokonságot a 

Methylibium petroleiphilum PM1-gyel mutatta, melyről stabil izotópos vizsgálatokkal 
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(CSIA és fehérje-SIP) igazolták is, hogy a konzorcium MTBE-bontó kapacitásáért 

csaknem kizárólagosan felelős. 

Eredményeinket összevetve a rendelkezésre álló irodalmi adatokkal elmondható 

tehát, hogy MTBE-vel szennyezett közegekből dúsítással izolált bontóképes 

konzorciumokban a Proteobacteria törzshöz tartozó fajok túlsúlya figyelhető meg. Az a 

tény pedig, hogy az Egyesült Államokban ugyanúgy Methylibium nemzetséghez tartozó 

izolátum a domináns törzs egy MTBE-vel szennyezett közegben, mint hazánkban, arra 

enged következtetni, hogy a nemzetségnek döntő szerepe lehet, jelenlegi ismereteink 

szerint Észak-Amerikában és Európában, de vélhetően ennél szélesebb körben is, a 

környezetbe kikerülő MTBE természetes koncentráció-csökkenésében. 

 

5.2 MTBE/TBA-bontásra képes egyedi baktériumtörzsek 

izolálása az MTBE-bontó konzorciumokból 

 

Az egyes konzorciumok MSM tápoldatban egyedüli szén- és energiaforrásként 

MTBE-n nőtt tenyészeteiből hígítási sorokat készítettünk, majd egyedüli szén- és 

energiaforrásként MTBE-t vagy TBA-t tartalmazó MSA lemezekre szélesztettük őket, 

amelyekről kétheti inkubáció után összesen 99 telepet sikerült izolálnunk. A 99 izolátum 

közül 14 mutatott számottevő növekedést (OD600>0,150), illetve MTBE/TBA 

biodegradációt (>50% szubsztrátfogyás) folyadék tenyészetben. Közülük a TSA és az NA 

táptalajokra végzett szélesztések alapján 6 bizonyult tiszta, egyedi törzsnek, melyeket az 

alábbi jelölésekkel láttunk el: M2, M6, M15, M28, M48 és T29. Az M2, M6, M15, M28 és 

M48 jelűeket MTBE, a T29 jelűt pedig TBA szénforrásról különítettük el.  

Az izolátumok azonosítása a 16S rDNS szekvenciájuk meghatározása révén történt. 

A törzsek rendszertani kategóriába történő besorolásához a 16S rRNS génjeik nukleotid 

szekvenciáját a SILVA nem redundáns rRNS gén szekvencia adatbázisával hasonlítottuk 

össze. Ez alapján valamennyi törzsünk a Methylibium nemzetségbe tartozónak bizonyult és 

a legközelebbi rokonságot a Methylibium petroleiphilum PM1-gyel mutatta. A szekvencia 

homológia mértéke alapján a hat izolátumot két csoportba tudtuk sorolni. Az M2, M15 és 

T29 jelű törzsek 16S rDNS szekvenciája 100%-os egyezést mutatott a PM1-ével (GenBank 

azonosító: AF176594), míg a másik három törzs (M6, M28, M48) esetében 1 nukleotid 

eltérést tapasztaltunk (C-T csere a 444-es pozícióban). A két csoportba tartozó izolátumok 
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különböző konzorciumokból lettek izolálva: az M2, M15 és T29 jelűek az RL 

konzorciumból, míg az M6, M28 és M48 jelűek a 8K jelű dúsításból. 

A következőkben elvégeztük az ismert, MTBE-, ETBE- és TBA-bontásban részt 

vevő enzimek génjeinek PCR-alapú kimutatási tesztjét valamennyi konzorciumban, illetve 

a két izolátum-csoport egy-egy tagján (M28 és T29). Ily módon számos gén jelenlétét 

sikerült igazolnunk az 5K, 5L, 8K és SC konzorciumok, valamint az M28 jelű izolátum 

esetében, azonban az RL konzorcium és az abból elkülönített T29 jelű törzs esetében egyik 

vizsgált gén esetében sem kaptunk pozitív reakciót (8. táblázat).  

Az ETBE-bontás kapcsán vizsgált gének közül az ethB jelenlétét sikerült 

kimutatnunk az SC konzorciumban. Ez az eredmény egybevág azzal a korábbi 

megfigyeléssel, miszerint a konzorciumaink közül kizárólag az SC volt képes ETBE-

bontásra. Az eth operon transzkripciós szabályozásáért felelős ethR gén hiánya arra utal, 

hogy az ETBE-bontó aktivitás konstitutívan expresszálódik a konzorciumban, ahogyan azt 

korábban az Aquincola tertiaricarbonis L108 esetében bemutattuk [122]. 

Az RL konzorcium és a T29 jelű izolátum kivételével valamennyi rendszerben 

kimutatható volt az MTBE monooxigenázt (MdpA), a TBA monooxigenáz két alegységét 

(MdpJ, MdpK), valamint a 2-HIBA átalakítását végző mutáz B12-vitamint kötő alegységét 

(IcmB) kódoló gének jelenléte. 

 

 

 

                              Gén 

Konzorcium/ 

egyedi izolátum 

  

alkB ethB ethR icmB mdpA mpdB mpdC 
pdo/ 

mdpJ 

piso/

mdpK 

5K - - - + + + - + + 

5L - - - + + + - + + 

8K - - - + + + - + + 

RL - - - - - - - - - 

SC - + - + + - - + + 

M28 - - - + + + - + + 

T29 - - - - - - - - - 

 

8. táblázat Az ismert, MTBE-, ETBE- és TBA-bontásban részt vevő enzimek génjeinek PCR-alapú 

kimutatási tesztjének eredményei az öt konzorcium és két egyedi izolátum (M28 és T29) esetében. 
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Az eredetileg a Mycobacterium austroafricanum IFP2012-ben leírt [117], az MPD 

két lépésben lejátszódó, 2-HIBA-vá történő átalakítását katalizáló gének közül az alkohol 

dehidrogenáz aktivitású MpdB (mpdB) jelenlétét sikerült kimutatnunk az 5K, 5L és a 8K 

konzorciumokban, valamint az M28 jelű izolátumban is. Érdekes módon azonban az 

MpdB által katalizált reakció termékét továbbalakító, aldehid dehidrogenáz aktivitású 

MpdC (mpdC) esetében egyetlen mintában sem kaptunk pozitív reakciót. Hozzá hasonlóan 

az alkB gént sem tudtuk detektálni egyik konzorciumban és egyedi izolátumban sem. 

Konzorciumainkat a kimutatott gének, valamint a korábbiakban részben már 

bemutatott degradációs spektrumok és kapacitások figyelembe vételével három csoportba 

sorolhatjuk. Az 5K, 5L és 8K jelű dúsítások, valamint a 8K-ból izolált M28 jelű törzs a 

detektált gének szempontjából teljesen megegyező profilt mutatnak. Degradációs 

spektrumuk megegyezik az RL-ével, illetve a T29-ével, degradációs sebességük azonban 

elmarad azokétól. Az SC konzorcium nemcsak degradációs spektrumával, hanem ebből 

adódóan egyedi génkészletével is eltért valamennyi vizsgált konzorciumtól. Az RL 

konzorcium szintén egyedinek bizonyult, hiszen egyik vizsgált gén sem volt kimutatható 

belőle, ami igaz a T29 jelű törzsre is. Mindezek miatt, valamint mivel előzetes tesztjeink 

alapján valamennyi egyedi izolátumunk közül a T29 bizonyult a leghatékonyabb MTBE-

bontónak, ezt választottuk ki további, részletesebb vizsgálatokra. 

 

5.3 A T29 jelű izolátum növekedésének és növesztésének 

általános jellemzői 

 

A T29 jelű izolátumot az RL konzorcium MTBE-n nőtt tenyészetéből MSA 

táplemezen, TBA-n, mint egyedüli szén- és energiaforráson izoláltuk. MSM tápoldatban 

TBA-n nőtt tenyészetéből nyert sejteket MTBE szénforrásra visszaoltva, kiemelkedően 

gyors növekedést figyeltünk meg, ezért a továbbiakban a törzs fenntartását rutinszerűen 

MTBE szénforráson végeztük. 

A törzs rokonsági viszonyainak megállapítása érdekében elkészítettük az ismert, 

teljes vagy közel teljes 16S rDNS szekvenciával (≥1300 bp) rendelkező, Methylibium 

nemzetségbe tartozó izolátumok filogenetikai törzsfáját (7. ábra). A vizsgálat eredménye 

megerősítette, hogy törzsünk a legközelebbi rokonságot a nemzetségen belül a 

Methylibium petroleiphilum PM1-gyel mutatja. Az izolátumot ennek megfelelően 
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Methylibium sp. T29-nek neveztük el és NCAIM B.02561 azonosító alatt a Mezőgazdasági 

és Ipari Mikroorganizmusok Nemzeti Gyűjteményében is elhelyeztük. 

A Methylibium sp. T29 sejtjei átlagosan 1,4 µm × 0,7 µm nagyságúak, leginkább 

coccobacillus morfológiát mutatnak (8.A ábra). A sejtpopuláció kisebb részén polárisan 

egy flagellum volt megfigyelhető. ½ × TSA lemezen, 25 °C-on, 7-10 napig történő 

inkubálás során a törzs átlagosan 2-3 mm átmérőjű, sárgás-krémszínű telepeket képzett 

(8.B ábra). MSA táptalajon, MTBE vagy TBA szénforráson kétheti inkubációt követően 

hasonló méretű, de lényegesen világosabb, fakósárga telepeket figyeltünk meg (8.C ábra). 

 

 

7. ábra A Methylibium sp. T29 nemzetségen belüli rokonsági viszonyait bemutató filogenetikai törzsfa. A 

kladogram a rendelkezésre álló 16S rDNS szekvenciák 1329 bp hosszúságú szakaszainak összehasonlításával 

a Tamura-Nei modell alapján MEGA 6 szoftver felhasználásával készült [169]. A Delftia acidovorans SPH-1 

szolgált a nemzetségen kívüli referencia törzsként (outlier). Az elágazásoknál feltüntetett számok 1000 

véletlenszerű ismétléssel generált bootstrap támogatottsági értékek (%). A skála 100 nukleotidonkénti 1 

eltérést reprezentál. Zárójelben az egyes izolátumok 16S rDNS szekvenciáinak GenBank azonosító számai 

találhatóak. 
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Érdekes növekedési tulajdonsága volt a törzsnek, hogy ½ × TSA táptalajon, a telepek 

környezetében az agar színe kezdetben világos, majd fokozatosan egyre sötétebb barna 

elszíneződést mutatott az inkubáció előrehaladtával. Hasonló jelenség volt megfigyelhető 

½ × TSB tápoldatban történő növesztés során is, amikor a halványsárga színű tápközeg az 

inkubáció során egészen sötétbarnára színeződött. Ugyanez a növekedési fenotípus 

megfigyelhető volt a többi izolátumunk esetében is, ugyanakkor NA táptalajon, illetve NB 

tápoldatban nem tapasztaltunk hasonlót. A barna színért minden valószínűség szerint egy, 

a pyomelaninnal rokon pigmentmolekula lehet felelős. A pyomelanin abiotikus úton, a 

sejteken kívül képződik a tirozin anyagcsere egyik köztitermékéből, a homogentizinsavból 

[170]. A sejten kívüli térbe szekretált homogentizinsavból autooxidáció révén benzokinon 

ecetsav képződik, amelyből spontán autopolimerizáció révén keletkezik a pyomelanin. A 

szerkezetileg a huminsavakkal rokon pyomelanin ebben az állapotában oldható 

exocelluláris pigmentként viselkedik, de képes szorpcióval a sejtfelszínhez kapcsolódni, és  

 

 

8. ábra A Methylibium sp. T29 sejtjeinek transzmissziós elektronmikroszkópos felvétele (Hitachi S-4800 

(FEG) pásztázó elektronmikroszkóp; transzmissziós mód; 25 kV gyorsító feszültség; 13 000-szeres nagyítás) 

(A), valamint növekedési morfológiája ½ × TSA (B) és MSA+MTBE táptalajon (C). 
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ezáltal a sejteket is pigmentálni. A pyomelanin molekula számos feladatot ellát: véd a 

fénytől és az oxidatív stressztől, részt vesz különböző redox folyamatokban és a hozzájuk 

kapcsolt energiatranszferben. Pyomelanin termelésről számos baktérium nemzetség 

esetében beszámoltak már, különösen elterjedt a Gammaproteobacteria osztályon belül 

(pl.: Pseudomonas fajok), Methylibium törzsek kapcsán azonban mindeddig még nem írták 

le hasonló pigment termelődését.  

A törzs azonosítása után a növesztés során áttértünk a 28 °C-on történő inkubálásra, 

mivel a legközelebbi rokon PM1 esetében az irodalmi adatok alapján ez volt a rutinszerű 

fenntartás során alkalmazott hőmérsékleti érték [134]. 

 

5.4 A Methylibium sp. T29 növekedése különböző 

szubsztrátokon és szubsztrát keverékeken 

 

A T29 jelű törzs a következő egyedüli szén- és energiaforrásként alkalmazott 

vegyületeken mutatott egyértelmű növekedést: MTBE, TAME, TBA, 2-HIBA, metanol, 

etanol, 1-propanol, 1-butanol, hangyasav, Na-piruvát, Na-acetát, glicerin és benzol. Az 

alábbi szubsztrátokat viszont nem tudta hasznosítani egyedüli szén- és energiaforrásként: 

ETBE, DIPE, 2-propanol, formaldehid, aceton, izobutirát, tejsav, Na-citrát, glükóz, glicin, 

n-hexán, n-dodekán, n-hexadekán, ciklohexán, toluol, etilbenzol, o-xilol, m-xilol, p-xilol, 

fenol, naftalin és tetrahidrofurán. A törzs szubsztráthasznosítási profilja számos egyezést 

mutat a PM1-ével, ugyanakkor jelentős különbségek is megfigyelhetők a két izolátum 

között. A legnagyobb eltérések a telített alifás és az aromás szénhidrogének 

vonatkozásában mutatkoznak meg. Míg a PM1 a C5-C12 n-alkánok hasznosítására képes 

[136], addig a T29 egyik vizsgált n-alkánt sem tudta metabolizálni sem egyedi 

szubsztrátként, sem pedig szubsztrát keverékben (”n-alkánmix”). Az aromás 

szénhidrogének csoportjából a BTEX vegyületek közül a T29 kizárólag a benzolt tudta 

egyedüli szuszbsztrátként elfogadni, a PM1 ezzel szemben a benzolon kívül a toluol, az 

etilbenzol és az o-xilol bontására is képes [131,136]. BTEX-mixben a T29 már nem volt 

képes benzolbontásra, ami arra utalhat, hogy az egyedüli szénforrásként nem hasznosítható 

BTEX komponensek gátolják a benzol hasznosulását a törzsben. A PM1 a fentieken 

túlmenően a formaldehid [131], a tejsav [146] és a fenol [131] hasznosítására is képes, míg 

a T29 egyiket sem bontja. Az üzemanyag-oxigenátok közül mindkét törzs az MTBE, a 

TAME és a TBA bontására képes, az ETBE-ére egyikük sem. A T29 az ”étermix” 
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komponensei közül is csak az MTBE-t, a TBA-t és TAME-t bontotta le, az ETBE és a 

DIPE koncentrációja változatlan maradt. Mindezek alapján elmondható, hogy a T29-ben 

sem konstitutív, sem pedig indukálható ETBE/DIPE-bontó aktivitás nincs jelen. A két 

törzs további közös metabolikus tulajdonsága, hogy egyikük sem képes a Na-citrát, a 

glükóz, a glicin, valamint a naftalin egyedüli szén- és energiaforrásként történő 

hasznosítására. 

 

5.5 A Methylibium sp. T29 és a Methylibium petroleiphilum PM1 

MTBE-bontási sebességének összehasonlítása 

 

Azért, hogy pontosabb képet kapjunk a T29 MTBE-bontó képességéről és 

sebességéről, elvégeztük a PM1-gyel történő kinetikai összehasonlítást. A kísérlet 

eredményei azt mutatták, hogy a két törzs esetében azonos körülmények között az MTBE 

koncentráció-csökkenése nagyon hasonlóan alakul (9. ábra).  

 

 
9. ábra A Methylibium sp. T29 és a Methylibium petroleiphilum PM1 MTBE-bontó képességének 

összehasonlítása az MTBE és a TBA koncentrációk változásának GC-MS analízissel történő nyomon 

követésével. 

 

Az MTBE fogyása mindkét törzsben nulladrendű sebességi állandóval volt leginkább 

jellemezhető. Ennek értékét a fogyási görbék lineáris szakaszaira illesztett egyenesek 

meredekségéből számítottuk ki (10. ábra). A T29 esetében 0,09711 mM/h, a PM1 
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esetében pedig 0,10096 mM/h sebességi állandó értéket (kT29, ill. kPM1) kaptunk. A két 

sebességi állandó közötti csekély, mindössze 3,96%-os eltérés azt mutatja, hogy a két törzs 

azonos körülmények között gyakorlatilag azonos sebességű MTBE-bontásra képes. Ez a 

tény pedig előrevetíti a T29 bioremediációs célú alkalmazhatóságának lehetőségét is, 

hiszen a PM1-et, mint az egyik leghatékonyabb MTBE-bontásra képes ismert törzset már 

több esetben vetették be nemcsak MTBE-vel terhelt vizek bioreaktorban és biofilteren át 

történő kezelésénél, de MTBE-vel szennyezett területek in situ bioaugmentációs 

kármentesítése során is [80,130,171-173]. 

A két törzs MTBE-bontásának nyomon követése során sikerült ugyanakkor 

megfigyelnünk egy szembetűnő különbséget is. Míg a T29 esetében egyetlen mintavétel 

alkalmával sem sikerült TBA köztiterméket kimutatni a rendszerekben, addig a PM1-nél az 

idő előrehaladtával átmeneti, kismértékű TBA akkumuláció volt megfigyelhető: a 12 órás 

mintákban átlagosan 3,96, a 18 órásakban pedig átlagosan 8,46 mg/l TBA koncentráció 

volt kimérhető (9. ábra). Ennek hátterében vélhetően az állhat, hogy a TBA-t átalakító 

lépés (a TBA monooxigenáz enzim által katalizált reakció) a T29-ben nagyobb sebességgel 

megy végbe, mint a PM1-ben. Ezenfelül magyarázhatja a jelenséget az is, hogy a T29-ben 

a TBA bomlási sebessége lényegesen nagyobb lehet, mint az MTBE-é, így nincs lehetőség 

arra, hogy a TBA felhalmozódjon az MTBE-bontás során. 

 

 
10. ábra A T29 és a PM1 nulladrendű sebességi állandóinak meghatározása az MTBE fogyási görbéik 

lineáris szakaszára illesztett egyenesek egyenletének felhasználásával történt. A sebességi állandók értéke az 

egyenesek meredekségének -1-szeresével egyezik meg. 
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5.6 Az MTBE lebontási folyamatában szereplő intermedierek 

azonosítása a Methylibium sp. T29-ben és az MTBE 

biodegradációjának valószínűsíthető útvonala a törzsben 

 

A GC-MS mérések eredményei nyomán két intermediert sikerült azonosítanunk az 

MTBE lebontási útvonalában a Methylibium sp. T29-ben: TBA-t és acetont (11. ábra). 

Az abiotikus mintákból a GC-MS analízis során, az alkalmazott erőteljes 

mintaelőkészítési körülmények (nagy sókoncentráció, magas hőmérséklet, alacsony pH) 

ellenére egyik intermedier sem volt kimutatható, így kizárható, hogy az MTBE abiotikus 

hidrolízise nyomán keletkeztek volna ezek a köztitermékek. Közülük a TBA jelenléte nem 

meglepő, hiszen a szakirodalmi adatok alapján elmondható, hogy valamennyi ismert 

MTBE-bontásra képes törzs TBA-n is jól nő, és több esetben igazolták azt is, hogy az adott 

izolátumban az MTBE metabolikus útvonala TBA-n keresztül halad. Mindazonáltal meg 

kell említenünk, hogy a Methylibium petroleiphilum PM1 esetében az MTBE potenciális 

lebontási köztitermékei közül mindeddig egyet sem mutattak ki. Az aceton is régóta 

szerepel az MTBE-bontás lehetséges köztitermékeinek sorában, de minden kétséget 

kizáróan mindezidáig csak a Mycobacterium austroafricanum IFP2012 törzs esetében 

detektálták [114]. 

Az aceton, mint köztitermék kimutatása a részünkről jelentős eredmény, hiszen általa 

pontosabb képet kaphatunk a törzs MTBE hasznosítási útvonaláról és ezáltal a benne 

potenciálisan részt vevő enzimekről is. Ugyanakkor itt kell megjegyeznünk azt is, hogy 

amint korábban már leírtuk, a T29 nem képes acetonon, mint egyedüli szén- és 

energiaforráson nőni, míg az IFP2012 igen. Ennek hátterében azonban több dolog is állhat: 

az aceton az alkalmazott koncentrációban (200 mg/l) toxikus lehet a T29-re, de lehetséges 

az is, hogy a T29-ből hiányzik az aceton sejtekbe történő felvételéhez szükséges transzport 

rendszer. 

Mivel az MTBE lebontási útvonalának felső szakaszából egyedül a TBA-t sikerült 

azonosítani, így arról nem tudunk részletesebb képet adni. Az alsó szakaszban viszont a 2-

HIBA lehetséges átalakulásai közül (4. ábra) az aceton kijelöli a valószínű útvonalat. 

Eszerint a 2-HIBA-ból dekarboxiláz enzimaktivitás révén 2-propanol képződik, melyet egy 

alkohol dehidrogenáz enzim alakít acetonná. Az acetont egy monooxigenáz enzim 

hidroxiacetonná oxidálja, amely további oxidáció után piroszőlősavvá alakul és belép a 

központi anyagcsere-folyamatokba. 
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11. ábra A Methylibium sp. T29 MTBE lebontási útvonalában azonosított intermedierek GC-MS 

kromatogramja. A bal felső sarokban az abiotikus minta kromatogramja szemlélteti, hogy a mérési 

körülmények hatására nem keletkeznek ezek a köztitermékek az MTBE-ből. 

 

5.7 Methylibium izolátumok antibiotikum és nehézfém 

rezisztenciájának összehasonlító vizsgálata 

 

A tervezett molekuláris biológiai kísérletek megkezdése előtt szükséges volt, hogy 

megismerjük izolátumaink, mindenekelőtt a T29, esetleges antibiotikum rezisztenciáját, 
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illetve érzékenységét. A PM1-ről korábban már leírták, hogy eredendően az 

antibiotikumok széles spektrumával szemben rezisztens, sőt könnyen képez spontán 

mutánsokat is, melyek további antibiotikumokkal szemben válhatnak rezisztenssé [132]. 

Ugyanakkor az ampicillinre és a tetraciklinre szenzitív a törzs, és ezen antibiotikumok 

ellen a PM1-ben nem fejeződnek ki a molekuláris biológiai gyakorlatban általánosan 

alkalmazott rezisztencia gének sem.  

Az antibiotikum tesztjeink eredményei alapján mind a Methylibium sp. M28, mind 

pedig a PM1 szenzitív valamennyi vizsgált antibiotikumra (Amp, Apr, Cm, Km, Sm, Tc) 

mindkét alkalmazott koncentrációban. Ezzel szemben a T29 rezisztensnek bizonyult 

ampicillinnel (100 µg/ml) és tetraciklinnel (12,5 µg/ml) szemben is, a többi antibiotikumra 

a T29 is szenzitív.  

Az a tény, hogy a T29 éppen arra a két antibiotikumra rezisztens, amelyre a PM1 

szenzitív, ráadásul a kívülről bevitt rezisztencia gének sem működnek benne, remek 

lehetőséget kínálhat a jövőben arra, hogy a már azonosított T29 rezisztencia gének 

felhasználásával próbáljunk meg rezisztenciát kialakítani a PM1-ben. Mivel a két törzs 

egymással közeli rokonságban áll, nagyobb a valószínűsége annak, hogy a bevitt gének 

expresszálódnak majd, és ezáltal lehetőség nyílhat a molekuláris biológiai munkák 

megkönnyítésére a PM1-ben, sőt más Methylibium izolátumokban is.  

A Methylibium petroleiphilum PM1 teljes genomszekvenciájának meghatározását 

követően számos nehézfém (Cd, Co, Cr, Cu, Zn) elleni rezisztenciában potenciálisan 

szerepet játszó gént azonosítottak a törzs genomjában szekvencia homológiák alapján 

[136], de e rezisztenciák kifejeződését kísérletesen nem igazolták.  

Kísérleteink során a nehézfémek közül a higany elleni rezisztenciát vizsgáltuk a 

törzsekben, különböző koncentrációkban adagolt HgCl2 formájában. A PM1 kizárólag a 

Hg
2+

-t nem tartalmazó kontroll rendszerekben nőtt föl, míg a T29 és az M28 törzseink 12,5 

mg/l HgCl2 koncentráció mellett még a kontroll rendszerekével megegyező növekedést 

mutattak, magasabb Hg
2+ 

koncentrációknál viszont már nem voltak képesek növekedésre. 

Az antibiotikum és a higany rezisztenciákban megmutatkozó szembetűnő 

különbségek tovább erősítették azt a megállapítást, miszerint a hazai Methylibium 

izolátumok a PM1-gyel való nagyon közeli rokonság ellenére is számos tekintetben 

különböznek a típustörzstől, ami indokolttá tette mélyrehatóbb vizsgálatukat. 
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5.8 Methylibium törzsek genomjának összehasonlítása pulzáló 

mezejű gélelektroforézis (PFGE) vizsgálattal 

 

A pulzáló mezejű gélelektroforézis módszer ideálisan megválasztott restrikciós 

enzimekkel kombinálva kiválóan alkalmas közelrokon fajok vagy ugyanazon fajhoz 

tartozó törzsek genomjának összehasonlításához. Kísérletünk során a két Methylibium 

izolátum-csoport 1-1 tagjának (M28 és T29) genomját kívántuk összevetni a PM1-ével. A 

restrikciós enzimek kiválasztásához a PM1 ismert, teljes genomszekvenciáját használtuk 

föl. A vizsgálat során négy különböző restrikciós enzimmel (AseI, BcuI, BspTI, HpaI) 

kezeltük a három törzs LMP agaróz géldugókba ágyazott intakt genomjait, majd a 4.12 

fejezetben leírtak szerint elvégeztük a kapott fragmentek elválasztását. A három törzs 

esetében az így előállt restrikciós mintázatokat a 12. ábra mutatja be. 

A kapott mintázatok alapján egyértelművé vált, hogy a három törzs között a 

rendkívül nagyfokú 16S rDNS szekvencia homológia (≥99% azonosság) ellenére a teljes 

genomok szintjén jelentős különbségek figyelhetőek meg. Mindehhez valószínű, hogy 

nagyban hozzájárultak az egyes törzseket élőhely-specifikusan érő abiotikus és biotikus 

tényezők, hiszen noha a PM1 és a hazai izolátumok is mindannyian MTBE-vel szennyezett 

közegekből, de egymástól tetemes földrajzi távolságban, eltérő mikrokörnyezetből lettek 

izolálva. 

Annak megállapításához, hogy e számottevő eltérések mely géneket érintik, illetve 

hogy a különbségek csak nukleotid szinten jelentkeznek-e vagy a fehérjék szintjén is 

megmutatkoznak, mélyrehatóbb vizsgálatok voltak szükségesek. Ezért, valamint mivel 

korábban az MTBE-bontás ismert génjeinek PCR-alapú kimutatása során egyetlen pozitív 

reakciót sem kaptunk a T29 esetében, úgy döntöttünk, hogy a későbbiekben a törzs teljes 

genomját megszekvenáljuk, hogy ezáltal pontosabb képet kapjunk nemcsak az MTBE-

bontáshoz kapcsolódó génekről, de a PM1-gyel történő részletesebb összehasonlítás 

céljából is. 

 

5.9 Természetes mutáns vonalak izolálása a Methylibium sp. 

T29-ből és a Methylibium petroleiphilum PM1-ből 

 

A Methylibium törzsek fenntartásához és tisztaságának ellenőrzéséhez a ½ × TSA és  
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12. ábra A Methylibium sp. T29, a Methylibium sp. M28 és a Methylibium petroleiphilum PM1 genomjának 

összehasonlítása négy különböző restrikciós enzimmel végzett kezelést követő pulzáló mezejű 

gélelektroforézis (PFGE) vizsgálattal. 

 

az NA táptalajokat, valamint a ½ × TSB és az NB tápoldatokat párhuzamosan használtuk. 

Egyértelműen megfigyelhető volt, hogy NB tápoldatban a T29 gyorsabban nőtt és nagyobb 

optikai denzitás értékeket ért el, mint ½ × TSB tápközegben. Hasonló jelenség volt 

észrevehető a szilárd táptalajok vonatkozásában is, hiszen NA táptalajon a T29 szintén 

gyorsabban nőtt és nagyobb telepeket képzett, mint ½ × TSA-n. 

NB tápoldaton történő folyamatos fenntartás (hetenkénti átoltás és NA táptalajra 

történő szélesztés) során többször, egymástól független esetekben előfordult, hogy az NA 

szélesztésekről izolált, majd NB tápoldaton felnevelt egyedi kolóniák tenyészeteiből MSM 

tápoldatba MTBE-re, mint egyedüli szén- és energiaforrásra visszaoltott sejtek egyáltalán 

nem mutattak növekedést, elvesztették MTBE-bontó képességüket. ½ × TSB és ½ × TSA 

tápközegeken fenntartott tenyészetek esetében hasonló jelenség nem volt megfigyelhető. 
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Nyilvánvaló volt tehát, hogy a funkcióvesztés kialakulásában a tápközegek eltérő 

összetételének fontos szerepe volt. 

A külföldi törzsgyűjteményből beszerzett Methylibium petroleiphilum PM1 tenyészet 

tisztaságának ellenőrzése során, a ½ × TSA lemezre végzett szélesztésen (4.7 fejezet), 

kétheti, 28 °C-on történő inkubációt követően kétféle telepmorfológiát tudtunk 

elkülöníteni. Mindkét típusú telepből kolónia PCR segítségével a 16S rDNS szekvenciákat 

amplifikáltuk, majd a termékeket megszekvenáltattuk. Az eredmények alapján mindkét 

kolónia 16S rDNS-e 100%-ban megegyezett a PM1-ével. Mindkét vonal ½ × TSB 

tápoldaton felnövesztett egyedi kolóniájának tenyészetéből átoltottunk sejteket MSM 

tápoldatba MTBE-re, mint egyedüli szén- és energiaforrásra, de csak az egyik vonal 

esetében tapasztaltunk növekedést, a másik egyáltalán nem nőtt. 

Úgy döntöttünk, hogy a T29 és a PM1 funkcióvesztéses mutáns vonalait részletesebb 

vizsgálatoknak vetjük alá. Azért, hogy összehasonlíthassuk őket a vad típusú törzsekkel, 

elvégeztünk néhány szubsztráthasznosítási kísérletet, illetve megvizsgáltuk antibiotikum és 

higany rezisztenciájukat is. 

A kísérletek érdekes eredményekkel szolgáltak. A T29 mutáns vonala sem MTBE-t, 

sem pedig TAME-t nem volt képes egyedüli szén- és energiaforrásként hasznosítani, 

viszont TBA-n jól nőtt. Az antibiotikumok közül a vad típushoz hasonlóan rezisztens volt 

ampicillinre és tetraciklinre is, viszont higany jelenlétében (12,5 mg/l) nem volt képes 

növekedni. A PM1 mutáns vonala sem MTBE-n, sem TAME-n, sem pedig TBA-n nem 

volt képes növekedni, ezen felül szenzitív volt ampicillinre és tetraciklinre is, higany 

jelenlétében pedig nem mutatott növekedést. A két törzs esetében ezeket a mutáns 

vonalakat T29-B-nek, illetve PM1-B-nek neveztük el. Közülük a T29-B-t Methylibium sp. 

T29-B néven a Mezőgazdasági és Ipari Mikroorganizmusok Nemzeti Gyűjteményében is 

elhelyeztük NCAIM B.02560 azonosító alatt. A T29 és a PM1 esetében a vad típusú és a 

mutáns vonalak leglényegesebb karakterisztikus tulajdonságait a 9. táblázat foglalja össze.  

A szakirodalomból ismert, hogy az antibiotikumokkal és nehézfémekkel szembeni 

rezisztenciát biztosító gének sokszor extrakromoszómális elemeken, így gyakran 

rezisztencia plazmidokon helyezkednek el. Hasonlóképpen, számos környezetszennyező 

antropogén vegyület lebontásában szerepet játszó enzimek katabolikus plazmidokon 

kódoltak. Nem szelektív környezetben történő növekedés során ezek az 

extrakromoszómális elemek bizonyos esetekben eliminálódnak a sejtekből, hiszen 

fenntartásuk feleslegessé válik. Hasonló jelenséget más abiotikus külső tényezők is 

kiválthatnak, így az optimálisnál alacsonyabb vagy magasabb növesztési hőmérséklet, 
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bizonyos kémiai anyagokkal történő érintkezés vagy kezelés, vagy megfelelő növekedési 

inhibitorok alkalmazása. 

 

 Növekedés Rezisztencia 

 MTBE TAME TBA Amp Tc Hg
2+

 

T29 + + + + + + 

T29-B - - + + + - 

PM1 + + + - - - 

PM1-B - - - - - - 

 

9. táblázat A Methylibium sp. T29 és T29-B, valamint a Methylibium petroleiphilum PM1 és PM1-B törzsek 

összehasonlítása az egyedüli szén- és energiaforrásként hasznosítható üzemanyag-oxigenátok 

vonatkozásában, valamint az ampicillin (Amp), tetraciklin (Tc) és higany (Hg
2+

) elleni rezisztencia alapján. 

 

A T29 esetében az NA/NB, illetve a ½ × TSA/TSB tápközegeken történő hosszabb 

idejű fenntartás egyaránt nem szelektív növekedési környezetet jelentett a sejtek számára a 

vizsgált tulajdonságok tekintetében, de közülük csak az NA/NB esetében tapasztaltunk 

fenotípus változást. Ennek oka valószínűleg az, hogy az NA/NB esetében gyorsabb 

szaporodás, ezáltal rövidebb generációs idő volt megfigyelhető, aminél nagyobb 

valószínűséggel következhet be egy esetleges plazmid vesztés vagy deléció, ami maga után 

vonhatja bizonyos funkciók kiesését. Annak hátterében, hogy a T29 esetében csak az 

MTBE- és a TAME-bontó képesség, valamint a Hg
2+

 elleni rezisztencia tűnt el, viszont a 

TBA-bontó tulajdonság és az ampicillin és tetraciklin elleni rezisztencia továbbra is 

megmaradt, több dolog is állhatott. Elképzelhető, hogy a vad típusú törzsre jellemző 

tulajdonságok egymástól függetlenül, több plazmidon kódoltak, melyeknek csak egy része 

veszett el vagy pedig a funkciók részben a kromoszómán kódoltak. Ugyanakkor a 

funkcióvesztéshez nem szükségszerű, hogy teljes plazmidok vesszenek el, elképzelhető, 

hogy deléció révén csupán DNS darabok estek ki a genomból, vagy éppen valamilyen 

mobilis genetikai elem integrálódott a génekbe, amely inaktiválta őket. 

A PM1-re vonatkozóan nem tudtunk hasonló hipotézist felállítani, minthogy a 

mutáns fenotípussal rendelkező vonal a vad típussal együtt érkezett a liofilizátumban, de 

elképzelhető, hogy a liofilizálás folyamata során, vagy még azt megelőzően a 

törzsgyűjteményben történő fenntartás vagy tárolás során történt a funkcióvesztés. A PM1 

esetében az általunk vizsgált tulajdonságok közül csak az üzemanyag-oxigenátok bontására 
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való képesség tűnt el a mutáns vonalból, hiszen a vizsgált anyagokkal (Amp, Tc, Hg
2+

) 

szembeni rezisztenciák a vad típusból is hiányoznak. Az MTBE- és TBA-bontásban részt 

vevő gének a PM1-ben a megaplazmidon lokalizálódnak, sok más funkcióval együtt. 

Éppen ezért kevéssé tűnt valószínűnek, hogy egy 600 kb-os plazmid teljesen elvesszen a 

törzsből. Emiatt úgy véltük, hogy deléció vagy mobilis genetikai elem integrációja okozta 

a PM1 esetében a mutáns vonal létrejöttét.  

A következőkben elméleteink helyességének ellenőrzése céljából megvizsgáltuk, 

hogy a törzseink rendelkeznek-e plazmiddal vagy plazmidokkal, amelyek jelenléte vagy 

hiánya, illetve a köztük lévő esetleges méretbeli különbség magyarázhatja-e a fenotípus 

változásokat és a mutáns vonalak létrejöttét. 

 

5.10 Plazmid detektálás és izolálás a Methylibium sp. T29 és a 

Methylibium petroleiphilum PM1 vad típusú és természetes 

mutáns vonalaiból, valamint a Methylibium sp. M28-ból 

 

A Methylibium sp. T29, T29-B, M28 és a Methylibium petroleiphilum PM1-B jelű 

izolátumainkban, valamint a Methylibium petroleiphilum PM1 törzsben a plazmidok 

kimutatását és méretük hozzávetőleges meghatározását S1 nukleáz kezeléssel kapcsolt 

PFGE analízissel végeztük el. Az öt törzs esetében az S1-PFGE vizsgálat eredményét a 13. 

ábra mutatja be. 

Az S1-PFGE analízis érdekes eredményekkel szolgált: három törzsben sikerült 1-1 

plazmidot azonosítanunk (PM1, T29, T29-B), míg a másik két izolátum (M28, PM1-B) 

esetében nem kaptunk extrakromoszómális elemre utaló jelet. 

A Methylibium petroleiphilum PM1 teljes genomszekvenciájának meghatározása 

során korábban már leírtak ugyan egy 600 kb körüli (599 444 bp) méretű megaplazmidot a 

törzsben [136], de mindezidáig még nem született bizonyíték, amely kísérletes úton 

ténylegesen igazolta volna a jelenlétét. A pPM1 jelű megaplazmid összesen 646 gént 

hordoz, melyből 382 egyedi („hipotetikus fehérje”) a PM1-re nézve. A megaplazmidon 

találhatóak a PM1-ben az MTBE- és a TBA-bontásban részt vevő gének, de ezek mellett 

számos más anyagcsere-folyamat, így bizonyos koenzimek és szervetlen ionok 

transzportjában és metabolizmusában, a kobalamin bioszintézisben, továbbá a 

replikációban, a rekombinációs és repair folyamatokban szereplő egyes fehérjék génjei. 
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Leírták a plazmidról azt is, hogy minden valószínűség szerint a közelmúltban horizontális 

transzfer során tett szert rá a törzs. 

 

 

13. ábra Plazmid detektálás a Methylibium izolátumokban S1-PFGE analízissel. Az A és a B kép ugyanazt a 

gélfotót ábrázolja kétféle fényerősség mellett. Az azonosított plazmidokat a piros és a sárga nyilak jelzik.  

 

A PM1-B-ből egyértelműen a teljes megaplazmid hiányzik, hiszen nincs nyoma 

kisebb méretű (≥40 kb) plazmidnak a törzsben. Mindez amellett, hogy magyarázza korábbi 

kísérleti eredményeinket, miszerint a törzs nem képes sem MTBE, sem pedig TBA 

bontására, cáfolja azon feltételezésünket, hogy a mutáns vonal kialakulásának hátterében 

deléció vagy inszerció állna. Figyelembe véve, hogy a megaplazmidon nagyszámú 

alapanyagcsere-folyamatban szerepet játszó gén is lokalizálódik, melyek együttes hiánya 

nagy valószínűséggel letális lenne egy olyan környezetben, ahol nincs lehetőség a 

pótlásukra (például horizontális géntranszfer révén), a plazmid elvesztésénél 
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valószínűbbnek tűnik annak integrációja a kromoszómába. Ennek során vagy ezt 

megelőzően egy deléciós vagy inszerciós folyamat által válhattak inaktívvá vagy 

veszhettek el az MTBE/TBA metabolizmusában szerepet játszó gének a PM1-ből. 

A Methylibium sp. M28 esetében sem kaptunk plazmidra utaló jelet, viszont ez a 

törzs hatékony MTBE- és TBA-bontásra volt képes. Így ebben az esetben az egyetlen 

magyarázat az lehet, hogy a bontásért felelős gének a kromoszómán lokalizálódnak. A 

gének eredetére vonatkozóan azonban nem tudunk semmilyen megállapítást tenni, vagyis 

nem tudhatjuk, hogy a törzsben evolúciós-adaptációs folyamatok során alakult-e ki a 

bontásra való képesség vagy pedig horizontális géntranszfer történt. Ennek eldöntéséhez 

további mélyrehatóbb vizsgálatok szükségesek. 

A T29 és a T29-B törzsekben egyértelműen azonosítható volt egy-egy, 

hozzávetőlegesen 50 és 90 kb közötti méretű plazmid, viszont a PM1-re jellemző 

megaplazmid mindkettőből hiányzott. A két törzs esetében hasonló méretű plazmidra utaló 

jeleket kaptunk, de az esetleges méretbeli és szekvenciabeli különbségek megismeréséhez 

ez a vizsgálat nem volt elegendő. Így arra sem kaptunk választ még, hogy a vizsgált 

tulajdonságokért (MTBE/TBA-bontás, ampicillin, tetraciklin és higany elleni 

rezisztenciák) felelős gének közül melyek találhatóak a plazmidon és melyek a 

kromoszómán. Ezért a T29 és T29-B jelű törzsekből a 4.13 fejezetben foglaltak szerint 

plazmid DNS-t izoláltunk és a teljes genomok szekvenálását követően azokat is 

megszekvenáltuk. A két törzs esetében a plazmidokat pT29A, illetve pT29B jelöléssel 

láttuk el. 

 

5.11 A Methylibium sp. T29 és T29-B törzsek de novo 

genomszekvenálása, valamint a pT29A és pT29B jelű 

plazmidok de novo szekvenálása 

 

A de novo genomszekvenálás során kapott nyers adatok bioinformatikai feldolgozása 

alapján a Methylibium sp. T29 vázlatos (draft) genomszekvenciája 4 449 424 bp méretű, 

amelyet 608 kontigba sikerült összeépíteni, GC-tartalma 68,7%. A genom mérete és a GC-

tartalom értéke nagyfokú hasonlóságot mutat a legközelebbi rokon PM1 genomjának 

megfelelő adataival (4 643 669 bp genomméret, ill. 67,6% GC-tartalom) [136]. A T29 

esetében összesen 4806 gén jelenléte valószínűsíthető a genomszekvenciából, a PM1-nél  
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14. ábra A Methylibium sp. T29 draft genomszekvenciájának grafikus ábrázolása, néhány releváns 

tulajdonságának bemutatásával. A kontigokat a Mauve 2.3.1 program [156] segítségével rendeztük sorba a 

PM1 teljes genomszekvenciáját használva referenciaként. A gének COG kategóriákba történő besorolása a 

WebMGA szerver [174] segítségével történt. A genom térképének ábrázolását CGView programmal [175] 

végeztük. A megjelenített tulajdonságok a következők (kívülről befelé haladva): gének az 5’-3’ szálon, gének 

a 3’-5’ szálon (COG kategóriák szerint színezve); a Methylibium petroleiphilum PM1 kromoszómájának és 

megaplazmidjának összehasonlítása a T29 draft genomjával BLAST segítségével; GC-tartalom; GC-arány 

aszimmetria. (A COG kategóriák betűkódjainak feloldásai a 11. táblázatban találhatóak.) 

 

korábban 4477 gént írtak le [136]. A T29 genomjában 3 rRNS, 48 tRNS és 1 tmRNS gént 

azonosítottunk. A fehérjekódoló gének 72,8%-ához tudtunk funkciót rendelni, a többit 

hipotetikus fehérjeként neveztük el. Ezenfelül a fehérjekódoló gének 71,0%-a volt 
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besorolható COG (Clusters of Orthologous Groups) (http://www.ncbi.nlm.nih.gov/COG/) 

kategóriákba. A Methylibium sp. T29 draft genomszekvenciájának (14. ábra) statisztikai 

adatait a 10. táblázat összegzi, a fehérjekódoló gének COG kategóriák szerinti 

megoszlását pedig a 11. táblázat tartalmazza. 

A NUCmer programmal [157] végzett összehasonlítások eredményei nyomán 

elmondható, hogy a Methylibium sp. T29 draft genomszekvenciája átlagosan 97%-os 

azonosságot mutat a PM1 kromoszómájával nukleotid szinten, illetve 85%-ot a pPM1 

megaplazmid egy kis részletével (15. ábra). Ugyanakkor azonban jelentős eltérések is 

megfigyelhetőek a két törzs esetében. A legjelentősebb ezek közül, hogy a közel 600 kb-os 

pPM1 megaplazmid legnagyobb része hiányzik a T29-ből, a meglévő homológ 

szekvenciák pedig a kromoszómán találhatóak. Mindez lényeges különbség az Egyesült 

Államokban izolált PM1-szerű törzsekkel szemben is, melyek a T29-hez hasonlóan szintén 

nagyon közeli rokonai a PM1-nek (~99% azonosság a 16S rDNS szekvenciákban), viszont 

bennük kivétel nélkül megtalálható a közel 600 kb-os megaplazmid, a PM1-ével csaknem 

megegyező (~99% azonosság) nukleotid szekvenciával [136]. Esetükben azonban a 

kromoszómabeli különbségek lényegesen nagyobbnak bizonyultak, olyannyira, hogy a 

reszekvenálási kísérleteket nem tudták elvégezni ezekkel az izolátumokkal. Feltételezhető 

tehát, hogy a T29 és az USA-beli Methylibium törzsek esetében eltérő eredetű az MTBE-

bontásra való képesség, illetve az egyes, vélhetően transzpozonok vagy más mobil 

genetikai elemek által indukált genomátrendeződések is másként játszódtak le. Minden 

bizonnyal ezekben a folyamatokban az egyes törzseket élőhely-specifikusan érő abiotikus 

és biotikus kölcsönhatásoknak is kiemelt szerepe volt. 

A Methylibium sp. T29 5.10 fejezetben leírt pT29A jelű plazmidját szintén 

megszekvenáltuk. A plazmid mérete 86 856 bp, 90 fehérjekódoló gént hordoz, GC-

tartalma 67,1%. Itt található a kobalamin szintézisben részt vevő gének egy jelentős része, 

továbbá számos, a higany elleni rezisztenciáért felelős gén, valamint több transzpozázt 

kódoló szekvencia is. A pT29A plazmid (16. ábra) nukleotid szekvenciájának statisztikai 

adatait a 12. táblázat foglalja össze, a fehérjekódoló gének COG kategóriák szerinti 

megoszlását a 13. táblázat mutatja be. 

A tény, miszerint a PM1-ben az MTBE-bontásban részt vevő gének a pPM1 

megaplazmidon találhatóak [136], előzetesen azt valószínűsítette, hogy ezeket a géneket a 

T29-ben a pT29A plazmidon fogjuk megtalálni. Meglepő módon azonban egy kobalamin 

szintézis operontól eltekintve, mely lényegesen eltér a PM1-ben találhatótól, nem találtunk 

MTBE-bontásban szereplő géneket a T29 plazmidján. Ahogy a korábbiakban már 

http://www.ncbi.nlm.nih.gov/COG/
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említettük, kobaltion vagy kobalamin a 2-HIBA intermedier továbbalakításához szükséges 

az MTBE metabolizmusa során [118].  

 

Tulajdonság Érték Az összes százalékában 

Genom mérete (bp) 4 449 424 100 

Kódoló DNS szakasz hossza (bp) 3 743 112 84,1 

GC-tartalom (bp) 3 057 506 68,7 

Kontigok száma 608 - 

Összes gén 4 806 - 

Fehérjekódoló gének 4 754 98,9 

RNS gének 52 1,1 

Pszeudogének 196 4,1 

Gének funkció megjelöléssel 3 498 72,8 

COG kategóriába sorolható gének 3 376 71,0 

 

10. táblázat A Methylibium sp. T29 draft genomszekvenciájának fontosabb statisztikai adatai. 

 

A Methylibium petroleiphilum PM1 teljes genomszekvenciáját használva 

referenciaként szekvencia homológiák alapján sikerült azonosítanunk a T29 

kromoszómáján az MTBE-bontás útvonalának valószínű komponenseit, köztük az MTBE 

monooxigenázt (MdpA) és a TBA monooxigenázt (MdpJ) is, melyek mindössze 84, illetve 

81%-os azonosságot mutatnak aminosav szinten a PM1-es megfelelőikkel. Megfigyeltük, 

hogy a szubsztrát specifitást meghatározó pozícióban lévő aminosav a PM1 MdpA-jához 

hasonlóan a T29-ben is treonin, nem pedig valin vagy egyéb hidrofób aminosav, melyek az 

MdpA közeli rokonaira, az alkán hidroxilázokra jellemzőek [132]. Mindez pedig a poláros 

treoninnak az enzimkatalízis során az éter-szubsztrát megkötésében játszott esetleges 

szerepére utalhat.  

További fontos megfigyelés lehet, hogy a T29 mdpA génjének promótere teljesen 

különbözik a PM1 mdpA-jának promóterétől, ami lényegesen eltérő génszintű szabályozás 

meglétét valószínűsíti a két törzsben. Ellentétben tehát a T29 és a PM1 genomjainak nagy 

része között fennálló nagymértékű általános hasonlósággal, az MTBE metabolizmusában 

szereplő gének (14. táblázat) lényegesen kisebb szekvencia konzerváltságot és teljesen 

eltérő lokalizációt (plazmid [PM1], illetve kromoszóma [T29]) mutatnak a két törzsben, 

ami arra utalhat, hogy ezek a gének valószínűleg egy transzpozonon, esetleg valamilyen 

más típusú mozgó genetikai elemen helyezkednek el, mely a PM1 esetében a 

megaplazmidon, míg a T29-ben a kromoszómán található.  
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Korábban a Rhodococcus ruber IFP 2001 esetében leírták, hogy az ETBE bontásáért 

felelős eth génklasztert mindkét irányból egy-egy 5,6 kb méretű, azonos direkt repeat 

szekvencia határolja, amelyek a II-es osztályba tartozó transzpozonok [108]. Megfigyelték, 

hogy a törzsben spontán kromoszómális deléció játszódhat le a két azonos direkt repeat 

szekvencia közötti homológ rekombináció révén, melynek során az IFP 2001 elveszíti az  

 

Kód 
Gének 

száma 

Százalékos 

arány 
Leírás 

J 169 3,5 Transzláció, riboszóma-szerkezet és -biogenezis 

A 2 0,0 RNS érés és módosítás 

K 276 5,8 Transzkripció 

L 190 4,0 Replikáció, rekombináció és repair 

B 4 0,1 Kromatin szerkezet és dinamika 

Y 0 0,0 Sejtmagi struktúrák 

D 32 0,7 Sejtciklus szabályozás, sejtosztódás, kromoszóma szegregáció 

V 59 1,2 Védekező mechanizmusok 

T 284 6,0 Szignál-transzdukciós mechanizmusok 

Z 0 0,0 Citoszkeleton 

W 0 0,0 Extracelluláris struktúrák 

M 218 4,6 Sejtfal és sejtmembrán biogenezis 

N 100 2,1 Sejt motilitás 

U 122 2,6 Sejten belüli anyagtranszport és szekréció 

O 170 3,6 Poszt-transzlációs módosítás, fehérje turnover, chaperonok 

C 292 6,1 Energiatermelés és -konverzió 

G 126 2,6 Szénhidrát transzport és metabolizmus 

E 295 6,2 Aminosav transzport és metabolizmus 

F 72 1,5 Nukleotid transzport és metabolizmus 

H 196 4,1 Koenzim transzport és metabolizmus 

I 177 3,7 Lipid transzport és metabolizmus 

P 236 5,0 Szervetlen ion transzport és metabolizmus 

Q 118 2,5 Szekunder metabolitok bioszintézise, transzportja és katabolizmusa 

R 456 9,6 Csak általános funkció megjelölés 

S 337 7,1 Ismeretlen funkció 

- 823 17,3 Nem szerepel COG kategóriában 

 

11. táblázat A Methylibium sp. T29 draft genomszekvenciájában azonosított fehérjék COG (Clusters of 

Orthologous Groups) kategóriák szerinti megoszlása. 
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eth géneket, így ETBE-bontó képességét is. A pPM1 megaplazmidon közvetlenül az mdpA 

szomszédságában szintén található egy, az IS4 családba tartozó transzpozáz gén. Ezeknek 

és a rokon szekvenciáknak minden bizonnyal fontos szerepe van a fajok közötti 

horizontális géntranszferben, ezáltal pedig a különböző metabolikus útvonalak 

fenntartásában és evolúciójában is. A T29 esetében ugyan az mdpA gén közelében nem 

találtunk mobil genetikai elemeket, de szerte a kromoszómán nagyszámú transzpozázt, 

rekombinázt és integrázt tudtunk azonosítani, melyeknek korábbi vagy jövőbeli 

rekombinációs eseményekben egyaránt szerepe lehet. 

 

 

15. ábra A Methylibium sp. T29 és a Methylibium petroleiphilum PM1 genomszekvenciájának 

összehasonlítása. A T29 draft genomszekvenciájának kontigjait a Mauve 2.3.1 [156] program segítségével 

rendeztük sorba a PM1 teljes genomszekvenciáját használva referenciaként. Az összehasonlítás és az 

ábrázolás MUMmer 3.0 szoftverrel [157] történt. 

 

Számos egyedi szekvenciát azonosítottunk a T29-ben, amelyek a PM1-ből teljesen 

hiányoznak, köztük több antibiotikum (ampicillin, meticillin, szulfonamid, tetraciklin) és 

nehézfém (Cd, Co, Cu, Hg, Ni, Te, Zn) elleni rezisztenciát biztosító gént. A további T29-

specifikus gének többek között különböző anyagcsere-folyamatokban szerepet játszó 

enzimeket, transzkripciós regulátorokat, szenzor fehérjéket, a restrikciós modifikációs 

rendszerek elemeit, fág és transzpozon eredetű fehérjéket, valamint egyéb hipotetikus 

fehérjéket kódolnak. A génannotációk alapján a T29 képes lehet több más 



81 

 

környezetszennyező vegyületcsoport tagjainak hasznosítására is, így például bizonyos 

klórozott aromás szénhidrogének, halogénezett szerves savak és policiklusos aromás 

szénhidrogének (PAH) lebontására, de mindezeket a tulajdonságokat kísérletesen még nem 

vizsgáltuk. A PathogenFinder 1.1 [176] programmal végzett elemzés szerint a törzs 

minden valószínűség szerint nem humán patogén (a patogenitás valószínűsége 0,083), ami 

a terepi alkalmazhatóság szempontjából mindenképpen biztató.  

 

 

16. ábra A Methylibium sp. T29 pT29A jelű plazmidjának grafikus ábrázolása, néhány releváns 

tulajdonságának bemutatásával. A gének COG kategóriákba történő besorolása a WebMGA szerver [174] 

segítségével történt. A plazmid térképének ábrázolását CGView programmal [175] végeztük. A megjelenített 

tulajdonságok a következők (kívülről befelé haladva): gének az 5’-3’ szálon, gének a 3’-5’ szálon (COG 

kategóriák szerint színezve); GC-tartalom; GC-arány aszimmetria. (A COG kategóriák betűkódjainak 

feloldásai a 13. táblázatban találhatóak.) 
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Tulajdonság Érték Az összes százalékában 

Méret (bp) 86 856 - 

Kódoló DNS szakasz hossza (bp) 75 837 87,3 

GC-tartalom (bp) 58 265 67,1 

Kontigok száma 1 100,0 

Összes gén 90 100,0 

Fehérjekódoló gének 90 100,0 

RNS gének 0 0,0 

Pszeudogének 1 1,1 

Gének funkció megjelöléssel 65 72,2 

COG kategóriába sorolható gének 63 70,0 

 

12. táblázat A pT29A jelű plazmid nukleotid szekvenciájának fontosabb statisztikai adatai. 

 

A Methylibium sp. T29-B draft genomszekvenciája 4 430 398 bp méretű, melyet 409 

kontigba tudtunk összeépíteni, GC-tartalma 68,8%, összesen 4750 gént tartalmaz, melyből 

4696 a fehérjekódoló szekvenciák száma. A pT29B plazmid 76 724 bp méretű, GC 

tartalma 67,7% és 82 fehérjekódoló gént tartalmaz, köztük a pT29A-hoz hasonlóan a 

kobalamin szintézis és a higany elleni rezisztencia számos elemét, valamint több 

transzpozáz génjét is. Noha a T29-B genomszekvenciájában megtaláltuk valamennyi, a 

T29-ben is azonosított higany elleni rezisztenciáért felelős fehérje génjét, a kísérleti 

eredmények (5.7 fejezet) alapján a T29-B nem rezisztens a higannyal szemben a T29 által 

még tolerált koncentrációban (12,5 mg/l HgCl2). Valószínű, hogy valamely hipotetikus 

fehérjeként azonosított, de a higany elleni rezisztenciában szerepet játszó géntermék 

hiánya vagy mutációja áll a megváltozott fenotípus hátterében. 

Azért, hogy megállapíthassuk, hogy a Methylibium sp. T29-B MTBE-bontó 

képességének kiesésében mely gén(ek) hiánya állhat, a vad típusú törzs de novo 

genomszekvenálásából származó readekből a MIRA v. 4.0.2 szoftver (http://mira-

assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html) mirabait nevű modulja 

segítségével kiszűrtük a T29-B de novo genomszekvenálásából nyert readeket. Az így 

visszamaradt T29-specifikus readeket a GS De Novo Assembler 2.9 program segítségével 

összerendeztük, majd az így előállt 29 kontigot (52 710 bp) Prokka 1.8 szoftverrel 

annotáltuk. Összesen 84 gént kaptunk, melyek közül 72 a kromoszómán, 12 a pT29A 

plazmidon lokalizálódik. Ezen T29-specifikus gének legnagyobb része, mind a 

kromoszómán, mind pedig a plazmidon találhatóak között, azonosított funkció nélküli 

hipotetikus fehérjét kódol (60, illetve 8). A fennmaradó gének által kódolt fehérjék 

http://mira-assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html
http://mira-assembler.sourceforge.net/docs/DefinitiveGuideToMIRA.html
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mindkét replikon esetében változatos szabályozó és metabolikus funkciókat látnak el (pl.: 

transzkripciós regulátor, endonukleáz, multidrog rezisztencia fehérje, metiltranszferáz, 

stb.). Előzetes transzkriptomikai vizsgálataink során a hiányzó gének között mindeddig 

még nem sikerült azonosítani azt/azokat, amely(ek) a funkcióvesztés hátterében 

állhat(nak), így a felelős gén(ek) megállapításához további vizsgálatok szükségesek. 

Ugyanakkor azonban, meglepő módon, az MTBE biodegradációjában részt vevő, a T29-

ben azonosított valamennyi gén (14. táblázat) megtalálható a T29-B-ben is. 

 

Kód 
Gének 

száma 

Százalékos 

arány 
Leírás 

J 0 0,0 Transzláció, riboszóma-szerkezet és -biogenezis 

A 0 0,0 RNS érés és módosítás 

K 8 8,9 Transzkripció 

L 10 11,1 Replikáció, rekombináció és repair 

B 4 0,1 Kromatin szerkezet és dinamika 

Y 0 0,0 Sejtmagi struktúrák 

D 1 1,1 Sejtciklus szabályozás, sejtosztódás, kromoszóma szegregáció 

V 0 0,0 Védekező mechanizmusok 

T 7 7,8 Szignál-transzdukciós mechanizmusok 

Z 0 0,0 Citoszkeleton 

W 0 0,0 Extracelluláris struktúrák 

M 0 0,0 Sejtfal és sejtmembrán biogenezis 

N 0 0,0 Sejt motilitás 

U 0 0,0 Sejten belüli anyagtranszport és szekréció 

O 0 0,0 Poszt-transzlációs módosítás, fehérje turnover, chaperonok 

C 3 3,3 Energiatermelés és -konverzió 

G 0 0,0 Szénhidrát transzport és metabolizmus 

E 1 1,1 Aminosav transzport és metabolizmus 

F 0 0,0 Nukleotid transzport és metabolizmus 

H 19 21,1 Koenzim transzport és metabolizmus 

I 0 0,0 Lipid transzport és metabolizmus 

P 5 5,6 Szervetlen ion transzport és metabolizmus 

Q 0 0,0 Szekunder metabolitok bioszintézise, transzportja és katabolizmusa 

R 4 4,4 Csak általános funkció megjelölés 

S 10 11,1 Ismeretlen funkció 

- 22 24,4 Nem szerepel COG kategóriában 

 

13. táblázat A Methylibium sp. T29 pT29A jelű plazmidjának nukleotid szekvenciájában azonosított fehérjék 

COG (Clusters of Orthologous Groups) kategóriák szerinti megoszlása. 
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Így azt feltételezzük, hogy vagy a szubsztrát érzékelésében és felvételében szerepet játszó, 

vagy pedig az mdpA gén transzkripciós szabályozásában közreműködő gén(ek) tűnt(ek) el 

vagy vált(ak) inaktívvá. 

 

Gén funkció 

Génazonosító a 

Methylibium 

petroleiphilum 

PM1-ben 

Génazonosító a 

Methylibium sp. 

T29-ben 

Azonosság 

nukleinsav  

szinten (%) 

Azonosság 

aminosav  

szinten (%) 

MTBE monooxigenáz Mpe_B0606 X551_03232 79 84 

rubredoxin Mpe_B0602 X551_03234 nincs szignifikáns 

hasonlóság 

43 

rubredoxin reduktáz Mpe_B0597 X551_01331 nincs szignifikáns 

hasonlóság 

29 

ATP-függő 

transzkripciós 

regulátor 

Mpe_B0601 X551_04638 74 85 

hidroximetil-terc-

butil-éter 

dehidrogenáz 

Mpe_B0558 X551_02800 86 91 

terc-butil-formiát 

karboxilészteráz 

Mpe_A2443 X551_01122 99 99 

terc-butil alkohol 

hidroxiláz 

Mpe_B0555 X551_02402 79 81 

Fe-S oxidoreduktáz Mpe_B0554 X551_02401 82 82 

2-metil-2-hidroxi-1-

propanol 

dehidrogenáz 

Mpe_B0561 X551_02804 83 85 

hidroxiizobutiraldehid 

dehidrogenáz 

Mpe_A0361 X551_03863 részleges 

homológia 

36 

2-hidroxiizobutiril-

KoA ligáz 

Mpe_B0539 X551_02557 85 94 

2-hidroxiizobutiril-

KoA mutáz 

Mpe_B0541 X551_02559 89 92 

2-hidroxiizobutiril-

KoA mutáz C-

terminális domain 

Mpe_B0538 X551_02556 86 91 

3-hidroxibutiril-KoA 

dehidrogenáz 

Mpe_B0547 X551_02564 79 84 

acetil-KoA 

acetiltranszferáz 

Mpe_A3367 X551_00431 részleges 

homológia 

45 

 

14. táblázat Az MTBE lebontási útvonalában részt vevő gének a Methylibium petroleiphilum PM1-ben és a 

Methylibium sp. T29-ben. 
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A Methylibium sp. T29 és T29-B draft genomszekvenciája megtalálható a 

DDBJ/EMBL/GenBank adatbázisokban AZND00000000, illetve AZSN00000000 

azonosító szám alatt. A pT29A és pT29B plazmidok teljes szekvenciája szintén elérhető a 

GenBank adatbázisban NC_024957, illetve NC_024958 azonosító alatt. 

 

5.12 A Methylibium sp. T29 transzformációs hatékonyságának 

összehasonlítása a Methylibium petroleiphilum PM1-ével 

kétféle protokoll szerint 

 

A későbbi funkcionális genetikai kísérletek megfelelő hatékonyságának biztosítása 

céljából elvégeztük a T29 számára leginkább alkalmas transzformálási protokoll 

kiválasztását és optimalizálását, melyet összekapcsoltunk a két törzs (T29 és PM1) 

transzformálhatóságának összehasonlításával. Előkísérleteink során több eljárást 

teszteltünk elektrokompetens T29 sejtek előállítására, melyek közül végül a ”300 mM 

szacharóz” módszer [160] bizonyult a leghatékonyabbnak, a 4.15 fejezetben bemutatott 

protokoll szerint végrehajtva. Kontroll eljárásként az irodalomban a PM1 

transzformálására leírt ”10% glicerin” módszert [136] használtuk, melyet azonban néhány 

pontban módosítottunk, a 4.15 fejezetben foglaltak szerint. 

A kísérletsorozat eredményei (17. ábra) azt mutatják, hogy a T29 mindkét 

módszerrel lényegesen hatékonyabban transzformálható, mint a PM1. Az irodalomban 

korábban leírt, a PM1 transzformálására alkalmazott eljárással (”10% glicerin”) közel 70-

szer nagyobb transzformációs hatékonyságot kaptunk a T29 esetében, mint a PM1-nél. A 

”300 mM szacharóz” protokoll alkalmazása nyomán, melyet eredetileg Pseudomonas 

aeruginosa törzsek transzformálására írtak le, mindkét törzs esetében két nagyságrendbeli 

növekedés volt megfigyelhető a transzformációs hatékonyságban a ”10% glicerin” 

módszerhez képest, továbbá a T29 ezzel a módszerrel is csaknem 30-szor nagyobb 

transzformációs hatékonyságot produkált a PM1-hez képest. Az elért maximális 

transzformációs hatékonyság értékek a PM1 és a T29 esetében 2,22×10
5
, illetve 5,95×10

6 

CFU/µg DNS voltak. 

Mivel az irodalomban nem állnak rendelkezésre transzformációs hatékonyság adatok 

a PM1-re vonatkozóan a ”10% glicerin” módszert illetően, így nincs összehasonlítási 

alapunk, amelyhez eredményeinket viszonyítani tudnánk. Pseudomonas aeruginosa 
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törzsek transzformálása során a ”300 mM szacharóz” protokoll alkalmazásával 10
7
 és 10

11 

közötti transzformáns számot kaptak a vizsgált replikatív plazmidok esetében. A mi 

értékeink a T29 esetében ennek az intervallumnak az alsó határát közelítik meg, de további 

optimalizálással a Methylibium izolátumoknál is minden bizonnyal tovább lehet majd 

növelni a transzformációs hatékonyságot. 

 

 

 

17. ábra A Methylibium sp. T29 és a Methylibium petroleiphilum PM1 maximális transzformációs 

hatékonyságának összehasonlítása kétféle protokoll alapján, az 1 µg plazmid DNS-re (pBBR1MCS-2) 

vonatkoztatott transzformáns értékek bemutatásán keresztül. 

 

Mindazonáltal egyértelműen elmondhatjuk, hogy sikerült adaptálnunk egy eredetileg 

Pseudomonas izolátumokra leírt transzformációs módszert a Methylibium törzsekre, amely 

több nagyságrendbeli növekedést eredményezett a transzformánsok számában, továbbá 

lényegesen időhatékonyabbnak is bizonyult, mint a szakirodalomban eddig leírt módszer. 

A T29 nagyobb transzformációs hatékonyságát a jövőben metagenomikai screen 

vizsgálatok (pl.: környezeti mintákból izolált metagenom könyvtárak transzformálása) 

során kívánjuk majd kamatoztatni. 
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5.13 A Methylibium sp. T29 mdpA knockout mutáns vonalainak 

növekedési tulajdonságai 

 

A pSm18-mdpA529 és a pSm18-mdpA784 jelű konstrukciókkal történő 

transzformálás eredményeképpen két mutáns vonalat sikerült létrehozni a vad típusú 

Methylibium sp. T29-ből. Az mdpA_KO529 és az mdpA_KO784 jelölésű vonalak esetében 

teszt PCR reakciókkal és ellenőrző Sanger-szekvenálással is megbizonyosodtunk arról, 

hogy a sztreptomicin rezisztenciáért felelős kazetta homológ rekombináció révén a kívánt 

helyre, vagyis az mdpA génbe integrálódott, biztosítva ezáltal, hogy arról elméletileg 

funkcióképes géntermék nem keletkezhet. Ugyanakkor sikerült izolálnunk egy olyan 

sztreptomicin rezisztens mutánst is, amelyben intakt mdpA gént tudtunk kimutatni. Ezt az 

illegitim rekombinánst Methylibium sp. T29-Sm-nek neveztük el. Ez utóbbi vonalat a 

szubsztráthasznosítási kísérletek során kontrollként használtuk fel annak megállapítására, 

hogy a sztreptomicin rezisztencia kifejeződése önmagában mennyivel veti vissza a törzs 

növekedési képességét és sebességét MTBE-n a vad típushoz képest. 

A növekedési tesztek nem várt eredményekkel is szolgáltak az mdpA génnek az 

üzemanyag-oxigenátok bontásában betöltött szerepét illetően. A kísérletek eredményei 

ugyanis azt mutatták, hogy az mdpA KO-k esetében nemcsak az MTBE-bontási képesség 

veszett el, de ezzel egyidejűleg a TAME-n és a TBA-n, mint egyedüli szén- és 

energiaforrásokon történő növekedésre való képesség is. A GC-MS analitikai adatok 

alapján ugyanis, mind az MTBE, mind pedig a TAME és a TBA esetében is az abiotikus 

kontrollok esetében visszamért koncentrációkkal (~159 mg/l) lényegében megegyező 

értékeket kaptunk a KO vonalaknál (~155 mg/l), míg a vad típusú T29 és az illegitim 

rekombináns T29-Sm is teljesen elfogyasztotta a 200 mg/l koncentrációban adagolt 

szubsztrátokat a kísérlet végére. 

Azt már korábban a PM1-nél is leírták, hogy az MdpA fehérje bizonyos 

körülmények között részt vesz a TBA-bontás szabályozásában, de közvetlenül nem felelős 

érte [132]. Ezt alátámasztották az enzim inhibíciós kísérletek is, melyek szerint az MTBE 

és a TBA bontásáért minden valószínűség szerint két különböző monooxigenáz felelős a 

PM1-ben [132]. Később az Aquincola tertiaricarbonis L108-ban azonosítottak egy ftalát 

dioxigenázzal rokon fehérjét és oxidoreduktáz alegységét, amelyek TBA-n történő 

növekedés során erősen indukálódtak [123]. A két fehérje kódoló génjeivel csaknem 



88 

 

azonos szekvenciákat megtalálták a PM1-ben is (mdpJ/mdpK), melyekről ez alapján 

feltételezik, hogy a PM1-ben felelősek a TBA bontásáért. 

A kísérleti eredményeink alapján a leglényegesebb különbség a T29 és a PM1 mdpA 

mutáns vonalai között, hogy míg a T29 esetében az mdpA gén kiütése az MTBE- és a 

TBA-bontó képesség egyidejű elvesztését jelentette, addig a PM1-ből létrehozott mdpA 

mutáns vonal MTBE-n ugyan szintén nem nőtt, viszont TBA-n továbbra is képes volt 

szaporodni [132]. Mindez pedig a PM1-étől lényegesen eltérő génszintű szabályozás 

meglétét valószínűsíti a Methylibium sp. T29-ben. Míg korábban a PM1-nél nem 

vizsgálták az mdpA gén részvételét a TAME metabolizmusában, addig a mi eredményeink 

igazolták, hogy az mdpA-nak valamennyi üzemanyag-oxigenát biodegradációjában szerepe 

van a T29-ben. Minden valószínűség szerint az MTBE és a TAME lebontása során a kezdő 

oxidációs lépést katalizálja, míg a TBA esetében a PM1-nél leírt szabályozó funkcióhoz 

hasonló feladatot lát el. Az a megfigyelés, miszerint 2-HIBA-n valamennyi törzs felnőtt, 

arra utal, hogy az mdpA génnek és termékének csak a vizsgált üzemanyag-adalékok 

lebontási útvonalának kezdő lépéseiben van szerepe. 

A T29-re jellemző fenotípus visszaállítását célzó komplementációs kísérleteink nem 

jártak sikerrel. A vad típusú törzs intakt mdpA génjét és annak valószínű promóterét 

tartalmazó fragmentet pBBR1MCS2 vektorba klónoztuk, majd betranszformáltuk a mutáns 

vonalba. Ennek hatására azonban nem állt helyre az MTBE-bontó képesség, a 

komplementáló plazmidot hordozó vonalak nem voltak képesek MTBE-n, mint egyedüli 

szén- és energiaforráson, kis kiindulási sejtszámról felnőni. Korábban hasonló 

eredménnyel jártak a PM1-gyel, a miénkhez hasonló elrendezésben végzett azonos célú 

kísérletek is [132].  

Vizsgálataink alapján az mdpA gén molekuláris markerként alkalmas lehet a 

jövőbeni bioremediációs célú terepi kezelések alkalmával a Methylibium sp. T29 nyomon 

követésére. A törzs mdpA génjének amplifikálására tervezett specifikus primerek (MO29: 

5’-CCG CCA GAT CGT CAT CCA CAA AG-3’ és MO30: 5’-TTC AAG CGT CTC AAT 

CGG GCT C-3’) segítségével ugyanis elvégeztük a T29 kimutatását valamennyi 

rendelkezésünkre álló hazai, MTBE-vel szennyezett területről származó talajvízmintából, 

valamint a BAY-BIO törzsgyűjteményében megtalálható, eredetileg Belgiumban, 

Franciaországban, Németországban, valamint az Egyesült Államokban izolált és dúsított 

MTBE-bontó konzorciumokból. A törzs nem volt detektálható egyik külföldi 

konzorciumban sem, továbbá a hazai minták közül is egyedül a Tiszaújváros térségéből 

származóakban volt kimutatható a jelenléte. A kapott eredmények így arra engednek 
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következtetni, hogy jelenlegi ismereteink szerint a Methylibium sp. T29 kizárólag 

Magyarországon, azon belül is csak Tiszaújváros környékén fordul elő, ahol minden 

bizonnyal fontos szerepe lehet az MTBE szennyezések természetes koncentráció-

csökkenésében. 
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6. ÖSSZEFOGLALÁS 

 

A világszerte folyamatosan növekvő üzemanyagigényekkel egyidejűleg emelkedik 

az éter típusú üzemanyag-adalékok iránti kereslet is, hiszen ezek a vegyületek az 

oktánszám növelésén túlmenően nagyban hozzájárulnak az üzemanyagok tökéletesebb 

égéséhez is, ami által lényegesen csökken a közlekedésből származó káros légköri 

kibocsátások mennyisége. Azonban elsősorban kémiai szerkezetükből adódóan az 

üzemanyag-éterek a környezetbe kikerülve sokkal jobban ellenállnak a különböző 

természetes fizikai-kémiai és biológiai lebontó folyamatoknak, mint az üzemanyagok 

egyéb komponensei, így kiváló vízoldhatóságuknak köszönhetően nagy kiterjedésű és 

tartós vízszennyezéseket okozhatnak. Noha ökotoxikológiai és humán egészségügyi 

szempontból végzett vizsgálataik ellentmondásos eredményekkel szolgáltak, 

legelterjedtebben és legnagyobb mennyiségben alkalmazott képviselőjüket, az MTBE-t, a 

potenciális humán karcinogén vegyületek közé sorolták. Az utóbbi időben hazánkban is 

egyre több MTBE-vel szennyezett terület vált ismertté, melyek kármentesítése a 

közeljövőben esedékessé válhat. Ehhez költséghatékonysági szempontból a legjobb 

választás a bioaugmentáció lehet, melyhez azonban szükség van egy, a célvegyületet 

hatékonyan bontó, mikrobiológiailag jól jellemzett baktériumtörzsre, amelynek terepi 

nyomon követése is megoldott. Ennek megfelelően munkánk során célunk az volt, hogy 

MTBE bontására képes egyedi törzset izoláljunk és elvégezzük annak legfontosabb 

mikrobiológiai és molekuláris biológiai vizsgálatát, megalapozva ezáltal az izolátum 

jövőbeli terepi alkalmazását. 

Munkánk során először Magyarország területéről származó, jellemzően üzemanyag 

eredetű szennyezésekkel terhelt talajvízminták felhasználásával MTBE-n, mint egyedüli 

szén- és energiaforráson történő dúsítással bontóképes konzorciumok izolálását végeztük 

el. Összesen öt, hatékony MTBE-bontásra képes konzorciumot izoláltunk, melyek közül a 

két legintenzívebb növekedésre képes dúsítás mikrobiális összetételét piroszekvenálással 

meghatároztuk. A rendelkezésre álló korlátozott számú irodalmi adattal összevetve 

nagymértékben hasonló eredményeket kaptunk, hiszen a domináns törzs (phylum) mindkét 

rendszerünkben a Proteobacteria volt. A meghatározó nemzetségek közül kiemelkedő volt 

a Methylibium részaránya mindkét dúsításban. 

A konzorciumokból hat egyedi, MTBE-bontásra képes törzset sikerült izolálnunk, 

melyek mindegyike a 16S rDNS szekvencia homológia vizsgálatok alapján a legközelebbi 
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rokonságot a Methylibium petroleiphilum PM1-gyel mutatta. Az izolátumokat a PM1-gyel 

való rokonság mértéke, az MTBE-bontás sebessége és a forrásukként szolgáló konzorcium 

alapján két csoportba tudtuk sorolni. Az RL konzorciumból elkülönített M2, M15 és T29 

jelű törzsek 16S rDNS szekvenciája teljesen megegyezett a PM1-ével és MTBE 

degradációs sebességük lényegesen nagyobb volt, mint a 8K konzorciumból izolált M6, 

M28 és M48 jelű törzseké, melyek 16S rDNS szekvenciája egy nukleotid eltérést mutatott 

a PM1-éhez képest. Elvégeztük az üzemanyag-oxigenátok bontása során ezidáig 

azonosított gének PCR-alapú kimutatási tesztjét valamennyi konzorciumban, illetve a két 

izolátum-csoport 1-1 tagján. A vizsgálatba bevont gének közül egyet sem tudtunk 

kimutatni sem az RL konzorciumból, sem pedig a T29 jelű izolátumból. Ezért, valamint az 

előzetes analitikai vizsgálatok eredményei alapján a T29-et választottuk ki további 

részletes vizsgálatokra. 

Az elektronmikroszkópos felvételek tanúsága szerint a törzs sejtjei coccobacillus 

morfológiát mutatnak, egy részük polárisan egy flagellumot visel. A sejtek Gram-

negatívan festődnek, ½ × TSA táptalajon krémszínű, MSA+MTBE táptalajon pedig 

fakósárga telepeket képeznek. A törzset Methylibium sp. T29 néven, NCAIM B.02561 

azonosító alatt a Mezőgazdasági és Ipari Mikroorganizmusok Nemzeti Gyűjteményében is 

elhelyeztük. 

Részletesen megvizsgáltuk a törzs által hasznosítható szubsztrátok spektrumát, 

melynek során megállapítottuk, hogy a T29 az üzemanyag-oxigenátok közül egyedüli 

szén- és energiaforrásként az MTBE-n és a TBA-n kívül a TAME-t is hasznosítani tudja, 

csakúgy, mint a PM1, és a PM1-hez hasonlóan ETBE-n és DIPE-n nem képes szaporodni. 

Több lényeges metabolikus tulajdonságban azonban eltért a PM1-től, így nem volt képes 

n-alkánokon, fenolon, formaldehiden és tejsavon nőni, továbbá a BTEX komponensek 

közül egyedül a benzolt tudta hasznosítani a növekedéséhez. Az antibiotikum rezisztencia 

vizsgálatok további eltéréseket tártak föl a két törzs között, hiszen míg a PM1 valamennyi 

vizsgált antibiotikumra szenzitív volt, addig a T29 ampicillin és tetraciklin jelenlétében is 

tudott növekedni. Higany jelenlétében szintén eltérés volt megfigyelhető a két törzs 

növekedésében, hiszen míg a T29 12,5 mg/l HgCl2 mellett még szaporodott, addig a PM1 

csak a Hg
2+

-t nem tartalmazó kontroll rendszerekben tudott nőni. 

A T29 és a PM1 MTBE-bontási sebességének összehasonlításakor a nulladrendű 

sebességi állandók meghatározásán keresztül megállapítottuk, hogy a két törzs a vizsgált 

körülmények között gyakorlatilag azonos sebességű MTBE-bontásra képes. Ugyanakkor a 

PM1 esetében a kísérlet során kismértékű, átmeneti TBA akkumuláció volt megfigyelhető, 
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ami arra utalhat, hogy a PM1-ben a TBA oxidációja lassabban megy végbe, mint a T29-

ben. Az MTBE lebontási útvonalában szereplő intermedierek vizsgálata során két 

vegyületet sikerült GC-MS analitikával azonosítanunk: TBA-t és acetont. Az aceton 

kimutatása jelentős eredmény, hiszen eddig korábban csak a Mycobacterium 

austroafricanum IFP2012 esetében igazolták a jelenlétét. Ez alapján feltételezzük, hogy a 

T29-ben az MTBE lebontása során a 2-HIBA központi intermedierből egy dekarboxiláz 

enzim 2-propanolt állít elő, melyet egy alkohol dehidrogenáz enzim alakít acetonná. Az 

aceton hidroxiacetonon keresztül piruváttá oxidálódik, mely a központi anyagcsere 

folyamatokba belépve hasznosul. 

Elvégeztük a Methylibium sp. T29 és M28, valamint a PM1 genomjainak 

összehasonlítását négy különböző restrikciós enzimmel történő emésztést követő PFGE 

vizsgálattal. A három törzs esetében kapott restrikciós mintázatok nagyfokú eltéréseket 

tártak föl DNS szinten, mely alapján bizonyságot nyert, hogy noha a három izolátum 

nagyon közeli rokonságban van egymással (≥99% azonosság a 16S rDNS 

szekvenciákban), a teljes genomok szintjén mégis jelentős eltérések vannak közöttük, ami 

magyarázza a korábbi PCR-alapú detektálások sikertelenségét a T29 esetében. 

A Methylibium sp. T29 NA és NB tápközegeken történő hosszabb idejű fenntartása 

során sikerült izolálnunk egy spontán funkcióvesztéses mutáns vonalat, melyet T29-B-nek 

neveztünk el. A T29-B nem volt képes sem MTBE-n, sem pedig TAME-n növekedni, 

TBA-n azonban továbbra is jól nőtt. Ezenfelül rezisztens volt ampicillinre és tetraciklinre 

is, viszont higany jelenlétében nem tudott nőni. A PM1 mellől is elkülönítettünk egy 

mutáns vonalat (PM1-B), mely nem nőtt MTBE-n, TBA-n és TAME-n sem, továbbá nem 

volt rezisztens ampicillinre, tetraciklinre és higanyra sem. 

S1-PFGE analízis segítségével megvizsgáltuk, hogy a vad típusú, illetve a 

funkcióvesztéses mutáns Methylibium izolátumok hordoznak-e plazmidokat, melyek 

jelenléte vagy hiánya esetlegesen magyarázhatja a megfigyelt fenotípus változásokat. A 

T29 és a T29-B esetében sikerült egy-egy hasonló méretű, 50-90 kb tartományba eső 

plazmid jelenlétét kimutatnunk. Az M28 és a PM1-B esetében nem kaptunk plazmidra 

utaló jelet, viszont a PM1 esetében elsőként sikerült kísérletes bizonyítékot szolgáltatnunk 

a 600 kb-os megaplazmid jelenlétére. Ezáltal igazoltuk, hogy a T29 nem hordozza a PM1-

re jellemző megaplazmidot, így feltételeztük, hogy a két törzs genomszerveződése 

jelentősen eltér. Az eddigiekben részletezett különbségek hatására úgy döntöttünk, hogy 

mind a T29, mind pedig a T29-B teljes genomját, valamint mindkét törzs plazmidját 

(pT29A, ill. pT29B) de novo megszekvenáljuk. 



93 

 

A Methylibium sp. T29 draft genomja 4 449 424 bp méretű, GC tartalma 68,7%, 

4806 gént tartalmaz. A szoftveres összehasonlítások alapján a T29 draft 

genomszekvenciája átlagosan 97%-os azonosságot mutat a PM1 kromoszómájával, illetve 

85%-ot a PM1 megaplazmidjának egy kis részletével. A leglényegesebb eltérés, hogy a 

pPM1 megaplazmid legnagyobb része hiányzik a T29-ből, a meglévő homológ 

szekvenciák pedig a kromoszómán találhatóak. A pT29A jelű plazmid mérete 86 856 bp, 

90 fehérjekódoló gént hordoz, GC-tartalma 67,1%. A plazmidon az előzetes 

várakozásokkal ellentétben sem antibiotikumok elleni rezisztenciáért felelős, sem pedig az 

MTBE bontásában közvetlenül szerepet játszó géneket nem találtunk. Mindössze egy 

kobalamin szintézis operont azonosítottunk rajta, amelynek a 2-HIBA továbbalakítása 

során lehet szerepe, ezenfelül a higany elleni rezisztencia számos eleme is itt lokalizálódik. 

Szekvencia homológiák alapján, a PM1 genomját használva referenciaként, valamennyi, a 

PM1-ben azonosított, MTBE-bontásban szerepet játszó gént sikerült megtalálnunk a T29 

genomszekvenciájában. Ellentétben azonban a két törzs genomjainak nagy része között 

fennálló nagymértékű általános hasonlósággal, az MTBE metabolizmusában szereplő 

gének lényegesen kisebb szekvencia konzerváltságot és teljesen eltérő lokalizációt 

mutattak, ami arra utalhat, hogy ezek a gének vélhetően valamilyen mozgó genetikai 

elemen helyezkednek el, mely a PM1 esetében a megaplazmidon, míg a T29-ben a 

kromoszómán található. Számos egyedi szekvenciát azonosítottunk a T29 genomjában, 

melyek a PM1-ből teljesen hiányoznak, így például több antibiotikum és nehézfém elleni 

rezisztenciát biztosító gént. A Methylibium sp. T29-B draft genomszekvenciája 4 430 398 

bp méretű, GC-tartalma 68,8%, összesen 4750 gént tartalmaz, a pT29B plazmid pedig 

76 724 bp méretű, GC-tartalma 67,7% és 82 fehérjekódoló gént hordoz. A T29 és a T29-B 

draft genomszekvenciáinak összehasonlító vizsgálata alapján 84 gén hiányzik a T29-B 

genomjából, közülük azonban előzetes transzkriptomikai vizsgálataink során még nem 

sikerült azonosítanunk az MTBE-bontási képesség elvesztésének hátterében álló gén(eke)t, 

így a felelős szekvenciák megtalálásához még további vizsgálatok szükségesek. 

A funkcionális genetikai kísérletek megkezdése előtt megvizsgáltuk és 

összehasonlítottuk a T29 és a PM1 transzformálhatóságát kétféle elektroporációs protokoll 

szerint. Az eredmények alapján a T29 mindkét vizsgált módszerrel hatékonyabban 

transzformálható, mint a PM1, továbbá az általunk Methylibium törzsekre adaptált, 

eredetileg Pseudomonas fajokra leírt eljárás hatékonyabbnak bizonyult mindkét törzs 

esetében, mint az irodalomban a PM1 transzformálásához korábban publikált metódus. 
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Az mdpA gén funkcionális vizsgálata során a vad típusú T29-ből két mdpA knockout 

mutáns vonalat hoztunk létre. A szubsztráthasznosítási kísérletek eredményei alapján ezek 

az mdpA
- 
T29 törzsek nemcsak MTBE-bontó képességüket veszítették el, hanem TBA-n és 

TAME-n sem voltak képesek növekedni. Így igazoltuk, hogy a Methylibium sp. T29-ben 

az mdpA génnek a törzs által hasznosítható valamennyi üzemanyag-oxigenát 

biodegradációjában fontos szerepe van. Minthogy a PM1-ből létrehozott mdpA KO mutáns 

továbbra is képes volt TBA-n növekedni, így valószínű, hogy a két törzsben az mdpA gén 

működése és szabályozása eltérő módon alakul. A mutáns fenotípus helyreállítását célzó 

komplementációs kísérleteink nem jártak sikerrel, ahogy korábban a PM1 esetében sem 

tudták az MTBE-bontó képességet a miénkhez hasonló elrendezésben revertálni. 

Az T29 mdpA génjére tervezett primerek segítségével elvégeztük a törzs kimutatási 

próbáját a rendelkezésre álló hazai, MTBE-vel szennyezett talajvízmintákból, illetve több 

külföldi MTBE-bontó konzorciumból. A T29 nem volt kimutatható egyik külföldi 

dúsításból sem, továbbá a hazai minták közül is egyedül csak a Tiszaújváros környékéről 

származóakban volt igazolható a jelenléte.  

Eredményeinket összefoglalva elmondhatjuk, hogy a Methylibium sp. T29 egy 

Magyarországon izolált, jelenlegi ismereteink szerint kizárólag hazánkban előforduló, 

kiváló MTBE- és TBA-bontó képességgel rendelkező izolátum, melynek mdpA génje 

molekuláris markerként alkalmas a törzs kimutatására környezeti mintákból is. A 

közelmúltban a törzs egy terepi teszt során, MTBE-tartalmú üzemanyagokkal súlyosan 

szennyezett talajvíz zóna bioremediációs kezelésénél már biztató eredményekkel szolgált, 

így a jövőben mindenképpen ideális választás lehet a hazai, MTBE-vel szennyezett 

területek bioaugmentációs kármentesítéséhez. 
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7. SUMMARY 

 

The need for fuel additive ethers grows simultaneously with the continuous growth 

in demand for fuels worldwide. These compounds, beyond increasing octane ratings, 

significantly contribute to the more complete combustion of gasoline, hereby they 

considerably help to reduce the amount of harmful emissions from traffic. However, 

particularly due to their chemical structure, fuel ethers are much more recalcitrant to 

natural physicochemical and biological degradation processes than other components of 

gasoline. Hence, because of their excellent water solubility they can cause extensive and 

persistent pollutions in aquatic environments. Though investigations concerning 

ecotoxicological and human health issues provided contradictory results, their most 

widespread representative - MTBE - was classified as a potential human carcinogen. In 

Hungary, the number of sites contaminated with MTBE has been growing in recent years 

and their remediation may start in the near future. For this purpose, bioaugmentation can 

be the ideal alternative in terms of cost efficiency, but it requires a microbiologically well-

characterized and traceable bacterial strain capable of the efficient degrading of the target 

compound. Accordingly, we aimed to isolate an individual MTBE-degrading strain and 

carry out the essential microbiological and molecular biological studies necessary to 

establish its prospective field application. 

Firstly, using Hungarian groundwater samples mainly contaminated with gasoline, 

we performed the isolation of MTBE-degrading consortia by enrichment on MTBE as the 

sole source of carbon and energy. We succeeded to isolate five consortia being able to 

effectively degrade MTBE and other fuel oxygenates. The most efficient growers, RL and 

SC, were analyzed using pyrosequencing to assess their microbial diversity. The 

predominant phylum in both of our enrichments was Proteobacteria, which finding is in 

great accordance with the limited number of available data in the literature. Among the 

prevalent genera, Methylibium had significant proportions both in RL and in SC with 

almost 50% and 30%, respectively. 

From the consortia we isolated six individual MTBE-degrading strains and the 16S 

rDNA sequence homology analyses indicated that their closest relative is Methylibium 

petroleiphilum PM1. The isolates could be divided into two groups based on the degree of 

relatedness to PM1, the rate of MTBE degradation and the consortium they were isolated 

from. The 16S rDNA sequence of strains M2, M15 and T29 isolated from RL was identical 
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to PM1’s and their MTBE degradation rate was substantially higher than that of strains 

M6, M28 and M48, which had a single nucleotide substitution in the 16S rDNA sequence 

compared to PM1’s and they were originated from 8K. We carried out the PCR-based 

detection of the genes identified in the degradation of fuel oxygenates so far on all 

consortia and on one representative of both isolate groups. None of the examined genes 

could be detected either in the RL consortium or in isolate T29. Based on this result and 

preliminary analytical data, strain T29 was chosen for further detailed investigation. 

According to electron micrographs, the cells of T29 show coccobacillus morphology 

and a fraction of them possesses a single polar flagellum. Cells stained Gram-negative and 

formed cream colored colonies on ½ × TSA plates and pale yellow ones on MSA+MTBE 

plates. The strain was deposited as Methylibium sp. T29 into the National Collection of 

Agricultural and Industrial Microorganisms under the accession number NCAIM B.02561. 

We investigated the spectrum of the metabolizable substrates in detail. Of the fuel 

oxygenates tested, similarly to PM1, T29 could utilize MTBE, TBA and TAME, but not 

ETBE and DIPE as the sole source of carbon and energy. However, T29 differed from 

PM1 in several significant metabolic properties, e.g. it could not grow on n-alkanes, 

phenol, formaldehyde and lactic acid and of the BTEX compounds it could only utilize 

benzene for growth. Antibiotic resistance studies revealed further differences between the 

two strains, since PM1 was sensitive to all tested antibiotics, but T29 could grow in the 

presence of ampicillin and tetracycline, too. There was also a difference in the growth of 

T29 and PM1 in the presence of mercury. T29 could grow at a HgCl2 concentration of 12.5 

mg/l, but PM1 could only propagate in the control systems not containing Hg
2+

. 

By determining the zero-order rate constants, we compared the MTBE degrading 

capabilities of T29 and PM1 and concluded that under the applied conditions the two 

strains had almost identical degradation rates. However, we could observe some transient 

TBA accumulation at PM1 which may suggest that TBA oxidation is somewhat slower in 

PM1 than in T29. In the course of searching for the possible intermediates of the MTBE 

degradation pathway by GC-MS analysis we could identify two compounds: TBA and 

acetone. Detection of acetone is a significant achievement, since, thus far, it was only 

verified from Mycobacterium austroafricanum IFP2012. According to our findings, we 

assume that during MTBE degradation in T29 a decarboxylase enzyme produces 2-

propanol from central metabolite 2-HIBA which is then converted into acetone by an 

alcohol dehydrogenase. Acetone is oxidized to pyruvate via hydroxyacetone which enters 

the central metabolic pathways. 
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We compared the genomes of Methylibium sp. T29, Methylibium sp. M28 and 

Methylibium petroleiphilum PM1 with pulsed field gel electrophoresis after treated with 

four different restriction enzymes. The obtained restriction patterns revealed significant 

differences at the nucleotide level, verifying that despite the very high degree of 

relatedness (≥99% identity in the 16S rDNA sequences) there are major differences among 

the isolates at the genomic level. This observation served as a possible explanation for the 

fail of the earlier PCR-based gene detections in T29. 

During long-term culturing of Methylibium sp. T29 on NA and NB media we 

isolated a spontaneous loss-of-function mutant line, designated as T29-B, which lost its 

ability to grow on MTBE and TAME, but still grew well on TBA. Moreover, it was 

resistant to ampicillin and tetracycline, but could not grow in the presence of Hg
2+

. We 

also separated a mutant PM1 line (PM1-B) which could grow neither on MTBE and 

TAME nor on TBA and was sensitive to ampicillin, tetracycline and mercury. 

We carried out S1-PFGE analyses to detect plasmids in wild-type and loss-of-

function mutant Methylibium strains to ascertain whether the presence or the lack of them 

may explain the observed phenotypic changes. We detected a plasmid both in T29 and in 

T29-B with a similar size of approximately 50-90 kb and designated them as pT29A and 

pT29B, respectively. There was no sign of plasmids in M28 and in PM1-B, but in PM1 we 

provided the first experimental evidence for the presence of the 600 kb megaplasmid. 

Consequently, we proved that T29 does not harbor the PM1-type megaplasmid and thus, 

we supposed that the genetic arrangement of the two strains was substantially different. 

Based on the differences between the Methylibium isolates (T29, T29-B, PM1) discussed 

so far, we decided to sequence de novo both the entire genomes and the plasmids of T29 

and T29-B, too. 

The size of the draft genome sequence of Methylibium sp. T29 is 4,449,424 bp, its 

G+C content is 68.7% and harbors 4,806 predicted genes. Comparison of the two genomes 

revealed that the draft genome sequence of T29 shows an average identity of 97% to the 

PM1 chromosome and 85% to a small part of the pPM1 megaplasmid. The most important 

differences are the absence of the most parts of the PM1-type megaplasmid from T29 and 

the fact that the extant homologous sequences are located on the chromosome. The pT29A 

plasmid was found to be 86,856 bp in size, it carries 90 protein coding genes and has a 

G+C content of 67.1%. Contrary to our previous assumptions, we found neither plasmid-

bound antibiotic resistance genes nor ones directly involved in MTBE degradation. On 

pT29A we could only identify a number of elements of mercury resistance and a 
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cobalamin synthesis operon which may have a role in the transformation of 2-HIBA. Based 

on nucleotide sequence homologies, using the complete genome sequence of PM1 as a 

reference, we could find all the putative genes involved in the MTBE metabolism of T29 

previously described in PM1. However, in contrast to the considerably high similarity of 

the majority of the two genomes, the genes involved in the MTBE metabolism of PM1 and 

T29 show significantly lower sequence conservation and different localization (plasmid 

versus chromosome). By these observations we hypothesize that these genes are located on 

a mobile genetic element which resides on the megaplasmid in PM1 and on the 

chromosome in T29. We identified several unique sequences in the genome of T29, 

missing from PM1’s, coding for resistances to different antibiotics and heavy metals. The 

draft genome sequence of Methylibium sp. T29-B is 4,430,398 bp long, it has a G+C 

content of 68.8% and carries 4,750 genes. pT29B is 76,724 bp in size, it has a G+C content 

of 67.7% and bears 82 protein coding genes. Comparative analysis of the draft genome 

sequences of T29 and T29-B indicated that 84 genes are missing from T29-B. During 

preliminary transcriptomic analyses we could not identify any possible candidate 

sequences responsible for the loss of MTBE degrading ability in T29-B, so finding these 

genes requires further investigations. 

Before starting the functional genetic experiments, we assessed and compared the 

transformation efficiencies of T29 and PM1 using two different electroporation protocols. 

According to our results, T29 can be transformed much more efficiently with both of the 

tested methods than PM1. Furthermore, one of the protocols, originally described for the 

transformation of Pseudomonas spp., was successfully adapted to Methylibium strains and 

proved to be more effective at both strains than the one published for the transformation of 

PM1 before. 

To analyze the function of mdpA gene, we created two mdpA knockout mutant lines 

from wild-type T29. Results of the substrate utilization tests showed that these mdpA
-
 T29 

strains lost the ability to degrade not only MTBE but also TBA and TAME. Consequently, 

we verified that the mdpA gene has an important role in the biodegradation of all fuel 

oxygenates in Methylibium sp. T29. Since, according to literature data, the mdpA KO 

mutant of PM1 was still able to degrade TBA, it is likely that the function and regulation of 

mdpA are considerably different in the two strains. Our efforts to restore the wild-type 

phenotype in T29 during complementation experiments failed just like in PM1 before. 

Using primers designed to amplify the mdpA gene of Methylibium sp. T29, we 

carried out the detection probe of T29 from a series of Hungarian groundwater samples and 
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several MTBE-degrading consortia originating from outside of Hungary. We could not 

detect T29 from any foreign MTBE-degrading enrichment cultures, moreover, of the 

inland environmental samples tested it was only present in the ones from the area of 

Tiszaújváros. 

Summing up, we have isolated a novel bacterial strain, Methylibium sp. T29, and 

performed its essential microbiological and molecular biological characterization. 

According to our current knowledge, T29 is known only from a limited number of 

Hungarian environments and found to have an excellent ability to degrade MTBE and 

TBA. Its mdpA gene as a selective molecular marker is most likely to be suitable for the 

tracking of the strain in the field. In the recent past, during a field trial aiming to remediate 

a groundwater zone severely polluted with MTBE-containing gasoline we obtained 

promising results with T29, so the strain can definitely be an ideal candidate for the 

bioremediation of Hungarian sites contaminated with MTBE. 
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