
1 

 

UNIVERSITY OF SZEGED, FACULTY OF MEDICINE 

DEPARTMENT OF DERMATOLOGY AND ALLERGOLOGY 

DOCTORAL SCHOOL OF CLINICAL MEDICINE 

STUDIES ON THE ROLE OF THE SKIN 

MICROBIOME IN HEALTHY SKIN AND UNDER 

PATHOGENIC CONDITIONS 

Ph.D. thesis 

Gábor Tax 

 

Supervisor: 

 

Kornélia Szabó, Ph.D. 

Szeged 

2015. 



2 

 

 

 



3 

 

Table of Contents 

 

1. Introduction ............................................................................................................................ 9 

1.1 The skin ............................................................................................................................... 9 

1.2 Anatomical structure of the human skin ............................................................................... 9 

1.3 The microbiome of the healthy human skin ....................................................................... 10 

1.4 The role of the microbiome in the pathogenesis of skin diseases ...................................... 11 

1.5 Acne vulgaris ...................................................................................................................... 11 

1.5.1 Acne lesion formation and the types of lesions ............................................................... 11 

1.5.2 The clinical characteristics of acne .................................................................................. 12 

1.5.3 Factors contributing to acne pathogenesis ....................................................................... 13 

1.5.3.1 Hormonal changes and abnormal sebocyte function .................................................... 13 

1.5.3.2 The role of the skin microbiome in the pathogenesis of acne ...................................... 13 

1.5.3.3 Abnormal keratinocyte functions in acne pathogenesis ............................................... 15 

1.5.3.4 Individual genetic factors that modify the risk of acne ................................................ 16 

1.5.3.5 Individual life-style factors in the pathogenesis of acne .............................................. 17 

2. Aims ..................................................................................................................................... 18 

3. Materials and Method .......................................................................................................... 19 

3.1. P. acnes strains and culture conditions .............................................................................. 19 

3.2 Immortalized human keratinocyte culture and treatment ................................................... 19 

3.3 Real-time, label-free analysis of the interaction between HPV-KER cells and P. acnes ... 20 

3.4 Trypan Blue exclusion assay .............................................................................................. 20 

3.5 Fluorescence microscopic analysis of the P. acnes and PA treated HPV-KER cultures ... 20 

3.6 Spectrophotometric hemoglobin and lactate dehydrogenase assays .................................. 21 

3.7 Analysis of the pH changes of P. acnes-treated HPV-KER cultures ................................. 22 

3.8 Mass spectrometry .............................................................................................................. 22 

3.9 Growth curve analysis of the different P. acnes strains ..................................................... 22 

3.10 Study population and ethics of the genetic studies ........................................................... 23 

3.11 Genomic DNA isolation ................................................................................................... 23 

3.12 Restriction fragment length polymorphism (RFLP) analysis ........................................... 24 

3.13 Variable number of tandem repeats (VNTR) polymorphism analysis ............................. 25 



4 

 

3.14 Generation of the TNFA luciferase reporter constructs ................................................... 25 

3.15 Transient transfection of the HPV-KER cells and luciferase reporter assay .................... 26 

3.16 Statistical analysis ............................................................................................................ 27 

4. Results .................................................................................................................................. 28 

4. 1 In vitro monitoring of the interaction of the P. acnes bacterium and the epidermal 

keratinocytes ............................................................................................................................. 28 

4.1.1 Real-time monitoring of the growth properties of HPV-KER cultures ........................... 28 

4.1.2 P. acnes affects the cellular properties of HPV-KER cells in a strain-specific and dose-

dependent manner ..................................................................................................................... 29 

4.1.3 The P. acnes 889 and ATCC 11828 strains affect changes in HPV-KER cell number ... 30 

4.1.4 High-dose treatment of the P. acnes 889 and ATCC 11828 strains induces microscopic 

changes in HPV-KER cells....................................................................................................... 31 

4.1.5 P. acnes-induced cytotoxicity is strain- and dose-dependent .......................................... 32 

4.1.6 P. acnes exhibits a strain-specific hemolytic effect on human erythrocytes ................... 33 

4.1.7 Some P. acnes strains decrease the pH of HPV-KER cell cultures ................................ 33 

4.1.8 P. acnes production of PA may contribute to media acidification and cellular changes in 

the HPV-KER cultures ............................................................................................................. 34 

4.1.9 PA secretion of P. acnes is strain- and dose-dependent .................................................. 35 

4.1.10. Comparison of the growth properties of the different P. acnes strains ........................ 37 

4.1.11 Combined treatment of the P. acnes 6609 strain and PA induces cytotoxicity ............ 37 

4.2 Identification and molecular characterization of inherited factors contributing to acne 

pathogenesis ............................................................................................................................. 38 

4.2.1 Studying the role of different TNFA promoter SNPs in the genetic predisposition to 

acne 39 

4.2.1.1 The -1031T>C, -863C>A and -238G>A TNFA promoter polymorphisms are not 

associated with acne pathogenesis ............................................................................................ 39 

4.2.1.2 The -308G>A TNFA polymorphism may have a role in the acne pathogenesis in 

female patients .......................................................................................................................... 41 

4.2.1.3 The -857C>T TNFA promoter polymorphism has a protective role in the pathogenesis 

of acne....................................................................................................................................... 42 



5 

 

4.2.1.4 Studying the effect of the TNFA -857C>T polymorphism on the promoter activity of 

the TNFA gene by a luciferase reporter assay .......................................................................... 43 

4.2.2 Studying the role of selected polymorphisms of IL-1 family members in the genetic 

predisposition to acne ............................................................................................................... 44 

4.2.2.1 The rare T allele of the IL-1A +4845G>T SNP may be a genetic predisposing factor 45 

4.2.2.2 The IL1RN VNTR polymorphism does not associate with the acne pathogenesis...... 45 

5. Discussion ............................................................................................................................ 47 

6. Conclusion ........................................................................................................................... 53 

7. Acknowledgement ............................................................................................................... 54 

8. References ............................................................................................................................ 55 

9. Supplementary figure ........................................................................................................... 68 



6 

 

Publications related to the subject of the thesis 

I. Tax G, Urbán E, Palotás Z, Puskás R, Kónya Z, Bíró T, Kemény L, Szabó K. Propionic 

Acid Produced by Propionibacterium acnes Strains Contributes to Their 

Pathogenicity. Acta Derm Venereol. 2015 Jun 3. doi: 10.2340/00015555-2154. [Epub 

ahead of print] IF: 3,025 (2014) 

II. Szabó K, Tax G, Teodorescu-Brinzeu D, Koreck A, Kemény L. TNFα gene 

polymorphisms in the pathogenesis of acne vulgaris. Arch Dermatol Res. 2011 

Jan;303(1):19-27. doi: 10.1007/s00403-010-1050-7. Epub 2010 Apr 13. IF: 2.279, 

Citation: 27 (24/3) 

III. Szabó K, Tax G, Kis K, Szegedi K, Teodorescu-Brinzeu DG, Diószegi C, Koreck A, 

Széll M, Kemény L. Interleukin-1A +4845(G> T) polymorphism is a factor 

predisposing to acne vulgaris. Tissue Antigens. 2010 Nov;76(5):411-5. doi: 

10.1111/j.1399-0039.2010.01530.x. Epub 2010 Aug 19. IF: 3.024, Citation: 15 (14/1) 

Other publications 

IV. Törőcsik D, Kovács D, Camera E, Lovászi M, Cseri K, Nagy GG, Molinaro R, Rühl R, 

Tax G, Szabó K, Picardo M, Kemény L, Zouboulis CC, Remenyik É. Leptin promotes a 

proinflammatory lipid profile and induces inflammatory pathways in human SZ95 

sebocytes. Br J Dermatol. 2014 Dec;171(6):1326-35. doi: 10.1111/bjd.13229. Epub 2014 

Nov 20. IF: 4.275 Citation: 1 (1/0) 

V. Fazekas B, Polyánka H, Bebes A, Tax G, Szabó K, Farkas K, Kinyó A, Nagy F, Kemény 

L, Széll M, Ádám É. UVB-dependent changes in the expression of fast-responding 

early genes is modulated by huCOP1 in keratinocytes. J Photochem Photobiol B. 2014 

Nov; 140:215-22. doi: 10.1016/j.jphotobiol.2014.08.002. Epub 2014 Aug 9. IF: 2.960 

VI. Agodi A, Barchitta M, Valenti G, Quattrocchi A, Pettinato M, Tax G, Szabò K, Szell M. 

Role of the TNFA -308G > A polymorphism in the genetic susceptibility to acne 

vulgaris in a Sicilian population. Ann Ig. 2012 Sep-Oct;24(5):351-7. IF: - 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Urb%C3%A1n%20E%5BAuthor%5D&cauthor=true&cauthor_uid=26039371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Palot%C3%A1s%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=26039371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pusk%C3%A1s%20R%5BAuthor%5D&cauthor=true&cauthor_uid=26039371
http://www.ncbi.nlm.nih.gov/pubmed/?term=K%C3%B3nya%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=26039371
http://www.ncbi.nlm.nih.gov/pubmed/?term=B%C3%ADr%C3%B3%20T%5BAuthor%5D&cauthor=true&cauthor_uid=26039371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kem%C3%A9ny%20L%5BAuthor%5D&cauthor=true&cauthor_uid=26039371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szab%C3%B3%20K%5BAuthor%5D&cauthor=true&cauthor_uid=26039371
http://www.ncbi.nlm.nih.gov/pubmed/26039371
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szab%C3%B3%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20386917
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tax%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20386917
http://www.ncbi.nlm.nih.gov/pubmed/?term=Teodorescu-Brinzeu%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20386917
http://www.ncbi.nlm.nih.gov/pubmed/?term=Koreck%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20386917
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kem%C3%A9ny%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20386917
http://www.ncbi.nlm.nih.gov/pubmed/20386917
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szab%C3%B3%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20630038
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tax%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20630038
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kis%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20630038
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szegedi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20630038
http://www.ncbi.nlm.nih.gov/pubmed/?term=Teodorescu-Brinzeu%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=20630038
http://www.ncbi.nlm.nih.gov/pubmed/?term=Di%C3%B3szegi%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20630038
http://www.ncbi.nlm.nih.gov/pubmed/?term=Koreck%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20630038
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sz%C3%A9ll%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20630038
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kem%C3%A9ny%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20630038
http://www.ncbi.nlm.nih.gov/pubmed/20630038
http://www.ncbi.nlm.nih.gov/pubmed/?term=T%C3%B6r%C5%91csik%20D%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kov%C3%A1cs%20D%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Camera%20E%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lov%C3%A1szi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cseri%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nagy%20GG%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Molinaro%20R%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=R%C3%BChl%20R%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tax%20G%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szab%C3%B3%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Picardo%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kem%C3%A9ny%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zouboulis%20CC%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Remenyik%20%C3%89%5BAuthor%5D&cauthor=true&cauthor_uid=24975960
http://www.ncbi.nlm.nih.gov/pubmed/24975960
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fazekas%20B%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Poly%C3%A1nka%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bebes%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tax%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szab%C3%B3%20K%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Farkas%20K%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kiny%C3%B3%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nagy%20F%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kem%C3%A9ny%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kem%C3%A9ny%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sz%C3%A9ll%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=%C3%81d%C3%A1m%20%C3%89%5BAuthor%5D&cauthor=true&cauthor_uid=25169772
http://www.ncbi.nlm.nih.gov/pubmed/25169772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Agodi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23193891
http://www.ncbi.nlm.nih.gov/pubmed/?term=Barchitta%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23193891
http://www.ncbi.nlm.nih.gov/pubmed/?term=Valenti%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23193891
http://www.ncbi.nlm.nih.gov/pubmed/?term=Quattrocchi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23193891
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pettinato%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23193891
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tax%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23193891
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szab%C3%B2%20K%5BAuthor%5D&cauthor=true&cauthor_uid=23193891
http://www.ncbi.nlm.nih.gov/pubmed/?term=Szell%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23193891
http://www.ncbi.nlm.nih.gov/pubmed/23193891


7 

 

Abbreviations 

γ’UTR  3’ untranslated region 

AA  acetic acid 

AB/AM solution  antibiotic/antimycotic solution 

APS antimicrobial peptides 

BA  butyric acid 

BHI  brain heart infusion 

BPE  bovine pituitary extract 

BSA  bovine serum albumin 

CAMP  Christie-Atkins-Munch-Peterson factor 

CD  Crohn’s disease 

cfu  colony forming unit 

Ci/nCi  cell index/normalized cell index 

CMV  cytomegalovirus 

DH5α  Dougles Hanahan 5 alpha 

DMEM-HG  Dulbecco’s Eagle Medium with high glucose 

E. coli  Escherichia coli 

EGF  epidermal growth factor 

gDNA  genomic dezoxyribonucleic acid 

GI glycaemic index 

HgB hemoglobin 

HPV  human papillomavirus 

HPV-KER  immortalized human keratinocyte cell line 

hRluc  Renilla reniformis luciferase gene 

IBD  inflammatory bowel disease 

IL-1A/IL-1α  interleukin-1 alpha gene/protein 

IL-1ra  interleukin-1 receptor antagonist protein 

IL1RN  interleukin-1 receptor antagonist coding gene 

INFȖ  interferon gamma 

IRS  inner root sheath 

KC-SFM  keratinocyte serum free medium 



8 

 

LDH  lactate dehydrogenase 

MHC III  major histocompatibility complex III 

MLST  multilocus sequence typing 

MOI  multiplicity of infection 

MS  mass spectrophotometry 

NF-κB  nuclear factor kappa-light-chain-enhancer of activated B cells 

NHEK  normal human epidermal keratinocyte 

NLS  nuclear localization signal sequence 

OCT-1  octamer transcription factor-1 

OD  optical density 

ORS  outer root sheath 

P. acnes  Propionibacterium acnes 

PA  propionic acid 

PBS  phosphate buffered saline 

PBS-EDTA  phosphate buffered saline with ethylenediaminetetraacetic acid 

PCR  polymerase chain reaction 

PFA  paraformaldehyde 

RFLP  restriction fragment length polymorphism 

RPMI  Roswell Park Medical Institute media 

RT  room temperature 

SCFA  short chain fatty acid 

SEM  standard error of the mean 

SNP  single nucleotide polymorphism 

TGFα  transforming growth factor alpha 

TGFȕ  transforming growth factor beta 

TLR  Toll-like receptor 

TNFA/TNFα  tumor necrosis factor alpha gene/protein 

VNTR  variable number of tandem repeats 



9 

 

1. Introduction 

1.1 The skin 

The skin is the outer layer of our body with a surface area of about 1.8 m
2
 and 

approximately 15 % of body weight in adults. It has a very complex structure composed of 

different cell types and tissues with ectodermal and mesodermal origin. Its major function is 

to provide a barrier between our body and the external environment, and to protect against the 

harmful impact of different physical, chemical and mechanical agents. Apart from that it also 

plays a major role in the regulation of body temperature, heat and cold sensation, or the 

control of evaporation (Jean L Bolognia Dermatology, Kanitakis J. 2002, Grice EA. 2011). 

1.2 Anatomical structure of the human skin 

The epidermis is the outer layer of the 

skin, mainly composed of multiple layers 

of keratinocytes, also containing other 

cell types such as corneocytes, 

melanocytes, Langerhans- and Merkel 

cells. Keratinocytes are continuously 

generated by the division of epidermal 

stem cells located in the lower part of the 

epidermis, called stratum basale. They 

enter a characteristic differentiation 

process, during which they move 

suprabasally through the increasingly differentiated stratum spinosum, granulosum, and 

corneum (Figure 1). Underneath the epidermis locates the dermis, which is the middle layer of 

the skin. It is made up of collagen and elastin producing fibroblast, and provides flexibility 

and also strength for the organ. The deepest skin layer is the subcutaneous layer that is made 

up of fat and connective tissues. It is used mainly for fat storage and acts as padding and 

energy reserve (Bőrgógyászat és venerológia 2013, Kanitakis J. 2002, Braun-Falco, Jean L 

Bolognia Dermatology). 

The skin also contains different skin accessory organs including the pilosebaceous unit 

(PSU), sweat glands, nails, various nerve endings and blood vessels. Among these the PSU 

Figure 1. The anatomical structure of the human skin. 
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Figure 2. The anatomical structure of 

the pilosebaceous unit. 

consists of the hair follicle, the hair shaft, the arrector 

pili muscle and the sebaceous gland (Figure 2).  

The follicle has three major parts, the bulb, the isthmus 

and the infundibulum. The bulb consists of the matrix 

keratinocytes and the fibroblast-containing dermal 

papilla. This region is responsible for the growth of the 

hair shaft and the inner root sheath (IRS). The IRS 

surrounds the hair shaft and the duct of the sebaceous 

gland also fall into this region (Jean L Bolognia 

Dermatology). The sebaceous gland is an exocrine 

gland secreting a waxy substance, called sebum. It is 

produced in a holocrine way by the disintegration of 

glandular cells and composed of different lipids, such as triglycerides, esters of glycerol, 

squalene, wax and cholesterol. After its production sebum is emptied into the follicle and 

subsequently onto the skin surface where it exerts numerous functions, such as 

photoprotection, pro- and anti-inflammatory activity, transportation of several fat-soluble 

antioxidants and exhibiting an antimicrobial effect (Picardo M 2009). 

1.3 The microbiome of the healthy human skin 

 

From our birth we are exposed to a wide range of microorganisms, including bacteria, 

fungi and viruses (Grice EA 2011). Some of them are capable of inhabiting our skin and 

together with the various human cells forming a complex ecosystem. Major constituents of 

this community are the different bacterial species; approximately 1000 species belonging to 

19 phyla has been detected in our skin (Grice EA 2009). They are mostly found in the 

epidermis and within the PSU (Grice EA 2008). The four dominant bacterium phyla and their 

most common representatives that colonize the human skin are the Actinobacteria 

(Propionibacterium and Corynebacterium species), Proteobacteria, Firmicutes 

(Staphylococcus species) and Bacteroidetes. Apart from individual differences of the exact 

composition, regional variations are also exists in every individual because of alterations of 

environmental parameters including pH, temperature, moisture and the fine anatomic 

structure of the skin (Grice EA. 2011, 2014). 

The exact function of the microbiome in the healthy skin and during pathogenic 

conditions is currently not clear (Gallo RL 2011, Littman DR 2011). Recent studies revealed 
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that the normal skin microbiome can protect us from pathogenic or harmful invaders by 

inhibiting their colonization using the available food sources and also by actively producing 

molecules with antimicrobial properties (antimicrobial peptides, APS) (Gallo RL 2011, Iwase 

T 2010). Apart from these functions they may also beneficially modulate our immune system 

(Gallo RL 2011, Lai Y 2009). These results suggest the importance of this complex 

ecosystem in the maintenance of skin homeostasis (Zeeuwen PL 2013). 

1.4 The role of the microbiome in the pathogenesis of skin diseases 

 

Under certain conditions that are currently not well defined, dysbiosis of the microbiome 

may lead to the pathogenesis of skin diseases. This can happen e.g. because of changes in the 

properties of the skin microenvironment, or as a result of local or systematic antibiotic 

treatments. In response to these events commensals, as well as pathogenic species may start 

an extensive growth and lead to the pathogenesis of several infectious and inflammatory 

diseases; including seborrheic dermatitis (Malassezia spp), atopic dermatitis (Staphylococcus 

aureus), post-operative infections (Staphylococcus epidermidis) or acne vulgaris 

(Propionibacterum acnes) (Bojar RA 2004, Grice EA 2011, Gallo RL 2011). 

1.5 Acne vulgaris 

 

Acne is currently described as the most common inflammatory skin disease of the 

pilosebaceous follicles, in which the dysbiosis of the skin microbiome, especially the 

extensive growth of the Propionibacterium acnes (P. acnes) bacterium is one of the important 

contributing factors. (Toyoda M 2001). It is mostly prevalent in puberty and estimated to 

affect more than 80-90% of the general adolescent population (Saitta P 2011). 

1.5.1 Acne lesion formation and the types of lesions 

 

Microscopically acne lesion formation starts with an abnormal keratinization and 

hyperkeratosis in the follicular infundibulum of the PSU. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Toyoda%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11479771


12 

 

 

Figure 3. Pathogenesis of acne vulgaris. (Detailed description is present in the corresponding text.) 

 

These events will lead to the generation of a plug and the formation of non-inflammatory 

open and closed comedones (Figure 3b and c). As a result, the constantly produced sebum 

will be trapped underneath the plug and cannot be emptied from the follicles to the skin 

surface. The increasingly anaerobic environment also supports the growth of the anaerobic 

microbes that resides in the PSU, among them the P. acnes bacterium. The constantly 

increasing pressure can cause a rupture of the follicle wall and the contents of comedo get out 

into the surrounding skin tissues (Figure 3d). These events may induce the activation of innate 

immune system and parallel to that inflammatory reaction in the affected skin areas. These 

will subsequently contribute to the generation of more severely acne lesions, including 

papules, pustules and in the most severe cases even nodules and cysts (Figure 3d and e) (Jean 

L Bolognia Dermatology). 

1.5.2 The clinical characteristics of acne 

Acne mostly affects the face, neck, back and chest, where the greatest density of PSUs  

 

 
Figure 4. Clinical picture of acne vulgaris. The non-inflammatory comedones are marked by blue arrows. 

Black arrows mark the papules and pustules, whereas red arrows point to the most severe inflammatory form of 

acne lesions (nodules and cysts). (The images were selected from the collection of the Department of 

Dermatology and Allergology, University of Szeged.) 
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Figure 5. Different factors contributing to the 

pathogenesis of acne. 

can be found (Dawson AL 2013, Jean L Bolognia Dermatology). Based on the severity of the 

symptoms, acne can be characterized into mild, moderate and severe forms. Mild acne 

typically affects the face with the presence of non-inflammatory and a few inflammatory 

lesions (acne comedonica). Moderate form can be characterized by the increased number of 

inflammatory papules and pustules (acne papulo-pustulosa) and in case of the severe form 

nodules and cysts are also present (nodulo-cystic acne) (Figure 4) (Dawson AL 2013). 

1.5.3 Factors contributing to acne pathogenesis 

Acne is a typical mutifactorial 

disease, which means that several 

environmental and individual 

factors influence its pathogenesis 

(Figure 5). Among them production 

of hormones, especially androgen 

access, proliferation and 

hyperkeratinisation of the epidermal 

keratinocytes, extensive growth of 

the P. acnes and genetic 

predisposition considered to be the most important aspects (Dawson AL 2013, Koreck A 2003, 

Plewig G 1971, Pochi PE 1969, Ando I 1998, Bataille V 2002, Goulden V). 

1.5.3.1 Hormonal changes and abnormal sebocyte function 

The pathogenesis of acne is strongly linked to sebum production, which is controlled by 

hormonal stimulation. During puberty the endocrine changes stimulate the production of sex 

hormones. These lead to size increase in the sebaceous glands and subsequent elevation of 

sebum secretion, which is a food source of the P. acnes bacterium (Braun-Falco O 2010, 

Bergler-Czop B 2013). 

1.5.3.2 The role of the skin microbiome in the pathogenesis of acne 

 

P. acnes is one of the most common and important member of the skin microbiome in the 

adolescent and postadolescent skin (Oh J 2012). Its first colonization and growth coincides 

with the above described endocrine and hormonal changes. It is a Gram-positive, rod-shaped 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bergler-Czop%20B%5BAuthor%5D&cauthor=true&cauthor_uid=24278071
http://www.ncbi.nlm.nih.gov/pubmed?term=Oh%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23050952
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Figure 6. SCFA synthesis of Propionibacterium species (Zhuge X 2013). 

 anaerobic, but aerotolerant and lipophilic bacteria, which colonize the upper regions of the 

skin, as well as the 

PSU (Grice EA 

2011). Under 

anaerobic conditions 

Propionibacterium 

species can 

hydrolyze various 

sebum components 

(triglycerides and 

fatty acids) and use 

the generated short 

chain fatty acids 

(SCFA), such as acetic acid (AA), propionic acid (PA) and butyric acid (BA) for their 

metabolism (Figure 6) (Allaker RP 1985). 

The P. acnes species is phylogenetically not homogenous. According to recent data 

obtained based on sequence analysis of bacterial recA and tly genes and the results of 

multilocus sequence typing (MLST) experiments, at least six distinct phylogenetic groups 

within the P. acnes species have been described (Figure 7) (McDowell A 2005, 2013). 

 

Figure 7. Phylogenetic tree of the different P. acnes isolates based on the results of MLST analysis Six 

different phylogenetic subgroups were identified within the P. acnes species. (McDowell A 2013). 
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Strains belonging to these subtypes may exhibit different virulence properties and has been 

suggested to differentially affect the cellular and molecular properties of human keratinocytes 

(Csukás Z 2004, Nagy I 2005). 

1.5.3.3 Abnormal keratinocyte functions in acne pathogenesis 

Abnormal cellular properties of the epidermal keratinocytes have been described during 

acne lesion formation, especially in the ductal region of the PSU. Cells become 

hyperproliferative and exhibit abnormal differentiation leading to the hyperkeratinization of 

the epidermal keratinocytes (follicular hyperkeratosis) (Plewig G, 1971). During these events 

molecular changes also happen in these cells. Results from our and other laboratories suggest 

that the keratinocytes recognize the presence of the P. acnes bacterium which in turn can 

activate pathogen recognition receptors, such as Toll-like receptor 2 and 4 (TLR 2, TLR4). 

This activation initiates signaling events in the cytoplasm of the affected cells and 

consequently causes the activation and translocation of the NF-κB transcriptional factor and 

the subsequent regulation of genes playing an important role in the initiated innate immune 

and inflammatory events (Figure 8) (Nagy I. 2005, Nagy I. 2006, Kim J. 2005). These include 

e.g. different cytokines, chemokines and antimicrobial peptides (Nagy, 2005, Pomerantz JL 

2002, Takeuchi O 1999). 

 

Figure 8. P. acnes induced signaling changes of keratinocytes. The bacterium activates TLR receptors and 

initiates signaling cascades, which subsequently lead to the activation of NF-κB transcription factor. These 
events regulate numerous cytokine, chemokine and antimicrobial peptide-coding genes (Szabó K. 2011). 

Among the first responders of bacterial recognition we find early response cytokines, 

including the tumor necrosis factor alpha (TNF) and the interleukin 1 alpha (IL-1) 

cytokines, playing a key role in the initiation and orchestration of the downstream innate 



16 

 

immune and inflammatory events (Figure 8). It has been shown that these cytokines exhibit 

increased expression level when abnormal hyperproliferation and differentiation occur during 

comedogenesis and also in later stages during the inflammatory lesion formation (Cunliffe WJ 

2000, Ingham E 1992). 

1.5.3.4 Individual genetic factors that modify the risk of acne 

 

Classical genetic studies (identical twin, community- and family-based studies) have long 

been suggested the importance of inherited factors in the pathogenesis of acne, but their 

identification started only in the 1990s. (Szabó K. 2011). Inherited susceptibility to complex 

diseases is frequently a result of a combination of commonly occurring polymorphisms that 

may affect the expression, structure and/or function of various genes. (Hoogendoorn B, 2003). 

Based on all these it is feasible to imagine that such genetic factors of the above described 

early response cytokines can modify the reactivity of carrier individuals’ to environmental 

attacks, e.g. may regulate the keratinocytes’ response to the different members of the skin 

microbiome. If these are overly extensive or inappropriate, they may even result destructive, 

chronic inflammatory events. Because of these reasons the role of different polymorphisms of 

genes belonging to the TNF and IL-1 families has long been investigated in the genetic 

predisposition to various chronic inflammatory diseases (Fidder HH 2006, Waldron-Lynch F 

2001, Pomerantz JL 2002, Takeuchi O 1999, Ingham E 1992, Jouvenne P 1999, Kawaguchi Y 

2007). 

The TNFA gene is located within the highly polymorphic major histocompatibility 

complex III (MHC III) region on chromosome 6p21.3. There are many single nucleotide 

polymorphisms (SNPs) within this gene, especially in its 5’ regulatory region, whereas the 

coding- and the 3’-regions show a much higher degree of conservation (Waldron-Lynch F 

1999). The most frequent promoter SNPs in Caucasian populations are situated at 

positions -238 (Waldron-Lynch F 1999, D'Alfonso S 1994), -308 (Wilson AG 1997), -857 

(Herrmann SM 1998), -863 and -1031 (Higuchi T 1998) in relation to the transcription start 

site. Several reports indicate that these SNPs might affect the regulation of gene expression 

and have a role in the regulation of innate immune response. 

The IL-1 family contains 11 cytokines, also important factors of immune regulation.  

Among them the interleukin-1α (IL-1α) is the most studied member of this family, and this is 

one of the best-known cytokines implicated in the pathogenesis of acne vulgaris (Aldana OL 

1998, Guy R 2006, Guy R 1998), The expression level and function of both the IL1A gene 

http://www.ncbi.nlm.nih.gov/pubmed?term=Ingham%20E%5BAuthor%5D&cauthor=true&cauthor_uid=1534342
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(chromosome 2q14) and the encoded IL-1α protein are tightly regulated at many levels, 

including the regulation of gene and protein expression or secretion (Barksby HE 2007). 

These functions may be disturbed as a result of functional polymorphisms located in the 

IL-1A locus. 

The biologic function of the IL-1α cytokine is also regulated by a naturally occurring 

receptor antagonist protein, IL-1ra, encoded by the IL1RN gene. Genetic polymorphisms of 

this gene have frequently been implicated in the pathogenesis of various chronic 

inflammatory diseases (Kawaguchi Y 2007, Jouvenne P 1999, Clay FE 1994, Tarlow JK 

1994). 

1.5.3.5 Individual life-style factors in the pathogenesis of acne 

 

Individual life-style conditions such as diet, stress, smoking or obesity may also 

contribute to the pathogenesis of acne, but there are several controversies about their precise 

involvement. Although there are many anecdotal facts, because of the lack of well-designed 

clinical studies, the real contribution of these factors are questionable and currently under a 

heavy scientific debate (Halverson JA 2009, Berra B 2009, Cordain L 2002, 2003, Schäfer T 

2001, Mills CM 1993). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Sch%C3%A4fer%20T%5BAuthor%5D&cauthor=true&cauthor_uid=11453915
http://www.ncbi.nlm.nih.gov/pubmed?term=Mills%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=8481981


18 

 

2. Aims 

In the course of our studies we were interested in studying the exact role and properties of 

the skin microbiome in the healthy skin and during pathogenic conditions, with a special 

focus on the most common inflammatory skin disease, acne vulgaris. 

In the first part of our studies we analyzed the interaction of the skin colonizing P. acnes 

bacterium and the epidermal keratinocytes, to find out if and how this commensal bacterium 

affects the cellular properties of the human cells. For that, we aimed to investigate: 

 

-whether there is a difference in the effect of selected P. acnes strains belonging to 

different phylogenetic groups within the species (889: 1A, 6609: 1B, ATCC 11828: II) 

on the cellular responses of an in vitro cultured immortalized human keratinocyte cell 

line, HPV-KER, 

-whether the keratinocyte responses are dose-dependent, 

-the nature of the bacterially-derived factors that are responsible for the induction of 

cellular responses in keratinocytes. 

 

In the second part we aimed to identify and analyze genetic susceptibility or protective 

factors that may modify the carrier individuals’ response to the presence of the skin 

microbiome, potentially leading to inappropriate and/or overly extensive reactions and as a 

result, the pathogenesis of acne vulgaris. Thus, in retrospective case-control studies we 

analyzed the role of: 

-five different TNFA promoter polymorphism (-238G>A, -308G>A, -857C>T, -863C>A, 

-1031T>C), 

-the +4845G>T SNP of the IL1A gene, 

-and the IL1RN VNTR polymorphism in acne pathogenesis. 
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Table 1. Properties of the applied P. acnes strains 

3. Materials and Method 

3.1. P. acnes strains and culture conditions 

P. acnes bacterial strains were cultured and stored as previously described in detail (Nagy I 

2005) (Table 1). Briefly, P. acnes clinical isolates 889 (subtype IA) and 6609 (subtype IB) 

and the reference strain ATCC 11828 (subtype II) were cultured on pre-reduced Columbia 

agar base supplemented with 5% (v/v) bovine blood, vitamin K1 and haemin (Oxoid, UK).  

Bacteria were grown under anaerobic 

conditions (anaerobic chamber; Bactron 

Sheldon Man, Oregon, USA) at 37°C. 

Colonies initiated with single P. acnes cells 

were inoculated in brain heart infusion (BHI, 

pH 7.4; Oxoid) broth cultures, and the samples were incubated at 37°C for 48 hours. Bacterial 

suspensions were then pelleted by centrifugation at 2600 × g for 10 minutes, and the 

supernatant was discarded. After three washes in PBS-EDTA for 10 minutes each, the cells 

were harvested in 5 ml PBS-EDTA, and the cell number was estimated by measuring the 

optical density (OD) at 600 nm of the solution with a spectrophotometer. According to our 

previous observations, OD600= 2 was equivalent to 1.5 x 10
9
 cfu/ml. The number of bacterial 

cells was adjusted with PBS-EDTA to 1 × 109
 cfu/ml, aliquoted and stored at −80°C until 

further use. 

3.2 Immortalized human keratinocyte culture and treatment 

For the generation of an immortalized keratinocyte cell line, normal human adult 

keratinocytes (NHEK) were obtained from a healthy individual undergoing routine plastic 

surgery at our department and transfected with the pCMV vector containing the HPV16/E6 

oncogene. A stable cell line was established by continuous culturing over 70 passages before 

the start of our experiments (Polyánka and Szabó, submitted for publication). 

The HPV-KER immortalized human keratinocyte cell line was cultured using a 

keratinocyte serum-free medium (KC-SFM, Life technologies, Carlsbad, USA) supplemented 

with 1% of an antibiotic/antimycotic (AB/AM) solution (Sigma-Aldrich, St. Louis, USA) for 

most of the experiments. The cells were kept under standard conditions (37°C in a humidified 

atmosphere containing 5% (v/v) CO2) at all times. 
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For the bacterial treatments, HPV-KER cells were plated in AB/AM-free KC-SFM culture 

medium and incubated for 24 hours, before co-culturing with live P. acnes bacterium using 

different human cell:bacterium ratios (multiplicity of infection, MOI, refers to the number of 

bacteria that were added to the cell cultures during infection). 

For the visualization of P. acnes-induced pH shifts, HPV-KER cells were plated in serum-

free DMEM-HG supplemented with prequalified human recombinant Epidermal Growth 

Factor 1-53 (EGF 1-53) and Bovine Pituitary Extract (BPE). Bacterial treatments were 

performed as described above. 

3.3 Real-time, label-free analysis of the interaction between HPV-KER cells and P. acnes 

Cellular properties of the control and bacterium-treated HPV-KER and NHEK cells were 

followed in real-time using the xCELLigence system (ACEA Biosciences, San Diego, USA), 

allowing the label-free monitoring of various cellular events using impedance-based 

measurement. HPV-KER cells were plated at a density of 10,000 cells/well in fibronectin 

coated 96-well E-plates. Twenty-four hours after plating, they were treated with P. acnes 

strains at different doses (MOI = 25–300). HPV-KER treatments were performed in five and 

NHEK treatments were performed in three technical replicates. Impedance (Z) values were 

measured in every 60 minutes for 90 hours, from which a dimension free cell index (Ci) was 

calculated. Ci tracings (average of the technical replicates) were normalized to values 

recorded at the addition of the bacterium to the cultures, and the resulting nCi values were 

plotted. Each data point represents the mean ± the standard error of the mean (SEM). 

3.4 Trypan Blue exclusion assay 

HPV-KER cells were cultured in 12-well plates at a starting density of 125,000 cells/well. 

After 48 hours, the cells were treated with P. acnes strains at different MOIs (100 and 300) in 

triplicate. Samples were collected by trypsinization at 0, 6, 9, 12, 24, 36 and 48 hours 

post treatment, washed with PBS and stained with Trypan Blue dye (Sigma-Aldrich). Viable 

cells were counted using a hemocytometer. 

3.5 Fluorescence microscopic analysis of the P. acnes and PA treated HPV-KER cultures 

HPV-KER cells were cultured on the surface of glass coverslips (18x18 mm) in 6-well 

plates at a density of 300.000 cells/well. Forty-eight hours later they were treated with the 
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different P. acnes strains using high bacterial dose (MOI = 300) or with 2mM propionic acid 

(PA). Samples were collected at 48 hours post-treatment, by washing the cells with PBS and 

then fixed in 2% paraformaldehyde (PFA) solution for 10 minutes at room temperature. After 

washing two times in PBS, the cell membranes were permeabilized by 0,1 % Triton x-100 

detergent (3 to 5 minutes at RT). The slides were washed again, and the filamentous actin 

(F-actin) was stained by Alexa Fluor 488® phalloidin (Life Technologies, Carlsbad, USA), in 

a 1:100 dilutions prepared in PBS, also containing 1% BSA. The slides were incubated for 

30 minutes at RT. After the final PBS washes, the coverslips were mounted in Fluoromount-G 

mounting media (SouthernBiotech, Birmingham, USA). 

3.6 Spectrophotometric hemoglobin and lactate dehydrogenase assays 

Peripheral blood samples were taken with the subjects’ written informed consent and the 

approval of the Scientific and Research Ethics Committee of the Medical Research Council, 

Hungary (protocol number: ACN-GENET-001). The studies were performed in accordance 

with the Declaration of Helsinki guidelines and its later revision. Erythrocytes were isolated 

from 5 ml peripheral blood samples obtained from each individual using a ficoll gradient 

separation method and subsequently resuspended in 10 ml RPMI 1640 media lacking phenol 

red dye (LONZA, Basel, Switzerland). Erythrocyte suspensions (500 µl) were treated with 

P. acnes strains (MOI = ~300) or with P. acnes 6609 strain (MOI = 300) in the presence of 1, 

2 and 5 mM PA. The supernatants were collected at 72 hours post-treatment, and the quantity 

of free hemoglobin was estimated by spectrophotometric analysis of the collected supernatant 

samples (OD at 540 nm). 

The cytolytic effect of the P. acnes strains on HPV-KER cells was also measured by the 

colorimetric lactate dehydrogenase (LDH) assay using the Cytotoxicity Detection Kit
PLUS

 

(Roche, Basel, Switzerland), according to the instruction of the manufacturer. Briefly, 

HPV-KER cells were plated in a 96-well plate at a density of 10,000 cells/well. After 24 

hours incubation, the cells were treated with the P. acnes strains (MOI=100, 300). Released 

LDH was quantified after 72 hours by spectrophotometry (OD at 492 nm). The measured 

values were corrected with the background values of the culture medium, and the P. acnes-

treated samples were also normalized to the values measured in corresponding P. acnes-

treated cell-free controls. 
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3.7 Analysis of the pH changes of P. acnes-treated HPV-KER cultures 

For the visualization of pH changes of the bacterial-treated HPV-KER culture supernatants 

color changes of a culturing media supplemented with a pH sensitive phenol-red dye was used. 

The color of this pH indicator molecule exhibits a gradual transition from yellow to red over 

the pH range 6.8 to 8.2. Thus, the HPV-KER cells were plated in serum-free DMEM-HG 

supplemented with prequalified human recombinant Epidermal Growth Factor 1-53 (EGF) 

and Bovine Pituitary Extract (BPE). Bacterial treatments were performed as described above. 

pH changes were monitored visually by observing the gradual color changes of the culturing 

media. For a more precise approximation we also used a pH test strip capable of the detection 

of the pH conditions between pH 6–7.5. 

3.8 Mass spectrometry 

All measurements were conducted on a Shimadzu GCMS-QP2010 SE device with a 

ZB-WaxPlus column of 30 m length. The column was heated at a constant rate (20°C/min) 

during all measurements starting at 50°C up until 230°C. The head pressure was 117.6 kPa 

and a 2 ml/min column flow was chosen. The mass spectrometer was operated in scan mode, 

where all m/z values between 10 and 500 were acquired after the 3.5 minutes (solvent elution) 

to protect the filament. For calibration serial dilutions of acetic (AA) and propionic acids (PA) 

were used. Each treatment was performed in triplicates. The samples were measured by the 

Department of Applied and Environmental Chemistry, University of Szeged. 

3.9 Growth curve analysis of the different P. acnes strains 

Bacteria were grown in brain heart infusion (BHI, pH 7.4; Oxoid) broth cultures, and the 

samples were incubated at 37°C for 48 hours under anaerobic conditions (anaerobic chamber; 

Bactron Sheldon Man, Oregon, USA). The cell numbers of the bacterial suspensions were 

estimated by measuring the optical density at 600 nm with a spectrophotometer. The OD600 

values were adjusted with BHI to 0.02. Bacterial suspensions were incubated at 37°C under 

anaerobic conditions or under standard cell culturing conditions (at 37°C in a humidified 

atmosphere containing 5% (v/v) CO2) and the OD600 values of the samples were measured at 

24, 36, 48, 60 and 72 hours. 
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3.10 Study population and ethics of the genetic studies 

For the genetic analyses, control individuals and acne patients were recruited at the 

University of Szeged, Department of Dermatology and Allergology and at the Department of 

Dermatology, Victor Babes University in Timisoara, and retrospective case-control studies 

were conducted. For that, peripheral blood samples were obtained from Caucasian individuals. 

Control subjects were recruited from university students, co-workers, and relatives of the 

participants at both locations. Acne vulgaris diagnosis was defined by trained dermatologists 

on the basis of physical examinations, patient records and questionnaires. Distribution of the 

study cohort is summarized in Table 2. 

 

Table 2. Clinical characteristics of the study population. 

Altogether our genomic collection consisted of samples from 126 healthy controls with no 

or only a few, mostly non-inflammatory lesions and 229 acne patients samples suffering from 

acne of various severity. The mean age of the control group was 29.5 years, compared to 32.4 

of the patient group (Table 2). In both locations the same dermatologist (Andrea Koreck) 

supervised the sample collection to make sure that the categorization of the different acne 

patients and control was performed uniformly. 

The study was approved by the Hungarian Research Ethics Committee and the Ethics 

Committee of the ‘Victor Babes’ University of Medicine and Pharmacy Timisoara. All 

subjects gave written consent before blood collection. The study was performed in accordance 

with the principles stated in the Declaration of Helsinki and its later revision. 

3.11 Genomic DNA isolation 

Genomic DNA was obtained from acne patients’ and control subjects’ peripheral blood 

leukocytes by a standard proteinase K digestion method, using the QIAamp Blood DNA Mini 
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Kit (QIAGEN, Hilden, Germany). The concentration (OD=260 nm measurement) and purity 

(OD260/280 nm ratio) of the isolated gDNA samples were measured by spectrophotometry, 

and they were diluted to a 20 ng/µl final concentration. 

3.12 Restriction fragment length polymorphism (RFLP) analysis 

Acne patients and controls were genotyped for five different promoter polymorphisms in 

the TNFA gene (-238G>A, rs361525; -308G>A, rs1800629; -857C>T, rs1799724; -863C>A, 

rs1800630; -1031T>C, rs1799964) and the +4845G>T (rs17561) SNP located at the coding 

region of the IL-1A gene, using a common PCR-based technique, called restriction fragment 

length polymorphism (RFLP) method. The list of the studied polymorphisms and the 

sequence of the used primers are listed in Table 3. 

 

 

Table 3. Primer sequences and restriction enzymes used for the PCR–RFLP analyses. 

Following PCR amplification the resulting fragments were digested and analyzed on a 5% 

NuSieve agarose gel (Lonza, ME, USA), where the DNA fragments were visualized using a 

GelRed (Biotium, Inc, Hayward CA, USA) stain. 
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3.13 Variable number of tandem repeats (VNTR) polymorphism analysis 

Control and acne vulgaris patients were also genotyped for the IL1RN VNTR 

polymorphism located in intron 2 of the gene using a PCR-based method, similarly as it was 

reported by Tarlow et al. (Tarlow JK 1993). This polymorphism is a variable number (1–6 

repetitions) of tandem repeats of an 86 bp motif. To determine the number of the carried 

repeats a gene region including the polymorphic sequences was amplified (Table 4). 

 

Table 4. PCR amplification primers used to genotype the IL1RN VNTR polymorphism. 

Following the amplification step the size of the resulting PCR fragments were determined 

based on an analysis using a 2 % agarose gel (Lonza, ME, USA), where the fragments were 

visualized with a GelRed stain (Biotium, Inc, Hayward CA, USA). 

3.14 Generation of the TNFA luciferase reporter constructs 

A piece of the proximal TNFA promoter was cloned into the pGL4.20 luciferase reporter 

plasmid (Promega, Madison, USA) similarly as it was described by Lv et al. (Lv K 2006). For 

that a 1012 base pair (bp) piece of the TNFA regulatory region was amplified using the 

following primers: 

Forward primer: 5’ CCG CTC GAG CCA CAG CAA TGG GTA 3’  

Reverse primer: 5’ CCC AAG CTT CGT CTG AGG GTT GTT TTC AGG 3’ 

The forward primer contained an extra XhoI, while the reverse a HindIII restriction 

enzyme recognition site (marked with bold letters) allowing the easy cloning of the resulting 

fragments to the chosen vector. Two construct were generated; one included the common (C) 

allele, whereas the other harbored the rare (T) allele at the -857th nucleotide position, 

corresponding to the two alleles of the rs1799724 (-857C>T) SNP. This was achieved by 

using gDNA samples of donors who were previously genotyped for this polymorphism. The 

resulting constructs were named as pGL4.20-TNFA-857C and pGL4.20-TNFA-857T, 

respectively, and the carried nucleotides at the polymorphic position were verified using the 

PCR-RFLP method. 
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Furthermore, the proximal part of the 3’ untranslated region (3’ UTR) of the TNFA gene 

was also cloned into both constructs, similarly as it was described by Denys et al (Denys A 

2002). For that, a 1035 bp fragment was amplified using the following primers: 

Forward primer: 5’ AAT TCT AGA GGA GGA CGA ACA TCC AAC 3’ 

Reverse primer: 5’ CGG AAT TCC CAG AGT TGG AAA TTC CCA TG 3’ 

In this case the forward primer contained an extra XbaI, while the reverse an EcoRI 

restriction enzyme recognition site (marked with bold letters) allowing the cloning of the 

resulting fragments to a pBS vector. From this the TNFA 3’ UTR fragment was released by 

digesting with the XbaI enzyme, and used to replace a cassette including the SV40 late polyA 

signal, and the major part of the Puromycin resistance gene driven by an SV40 promoter the 

pGL4.20-TNFA-857C and pGL4.20-TNFA-857T constructs. Because of the bi-directional 

nature of this cloning step, clones in which the TNFA 3’UTR was inserted in a proper 

orientation was chosen after restriction mapping. 

The generated vectors (pGL4.20-TNFA-857C-3’ and pGL4.20-TNFA-857T-3’) were 

transformed into chemically competent DH5α Escherichia coli (E. coli) bacterial cells. 

Transfection-grade plasmid DNA was isolated with the Endo Free Plasmid Maxi Kit 

(OMEGA Bio-Tek, Norcross, USA). 

3.15 Transient transfection of the HPV-KER cells and luciferase reporter assay 

HPV-KER cells were plated in 6-well plates at a density of 300.000 cells/well. Forty-eight 

hours later the cells were co-transfected with 1 g of one of the two TNFA luciferase reporter 

plasmids (described in section 3.13). As normalization control 5 ng of the pGL4.75 

[hRluc/CMV] constitutive Renilla luciferase vector (Promega, Madison, USA) was also 

added in case of each well. 

The transfection reaction was performed using the X-tremeGENE 9 DNA transfestion 

reagent (Roche, Basel, Switzerland), according to the instructions of the manufacturer. 

Twenty-four hours after the addition of the transfection complex, the cell culture medium was 

replaced and the cells were treated with live P. acnes 889 bacterium (MOI=300). Cells were 

then collected in 200 µl 1x Passive lysis buffer (Promega, Madison, USA) at 6 hours post-

treatment, and they were centrifuged at 12,000g for 3 minutes at 4 °C. The cleared 

supernatants were kept at -80 °C until further processing. 
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Luciferase assay was performed using the Firefly & Renilla Dual Luciferase Assay Kit 

(Biotium, California, USA) according to the instruction of the manufacturer, and luciferase 

activities of the lysates were measured in a luminometer (Thermo Fisher Scientific, Waltham, 

USA). Each treatment was performed in three technical replicates and the measured firefly 

luciferase values were normalized to the Renilla luciferase values. Data represents the average 

of two parallel experiments. 

3.16 Statistical analysis 

In case of the molecular genetic studies statistical analysis was carried out on the various 

groups of patients and controls according to the rules of case–control allelic association study 

designs. First, genotype and allele frequencies for each polymorphism were calculated by 

determining the percentage of individuals carrying the different genotypes and alleles in each 

group. For the statistical analyses, the three most common genetic models (dominant, co-

dominant and recessive) were evaluated for all the studied SNPs. The model that described 

the best the mode of inheritance (resulting the smallest p value) was chosen based on the 

obtained results Statistical significance was calculated using the Chi2 or the Fischer’s exact 

test, depending on the characteristics of the analyzed data. Odds ratios (ORs) and their 95% 

confidence intervals (CIs) were also determined. 

Chi-squared test for a linear trend were calculated to assess the relationship between the 

severity of acne symptoms and the different genotypes. For that, acne vulgaris patients were 

stratified into three subgroups according to the severity of their skin lesions (as described, in 

section 3.9). All the described analyses were done using the SPSS software (Version 17, 

SPSS, Chicago IL). Statistical significance was established at a p<0.05. 

For all the other experiments data were compared using one-way analysis of variance 

(ANOVA) followed by Dunnett or Tukey’s post hoc tests to determine statistical differences 

after multiple comparisons (SPSS, SPSS Inc., Chicago, IL). In all cases a probability value of 

less than 0.05 was considered significant. Unless otherwise noted, data were presented as 

mean ±SEM for three parallel experiments, where the different treatments were performed at 

least in triplicates. 
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4. Results 

4. 1 In vitro monitoring of the interaction of the P. acnes bacterium and the epidermal 

keratinocytes 

 

In order to gain a better understanding on the properties of the interaction that exists 

between the skin colonizing P. acnes bacterium and the epidermal keratinocytes, we set up an 

in vitro model system. For that, we used a human immortalized keratinocyte cell line 

(HPV-KER), previously established and characterized in our laboratory. In preliminary 

experiments we showed that these cells react similarly to the presence of the bacterium than 

that of cultured normal human keratinocytes; they grow in monolayer, exhibit keratinocyte-

like morphologies and respond to the presence of P. acnes with similar gene expression 

changes than that of NHEK cells (Polyánka, Szabó et al. submitted for publication; Tax, 

2015). Next, we aimed to determine if and how the bacterium affects the different cellular 

properties (e.g. growth and viability) of the HPV-KER cells when they are co-cultured. 

4.1.1 Real-time monitoring of the growth properties of HPV-KER cultures 

 

To monitor the cell growth properties, HPV-KER cells were seeded in 96-well plates at 

different cell densities (5,000, 10,000, 15,000 cells/well) and impedance-based RTCA 

analysis was performed using the xCELLigence system. Ci values were measured every 

60 minutes for 72 hours and plotted as a function of time (Figure 9A). 

According to the observed results the cells started to attach to the surface of the wells 

within 3 hours, indicated by a rapid increase of Ci values, and following a short lag period, 

they entered a growth phase. Plates seeded with 15000 cells/well reached confluence 36 hours 

after plating, whereas plates seeded with other cell densities remained in the growth phase 

during the entire experiment. Plating densities of 10,000 cells/well were thus used in 

subsequent experiments to detect changes in HPV-KER proliferation in response to P. acnes 

treatment. 
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4.1.2 P. acnes affects the cellular properties of HPV-KER cells in a strain-specific and 

dose-dependent manner 

 

Next, we wanted to know whether the P. acnes bacterium affects the cellular properties of 

HPV-KER cells. To determine if there were any strain-specific differences we chose to study 

three bacterial strains belonging to different phylogenetic groups within the species (P. acnes 

889: IA, 6609: IB, ATCC 11828: II) (Nagy I 2005). We applied the bacteria using different 

MOIs to find out if the effects depended on the P. acnes dose. For the experiments, 

HPV-KER cells were treated with these strains 24 hours after plating, and cellular changes 

were monitored using the xCELLIgence system (Figure 9B–D). 

 

Figure 9. Strain-specific effects of P. acnes on cellular properties of HPV-KER cells. (A) HPV-KER cells 

were plated in a 96-well E-plate at densities of 5,000, 10,000 and 15,000 cells/well. The Ci values were plotted 

as a function of time. HPV-KER cultures (10,000 cells/well) were treated with P. acnes 889 (B), 6609 (C) and 

ATCC 11828 (D) at MOIs of 25–300, and nCi values were determined. (Representative image of 3 parallel 

experiments.) 

 

Our results suggest that, when using low bacterial doses (MOI = 25, 50), no P. acnes 

strain had a significant effect on the properties of HPV-KER cells compared to untreated 
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controls. The cells continued to proliferate in the presence of the bacteria until they reached 

confluence, and subsequently entered to a stationary phase, marked by steady nCi values. In 

contrast, when the P. acnes 889 strain was applied in a high dose (MOI = 300), a rapid 

elevation of the nCi values was detected at about 15 hours and continued to grow until 45 

hours (Figure 9B). However, when higher bacterial loads (MOIs of 200 or 300) of the 889 and 

ATCC 11828 strains were applied, a small increase followed by a sharp decrease was noted 

(Figure 9B and D, respectively). Similar changes were not observed for treatment with 

P. acnes 6609 strain (Figure 9C). 

 

Figure 10. Strain-specific effects of P. acnes on cellular properties of NHEK cells. HPV-KER cultures 

(10,000 cells/well) were treated with P. acnes 889 (A), 6609 (B) and ATCC 11828 (C) at MOIs of 25–300, and 

nCi values were determined.  

 

In order to prove that the above described effects were not HPV-KER specific, we also 

repeated the above experiment, but this time we treated NHEK cells using the same 

conditions. Our results indicate, that NHEK cells responded to the presence of the P. acnes 

strains and exhibited nCi changes similar to what we observed in case of the HPV-KER cells 

(Figure 10). 

4.1.3 The P. acnes 889 and ATCC 11828 strains affect changes in HPV-KER cell number 

 

Ci changes can reflect differences in the number or in the specific dimensions of cells 

attached to the electrodes. To determine the exact nature of the P. acnes-induced cellular 

events that corresponds to the observed nCi differences, we monitored the effect of the 

different P. acnes strains on the number of cells in the HPV-KER cell cultures by a Trypan 

Blue dye exclusion assay. High dose (MOI = 300) of the P. acnes 889 strain resulted in 

increased cell numbers compared to untreated and low-dose treated samples (Figure 11A). 
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None of the other treatments resulted in an increase in cell number. However, the rate of 

increase in the cell number decreased 12 hours after high-dose treatment (MOI = 300) with 

the ATCC 11828 strain (Figure 11C). 

 

Figure 11. The P. acnes 889 and ATCC 11828 strains affect changes in HPV-KER cell number. To identify 

the cellular events corresponding to the detected nCI changes HPV-KER cells were plated in 12-well plates 

(125,000 cells/well) and treated with the P. acnes strains at MOIs of 100 and 300. The number of cells present in 

the cultures was determined by a Trypan Blue dye exclusion assay at different time points. (Average of 2 parallel 

experiments.) 

 

4.1.4 High-dose treatment of the P. acnes 889 and ATCC 11828 strains induces 

microscopic changes in HPV-KER cells 

 
Figure 12. Microscopic analysis 

of P. acnes-treated HPV-KER 

cells. Immortalized keratinocytes 

were stained with rhodamine-

labeled phalloidin to visualize 

cytoskeletal F-actin bundles for an 

overall evaluation of cellular 

morphology. The presence of 

abnormally shaped, round cells 

was detected in the cultures treated 

with (C) P. acnes 889 and (D) 

ATCC 11828 (MOI = 300), 

exhibiting a high degree of 

membrane irregularity (marked 

with white arrows and 

arrowheads), which was not 

apparent in (A) control and (B) 

P. acnes 6609-treated cultures. 

(Arrowheads point to cells 

presented in high magnification in 

the lower left corner. Scale bars: 

10 µm) 
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To visualize cellular changes induced by P. acnes strains, we stained untreated and treated 

(MOI = 300) HPV-KER cells with rhodamine-labeled phalloidin and performed a fluorescent 

microscopic analysis. We noted the presence of abnormally shaped rounded cells exhibiting 

irregular membrane morphology 48 hours after treatment with the P. acnes 889 and ATCC 

11828 strains (white arrows). This effect was not apparent in cells treated with the P. acnes 

6609 strain (Figure 12). 

4.1.5 P. acnes-induced cytotoxicity is strain- and dose-dependent 

 

To determine whether P. acnes-induced cytotoxicity was due to damage of the 

keratinocyte membrane caused by the bacterium or by bacterially derived toxins, the amount 

of free LDH enzyme released to the supernatant of the damaged cells was determined using 

an LDH assay of keratinocytes treated with different doses (MOIs of 100 and 300) of the 

P. acnes strains. 

Higher LDH levels were measured in cells treated with the 889 and ATCC 11828 strains. This 

effect appeared to be dose-dependent at 72 hours post-treatment. In contrast, no differences 

were detected in LDH levels in cells treated with the P. acnes 6609 strain (Figure 13). 

Figure 13. Cytotoxicity of P. acnes 

strains. HPV-KER cells were treated 

with P. acnes strains. After 72 hours, 

released LDH and was measured from 

cleared supernatants. High-dose 

(MOI = 300) treatment with the 

P. acnes 889 and ATCC 11828 strains 

lead to increased level of free LDH, 

which is indicative of membrane 

damage and subsequent cytotoxicity. 

(Statistical analysis: one-way ANOVA, 

Tuckey's post hoc test. * p<0.05, # 

p<0.01, compared to untreated control values. Results of P. acnes 889, 6609 and ATCC 11828-treated cleared 

supernatant samples are represented by striped, solid grey and dotted bars, respectively. Average of 3 parallel 

experiments.) 
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4.1.6 P. acnes exhibits a strain-specific hemolytic effect on human erythrocytes 

 

To test whether the observed cytotoxic events caused by the selected P. acnes strains was 

specific to keratinocytes, we also treated washed human erythrocytes with the bacterium 

(MOI = 300). Spectroscopic analysis was performed to quantify the amount of free 

hemoglobin (HgB) released to the supernatant of the cell cultures as a result of possible 

membrane damage. 

The free HgB results were similar of the results from the LDH assay: treatment with the 

P. acnes 889 and ATCC 11828 strains increased the concentration of free HgB in the culture 

supernatants at 72 hours post-treatment, whereas treatment with the P. acnes 6609 strain had 

no such effect (Figure 14). 

Figure 14. Hemolytic effect of P. acnes 

strains. Washed human erythrocytes were 

treated with P. acnes strains. After 72 hours, 

released HgB was measured from cleared 

supernatants. High-dose (MOI = 300) 

treatment with the P. acnes 889 and ATCC 

11828 strains lead to increased level of free 

HgB, which is indicative of membrane damage 

and subsequent hemolytic effect. (Statistical 

analysis: one-way ANOVA, Tuckey's post hoc 

test. # p<0.01, compared to untreated control 

values. Results of P. acnes 889, 6609 and ATCC 11828-treated cleared supernatant samples are represented by 

striped, solid grey and dotted bars, respectively. Average of 3 parallel experiments.) 

 

4.1.7 Some P. acnes strains decrease the pH of HPV-KER cell cultures 

 

Metabolic activity of bacterial and human cells can modify the composition and chemical 

properties of the culturing media. To determine pH changes induced by P. acnes, HPV-KER 

cells were plated in serum-free DMEM-HG media, which contains a pH sensitive phenol-red 

dye. Cells were treated with live P. acnes bacterium (MOI = 25-300) as well as with heat 

inactivated ones (MOI = 300). We observed enhanced acidification of cultures treated with 

the P. acnes 889 and ATCC 11828 strains by visual inspection. We noted enhanced 
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Figure 15. Dose-dependent pH changes induced by 

P. acnes strains. HPV-KER cells were treated with live 

and heat-killed bacteria at various MOIs in a DMEM-HG 

media, which contains a pH sensitive phenol-red dye. 

Culture pH was determined visually by inspecting the color 

changes of the phenol-red in the culturing medium. 

Gradual acidification was detected with increasing MOI in 

the live P. acnes 889 and ATCC 11828-treated cultures. 

(Representative image of 3 parallel experiments.) 

Figure 16. Microscopic analysis of PA-treated HPV-KER cells. (A) Control and (B) 48h PA-treated 

HPV-KER cells were stained with rhodamine-labeled phalloidin and subjected to microscopic analysis. Cells 

exhibiting irregular membrane morphology were detected in the PA-treated cultures. (White arrowhead 

points to a cell that is present in higher magnification in the lower left corner. Representative image of 3 

parallel experiments. Scale bars: 10 µm) 

acidification of the cultures treated with the P. acnes 889 and ATCC 11828 strains. The extent 

of pH changes was dose-dependent and strictly required the presence of live bacterium 

(Figure 15). 

 

 

4.1.8 P. acnes production of PA may contribute to media acidification and cellular 

changes in the HPV-KER cultures 

Next, we tried to determine the nature of the factors responsible for the observed pH and 

morphological changes, as well as keratinocyte membrane damage. Earlier reports suggested 

that P. acnes bacterium is able to synthesize SCFAs including PA, which is a unique product 

of its metabolism. To 

determine whether 

P. acnes-produced 

SCFAs contribute to the 

previously observed 

cellular changes, we 

treated the HPV-KER 
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cells with PA. Microscopic analysis of cells treated with PA and rhodamine-labeled 

phalloidin revealed similar irregular membrane morphologies observed earlier for P. acnes 

treatment (Figure 16). This result suggests that PA may be an important factor leading to the 

observed keratinocyte morphological changes. 

 

4.1.9 PA secretion of P. acnes is strain- and dose-dependent 

 

The results of our previous experiments provided only indirect evidence to the hypothesis 

that strain- and dose dependent differences are present in the amount of secreted SCFAs by 

the different P. acnes strains. To prove this, we treated HPV-KER cells with the bacterium 

(MOI = 100, 300), and determined the amount of secreted AA, PA and BA in the supernatant 

samples by mass spectrometric analysis. 

The presence of AA and PA were detected in all samples. While the AA levels were 

similar in all cases, the amount of PA varied in a strains-, and dose-dependent manner at 

72 hours post-treatment; higher levels were detected when higher bacterial loads (MOI = 300) 

of the 889 and ATCC 11828 strains were applied (Figure 17D and H, respectively). Low 

levels of BA was also detected in the high dose (MOI = 300) P. acnes 889-treated HPV-KER 

culture supernatants (Figure 17D). 

In order to prove that the detected SCFAs are bacterially-derived, we repeated the 

experiments, but this time in the absence of HPV-KER cells. While some AA was already 

present in the culturing media, bacterial fermentation clearly resulted in the release of 

additional amounts, while PA and BA were only detected in the bacterial-treated samples 

(Figure S1). 
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Figure 17. Identification of SCFAs in HPV-KER culture supernatant samples. HPV-KER cells were treated 

with P. acnes strains. After 72 hours, released SCFAs were measured by MS. While the level of AA was 

relatively stable in the samples, the PA levels exhibited strain- and dose dependent differences; higher amounts 

detected in the high dose (MOI = 300) P. acnes 889 and ATCC 11828-treated cultures. In the (A) control 

medium (KC-SFM) and (B) the untreated HPV-KER supernatant samples the presence of PA and BA was not 

detected. 
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4.1.10. Comparison of the growth properties of the different P. acnes strains 

 

One of the studied strains, P. acnes 6609 appeared to be the least effective in our in vitro 

assays, and MS analysis of the bacterial treated HPV-KER supernatants showed that the PA 

levels were the smallest in these samples. Variations in the amount of secreted SCFAs may 

reflect differences in the growth and/or the metabolic properties of certain P. acnes strains. To 

test this hypothesis we analyzed the growth properties of our three strains by 

spectrophotometric growth curve analysis. We found that under both anaerobic and aerobic 

conditions P. acnes 6609 was the slowest-growing strain, suggesting that within a given time 

frame these P. acnes 889 and ATCC11828 outnumber the 6609, and as a consequence fewer 

bacterial cells might produce less SCFAs. It has to be noted that based on these results we 

cannot rule out the possibility of differences in the metabolic properties of the used strains, 

either (Figure 18). 

 

Figure 18. Growth properties of the different P. acnes strains. P. acnes strains (889, 6609, ATCC 11828) 

were cultured in BHI medium at (A) 37°C under anaerobic conditions or (B) at 37°C in a humidified atmosphere 

containing 5% (v/v) CO2. OD600 values were measured up to 72 hours. The three P. acnes isolates exhibited 

differences in the growth properties; the 6609 strain was the slowest growing among the analyzed ones. 

 

4.1.11 Combined treatment of the P. acnes 6609 strain and PA induces cytotoxicity 

 

The results of our previous studies strongly suggest that PA may be a factor responsible 

of the P. acnes-induced keratinocyte death, and that this SCFA is secreted at a different level 

by the studied strains. As our gathered data consistently indicated that P. acnes 6609 was the 
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least effective strain in all our investigations, we concluded that this may be due to the 

impaired production of SCFAs, among them PA by this strain. To prove this hypothesis, we 

treated washed human erythrocytes with the P. acnes 6609 (MOI = 300) in the presence of 1, 

2 and 5 mM PA (Figure 19) and analyzed the level of induced cytotoxicity by measuring the 

level of free HgB in the supernatant samples 

Figure 19. Cytotoxicity of PA in the presence of 

the P. acnes 6609 strain. Washed human 

erythrocytes were treated with PA and/or a high 

dose of the P. acnes 6609 strain (MOI = 300) and 

the amount of free hemoglobin was measured in a 

spectrophotometric assay. The greatest absorbance, 

indicative of membrane damage and subsequent 

cytotoxicity, were observed for the double treated 

cells. (Average of three parallel experiments. 

Statistical analysis: ANOVA, post hock Dunnett 

test, statistical significance established at p<0.05. 

Marks represent comparisons to untreated control 

(*) or P. acnes 6609 MOI 300 (#) treated samples. 

 

While this strain did not induce cytotoxicity alone, it led to the appearance of increasing 

free hemoglobin levels parallel with the increasing PA concentrations (as described in section 

4.1.6). Our results thus suggest that while PA treatment clearly induces cytotoxicity, other 

bacterially derived factors may also contribute to this effect. 

4.2 Identification and molecular characterization of inherited factors contributing to 

acne pathogenesis 

 

During the course of our studies we aimed to characterize genetic susceptibility or 

protective factors that may modify the P. acnes-induced innate immune- and inflammatory 

events.  

Innate immune activation and inflammation plays an important role in acne pathogenesis, 

and pro-inflammatory cytokines, especially TNF and IL-1, are known to be key factors in 

these events (Pomerantz JL 2002, Takeuchi O 1999, Ingham E 1992, Cunliffe WJ 2000). 

Based on this we hypothesized that common genetic factors affecting either the regulation of 
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the coding genes, or alternatively, the structure and/or function of the encoded proteins may 

modify the carriers risk to develop acne. In order to test this hypothesis, we reviewed the 

available literature data and selected known polymorphisms of the TNFA, IL-1A and IL1RN 

genes and tested them in retrospective case-control studies. 

4.2.1 Studying the role of different TNFA promoter SNPs in the genetic predisposition to 

acne 

While the coding part of the TNFA gene in relatively conserved, the promoter region 

exhibits a high level of genetic polymorphism (Waldron-Lynch F 1999). SNPs in this region 

may affect the regulation of the gene, and several of them have already been associated with 

an increased risk to develop different chronic inflammatory diseases (Fidder HH 2006, 

Waldron-Lynch F 2001). In order to investigate the role of such regulatory TNFA promoter 

polymorphims in the pathogenesis of acne, we selected five different ones 

(-238G>A, -308G>A, -857C>T, -863C>A, -1031T>C) and analyzed them in the available 

control and acne patient samples in retrospective case-control studies using the PCR-RFLP 

method. Clinical characteristics of the study group are present in the Materials and Methods 

section (Table 2). 

4.2.1.1 The -1031T>C, -863C>A and -238G>A TNFA promoter polymorphisms are not 

associated with acne pathogenesis 

In our studies we compared the genotype and allele frequencies in the control and patient 

cohort. In case of the above SNPs located at the -1031
st
, -863

rd
 and -238

th
 position (counted 

from the transcription start site) the distribution of the various genotype and allele frequencies 

in the control individuals was similar to that of acne patients (Figure 20 and Table 5). 

Figure 20. Distribution of various genotypes in the control and acne group. In case of 

the -1031T>C, -863C>A and -238G>A TNFA promoter polymorphisms, we could not detect differences 

between the control and acne groups. 
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In order to uncover potential gender specific differences, next we reanalyzed our data on 

the groups of males and females separately. Again, no statistically significant differences 

were detected (Table 6). 

Finally, we also divided the patient cohort into groups based on the severity of individual 

lesions, and the clinical type of acne presented. We did not find any differences as a result of 

this analysis, either (Table 6). Overall these results indicate that the -1031T>C, -863C>A and 

-238G>A TNFA promoter polymorphisms are not associated with the pathogenesis of acne in 

our study population. 

 

Table 5. Genotype and allele frequencies of the studied TNFA promoter polymorphisms.  
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Table 6. Gender-specific genotype and allele frequencies of various promoter SNPs of the TNFA gene in 

control individuals and in subgroups of acne patients. 

 

4.2.1.2 The -308G>A TNFA polymorphism may have a role in the acne pathogenesis in 

female patients 

 

Figure 21. Gender-specific genotype frequencies of the TNFA -308G>A SNP in control individuals and 
acne patients. In case of the -308G>A TNFA promoter polymorphisms, we found positive association between 

the minor A allele and acne patients in females (Pearson Chi2 test p = 0.0458). 
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Figure 22. Distribution of various genotypes in the 

control and acne subgroups in females. In case of 

the -308G>A SNP the ratio of combined heterozygote and 

homozygote mutant (GA + AA) female patients are 

increasing parallel to the severity of inflammatory symptoms 

in the different acne subgroups, suggesting that the minor A 

allele might have a predisposing effect in female patients of 

Next, we analyzed the TNFA -308G>A SNP and found a tendency for a more frequent 

occurrence of the rare A allele-containing genotypes in the patient group (Figure 21), but this 

difference did not reach a statistical significance in the overall dataset (Table 5). 

However, after the stratification 

of the two genders, a positive 

association was detected between the 

minor A allele and acne in female 

patients using the dominant 

inheritance model, whereas this was 

not the case in males (Figure 21). 

We also analyzed the association 

between the severity of acne and the 

distribution of TNFA genotypes 

(Figure 22) in the various acne 

groups in both genders, and found an 

increasing frequency of the rare 

allele-containing GA+AA genotypes 

parallel in the different acne groups 

in female patients (Table 6). Overall, 

these data suggest that the rare A 

allele of the -308 TNFA polymorphism may have a role in the genetic predisposition to acne 

in the female patients of our study population. 

4.2.1.3 The -857C>T TNFA promoter polymorphism has a protective role in the 

pathogenesis of acne. 

Next, we genotyped our study population for the -857C>T TNFA polymorphism, and 

found a statistically significant difference in the distribution of the genotype and allele 

frequencies using the dominant genetic model (Table 5). Interestingly, the carrier frequency 

of the major C allele was higher in case of the acnes patient group, suggesting that the major 

C allele of this SNP is the one that is positively associated with acne. 

Next, we analyzed the genders separately, but did not observe any gender specific 

differences (Table 6). 
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Last, but not least we also looked if the distribution of the various genotype and allele 

frequencies showed a correlation with the severity of the disease in the different patient 

groups (Table 6, Figure 23). We found that the frequency of the minor allele-containing 

genotypes decreased parallel to the severity of inflammatory acne symptoms. 

Figure 23. Distribution of various genotypes 

in the overall control and acne patient 

groups. In case of the-857C>T SNP the 

percentage of the homozygote wild type (C/C) 

individuals in the various groups is increasing 

parallel to the increase of the severity of 

inflammatory symptoms, suggesting that the 

major C allele is associated with acne vulgaris 

in our study population. The arrow indicates 

increasing severity of the inflammatory 

symptoms in the acne subgroups (Chi2 test for 

linear trend, p = 0.001). 

 

4.2.1.4 Studying the effect of the TNFA -857C>T polymorphism on the promoter activity 

of the TNFA gene by a luciferase reporter assay 

The TNFA -857C>T SNP was previously identified as a functional polymorphism in the 

promoter region of the TNFA gene (Hohjoh H 2001). In order to investigate the effect of the 

SNP on the regulation of the TNFA promoter activity in keratinocytes, we generated 

luciferase reporter constructs carrying the minor T or the major C allele at the -857th 

nucleotide position in the TNFA promoter fragment (pGL4.20-TNFA-857C-3’ and 

pGL4.20-TNFA-857T-3’, respectively). The two constructs were transiently transfected to 

HPV-KER cells and 24 hours later the cells were treated with the P. acnes 889 strain. We 

measured luciferase activities 6 hours post-treatment. 

In case of the construct containing the rare T allele (pGL4.20-TNFA-857T-3’) we 

measured significantly lower basal luciferase activities and this difference appeared to be 

statistically significant (Figure 24). P. acnes treatments lead to increased promoter activities 

in case of both constructs, but the induced luciferase levels were also lower when the 

pGL4.20-TNFA-857T-3’ plasmid was used (Figure 24). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hohjoh%20H%5BAuthor%5D&cauthor=true&cauthor_uid=11393654
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Figure 24. TNFA luciferase reporter 

assay. HPV-KER cells were treated with 

high dose of the P. acnes 889 (MOI = 300) 

for 6 hours. In the presence of the minor T 

allele-containing construct even though the 

fold changes were comparable, both the 

basal as well as the induced promoter 

activities were lower in case of the rate T-

allele containing construct. (All data were 

normalized to the basal activities measured 

in case of the common C-allele containing 

construct, without P. acnes treatment. Error 

bars: mean± SEM. Statistical analysis: one-

way ANOVA, Tuckey's post hoc test. (# comparison to the pGL4.20-TNFA-857C-3’ transfected, untreated 

control values (p<0.01), *comparison to  comparison to the pGL4.20-TNFA-857T-3’ transfected, untreated 

control values (p<0.05). 

 

4.2.2 Studying the role of selected polymorphisms of IL-1 family members in the genetic 

predisposition to acne 

The IL-1 family plays an important role in immune regulation. Among them the 

interleukin-1α (IL-1α) is the most studied member of this family and this is one of the 

best-known cytokines implicated in the pathogenesis of acne vulgaris (Aldana OL 1998, Guy 

R 2006, Guy R 1998). IL-1ra is a naturally occurring receptor antagonist protein encoded by 

the IL1RN gene. Genetic polymorphisms of these two genes have frequently been implicated 

in the pathogenesis of various chronic inflammatory diseases (Kawaguchi Y 2007, Jouvenne 

P 1999, Clay FE 1994, Tarlow JK 1994).  

In order to investigate the exact role of the IL-1A and IL1RN polymorphisms in the acne 

pathogenesis, we chose to study the IL-1A +4845G>T SNP and the IL1RN VNTR 

polymorphism. We analyzed them in the available control and acne patient samples also in 

retrospective case-control studies.  
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4.2.2.1 The rare T allele of the IL-1A +4845G>T SNP may be a genetic predisposing 

factor 

We determined the frequency of various genotypes and alleles of the IL-1A +4845 SNP 

in controls and acne patients (Table 7) and we found statistically significant differences using 

the co-dominant mode of inheritance (Pearson’s χ2 test, p = 0.03 in both cases). 

 

Table 7. Genotype and allele frequencies of IL-1A +4845G>T SNP in control individuals and 
acne patients. The minor T allele is positively associated with acne. 

 

The analysis of the distribution of the genotype frequencies in the three acne subgroups 

showed that the frequency of the IL-1A +4845 genotypes positively correlated with the 

severity of acne symptoms (Figure 25). We also analyzed the genders separately in the three 

acne subgroups, but did not observe marked gender specific differences (data not shown). 

Figure 25. Distribution of various 

genotypes in the control and acne 

subgroups. In case of the IL-1A 

+4845G>T polymorphism the percentage 

of individuals carrying the minor T allele 

in a homozygote form correlates with the 

severity of acne symptoms, suggesting 

that the minor T allele is positively 

associated with acne. (Chi2 for linear 

trend analysis, p = 0.03) 

 

 

4.2.2.2 The IL1RN VNTR polymorphism does not associate with the acne pathogenesis 

 

Finally we also analyzed the VNTR polymorphism of the IL1RN gene in controls and acne 

patients, frequently associated with the pathogenesis of different chronic inflammatory 

diseases (Clay FE 1994, Tarlow JK 1994) by PCR amplification and subsequent fragment size 

determination using an agarose gel electrophoresis. 
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Table 8. Genotype and allele frequencies of IL1RN VNTR polymorphism in control individuals and acne 

patients. In case of the IL1RN VNTR polymorphisms, we could not detect differences between the control and 

acne groups. 

 

We detected three different alleles in our study population: the most frequent, four-repeat-

containing allele 1 (86 bp)4, the two-repeat-containing allele 2 (86 bp)2, and allele 3, including 

five tandem repeats (86 bp)5. In the statistical analysis we did not observe any differences in 

the distribution of various genotype frequencies between the control and patients group and 

similar results were also found when the allele frequencies were compared. These results 

suggest that this polymorphism did not contribute to acne pathogenesis in our study 

population (Table 8, Figure 26). 

 

 

Figure 26. Distribution of various genotypes and alleles in the control and acne group. In case of the ILRN 

VNTR polymorphism, we could not detect differences in the genotype and allele frequencies between the control 

and acne groups. 
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5. Discussion 

The skin is a complex tissue composed of many different cell types, but not all of them of 

human origin. According our current view the specialized microbial flora that is located 

mostly on the surface of the skin and within the PSU is an important and integral component, 

and together they form a complex ecosystem (Grice EA 2008). The exact function of this 

microbial community is not yet fully understood, but it has been suggested that the balanced 

interaction of the microbial and the human cells is important for the maintenance and 

promotion of healthy skin functions (Zeeuwen PL 2013). 

The composition of skin microflora differs on various body parts, and although P. acnes 

is a major constituent, it is especially abundant in the sebum-rich regions from the start of the 

teenage years (Trivedi B 2012). This Gram-positive Actinobacteria preferentially resides on 

the face, shoulders, upper chest and back, which are also the regions that are most affected by 

acne vulgaris during puberty. Even though these data suggested the possible role of this 

commensal bacterium in acne pathogenesis for a long time, nowadays there is still a heavy 

scientific debate about its exact contribution (Dessinioti 2010, Shaheen 2011, Williams, 2012, 

Christensen GJ 2013). It is still not clear how and why an otherwise harmless commensal, 

such as the P. acnes bacterium, which is also a prominent member of the skin microbiome 

would turn to pathogenic. One of the possible explanations is that the P. acnes species is not 

homogenous, and the different phylogenetically distinct subgroups (phylogroups) that have 

recently been identified may also differ in their pathogenic properties, and thus can 

differentially affect various cellular and molecular properties of certain human cell types 

(McDowell A2013, Nagy I 2005). To analyze this we systematically investigated the effect of 

selected P. acnes strains (889, 6609 and ATCC 11828) representing different phylogroups on 

HPV-KER cells. Using a detailed, real-time, label-free, impedance measurement-based 

approach, we found clear strain and dose-specific differences. High-dose treatment with 

P. acnes 889 lead to a transient increase in the number of HPV-KER cells. This presumed 

increase in proliferation is very intriguing, as one of the initial and characteristic cellular 

changes that take place in vivo during acne lesion development is ductal hyperproliferation 

and hypercornification, the abnormal growth and differentiation of ductal keratinocytes of the 

PSU (Ganceviciene R 2006, Jeremy AH 2003). Our results suggest that selected P. acnes 

http://www.ncbi.nlm.nih.gov/pubmed?term=Christensen%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=24322878
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strains may contribute to these early cellular changes in areas where the local presence of the 

bacterium reaches a certain threshold cell density. 

High dose-treatment of P. acnes 889 and ATCC 11828 also caused the appearance of 

morphologically distinct, shrunken cells exhibiting extensive membrane irregularities. 

Recently, it was shown that these types of membrane reorganizations often occur in response 

to cellular damage caused, for example, by mechanical cell injury or the presence of various 

pore-forming toxins. Injured cells form blebs to localize and delimit the damaged area in an 

attempt to limit the loss of cellular constituents as well as to allow repair (Babiychuk EB 

2011). In case of severe, irreparable damage these events may even lead to cytotoxicity. 

Currently we hypothesize that such events may be responsible for the cellular changes we 

observed in the P. acnes-treated HPV-KER cultures, as we could not prove the presence of 

apoptotic or necrotic events using classical methods such as DNA laddering or flow 

cytometry (data not shown). The observed cytotoxic events did not appear to be the result of a 

cell-type-specific interaction: similar effects were also detected in washed human erythrocytes 

and other cell types treated with P. acnes (Csukás Z 2004, Nakatsuji T 2011). 

The production of bacterium-derived secreted pore-forming exotoxins may be responsible 

for the observed changes. Once such molecule, the P. acnes CAMP factor has been shown to 

be secreted at different rates by various strains (Nakatsuji T 2011, Valanne S 2005). However, 

the observation that the cellular changes correlated with marked pH changes in the cultures 

led us to hypothesize that these effects are due, at least partly to PA, a P. acnes metabolic 

product resulting from bacterial fermentation (Allaker RP 1987). This hypothesis is supported 

by reports that PA causes cytotoxicity in various cell types (Allaker RP 1987, Csukás Z 2004). 

We chose to test this hypothesis with in vitro experiments. Our MS analysis revealed the 

presence of AA and PA in the supernatant of P. acnes-treated HPV-KER cells. While the 

amount of AA was relatively invariant, strain- and dose dependent differences were measured 

in the PA levels, whereas BA was only detected in the high-dose P. acnes 889-treated cells. 

Next, we showed that the detected PA, BA and the part of AA is of bacterial origin. Taken all 

these together we hypothesized that PA may contribute to the biologic effect of P. acnes in 

keratinocytes,  and we tested this idea in further in vitro experiments (Figure S1). 

Currently, the available data on the concentration of PA in the PSU is limited. However, 

measurements in other, more easily accessible organs (e.g., the colon), where fermenting 
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bacterial species are present suggests that PA levels can be as high as 20–140 mM (Garland 

SH 2001). These concentrations are sufficient to control pathogenic microbes: minimal 

bactericidal or fungicidal PA concentrations for different species were found to be 10–25 mM 

(Wang Y 2014). Based on these data, we chose PA concentrations of 1–10mM for our in vitro 

experiments that was in a range often used by other investigators (Allaker RP 1985). Our 

results indicated that these treatments were sufficient to induce cellular changes in HPV-KER 

cells. 

The function of PA in the skin is expected to be complex. PA can contribute to skin 

acidification, which inhibits the colonization and growth of harmful invaders (Elias PM 2007). 

In addition, PA exhibits antimicrobial properties that may be independent of its acidic nature 

(Wang Y 2014). High PA concentrations, however, may also have deleterious effects, leading 

to cellular damage and, thus, compromising the integrity of the epidermal barrier. 

Our observations suggest that the cellular events that are initiated by the bacterium are 

strongly dose-dependent. This challenges the generally accepted view that there is no 

correlation between the bacterial load and the occurrence and severity of acne (Leeming JP 

1988). However, our findings support novel studies suggesting that P. acnes is detected more 

frequently in acne vulgaris than in control skin samples (Jahns AC 2012). The differences 

between earlier and current results may reflect variations in the sampling techniques used, as 

the bacterium is often present in follicles as a biofilm, making quantitative studies more 

challenging (Jahns AC 2012, Alexeyev OA 2012). 

Various P. acnes strains exhibited differences in our in vitro analyses. One of the studied 

strains, P. acnes 6609 appeared to be the least effective in our assays. MS analysis of the 

bacterial treated HPV-KER supernatants showed that the PA levels were the lowest in these 

samples, which effect may be a direct consequence of the impaired growth properties of 

P .acnes 6609, compared to the other two studied strains (Figure 18). We propose that such 

differences may contribute to the determination of individual acne lesion severity in the 

affected individuals.  

Overall, our results suggest that members of the microbiome modify the behavior of the 

human cells. Some of these cellular events are similar to what we can observe during the 

pathogenesis of skin diseases, such as in the case of acne. The exact outcome of the 

interaction of our microbiome and the human cells, however, are clearly dependent on the 
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exact microbiological properties of the bacterial cells, as well as on their abundance in the 

environment. 

Apart from the above described bacterial properties, the response of different individuals’ 

to the presence of the skin microbiome may also differ, and inherited factors may modify the 

outcome and extent of these reactions. To study these effects in more detail, we set out to 

identify and analyze genetic susceptibility or protective factors that may modify the risk of 

developing various clinical forms of acne vulgaris. Based on the available own and literature 

data we selected different genes playing an important role in the initiation and/or maintenance 

of P. acnes-induced innate immune and inflammatory events. Such molecules are the TNFα 

and IL-1α pro-inflammatory cytokines which are overexpressed in response to the recognition 

of the P. acnes bacterium following TLR 2 and 4 activation of the keratinocytes (Nagy I 2005, 

Kim J 2005). 

The TNFA gene is located on the short arm of chromosome 6 (6p21.3) in the major 

histocompatibility class III region, where a high degree of genetic polymorphism is a 

characteristic feature. Different types of polymorphisms exist in the TNFA promoter, 

including SNPs and microsatellites, whereas the coding region is much highly conserved 

(Waldron-Lynch F 2001). The cytokine TNFα is a key molecule in various biologic processes, 

and its misregulation can have deleterious effects for the host organism. The SNPs in the 

promoter region can play a role in the allele-specific regulation of gene expression and are 

often reported to act as protective or disease-predisposing factors in the development of 

various inflammatory and infectious diseases and certain types of cancers (Knight JC 2005, 

Smith AJ 2008). 

In classical retrospective case-control studies we investigated the role of 5 different SNPs 

located at the regulatory region of the TNFA locus. Among them no correlation has been 

found in case of the −1031T>C, −863C>A, -238G>ASNPs and acne. In case of the -308G>A 

polymorphism no association was detected in our overall dataset, but a significant association 

was discovered between the minor A allele and acne in female patients. These results differ in 

some aspect from the results obtained in other ethnic groups. The report by Baz et al. (Baz K 

2008) demonstrates a strong association between the minor A allele of this SNP and acne 

vulgaris in a Turkish population, but no gender-specific differences were detected. In contrast 

to that, Sobjanek et al. reported similar results on a Polish population, with no association 

http://www.ncbi.nlm.nih.gov/pubmed?term=Smith%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=19038572
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between their overall dataset and acne, but they did not investigate gender-specific differences 

(Sobjanek M 2009). The reason for these differences is currently not clear, but it is interesting 

that the frequency of the A allele exhibits large geographic difference from east to west and 

the regional variations might be explained by differences in the linkage groups associated 

with the TNFα -308 SNP in the studied, geographically distant populations (Baz K 2008, 

Szabó K 2011).  

Our analysis of the −857C>T SNP revealed that the frequent C allele exhibited a positive 

association with acne, whereas the minor T allele seemed to have a protective effect (Szabó K 

2011). In silico sequence analysis revealed that in the presence of the minor T allele, a novel 

transcription factor binding site (OCT-1) is generated at the promoter region of the TNFA 

gene, immediately next to a pre-existing NF-κB binding site. As a result, an altered regulation 

of the gene might be generated in response to various stimuli, which involves the activation of 

NF-κB (van Heel DA 2002). To functionally test this hypothesis we generated allele specific 

reporter constructs, in which the firefly luciferase gene was placed under the regulation of the 

proximal TNFA promoter region. Two construct were generated; one included the common 

(C) allele, whereas the other harbored the rare (T) allele at the site corresponding to the -857th 

nucleotide position (Lv K 2006). Furthermore, the proximal part of the 3’ untranslated region 

(3’ UTR) of the TNFA gene was also cloned into both constructs, similarly as it was 

described by Denys et al. (Denys A 2002). The reason for that was that this region is known 

to contain specific sequences required for the destabilization of the TNFA mRNA and as a 

result, the mRNA has a rapid turnover and a short half life in the cells. By this modification 

we wanted to mimic these properties of the endogenous TNFA mRNA to avoid the artificial 

accumulation of our synthetic constructs that can potentially mask subtle expression 

differences resulting from the effects of the -857 TNFA alleles. Our reporter analysis showed 

differences in the level of basal, as well as in the P. acnes induced luciferase levels, with 

significantly lower activities measured in case of the rare TNFA -857T allele. This suggests 

that NF-κB-driven signaling events may be compromised in case of this allele leading to a 

protection in the carrier individuals from the over activation of immune and inflammatory 

events in response to various external stimuli. 

Further case–control studies also revealed a positive association between the rare T allele 

of the +4,845(G>T) SNP of the IL-1A gene and acne, as well as a correlation between the 
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severity of acne symptoms and the frequency of the minor allele–containing genotypes (Szabó 

K. 2010). IL-1α protein is synthesized as pre-IL-1α and processed into the mature form by the 

enzymatic cut between amino acids 117 and 118 (Kobayashi Y 1990). Both isoforms are 

biologically active, with different subcellular localizations and hence biologic functions 

(Mosley B 1987, Lee S 2008). Pre-IL-1α has a predominantly nuclear localization, whereas 

the mature protein exhibits a cytoplasmic localization and can be secreted in response to the 

appropriate signals (Kobayashi Y 1990). The SNP at position +4,845 of the gene causes an  

 

Figure 27. The IL-1A 

+4,845 (G>T) SNP causes an 

alanine to serine substitution 

close to the proteolytic 

cleavage site and might lead 

to enhanced cleavage when 

the rare T allele is present. 

This results in a shift in the 

ratio of nuclear versus 

secreted IL-1α isoforms. 

Excess secretion of mature 

IL-1α can lead to an 

activation cycle of the same 

and surrounding cells in an autocrine and paracrine manner, leading to uncontrolled inflammatory reactions 

(Szabó K 2011). 

alanine to serine substitution close to the proteolytic cleavage site and might result in 

enhanced calpain-mediated cleavage when the rare T allele is present (Lee S 2008, 

Kawaguchi Y 2007). This leads to different ratios of nuclear versus secreted IL-1α isoforms 

and subsequently can have a potent effect on the regulation of epidermal homeostasis; carriers 

of the rare T allele may therefore be at higher risk of more severe acne symptoms (Figure 27) 

(Szabó K. 2010). 

Lastly, we have also investigated the role of the VNTR polymorphism of the IL1RN gene, 

a naturally existing IL-1 receptor antagonist. Although it has been demonstrated in many 

cases that various alleles of this polymorphism often act as predisposing factors in the 

development of chronic inflammatory diseases, no association with acne was reported (Szabó 

K 2010). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Mosley%20B%5BAuthor%5D&cauthor=true&cauthor_uid=2950091
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6. Conclusion 

Although the colonization of the human skin by the different commensal and symbiotic 

microbes starts immediately after birth, the P. acnes bacterium only becomes dominant in the 

PSU-rich skin regions during adolescence, when hormonal changes lead to follicular 

hyperplasia and increased sebum secretion. The bacterium can activate the pattern-recognition 

receptors and initiate cellular and molecular changes in the surrounding keratinocytes (Nagy I 

2005). These events may be responsible for the initiation of an alert state of the cells within 

the follicles. Further increasing sebum secretion due to hormonal changes will lead to 

enhanced P. acnes growth that may result increased cell proliferation and abnormal 

differentiation of ductal keratinocytes. Dead corneocytes together with the waxy sebum may 

generate a thick substance forming a plug, which closes the ductal region of the PSU and the 

formation of comedones. This plug prevents sebum and bacterially-derived metabolic 

products from being emptied from the follicles to the skin surface. The changing 

microenvironment and the increasing anaerobic conditions may induce a modulation in the 

bacterial metabolism, and fermentation of the sebum components will lead to the release of 

SCFAs by P. acnes (Greenman J. 1981). The resulting increased acidification and elevated 

levels of molecules such as PA, may lead to keratinocyte cytotoxicity and increased 

vulnerability and subsequent rupture of the PSU wall. Bacterial metabolites and sebum 

components now come in close contact with the deeper skin tissues leading to the formation 

of inflammatory skin lesions. The severity of these reactions, however, is individually 

different and may depend on the combinations of carried genetic predisposing and protective 

factors of key genes. 

All the above described events possibly take place in the adolescents, during a transition 

period in which adaptive immune events have not been established, or they are not 

accustomed to the presence of the P. acnes bacterium in our skin. When they are fully 

established, they may provide another, even higher level of control and regulation and thus 

contribute to the subsequent healing of acne symptoms after puberty. 

Our data proves that a complex interplay of many host- and bacterial factors are 

important for the maintenance of healthy skin functions. A shift of this balance, called 

dysbiosis, can lead to various diseases, such as the most common inflammatory skin disease, 

acne vulgaris. 
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9. Supplementary figure 

 

  

 

Figure S1. Identification of SCFAs in P. acnes culture supernatant samples. In order to prove that secreted 

SCFAs are by the different P. acnes strains, AB/AM-free KC-SFM culture medium was inoculated with live 

P. acnes bacterium alone using different starting concentrations (3 x 10
7
 and 9 x 10

7
 cfu/ml). After 72 hours, 

released SCFAs were measured in the culture supernatants by MS. While the level of acetic acid (AA) was 

relatively stable in the samples, the propionic acid (PA) and butyric acid (BA) levels exhibited strain- and dose 

dependent differences; higher amounts detected in the high dose (1 x 10
9
 cfu/ml) P. acnes 889 and ATCC 11828-

treated cultures. 
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Propionibacterium acnes is an important member of the 

skin microbiome. The bacterium can initiate signalling 

events and changes in cellular properties in keratino-

cytes. The aim of this study was to analyse the effect of 

the bacterium on an immortalized human keratinocyte 

cell line. The results show that various P. acnes strains 

affect the cell-growth properties of these cells differen-

tially, inducing cytotoxicity in a strain-speciic and dose-
dependent manner. We propose that bacterially secreted 

propionic acid may contribute to the cytotoxic effect. 

This acid has a role in maintaining skin pH and exhibits 

antimicrobial properties, but may also have deleterious 

effects when the local concentration rises due to excessive 

bacterial growth and metabolism. These results, together 

with available data from the literature, may provide in-

sight into the dual role of P. acnes in healthy skin and 

during pathogenic conditions, as well as the key molecu-

les involved in these functions. Key words: immortalized 
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Human skin harbours a specialized microbiota. Although 
the existence of this microbial community has been 
known for a long time, its exact function and contribu-
tion to healthy skin functions, and its role in the initiation 
of skin diseases during pathogenic conditions, has not 
been clearly established (1, 2). A complex and dynamic 
interaction has been recognized between the microbes 
and skin cells, and an increasing volume of data indicates 
their importance for the development and maintenance 
of healthy skin (3). Under certain conditions that are 
currently not well deined, dysbiosis may lead to the 
pathogenesis of different skin diseases, including the 
most common and well-known multifactorial, chronic 
inlammatory skin disease, acne vulgaris (4).

According to our current understanding, acne lesions 
start to develop around puberty as a result of hormonal 
changes that include an androgen excess, leading to 
enhanced sebum secretion and the subsequent hy-
percolonization of the otherwise commensal P. acnes 
bacterium (5). In addition, abnormal keratinocyte and 
sebocyte function, as well as innate immune and inlam-
matory events, have been shown to play a major role 
during lesion formation (6). However, the exact cause 
and sequence of these events, and whether P. acnes 

plays role in the initiation of the unusual keratinocyte 
and sebocyte behaviour, are not known (7).

P. acnes exhibits cytotoxic and haemolytic activities 
(8) and can activate the innate immune system via dif-
ferent pathogen recognition receptors, such as the Toll-
like receptors (TLR); TLR2 and TLR4 in particular have 
been implicated in these processes (9, 10). As a result of 
this activation, a transcriptional program is initiated that 
is responsible for the activation and subsequent nuclear 
translocation of the nuclear factor (NF)-kB transcrip-
tion factor (11). These activities result in changes in the 
expression of several genes, including those for proin-
lammatory cytokines, chemokines and antimicrobial 
peptides, subsequently leading to innate immune and 
inlammatory events in the affected cells (9, 10).

Based on sequence differences in bacterial recA and 
tly genes and the results of multi-locus sequence typing 
(MLST) experiments, 6 phylogenetic groups within the P. 

acnes species have been described (IA
1
, IA

2
, IB, IC, II, III) 

(12, 13). It has been suggested that the strains belonging 
to these phylogenetic groups might exhibit different viru-
lence properties as well as differentially affect the cellular 
and molecular properties of human keratinocytes (10, 14).

To systematically analyse this phenomenon, we 
investigated the effect of 3 selected P. acnes strains 
on various cellular responses of an in vitro cultured 
immortalized human keratinocyte cell line, HPV-KER 
(Polyánka & Szabó, in preparation). Results from dif-
ferent strains were compared in order to determine 
whether they exerted differential effects.

Our results show that the selected P. acnes strains have 
differential effects on the cellular properties (growth 
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and viability) of HPV-KER cells. The observed effects 
are dose-dependent and correlate well with the bacterial 
load that is present in the environment of the human 
cells. Previous studies suggest that pattern-recognition 
receptor activation (e.g. mediated by TLR2 and TLR4) 
by conserved bacterial pathogen-associated molecular 
patterns and the subsequent initiation of the NF-kB-
dependent transcriptional program may be responsible 
for the activation of an alternative keratinocyte program 
(10). Our results indicate that, apart from this signal trans-
duction, strain-speciic differences in the concentration 
of acidic metabolites secreted by P. acnes, including the 
short-chain fatty acid (SCFA) propionic acid (PA), may 
also contribute to the observed effects.

MATERIALS AND METHODS (See Appendix S11)

RESULTS

Strain-speciic effects of P. acnes on cellular properties 

of HPV-KER cells

In order to systematically analyse the effect of different 
P. acnes strains on the cellular properties of human in 

vitro cultured immortalized keratinocytes a novel cell 
line, HPV-KER, was used. These were shown to grow 
in monolayer, exhibit keratinocyte-like morphologies 
and respond to the presence of P. acnes with similar 
gene expression changes to those of normal human 
adult keratinocytes (NHEK) cells (Fig. S11).

To monitor growth properties, HPV-KER cells were 
seeded in 96-well plates at different cell densities (5000, 
10,000, 15,000 cells/well) and impedance-based ana-
lysis was performed using the xCELLigence system. 
Cell index (Ci) values were measured every 60 min for 
72 h and plotted as a function of time (Fig. S21).

The cells started to attach to the surface of the wells 
within 3 h, indicated by a rapid increase in Ci values, 

and, after a short lag period, they entered a growth phase. 
Plates seeded with 15,000 cells/well reached conluence 
36 h after plating, whereas plates seeded with other cell 
densities remained in the growth phase during the entire 
experiment. Plating densities of 10,000 cells/well were 
used in experiments to detect changes in HPV-KER 
proliferation in response to P. acnes treatment.

For determining the strain-speciic effects of P. acnes 
treatment, the experiment was repeated with the addi-
tion of the P. acnes strains 24 h after plating (Fig. 1). 

Our results suggest that, when using low multiplicity 
of infections (MOIs) (25 and 50), no P. acnes strain had 
a signiicant effect on the properties of HPV-KER cells 
compared with untreated controls. The cells continued 
to proliferate in the presence of the bacteria until they 
reached conluence, and subsequently entered a statio-
nary phase, marked by steady normalized cell index 
(nCi) values. In contrast, when the P. acnes 889 strain 
was applied at a high dose (MOI=300), a rapid eleva-
tion of the nCi values was detected at approximately 15 
h and continued until 45 h (Fig. 1A). However, when 
higher bacterial loads (MOIs of 200 or 300) of the 889 
and ATCC 11828 strains were applied, a small increase 
followed by a sharp decrease were noted (Fig. 1A and 
C, respectively). Similar changes were not observed for 
treatment with P. acnes 6609 strain (Fig. 1B).

The above experiment was repeated, but this time 
instead of the HPV-KER cells, we treated NHEK ones 
using the same conditions. Our results indicate that 
NHEK cells responded to the presence of the P. acnes 

strains and exhibited nCi changes similar to those ob-
served in the HPV-KER cells (Fig. S31).

P. acnes 889 and ATCC 11828 strains affect HPV-KER 

cell numbers

Ci changes can relect differences in the number or the 
speciic dimensions of cells attached to the electrodes. 
To determine the exact nature of the P. acnes-induced 
cellular events that corresponds to the observed nCi 1http://www.medicaljournals.se/acta/content/?doi=10.2340/00015555-2154

Fig. 1. Strain-speciic effects of P. acnes on cellular properties of HPV-KER cells. HPV-KER cultures (10,000 cells/well) were treated with: (A) P. acnes 

889, (B) 6609, and (C) ATCC 11828 at multiplicity of infections of 25–300, and normalized cell index (nCi) values were determined. The cell index (Ci) 
values were plotted as a function of time.
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differences, we monitored the effect of the different P. 

acnes strains on the number of cells in the HPV-KER 
cell cultures.

High dose (MOI=300) of the P. acnes 889 strain 
resulted in increased cell numbers compared with unt-
reated and low-dose treated samples (Fig. S4A1). None 
of the other treatments resulted in an increase in cell 
number. However, the rate of increase in the cell number 
decreased 12 h after high-dose treatment (MOI=300) 
with the ATCC 11828 strain.

High-dose treatment of the P. acnes 889 and ATCC 11828 

strains induces microscopic changes in HPV-KER cells

To visualize cellular changes induced by P. acnes 

strains, we stained untreated and treated (MOI=300) 
HPV-KER cells with rhodamine-labelled phalloidin 
and performed a luorescent microscopic analysis. 
We noted the presence of abnormally shaped rounded 

cells exhibiting irregular membrane morphology 48 h 
after treatment with the P. acnes 889 and ATCC 11828 

strains (white arrows). This effect was not apparent 
in cells treated with the P. acnes 6609 strain (Fig. 2).

P. acnes-induced cytotoxicity is strain- and dose-dependent

To determine whether P. acnes-induced cytotoxicity was 
due to damage of the keratinocyte membrane caused by 
the bacterium or by bacterially derived toxins, the amount 
of free lactate dehydrogenase (LDH) enzyme released 
to the supernatant of the damaged cells was determined 
using an LDH assay of keratinocytes treated with diffe-
rent doses (MOIs of 100 and 300) of the P. acnes strains.

Higher LDH levels were measured in cells treated 
with the 889 and ATCC 11828 strains. This effect ap-
peared to be dose-dependent at 72 h post-treatment. In 
contrast, no differences were detected in LDH levels 
in cells treated with the P. acnes 6609 strain (Fig. 3A).

Fig. 2. Microscopic analysis of P. acnes-treated HPV-KER cells. Immortalized keratinocytes were stained with rhodamine-labelled phalloidin to visualize 
cytoskeletal F-actin bundles for an overall evaluation of cellular morphology. The presence of abnormally shaped, round cells was detected in the cultures 
treated with: (C) P. acnes 889 and (D) ATCC 11828 (multiplicity of infections 300), exhibiting a high degree of membrane irregularity (marked with 
white arrows and arrowheads), which was not apparent in: (A) control and (B) P. acnes 6609-treated cultures. (Arrowheads indicate cells depicted at high 
magniication in the lower left corner. Scale bars: 10 µm).

Fig. 3. Cytotoxicity of P. acnes strains. HPV-KER cells and washed human erythrocytes were treated with P. acnes strains. After 72 h, released (A) lactate 
dehydrogenase (LDH) from HPV-KER cells, and (B) haemoglobin from erythrocytes, were measured from cleared supernatants. High-dose (multiplicity 
of infection =300) treatment with the P. acnes 889 and ATCC 11828 strains led to increased levels of free LDH and haemoglobin, which is indicative of 
membrane damage and subsequent cytotoxicity. (Mean of 3 parallel experiments. Statistical analysis: one-way analysis of variance (ANOVA), Tuckey’s post 

hoc test. *p < 0.05, #p < 0.01, compared with untreated control values, marked with solid black bars. Results of P. acnes 889 6609 and ATCC 11828-treated 
cleared supernatant samples are represented by striped, solid grey and dotted bars, respectively).
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P. acnes exhibits a strain-speciic haemolytic effect on 
human erythrocytes

To test whether the cytotoxic events caused by the 
selected P. acnes strains was speciic to keratinocytes, 
we also treated washed human erythrocytes with the 
bacterium (MOI=300). Spectroscopic analysis was 
performed to quantify the amount of free haemoglobin 
released to the supernatant of the cell cultures as a 
result of possible membrane damage.

The free haemoglobin results were similar to the 
results of the LDH assay: treatment with the P. acnes 

889 and ATCC 11828 strains increased the concentration 
of free haemoglobin in the culture supernatants at 72 
h post-treatment, whereas treatment with the P. acnes 

6609 strain had no such effect (Fig. 3B).

Some P. acnes strains increase the pH of HPV-KER cell 

cultures

To determine pH changes induced by P. acnes, HPV-
KER cells were plated in serum-free Dulbecco’s Mo-
diied Eagle’s Medium, high glucose (DMEM-HG) 
media, which contains a pH-sensitive phenol-red 
dye. We observed enhanced acidiication of cultures 
treated with the P. acnes 889 and ATCC 11828 strains 
by visual inspection. The extent of acidiication was 
dose-dependent (Fig. S51). 

P. acnes production of PA may contribute to media acidii-
cation and cellular changes in the HPV-KER cultures

The P. acnes bacterium generates SCFAs during meta-
bolism. To determine whether the presence of SCFAs 
contributes to the observed cellular changes, we treated 
the HPV-KER cells with PA. Microscopic analysis 
of cells treated with SCFAs and rhodamine-labelled 
phalloidin revealed similar irregular membrane morp-
hologies observed for P. acnes treatment. This result 
suggests that PA may be a factor leading to the observed 
keratinocyte morphological changes (Fig. 4).

PA secretion of P. acnes is strain- and dose-dependent

To determine whether there are differences in the 
amount of P. acnes-secreted SCFAs, we treated HPV-
KER cells with the bacterium (MOI 0 =100, 300), and 
the supernatant samples were subjected to mass spec-
trometry (MS) analysis.

The presence of acetic acid (AA) and PA were de-
tected in all samples. While the AA levels were similar 
in all cases, the amount of PA varied in a strain-, and 
dose-dependent manner at 72 h post-treatment (Fig. 5); 
higher levels were detected when higher bacterial loads 
(MOI  =300) of the 889 and ATCC 11828 strains were 
applied (Fig. 5D and H, respectively). Low levels of 
butyric acid (BA) were also detected in the high-dose 
(MOI = 300) P. acnes 889-treated HPV-KER culture 
supernatants (Fig. 5D).

In order to prove that the detected SCFAs are bac-
terially-derived, we repeated the experiments, but this 
time in the absence of HPV-KER cells. While some AA 
was already present in the culturing media, bacterial 
fermentation clearly resulted in the release of additional 
amounts. PA and BA were only detected in the bacterial-
treated samples under certain conditions (Fig. S61).

Combined treatment with the P. acnes 6609 strain and 

PA induces cytotoxicity

To determine whether PA plays a role in the bacterium-
induced cytotoxic effects, we treated washed human 
erythrocytes with the P. acnes 6609 strain (MOI=300) 
in the presence of 1, 2 and 5 mM PA (Fig. S71). While 
this strain did not induce cytotoxicity alone, it led to the 
appearance of increasing levels of free haemoglobin pa-
rallel with the increasing concentrations of PA (Fig. S61).

DISCUSSION

Human skin harbours a specialized microbial lora that 
is located mostly on the surface of the skin and within 

Fig. 4. Microscopic analysis of propionic acid 
(PA)-treated HPV-KER cells. (A) Control 
and (B) 48 h PA-treated HPV-KER cells were 
stained with rhodamine-labelled phalloidin 
and subjected to microscopic analysis. Cells 
exhibiting irregular membrane morphology 
were detected in the PA-treated cultures. 
(Arrowheads indicate cells depicted at high 
magniication in the lower left corner. Scale 
bars: 10 µm).
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the pilosebaceous unit (15). The exact function of this 
microbial community is not yet fully understood; ho-
wever, it has been suggested that the interaction of the 
skin lora with skin cells is important for the mainte-
nance and promotion of healthy skin functions (3). The 
composition of skin microbiota differs on various body 
parts, and although P. acnes is a major constituent, it 
is especially abundant in the sebum-rich regions (16). 
This Gram-positive Actinobacteria resides preferen-
tially on the face, shoulders, upper chest and back, 
which are also the regions that are most affected by 
acne vulgaris during puberty. Thus, P. acnes has long 
been believed to play a role in the pathogenesis of this 
skin disease (4).

Detailed microbiological and, later, sequence-based 
phylogenetic analyses of various clinical isolates have 
indicated that this bacterial species is not homogenous, 
and different phylogenetically distinct subgroups (phy-
logroups) have been identiied (13). It has been suggested 
that different strains belonging to these phylogroups 
may differentially affect various cellular and molecular 
properties of certain human cell types (10, 17).

In order to gain a better understanding of the proper-
ties of the interaction between the skin-colonizing P. 

acnes bacterium and the epidermal keratinocytes, we 
set up and systematically analysed an in vitro model 
system, using HPV-KER, a human immortalized ke-
ratinocyte cell line, previously established and charac-
terized in our laboratory. We wanted to use a cell line 
that is easy to maintain, the availability of which is not 
limited, but which responds to the presence of the bac-
terium in vitro similarly to NHEK cells. In preliminary 
experiments we evaluated the well-known and widely 

used HaCaT cells. However, possibly because of their 
abnormally high NF-kB transcription factor levels (18), 
which is a known mediator of the TLR-mediated signal-
ling events, HaCaT cells responded differently com-
pared with NHEKs. In contrast, the newly established 
immortalized keratinocyte cell line HPV-KER reacted 
similarly to the presence of the bacterium (Figs S1–S31).

Next, we systematically analysed the effect of se-
lected P. acnes strains (889, 6609 and ATCC 11828) 
representing different phylogroups on HPV-KER cells. 
Using a detailed, real-time, label-free, impedance-based 
approach, we found clear strain- and dose-speciic dif-
ferences.

High-dose treatment with P. acnes 889 leads to a 
transient increase in the number of HPV-KER cells up 
to 12 h after treatment. This presumed increase in proli-
feration is very intriguing, as one of the initial and cha-
racteristic cellular changes that take place in vivo during 
acne lesion development is ductal hypercorniication. 
This hyperproliferation and abnormal differentiation of 
keratinocytes is particularly notable for keratinocytes 
lining the ductal region of the pilosebaceous units (19, 
20). In the follicles, P. acnes mostly comes into direct 
contact with differentiated keratinocytes, whereas 
proliferating basal cells, that are modelled in our sys-
tem reside in deeper tissue compartments. Our results 
suggest that selected P. acnes strains may contribute to 
these early changes in areas where the local presence of 
the bacterium reaches a certain threshold cell density 
through the presence of keratinocyte and/or bacterially-
derived secreted factors that may reach these cells.

A drop in nCi values was noted in cultures treated 
with high doses of P. acnes 889 and ATCC 11828. 

Fig. 5. Identiication of short-chain fatty acids (SCFAs) in HPV-KER culture supernatant samples. (C–H) HPV-KER cells were treated with P. acnes 
strains. After 72 h, released SCFAs were measured by mass spectrometry (MS). While the level of acetic acid (AA) was relatively stable in the samples, 
the propionic acid (PA) levels exhibited strain- and dose-dependent differences; higher amounts detected in the high-dose (MOI=300) P. acnes 889 and 
ATCC 11828-treated cultures. In (A) the control medium (keratinocyte serum-free medium (KC-SFM), and (B) the untreated HPV-KER supernatant 
samples the presence of PA and butyric acid (BA) were not detected.
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Microscopic analysis of these cultures revealed the 
presence of morphologically distinct, shrunken cells 
exhibiting extensive membrane irregularities. Recently, 
it was shown that these types of membrane reorganiza-
tions often occur in response to cellular damage caused, 
for example, by mechanical cell injury or the presence 
of various pore-forming toxins. Injured cells form blebs 
to localize and delimit the damaged area in an attempt to 
limit the loss of cellular constituents and to allow repair 
(21). We hypothesize that the observed morphological 
changes and, in the case of severe, irreparable damage, 
cell morphological changes and death, are responsible 
for the observed drop in nCi values detected in our ex-
periments. These events did not appear to be the result 
of a cell-type-speciic interaction: similar effects were 
also detected in washed human erythrocytes and other 
cell types treated with P. acnes (8, 14).

The production of bacterium-derived secreted pore-
forming exotoxins may be responsible for the observed 
changes. One such molecule, the P. acnes Christie, At-
kins, Munch-Peterson (CAMP) factor, has been shown 
to be secreted at a different rates by various strains (8, 
22). However, the observation that the cellular changes 
correlated with marked pH changes in the cultures led us 
to hypothesize that these effects are due to PA, a P. acnes 
metabolic product resulting from bacterial fermentation 
(23). This hypothesis is supported by reports that PA 
causes cytotoxicity in various cell types (14, 23). We 
chose to test this hypothesis with in vitro experiments. 
Our MS analysis revealed the presence of AA and PA in 
the supernatant of P. acnes-treated HPV-KER cells, and 
strain- and dose-dependent differences were measured 
in the PA levels. We also measured BA, but only in the 
high-dose P. acnes 889-treated cells. Next, we proved 
that the detected PA, BA and the majority of AA is of 
bacterial origin. Based on these results, we hypothe-
sized that PA may be responsible for the previously 
observed effects, and we tested this idea in further in 

vitro experiments (Fig. S61).
Available data on the concentration of PA in the 

pilosebaceous unit are limited. However, measure-
ments in other, more easily accessible, organs (e.g. the 
colon), where fermenting bacterial species are present 
suggests that PA levels can be as high as 20–140 mM 
(24). These concentrations are suficient to control pat-
hogenic microbes: minimal bactericidal or fungicidal 
PA concentrations for different species were found to 
be 10–25 mM (25). Based on these data, we chose PA 
concentrations of 1–10 mM for our in vitro experiments. 
Our results indicate that these treatments were suficient 
to induce cellular changes in HPV-KER cells.

The function of PA in the skin is expected to be com-
plex. PA contributes to skin acidiication, which inhibits 
the colonization and growth of harmful invaders (26). 
In addition, PA exhibits antimicrobial properties that 
may be independent of its acidic nature (25). High PA 

concentrations, however, together with other bacterial 
factors, may also have deleterious effects, leading to 
cellular damage and, thus, compromising the integrity 
of the epidermal barrier.

Our observations suggest that the cellular events that 
are initiated by the bacterium are strongly dose-depen-
dent. This challenges the generally accepted view that 
there is no correlation between the bacterial load and the 
presence of acne (27). However, our indings support 
novel studies suggesting that P. acnes is detected more 
frequently in acne vulgaris than in control skin samples 
(28). The differences between earlier and current results 
may relect variations in the sampling techniques used. 
The bacterium is present in follicles as a bioilm, making 
quantitative studies more challenging (28, 29).

One of the studied strains, P. acnes 6609 appeared to 
be the least effective in our in vitro assays. MS analysis 
of the bacterial treated HPV-KER supernatants showed 
that the PA levels were the smallest in these samples. 
This appears to be the direct consequence of the impai-
red growth properties of P. acnes 6609, compared with 
the other 2 studied strains (Fig. S81). Such differences 
may contribute to the determination of individual acne 
lesion severity in the carriers.

Similar to other members of the skin microbiome, va-
rious P. acnes strains activate pattern-recognition recep-
tors to initiate signalling events in the cytoplasm of the 
affected cells (10). Thus, the presence of the bacterium 
may be responsible for the initiation of an alert state in 
the surrounding cells within the follicles. According to 
our current model, a plug closes the ductal region of 
the pilosebaceous unit during comedo formation. The 
environment within the follicle (increasingly anaerobic 
conditions, constant temperature and moisture, conti-
nuously generated sebum) aids the growth of P. acnes. 
The plug prevents sebum and bacterially-derived me-
tabolic products from being emptied from the follicles 
to the skin surface, generating a gradual change in the 
microenvironment. P. acnes is an anaerobic, aeroto-
lerant species, and as a result has the ability to grow 
under both anaerobic and microaerobic conditions. 
Thus, in the healthy follicles it is capable of oxidative 
phosphorylation under microaerophilic conditions. 
During comedo formation, the increasingly anaerobic 
conditions may induce a switch in the bacterial metabo-
lism to fermentation of the sebum components and the 
subsequent release of SCFAs (30). As a result, excess 
acidiication and increased concentration of certain 
molecules, such as PA, may lead to keratinocyte cyto-
toxicity, compromising the comedo wall and making it 
more vulnerable. This vulnerability, together with the 
increasing concentrations of molecules that promote 
innate immune and inlammatory events, and the seve-
rity of lesions, increases. The effect of PA is strikingly 
similar in the pathogenesis of periodontitis, another 
bacterially-mediated human inlammatory disease (31).
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7Propionic acid in pathogenicity of P. acnes

Together with available data from the literature our 
results may enhance the understanding of the dual 
role of P. acnes in healthy skin and during pathogenic 
conditions.
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Abstract Inflammation plays an important role in acne

pathogenesis, and pro-inflammatory cytokines are key

factors in these events. Tumor necrosis factor alpha (TNFa)

is a central molecule coded by a gene that shows high level

of genetic polymorphisms especially in its promoter region.

Single nucleotide polymorphisms (SNPs) of the TNFa gene

have been shown to be associated with an increased risk to

develop chronic inflammatory diseases. In order to find out

if known TNFa regulatory SNPs (-1031T[C, -857C[T,

-863C[A, -308G[A, -238G[A) have a role in the

development of the inflammatory reactions in acne vulga-

ris, we analyzed our genomic collection in a retrospective

case–control study using the PCR–RFLP method, and we

compared the resulting genotype and allele frequencies.

There were no significant differences in the observed

genotype or allele frequencies between the control and

acne group in case of the -1031, -863, -238 SNPs;

however, the TNFa -857 minor T allele was found to act

as a protective factor in our study population in acne, and a

higher occurrence of the minor -308 A allele in female

acne patients was also noted. Genetic variants of the TNFa

gene may affect the risk of acne vulgaris. Our results can

help to elucidate the molecular events leading to acne

development.

Keywords Acne vulgaris �

Tumor necrosis factor alpha (TNFa) �

Single nucleotide polymorphism � -857C[T � -308G[A

Introduction

The pathogenesis of acne vulgaris is a complex process

in which several factors have been implicated [24]

including excessive androgenic stimulation and sebum

secretion [32], abnormal differentiation, proliferation and

hyperkeratinisation of the epidermal keratinocytes lining

especially the duct region of the sebaceous unit [31].

These processes lead to occlusion of the follicular ori-

fice, and subsequent hypercolonisation by Propionibac-

terium acnes (P. acnes) bacterium and inflammation. The

affected persons’ individual genetic background may also

play an important role. Despite the difficulties associated

with the study of polygenic diseases such as acne vul-

garis, genetic studies clearly demonstrate the importance

of hereditable genetic factors in acne predisposition

[2, 4, 14, 16, 30].

Epidermal keratinocytes are important regulators of the

immune responses of healthy human skin in response to

various external stimuli, as they are able to produce
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cytokines, chemokines and antimicrobial peptides in

response to pathogenic attacks [6, 15, 28]. Toll-like

receptor 2 and 4 (TLR2, TLR4) are key molecules for the

recognition of P. acnes bacterium [23, 28]. The activation

of these receptors initiates a signaling cascade in the

cytoplasm of these cells and this subsequently causes the

activation of the NF-jB transcription factor which, in

turn, regulates the expression of a number of genes,

among them the genes coding the cytokines tumor

necrosis factor alpha and interleukin-1 alpha (TNFa and

IL-1a) [33, 39]. Both of the above-mentioned cytokines

have been implicated in the initiation and maintenance of

inflammatory and immune responses in acne lesions. They

have been shown to exhibit elevated expression already at

the early stage when keratinocyte hyperproliferation and

abnormal differentiation occur during comedo formation

and also in later stages when extensive inflammation takes

place [7, 20].

Simple monogenic genetic disorders are often caused

by various missense and nonsense mutations that happen

in the protein coding part of disease susceptibility genes.

It has been proposed that the genetic susceptibility to

complex diseases, however, is frequently a result of a

different set of mutations, namely polymorphisms that

affect the expression rather than the structure and func-

tion of various genes [19]. The TNFa locus is located

within the highly polymorphic major histocompatibility

III (MHC III) region on chromosome 6p21.3. There are

many single nucleotide polymorphisms (SNPs) within

this gene, especially in its 50 regulatory region, whereas

the coding- and the 30-regions show a much higher

degree of conservation [41]. The most frequent promoter

SNPs in Caucasian populations are situated at positions

-238 [8, 41], -308 [47], -857 [17], -863 and -1031

[18] in relation to the transcription start site. Several

reports indicate that these SNPs might affect the regu-

lation of gene expression by, e.g., interfering with tran-

scription factor binding sites and other regulatory

elements leading to allele-specific variations in the gene

expression levels.

In order to investigate whether known and relatively

frequent TNFa promoter polymorphisms predispose the

carrier individuals to develop acne, we studied five SNPs

(-238G[A, -308G[A, -857C[T, -863C[A, and

-1031T[C) and performed PCR–RFLP analyses to

compare the frequency of various genotypes in control

individuals and acne patients. In case of the -857C[T

SNP we found a statistically significant association

between the major C allele and acne, and higher occur-

rence of the minor -308 A allele in female acne patients

was also noted, although its significance in acne vulgaris

needs more detailed analysis.

Results

TNFa -1031T[C, -863C[A, -238G[A

polymorphisms are not associated with acne vulgaris

The number of patient and control samples that was gen-

otyped for the TNFa -1031T[C, -863C[A, -238G[A

polymorphisms is shown in Table 1. No association has

been detected between any alleles of the -1031T[C,

-863C[A, -238G[A polymorphisms and acne vulgaris,

as the distribution of the various genotype and allele fre-

quencies in control individuals was similar to that of acne

patients (-1031: T/T = 68.7%, T/C ? TT = 31.3 in

controls vs. T/T = 68.8%, T/C ? TT = 31.2% in acne

patients, Pearson’s v2 test 2 9 2 table, P = 1; -863:

C/C = 76.6%, C/A ? AA = 23.4% in controls vs. C/C =

77.9%, C/A ? AA = 22.1% in acne patients, Pearson’s

v2 test 2 9 2 table, P = 0.781; -238: G/G = 92.7%,

G/A ? AA = 7.3% in controls vs. G/G = 90.8%, G/A ?

A/A = 9.2% in acne patients, Pearson’s v2 test 2 9 2

table, P = 0.539).

We have not detected any association between the

severity of acne and the different genotypes either (v2 for

linear trend analysis, P = 0.534, 0.951, and 0.984,

respectively), and this was also the case when we sub-

divided both the control and the acne group into females

and males to detect potential gender-specific differences

(Table 2). Our data suggest that these polymorphisms are

not involved in acne predisposition in our study

population.

TNFa -857C[T polymorphism is associated with acne

vulgaris

Altogether 124 control and 221 acne patients were geno-

typed for the TNFa -857C[T SNP. The observed geno-

type and allele frequencies for acne patients and controls

are presented in Table 1. In case of this SNP the genotype

distribution of control individuals (C/C: 53.2%, C/T ? T/T:

46.8%) showed a statistically significant difference when

compared to acne patients (C/C: 68.3%, C/T ? T/T:

31.7%), (Pearson’s v2 test 2 9 2 table, P = 0.010). Inter-

estingly, our data showed that in case of the-857C[T SNP

the major C allele was positively associated with acne, as

the odds of developing acne vulgaris were increased for the

homozygote wild type (C/C) individuals (OR = 1.793, at

95% CI 1.14–2.81).

The severity of the acne was also in association with the

TNFa genotypes (v2 test for linear trend, P = 0.001).

Interestingly, the percentage of C/C versus combined

C/T ? T/T individuals was similar in controls compared to

Group 1 of acne patients, containing individuals exhibiting

20 Arch Dermatol Res (2011) 303:19–27
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a non-inflammatory form of acne. In contrast, decreased

minor allele frequencies were detected in patients exhib-

iting more and more severe symptoms (Fig. 1a). Similar

results were obtained when we looked at males and females

separately, suggesting that in case of the -857C[T SNP

the observed association could be observed in both

genders.

The TNFa -308G[A polymorphism and acne vulgaris

126 control individuals and 229 acne patients were geno-

typed for the TNFa -308G[A. The genotype and allele

frequencies found in acne patients and controls are pre-

sented in Table 1. In case of this SNP the genotype

distribution of controls (G/G: 75.4%, G/A ? A/A: 24.6%)

Table 1 Genotype and allele

frequencies of various promoter

SNPs of the TNFa gene in

control individuals and acne

patients

a v2 analysis with Pearson’s

correction
b Odds ratio of homozygote and

heterozygote carriers of the

minor alleles was determined

together against homozygotes of

the common alleles

Polymorphism Control Acne vulgaris v2 (P value)a Odds

ratiob
95% CI

n (%) n (%)

TNFa -1031T[C 112 224

Genotype frequency 1 1 0.61–1.63

T/T 77 (68.7) 154 (68.8)

T/C 32 (28.6) 57 (25.4)

C/C 3 (2.7) 13 (5.8)

Allele frequency 0.619

T 186 (83.1) 365 (81.5)

C 38 (16.9) 83 (18.5)

TNFa -863C[A 111 222

Genotype frequency 0.781 0.93 0.54–1.59

C/C 85 (76.6) 173 (77.9)

C/A 25 (22.5) 43 (19.4)

A/A 1 (0.9) 6 (2.7)

Allele frequency 0.933

C 195 (87.8) 389 (87.6)

A 27 (12.2) 55 (12.4)

TNFa -857C[T 124 221

Genotype frequency 0.010 1.79 1.14–2.81

C/C 66 (53.2) 151 (68.3)

C/T 54 (43.6) 64 (29.0)

T/T 4 (3.2) 6 (2.7)

Allele frequency 0.023

C 186 (75.0) 366 (82.8)

T 62 (25.0) 76 (17.2)

TNFa -308G[A 126 229

Genotype frequency 0.092 1.52 0.93–2.48

G/G 95 (75.4) 153 (66.8)

G/A 30 (23.8) 72 (31.4)

A/A 1 (0.8) 4 (1.8)

Allele frequency 0.095

G 220 (87.3) 378 (82.5)

A 32 (12.6) 80 (17.5)

TNFa -238G[A 124 229

Genotype frequency 0.539 1.29 0.57–2.91

G/G 115 (92.7) 208 (90.8)

G/A 9 (7.3) 20 (8.7)

A/A 0 (0) 1 (0.5)

Allele frequency 0.467

G 239 (96.3) 436 (95.2)

A 9 (3.6) 22 (4.8)
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showed a difference when compared to acne patients (G/G:

66.8%, G/A ? A/A: 33.2%), but this difference was not

statistically significant (Pearson’s v2 test, 2 9 2 table,

P = 0.092).

Also, no association was detected between the severity

of acne and the distribution of TNFa genotypes in the

various subgroups (v2 test for linear trend, P = 0.101). The

structured data showed that there was a positive association

Table 2 Gender-specific genotype and allele frequencies of various promoter SNPs of the TNFa gene in control individuals and in subgroups of

acne patients

Polymorphism Genotypes, n (%)

Combined Female Male

-1031T[C TT TC ? CC P value* TT TC ? CC P value* TT TC ? CC P value*

Control (n = 112)

0 77 (33.3) 35 (33.3) 0.534 55 (38.7) 28 (37.8) 0.483 22 (24.7) 7 (22.6) 0.590

Acne (n = 224)

1 14 (6.1) 11 (10.5) 11 (7.7) 10 (13.5) 3 (3.4) 1 (3.2)

2 108 (46.8) 48 (45.7) 63 (44.4) 34 (45.9) 45 (50.6) 14 (45.2)

3 32 (13.9) 11 (10.5) 13 (9.2) 2 (2.7) 19 (21.3) 9 (29.0)

-863C[A CC CA ? AA P value* CC CA ? AA P value* CC CA ? AA P value*

Control (n = 111)

0 85 (32.9) 26 (34.7) 0.951 61 (38.1) 18 (36.0) 0.870 24 (24.5) 8 (32.0) 0.955

Acne (n = 222)

1 19 (7.4) 5 (6.7) 17 (10.6) 4 (8.0) 2 (2.0) 1 (4.0)

2 121 (46.9) 33 (44.0) 69 (43.1) 26 (52.0) 52 (53.1) 7 (28.0)

3 33 (12.8) 11 (14.7) 13 (8.1) 2 (4.0) 20 (20.4) 9 (36.0)

-857C[T CC CT ? TT P value* CC CT ? TT P value* CC CT ? TT P value*

Control (n = 124)

0 66 (30.4) 58 (45.3) 0.001 50 (35.2) 41 (48.8) 0.012 16 (21.3) 17 (37.8) 0.029

Acne (n = 221)

1 14 (6.5) 12 (9.4) 13 (9.2) 11 (13.1) 1 (1.3) 2 (4.4)

2 104 (47.9) 47 (36.7) 67 (47.2) 29 (34.5) 37 (49.3) 18 (40.0)

3 33 (15.2) 11 (8.6) 12 (8.5) 3 (3.6) 21 (28.0) 8 (17.8)

-308G[A GG GA ? AA P value* GG GA ? AA P value* GG GA ? AA P value*

Control (n = 126)

0 95 (38.3) 31 (29.0) 0.101 69 (44.5) 22 (30.6) 0.022 26 (28.0) 9 (25.7) 0.918

Acne (n = 229)

1 20 (8.1) 9 (8.4) 16 (10.3) 8 (11.1) 4 (4.3) 1 (2.9)

2 104 (41.9) 52 (48.6) 63 (40.6) 34 (47.2) 41 (44.1) 18 (51.4)

3 29 (11.7) 15 (14.0) 7 (4.5) 8 (11.1) 22 (23.7) 7 (20.0)

-238G[A GG GA ? AA P value* GG GA ? AA P value* GG GA ? AA P value*

Control (n = 124)

0 115 (35.6) 9 (30.0) 0.984 80 (39.2) 9 (40.9) 0.544 35 (29.4) 0 (0) 0.193

Acne (n = 229)

1 25 (7.7) 4 (13.3) 21 (10.3) 3 (13.6) 4 (3.4) 1 (12.5)

2 142 (44.0) 15 (50.0) 88 (43.1) 10 (45.5) 54 (45.4) 5 (62.5)

3 41 (12.7) 2 (6.7) 15 (7.4) 0 (0) 26 (21.8) 2 (25.0)

* Statistical analysis using the v2 for linear trend probe

Group 0: control patients, Group 1: acne comedonica subgroup of patients, Group 2: acne papulo-pustulosa subgroup of patients, Group 3:

nodulo-cystic subgroup of patients
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between the minor -308 A allele and acne in females

(v2 test for linear trend, P = 0.022), whereas this was not

the case in males (v2 test for linear trend, P = 0.918)

(Table 2).

Geographic differences of the observed allele

frequencies of TNF -308G[A SNP

We have also compared the observed allele frequencies of

the TNF -308G[A SNP with the two other published

dataset investigating the association of this polymorphism

and acne vulgaris [5, 37]. We found that the frequency of

the minor allele containing G/A ? A/A genotypes were

different in the three studies (Turkish population: 13.2%;

Polish population: 34.6%, our results: 24.6%), and our data

lie in between the other two observed ones (Table 3).

Discussion

In the healthy epidermis the keratinocytes slowly differ-

entiate from the basal epidermal layer through the squa-

mous, granular, and cornified layers. According to the

keratinocyte activation hypothesis by Freedberg et al. [12]

these natural differentiation events are often disturbed by

various external stimuli that lead to the activation of epi-

dermal cells. In this state alternative pathways are being

opened for the affected cells that will subsequently lead to

disturbed cell proliferation and differentiation. This special

state is also marked by changes in the cellular cytoskeletal

structures, and altered expression of various genes, e.g.,

cell surface receptors, keratins, adhesion molecules, cyto-

kines. Key molecules that have been shown to play an

important role in these events include TNFa, transforming

growth factor alpha (TGFa), transforming growth factor

beta (TGFb), interferon gamma (INFc), and interleukin 1

(IL-1) [3, 12, 27, 29]. It has been proposed in the literature

that keratinocyte activation might play an important role in

acne pathogenesis [7], but further studies are required to

decipher the primary initiator of the events, the exact nat-

ure of this activated state, and the sequence of steps that

take place at the molecular level.

After the initiation of lesions, in later stages of acne

development, inflammation will dominate the pathogenic

events. Severe inflammation can develop after the wall of

the comedo brakes because of the increasing amount of

stagnant sebum that comes into contact with the dermis.

Free fatty acids in the sebum are cytotoxic, and P. acnes

secreted lipases also have an irritative effect. As neutro-

phils arrive to the follicles they also release various

inflammatory factors such as lysosomal enzymes and

Fig. 1 Distribution of various genotypes in the control and acne

subgroups. Gray bars represent the percentage of homozygote wild

type individuals, whereas white bars show the percentage of

individuals carrying one or two copies of the minor alleles (hetero-

zygotes, or homozygote mutants) in the different groups. a In case of

the -857C[T SNP the percentage of the homozygote wild type (C/C)

individuals in the various groups is increasing parallel to the increase

of the severity of inflammatory symptoms, suggesting that it is the

major C allele that is associated with acne vulgaris in the studied

population. b In case of the -308G[A SNP the ratio of combined

heterozygote and homozygote mutant (GA ? AA) female patients are

increasing parallel to the severity of inflammatory symptoms in the

various acne subgroups, suggesting that the minor -308 A allele

might have a role in acne pathogenesis in the female patients of the

studied population

Table 3 Observed TNFa -308G[A genotype frequencies of control

individuals in various populations (acne studies)

GG, n (%) GA, n (%) AA, n (%)

Turkish populationa 99 (86.8) 15 (13.2) 0 (0)

Polish populationb 49 (65.4) 25 (33.3) 1 (1.3)

Present study 95 (75.4) 30 (23.8) 1 (0.8)

a Baz et al. [5]
b Sobjanek et al. [37]
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reactive oxygen species that will damage the follicle wall

even further [1, 26, 43], and thus exacerbate the

inflammation.

Data gathered so far about the role of TNFa in the

pathogenesis of acne vulgaris suggest that this cytokine

might be an important molecule and has a dual role in acne

pathogenesis. On one hand it seems to be involved in early

stages in the initiation of lesion formation, in the regulation

of innate immune events. On the other hand, TNFa is also

an important player in later stages, in the development and

control of inflammatory reactions, and has been suggested

to be associated with excessive inflammation and thus the

immunopathology of acne vulgaris. All these point out the

importance of tight control of the TNFa level which is

crucial for the maintenance of epidermal homeostasis, as

both too little and too much protein can be deleterious for

the affected host.

The level of TNFa is regulated at many different lev-

els. These include transcriptional, RNA stability, and

translational regulation, and important elements of the

transcriptional regulation of the various polymorphisms

(SNPs and microsatellites) that can be found at the 50

regulatory (promoter) region of the gene. They are pos-

sibly playing a role by interfering with the various tran-

scription factor binding sites that can be found nearby the

polymorphism of interest, and thus lead to allele-specific

differences in the TNFa mRNA level. All these will also

affect the homeostasis of the tissue of interest, and

subsequently will result in the progression of the diseases.

In order to gain a deeper understanding of the role of

TNFa in acne pathogenesis, we genotyped five known

polymorphisms of this gene (-238G[A, -308G[A

-857C[T, -863C[A, and -1031T[C) in control indi-

viduals and acne patients. We chose these particular SNPs

because they have been associated with various inflam-

matory and immune-mediated diseases (e.g., inflammatory

bowel disease (IBD) [11], COPD [21], rheumatoid

arthritis [42], pemphigus [34], Graves disease [35],

infectious diseases [9, 13]), and has been shown to be

present in Caucasian individuals.

The data we have presented here strongly suggest that

various alleles and of the TNFa gene are associated with

acne vulgaris in our study population. Interestingly, in the

case of the -857C[T polymorphism, the major C allele

exhibited a positive association with acne whereas the

minor T allele seems to have a protective effect. In case of

this polymorphism a model has been suggested how this

SNP can impact the pathogenic process. In the presence of

the minor T allele a novel transcription factor binding site

(OCT-1) is generated at the promoter region of the TNFa

gene, right next to a preexisting NF-jB binding site. The

OCT-1 (octamer transcription factor-1) protein has been

shown to physically interact in vitro with the p65 subunit of

NF-jB, thus leading to altered gene expression pattern in

response to various stimuli that involves activation of

NF-jB. Interestingly, the protective nature of the -857 T

allele has also been suggested by van Heel et al. [40] who

found very similar association between this allele and IBD

in a British population. In another study from New Zealand

[10] found that even though they could not detect an

overall effect of this SNP in their IBD patient cohort, they

did show decreased risk for specific types and locations of

CD (ileocolonic Crohn’s-disease and also decreased need

for bowel resection) in their IBD patients.

In our data the percentage of C/C versus combined

C/T ? T/T individuals in case of the -857C[T SNP was

similar in controls and patients with non-inflammatory

acne (Group 1), whereas lower minor allele frequencies

were detected in patients suffering from inflammation

dominated forms of acne (Groups 2 and 3). Based on these

results, we concluded that this SNP might play a prominent

role in determining the severity of inflammatory events

during later stages of acne development.

A positive association was also noted for the minor A

allele of -308G[A in female acne patients. These asso-

ciations were even more pronounced when we correlated

the severity of acne with the observed genotypes (linear by

linear association). In this case we detected higher minor A

allele frequencies in the groups where patients exhibited

more severe forms of inflammatory acne. There are

numerous studies investigating the role of the TNFa

-308G[A SNP in various diseases in several different

populations, and many of them suggest that this polymor-

phism is important in determining the host’s TNFa

responses after various stimuli [25, 46, 47].

Recently, Baz et al. [5] reported a strong association

between the minor A allele of this SNP and acne vulgaris in

a Turkish population. In contrast to our result, however,

they did not find an association between the severity of

acne and the various genotypes, and also no gender-specific

differences were detected. The reason for these dissimi-

larities is not clear, but might reflect differences in the

linkage groups that are associated with the TNFa -308

SNP in the two studied population. The TNFa gene is

closely linked to various HLA alleles [10], and this fact

sometimes makes it difficult to distinguish between the

effect of TNFa from that of other closely linked genes of

the major histocompatibility complex. Our results, how-

ever, are more similar to the ones recently reported by

Sobjanek et al. [37]. They did not find any association

between the TNFa -308G[A and the -238G[A SNPs

and acne vulgaris in the studied Polish population. Further

in vitro and also genetic studies involving higher number of

controls and patients in various populations would be

advantageous to prove the effect of the -308 A allele in

acne pathogenesis.
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Baz et al. [5] also compared the reported genotype fre-

quencies regarding the TNFa -308 SNP in control subjects

from various studies performed in different ethnic groups.

They included studies that investigated the association of

this SNP and various diseases and found that the frequency

of the GA heterozygote genotype is very low in various

Asian ethnic groups (8–18%), whereas this value is much

higher in Western European study cohorts (27–35.5%). So

far there are data available from three different studies that

are investigating exclusively the association of the TNFa

-308 SNP and acne vulgaris [5, 37, present study].

Comparing the allele frequencies of the controls we find

that the frequency of combined G/A ? A/A genotypes we

observed (24.6%) is in between the Turkish (Asian) and

Polish (Western-European) data. This can be explained by

the unique geographic position of Hungary and Romania,

and also by historic influences (Osman subjection, Austro-

Hungarian Monarchy).

Carrying various polymorphisms of different genes can

predispose the carrier individuals to develop certain dis-

eases by affecting the mRNA expression, or the stability

and/or the structure of the encoded protein. In our study

we have identified two SNPs in the regulatory region of

the TNFa gene that showed association with acne

vulgaris.

Materials and methods

Study population and ethics

Blood samples were obtained from 364 Caucasian indi-

viduals from Szeged collected by the University of Szeged

Department of Dermatology and Allergology in Hungary

and by the Department of Dermatology, Victor Babes

University in Timisoara, Romania. Acne patients were

collected from patients of these two Dermatology Depart-

ments. Control subjects were recruited from medical stu-

dents studying at these two locations as well as from

co-workers, and relatives of the participants.

A retrospective case–control study was conducted, and

acne vulgaris diagnosis was defined as a dermatologists’

diagnosis based on physical examination, patient records,

and questionnaires. Acne patients were classified based on

severity of the disease into three subgroups, as determined:

Group 1 contained patients exhibiting non-inflammatory

type of acne (acne comedonica), Group 2 comprised

patients showing mild to moderate inflammatory (acne

papulo-pustulosa) acne and Group 3 consisted of patients

suffering from severe acne (nodulo-cystic acne). The

control group comprised individuals showing none or only

a very few mostly non-inflammatory types of lesions dur-

ing their life. Altogether our genomic collection contained

126 controls (91 females and 35 males), and 229 acne

patient samples (136 females and 93 males). All the par-

ticipants were older than 20 years at the time of recruit-

ment, and mostly co-workers and university students were

recruited. Thus, the median age of the control group was

29.5 years, compared to 32.4 of the patient group.

In both locations the same dermatologist (Andrea

Koreck) supervised the sample collection to make sure that

the categorization of the different acne patients and control

was performed uniformly at the two locations.

The study was approved by the Hungarian Research

Ethics Committee and the Ethics Committee of ‘‘Victor

Babes’’ University of Medicine and Pharmacy Timisoara.

All subjects gave written consent before blood collection.

The study was performed in accordance with the principles

stated in the Declaration of Helsinki and its later revision.

Polymorphism analyses

Genomic DNA was obtained from peripheral blood leu-

kocytes by a standard proteinase K digestion method, using

the QIAamp Blood DNA Mini Kit (QIAGEN, Germany).

Acne patients and controls were genotyped for five pro-

moter polymorphisms in the TNFa gene; -238G[A

(rs361525), -308G[A (rs1800629), -857C[T (rs1799

724), -863C[A (rs1800630), -1030T[C (rs1799964)

using the PCR–RFLP method, as described previously (for

references see Table 4).

Electrophoresis of the digested PCR products was per-

formed on an 5% NuSieve agarose gel (Lonza, ME, USA).

Gels were stained with GelRed (Biotium, Inc, Hayward,

CA, USA) in order to visualize the DNA fragments. For

representative gel pictures see Online Resource 1.

Selected samples were reamplified, purified, and sub-

jected to sequencing analysis. These results showed a

100% concordance to the results we obtained by the PCR–

RFLP analysis (Online Resources 2 and 3).

Statistical analysis

Statistical analysis was carried out on the groups of acne

patients and controls according to the rules of case–control

allelic association study design for all five SNPs. Genotype

frequencies were calculated by determining the percentage

of individuals carrying the different genotypes in both

groups, and the statistical significance of the association

was determined using the v2 test (2 9 2 table), using the

SPSS software (Version 17, SPSS, Chicago, IL). In the

analysis the number or homozygote wild type individuals

was compared to the combined number of hetero-, and

homozygote mutants, because the number of individuals

with homozygote mutant genotype was too low (n\ 5).

Statistical significance was established at a P value of 0.05.
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In case of the -857C[T SNP two proportions Z test was

used to test the power of the detected association.

Odds ratios (ORs) for risk of acne and their 95% con-

fidence intervals (CIs) were also calculated in a way that

homozygote and heterozygote minor allele carriers were

compared together with the homozygote wild type indi-

viduals for the various SNPs.

v2 tests for linear trend were calculated to assess the

relationship between the severity of acne symptoms and the

number of minor alleles the individual carries (homozygote

wild type = 0, heterozygote = 1, homozygote mutant = 2).

Again, statistical significance was established at a P value

of 0.05.
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Abstract

Acne vulgaris is a common chronic inflammatory skin disease of multifactorial

origin. The aim of this study was to clarify whether known polymorphisms of

the interleukin-1A (IL1A) and IL1RN genes play a role in the pathogenesis of

acne vulgaris. A positive association was found between the minor T allele of the

IL1A +4845(G>T) single nucleotide polymorphism (SNP) and acne, whereas no

association was found with respect to any alleles of the variable number of tandem

repeats (VNTR) polymorphism of the IL1RN gene. The severity of inflammatory acne

symptoms correlated with the percentage of individuals carrying the homozygote T/T

genotype. These results may help to elucidate the molecular events leading to the

development of acne.

Acne vulgaris is a multifactorial inflammatory skin disease of

the pilosebaceous follicle, caused by both host and environ-

mental factors and microbial components. The pathogenesis

of acne is thought to involve an interplay between a number

of factors (1), including excess androgenic stimulation and

sebum hypersecretion (2), abnormal differentiation, prolifera-

tion and hyperkeratinization of the epidermal keratinocytes,

especially those lining the duct region of the sebaceous

unit (3). All these processes lead to occlusion of the follic-

ular orifice by a plug containing mostly a mixture of keratin

and dead skin cells, together with sebum, hypercolonization

by the bacterium Propionibacterium acnes, and the appearance

of early skin symptoms called comedos. In later stages, the

lesions and the surrounding tissues can become inflamed, and

papules, pustules or, in more severe cases, nodules and cysts

can develop. The severity of the inflammatory reaction and the

subsequent acne symptoms vary considerably in the affected

subjects, in part because of individual genetic susceptibility

factors (4–9).

Interleukin-1α (IL-1α), one of the best-known cytokines

implicated in the pathogenesis of acne vulgaris (10–12), is

encoded by the gene interleukin-1A (IL1A). The IL-1α protein

is a multifunctional pleiotropic cytokine that affects different

cell types, with an important role in linking the innate and

adaptive immune responses. It is also a central molecule in

cutaneous inflammatory reactions: it is itself highly inflam-

matory, and has been shown to exert deleterious effects if

its regulation and production are disturbed. For these reasons,

the expression level and function of both the IL1A gene and

the encoded IL-1α protein are tightly regulated at many lev-

els, including the regulation of gene and protein expression

and secretion (13), with additional regulation by the naturally

existing receptor antagonist protein IL-1ra, encoded by the

IL1RN gene.

In the pathogenesis of acne, IL-1α plays a role in the ini-

tiation of lesion formation: increased IL-1α immunoreactivity

has been shown in the early steps of comedo formation (10).

Moreover, external treatment with the IL-1α protein leads
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to comedonal features, e.g. hyperproliferation and abnormal

differentiation in isolated pilosebaceous units in vitro (11, 12).

All these data point to the importance of the tight reg-

ulation of the IL-1α level and bioactivity in the epidermal

keratinocytes, and we therefore decided to study the effects

of known genetic polymorphisms of the IL1A and IL1RN

genes. The chosen polymorphisms were previously implicated

as genetic susceptibility or protective factors in the patho-

genesis of various chronic inflammatory diseases. Our results

suggest that the variable number of tandem repeat (VNTR)

polymorphism of the IL1RN gene does not show an associ-

ation with acne, whereas the +4845(G>T) single nucleotide

polymorphism (SNP) of the IL1A gene proved to be correlated

with the disease in our study population.

Peripheral blood samples for the studies were obtained from

344 Caucasian individuals in Szeged, Hungary and Timisoara,

Romania. A retrospective case-control study was conducted.

Acne vulgaris was unambiguously diagnosed by the dermatol-

ogists on the basis of physical examinations, patient records

and questionnaires. The same questionnaires were used at both

universities. The distance between the two locations is only

120 km, and the populations at both locations can be regarded

as typically Central-European. The acne patients were divided

into three subgroups according to the severity of the dis-

ease: group 1 comprised patients exhibited non-inflammatory

acne (acne comedonica), group 2 those with mild to mod-

erate inflammatory acne (acne papulo-pustulosa), and group

3 those with severe acne symptoms (nodulo-cystic acne). The

control group comprised individuals with none or only a few,

mostly non-inflammatory lesions, who had never had severe

acne symptoms. Overall, this genomic collection consisted of

samples from 127 healthy controls (91 females and 36 males)

and 229 acne patients samples (136 females and 93 males).

The study was approved by the Hungarian Research Ethics

Committee and the Ethics Committee at Victor Babes Univer-

sity of Medicine and Pharmacy, Timisoara. All participating

subjects gave their written consent before blood collection.

The study was performed in complete accordance with the

principles stated in the Declaration of Helsinki and its later

revision.

Genomic DNA was obtained from peripheral blood leuko-

cytes by a standard proteinase K digestion method, using the

QIAamp Blood DNA Mini Kit (Qiagen, Hilden, Germany).

Acne patients and controls were genotyped for the +4845

(G>T) (rs17561) SNP at the IL1A gene using a poly-

merase chain reaction-restriction fragment length polymor-

phism (PCR-RFLP) method described by Agrawal et al. (14),

whereas the IL1RN VNTR polymorphism was genotyped as

reported by Tarlow et al. (15).

Statistical analysis was carried out on the groups of acne

patients and controls in accordance with the rules of case-

control allelic association study designs. Genotype frequencies

were calculated by determining the percentages of individu-

als carrying the different genotypes in both groups, and the

statistical significance of the association was determined by

the chi-squared (χ2) test, using the spss software (Version 17,

SPSS, Chicago, IL). In the analysis of the IL1A +4845(G>T)

SNP, the number of homozygote wild-type individuals was

compared with the combined number of hetero- and homozy-

gote mutants (GG vs TG + TT) in a 2 × 2 table. Statistical

significance was established at a P-value of 0.05. Odds ratios

(ORs) for the risk of acne and their 95% confidence intervals

(CIs) were also calculated.

Among the cases of IL1RN VNTR polymorphism, five dif-

ferent genotype categories were identified, and a 2 × 5 table

was used.

Chi-squared tests for a linear trend were calculated to assess

the relationship between the severity of acne symptoms and

the different genotypes. For this analysis, acne patients were

stratified into three subgroups on the basis of disease sever-

ity, as described earlier, and analysed separately using the spss

software. Statistical significance was again taken as P < 0.05.

One hundred and eighteen control individuals and 226

acne patients were genotyped for the VNTR polymor-

phism of the IL1RN gene, which is an 86-bp-long tandem

repeat sequence in intron 2 of the IL1RN gene and which

has been shown to be a susceptibility factor for various

autoimmune, inflammatory and infectious diseases (16–18).

Three different alleles were detected in our samples: the

most frequent, four-repeat-containing allele 1 (86 bp)4, the

two-repeat-containing allele 2 (86 bp)2, and allele 3, involving

five tandem repeats (86 bp)5.

Comparison of the control and patients group did not show

any difference in the distribution of various genotype frequen-

cies. A similar result was obtained when the allele frequencies

were compared (Table 1).

Table 1 Comparison of IL1RN VNTR polymorphism in control individuals and acne patients

VNTR Genotype frequency n (%) Allele frequency n (%)

IL1RN 1/1 1/2 1/3 2/2 2/3 χ
2 P-value 1 2 3 χ

2 P-value

Controls 56 (47.5) 47 (40.0) 5 (4.2) 8 (6.8) 2 (1.7) 0.96a 164 (70.5) 65 (27.5) 7 (3.0) 0.83b

Patients 111 (49.1) 88 (39.0) 8 (3.5) 17 (7.5) 2 (0.9) 318 (70.4) 124 (27.4) 2 (2.2)

VNTR, variable number of tandem repeat polymorphism.
a
χ

2 analysis 2 × 5 table.
b
χ

2 analysis 2 × 3 table.
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Table 2 Comparison of IL1A +4845(G>T) polymorphism in control individuals and acne patients

SNP Genotype frequency n (%) Allele frequency n (%)

+4845(G>T) G/G T/G + T/T χ
2 P-value G T χ

2 P-value

Controls 67 (52.8) 52 + 8 (47.2) 0.03 186 (73.2) 68 (26.8) 0.03

Patients 89 (41.0) 104 + 24 (59.0) 282 (65.0) 152 (35.0)

SNP, single nucleotide polymorphism.

These led us to conclude that this polymorphism did not

contribute to acne pathogenesis in our study population.

The observed genotype and allele frequencies for the 127

controls and 217 acne patients genotyped for the IL1A

+4845(G>T) SNP are presented in Table 2. In the case of this

SNP, the distributions of the various genotype and allele fre-

quencies exhibited statistically significant differences between

the control individuals and the acne patients (Pearsons χ
2 test

2 × 2 table, P = 0.03 in both cases). Our data also indicated

that the rare T allele was positively associated with acne: the

OR of acne vulgaris development was higher for individuals

who carried the minor T allele in at least one copy (OR = 1.61

at 95% CI 1.03–2.5).

The results of the analysis of the distribution of the geno-

type frequencies in the three acne subgroups corroborated that

the IL1A +4845(G>T) polymorphism is indeed an acne sus-

ceptibility factor, because the severity of the acne correlated

with the observed IL1A genotypes (χ2 for linear trend anal-

ysis, P = 0.03), as shown in Figure 1. The percentage of

homozygote wild types (G/G) relative to individuals carry-

ing at least one minor allele (G/T + T/T) was fairly constant

within the subgroups, but the of the acne symptoms increased

in parallel with the percentage of individuals carrying the

minor allele in a homozygote form (T/T).

Figure 1 Observed genotype frequencies of the IL1A +4845(G>T)

(rs17561) SNP in the control individuals and the subgroups of acne

patients. The percentage of homozygote wild types (G/G) is fairly

constant within the acne subgroups. In contrast, the percentage of

individuals carrying the minor allele in a homozygote form (T/T) correlates

with the severity of acne symptoms (acne comedonica: 4.0%, acne

papulo-pustulosa: 11.6%, nodulo-cystic acne: 13.9%). The red arrow

indicates increasing severity of the inflammatory symptoms in the acne

subgroups.

Overall, these data led us to propose that the IL1A

+4845(G>T) SNP acts as a genetic predisposing factor in

the pathogenesis of acne vulgaris in our study population.

The present study related to the roles of the IL1A

+4845(G>T) SNP and the VNTR polymorphism of the

IL1RN gene in the pathogenesis of acne vulgaris. We chose to

study these two polymorphisms because of the available data

on the roles of IL-1α and related genes in the pathogenesis

of this skin disease. The published data suggest the involve-

ment of IL-1α both in the early stages of lesion formation in

acne pathogenesis, at the initiation and regulation of the innate

immune events, and also in the later stages, in the development

and control of the inflammatory reactions (10–12). The evi-

dence suggests that it is often not the exact level of the IL-1α

protein that is important, but rather the ratio of the IL-1α pro-

tein and its antagonist IL-1RA. Any shift in this ratio will

lead to an imbalance and hence the initiation of pathogenic

events (19).

No differences were found in between the controls and the

acne group in the distributions of the various genotypes and

alleles in the cases of VNTR polymorphism of the IL1RN

gene, suggesting that it probably did not play a role in the

predisposition to acne in our population.

In contrast, a positive association was found for the

+4845(G>T) SNP, suggesting that this SNP is indeed a

genetic susceptibility factor. Furthermore, a linear association

was shown between the severity of acne symptoms and the

frequency of the minor allele-containing genotypes (Figure 1).

The IL-1α protein is synthesized as pre-IL-1α and pro-

cessed into its mature form by the enzymatic cut between

amino acids 117 and 118 (20). Both the premature and the

mature IL-1α isoforms are biologically active, but their sub-

cellular localizations and biological functions differ. Pre-IL-1α

exhibits a predominantly nuclear localization, which is a result

of a nuclear localization signal sequence (NLS) situated in the

N-terminal pre-sequence. Upon maturation, the N-terminal is

cleaved off by specific proteases (calpain, caspase-1) and the

mature protein is generated. On elimination of the NLS signal,

the resulting mature IL-1α takes up a cytoplasmic localiza-

tion and this molecule can then be secreted in response to the

appropriate signals (20).

The SNP at position +4845 of the gene causes an alanine

to serine substitution of amino acid 114 of pre-IL-1α, which

is immediately adjacent to the proteolytic cleavage site, and

enhanced calpain-mediated cleavage can be observed when
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the rare T allele is present at this position. The exact

mechanism as to how this SNP modulates the cleavage

requires further investigations (21, 22).

The IL1A +4845 SNP causes changes in the ratio of

nuclear vs secreted IL-1α isoforms, which can affect epider-

mal homeostasis. Nuclear IL-1α has a role in transcriptional

regulation (23), whereas the mature secreted form activates

signalling cascades in an autocrine and a paracrine manner. It

emerged from the present study that homozygote carriers of

the rare T allele have a higher chance of suffering from more

severe acne symptoms. The previously published in vitro data

showed more extensive cleavage of pre-IL-1α and the ratio of

nuclear vs secreted IL-1α is shifted towards higher amounts

of the secreted isoform, which may subsequently lead to an

altered IL1A/IL-1RA ratio.

Similar case-control studies of the effects of the +4845

G>T SNP have been conducted in a number of chronic

inflammatory diseases, and a similar association has been

reported in rheumatoid arthritis (21), chronic polyarthri-

tis (24), polymyalgia rheumatica (25) and nasal polypo-

sis (26), suggesting similarities in molecular pathogenesis of

these diseases and acne vulgaris.

In summary, our data indicate that the rare allele of the

IL1A +4845(G>T) SNP is associated with acne vulgaris in

our study population. This, together with our previous find-

ings (27) that a tumour necrosis factor-alpha (TNF-α) reg-

ulatory SNP also contributes to acne pathogenesis, suggests

that genetic variations of primary pro-inflammatory cytokines

causing alterations either in the fine regulation of these genes

or in the function of the resulting proteins can result in imbal-

ances in cellular homeostasis and hence a subsequent sus-

ceptibility to various immune mediated diseases such as acne

vulgaris.
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