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Introduction

Binary shapes play important role in the field of image processing, due to that

1. the images of many real world objects are basically binary shapes, e.g. text characters,

traffic signs, bones or implants on X-ray images, etc.,

2. in most of the image processing applications at some point of the processing pipeline

the images are binarized (i.e., segmented).

In many cases, the additional information that we are working with a binary valued image

limits the number of possible solutions (the search space) thus it can help to obtain more

accurate results. For example, the linear inverse problems like tomography and deconvolu-

tion are usually under-determined, and have many possible solutions. Knowing that we are

seeking a binary image restricts the search space, and as a result in the case of tomography,

binary images can be usually reconstructed accurately only from a few projections.

In many other cases, however, the lack of rich intensity information makes it difficult

to deal with these binary images. For example, image registration techniques commonly

work with previously established point pairs and these correspondences are usually obtained

using the intensity patterns around these points. Thus in the case of binary images these

methods can not obtain appropriate point correspondences. On the other hand, in such

cases we do not need to deal with the intensity change between the images. Therefore

many techniques have been presented previously to register binary images using statistics

computed using only the point coordinates of the shapes.

This work is a summary of the author’s research results in the reconstruction and in the

geometric registration of binary shapes. Table 1 shows the connection between the thesis

points and the publications of the author. The planar homography related results of the

thesis point III. was also previously presented in [13].

[9] [10] [12] [11] [4] [8]

I. •
II. •
III. • • •
IV. •

Table 1: Correspondence between the thesis points and the publications.

I. Discrete Tomography with Unknown Intensity Levels

Here we propose a binary tomography reconstruction method which uses a higher order

statistics based discretization term to enforce binary solutions. The digital image of size
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h×w is represented by the column vector x ∈ {c1, c2}n, where n = hw is the total number

of the pixels and c1, c2 are the intensity values of the background pixels and the foreground

(object) pixels. Suppose that projections have been taken from k different angles. Let li the

number of measurements in the ith projection vector. All projection data are represented

by the column vector p ∈ Rm, where m =
∑k
i=1 li is the total number of measurements.

The projection acquisition process is modeled by the system of linear equations

Wx = p, (1)

where the matrix W ∈ Rm×n describes the projection geometry. The most frequently used

beam geometry types in tomography as well as in binary tomography include parallel beam,

fan beam, and cone beam.

The reconstruction is performed by the minimization of the following objective functional

E(x, α, µ) = F (x) + λS(x) + µD(x, α), (2)

in which three expected properties of the solution are formulated. The so called data fidelity

term represents that x should satisfy the projections:

F (x) =
1

2
‖Wx− p‖22. (3)

This term expresses that the solution should have projections close to the observed data p

in the least squares sense and it is commonly used in the field of tomography. As usually

in the case of linear inverse problems, minimizing Eq. (3) alone could lead to non-feasible

solutions, due to noisy projection data. To regularize the solution, the objective functional

contains a smoothness prior term

S(x) =
1

2
‖Lx‖22, (4)

where L is the discrete Laplacian regularization matrix, i.e., Lx gives the same result as

the 2-dimensional convolution with the Laplacian filter. This term penalizes solutions with

high norm of second derivatives but allows the formation of edges. Setting its weight λ

large enforces smooth regions even if the projections are noisy. Using only the data and

the smoothness terms, the functional F (x) + λS(x) is convex, and its minimum provides

a continuous reconstruction.

Binary solutions are imposed by the discretization term

D(x, α) = n
‖x− α1n‖44

(‖x− α1n‖22)2
− 1, (5)

where α is the discretization parameter, 1n denotes the length-n column vector of ones, and

‖x‖p =
(∑n

i=1 x
p
i

)1/p
is the general vector norm. This functional is minimized by binary

images, if α is equal to the mean of the two intensity values, i.e., there exists d for which

|xi − α| = d, for every i = 1, . . . n. In such cases, it has a value of 0, while it reaches its
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i=0 i=75 i=98 i=119 i=174 i=224

µ=0 µ≈414.8 µ≈1.3×103 µ≈3.7×103 µ≈5.5×104 µ≈6×105

α̂ = 0.4205 α̂ = 0.5239 α̂ = 0.4667 α̂ = 0.4706 α̂ = 0.4869 α̂ = 0.4970

D(x̂, α̂) = 1.11 D(x̂, α̂) = 0.74 D(x̂, α̂) = 0.31 D(x̂, α̂) = 0.15 D(x̂, α̂) = 0.03 D(x̂, α̂) = 0.00

Figure 1: Demonstration of the convergence of the proposed method. The columns show

intermediate reconstructions using 5 projections after different number of iterations. In the

first row, 3-dimensional plots of the images are shown, in which the estimated mid-levels α̂

are indicated by horizontal planes. The second and third rows show the images and their

α̂-thresholded versions. Below the images the corresponding discretization weight µ, the

estimated mid-level α̂ and the value of the discretization term D(x̂, α̂) can be found.

maximum value n− 1 if all the pixel intensities are equal to α except one pixel. Thus it is

bounded, and furthermore, two times continuously differentiable except at x = α1n. As a

result, standard gradient based optimization techniques can be applied directly to minimize

it. D(x, α) is closely related to the fourth order standardized moment (or kurtosis), except

that the fourth and second moments are normalized using the mid-level α instead of the

mean of the values.

Setting the weight µ of the discretization term large allows only binary solutions as it

suppresses the other components of the energy functional. The following theorem states

that for any ξ > 0 a sufficiently high value of µ can be chosen such that the discretization

level (i.e., the value of the discretization term) will be at most ξ at the minimum point of

the energy functional.

Theorem 1. For any ξ > 0, there exists µ(ξ) ∈ R, such that if µ ≥ µ(ξ) and (x̂, α̂) =

arg min
x,α

E(x, α, µ), then D(x̂, α̂) ≤ ξ.

The reconstruction problem for given ξ > 0 and µ̂ ≥ µ(ξ) is defined as the following
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minimization problem:

(x̂, α̂) = arg min
x,α

E(x, α, µ̂). (6)

In the case of a binary image deconvolution method it was proposed, to optimize the value

of the mid-level along with the solution and the point-spread-function in the same gradient

descent based optimization process [6]. We found that in the case of the proposed method

it is more efficient to estimate the mid-level directly to each intermediate solution x̂ based

on the analysis of the discretization function. Thus we propose the following graduated

optimization approach for solving the optimization problem in Eq. (6). Starting from an

initial reconstruction x̂ obtained by the minimization of the objective functional without

the discretization term (i.e., with µ = 0), in each iteration step

1. Estimate the mid-level α̂ for the current solution x̂.

2. Increase the weight of the discretization term (µ).

3. Refine the reconstruction x̂ by locally minimizing the objective functional using the

new parameters α̂ and µ.

This method increasingly enforces binary solutions while iteratively approximates the

mid-level (see Fig. 1). Note that the method does not require the estimation of the intensity

values during this process neither the thresholding of the intermediate solutions. It was

shown, that the objective functional Lipschitz-continuous, therefore it can be efficiently

minimized by gradient based optimizers. The gray-intensity independence of the method

was also shown, i.e., that the algorithm can be implemented such that the reconstructed

image does not depend on the values of the two intensities.

The proposed method was tested on a synthetic database. Experiments showed that

the method is robust to the applied projection noise. In comparison to the PDM-DART

method [15], our algorithm provided competitive results, while it clearly outperformed an

other convex programming based approach.

The method was also successfully applied in a real data experiment, where the homo-

geneous part of a gas pressure regulator was reconstructed using its 18 projections (see

Fig. 2).

The Author’s Contributions

The author introduces a novel higher order statistics based binary tomography reconstruc-

tion technique, which can be used in those cases, when the intensity values of the images

are unknown. He proposes an objective functional in which a discretization term is ap-

plied to prescribe binary solutions. He propose to minimize the objective functional by a

graduated non-convexity optimization approach, in which the weight of the discretization

term is increased during the optimization process to gradually enforce binary solutions. He
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Figure 2: First colum: Four of the 18 projections of the homogeneous part of a gas pressure

regulator. Other columns: Reconstruction results of the proposed method. The slices are

indicated on the first projection image.

proposes to estimate the mid-level of the intensities directly to the intermediate solutions

in each iteration step. This mid-level is estimated as the minimum of the discretization

term. The author examines the convergence properties of the method and shows that the

behaviour of the method is independent of the value of the intensities. He demonstrates

the robustness of the algorithm against different strengths of projection noise. The author

compares his algorithm to state-of-the-art methods and shows that his approach is a good

alternative. He also successfully applies his algorithm to real projection data.

II. Binary Shape Deconvolution using Discrete Tomography

Our goal is to reconstruct an unknown image f ∈ Ru×v from its blurred and noisy obser-

vation g ∈ Ru×v. The image degradation is modeled by the convolution of the image with

the point-spread-function (PSF) and the addition of noise:

g = h ∗ ∗f + n, (7)

where h ∈ Rp×q is the PSF, ∗∗ denotes the 2-dimensional convolution while n ∈ Ru×v is

the noise. We assume that the PSF is known. Our goal is to restore binary images, such

as b ∈ {0, 1}u×v. Since the scaling of the intensity values is unknown, we introduce this

unknown scale factor s in the degradation model Eq. (7), thus f = sb.

Let the projection vector of an image f along an arbitrary angle θ denoted by f̌θ. We

take advantage of that if g = h ∗ ∗f then ǧ = ȟ ∗ f̌ , where ∗ denotes the 1-dimensional

convolution operator. The relationship between the projections of the original and the
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⇒

⇒

⇑ ⇓

Figure 3: The degradation model and the basic idea of the proposed method. First three

columns: the original image, the blurry image and the blurry and noisy image and their

projections. Fourth column: the method restores the projections of the image then recon-

structs the binary shape.

degraded images can be expressed as

ǧ = ȟ ∗ f̌ + ň. (8)

For a direction set Ω = {θi|i = 1, . . . , k} the proposed method restores each projection

vector f̌θi from the projection vectors ǧθi and then as a second step reconstructs f from

its restored projections (see Fig. 3). Convolution is a linear operation, thus Eq. (8) can be

written as

ǧ = Hf̌ + ň, (9)

where the H matrix represents the convolution operation with the PSF ȟ. Since ň is

unknown, this system of linear equations is ill-posed and it requires regularization which

penalizes solutions of large norm. The standard version of the Tikhonov regularization takes

the form

f̌λ = arg min
f̌

‖Hf̌ − ǧ‖22 + λ2‖f̌‖22, (10)

where λ is a positive constant, the regularization parameter, that controls the smoothness

of the solution. An explicit solution for a given λ is given by

f̌λ = (HTH + λ2I)−1HT ǧ, (11)

where I denotes the identity matrix. To determine a suitable value of the regularization

parameter λ we used the L-curve method, which is the log-log plot of the norm of the

residual and the norm of the solution for different regularization parameters:

L = {(log2 ‖Hf̌λ − ǧ‖
2
2, log2 ‖f̌λ‖

2
2), λ ≥ 0}. (12)
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To obtain an optimal trade-off between the two values, the L-curve method proposes to

choose λ∗ which maximizes the curvature κλ of the curve L.

To eliminate the negative elements of the solution we apply a further, generalized

Tikhonov regularization based iterative method which iteratively enforces non-negative val-

ues.

The discrete tomography reconstruction requires the b̌θi = f̌θi/s binary projections.

The scale factor s can not be determined explicitly. However, its upper and lower bounds

can be estimated, thus we can define a set S of its possible values. For each s ∈ S we

obtain the vectors b̌θi =
[
f̌θi/s

]
as estimations of the projections of the unknown binary

image b.

We consider the reconstruction from the vertical and horizontal projection vectors b̌0

and b̌π/2. It is well known, that usually two projections are not enough to reconstruct

binary images, i.e., there can be many binary images that have the same projections while

in some other cases there is no binary image that satisfies the projections. We define the

tomographic equivalence class:

U = U(b̌0, b̌π/2) = {z ∈ {0, 1}u×v : ž0 = b̌0, žπ/2 = b̌π/2}. (13)

While generally |U | > 1, we are interested in a solution which is the most similar to the

input image g. For that purpose a model image m has been created from the input image

g by removing noise of variance σ2
n (which has been estimated after the estimation of the

projections). We show how to find such a solution using a minimum cost maximal flow

algorithm. The expectation that the solution zs should be similar to the model image means

that on those (x, y) positions where z(x, y) = 1 it is most likely that the model image has

high grayscale values. This can be formulated by the following minimization problem:

zs = arg min
z∈U

(
−
∑
x,y

z(x, y)m(x, y)

)
. (14)

This way the reconstruction problem is traced back to the minimum cost maximal flow

(MCMF) problem [1]. In this network the supply and demand nodes are representing the

projection vectors while the edges are representing the image pixels. The edge Sx → Ty

corresponding to the (x, y) pixel has a flow capacity equal to 1 and a flow cost equal to

−m(x, y). The minimum cost maximal flow can be found in polynomial time [14] and it

determines the solution zs of the discrete tomography problem. The pixel zs(x, y) gets a

value of 1, if and only if the flow passes through the edge Sx → Ty. For different scale

factors s ∈ S the method finds different binary solutions zs. To choose an optimal solution

z, the method compares each zs to the input image g in least-squares sense.

To examine the performance of the method we created a synthetic dataset of images of

62 alphanumeric characters (of size 59× 59 pixels) and their 1550 degraded versions. Each

image was blurred by different Gaussian filters and white noises of different levels was added
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Figure 4: Example results on letters extracted from out-of-focus document images. The

original images are shown in the first row while results of the proposed method are in the

second row.

to each blurred image. Comparisons to the widely used Lucy-Richardson method showed

that our algorithm provides competitive results. The performance of the method was also

examined on out-of-focus character images taken with real camera. Some restoration results

can be seen in Fig. 4.

The Author’s Contributions

The author proposes a binary tomography based approach for the deconvolution of binary

images. He proposes to deconvolve the projections of the blurred images using a Tikhonov

regularization based approach, in which the optimal value of the regularization parameter is

found by the L-curve method. To reconstruct the shapes from their deblurred projections,

he applies a maximum-flow based binary tomography method. He shows in comparative

tests that his method provides more reliable results then another widely-used method. He

also presents results on real out-of-focus images.

III. Nonlinear Registration of Binary Shapes

We introduce a general binary registration framework. Suppose that ϕ : R2 → R2 is a

diffeomorphism, i.e., a differentiable and invertible transformation and its inverse is also

differentiable. Our goal is to estimate its parameters with which the transformation aligns

the input shapes. Let the corresponding point coordinates on the template and observation

shapes denoted by x = [x1, x2]T ∈ R2 and y = [y1, y2]T ∈ R2. Then

y = ϕ(x) ⇔ x = ϕ−1(y). (15)

This relation remains valid if we apply a function ω : R2 → Rn, on both sides of the

equation [3, 12, 11]:

ω(y) = ω(ϕ(x)) ⇔ ω(x) = ω(ϕ−1(y)). (16)

Integrate on both sides we obtain the following equation:∫
Fo

ω(y)dy =

∫
Ft

ω(ϕ(x)) |Jϕ(x)| dx. (17)
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where Ft and Fo are the foreground regions of the template and observation shapes and

|Jϕ| : R2 → R is the Jacobian of the transformation, given by:

|Jϕ(x)| =

∣∣∣∣∣∣∣
∂ϕ1
∂x1

∂ϕ1
∂x2

∂ϕ2
∂x1

∂ϕ2
∂x2

∣∣∣∣∣∣∣ . (18)

The basic idea of the proposed method is to generate a sufficient number of equations using

a set of linearly independent ω functions. Since an equation set up using ω : R2 → Rn

(n > 1) can be decomposed into n equations, we can assume that n = 1 without any

restriction.

Suppose that ϕ has k parameters and let ωi : R2 → R, (i = 1, . . . , `) the set of applied

functions. To solve for all unknowns, we need at least k equations, hence ` ≥ k. Thus we

can obtain the following system of equations∫
Fo

ωi(y)dy =

∫
Ft

ωi
(
ϕ(x)

)
|Jϕ(x)| dx, i = 1, . . . , `, (19)

where each ωi function provides one new equation. Each applied ωi function can be

considered as a coloring of the shape and the integrals in Eq. (19) give the volumes of the

ωi functions over the area of the shape. The equations thus match these volumes. Each

equation provides additional constraints and the solution of this system gives the estimation

of the parameters of the aligning transformation.

We applied our registration framework on different deformation classes:

1. Planar homography is the projective transformation between the images of the same

planar object. It plays an important role in computer vision.

2. Polynomial transformations are often used to approximate other transformation

models and general deformations.

3. Thin Plate Spline (TPS) model is widely used to approximate general non-rigid

deformations.

To avoid extreme numerical values of the integrals, we applied some normalization

on both the pixel coordinates and the ωi functions. For that purpose, we normalized the

coordinates of both shapes into the square [−0.5, 0.5]×[−0.5, 0.5] and chose ωi with a range

limited to an interval (e.g. [−1, 1]). Despite of these normalizations, the integrals in our

equations could take values of different range of magnitude yielding a different contribution

from each equation to the objective function value in the optimization process. Thus we

normalized the equations by dividing the integrals with an appropriate constant, which is

given by the integral of the applied ωi function on a circle with center in the origin and a

radius
√

2
2

:

Ni =

∫
‖x‖≤

√
2

2

|ωi(x)|dx, (20)
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Figure 5: Registration results of printed signs. Top: planar templates. Bottom: the

corresponding observations with the overlaid contour of the registration results. The first

image pair shows the segmented regions used for registration. Note the typical segmentation

errors. (Images provided by ContiTech Fluid Automotive Hungária Ltd.)

and the normalized version of Eq. (19) becomes∫
Fo
ωi(y)dy

Ni
=

∫
Ft
ωi
(
ϕ(x)

)
|Jϕ(x)| dx

Ni
, i = 1, . . . , `. (21)

The system of equations in Eq. (21) has been constructed in the continuous space, in

practice, however, we have limited resolution digital images. Therefore the integrals can

only be approximated by finite sums over the foreground pixels. Let us denote by Ft and

Fo the finite pixel sets corresponding to the continuous pixel regions Ft and Fo. Then

Eq. (21) can be approximated by the following system of equations:

1

Ni

∑
y∈Fo

ωi(y) =
1

Ni

∑
x∈Ft

ωi
(
ϕ(x)

)
|Jϕ(x)| , i = 1, . . . , `. (22)

The parameters of the aligning transformations are obtained as the solution of this system

of equations. While the equations are nonlinear, we found that it can be solved efficiently by

Levenberg-Marquardt algorithm [7] in least-squares sense. In the case of planar homography,

the equations can be written in three alternative forms by making use of the corresponding

inverse transformation. The additional equations provide additional constraints and thus

help the optimizer to find the optimal solution.

We examined the performance of the method using different {ωi} function sets. We

considered different power, polynomial, and trigonometric function sets. Based on the

results we recommend to use low order polynomials for computational efficiency. In the case

of planar homography, we showed that the performance of the algorithm can be improved

if we apply the framework to the Taylor series expansion of the transformation.

We tested the performance of the algorithm on large synthetic datasets for each transfor-

mation models. We also compared the proposed method to the Shape Context [2] method,

and found that it provides more accurate alignments. We also examined the robustness
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of the proposed method against 4 different type of segmentation errors on the synthetic

dataset of planar homography. Results showed that the proposed method is quite robust in

those cases where the segmentation errors are uniformly distributed on the shapes. In those

cases, however, when the segmentation errors are consisted of larger continuous regions, like

occlusion and disocclusion, it provides less accurate results compared to the Shape Context

method.

The proposed method has been applied in the case of different real applications, like

the registration of handwritten characters (TPS model), traffic signs (planar homography),

and in an industrial quality inspection problem (problem specific transformation model, see

Fig. 5).

The Author’s Contributions

The author addresses the problem of nonlinear registration of binary shapes. A general

registration framework is used which traces back the registration problem to a system of

nonlinear equations. He applies the framework to different nonlinear transformation classes

such as planar homography, polynomial transformations, and thin plate splines. He goes

into the implementational details and shows that the equations can be written in three

alternative forms which improves the registration results. In the case of planar homography,

the author shows that the performance of the algorithm can be improved if it is applied

to the Taylor series expansion of the transformation. The author proposes different ω

function sets to construct the system of equations and compares them. He proposes to

normalize the equations to guarantee equal contribution to the objective functional. The

author compares the method to other state-of-the-art methods on synthetic datasets, and

examines the robustness of the algorithm against different types of segmentation errors.

The author shows that the method can be applied in different real world applications.

IV. Affine Invariants Based Projective Registration of Binary Shapes

We introduce a two-step method to estimate the parameters of a planar homography trans-

formation that aligns two binary shapes. The parameters of such a transformation are the

Hij elements of the 3×3 matrix H, while H33 = 1 is fixed. The H31 and H32 parameters of

the transformation are responsible for the perspective distortion, while the others generate

an affine transformation. The transformation can be decomposed as follows:

h = ha ◦ hp (23)

where hp : R2 → R2, hp(x) = [hp1(x), hp2(x)]T is a nonlinear transformation:

hp1(x) =
x1

p1x1 + p2x2 + 1

hp2(x) =
x2

p1x1 + p2x2 + 1
, (24)
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resulting only perspective distortion, and ha : R2 → R2, ha(x) = [ha1(x), ha2(x)]T is an

affine transformation:

ha1(x) = a11x1 + a12x2 + a13

ha2(x) = a21x1 + a22x2 + a23, (25)

Thus we can write the relationship between the shapes as follows:

Ft = (ha ◦ hp)(Fo) = ha(hp(Fo)). (26)

The proposed method estimates the pi parameters of the perspective component hp and

the ai parameters of the affine component ha in two distinct steps (see Fig. 6), then using

Eq. (23) we get the Hij parameters of h.

If Eq. (26) stands, then for any affine-invariant function I : R2 → R:

I(Ft) = I(hp(Fo)). (27)

Given a set of independent affine invariant functions Ii : R2 → R, i = 1 . . . n, we obtain a

system of equations:

Ii(Ft) = Ii(h
p(Fo)). (28)

The solution of this system of equations provides the parameters of hp. It is clearly a highly

nonlinear system and thus do not have exact solution. However our experiments showed

that it can be efficiently solved by a general nonlinear solver.

We use affine moment invariants [5], because they allows efficient numerical estimation

of the system of equations in Eq. (28). The left hand sides of the equations in Eq. (28)

do not depend on the parameters of hp so they can be estimated directly using the point

coordinates of the template image. The geometric moment mrs of order (r+ s) of a shape

F is defined as

mrs(F) =

∫
F
xr1x

s
2dx. (29)

The affine moment invariants are rely on central moments:

µrs(F) =

∫
F

(x1 − c1)r(x2 − c2)sdx (30)

where the coordinates of the center of mass of the shape are given by:

c1 = m10(F)/m00(F) and c2 = m01(F)/m00(F). (31)

For example the first two affine moment invariants are given as follows:

I1 = (µ20µ02 − µ2
11)/µ4

00

I2 = (−µ2
30µ

2
03+6µ30µ21µ12µ03−4µ30µ

3
12−4µ3

21µ03+3µ2
21µ

2
12)/µ10

00. (32)
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Template Observation Step 1 Step 2

Figure 6: The registration process: The first step removes only the perspective distortion

from the observation image while the second step restores the affine transformation and

thus align it to the original template image.

Given fixed parameters of hp we show how to compute the right hand sides of Eq. (28)

by making use of the Jacobian |Jhp | of the transformation, thus avoiding the generation of

the image hp(Fo). For a shape F that is distorted by hp the geometric moment can be

estimated as follows:

mrs(h
p(F)) =

∫
F

[hp1(x)]r [hp2(x)]s |Jhp(x)|dx (33)

where the Jacobian of the perspective distortion is given by

|Jhp(x)| = 1

(p1x1 + p2x2 + 1)3
, (34)

On the perspectively distorted shape hp(F) the central moments are given by

µrs(h
p(F)) =

∫
F

[hp1(x)− c1]r [hp2(x)− c2]s |Jhp(x)|dx, (35)

where

c1 = m10(hp(F))/m00(hp(F)) and c2 = m01(hp(F))/m00(hp(F)). (36)

For fixed values of the parameters p1 and p2, the affine moment invariants I(hp(F )) in

the right hand side of the system Eq. (28) can be obtained using the central moments in

Eq. (35) that can be estimated using only the foreground points of the shape F . Thus we

avoid to generate the hp(F) images which would be very time consuming.

After the perspective distortion is recovered (i.e., its parameters p1 and p2 are de-

termined) the affine transformation ha should be estimated between the shapes Ft and

hp(Fo). For that purpose we used the approach proposed in [3] and in order to avoid the

generation of hp(Fo) we modified the method by making use of the Jacobian |Jhp | of the

perspective part. The following system of equations can be written for the aij parameters

of the affine transformation∫
Ft

ynk dy = |Jha |
n∑
i=1

(
n

i

)
i∑

j=0

(
i

j

)
an−ik1 ai−jk2 ajk3

∫
Fo

hp1(x)n−ihp2(x)i−j |Jhp(x)|dx, (37)
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Figure 7: Registration results on traffic signs. The images used as observations are shown

in the first row, and below them the corresponding templates with the overlayed contours

of the registration results.

for n = 1, 2, 3 and k = 1, 2. This system contains six polynomial equations up to order

three which is enough to solve for all the 6 unknowns.

The Jacobian of an affine transformation is constant over the whole plane, thus it can

be simply estimated as the ratio of the areas of the shapes:

|Jha | =
∫
Ft
dy∫

Fo
|Jhp(x)|dx

(38)

While the system Eq. (37) may have many solutions, we can select the real root which

corresponds to the determinant what we computed in Eq. (38). Note that the solution is

not unique if the shape is affine symmetric.

Putting together the projective transformation hp and the affine transformation ha,

we get the aligning planar homography transformation h. In our experiments, we used

the I3, I4, I5, I6 invariants and applied the differential evolution method to solve Eq. (28).

Experiments on a synthetic dataset showed that the proposed method can outperform the

method that was described in the previous section which can not cope with those cases

when the images were rotated more than 90 degrees. The robustness of the proposed

method against segmentation errors should be examined in a future work, especially since

affine moment invariants are sensitive to such degradations. Nevertheless, we were able to

obtain good registration results on several traffic sign image pairs (see Fig. 7).

The Author’s Contributions

The author proposes an affine invariant moments based approach to estimate the param-

eters of a planar homography transformation between binary shapes. He shows how to

14



decompose the transformation into a perspective and an affine part and recover their pa-

rameters separately in two consecutive steps. He shows how to estimate the projective

parameters of the transformation using affine moment invariants. As a second step, he

applies an affine registration method to determine the remaining parameters of the trans-

formation. The author compares the method to the algorithm presented in the previous

thesis point and shows results obtained by the algorithm on real images.
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